fold-const.c (maybe_lvalue_p): Return false for M(IN|AX)_EXPR.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "df.h"
49 #include "target.h"
50 #include "emit-rtl.h"
51
52 /* This file contains the reload pass of the compiler, which is
53 run after register allocation has been done. It checks that
54 each insn is valid (operands required to be in registers really
55 are in registers of the proper class) and fixes up invalid ones
56 by copying values temporarily into registers for the insns
57 that need them.
58
59 The results of register allocation are described by the vector
60 reg_renumber; the insns still contain pseudo regs, but reg_renumber
61 can be used to find which hard reg, if any, a pseudo reg is in.
62
63 The technique we always use is to free up a few hard regs that are
64 called ``reload regs'', and for each place where a pseudo reg
65 must be in a hard reg, copy it temporarily into one of the reload regs.
66
67 Reload regs are allocated locally for every instruction that needs
68 reloads. When there are pseudos which are allocated to a register that
69 has been chosen as a reload reg, such pseudos must be ``spilled''.
70 This means that they go to other hard regs, or to stack slots if no other
71 available hard regs can be found. Spilling can invalidate more
72 insns, requiring additional need for reloads, so we must keep checking
73 until the process stabilizes.
74
75 For machines with different classes of registers, we must keep track
76 of the register class needed for each reload, and make sure that
77 we allocate enough reload registers of each class.
78
79 The file reload.c contains the code that checks one insn for
80 validity and reports the reloads that it needs. This file
81 is in charge of scanning the entire rtl code, accumulating the
82 reload needs, spilling, assigning reload registers to use for
83 fixing up each insn, and generating the new insns to copy values
84 into the reload registers. */
85 \f
86 /* During reload_as_needed, element N contains a REG rtx for the hard reg
87 into which reg N has been reloaded (perhaps for a previous insn). */
88 static rtx *reg_last_reload_reg;
89
90 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
91 for an output reload that stores into reg N. */
92 static regset_head reg_has_output_reload;
93
94 /* Indicates which hard regs are reload-registers for an output reload
95 in the current insn. */
96 static HARD_REG_SET reg_is_output_reload;
97
98 /* Element N is the constant value to which pseudo reg N is equivalent,
99 or zero if pseudo reg N is not equivalent to a constant.
100 find_reloads looks at this in order to replace pseudo reg N
101 with the constant it stands for. */
102 rtx *reg_equiv_constant;
103
104 /* Element N is an invariant value to which pseudo reg N is equivalent.
105 eliminate_regs_in_insn uses this to replace pseudos in particular
106 contexts. */
107 rtx *reg_equiv_invariant;
108
109 /* Element N is a memory location to which pseudo reg N is equivalent,
110 prior to any register elimination (such as frame pointer to stack
111 pointer). Depending on whether or not it is a valid address, this value
112 is transferred to either reg_equiv_address or reg_equiv_mem. */
113 rtx *reg_equiv_memory_loc;
114
115 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
116 collector can keep track of what is inside. */
117 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
118
119 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
120 This is used when the address is not valid as a memory address
121 (because its displacement is too big for the machine.) */
122 rtx *reg_equiv_address;
123
124 /* Element N is the memory slot to which pseudo reg N is equivalent,
125 or zero if pseudo reg N is not equivalent to a memory slot. */
126 rtx *reg_equiv_mem;
127
128 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
129 alternate representations of the location of pseudo reg N. */
130 rtx *reg_equiv_alt_mem_list;
131
132 /* Widest width in which each pseudo reg is referred to (via subreg). */
133 static unsigned int *reg_max_ref_width;
134
135 /* Element N is the list of insns that initialized reg N from its equivalent
136 constant or memory slot. */
137 rtx *reg_equiv_init;
138 int reg_equiv_init_size;
139
140 /* Vector to remember old contents of reg_renumber before spilling. */
141 static short *reg_old_renumber;
142
143 /* During reload_as_needed, element N contains the last pseudo regno reloaded
144 into hard register N. If that pseudo reg occupied more than one register,
145 reg_reloaded_contents points to that pseudo for each spill register in
146 use; all of these must remain set for an inheritance to occur. */
147 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
148
149 /* During reload_as_needed, element N contains the insn for which
150 hard register N was last used. Its contents are significant only
151 when reg_reloaded_valid is set for this register. */
152 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
153
154 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
155 static HARD_REG_SET reg_reloaded_valid;
156 /* Indicate if the register was dead at the end of the reload.
157 This is only valid if reg_reloaded_contents is set and valid. */
158 static HARD_REG_SET reg_reloaded_dead;
159
160 /* Indicate whether the register's current value is one that is not
161 safe to retain across a call, even for registers that are normally
162 call-saved. This is only meaningful for members of reg_reloaded_valid. */
163 static HARD_REG_SET reg_reloaded_call_part_clobbered;
164
165 /* Number of spill-regs so far; number of valid elements of spill_regs. */
166 static int n_spills;
167
168 /* In parallel with spill_regs, contains REG rtx's for those regs.
169 Holds the last rtx used for any given reg, or 0 if it has never
170 been used for spilling yet. This rtx is reused, provided it has
171 the proper mode. */
172 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
173
174 /* In parallel with spill_regs, contains nonzero for a spill reg
175 that was stored after the last time it was used.
176 The precise value is the insn generated to do the store. */
177 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
178
179 /* This is the register that was stored with spill_reg_store. This is a
180 copy of reload_out / reload_out_reg when the value was stored; if
181 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
182 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
183
184 /* This table is the inverse mapping of spill_regs:
185 indexed by hard reg number,
186 it contains the position of that reg in spill_regs,
187 or -1 for something that is not in spill_regs.
188
189 ?!? This is no longer accurate. */
190 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
191
192 /* This reg set indicates registers that can't be used as spill registers for
193 the currently processed insn. These are the hard registers which are live
194 during the insn, but not allocated to pseudos, as well as fixed
195 registers. */
196 static HARD_REG_SET bad_spill_regs;
197
198 /* These are the hard registers that can't be used as spill register for any
199 insn. This includes registers used for user variables and registers that
200 we can't eliminate. A register that appears in this set also can't be used
201 to retry register allocation. */
202 static HARD_REG_SET bad_spill_regs_global;
203
204 /* Describes order of use of registers for reloading
205 of spilled pseudo-registers. `n_spills' is the number of
206 elements that are actually valid; new ones are added at the end.
207
208 Both spill_regs and spill_reg_order are used on two occasions:
209 once during find_reload_regs, where they keep track of the spill registers
210 for a single insn, but also during reload_as_needed where they show all
211 the registers ever used by reload. For the latter case, the information
212 is calculated during finish_spills. */
213 static short spill_regs[FIRST_PSEUDO_REGISTER];
214
215 /* This vector of reg sets indicates, for each pseudo, which hard registers
216 may not be used for retrying global allocation because the register was
217 formerly spilled from one of them. If we allowed reallocating a pseudo to
218 a register that it was already allocated to, reload might not
219 terminate. */
220 static HARD_REG_SET *pseudo_previous_regs;
221
222 /* This vector of reg sets indicates, for each pseudo, which hard
223 registers may not be used for retrying global allocation because they
224 are used as spill registers during one of the insns in which the
225 pseudo is live. */
226 static HARD_REG_SET *pseudo_forbidden_regs;
227
228 /* All hard regs that have been used as spill registers for any insn are
229 marked in this set. */
230 static HARD_REG_SET used_spill_regs;
231
232 /* Index of last register assigned as a spill register. We allocate in
233 a round-robin fashion. */
234 static int last_spill_reg;
235
236 /* Nonzero if indirect addressing is supported on the machine; this means
237 that spilling (REG n) does not require reloading it into a register in
238 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
239 value indicates the level of indirect addressing supported, e.g., two
240 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
241 a hard register. */
242 static char spill_indirect_levels;
243
244 /* Nonzero if indirect addressing is supported when the innermost MEM is
245 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
246 which these are valid is the same as spill_indirect_levels, above. */
247 char indirect_symref_ok;
248
249 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
250 char double_reg_address_ok;
251
252 /* Record the stack slot for each spilled hard register. */
253 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
254
255 /* Width allocated so far for that stack slot. */
256 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
257
258 /* Record which pseudos needed to be spilled. */
259 static regset_head spilled_pseudos;
260
261 /* Record which pseudos changed their allocation in finish_spills. */
262 static regset_head changed_allocation_pseudos;
263
264 /* Used for communication between order_regs_for_reload and count_pseudo.
265 Used to avoid counting one pseudo twice. */
266 static regset_head pseudos_counted;
267
268 /* First uid used by insns created by reload in this function.
269 Used in find_equiv_reg. */
270 int reload_first_uid;
271
272 /* Flag set by local-alloc or global-alloc if anything is live in
273 a call-clobbered reg across calls. */
274 int caller_save_needed;
275
276 /* Set to 1 while reload_as_needed is operating.
277 Required by some machines to handle any generated moves differently. */
278 int reload_in_progress = 0;
279
280 /* These arrays record the insn_code of insns that may be needed to
281 perform input and output reloads of special objects. They provide a
282 place to pass a scratch register. */
283 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
284 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
285
286 /* This obstack is used for allocation of rtl during register elimination.
287 The allocated storage can be freed once find_reloads has processed the
288 insn. */
289 static struct obstack reload_obstack;
290
291 /* Points to the beginning of the reload_obstack. All insn_chain structures
292 are allocated first. */
293 static char *reload_startobj;
294
295 /* The point after all insn_chain structures. Used to quickly deallocate
296 memory allocated in copy_reloads during calculate_needs_all_insns. */
297 static char *reload_firstobj;
298
299 /* This points before all local rtl generated by register elimination.
300 Used to quickly free all memory after processing one insn. */
301 static char *reload_insn_firstobj;
302
303 /* List of insn_chain instructions, one for every insn that reload needs to
304 examine. */
305 struct insn_chain *reload_insn_chain;
306
307 /* List of all insns needing reloads. */
308 static struct insn_chain *insns_need_reload;
309 \f
310 /* This structure is used to record information about register eliminations.
311 Each array entry describes one possible way of eliminating a register
312 in favor of another. If there is more than one way of eliminating a
313 particular register, the most preferred should be specified first. */
314
315 struct elim_table
316 {
317 int from; /* Register number to be eliminated. */
318 int to; /* Register number used as replacement. */
319 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
320 int can_eliminate; /* Nonzero if this elimination can be done. */
321 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
322 target hook in previous scan over insns
323 made by reload. */
324 HOST_WIDE_INT offset; /* Current offset between the two regs. */
325 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
326 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
327 rtx from_rtx; /* REG rtx for the register to be eliminated.
328 We cannot simply compare the number since
329 we might then spuriously replace a hard
330 register corresponding to a pseudo
331 assigned to the reg to be eliminated. */
332 rtx to_rtx; /* REG rtx for the replacement. */
333 };
334
335 static struct elim_table *reg_eliminate = 0;
336
337 /* This is an intermediate structure to initialize the table. It has
338 exactly the members provided by ELIMINABLE_REGS. */
339 static const struct elim_table_1
340 {
341 const int from;
342 const int to;
343 } reg_eliminate_1[] =
344
345 /* If a set of eliminable registers was specified, define the table from it.
346 Otherwise, default to the normal case of the frame pointer being
347 replaced by the stack pointer. */
348
349 #ifdef ELIMINABLE_REGS
350 ELIMINABLE_REGS;
351 #else
352 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
353 #endif
354
355 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
356
357 /* Record the number of pending eliminations that have an offset not equal
358 to their initial offset. If nonzero, we use a new copy of each
359 replacement result in any insns encountered. */
360 int num_not_at_initial_offset;
361
362 /* Count the number of registers that we may be able to eliminate. */
363 static int num_eliminable;
364 /* And the number of registers that are equivalent to a constant that
365 can be eliminated to frame_pointer / arg_pointer + constant. */
366 static int num_eliminable_invariants;
367
368 /* For each label, we record the offset of each elimination. If we reach
369 a label by more than one path and an offset differs, we cannot do the
370 elimination. This information is indexed by the difference of the
371 number of the label and the first label number. We can't offset the
372 pointer itself as this can cause problems on machines with segmented
373 memory. The first table is an array of flags that records whether we
374 have yet encountered a label and the second table is an array of arrays,
375 one entry in the latter array for each elimination. */
376
377 static int first_label_num;
378 static char *offsets_known_at;
379 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
380
381 /* Number of labels in the current function. */
382
383 static int num_labels;
384 \f
385 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
386 static void maybe_fix_stack_asms (void);
387 static void copy_reloads (struct insn_chain *);
388 static void calculate_needs_all_insns (int);
389 static int find_reg (struct insn_chain *, int);
390 static void find_reload_regs (struct insn_chain *);
391 static void select_reload_regs (void);
392 static void delete_caller_save_insns (void);
393
394 static void spill_failure (rtx, enum reg_class);
395 static void count_spilled_pseudo (int, int, int);
396 static void delete_dead_insn (rtx);
397 static void alter_reg (int, int, bool);
398 static void set_label_offsets (rtx, rtx, int);
399 static void check_eliminable_occurrences (rtx);
400 static void elimination_effects (rtx, enum machine_mode);
401 static int eliminate_regs_in_insn (rtx, int);
402 static void update_eliminable_offsets (void);
403 static void mark_not_eliminable (rtx, const_rtx, void *);
404 static void set_initial_elim_offsets (void);
405 static bool verify_initial_elim_offsets (void);
406 static void set_initial_label_offsets (void);
407 static void set_offsets_for_label (rtx);
408 static void init_elim_table (void);
409 static void update_eliminables (HARD_REG_SET *);
410 static void spill_hard_reg (unsigned int, int);
411 static int finish_spills (int);
412 static void scan_paradoxical_subregs (rtx);
413 static void count_pseudo (int);
414 static void order_regs_for_reload (struct insn_chain *);
415 static void reload_as_needed (int);
416 static void forget_old_reloads_1 (rtx, const_rtx, void *);
417 static void forget_marked_reloads (regset);
418 static int reload_reg_class_lower (const void *, const void *);
419 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
420 enum machine_mode);
421 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
422 enum machine_mode);
423 static int reload_reg_free_p (unsigned int, int, enum reload_type);
424 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
425 rtx, rtx, int, int);
426 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
427 rtx, rtx, int, int);
428 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
429 static int allocate_reload_reg (struct insn_chain *, int, int);
430 static int conflicts_with_override (rtx);
431 static void failed_reload (rtx, int);
432 static int set_reload_reg (int, int);
433 static void choose_reload_regs_init (struct insn_chain *, rtx *);
434 static void choose_reload_regs (struct insn_chain *);
435 static void merge_assigned_reloads (rtx);
436 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
437 rtx, int);
438 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
439 int);
440 static void do_input_reload (struct insn_chain *, struct reload *, int);
441 static void do_output_reload (struct insn_chain *, struct reload *, int);
442 static void emit_reload_insns (struct insn_chain *);
443 static void delete_output_reload (rtx, int, int, rtx);
444 static void delete_address_reloads (rtx, rtx);
445 static void delete_address_reloads_1 (rtx, rtx, rtx);
446 static rtx inc_for_reload (rtx, rtx, rtx, int);
447 #ifdef AUTO_INC_DEC
448 static void add_auto_inc_notes (rtx, rtx);
449 #endif
450 static void substitute (rtx *, const_rtx, rtx);
451 static bool gen_reload_chain_without_interm_reg_p (int, int);
452 static int reloads_conflict (int, int);
453 static rtx gen_reload (rtx, rtx, int, enum reload_type);
454 static rtx emit_insn_if_valid_for_reload (rtx);
455 \f
456 /* Initialize the reload pass. This is called at the beginning of compilation
457 and may be called again if the target is reinitialized. */
458
459 void
460 init_reload (void)
461 {
462 int i;
463
464 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
465 Set spill_indirect_levels to the number of levels such addressing is
466 permitted, zero if it is not permitted at all. */
467
468 rtx tem
469 = gen_rtx_MEM (Pmode,
470 gen_rtx_PLUS (Pmode,
471 gen_rtx_REG (Pmode,
472 LAST_VIRTUAL_REGISTER + 1),
473 GEN_INT (4)));
474 spill_indirect_levels = 0;
475
476 while (memory_address_p (QImode, tem))
477 {
478 spill_indirect_levels++;
479 tem = gen_rtx_MEM (Pmode, tem);
480 }
481
482 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
483
484 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
485 indirect_symref_ok = memory_address_p (QImode, tem);
486
487 /* See if reg+reg is a valid (and offsettable) address. */
488
489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
490 {
491 tem = gen_rtx_PLUS (Pmode,
492 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
493 gen_rtx_REG (Pmode, i));
494
495 /* This way, we make sure that reg+reg is an offsettable address. */
496 tem = plus_constant (tem, 4);
497
498 if (memory_address_p (QImode, tem))
499 {
500 double_reg_address_ok = 1;
501 break;
502 }
503 }
504
505 /* Initialize obstack for our rtl allocation. */
506 gcc_obstack_init (&reload_obstack);
507 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
508
509 INIT_REG_SET (&spilled_pseudos);
510 INIT_REG_SET (&changed_allocation_pseudos);
511 INIT_REG_SET (&pseudos_counted);
512 }
513
514 /* List of insn chains that are currently unused. */
515 static struct insn_chain *unused_insn_chains = 0;
516
517 /* Allocate an empty insn_chain structure. */
518 struct insn_chain *
519 new_insn_chain (void)
520 {
521 struct insn_chain *c;
522
523 if (unused_insn_chains == 0)
524 {
525 c = XOBNEW (&reload_obstack, struct insn_chain);
526 INIT_REG_SET (&c->live_throughout);
527 INIT_REG_SET (&c->dead_or_set);
528 }
529 else
530 {
531 c = unused_insn_chains;
532 unused_insn_chains = c->next;
533 }
534 c->is_caller_save_insn = 0;
535 c->need_operand_change = 0;
536 c->need_reload = 0;
537 c->need_elim = 0;
538 return c;
539 }
540
541 /* Small utility function to set all regs in hard reg set TO which are
542 allocated to pseudos in regset FROM. */
543
544 void
545 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
546 {
547 unsigned int regno;
548 reg_set_iterator rsi;
549
550 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
551 {
552 int r = reg_renumber[regno];
553
554 if (r < 0)
555 {
556 /* reload_combine uses the information from DF_LIVE_IN,
557 which might still contain registers that have not
558 actually been allocated since they have an
559 equivalence. */
560 gcc_assert (ira_conflicts_p || reload_completed);
561 }
562 else
563 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
564 }
565 }
566
567 /* Replace all pseudos found in LOC with their corresponding
568 equivalences. */
569
570 static void
571 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
572 {
573 rtx x = *loc;
574 enum rtx_code code;
575 const char *fmt;
576 int i, j;
577
578 if (! x)
579 return;
580
581 code = GET_CODE (x);
582 if (code == REG)
583 {
584 unsigned int regno = REGNO (x);
585
586 if (regno < FIRST_PSEUDO_REGISTER)
587 return;
588
589 x = eliminate_regs (x, mem_mode, usage);
590 if (x != *loc)
591 {
592 *loc = x;
593 replace_pseudos_in (loc, mem_mode, usage);
594 return;
595 }
596
597 if (reg_equiv_constant[regno])
598 *loc = reg_equiv_constant[regno];
599 else if (reg_equiv_mem[regno])
600 *loc = reg_equiv_mem[regno];
601 else if (reg_equiv_address[regno])
602 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
603 else
604 {
605 gcc_assert (!REG_P (regno_reg_rtx[regno])
606 || REGNO (regno_reg_rtx[regno]) != regno);
607 *loc = regno_reg_rtx[regno];
608 }
609
610 return;
611 }
612 else if (code == MEM)
613 {
614 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
615 return;
616 }
617
618 /* Process each of our operands recursively. */
619 fmt = GET_RTX_FORMAT (code);
620 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
621 if (*fmt == 'e')
622 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
623 else if (*fmt == 'E')
624 for (j = 0; j < XVECLEN (x, i); j++)
625 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
626 }
627
628 /* Determine if the current function has an exception receiver block
629 that reaches the exit block via non-exceptional edges */
630
631 static bool
632 has_nonexceptional_receiver (void)
633 {
634 edge e;
635 edge_iterator ei;
636 basic_block *tos, *worklist, bb;
637
638 /* If we're not optimizing, then just err on the safe side. */
639 if (!optimize)
640 return true;
641
642 /* First determine which blocks can reach exit via normal paths. */
643 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
644
645 FOR_EACH_BB (bb)
646 bb->flags &= ~BB_REACHABLE;
647
648 /* Place the exit block on our worklist. */
649 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
650 *tos++ = EXIT_BLOCK_PTR;
651
652 /* Iterate: find everything reachable from what we've already seen. */
653 while (tos != worklist)
654 {
655 bb = *--tos;
656
657 FOR_EACH_EDGE (e, ei, bb->preds)
658 if (!(e->flags & EDGE_ABNORMAL))
659 {
660 basic_block src = e->src;
661
662 if (!(src->flags & BB_REACHABLE))
663 {
664 src->flags |= BB_REACHABLE;
665 *tos++ = src;
666 }
667 }
668 }
669 free (worklist);
670
671 /* Now see if there's a reachable block with an exceptional incoming
672 edge. */
673 FOR_EACH_BB (bb)
674 if (bb->flags & BB_REACHABLE)
675 FOR_EACH_EDGE (e, ei, bb->preds)
676 if (e->flags & EDGE_ABNORMAL)
677 return true;
678
679 /* No exceptional block reached exit unexceptionally. */
680 return false;
681 }
682
683 \f
684 /* Global variables used by reload and its subroutines. */
685
686 /* Set during calculate_needs if an insn needs register elimination. */
687 static int something_needs_elimination;
688 /* Set during calculate_needs if an insn needs an operand changed. */
689 static int something_needs_operands_changed;
690
691 /* Nonzero means we couldn't get enough spill regs. */
692 static int failure;
693
694 /* Temporary array of pseudo-register number. */
695 static int *temp_pseudo_reg_arr;
696
697 /* Main entry point for the reload pass.
698
699 FIRST is the first insn of the function being compiled.
700
701 GLOBAL nonzero means we were called from global_alloc
702 and should attempt to reallocate any pseudoregs that we
703 displace from hard regs we will use for reloads.
704 If GLOBAL is zero, we do not have enough information to do that,
705 so any pseudo reg that is spilled must go to the stack.
706
707 Return value is nonzero if reload failed
708 and we must not do any more for this function. */
709
710 int
711 reload (rtx first, int global)
712 {
713 int i, n;
714 rtx insn;
715 struct elim_table *ep;
716 basic_block bb;
717
718 /* Make sure even insns with volatile mem refs are recognizable. */
719 init_recog ();
720
721 failure = 0;
722
723 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
724
725 /* Make sure that the last insn in the chain
726 is not something that needs reloading. */
727 emit_note (NOTE_INSN_DELETED);
728
729 /* Enable find_equiv_reg to distinguish insns made by reload. */
730 reload_first_uid = get_max_uid ();
731
732 #ifdef SECONDARY_MEMORY_NEEDED
733 /* Initialize the secondary memory table. */
734 clear_secondary_mem ();
735 #endif
736
737 /* We don't have a stack slot for any spill reg yet. */
738 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
739 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
740
741 /* Initialize the save area information for caller-save, in case some
742 are needed. */
743 init_save_areas ();
744
745 /* Compute which hard registers are now in use
746 as homes for pseudo registers.
747 This is done here rather than (eg) in global_alloc
748 because this point is reached even if not optimizing. */
749 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
750 mark_home_live (i);
751
752 /* A function that has a nonlocal label that can reach the exit
753 block via non-exceptional paths must save all call-saved
754 registers. */
755 if (cfun->has_nonlocal_label
756 && has_nonexceptional_receiver ())
757 crtl->saves_all_registers = 1;
758
759 if (crtl->saves_all_registers)
760 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
761 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
762 df_set_regs_ever_live (i, true);
763
764 /* Find all the pseudo registers that didn't get hard regs
765 but do have known equivalent constants or memory slots.
766 These include parameters (known equivalent to parameter slots)
767 and cse'd or loop-moved constant memory addresses.
768
769 Record constant equivalents in reg_equiv_constant
770 so they will be substituted by find_reloads.
771 Record memory equivalents in reg_mem_equiv so they can
772 be substituted eventually by altering the REG-rtx's. */
773
774 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
775 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
776 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
777 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
778 reg_equiv_address = XCNEWVEC (rtx, max_regno);
779 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
780 reg_old_renumber = XCNEWVEC (short, max_regno);
781 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
782 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
783 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
784
785 CLEAR_HARD_REG_SET (bad_spill_regs_global);
786
787 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
788 to. Also find all paradoxical subregs and find largest such for
789 each pseudo. */
790
791 num_eliminable_invariants = 0;
792 for (insn = first; insn; insn = NEXT_INSN (insn))
793 {
794 rtx set = single_set (insn);
795
796 /* We may introduce USEs that we want to remove at the end, so
797 we'll mark them with QImode. Make sure there are no
798 previously-marked insns left by say regmove. */
799 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
800 && GET_MODE (insn) != VOIDmode)
801 PUT_MODE (insn, VOIDmode);
802
803 if (NONDEBUG_INSN_P (insn))
804 scan_paradoxical_subregs (PATTERN (insn));
805
806 if (set != 0 && REG_P (SET_DEST (set)))
807 {
808 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
809 rtx x;
810
811 if (! note)
812 continue;
813
814 i = REGNO (SET_DEST (set));
815 x = XEXP (note, 0);
816
817 if (i <= LAST_VIRTUAL_REGISTER)
818 continue;
819
820 if (! function_invariant_p (x)
821 || ! flag_pic
822 /* A function invariant is often CONSTANT_P but may
823 include a register. We promise to only pass
824 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
825 || (CONSTANT_P (x)
826 && LEGITIMATE_PIC_OPERAND_P (x)))
827 {
828 /* It can happen that a REG_EQUIV note contains a MEM
829 that is not a legitimate memory operand. As later
830 stages of reload assume that all addresses found
831 in the reg_equiv_* arrays were originally legitimate,
832 we ignore such REG_EQUIV notes. */
833 if (memory_operand (x, VOIDmode))
834 {
835 /* Always unshare the equivalence, so we can
836 substitute into this insn without touching the
837 equivalence. */
838 reg_equiv_memory_loc[i] = copy_rtx (x);
839 }
840 else if (function_invariant_p (x))
841 {
842 if (GET_CODE (x) == PLUS)
843 {
844 /* This is PLUS of frame pointer and a constant,
845 and might be shared. Unshare it. */
846 reg_equiv_invariant[i] = copy_rtx (x);
847 num_eliminable_invariants++;
848 }
849 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
850 {
851 reg_equiv_invariant[i] = x;
852 num_eliminable_invariants++;
853 }
854 else if (LEGITIMATE_CONSTANT_P (x))
855 reg_equiv_constant[i] = x;
856 else
857 {
858 reg_equiv_memory_loc[i]
859 = force_const_mem (GET_MODE (SET_DEST (set)), x);
860 if (! reg_equiv_memory_loc[i])
861 reg_equiv_init[i] = NULL_RTX;
862 }
863 }
864 else
865 {
866 reg_equiv_init[i] = NULL_RTX;
867 continue;
868 }
869 }
870 else
871 reg_equiv_init[i] = NULL_RTX;
872 }
873 }
874
875 if (dump_file)
876 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
877 if (reg_equiv_init[i])
878 {
879 fprintf (dump_file, "init_insns for %u: ", i);
880 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
881 fprintf (dump_file, "\n");
882 }
883
884 init_elim_table ();
885
886 first_label_num = get_first_label_num ();
887 num_labels = max_label_num () - first_label_num;
888
889 /* Allocate the tables used to store offset information at labels. */
890 /* We used to use alloca here, but the size of what it would try to
891 allocate would occasionally cause it to exceed the stack limit and
892 cause a core dump. */
893 offsets_known_at = XNEWVEC (char, num_labels);
894 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
895
896 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
897 stack slots to the pseudos that lack hard regs or equivalents.
898 Do not touch virtual registers. */
899
900 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
901 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
902 temp_pseudo_reg_arr[n++] = i;
903
904 if (ira_conflicts_p)
905 /* Ask IRA to order pseudo-registers for better stack slot
906 sharing. */
907 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
908
909 for (i = 0; i < n; i++)
910 alter_reg (temp_pseudo_reg_arr[i], -1, false);
911
912 /* If we have some registers we think can be eliminated, scan all insns to
913 see if there is an insn that sets one of these registers to something
914 other than itself plus a constant. If so, the register cannot be
915 eliminated. Doing this scan here eliminates an extra pass through the
916 main reload loop in the most common case where register elimination
917 cannot be done. */
918 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
919 if (INSN_P (insn))
920 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
921
922 maybe_fix_stack_asms ();
923
924 insns_need_reload = 0;
925 something_needs_elimination = 0;
926
927 /* Initialize to -1, which means take the first spill register. */
928 last_spill_reg = -1;
929
930 /* Spill any hard regs that we know we can't eliminate. */
931 CLEAR_HARD_REG_SET (used_spill_regs);
932 /* There can be multiple ways to eliminate a register;
933 they should be listed adjacently.
934 Elimination for any register fails only if all possible ways fail. */
935 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
936 {
937 int from = ep->from;
938 int can_eliminate = 0;
939 do
940 {
941 can_eliminate |= ep->can_eliminate;
942 ep++;
943 }
944 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
945 if (! can_eliminate)
946 spill_hard_reg (from, 1);
947 }
948
949 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
950 if (frame_pointer_needed)
951 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
952 #endif
953 finish_spills (global);
954
955 /* From now on, we may need to generate moves differently. We may also
956 allow modifications of insns which cause them to not be recognized.
957 Any such modifications will be cleaned up during reload itself. */
958 reload_in_progress = 1;
959
960 /* This loop scans the entire function each go-round
961 and repeats until one repetition spills no additional hard regs. */
962 for (;;)
963 {
964 int something_changed;
965 int did_spill;
966 HOST_WIDE_INT starting_frame_size;
967
968 starting_frame_size = get_frame_size ();
969
970 set_initial_elim_offsets ();
971 set_initial_label_offsets ();
972
973 /* For each pseudo register that has an equivalent location defined,
974 try to eliminate any eliminable registers (such as the frame pointer)
975 assuming initial offsets for the replacement register, which
976 is the normal case.
977
978 If the resulting location is directly addressable, substitute
979 the MEM we just got directly for the old REG.
980
981 If it is not addressable but is a constant or the sum of a hard reg
982 and constant, it is probably not addressable because the constant is
983 out of range, in that case record the address; we will generate
984 hairy code to compute the address in a register each time it is
985 needed. Similarly if it is a hard register, but one that is not
986 valid as an address register.
987
988 If the location is not addressable, but does not have one of the
989 above forms, assign a stack slot. We have to do this to avoid the
990 potential of producing lots of reloads if, e.g., a location involves
991 a pseudo that didn't get a hard register and has an equivalent memory
992 location that also involves a pseudo that didn't get a hard register.
993
994 Perhaps at some point we will improve reload_when_needed handling
995 so this problem goes away. But that's very hairy. */
996
997 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
998 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
999 {
1000 rtx x = eliminate_regs (reg_equiv_memory_loc[i], VOIDmode,
1001 NULL_RTX);
1002
1003 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
1004 XEXP (x, 0)))
1005 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
1006 else if (CONSTANT_P (XEXP (x, 0))
1007 || (REG_P (XEXP (x, 0))
1008 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
1009 || (GET_CODE (XEXP (x, 0)) == PLUS
1010 && REG_P (XEXP (XEXP (x, 0), 0))
1011 && (REGNO (XEXP (XEXP (x, 0), 0))
1012 < FIRST_PSEUDO_REGISTER)
1013 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
1014 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
1015 else
1016 {
1017 /* Make a new stack slot. Then indicate that something
1018 changed so we go back and recompute offsets for
1019 eliminable registers because the allocation of memory
1020 below might change some offset. reg_equiv_{mem,address}
1021 will be set up for this pseudo on the next pass around
1022 the loop. */
1023 reg_equiv_memory_loc[i] = 0;
1024 reg_equiv_init[i] = 0;
1025 alter_reg (i, -1, true);
1026 }
1027 }
1028
1029 if (caller_save_needed)
1030 setup_save_areas ();
1031
1032 /* If we allocated another stack slot, redo elimination bookkeeping. */
1033 if (starting_frame_size != get_frame_size ())
1034 continue;
1035 if (starting_frame_size && crtl->stack_alignment_needed)
1036 {
1037 /* If we have a stack frame, we must align it now. The
1038 stack size may be a part of the offset computation for
1039 register elimination. So if this changes the stack size,
1040 then repeat the elimination bookkeeping. We don't
1041 realign when there is no stack, as that will cause a
1042 stack frame when none is needed should
1043 STARTING_FRAME_OFFSET not be already aligned to
1044 STACK_BOUNDARY. */
1045 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1046 if (starting_frame_size != get_frame_size ())
1047 continue;
1048 }
1049
1050 if (caller_save_needed)
1051 {
1052 save_call_clobbered_regs ();
1053 /* That might have allocated new insn_chain structures. */
1054 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1055 }
1056
1057 calculate_needs_all_insns (global);
1058
1059 if (! ira_conflicts_p)
1060 /* Don't do it for IRA. We need this info because we don't
1061 change live_throughout and dead_or_set for chains when IRA
1062 is used. */
1063 CLEAR_REG_SET (&spilled_pseudos);
1064
1065 did_spill = 0;
1066
1067 something_changed = 0;
1068
1069 /* If we allocated any new memory locations, make another pass
1070 since it might have changed elimination offsets. */
1071 if (starting_frame_size != get_frame_size ())
1072 something_changed = 1;
1073
1074 /* Even if the frame size remained the same, we might still have
1075 changed elimination offsets, e.g. if find_reloads called
1076 force_const_mem requiring the back end to allocate a constant
1077 pool base register that needs to be saved on the stack. */
1078 else if (!verify_initial_elim_offsets ())
1079 something_changed = 1;
1080
1081 {
1082 HARD_REG_SET to_spill;
1083 CLEAR_HARD_REG_SET (to_spill);
1084 update_eliminables (&to_spill);
1085 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1086
1087 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1088 if (TEST_HARD_REG_BIT (to_spill, i))
1089 {
1090 spill_hard_reg (i, 1);
1091 did_spill = 1;
1092
1093 /* Regardless of the state of spills, if we previously had
1094 a register that we thought we could eliminate, but now can
1095 not eliminate, we must run another pass.
1096
1097 Consider pseudos which have an entry in reg_equiv_* which
1098 reference an eliminable register. We must make another pass
1099 to update reg_equiv_* so that we do not substitute in the
1100 old value from when we thought the elimination could be
1101 performed. */
1102 something_changed = 1;
1103 }
1104 }
1105
1106 select_reload_regs ();
1107 if (failure)
1108 goto failed;
1109
1110 if (insns_need_reload != 0 || did_spill)
1111 something_changed |= finish_spills (global);
1112
1113 if (! something_changed)
1114 break;
1115
1116 if (caller_save_needed)
1117 delete_caller_save_insns ();
1118
1119 obstack_free (&reload_obstack, reload_firstobj);
1120 }
1121
1122 /* If global-alloc was run, notify it of any register eliminations we have
1123 done. */
1124 if (global)
1125 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1126 if (ep->can_eliminate)
1127 mark_elimination (ep->from, ep->to);
1128
1129 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1130 If that insn didn't set the register (i.e., it copied the register to
1131 memory), just delete that insn instead of the equivalencing insn plus
1132 anything now dead. If we call delete_dead_insn on that insn, we may
1133 delete the insn that actually sets the register if the register dies
1134 there and that is incorrect. */
1135
1136 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1137 {
1138 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1139 {
1140 rtx list;
1141 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1142 {
1143 rtx equiv_insn = XEXP (list, 0);
1144
1145 /* If we already deleted the insn or if it may trap, we can't
1146 delete it. The latter case shouldn't happen, but can
1147 if an insn has a variable address, gets a REG_EH_REGION
1148 note added to it, and then gets converted into a load
1149 from a constant address. */
1150 if (NOTE_P (equiv_insn)
1151 || can_throw_internal (equiv_insn))
1152 ;
1153 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1154 delete_dead_insn (equiv_insn);
1155 else
1156 SET_INSN_DELETED (equiv_insn);
1157 }
1158 }
1159 }
1160
1161 /* Use the reload registers where necessary
1162 by generating move instructions to move the must-be-register
1163 values into or out of the reload registers. */
1164
1165 if (insns_need_reload != 0 || something_needs_elimination
1166 || something_needs_operands_changed)
1167 {
1168 HOST_WIDE_INT old_frame_size = get_frame_size ();
1169
1170 reload_as_needed (global);
1171
1172 gcc_assert (old_frame_size == get_frame_size ());
1173
1174 gcc_assert (verify_initial_elim_offsets ());
1175 }
1176
1177 /* If we were able to eliminate the frame pointer, show that it is no
1178 longer live at the start of any basic block. If it ls live by
1179 virtue of being in a pseudo, that pseudo will be marked live
1180 and hence the frame pointer will be known to be live via that
1181 pseudo. */
1182
1183 if (! frame_pointer_needed)
1184 FOR_EACH_BB (bb)
1185 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1186
1187 /* Come here (with failure set nonzero) if we can't get enough spill
1188 regs. */
1189 failed:
1190
1191 CLEAR_REG_SET (&changed_allocation_pseudos);
1192 CLEAR_REG_SET (&spilled_pseudos);
1193 reload_in_progress = 0;
1194
1195 /* Now eliminate all pseudo regs by modifying them into
1196 their equivalent memory references.
1197 The REG-rtx's for the pseudos are modified in place,
1198 so all insns that used to refer to them now refer to memory.
1199
1200 For a reg that has a reg_equiv_address, all those insns
1201 were changed by reloading so that no insns refer to it any longer;
1202 but the DECL_RTL of a variable decl may refer to it,
1203 and if so this causes the debugging info to mention the variable. */
1204
1205 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1206 {
1207 rtx addr = 0;
1208
1209 if (reg_equiv_mem[i])
1210 addr = XEXP (reg_equiv_mem[i], 0);
1211
1212 if (reg_equiv_address[i])
1213 addr = reg_equiv_address[i];
1214
1215 if (addr)
1216 {
1217 if (reg_renumber[i] < 0)
1218 {
1219 rtx reg = regno_reg_rtx[i];
1220
1221 REG_USERVAR_P (reg) = 0;
1222 PUT_CODE (reg, MEM);
1223 XEXP (reg, 0) = addr;
1224 if (reg_equiv_memory_loc[i])
1225 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1226 else
1227 {
1228 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1229 MEM_ATTRS (reg) = 0;
1230 }
1231 MEM_NOTRAP_P (reg) = 1;
1232 }
1233 else if (reg_equiv_mem[i])
1234 XEXP (reg_equiv_mem[i], 0) = addr;
1235 }
1236
1237 /* We don't want complex addressing modes in debug insns
1238 if simpler ones will do, so delegitimize equivalences
1239 in debug insns. */
1240 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1241 {
1242 rtx reg = regno_reg_rtx[i];
1243 rtx equiv = 0;
1244 df_ref use, next;
1245
1246 if (reg_equiv_constant[i])
1247 equiv = reg_equiv_constant[i];
1248 else if (reg_equiv_invariant[i])
1249 equiv = reg_equiv_invariant[i];
1250 else if (reg && MEM_P (reg))
1251 equiv = targetm.delegitimize_address (reg);
1252 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1253 equiv = reg;
1254
1255 if (equiv == reg)
1256 continue;
1257
1258 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1259 {
1260 rtx *loc = DF_REF_LOC (use);
1261 rtx x = *loc;
1262
1263 insn = DF_REF_INSN (use);
1264 next = DF_REF_NEXT_REG (use);
1265
1266 if (DEBUG_INSN_P (insn))
1267 {
1268 gcc_assert (x == reg
1269 || (GET_CODE (x) == SUBREG
1270 && SUBREG_REG (x) == reg));
1271
1272 if (!equiv)
1273 {
1274 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1275 df_insn_rescan_debug_internal (insn);
1276 }
1277 else
1278 {
1279 if (x == reg)
1280 *loc = copy_rtx (equiv);
1281 else if (GET_CODE (x) == SUBREG
1282 && SUBREG_REG (x) == reg)
1283 *loc = simplify_gen_subreg (GET_MODE (x), equiv,
1284 GET_MODE (reg),
1285 SUBREG_BYTE (x));
1286 else
1287 gcc_unreachable ();
1288 *loc = wrap_constant (GET_MODE (x), *loc);
1289 }
1290 }
1291 }
1292 }
1293 }
1294
1295 /* We must set reload_completed now since the cleanup_subreg_operands call
1296 below will re-recognize each insn and reload may have generated insns
1297 which are only valid during and after reload. */
1298 reload_completed = 1;
1299
1300 /* Make a pass over all the insns and delete all USEs which we inserted
1301 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1302 notes. Delete all CLOBBER insns, except those that refer to the return
1303 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1304 from misarranging variable-array code, and simplify (subreg (reg))
1305 operands. Strip and regenerate REG_INC notes that may have been moved
1306 around. */
1307
1308 for (insn = first; insn; insn = NEXT_INSN (insn))
1309 if (INSN_P (insn))
1310 {
1311 rtx *pnote;
1312
1313 if (CALL_P (insn))
1314 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1315 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1316
1317 if ((GET_CODE (PATTERN (insn)) == USE
1318 /* We mark with QImode USEs introduced by reload itself. */
1319 && (GET_MODE (insn) == QImode
1320 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1321 || (GET_CODE (PATTERN (insn)) == CLOBBER
1322 && (!MEM_P (XEXP (PATTERN (insn), 0))
1323 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1324 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1325 && XEXP (XEXP (PATTERN (insn), 0), 0)
1326 != stack_pointer_rtx))
1327 && (!REG_P (XEXP (PATTERN (insn), 0))
1328 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1329 {
1330 delete_insn (insn);
1331 continue;
1332 }
1333
1334 /* Some CLOBBERs may survive until here and still reference unassigned
1335 pseudos with const equivalent, which may in turn cause ICE in later
1336 passes if the reference remains in place. */
1337 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1338 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1339 VOIDmode, PATTERN (insn));
1340
1341 /* Discard obvious no-ops, even without -O. This optimization
1342 is fast and doesn't interfere with debugging. */
1343 if (NONJUMP_INSN_P (insn)
1344 && GET_CODE (PATTERN (insn)) == SET
1345 && REG_P (SET_SRC (PATTERN (insn)))
1346 && REG_P (SET_DEST (PATTERN (insn)))
1347 && (REGNO (SET_SRC (PATTERN (insn)))
1348 == REGNO (SET_DEST (PATTERN (insn)))))
1349 {
1350 delete_insn (insn);
1351 continue;
1352 }
1353
1354 pnote = &REG_NOTES (insn);
1355 while (*pnote != 0)
1356 {
1357 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1358 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1359 || REG_NOTE_KIND (*pnote) == REG_INC)
1360 *pnote = XEXP (*pnote, 1);
1361 else
1362 pnote = &XEXP (*pnote, 1);
1363 }
1364
1365 #ifdef AUTO_INC_DEC
1366 add_auto_inc_notes (insn, PATTERN (insn));
1367 #endif
1368
1369 /* Simplify (subreg (reg)) if it appears as an operand. */
1370 cleanup_subreg_operands (insn);
1371
1372 /* Clean up invalid ASMs so that they don't confuse later passes.
1373 See PR 21299. */
1374 if (asm_noperands (PATTERN (insn)) >= 0)
1375 {
1376 extract_insn (insn);
1377 if (!constrain_operands (1))
1378 {
1379 error_for_asm (insn,
1380 "%<asm%> operand has impossible constraints");
1381 delete_insn (insn);
1382 continue;
1383 }
1384 }
1385 }
1386
1387 /* If we are doing generic stack checking, give a warning if this
1388 function's frame size is larger than we expect. */
1389 if (flag_stack_check == GENERIC_STACK_CHECK)
1390 {
1391 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1392 static int verbose_warned = 0;
1393
1394 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1395 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1396 size += UNITS_PER_WORD;
1397
1398 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1399 {
1400 warning (0, "frame size too large for reliable stack checking");
1401 if (! verbose_warned)
1402 {
1403 warning (0, "try reducing the number of local variables");
1404 verbose_warned = 1;
1405 }
1406 }
1407 }
1408
1409 /* Indicate that we no longer have known memory locations or constants. */
1410 if (reg_equiv_constant)
1411 free (reg_equiv_constant);
1412 if (reg_equiv_invariant)
1413 free (reg_equiv_invariant);
1414 reg_equiv_constant = 0;
1415 reg_equiv_invariant = 0;
1416 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1417 reg_equiv_memory_loc = 0;
1418
1419 free (temp_pseudo_reg_arr);
1420
1421 if (offsets_known_at)
1422 free (offsets_known_at);
1423 if (offsets_at)
1424 free (offsets_at);
1425
1426 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1427 if (reg_equiv_alt_mem_list[i])
1428 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1429 free (reg_equiv_alt_mem_list);
1430
1431 free (reg_equiv_mem);
1432 reg_equiv_init = 0;
1433 free (reg_equiv_address);
1434 free (reg_max_ref_width);
1435 free (reg_old_renumber);
1436 free (pseudo_previous_regs);
1437 free (pseudo_forbidden_regs);
1438
1439 CLEAR_HARD_REG_SET (used_spill_regs);
1440 for (i = 0; i < n_spills; i++)
1441 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1442
1443 /* Free all the insn_chain structures at once. */
1444 obstack_free (&reload_obstack, reload_startobj);
1445 unused_insn_chains = 0;
1446 fixup_abnormal_edges ();
1447
1448 /* Replacing pseudos with their memory equivalents might have
1449 created shared rtx. Subsequent passes would get confused
1450 by this, so unshare everything here. */
1451 unshare_all_rtl_again (first);
1452
1453 #ifdef STACK_BOUNDARY
1454 /* init_emit has set the alignment of the hard frame pointer
1455 to STACK_BOUNDARY. It is very likely no longer valid if
1456 the hard frame pointer was used for register allocation. */
1457 if (!frame_pointer_needed)
1458 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1459 #endif
1460
1461 return failure;
1462 }
1463
1464 /* Yet another special case. Unfortunately, reg-stack forces people to
1465 write incorrect clobbers in asm statements. These clobbers must not
1466 cause the register to appear in bad_spill_regs, otherwise we'll call
1467 fatal_insn later. We clear the corresponding regnos in the live
1468 register sets to avoid this.
1469 The whole thing is rather sick, I'm afraid. */
1470
1471 static void
1472 maybe_fix_stack_asms (void)
1473 {
1474 #ifdef STACK_REGS
1475 const char *constraints[MAX_RECOG_OPERANDS];
1476 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1477 struct insn_chain *chain;
1478
1479 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1480 {
1481 int i, noperands;
1482 HARD_REG_SET clobbered, allowed;
1483 rtx pat;
1484
1485 if (! INSN_P (chain->insn)
1486 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1487 continue;
1488 pat = PATTERN (chain->insn);
1489 if (GET_CODE (pat) != PARALLEL)
1490 continue;
1491
1492 CLEAR_HARD_REG_SET (clobbered);
1493 CLEAR_HARD_REG_SET (allowed);
1494
1495 /* First, make a mask of all stack regs that are clobbered. */
1496 for (i = 0; i < XVECLEN (pat, 0); i++)
1497 {
1498 rtx t = XVECEXP (pat, 0, i);
1499 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1500 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1501 }
1502
1503 /* Get the operand values and constraints out of the insn. */
1504 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1505 constraints, operand_mode, NULL);
1506
1507 /* For every operand, see what registers are allowed. */
1508 for (i = 0; i < noperands; i++)
1509 {
1510 const char *p = constraints[i];
1511 /* For every alternative, we compute the class of registers allowed
1512 for reloading in CLS, and merge its contents into the reg set
1513 ALLOWED. */
1514 int cls = (int) NO_REGS;
1515
1516 for (;;)
1517 {
1518 char c = *p;
1519
1520 if (c == '\0' || c == ',' || c == '#')
1521 {
1522 /* End of one alternative - mark the regs in the current
1523 class, and reset the class. */
1524 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1525 cls = NO_REGS;
1526 p++;
1527 if (c == '#')
1528 do {
1529 c = *p++;
1530 } while (c != '\0' && c != ',');
1531 if (c == '\0')
1532 break;
1533 continue;
1534 }
1535
1536 switch (c)
1537 {
1538 case '=': case '+': case '*': case '%': case '?': case '!':
1539 case '0': case '1': case '2': case '3': case '4': case '<':
1540 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1541 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1542 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1543 case TARGET_MEM_CONSTRAINT:
1544 break;
1545
1546 case 'p':
1547 cls = (int) reg_class_subunion[cls]
1548 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1549 break;
1550
1551 case 'g':
1552 case 'r':
1553 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1554 break;
1555
1556 default:
1557 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1558 cls = (int) reg_class_subunion[cls]
1559 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1560 else
1561 cls = (int) reg_class_subunion[cls]
1562 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1563 }
1564 p += CONSTRAINT_LEN (c, p);
1565 }
1566 }
1567 /* Those of the registers which are clobbered, but allowed by the
1568 constraints, must be usable as reload registers. So clear them
1569 out of the life information. */
1570 AND_HARD_REG_SET (allowed, clobbered);
1571 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1572 if (TEST_HARD_REG_BIT (allowed, i))
1573 {
1574 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1575 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1576 }
1577 }
1578
1579 #endif
1580 }
1581 \f
1582 /* Copy the global variables n_reloads and rld into the corresponding elts
1583 of CHAIN. */
1584 static void
1585 copy_reloads (struct insn_chain *chain)
1586 {
1587 chain->n_reloads = n_reloads;
1588 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1589 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1590 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1591 }
1592
1593 /* Walk the chain of insns, and determine for each whether it needs reloads
1594 and/or eliminations. Build the corresponding insns_need_reload list, and
1595 set something_needs_elimination as appropriate. */
1596 static void
1597 calculate_needs_all_insns (int global)
1598 {
1599 struct insn_chain **pprev_reload = &insns_need_reload;
1600 struct insn_chain *chain, *next = 0;
1601
1602 something_needs_elimination = 0;
1603
1604 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1605 for (chain = reload_insn_chain; chain != 0; chain = next)
1606 {
1607 rtx insn = chain->insn;
1608
1609 next = chain->next;
1610
1611 /* Clear out the shortcuts. */
1612 chain->n_reloads = 0;
1613 chain->need_elim = 0;
1614 chain->need_reload = 0;
1615 chain->need_operand_change = 0;
1616
1617 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1618 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1619 what effects this has on the known offsets at labels. */
1620
1621 if (LABEL_P (insn) || JUMP_P (insn)
1622 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1623 set_label_offsets (insn, insn, 0);
1624
1625 if (INSN_P (insn))
1626 {
1627 rtx old_body = PATTERN (insn);
1628 int old_code = INSN_CODE (insn);
1629 rtx old_notes = REG_NOTES (insn);
1630 int did_elimination = 0;
1631 int operands_changed = 0;
1632 rtx set = single_set (insn);
1633
1634 /* Skip insns that only set an equivalence. */
1635 if (set && REG_P (SET_DEST (set))
1636 && reg_renumber[REGNO (SET_DEST (set))] < 0
1637 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1638 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1639 && reg_equiv_init[REGNO (SET_DEST (set))])
1640 continue;
1641
1642 /* If needed, eliminate any eliminable registers. */
1643 if (num_eliminable || num_eliminable_invariants)
1644 did_elimination = eliminate_regs_in_insn (insn, 0);
1645
1646 /* Analyze the instruction. */
1647 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1648 global, spill_reg_order);
1649
1650 /* If a no-op set needs more than one reload, this is likely
1651 to be something that needs input address reloads. We
1652 can't get rid of this cleanly later, and it is of no use
1653 anyway, so discard it now.
1654 We only do this when expensive_optimizations is enabled,
1655 since this complements reload inheritance / output
1656 reload deletion, and it can make debugging harder. */
1657 if (flag_expensive_optimizations && n_reloads > 1)
1658 {
1659 rtx set = single_set (insn);
1660 if (set
1661 &&
1662 ((SET_SRC (set) == SET_DEST (set)
1663 && REG_P (SET_SRC (set))
1664 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1665 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1666 && reg_renumber[REGNO (SET_SRC (set))] < 0
1667 && reg_renumber[REGNO (SET_DEST (set))] < 0
1668 && reg_equiv_memory_loc[REGNO (SET_SRC (set))] != NULL
1669 && reg_equiv_memory_loc[REGNO (SET_DEST (set))] != NULL
1670 && rtx_equal_p (reg_equiv_memory_loc
1671 [REGNO (SET_SRC (set))],
1672 reg_equiv_memory_loc
1673 [REGNO (SET_DEST (set))]))))
1674 {
1675 if (ira_conflicts_p)
1676 /* Inform IRA about the insn deletion. */
1677 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1678 REGNO (SET_SRC (set)));
1679 delete_insn (insn);
1680 /* Delete it from the reload chain. */
1681 if (chain->prev)
1682 chain->prev->next = next;
1683 else
1684 reload_insn_chain = next;
1685 if (next)
1686 next->prev = chain->prev;
1687 chain->next = unused_insn_chains;
1688 unused_insn_chains = chain;
1689 continue;
1690 }
1691 }
1692 if (num_eliminable)
1693 update_eliminable_offsets ();
1694
1695 /* Remember for later shortcuts which insns had any reloads or
1696 register eliminations. */
1697 chain->need_elim = did_elimination;
1698 chain->need_reload = n_reloads > 0;
1699 chain->need_operand_change = operands_changed;
1700
1701 /* Discard any register replacements done. */
1702 if (did_elimination)
1703 {
1704 obstack_free (&reload_obstack, reload_insn_firstobj);
1705 PATTERN (insn) = old_body;
1706 INSN_CODE (insn) = old_code;
1707 REG_NOTES (insn) = old_notes;
1708 something_needs_elimination = 1;
1709 }
1710
1711 something_needs_operands_changed |= operands_changed;
1712
1713 if (n_reloads != 0)
1714 {
1715 copy_reloads (chain);
1716 *pprev_reload = chain;
1717 pprev_reload = &chain->next_need_reload;
1718 }
1719 }
1720 }
1721 *pprev_reload = 0;
1722 }
1723 \f
1724 /* Comparison function for qsort to decide which of two reloads
1725 should be handled first. *P1 and *P2 are the reload numbers. */
1726
1727 static int
1728 reload_reg_class_lower (const void *r1p, const void *r2p)
1729 {
1730 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1731 int t;
1732
1733 /* Consider required reloads before optional ones. */
1734 t = rld[r1].optional - rld[r2].optional;
1735 if (t != 0)
1736 return t;
1737
1738 /* Count all solitary classes before non-solitary ones. */
1739 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1740 - (reg_class_size[(int) rld[r1].rclass] == 1));
1741 if (t != 0)
1742 return t;
1743
1744 /* Aside from solitaires, consider all multi-reg groups first. */
1745 t = rld[r2].nregs - rld[r1].nregs;
1746 if (t != 0)
1747 return t;
1748
1749 /* Consider reloads in order of increasing reg-class number. */
1750 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1751 if (t != 0)
1752 return t;
1753
1754 /* If reloads are equally urgent, sort by reload number,
1755 so that the results of qsort leave nothing to chance. */
1756 return r1 - r2;
1757 }
1758 \f
1759 /* The cost of spilling each hard reg. */
1760 static int spill_cost[FIRST_PSEUDO_REGISTER];
1761
1762 /* When spilling multiple hard registers, we use SPILL_COST for the first
1763 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1764 only the first hard reg for a multi-reg pseudo. */
1765 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1766
1767 /* Map of hard regno to pseudo regno currently occupying the hard
1768 reg. */
1769 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1770
1771 /* Update the spill cost arrays, considering that pseudo REG is live. */
1772
1773 static void
1774 count_pseudo (int reg)
1775 {
1776 int freq = REG_FREQ (reg);
1777 int r = reg_renumber[reg];
1778 int nregs;
1779
1780 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1781 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1782 /* Ignore spilled pseudo-registers which can be here only if IRA
1783 is used. */
1784 || (ira_conflicts_p && r < 0))
1785 return;
1786
1787 SET_REGNO_REG_SET (&pseudos_counted, reg);
1788
1789 gcc_assert (r >= 0);
1790
1791 spill_add_cost[r] += freq;
1792 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793 while (nregs-- > 0)
1794 {
1795 hard_regno_to_pseudo_regno[r + nregs] = reg;
1796 spill_cost[r + nregs] += freq;
1797 }
1798 }
1799
1800 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1801 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1802
1803 static void
1804 order_regs_for_reload (struct insn_chain *chain)
1805 {
1806 unsigned i;
1807 HARD_REG_SET used_by_pseudos;
1808 HARD_REG_SET used_by_pseudos2;
1809 reg_set_iterator rsi;
1810
1811 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1812
1813 memset (spill_cost, 0, sizeof spill_cost);
1814 memset (spill_add_cost, 0, sizeof spill_add_cost);
1815 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1816 hard_regno_to_pseudo_regno[i] = -1;
1817
1818 /* Count number of uses of each hard reg by pseudo regs allocated to it
1819 and then order them by decreasing use. First exclude hard registers
1820 that are live in or across this insn. */
1821
1822 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1823 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1824 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1825 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1826
1827 /* Now find out which pseudos are allocated to it, and update
1828 hard_reg_n_uses. */
1829 CLEAR_REG_SET (&pseudos_counted);
1830
1831 EXECUTE_IF_SET_IN_REG_SET
1832 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1833 {
1834 count_pseudo (i);
1835 }
1836 EXECUTE_IF_SET_IN_REG_SET
1837 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1838 {
1839 count_pseudo (i);
1840 }
1841 CLEAR_REG_SET (&pseudos_counted);
1842 }
1843 \f
1844 /* Vector of reload-numbers showing the order in which the reloads should
1845 be processed. */
1846 static short reload_order[MAX_RELOADS];
1847
1848 /* This is used to keep track of the spill regs used in one insn. */
1849 static HARD_REG_SET used_spill_regs_local;
1850
1851 /* We decided to spill hard register SPILLED, which has a size of
1852 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1853 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1854 update SPILL_COST/SPILL_ADD_COST. */
1855
1856 static void
1857 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1858 {
1859 int freq = REG_FREQ (reg);
1860 int r = reg_renumber[reg];
1861 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1862
1863 /* Ignore spilled pseudo-registers which can be here only if IRA is
1864 used. */
1865 if ((ira_conflicts_p && r < 0)
1866 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1867 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1868 return;
1869
1870 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1871
1872 spill_add_cost[r] -= freq;
1873 while (nregs-- > 0)
1874 {
1875 hard_regno_to_pseudo_regno[r + nregs] = -1;
1876 spill_cost[r + nregs] -= freq;
1877 }
1878 }
1879
1880 /* Find reload register to use for reload number ORDER. */
1881
1882 static int
1883 find_reg (struct insn_chain *chain, int order)
1884 {
1885 int rnum = reload_order[order];
1886 struct reload *rl = rld + rnum;
1887 int best_cost = INT_MAX;
1888 int best_reg = -1;
1889 unsigned int i, j, n;
1890 int k;
1891 HARD_REG_SET not_usable;
1892 HARD_REG_SET used_by_other_reload;
1893 reg_set_iterator rsi;
1894 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1895 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1896
1897 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1898 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1899 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1900
1901 CLEAR_HARD_REG_SET (used_by_other_reload);
1902 for (k = 0; k < order; k++)
1903 {
1904 int other = reload_order[k];
1905
1906 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1907 for (j = 0; j < rld[other].nregs; j++)
1908 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1909 }
1910
1911 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1912 {
1913 #ifdef REG_ALLOC_ORDER
1914 unsigned int regno = reg_alloc_order[i];
1915 #else
1916 unsigned int regno = i;
1917 #endif
1918
1919 if (! TEST_HARD_REG_BIT (not_usable, regno)
1920 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1921 && HARD_REGNO_MODE_OK (regno, rl->mode))
1922 {
1923 int this_cost = spill_cost[regno];
1924 int ok = 1;
1925 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1926
1927 for (j = 1; j < this_nregs; j++)
1928 {
1929 this_cost += spill_add_cost[regno + j];
1930 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1931 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1932 ok = 0;
1933 }
1934 if (! ok)
1935 continue;
1936
1937 if (ira_conflicts_p)
1938 {
1939 /* Ask IRA to find a better pseudo-register for
1940 spilling. */
1941 for (n = j = 0; j < this_nregs; j++)
1942 {
1943 int r = hard_regno_to_pseudo_regno[regno + j];
1944
1945 if (r < 0)
1946 continue;
1947 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1948 regno_pseudo_regs[n++] = r;
1949 }
1950 regno_pseudo_regs[n++] = -1;
1951 if (best_reg < 0
1952 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1953 best_regno_pseudo_regs,
1954 rl->in, rl->out,
1955 chain->insn))
1956 {
1957 best_reg = regno;
1958 for (j = 0;; j++)
1959 {
1960 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1961 if (regno_pseudo_regs[j] < 0)
1962 break;
1963 }
1964 }
1965 continue;
1966 }
1967
1968 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1969 this_cost--;
1970 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1971 this_cost--;
1972 if (this_cost < best_cost
1973 /* Among registers with equal cost, prefer caller-saved ones, or
1974 use REG_ALLOC_ORDER if it is defined. */
1975 || (this_cost == best_cost
1976 #ifdef REG_ALLOC_ORDER
1977 && (inv_reg_alloc_order[regno]
1978 < inv_reg_alloc_order[best_reg])
1979 #else
1980 && call_used_regs[regno]
1981 && ! call_used_regs[best_reg]
1982 #endif
1983 ))
1984 {
1985 best_reg = regno;
1986 best_cost = this_cost;
1987 }
1988 }
1989 }
1990 if (best_reg == -1)
1991 return 0;
1992
1993 if (dump_file)
1994 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1995
1996 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1997 rl->regno = best_reg;
1998
1999 EXECUTE_IF_SET_IN_REG_SET
2000 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
2001 {
2002 count_spilled_pseudo (best_reg, rl->nregs, j);
2003 }
2004
2005 EXECUTE_IF_SET_IN_REG_SET
2006 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
2007 {
2008 count_spilled_pseudo (best_reg, rl->nregs, j);
2009 }
2010
2011 for (i = 0; i < rl->nregs; i++)
2012 {
2013 gcc_assert (spill_cost[best_reg + i] == 0);
2014 gcc_assert (spill_add_cost[best_reg + i] == 0);
2015 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
2016 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
2017 }
2018 return 1;
2019 }
2020
2021 /* Find more reload regs to satisfy the remaining need of an insn, which
2022 is given by CHAIN.
2023 Do it by ascending class number, since otherwise a reg
2024 might be spilled for a big class and might fail to count
2025 for a smaller class even though it belongs to that class. */
2026
2027 static void
2028 find_reload_regs (struct insn_chain *chain)
2029 {
2030 int i;
2031
2032 /* In order to be certain of getting the registers we need,
2033 we must sort the reloads into order of increasing register class.
2034 Then our grabbing of reload registers will parallel the process
2035 that provided the reload registers. */
2036 for (i = 0; i < chain->n_reloads; i++)
2037 {
2038 /* Show whether this reload already has a hard reg. */
2039 if (chain->rld[i].reg_rtx)
2040 {
2041 int regno = REGNO (chain->rld[i].reg_rtx);
2042 chain->rld[i].regno = regno;
2043 chain->rld[i].nregs
2044 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2045 }
2046 else
2047 chain->rld[i].regno = -1;
2048 reload_order[i] = i;
2049 }
2050
2051 n_reloads = chain->n_reloads;
2052 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2053
2054 CLEAR_HARD_REG_SET (used_spill_regs_local);
2055
2056 if (dump_file)
2057 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2058
2059 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2060
2061 /* Compute the order of preference for hard registers to spill. */
2062
2063 order_regs_for_reload (chain);
2064
2065 for (i = 0; i < n_reloads; i++)
2066 {
2067 int r = reload_order[i];
2068
2069 /* Ignore reloads that got marked inoperative. */
2070 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2071 && ! rld[r].optional
2072 && rld[r].regno == -1)
2073 if (! find_reg (chain, i))
2074 {
2075 if (dump_file)
2076 fprintf (dump_file, "reload failure for reload %d\n", r);
2077 spill_failure (chain->insn, rld[r].rclass);
2078 failure = 1;
2079 return;
2080 }
2081 }
2082
2083 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2084 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2085
2086 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2087 }
2088
2089 static void
2090 select_reload_regs (void)
2091 {
2092 struct insn_chain *chain;
2093
2094 /* Try to satisfy the needs for each insn. */
2095 for (chain = insns_need_reload; chain != 0;
2096 chain = chain->next_need_reload)
2097 find_reload_regs (chain);
2098 }
2099 \f
2100 /* Delete all insns that were inserted by emit_caller_save_insns during
2101 this iteration. */
2102 static void
2103 delete_caller_save_insns (void)
2104 {
2105 struct insn_chain *c = reload_insn_chain;
2106
2107 while (c != 0)
2108 {
2109 while (c != 0 && c->is_caller_save_insn)
2110 {
2111 struct insn_chain *next = c->next;
2112 rtx insn = c->insn;
2113
2114 if (c == reload_insn_chain)
2115 reload_insn_chain = next;
2116 delete_insn (insn);
2117
2118 if (next)
2119 next->prev = c->prev;
2120 if (c->prev)
2121 c->prev->next = next;
2122 c->next = unused_insn_chains;
2123 unused_insn_chains = c;
2124 c = next;
2125 }
2126 if (c != 0)
2127 c = c->next;
2128 }
2129 }
2130 \f
2131 /* Handle the failure to find a register to spill.
2132 INSN should be one of the insns which needed this particular spill reg. */
2133
2134 static void
2135 spill_failure (rtx insn, enum reg_class rclass)
2136 {
2137 if (asm_noperands (PATTERN (insn)) >= 0)
2138 error_for_asm (insn, "can't find a register in class %qs while "
2139 "reloading %<asm%>",
2140 reg_class_names[rclass]);
2141 else
2142 {
2143 error ("unable to find a register to spill in class %qs",
2144 reg_class_names[rclass]);
2145
2146 if (dump_file)
2147 {
2148 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2149 debug_reload_to_stream (dump_file);
2150 }
2151 fatal_insn ("this is the insn:", insn);
2152 }
2153 }
2154 \f
2155 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2156 data that is dead in INSN. */
2157
2158 static void
2159 delete_dead_insn (rtx insn)
2160 {
2161 rtx prev = prev_real_insn (insn);
2162 rtx prev_dest;
2163
2164 /* If the previous insn sets a register that dies in our insn, delete it
2165 too. */
2166 if (prev && GET_CODE (PATTERN (prev)) == SET
2167 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2168 && reg_mentioned_p (prev_dest, PATTERN (insn))
2169 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2170 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2171 delete_dead_insn (prev);
2172
2173 SET_INSN_DELETED (insn);
2174 }
2175
2176 /* Modify the home of pseudo-reg I.
2177 The new home is present in reg_renumber[I].
2178
2179 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2180 or it may be -1, meaning there is none or it is not relevant.
2181 This is used so that all pseudos spilled from a given hard reg
2182 can share one stack slot. */
2183
2184 static void
2185 alter_reg (int i, int from_reg, bool dont_share_p)
2186 {
2187 /* When outputting an inline function, this can happen
2188 for a reg that isn't actually used. */
2189 if (regno_reg_rtx[i] == 0)
2190 return;
2191
2192 /* If the reg got changed to a MEM at rtl-generation time,
2193 ignore it. */
2194 if (!REG_P (regno_reg_rtx[i]))
2195 return;
2196
2197 /* Modify the reg-rtx to contain the new hard reg
2198 number or else to contain its pseudo reg number. */
2199 SET_REGNO (regno_reg_rtx[i],
2200 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2201
2202 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2203 allocate a stack slot for it. */
2204
2205 if (reg_renumber[i] < 0
2206 && REG_N_REFS (i) > 0
2207 && reg_equiv_constant[i] == 0
2208 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2209 && reg_equiv_memory_loc[i] == 0)
2210 {
2211 rtx x = NULL_RTX;
2212 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2213 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2214 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2215 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2216 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2217 int adjust = 0;
2218
2219 if (ira_conflicts_p)
2220 {
2221 /* Mark the spill for IRA. */
2222 SET_REGNO_REG_SET (&spilled_pseudos, i);
2223 if (!dont_share_p)
2224 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2225 }
2226
2227 if (x)
2228 ;
2229
2230 /* Each pseudo reg has an inherent size which comes from its own mode,
2231 and a total size which provides room for paradoxical subregs
2232 which refer to the pseudo reg in wider modes.
2233
2234 We can use a slot already allocated if it provides both
2235 enough inherent space and enough total space.
2236 Otherwise, we allocate a new slot, making sure that it has no less
2237 inherent space, and no less total space, then the previous slot. */
2238 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2239 {
2240 rtx stack_slot;
2241
2242 /* No known place to spill from => no slot to reuse. */
2243 x = assign_stack_local (mode, total_size,
2244 min_align > inherent_align
2245 || total_size > inherent_size ? -1 : 0);
2246
2247 stack_slot = x;
2248
2249 /* Cancel the big-endian correction done in assign_stack_local.
2250 Get the address of the beginning of the slot. This is so we
2251 can do a big-endian correction unconditionally below. */
2252 if (BYTES_BIG_ENDIAN)
2253 {
2254 adjust = inherent_size - total_size;
2255 if (adjust)
2256 stack_slot
2257 = adjust_address_nv (x, mode_for_size (total_size
2258 * BITS_PER_UNIT,
2259 MODE_INT, 1),
2260 adjust);
2261 }
2262
2263 if (! dont_share_p && ira_conflicts_p)
2264 /* Inform IRA about allocation a new stack slot. */
2265 ira_mark_new_stack_slot (stack_slot, i, total_size);
2266 }
2267
2268 /* Reuse a stack slot if possible. */
2269 else if (spill_stack_slot[from_reg] != 0
2270 && spill_stack_slot_width[from_reg] >= total_size
2271 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2272 >= inherent_size)
2273 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2274 x = spill_stack_slot[from_reg];
2275
2276 /* Allocate a bigger slot. */
2277 else
2278 {
2279 /* Compute maximum size needed, both for inherent size
2280 and for total size. */
2281 rtx stack_slot;
2282
2283 if (spill_stack_slot[from_reg])
2284 {
2285 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2286 > inherent_size)
2287 mode = GET_MODE (spill_stack_slot[from_reg]);
2288 if (spill_stack_slot_width[from_reg] > total_size)
2289 total_size = spill_stack_slot_width[from_reg];
2290 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2291 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2292 }
2293
2294 /* Make a slot with that size. */
2295 x = assign_stack_local (mode, total_size,
2296 min_align > inherent_align
2297 || total_size > inherent_size ? -1 : 0);
2298 stack_slot = x;
2299
2300 /* Cancel the big-endian correction done in assign_stack_local.
2301 Get the address of the beginning of the slot. This is so we
2302 can do a big-endian correction unconditionally below. */
2303 if (BYTES_BIG_ENDIAN)
2304 {
2305 adjust = GET_MODE_SIZE (mode) - total_size;
2306 if (adjust)
2307 stack_slot
2308 = adjust_address_nv (x, mode_for_size (total_size
2309 * BITS_PER_UNIT,
2310 MODE_INT, 1),
2311 adjust);
2312 }
2313
2314 spill_stack_slot[from_reg] = stack_slot;
2315 spill_stack_slot_width[from_reg] = total_size;
2316 }
2317
2318 /* On a big endian machine, the "address" of the slot
2319 is the address of the low part that fits its inherent mode. */
2320 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2321 adjust += (total_size - inherent_size);
2322
2323 /* If we have any adjustment to make, or if the stack slot is the
2324 wrong mode, make a new stack slot. */
2325 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2326
2327 /* Set all of the memory attributes as appropriate for a spill. */
2328 set_mem_attrs_for_spill (x);
2329
2330 /* Save the stack slot for later. */
2331 reg_equiv_memory_loc[i] = x;
2332 }
2333 }
2334
2335 /* Mark the slots in regs_ever_live for the hard regs used by
2336 pseudo-reg number REGNO, accessed in MODE. */
2337
2338 static void
2339 mark_home_live_1 (int regno, enum machine_mode mode)
2340 {
2341 int i, lim;
2342
2343 i = reg_renumber[regno];
2344 if (i < 0)
2345 return;
2346 lim = end_hard_regno (mode, i);
2347 while (i < lim)
2348 df_set_regs_ever_live(i++, true);
2349 }
2350
2351 /* Mark the slots in regs_ever_live for the hard regs
2352 used by pseudo-reg number REGNO. */
2353
2354 void
2355 mark_home_live (int regno)
2356 {
2357 if (reg_renumber[regno] >= 0)
2358 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2359 }
2360 \f
2361 /* This function handles the tracking of elimination offsets around branches.
2362
2363 X is a piece of RTL being scanned.
2364
2365 INSN is the insn that it came from, if any.
2366
2367 INITIAL_P is nonzero if we are to set the offset to be the initial
2368 offset and zero if we are setting the offset of the label to be the
2369 current offset. */
2370
2371 static void
2372 set_label_offsets (rtx x, rtx insn, int initial_p)
2373 {
2374 enum rtx_code code = GET_CODE (x);
2375 rtx tem;
2376 unsigned int i;
2377 struct elim_table *p;
2378
2379 switch (code)
2380 {
2381 case LABEL_REF:
2382 if (LABEL_REF_NONLOCAL_P (x))
2383 return;
2384
2385 x = XEXP (x, 0);
2386
2387 /* ... fall through ... */
2388
2389 case CODE_LABEL:
2390 /* If we know nothing about this label, set the desired offsets. Note
2391 that this sets the offset at a label to be the offset before a label
2392 if we don't know anything about the label. This is not correct for
2393 the label after a BARRIER, but is the best guess we can make. If
2394 we guessed wrong, we will suppress an elimination that might have
2395 been possible had we been able to guess correctly. */
2396
2397 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2398 {
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 = (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset);
2403 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2404 }
2405
2406 /* Otherwise, if this is the definition of a label and it is
2407 preceded by a BARRIER, set our offsets to the known offset of
2408 that label. */
2409
2410 else if (x == insn
2411 && (tem = prev_nonnote_insn (insn)) != 0
2412 && BARRIER_P (tem))
2413 set_offsets_for_label (insn);
2414 else
2415 /* If neither of the above cases is true, compare each offset
2416 with those previously recorded and suppress any eliminations
2417 where the offsets disagree. */
2418
2419 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2420 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2421 != (initial_p ? reg_eliminate[i].initial_offset
2422 : reg_eliminate[i].offset))
2423 reg_eliminate[i].can_eliminate = 0;
2424
2425 return;
2426
2427 case JUMP_INSN:
2428 set_label_offsets (PATTERN (insn), insn, initial_p);
2429
2430 /* ... fall through ... */
2431
2432 case INSN:
2433 case CALL_INSN:
2434 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2435 to indirectly and hence must have all eliminations at their
2436 initial offsets. */
2437 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2438 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2439 set_label_offsets (XEXP (tem, 0), insn, 1);
2440 return;
2441
2442 case PARALLEL:
2443 case ADDR_VEC:
2444 case ADDR_DIFF_VEC:
2445 /* Each of the labels in the parallel or address vector must be
2446 at their initial offsets. We want the first field for PARALLEL
2447 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2448
2449 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2450 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2451 insn, initial_p);
2452 return;
2453
2454 case SET:
2455 /* We only care about setting PC. If the source is not RETURN,
2456 IF_THEN_ELSE, or a label, disable any eliminations not at
2457 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2458 isn't one of those possibilities. For branches to a label,
2459 call ourselves recursively.
2460
2461 Note that this can disable elimination unnecessarily when we have
2462 a non-local goto since it will look like a non-constant jump to
2463 someplace in the current function. This isn't a significant
2464 problem since such jumps will normally be when all elimination
2465 pairs are back to their initial offsets. */
2466
2467 if (SET_DEST (x) != pc_rtx)
2468 return;
2469
2470 switch (GET_CODE (SET_SRC (x)))
2471 {
2472 case PC:
2473 case RETURN:
2474 return;
2475
2476 case LABEL_REF:
2477 set_label_offsets (SET_SRC (x), insn, initial_p);
2478 return;
2479
2480 case IF_THEN_ELSE:
2481 tem = XEXP (SET_SRC (x), 1);
2482 if (GET_CODE (tem) == LABEL_REF)
2483 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2484 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2485 break;
2486
2487 tem = XEXP (SET_SRC (x), 2);
2488 if (GET_CODE (tem) == LABEL_REF)
2489 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2490 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2491 break;
2492 return;
2493
2494 default:
2495 break;
2496 }
2497
2498 /* If we reach here, all eliminations must be at their initial
2499 offset because we are doing a jump to a variable address. */
2500 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2501 if (p->offset != p->initial_offset)
2502 p->can_eliminate = 0;
2503 break;
2504
2505 default:
2506 break;
2507 }
2508 }
2509 \f
2510 /* Scan X and replace any eliminable registers (such as fp) with a
2511 replacement (such as sp), plus an offset.
2512
2513 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2514 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2515 MEM, we are allowed to replace a sum of a register and the constant zero
2516 with the register, which we cannot do outside a MEM. In addition, we need
2517 to record the fact that a register is referenced outside a MEM.
2518
2519 If INSN is an insn, it is the insn containing X. If we replace a REG
2520 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2521 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2522 the REG is being modified.
2523
2524 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2525 That's used when we eliminate in expressions stored in notes.
2526 This means, do not set ref_outside_mem even if the reference
2527 is outside of MEMs.
2528
2529 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2530 replacements done assuming all offsets are at their initial values. If
2531 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2532 encounter, return the actual location so that find_reloads will do
2533 the proper thing. */
2534
2535 static rtx
2536 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2537 bool may_use_invariant)
2538 {
2539 enum rtx_code code = GET_CODE (x);
2540 struct elim_table *ep;
2541 int regno;
2542 rtx new_rtx;
2543 int i, j;
2544 const char *fmt;
2545 int copied = 0;
2546
2547 if (! current_function_decl)
2548 return x;
2549
2550 switch (code)
2551 {
2552 case CONST_INT:
2553 case CONST_DOUBLE:
2554 case CONST_FIXED:
2555 case CONST_VECTOR:
2556 case CONST:
2557 case SYMBOL_REF:
2558 case CODE_LABEL:
2559 case PC:
2560 case CC0:
2561 case ASM_INPUT:
2562 case ADDR_VEC:
2563 case ADDR_DIFF_VEC:
2564 case RETURN:
2565 return x;
2566
2567 case REG:
2568 regno = REGNO (x);
2569
2570 /* First handle the case where we encounter a bare register that
2571 is eliminable. Replace it with a PLUS. */
2572 if (regno < FIRST_PSEUDO_REGISTER)
2573 {
2574 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2575 ep++)
2576 if (ep->from_rtx == x && ep->can_eliminate)
2577 return plus_constant (ep->to_rtx, ep->previous_offset);
2578
2579 }
2580 else if (reg_renumber && reg_renumber[regno] < 0
2581 && reg_equiv_invariant && reg_equiv_invariant[regno])
2582 {
2583 if (may_use_invariant)
2584 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2585 mem_mode, insn, true);
2586 /* There exists at least one use of REGNO that cannot be
2587 eliminated. Prevent the defining insn from being deleted. */
2588 reg_equiv_init[regno] = NULL_RTX;
2589 alter_reg (regno, -1, true);
2590 }
2591 return x;
2592
2593 /* You might think handling MINUS in a manner similar to PLUS is a
2594 good idea. It is not. It has been tried multiple times and every
2595 time the change has had to have been reverted.
2596
2597 Other parts of reload know a PLUS is special (gen_reload for example)
2598 and require special code to handle code a reloaded PLUS operand.
2599
2600 Also consider backends where the flags register is clobbered by a
2601 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2602 lea instruction comes to mind). If we try to reload a MINUS, we
2603 may kill the flags register that was holding a useful value.
2604
2605 So, please before trying to handle MINUS, consider reload as a
2606 whole instead of this little section as well as the backend issues. */
2607 case PLUS:
2608 /* If this is the sum of an eliminable register and a constant, rework
2609 the sum. */
2610 if (REG_P (XEXP (x, 0))
2611 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2612 && CONSTANT_P (XEXP (x, 1)))
2613 {
2614 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2615 ep++)
2616 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2617 {
2618 /* The only time we want to replace a PLUS with a REG (this
2619 occurs when the constant operand of the PLUS is the negative
2620 of the offset) is when we are inside a MEM. We won't want
2621 to do so at other times because that would change the
2622 structure of the insn in a way that reload can't handle.
2623 We special-case the commonest situation in
2624 eliminate_regs_in_insn, so just replace a PLUS with a
2625 PLUS here, unless inside a MEM. */
2626 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2627 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2628 return ep->to_rtx;
2629 else
2630 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2631 plus_constant (XEXP (x, 1),
2632 ep->previous_offset));
2633 }
2634
2635 /* If the register is not eliminable, we are done since the other
2636 operand is a constant. */
2637 return x;
2638 }
2639
2640 /* If this is part of an address, we want to bring any constant to the
2641 outermost PLUS. We will do this by doing register replacement in
2642 our operands and seeing if a constant shows up in one of them.
2643
2644 Note that there is no risk of modifying the structure of the insn,
2645 since we only get called for its operands, thus we are either
2646 modifying the address inside a MEM, or something like an address
2647 operand of a load-address insn. */
2648
2649 {
2650 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2651 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2652
2653 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2654 {
2655 /* If one side is a PLUS and the other side is a pseudo that
2656 didn't get a hard register but has a reg_equiv_constant,
2657 we must replace the constant here since it may no longer
2658 be in the position of any operand. */
2659 if (GET_CODE (new0) == PLUS && REG_P (new1)
2660 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2661 && reg_renumber[REGNO (new1)] < 0
2662 && reg_equiv_constant != 0
2663 && reg_equiv_constant[REGNO (new1)] != 0)
2664 new1 = reg_equiv_constant[REGNO (new1)];
2665 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2666 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2667 && reg_renumber[REGNO (new0)] < 0
2668 && reg_equiv_constant[REGNO (new0)] != 0)
2669 new0 = reg_equiv_constant[REGNO (new0)];
2670
2671 new_rtx = form_sum (new0, new1);
2672
2673 /* As above, if we are not inside a MEM we do not want to
2674 turn a PLUS into something else. We might try to do so here
2675 for an addition of 0 if we aren't optimizing. */
2676 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2677 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2678 else
2679 return new_rtx;
2680 }
2681 }
2682 return x;
2683
2684 case MULT:
2685 /* If this is the product of an eliminable register and a
2686 constant, apply the distribute law and move the constant out
2687 so that we have (plus (mult ..) ..). This is needed in order
2688 to keep load-address insns valid. This case is pathological.
2689 We ignore the possibility of overflow here. */
2690 if (REG_P (XEXP (x, 0))
2691 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2692 && CONST_INT_P (XEXP (x, 1)))
2693 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2694 ep++)
2695 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2696 {
2697 if (! mem_mode
2698 /* Refs inside notes don't count for this purpose. */
2699 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2700 || GET_CODE (insn) == INSN_LIST)))
2701 ep->ref_outside_mem = 1;
2702
2703 return
2704 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2705 ep->previous_offset * INTVAL (XEXP (x, 1)));
2706 }
2707
2708 /* ... fall through ... */
2709
2710 case CALL:
2711 case COMPARE:
2712 /* See comments before PLUS about handling MINUS. */
2713 case MINUS:
2714 case DIV: case UDIV:
2715 case MOD: case UMOD:
2716 case AND: case IOR: case XOR:
2717 case ROTATERT: case ROTATE:
2718 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2719 case NE: case EQ:
2720 case GE: case GT: case GEU: case GTU:
2721 case LE: case LT: case LEU: case LTU:
2722 {
2723 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2724 rtx new1 = XEXP (x, 1)
2725 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2726
2727 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2728 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2729 }
2730 return x;
2731
2732 case EXPR_LIST:
2733 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2734 if (XEXP (x, 0))
2735 {
2736 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2737 if (new_rtx != XEXP (x, 0))
2738 {
2739 /* If this is a REG_DEAD note, it is not valid anymore.
2740 Using the eliminated version could result in creating a
2741 REG_DEAD note for the stack or frame pointer. */
2742 if (REG_NOTE_KIND (x) == REG_DEAD)
2743 return (XEXP (x, 1)
2744 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2745 : NULL_RTX);
2746
2747 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2748 }
2749 }
2750
2751 /* ... fall through ... */
2752
2753 case INSN_LIST:
2754 /* Now do eliminations in the rest of the chain. If this was
2755 an EXPR_LIST, this might result in allocating more memory than is
2756 strictly needed, but it simplifies the code. */
2757 if (XEXP (x, 1))
2758 {
2759 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2760 if (new_rtx != XEXP (x, 1))
2761 return
2762 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2763 }
2764 return x;
2765
2766 case PRE_INC:
2767 case POST_INC:
2768 case PRE_DEC:
2769 case POST_DEC:
2770 /* We do not support elimination of a register that is modified.
2771 elimination_effects has already make sure that this does not
2772 happen. */
2773 return x;
2774
2775 case PRE_MODIFY:
2776 case POST_MODIFY:
2777 /* We do not support elimination of a register that is modified.
2778 elimination_effects has already make sure that this does not
2779 happen. The only remaining case we need to consider here is
2780 that the increment value may be an eliminable register. */
2781 if (GET_CODE (XEXP (x, 1)) == PLUS
2782 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2783 {
2784 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2785 insn, true);
2786
2787 if (new_rtx != XEXP (XEXP (x, 1), 1))
2788 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2789 gen_rtx_PLUS (GET_MODE (x),
2790 XEXP (x, 0), new_rtx));
2791 }
2792 return x;
2793
2794 case STRICT_LOW_PART:
2795 case NEG: case NOT:
2796 case SIGN_EXTEND: case ZERO_EXTEND:
2797 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2798 case FLOAT: case FIX:
2799 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2800 case ABS:
2801 case SQRT:
2802 case FFS:
2803 case CLZ:
2804 case CTZ:
2805 case POPCOUNT:
2806 case PARITY:
2807 case BSWAP:
2808 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2809 if (new_rtx != XEXP (x, 0))
2810 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2811 return x;
2812
2813 case SUBREG:
2814 /* Similar to above processing, but preserve SUBREG_BYTE.
2815 Convert (subreg (mem)) to (mem) if not paradoxical.
2816 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2817 pseudo didn't get a hard reg, we must replace this with the
2818 eliminated version of the memory location because push_reload
2819 may do the replacement in certain circumstances. */
2820 if (REG_P (SUBREG_REG (x))
2821 && (GET_MODE_SIZE (GET_MODE (x))
2822 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2823 && reg_equiv_memory_loc != 0
2824 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2825 {
2826 new_rtx = SUBREG_REG (x);
2827 }
2828 else
2829 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2830
2831 if (new_rtx != SUBREG_REG (x))
2832 {
2833 int x_size = GET_MODE_SIZE (GET_MODE (x));
2834 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2835
2836 if (MEM_P (new_rtx)
2837 && ((x_size < new_size
2838 #ifdef WORD_REGISTER_OPERATIONS
2839 /* On these machines, combine can create rtl of the form
2840 (set (subreg:m1 (reg:m2 R) 0) ...)
2841 where m1 < m2, and expects something interesting to
2842 happen to the entire word. Moreover, it will use the
2843 (reg:m2 R) later, expecting all bits to be preserved.
2844 So if the number of words is the same, preserve the
2845 subreg so that push_reload can see it. */
2846 && ! ((x_size - 1) / UNITS_PER_WORD
2847 == (new_size -1 ) / UNITS_PER_WORD)
2848 #endif
2849 )
2850 || x_size == new_size)
2851 )
2852 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2853 else
2854 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2855 }
2856
2857 return x;
2858
2859 case MEM:
2860 /* Our only special processing is to pass the mode of the MEM to our
2861 recursive call and copy the flags. While we are here, handle this
2862 case more efficiently. */
2863 return
2864 replace_equiv_address_nv (x,
2865 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2866 insn, true));
2867
2868 case USE:
2869 /* Handle insn_list USE that a call to a pure function may generate. */
2870 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false);
2871 if (new_rtx != XEXP (x, 0))
2872 return gen_rtx_USE (GET_MODE (x), new_rtx);
2873 return x;
2874
2875 case CLOBBER:
2876 case ASM_OPERANDS:
2877 case SET:
2878 gcc_unreachable ();
2879
2880 default:
2881 break;
2882 }
2883
2884 /* Process each of our operands recursively. If any have changed, make a
2885 copy of the rtx. */
2886 fmt = GET_RTX_FORMAT (code);
2887 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2888 {
2889 if (*fmt == 'e')
2890 {
2891 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2892 if (new_rtx != XEXP (x, i) && ! copied)
2893 {
2894 x = shallow_copy_rtx (x);
2895 copied = 1;
2896 }
2897 XEXP (x, i) = new_rtx;
2898 }
2899 else if (*fmt == 'E')
2900 {
2901 int copied_vec = 0;
2902 for (j = 0; j < XVECLEN (x, i); j++)
2903 {
2904 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2905 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2906 {
2907 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2908 XVEC (x, i)->elem);
2909 if (! copied)
2910 {
2911 x = shallow_copy_rtx (x);
2912 copied = 1;
2913 }
2914 XVEC (x, i) = new_v;
2915 copied_vec = 1;
2916 }
2917 XVECEXP (x, i, j) = new_rtx;
2918 }
2919 }
2920 }
2921
2922 return x;
2923 }
2924
2925 rtx
2926 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2927 {
2928 return eliminate_regs_1 (x, mem_mode, insn, false);
2929 }
2930
2931 /* Scan rtx X for modifications of elimination target registers. Update
2932 the table of eliminables to reflect the changed state. MEM_MODE is
2933 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2934
2935 static void
2936 elimination_effects (rtx x, enum machine_mode mem_mode)
2937 {
2938 enum rtx_code code = GET_CODE (x);
2939 struct elim_table *ep;
2940 int regno;
2941 int i, j;
2942 const char *fmt;
2943
2944 switch (code)
2945 {
2946 case CONST_INT:
2947 case CONST_DOUBLE:
2948 case CONST_FIXED:
2949 case CONST_VECTOR:
2950 case CONST:
2951 case SYMBOL_REF:
2952 case CODE_LABEL:
2953 case PC:
2954 case CC0:
2955 case ASM_INPUT:
2956 case ADDR_VEC:
2957 case ADDR_DIFF_VEC:
2958 case RETURN:
2959 return;
2960
2961 case REG:
2962 regno = REGNO (x);
2963
2964 /* First handle the case where we encounter a bare register that
2965 is eliminable. Replace it with a PLUS. */
2966 if (regno < FIRST_PSEUDO_REGISTER)
2967 {
2968 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2969 ep++)
2970 if (ep->from_rtx == x && ep->can_eliminate)
2971 {
2972 if (! mem_mode)
2973 ep->ref_outside_mem = 1;
2974 return;
2975 }
2976
2977 }
2978 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2979 && reg_equiv_constant[regno]
2980 && ! function_invariant_p (reg_equiv_constant[regno]))
2981 elimination_effects (reg_equiv_constant[regno], mem_mode);
2982 return;
2983
2984 case PRE_INC:
2985 case POST_INC:
2986 case PRE_DEC:
2987 case POST_DEC:
2988 case POST_MODIFY:
2989 case PRE_MODIFY:
2990 /* If we modify the source of an elimination rule, disable it. */
2991 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2992 if (ep->from_rtx == XEXP (x, 0))
2993 ep->can_eliminate = 0;
2994
2995 /* If we modify the target of an elimination rule by adding a constant,
2996 update its offset. If we modify the target in any other way, we'll
2997 have to disable the rule as well. */
2998 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2999 if (ep->to_rtx == XEXP (x, 0))
3000 {
3001 int size = GET_MODE_SIZE (mem_mode);
3002
3003 /* If more bytes than MEM_MODE are pushed, account for them. */
3004 #ifdef PUSH_ROUNDING
3005 if (ep->to_rtx == stack_pointer_rtx)
3006 size = PUSH_ROUNDING (size);
3007 #endif
3008 if (code == PRE_DEC || code == POST_DEC)
3009 ep->offset += size;
3010 else if (code == PRE_INC || code == POST_INC)
3011 ep->offset -= size;
3012 else if (code == PRE_MODIFY || code == POST_MODIFY)
3013 {
3014 if (GET_CODE (XEXP (x, 1)) == PLUS
3015 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3016 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3017 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3018 else
3019 ep->can_eliminate = 0;
3020 }
3021 }
3022
3023 /* These two aren't unary operators. */
3024 if (code == POST_MODIFY || code == PRE_MODIFY)
3025 break;
3026
3027 /* Fall through to generic unary operation case. */
3028 case STRICT_LOW_PART:
3029 case NEG: case NOT:
3030 case SIGN_EXTEND: case ZERO_EXTEND:
3031 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3032 case FLOAT: case FIX:
3033 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3034 case ABS:
3035 case SQRT:
3036 case FFS:
3037 case CLZ:
3038 case CTZ:
3039 case POPCOUNT:
3040 case PARITY:
3041 case BSWAP:
3042 elimination_effects (XEXP (x, 0), mem_mode);
3043 return;
3044
3045 case SUBREG:
3046 if (REG_P (SUBREG_REG (x))
3047 && (GET_MODE_SIZE (GET_MODE (x))
3048 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3049 && reg_equiv_memory_loc != 0
3050 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
3051 return;
3052
3053 elimination_effects (SUBREG_REG (x), mem_mode);
3054 return;
3055
3056 case USE:
3057 /* If using a register that is the source of an eliminate we still
3058 think can be performed, note it cannot be performed since we don't
3059 know how this register is used. */
3060 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3061 if (ep->from_rtx == XEXP (x, 0))
3062 ep->can_eliminate = 0;
3063
3064 elimination_effects (XEXP (x, 0), mem_mode);
3065 return;
3066
3067 case CLOBBER:
3068 /* If clobbering a register that is the replacement register for an
3069 elimination we still think can be performed, note that it cannot
3070 be performed. Otherwise, we need not be concerned about it. */
3071 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3072 if (ep->to_rtx == XEXP (x, 0))
3073 ep->can_eliminate = 0;
3074
3075 elimination_effects (XEXP (x, 0), mem_mode);
3076 return;
3077
3078 case SET:
3079 /* Check for setting a register that we know about. */
3080 if (REG_P (SET_DEST (x)))
3081 {
3082 /* See if this is setting the replacement register for an
3083 elimination.
3084
3085 If DEST is the hard frame pointer, we do nothing because we
3086 assume that all assignments to the frame pointer are for
3087 non-local gotos and are being done at a time when they are valid
3088 and do not disturb anything else. Some machines want to
3089 eliminate a fake argument pointer (or even a fake frame pointer)
3090 with either the real frame or the stack pointer. Assignments to
3091 the hard frame pointer must not prevent this elimination. */
3092
3093 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3094 ep++)
3095 if (ep->to_rtx == SET_DEST (x)
3096 && SET_DEST (x) != hard_frame_pointer_rtx)
3097 {
3098 /* If it is being incremented, adjust the offset. Otherwise,
3099 this elimination can't be done. */
3100 rtx src = SET_SRC (x);
3101
3102 if (GET_CODE (src) == PLUS
3103 && XEXP (src, 0) == SET_DEST (x)
3104 && CONST_INT_P (XEXP (src, 1)))
3105 ep->offset -= INTVAL (XEXP (src, 1));
3106 else
3107 ep->can_eliminate = 0;
3108 }
3109 }
3110
3111 elimination_effects (SET_DEST (x), VOIDmode);
3112 elimination_effects (SET_SRC (x), VOIDmode);
3113 return;
3114
3115 case MEM:
3116 /* Our only special processing is to pass the mode of the MEM to our
3117 recursive call. */
3118 elimination_effects (XEXP (x, 0), GET_MODE (x));
3119 return;
3120
3121 default:
3122 break;
3123 }
3124
3125 fmt = GET_RTX_FORMAT (code);
3126 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3127 {
3128 if (*fmt == 'e')
3129 elimination_effects (XEXP (x, i), mem_mode);
3130 else if (*fmt == 'E')
3131 for (j = 0; j < XVECLEN (x, i); j++)
3132 elimination_effects (XVECEXP (x, i, j), mem_mode);
3133 }
3134 }
3135
3136 /* Descend through rtx X and verify that no references to eliminable registers
3137 remain. If any do remain, mark the involved register as not
3138 eliminable. */
3139
3140 static void
3141 check_eliminable_occurrences (rtx x)
3142 {
3143 const char *fmt;
3144 int i;
3145 enum rtx_code code;
3146
3147 if (x == 0)
3148 return;
3149
3150 code = GET_CODE (x);
3151
3152 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3153 {
3154 struct elim_table *ep;
3155
3156 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3157 if (ep->from_rtx == x)
3158 ep->can_eliminate = 0;
3159 return;
3160 }
3161
3162 fmt = GET_RTX_FORMAT (code);
3163 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3164 {
3165 if (*fmt == 'e')
3166 check_eliminable_occurrences (XEXP (x, i));
3167 else if (*fmt == 'E')
3168 {
3169 int j;
3170 for (j = 0; j < XVECLEN (x, i); j++)
3171 check_eliminable_occurrences (XVECEXP (x, i, j));
3172 }
3173 }
3174 }
3175 \f
3176 /* Scan INSN and eliminate all eliminable registers in it.
3177
3178 If REPLACE is nonzero, do the replacement destructively. Also
3179 delete the insn as dead it if it is setting an eliminable register.
3180
3181 If REPLACE is zero, do all our allocations in reload_obstack.
3182
3183 If no eliminations were done and this insn doesn't require any elimination
3184 processing (these are not identical conditions: it might be updating sp,
3185 but not referencing fp; this needs to be seen during reload_as_needed so
3186 that the offset between fp and sp can be taken into consideration), zero
3187 is returned. Otherwise, 1 is returned. */
3188
3189 static int
3190 eliminate_regs_in_insn (rtx insn, int replace)
3191 {
3192 int icode = recog_memoized (insn);
3193 rtx old_body = PATTERN (insn);
3194 int insn_is_asm = asm_noperands (old_body) >= 0;
3195 rtx old_set = single_set (insn);
3196 rtx new_body;
3197 int val = 0;
3198 int i;
3199 rtx substed_operand[MAX_RECOG_OPERANDS];
3200 rtx orig_operand[MAX_RECOG_OPERANDS];
3201 struct elim_table *ep;
3202 rtx plus_src, plus_cst_src;
3203
3204 if (! insn_is_asm && icode < 0)
3205 {
3206 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3207 || GET_CODE (PATTERN (insn)) == CLOBBER
3208 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3209 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3210 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3211 || DEBUG_INSN_P (insn));
3212 return 0;
3213 }
3214
3215 if (old_set != 0 && REG_P (SET_DEST (old_set))
3216 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3217 {
3218 /* Check for setting an eliminable register. */
3219 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3220 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3221 {
3222 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3223 /* If this is setting the frame pointer register to the
3224 hardware frame pointer register and this is an elimination
3225 that will be done (tested above), this insn is really
3226 adjusting the frame pointer downward to compensate for
3227 the adjustment done before a nonlocal goto. */
3228 if (ep->from == FRAME_POINTER_REGNUM
3229 && ep->to == HARD_FRAME_POINTER_REGNUM)
3230 {
3231 rtx base = SET_SRC (old_set);
3232 rtx base_insn = insn;
3233 HOST_WIDE_INT offset = 0;
3234
3235 while (base != ep->to_rtx)
3236 {
3237 rtx prev_insn, prev_set;
3238
3239 if (GET_CODE (base) == PLUS
3240 && CONST_INT_P (XEXP (base, 1)))
3241 {
3242 offset += INTVAL (XEXP (base, 1));
3243 base = XEXP (base, 0);
3244 }
3245 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3246 && (prev_set = single_set (prev_insn)) != 0
3247 && rtx_equal_p (SET_DEST (prev_set), base))
3248 {
3249 base = SET_SRC (prev_set);
3250 base_insn = prev_insn;
3251 }
3252 else
3253 break;
3254 }
3255
3256 if (base == ep->to_rtx)
3257 {
3258 rtx src
3259 = plus_constant (ep->to_rtx, offset - ep->offset);
3260
3261 new_body = old_body;
3262 if (! replace)
3263 {
3264 new_body = copy_insn (old_body);
3265 if (REG_NOTES (insn))
3266 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3267 }
3268 PATTERN (insn) = new_body;
3269 old_set = single_set (insn);
3270
3271 /* First see if this insn remains valid when we
3272 make the change. If not, keep the INSN_CODE
3273 the same and let reload fit it up. */
3274 validate_change (insn, &SET_SRC (old_set), src, 1);
3275 validate_change (insn, &SET_DEST (old_set),
3276 ep->to_rtx, 1);
3277 if (! apply_change_group ())
3278 {
3279 SET_SRC (old_set) = src;
3280 SET_DEST (old_set) = ep->to_rtx;
3281 }
3282
3283 val = 1;
3284 goto done;
3285 }
3286 }
3287 #endif
3288
3289 /* In this case this insn isn't serving a useful purpose. We
3290 will delete it in reload_as_needed once we know that this
3291 elimination is, in fact, being done.
3292
3293 If REPLACE isn't set, we can't delete this insn, but needn't
3294 process it since it won't be used unless something changes. */
3295 if (replace)
3296 {
3297 delete_dead_insn (insn);
3298 return 1;
3299 }
3300 val = 1;
3301 goto done;
3302 }
3303 }
3304
3305 /* We allow one special case which happens to work on all machines we
3306 currently support: a single set with the source or a REG_EQUAL
3307 note being a PLUS of an eliminable register and a constant. */
3308 plus_src = plus_cst_src = 0;
3309 if (old_set && REG_P (SET_DEST (old_set)))
3310 {
3311 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3312 plus_src = SET_SRC (old_set);
3313 /* First see if the source is of the form (plus (...) CST). */
3314 if (plus_src
3315 && CONST_INT_P (XEXP (plus_src, 1)))
3316 plus_cst_src = plus_src;
3317 else if (REG_P (SET_SRC (old_set))
3318 || plus_src)
3319 {
3320 /* Otherwise, see if we have a REG_EQUAL note of the form
3321 (plus (...) CST). */
3322 rtx links;
3323 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3324 {
3325 if ((REG_NOTE_KIND (links) == REG_EQUAL
3326 || REG_NOTE_KIND (links) == REG_EQUIV)
3327 && GET_CODE (XEXP (links, 0)) == PLUS
3328 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3329 {
3330 plus_cst_src = XEXP (links, 0);
3331 break;
3332 }
3333 }
3334 }
3335
3336 /* Check that the first operand of the PLUS is a hard reg or
3337 the lowpart subreg of one. */
3338 if (plus_cst_src)
3339 {
3340 rtx reg = XEXP (plus_cst_src, 0);
3341 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3342 reg = SUBREG_REG (reg);
3343
3344 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3345 plus_cst_src = 0;
3346 }
3347 }
3348 if (plus_cst_src)
3349 {
3350 rtx reg = XEXP (plus_cst_src, 0);
3351 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3352
3353 if (GET_CODE (reg) == SUBREG)
3354 reg = SUBREG_REG (reg);
3355
3356 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3357 if (ep->from_rtx == reg && ep->can_eliminate)
3358 {
3359 rtx to_rtx = ep->to_rtx;
3360 offset += ep->offset;
3361 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3362
3363 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3364 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3365 to_rtx);
3366 /* If we have a nonzero offset, and the source is already
3367 a simple REG, the following transformation would
3368 increase the cost of the insn by replacing a simple REG
3369 with (plus (reg sp) CST). So try only when we already
3370 had a PLUS before. */
3371 if (offset == 0 || plus_src)
3372 {
3373 rtx new_src = plus_constant (to_rtx, offset);
3374
3375 new_body = old_body;
3376 if (! replace)
3377 {
3378 new_body = copy_insn (old_body);
3379 if (REG_NOTES (insn))
3380 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3381 }
3382 PATTERN (insn) = new_body;
3383 old_set = single_set (insn);
3384
3385 /* First see if this insn remains valid when we make the
3386 change. If not, try to replace the whole pattern with
3387 a simple set (this may help if the original insn was a
3388 PARALLEL that was only recognized as single_set due to
3389 REG_UNUSED notes). If this isn't valid either, keep
3390 the INSN_CODE the same and let reload fix it up. */
3391 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3392 {
3393 rtx new_pat = gen_rtx_SET (VOIDmode,
3394 SET_DEST (old_set), new_src);
3395
3396 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3397 SET_SRC (old_set) = new_src;
3398 }
3399 }
3400 else
3401 break;
3402
3403 val = 1;
3404 /* This can't have an effect on elimination offsets, so skip right
3405 to the end. */
3406 goto done;
3407 }
3408 }
3409
3410 /* Determine the effects of this insn on elimination offsets. */
3411 elimination_effects (old_body, VOIDmode);
3412
3413 /* Eliminate all eliminable registers occurring in operands that
3414 can be handled by reload. */
3415 extract_insn (insn);
3416 for (i = 0; i < recog_data.n_operands; i++)
3417 {
3418 orig_operand[i] = recog_data.operand[i];
3419 substed_operand[i] = recog_data.operand[i];
3420
3421 /* For an asm statement, every operand is eliminable. */
3422 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3423 {
3424 bool is_set_src, in_plus;
3425
3426 /* Check for setting a register that we know about. */
3427 if (recog_data.operand_type[i] != OP_IN
3428 && REG_P (orig_operand[i]))
3429 {
3430 /* If we are assigning to a register that can be eliminated, it
3431 must be as part of a PARALLEL, since the code above handles
3432 single SETs. We must indicate that we can no longer
3433 eliminate this reg. */
3434 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3435 ep++)
3436 if (ep->from_rtx == orig_operand[i])
3437 ep->can_eliminate = 0;
3438 }
3439
3440 /* Companion to the above plus substitution, we can allow
3441 invariants as the source of a plain move. */
3442 is_set_src = false;
3443 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3444 is_set_src = true;
3445 in_plus = false;
3446 if (plus_src
3447 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3448 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3449 in_plus = true;
3450
3451 substed_operand[i]
3452 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3453 replace ? insn : NULL_RTX,
3454 is_set_src || in_plus);
3455 if (substed_operand[i] != orig_operand[i])
3456 val = 1;
3457 /* Terminate the search in check_eliminable_occurrences at
3458 this point. */
3459 *recog_data.operand_loc[i] = 0;
3460
3461 /* If an output operand changed from a REG to a MEM and INSN is an
3462 insn, write a CLOBBER insn. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i])
3465 && MEM_P (substed_operand[i])
3466 && replace)
3467 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3468 }
3469 }
3470
3471 for (i = 0; i < recog_data.n_dups; i++)
3472 *recog_data.dup_loc[i]
3473 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3474
3475 /* If any eliminable remain, they aren't eliminable anymore. */
3476 check_eliminable_occurrences (old_body);
3477
3478 /* Substitute the operands; the new values are in the substed_operand
3479 array. */
3480 for (i = 0; i < recog_data.n_operands; i++)
3481 *recog_data.operand_loc[i] = substed_operand[i];
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3484
3485 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3486 re-recognize the insn. We do this in case we had a simple addition
3487 but now can do this as a load-address. This saves an insn in this
3488 common case.
3489 If re-recognition fails, the old insn code number will still be used,
3490 and some register operands may have changed into PLUS expressions.
3491 These will be handled by find_reloads by loading them into a register
3492 again. */
3493
3494 if (val)
3495 {
3496 /* If we aren't replacing things permanently and we changed something,
3497 make another copy to ensure that all the RTL is new. Otherwise
3498 things can go wrong if find_reload swaps commutative operands
3499 and one is inside RTL that has been copied while the other is not. */
3500 new_body = old_body;
3501 if (! replace)
3502 {
3503 new_body = copy_insn (old_body);
3504 if (REG_NOTES (insn))
3505 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3506 }
3507 PATTERN (insn) = new_body;
3508
3509 /* If we had a move insn but now we don't, rerecognize it. This will
3510 cause spurious re-recognition if the old move had a PARALLEL since
3511 the new one still will, but we can't call single_set without
3512 having put NEW_BODY into the insn and the re-recognition won't
3513 hurt in this rare case. */
3514 /* ??? Why this huge if statement - why don't we just rerecognize the
3515 thing always? */
3516 if (! insn_is_asm
3517 && old_set != 0
3518 && ((REG_P (SET_SRC (old_set))
3519 && (GET_CODE (new_body) != SET
3520 || !REG_P (SET_SRC (new_body))))
3521 /* If this was a load from or store to memory, compare
3522 the MEM in recog_data.operand to the one in the insn.
3523 If they are not equal, then rerecognize the insn. */
3524 || (old_set != 0
3525 && ((MEM_P (SET_SRC (old_set))
3526 && SET_SRC (old_set) != recog_data.operand[1])
3527 || (MEM_P (SET_DEST (old_set))
3528 && SET_DEST (old_set) != recog_data.operand[0])))
3529 /* If this was an add insn before, rerecognize. */
3530 || GET_CODE (SET_SRC (old_set)) == PLUS))
3531 {
3532 int new_icode = recog (PATTERN (insn), insn, 0);
3533 if (new_icode >= 0)
3534 INSN_CODE (insn) = new_icode;
3535 }
3536 }
3537
3538 /* Restore the old body. If there were any changes to it, we made a copy
3539 of it while the changes were still in place, so we'll correctly return
3540 a modified insn below. */
3541 if (! replace)
3542 {
3543 /* Restore the old body. */
3544 for (i = 0; i < recog_data.n_operands; i++)
3545 *recog_data.operand_loc[i] = orig_operand[i];
3546 for (i = 0; i < recog_data.n_dups; i++)
3547 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3548 }
3549
3550 /* Update all elimination pairs to reflect the status after the current
3551 insn. The changes we make were determined by the earlier call to
3552 elimination_effects.
3553
3554 We also detect cases where register elimination cannot be done,
3555 namely, if a register would be both changed and referenced outside a MEM
3556 in the resulting insn since such an insn is often undefined and, even if
3557 not, we cannot know what meaning will be given to it. Note that it is
3558 valid to have a register used in an address in an insn that changes it
3559 (presumably with a pre- or post-increment or decrement).
3560
3561 If anything changes, return nonzero. */
3562
3563 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3564 {
3565 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3566 ep->can_eliminate = 0;
3567
3568 ep->ref_outside_mem = 0;
3569
3570 if (ep->previous_offset != ep->offset)
3571 val = 1;
3572 }
3573
3574 done:
3575 /* If we changed something, perform elimination in REG_NOTES. This is
3576 needed even when REPLACE is zero because a REG_DEAD note might refer
3577 to a register that we eliminate and could cause a different number
3578 of spill registers to be needed in the final reload pass than in
3579 the pre-passes. */
3580 if (val && REG_NOTES (insn) != 0)
3581 REG_NOTES (insn)
3582 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true);
3583
3584 return val;
3585 }
3586
3587 /* Loop through all elimination pairs.
3588 Recalculate the number not at initial offset.
3589
3590 Compute the maximum offset (minimum offset if the stack does not
3591 grow downward) for each elimination pair. */
3592
3593 static void
3594 update_eliminable_offsets (void)
3595 {
3596 struct elim_table *ep;
3597
3598 num_not_at_initial_offset = 0;
3599 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3600 {
3601 ep->previous_offset = ep->offset;
3602 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3603 num_not_at_initial_offset++;
3604 }
3605 }
3606
3607 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3608 replacement we currently believe is valid, mark it as not eliminable if X
3609 modifies DEST in any way other than by adding a constant integer to it.
3610
3611 If DEST is the frame pointer, we do nothing because we assume that
3612 all assignments to the hard frame pointer are nonlocal gotos and are being
3613 done at a time when they are valid and do not disturb anything else.
3614 Some machines want to eliminate a fake argument pointer with either the
3615 frame or stack pointer. Assignments to the hard frame pointer must not
3616 prevent this elimination.
3617
3618 Called via note_stores from reload before starting its passes to scan
3619 the insns of the function. */
3620
3621 static void
3622 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3623 {
3624 unsigned int i;
3625
3626 /* A SUBREG of a hard register here is just changing its mode. We should
3627 not see a SUBREG of an eliminable hard register, but check just in
3628 case. */
3629 if (GET_CODE (dest) == SUBREG)
3630 dest = SUBREG_REG (dest);
3631
3632 if (dest == hard_frame_pointer_rtx)
3633 return;
3634
3635 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3636 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3637 && (GET_CODE (x) != SET
3638 || GET_CODE (SET_SRC (x)) != PLUS
3639 || XEXP (SET_SRC (x), 0) != dest
3640 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3641 {
3642 reg_eliminate[i].can_eliminate_previous
3643 = reg_eliminate[i].can_eliminate = 0;
3644 num_eliminable--;
3645 }
3646 }
3647
3648 /* Verify that the initial elimination offsets did not change since the
3649 last call to set_initial_elim_offsets. This is used to catch cases
3650 where something illegal happened during reload_as_needed that could
3651 cause incorrect code to be generated if we did not check for it. */
3652
3653 static bool
3654 verify_initial_elim_offsets (void)
3655 {
3656 HOST_WIDE_INT t;
3657
3658 if (!num_eliminable)
3659 return true;
3660
3661 #ifdef ELIMINABLE_REGS
3662 {
3663 struct elim_table *ep;
3664
3665 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3666 {
3667 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3668 if (t != ep->initial_offset)
3669 return false;
3670 }
3671 }
3672 #else
3673 INITIAL_FRAME_POINTER_OFFSET (t);
3674 if (t != reg_eliminate[0].initial_offset)
3675 return false;
3676 #endif
3677
3678 return true;
3679 }
3680
3681 /* Reset all offsets on eliminable registers to their initial values. */
3682
3683 static void
3684 set_initial_elim_offsets (void)
3685 {
3686 struct elim_table *ep = reg_eliminate;
3687
3688 #ifdef ELIMINABLE_REGS
3689 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3690 {
3691 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3692 ep->previous_offset = ep->offset = ep->initial_offset;
3693 }
3694 #else
3695 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3696 ep->previous_offset = ep->offset = ep->initial_offset;
3697 #endif
3698
3699 num_not_at_initial_offset = 0;
3700 }
3701
3702 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3703
3704 static void
3705 set_initial_eh_label_offset (rtx label)
3706 {
3707 set_label_offsets (label, NULL_RTX, 1);
3708 }
3709
3710 /* Initialize the known label offsets.
3711 Set a known offset for each forced label to be at the initial offset
3712 of each elimination. We do this because we assume that all
3713 computed jumps occur from a location where each elimination is
3714 at its initial offset.
3715 For all other labels, show that we don't know the offsets. */
3716
3717 static void
3718 set_initial_label_offsets (void)
3719 {
3720 rtx x;
3721 memset (offsets_known_at, 0, num_labels);
3722
3723 for (x = forced_labels; x; x = XEXP (x, 1))
3724 if (XEXP (x, 0))
3725 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3726
3727 for_each_eh_label (set_initial_eh_label_offset);
3728 }
3729
3730 /* Set all elimination offsets to the known values for the code label given
3731 by INSN. */
3732
3733 static void
3734 set_offsets_for_label (rtx insn)
3735 {
3736 unsigned int i;
3737 int label_nr = CODE_LABEL_NUMBER (insn);
3738 struct elim_table *ep;
3739
3740 num_not_at_initial_offset = 0;
3741 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3742 {
3743 ep->offset = ep->previous_offset
3744 = offsets_at[label_nr - first_label_num][i];
3745 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3746 num_not_at_initial_offset++;
3747 }
3748 }
3749
3750 /* See if anything that happened changes which eliminations are valid.
3751 For example, on the SPARC, whether or not the frame pointer can
3752 be eliminated can depend on what registers have been used. We need
3753 not check some conditions again (such as flag_omit_frame_pointer)
3754 since they can't have changed. */
3755
3756 static void
3757 update_eliminables (HARD_REG_SET *pset)
3758 {
3759 int previous_frame_pointer_needed = frame_pointer_needed;
3760 struct elim_table *ep;
3761
3762 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3763 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3764 && targetm.frame_pointer_required ())
3765 #ifdef ELIMINABLE_REGS
3766 || ! targetm.can_eliminate (ep->from, ep->to)
3767 #endif
3768 )
3769 ep->can_eliminate = 0;
3770
3771 /* Look for the case where we have discovered that we can't replace
3772 register A with register B and that means that we will now be
3773 trying to replace register A with register C. This means we can
3774 no longer replace register C with register B and we need to disable
3775 such an elimination, if it exists. This occurs often with A == ap,
3776 B == sp, and C == fp. */
3777
3778 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3779 {
3780 struct elim_table *op;
3781 int new_to = -1;
3782
3783 if (! ep->can_eliminate && ep->can_eliminate_previous)
3784 {
3785 /* Find the current elimination for ep->from, if there is a
3786 new one. */
3787 for (op = reg_eliminate;
3788 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3789 if (op->from == ep->from && op->can_eliminate)
3790 {
3791 new_to = op->to;
3792 break;
3793 }
3794
3795 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3796 disable it. */
3797 for (op = reg_eliminate;
3798 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3799 if (op->from == new_to && op->to == ep->to)
3800 op->can_eliminate = 0;
3801 }
3802 }
3803
3804 /* See if any registers that we thought we could eliminate the previous
3805 time are no longer eliminable. If so, something has changed and we
3806 must spill the register. Also, recompute the number of eliminable
3807 registers and see if the frame pointer is needed; it is if there is
3808 no elimination of the frame pointer that we can perform. */
3809
3810 frame_pointer_needed = 1;
3811 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3812 {
3813 if (ep->can_eliminate
3814 && ep->from == FRAME_POINTER_REGNUM
3815 && ep->to != HARD_FRAME_POINTER_REGNUM
3816 && (! SUPPORTS_STACK_ALIGNMENT
3817 || ! crtl->stack_realign_needed))
3818 frame_pointer_needed = 0;
3819
3820 if (! ep->can_eliminate && ep->can_eliminate_previous)
3821 {
3822 ep->can_eliminate_previous = 0;
3823 SET_HARD_REG_BIT (*pset, ep->from);
3824 num_eliminable--;
3825 }
3826 }
3827
3828 /* If we didn't need a frame pointer last time, but we do now, spill
3829 the hard frame pointer. */
3830 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3831 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3832 }
3833
3834 /* Return true if X is used as the target register of an elimination. */
3835
3836 bool
3837 elimination_target_reg_p (rtx x)
3838 {
3839 struct elim_table *ep;
3840
3841 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3842 if (ep->to_rtx == x && ep->can_eliminate)
3843 return true;
3844
3845 return false;
3846 }
3847
3848 /* Initialize the table of registers to eliminate.
3849 Pre-condition: global flag frame_pointer_needed has been set before
3850 calling this function. */
3851
3852 static void
3853 init_elim_table (void)
3854 {
3855 struct elim_table *ep;
3856 #ifdef ELIMINABLE_REGS
3857 const struct elim_table_1 *ep1;
3858 #endif
3859
3860 if (!reg_eliminate)
3861 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3862
3863 num_eliminable = 0;
3864
3865 #ifdef ELIMINABLE_REGS
3866 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3867 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3868 {
3869 ep->from = ep1->from;
3870 ep->to = ep1->to;
3871 ep->can_eliminate = ep->can_eliminate_previous
3872 = (targetm.can_eliminate (ep->from, ep->to)
3873 && ! (ep->to == STACK_POINTER_REGNUM
3874 && frame_pointer_needed
3875 && (! SUPPORTS_STACK_ALIGNMENT
3876 || ! stack_realign_fp)));
3877 }
3878 #else
3879 reg_eliminate[0].from = reg_eliminate_1[0].from;
3880 reg_eliminate[0].to = reg_eliminate_1[0].to;
3881 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3882 = ! frame_pointer_needed;
3883 #endif
3884
3885 /* Count the number of eliminable registers and build the FROM and TO
3886 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3887 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3888 We depend on this. */
3889 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3890 {
3891 num_eliminable += ep->can_eliminate;
3892 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3893 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3894 }
3895 }
3896 \f
3897 /* Kick all pseudos out of hard register REGNO.
3898
3899 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3900 because we found we can't eliminate some register. In the case, no pseudos
3901 are allowed to be in the register, even if they are only in a block that
3902 doesn't require spill registers, unlike the case when we are spilling this
3903 hard reg to produce another spill register.
3904
3905 Return nonzero if any pseudos needed to be kicked out. */
3906
3907 static void
3908 spill_hard_reg (unsigned int regno, int cant_eliminate)
3909 {
3910 int i;
3911
3912 if (cant_eliminate)
3913 {
3914 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3915 df_set_regs_ever_live (regno, true);
3916 }
3917
3918 /* Spill every pseudo reg that was allocated to this reg
3919 or to something that overlaps this reg. */
3920
3921 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3922 if (reg_renumber[i] >= 0
3923 && (unsigned int) reg_renumber[i] <= regno
3924 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3925 SET_REGNO_REG_SET (&spilled_pseudos, i);
3926 }
3927
3928 /* After find_reload_regs has been run for all insn that need reloads,
3929 and/or spill_hard_regs was called, this function is used to actually
3930 spill pseudo registers and try to reallocate them. It also sets up the
3931 spill_regs array for use by choose_reload_regs. */
3932
3933 static int
3934 finish_spills (int global)
3935 {
3936 struct insn_chain *chain;
3937 int something_changed = 0;
3938 unsigned i;
3939 reg_set_iterator rsi;
3940
3941 /* Build the spill_regs array for the function. */
3942 /* If there are some registers still to eliminate and one of the spill regs
3943 wasn't ever used before, additional stack space may have to be
3944 allocated to store this register. Thus, we may have changed the offset
3945 between the stack and frame pointers, so mark that something has changed.
3946
3947 One might think that we need only set VAL to 1 if this is a call-used
3948 register. However, the set of registers that must be saved by the
3949 prologue is not identical to the call-used set. For example, the
3950 register used by the call insn for the return PC is a call-used register,
3951 but must be saved by the prologue. */
3952
3953 n_spills = 0;
3954 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3955 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3956 {
3957 spill_reg_order[i] = n_spills;
3958 spill_regs[n_spills++] = i;
3959 if (num_eliminable && ! df_regs_ever_live_p (i))
3960 something_changed = 1;
3961 df_set_regs_ever_live (i, true);
3962 }
3963 else
3964 spill_reg_order[i] = -1;
3965
3966 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3967 if (! ira_conflicts_p || reg_renumber[i] >= 0)
3968 {
3969 /* Record the current hard register the pseudo is allocated to
3970 in pseudo_previous_regs so we avoid reallocating it to the
3971 same hard reg in a later pass. */
3972 gcc_assert (reg_renumber[i] >= 0);
3973
3974 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3975 /* Mark it as no longer having a hard register home. */
3976 reg_renumber[i] = -1;
3977 if (ira_conflicts_p)
3978 /* Inform IRA about the change. */
3979 ira_mark_allocation_change (i);
3980 /* We will need to scan everything again. */
3981 something_changed = 1;
3982 }
3983
3984 /* Retry global register allocation if possible. */
3985 if (global && ira_conflicts_p)
3986 {
3987 unsigned int n;
3988
3989 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3990 /* For every insn that needs reloads, set the registers used as spill
3991 regs in pseudo_forbidden_regs for every pseudo live across the
3992 insn. */
3993 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3994 {
3995 EXECUTE_IF_SET_IN_REG_SET
3996 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3997 {
3998 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3999 chain->used_spill_regs);
4000 }
4001 EXECUTE_IF_SET_IN_REG_SET
4002 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4003 {
4004 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4005 chain->used_spill_regs);
4006 }
4007 }
4008
4009 /* Retry allocating the pseudos spilled in IRA and the
4010 reload. For each reg, merge the various reg sets that
4011 indicate which hard regs can't be used, and call
4012 ira_reassign_pseudos. */
4013 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4014 if (reg_old_renumber[i] != reg_renumber[i])
4015 {
4016 if (reg_renumber[i] < 0)
4017 temp_pseudo_reg_arr[n++] = i;
4018 else
4019 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4020 }
4021 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4022 bad_spill_regs_global,
4023 pseudo_forbidden_regs, pseudo_previous_regs,
4024 &spilled_pseudos))
4025 something_changed = 1;
4026 }
4027 /* Fix up the register information in the insn chain.
4028 This involves deleting those of the spilled pseudos which did not get
4029 a new hard register home from the live_{before,after} sets. */
4030 for (chain = reload_insn_chain; chain; chain = chain->next)
4031 {
4032 HARD_REG_SET used_by_pseudos;
4033 HARD_REG_SET used_by_pseudos2;
4034
4035 if (! ira_conflicts_p)
4036 {
4037 /* Don't do it for IRA because IRA and the reload still can
4038 assign hard registers to the spilled pseudos on next
4039 reload iterations. */
4040 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4041 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4042 }
4043 /* Mark any unallocated hard regs as available for spills. That
4044 makes inheritance work somewhat better. */
4045 if (chain->need_reload)
4046 {
4047 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4048 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4049 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4050
4051 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4052 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4053 /* Value of chain->used_spill_regs from previous iteration
4054 may be not included in the value calculated here because
4055 of possible removing caller-saves insns (see function
4056 delete_caller_save_insns. */
4057 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4058 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4059 }
4060 }
4061
4062 CLEAR_REG_SET (&changed_allocation_pseudos);
4063 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4064 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4065 {
4066 int regno = reg_renumber[i];
4067 if (reg_old_renumber[i] == regno)
4068 continue;
4069
4070 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4071
4072 alter_reg (i, reg_old_renumber[i], false);
4073 reg_old_renumber[i] = regno;
4074 if (dump_file)
4075 {
4076 if (regno == -1)
4077 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4078 else
4079 fprintf (dump_file, " Register %d now in %d.\n\n",
4080 i, reg_renumber[i]);
4081 }
4082 }
4083
4084 return something_changed;
4085 }
4086 \f
4087 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4088
4089 static void
4090 scan_paradoxical_subregs (rtx x)
4091 {
4092 int i;
4093 const char *fmt;
4094 enum rtx_code code = GET_CODE (x);
4095
4096 switch (code)
4097 {
4098 case REG:
4099 case CONST_INT:
4100 case CONST:
4101 case SYMBOL_REF:
4102 case LABEL_REF:
4103 case CONST_DOUBLE:
4104 case CONST_FIXED:
4105 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4106 case CC0:
4107 case PC:
4108 case USE:
4109 case CLOBBER:
4110 return;
4111
4112 case SUBREG:
4113 if (REG_P (SUBREG_REG (x))
4114 && (GET_MODE_SIZE (GET_MODE (x))
4115 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4116 {
4117 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4118 = GET_MODE_SIZE (GET_MODE (x));
4119 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4120 }
4121 return;
4122
4123 default:
4124 break;
4125 }
4126
4127 fmt = GET_RTX_FORMAT (code);
4128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4129 {
4130 if (fmt[i] == 'e')
4131 scan_paradoxical_subregs (XEXP (x, i));
4132 else if (fmt[i] == 'E')
4133 {
4134 int j;
4135 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4136 scan_paradoxical_subregs (XVECEXP (x, i, j));
4137 }
4138 }
4139 }
4140 \f
4141 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4142 examine all of the reload insns between PREV and NEXT exclusive, and
4143 annotate all that may trap. */
4144
4145 static void
4146 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4147 {
4148 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4149 if (note == NULL)
4150 return;
4151 if (!insn_could_throw_p (insn))
4152 remove_note (insn, note);
4153 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4154 }
4155
4156 /* Reload pseudo-registers into hard regs around each insn as needed.
4157 Additional register load insns are output before the insn that needs it
4158 and perhaps store insns after insns that modify the reloaded pseudo reg.
4159
4160 reg_last_reload_reg and reg_reloaded_contents keep track of
4161 which registers are already available in reload registers.
4162 We update these for the reloads that we perform,
4163 as the insns are scanned. */
4164
4165 static void
4166 reload_as_needed (int live_known)
4167 {
4168 struct insn_chain *chain;
4169 #if defined (AUTO_INC_DEC)
4170 int i;
4171 #endif
4172 rtx x;
4173
4174 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4175 memset (spill_reg_store, 0, sizeof spill_reg_store);
4176 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4177 INIT_REG_SET (&reg_has_output_reload);
4178 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4179 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4180
4181 set_initial_elim_offsets ();
4182
4183 for (chain = reload_insn_chain; chain; chain = chain->next)
4184 {
4185 rtx prev = 0;
4186 rtx insn = chain->insn;
4187 rtx old_next = NEXT_INSN (insn);
4188 #ifdef AUTO_INC_DEC
4189 rtx old_prev = PREV_INSN (insn);
4190 #endif
4191
4192 /* If we pass a label, copy the offsets from the label information
4193 into the current offsets of each elimination. */
4194 if (LABEL_P (insn))
4195 set_offsets_for_label (insn);
4196
4197 else if (INSN_P (insn))
4198 {
4199 regset_head regs_to_forget;
4200 INIT_REG_SET (&regs_to_forget);
4201 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4202
4203 /* If this is a USE and CLOBBER of a MEM, ensure that any
4204 references to eliminable registers have been removed. */
4205
4206 if ((GET_CODE (PATTERN (insn)) == USE
4207 || GET_CODE (PATTERN (insn)) == CLOBBER)
4208 && MEM_P (XEXP (PATTERN (insn), 0)))
4209 XEXP (XEXP (PATTERN (insn), 0), 0)
4210 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4211 GET_MODE (XEXP (PATTERN (insn), 0)),
4212 NULL_RTX);
4213
4214 /* If we need to do register elimination processing, do so.
4215 This might delete the insn, in which case we are done. */
4216 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4217 {
4218 eliminate_regs_in_insn (insn, 1);
4219 if (NOTE_P (insn))
4220 {
4221 update_eliminable_offsets ();
4222 CLEAR_REG_SET (&regs_to_forget);
4223 continue;
4224 }
4225 }
4226
4227 /* If need_elim is nonzero but need_reload is zero, one might think
4228 that we could simply set n_reloads to 0. However, find_reloads
4229 could have done some manipulation of the insn (such as swapping
4230 commutative operands), and these manipulations are lost during
4231 the first pass for every insn that needs register elimination.
4232 So the actions of find_reloads must be redone here. */
4233
4234 if (! chain->need_elim && ! chain->need_reload
4235 && ! chain->need_operand_change)
4236 n_reloads = 0;
4237 /* First find the pseudo regs that must be reloaded for this insn.
4238 This info is returned in the tables reload_... (see reload.h).
4239 Also modify the body of INSN by substituting RELOAD
4240 rtx's for those pseudo regs. */
4241 else
4242 {
4243 CLEAR_REG_SET (&reg_has_output_reload);
4244 CLEAR_HARD_REG_SET (reg_is_output_reload);
4245
4246 find_reloads (insn, 1, spill_indirect_levels, live_known,
4247 spill_reg_order);
4248 }
4249
4250 if (n_reloads > 0)
4251 {
4252 rtx next = NEXT_INSN (insn);
4253 rtx p;
4254
4255 prev = PREV_INSN (insn);
4256
4257 /* Now compute which reload regs to reload them into. Perhaps
4258 reusing reload regs from previous insns, or else output
4259 load insns to reload them. Maybe output store insns too.
4260 Record the choices of reload reg in reload_reg_rtx. */
4261 choose_reload_regs (chain);
4262
4263 /* Merge any reloads that we didn't combine for fear of
4264 increasing the number of spill registers needed but now
4265 discover can be safely merged. */
4266 if (SMALL_REGISTER_CLASSES)
4267 merge_assigned_reloads (insn);
4268
4269 /* Generate the insns to reload operands into or out of
4270 their reload regs. */
4271 emit_reload_insns (chain);
4272
4273 /* Substitute the chosen reload regs from reload_reg_rtx
4274 into the insn's body (or perhaps into the bodies of other
4275 load and store insn that we just made for reloading
4276 and that we moved the structure into). */
4277 subst_reloads (insn);
4278
4279 /* Adjust the exception region notes for loads and stores. */
4280 if (flag_non_call_exceptions && !CALL_P (insn))
4281 fixup_eh_region_note (insn, prev, next);
4282
4283 /* If this was an ASM, make sure that all the reload insns
4284 we have generated are valid. If not, give an error
4285 and delete them. */
4286 if (asm_noperands (PATTERN (insn)) >= 0)
4287 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4288 if (p != insn && INSN_P (p)
4289 && GET_CODE (PATTERN (p)) != USE
4290 && (recog_memoized (p) < 0
4291 || (extract_insn (p), ! constrain_operands (1))))
4292 {
4293 error_for_asm (insn,
4294 "%<asm%> operand requires "
4295 "impossible reload");
4296 delete_insn (p);
4297 }
4298 }
4299
4300 if (num_eliminable && chain->need_elim)
4301 update_eliminable_offsets ();
4302
4303 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4304 is no longer validly lying around to save a future reload.
4305 Note that this does not detect pseudos that were reloaded
4306 for this insn in order to be stored in
4307 (obeying register constraints). That is correct; such reload
4308 registers ARE still valid. */
4309 forget_marked_reloads (&regs_to_forget);
4310 CLEAR_REG_SET (&regs_to_forget);
4311
4312 /* There may have been CLOBBER insns placed after INSN. So scan
4313 between INSN and NEXT and use them to forget old reloads. */
4314 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4315 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4316 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4317
4318 #ifdef AUTO_INC_DEC
4319 /* Likewise for regs altered by auto-increment in this insn.
4320 REG_INC notes have been changed by reloading:
4321 find_reloads_address_1 records substitutions for them,
4322 which have been performed by subst_reloads above. */
4323 for (i = n_reloads - 1; i >= 0; i--)
4324 {
4325 rtx in_reg = rld[i].in_reg;
4326 if (in_reg)
4327 {
4328 enum rtx_code code = GET_CODE (in_reg);
4329 /* PRE_INC / PRE_DEC will have the reload register ending up
4330 with the same value as the stack slot, but that doesn't
4331 hold true for POST_INC / POST_DEC. Either we have to
4332 convert the memory access to a true POST_INC / POST_DEC,
4333 or we can't use the reload register for inheritance. */
4334 if ((code == POST_INC || code == POST_DEC)
4335 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4336 REGNO (rld[i].reg_rtx))
4337 /* Make sure it is the inc/dec pseudo, and not
4338 some other (e.g. output operand) pseudo. */
4339 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4340 == REGNO (XEXP (in_reg, 0))))
4341
4342 {
4343 rtx reload_reg = rld[i].reg_rtx;
4344 enum machine_mode mode = GET_MODE (reload_reg);
4345 int n = 0;
4346 rtx p;
4347
4348 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4349 {
4350 /* We really want to ignore REG_INC notes here, so
4351 use PATTERN (p) as argument to reg_set_p . */
4352 if (reg_set_p (reload_reg, PATTERN (p)))
4353 break;
4354 n = count_occurrences (PATTERN (p), reload_reg, 0);
4355 if (! n)
4356 continue;
4357 if (n == 1)
4358 {
4359 rtx replace_reg
4360 = gen_rtx_fmt_e (code, mode, reload_reg);
4361
4362 validate_replace_rtx_group (reload_reg,
4363 replace_reg, p);
4364 n = verify_changes (0);
4365
4366 /* We must also verify that the constraints
4367 are met after the replacement. Make sure
4368 extract_insn is only called for an insn
4369 where the replacements were found to be
4370 valid so far. */
4371 if (n)
4372 {
4373 extract_insn (p);
4374 n = constrain_operands (1);
4375 }
4376
4377 /* If the constraints were not met, then
4378 undo the replacement, else confirm it. */
4379 if (!n)
4380 cancel_changes (0);
4381 else
4382 confirm_change_group ();
4383 }
4384 break;
4385 }
4386 if (n == 1)
4387 {
4388 add_reg_note (p, REG_INC, reload_reg);
4389 /* Mark this as having an output reload so that the
4390 REG_INC processing code below won't invalidate
4391 the reload for inheritance. */
4392 SET_HARD_REG_BIT (reg_is_output_reload,
4393 REGNO (reload_reg));
4394 SET_REGNO_REG_SET (&reg_has_output_reload,
4395 REGNO (XEXP (in_reg, 0)));
4396 }
4397 else
4398 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4399 NULL);
4400 }
4401 else if ((code == PRE_INC || code == PRE_DEC)
4402 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4403 REGNO (rld[i].reg_rtx))
4404 /* Make sure it is the inc/dec pseudo, and not
4405 some other (e.g. output operand) pseudo. */
4406 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4407 == REGNO (XEXP (in_reg, 0))))
4408 {
4409 SET_HARD_REG_BIT (reg_is_output_reload,
4410 REGNO (rld[i].reg_rtx));
4411 SET_REGNO_REG_SET (&reg_has_output_reload,
4412 REGNO (XEXP (in_reg, 0)));
4413 }
4414 else if (code == PRE_INC || code == PRE_DEC
4415 || code == POST_INC || code == POST_DEC)
4416 {
4417 int in_regno = REGNO (XEXP (in_reg, 0));
4418
4419 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4420 {
4421 int in_hard_regno;
4422 bool forget_p = true;
4423
4424 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4425 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4426 in_hard_regno))
4427 {
4428 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4429 x != old_next;
4430 x = NEXT_INSN (x))
4431 if (x == reg_reloaded_insn[in_hard_regno])
4432 {
4433 forget_p = false;
4434 break;
4435 }
4436 }
4437 /* If for some reasons, we didn't set up
4438 reg_last_reload_reg in this insn,
4439 invalidate inheritance from previous
4440 insns for the incremented/decremented
4441 register. Such registers will be not in
4442 reg_has_output_reload. Invalidate it
4443 also if the corresponding element in
4444 reg_reloaded_insn is also
4445 invalidated. */
4446 if (forget_p)
4447 forget_old_reloads_1 (XEXP (in_reg, 0),
4448 NULL_RTX, NULL);
4449 }
4450 }
4451 }
4452 }
4453 /* If a pseudo that got a hard register is auto-incremented,
4454 we must purge records of copying it into pseudos without
4455 hard registers. */
4456 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4457 if (REG_NOTE_KIND (x) == REG_INC)
4458 {
4459 /* See if this pseudo reg was reloaded in this insn.
4460 If so, its last-reload info is still valid
4461 because it is based on this insn's reload. */
4462 for (i = 0; i < n_reloads; i++)
4463 if (rld[i].out == XEXP (x, 0))
4464 break;
4465
4466 if (i == n_reloads)
4467 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4468 }
4469 #endif
4470 }
4471 /* A reload reg's contents are unknown after a label. */
4472 if (LABEL_P (insn))
4473 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4474
4475 /* Don't assume a reload reg is still good after a call insn
4476 if it is a call-used reg, or if it contains a value that will
4477 be partially clobbered by the call. */
4478 else if (CALL_P (insn))
4479 {
4480 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4481 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4482 }
4483 }
4484
4485 /* Clean up. */
4486 free (reg_last_reload_reg);
4487 CLEAR_REG_SET (&reg_has_output_reload);
4488 }
4489
4490 /* Discard all record of any value reloaded from X,
4491 or reloaded in X from someplace else;
4492 unless X is an output reload reg of the current insn.
4493
4494 X may be a hard reg (the reload reg)
4495 or it may be a pseudo reg that was reloaded from.
4496
4497 When DATA is non-NULL just mark the registers in regset
4498 to be forgotten later. */
4499
4500 static void
4501 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4502 void *data)
4503 {
4504 unsigned int regno;
4505 unsigned int nr;
4506 regset regs = (regset) data;
4507
4508 /* note_stores does give us subregs of hard regs,
4509 subreg_regno_offset requires a hard reg. */
4510 while (GET_CODE (x) == SUBREG)
4511 {
4512 /* We ignore the subreg offset when calculating the regno,
4513 because we are using the entire underlying hard register
4514 below. */
4515 x = SUBREG_REG (x);
4516 }
4517
4518 if (!REG_P (x))
4519 return;
4520
4521 regno = REGNO (x);
4522
4523 if (regno >= FIRST_PSEUDO_REGISTER)
4524 nr = 1;
4525 else
4526 {
4527 unsigned int i;
4528
4529 nr = hard_regno_nregs[regno][GET_MODE (x)];
4530 /* Storing into a spilled-reg invalidates its contents.
4531 This can happen if a block-local pseudo is allocated to that reg
4532 and it wasn't spilled because this block's total need is 0.
4533 Then some insn might have an optional reload and use this reg. */
4534 if (!regs)
4535 for (i = 0; i < nr; i++)
4536 /* But don't do this if the reg actually serves as an output
4537 reload reg in the current instruction. */
4538 if (n_reloads == 0
4539 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4540 {
4541 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4542 spill_reg_store[regno + i] = 0;
4543 }
4544 }
4545
4546 if (regs)
4547 while (nr-- > 0)
4548 SET_REGNO_REG_SET (regs, regno + nr);
4549 else
4550 {
4551 /* Since value of X has changed,
4552 forget any value previously copied from it. */
4553
4554 while (nr-- > 0)
4555 /* But don't forget a copy if this is the output reload
4556 that establishes the copy's validity. */
4557 if (n_reloads == 0
4558 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4559 reg_last_reload_reg[regno + nr] = 0;
4560 }
4561 }
4562
4563 /* Forget the reloads marked in regset by previous function. */
4564 static void
4565 forget_marked_reloads (regset regs)
4566 {
4567 unsigned int reg;
4568 reg_set_iterator rsi;
4569 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4570 {
4571 if (reg < FIRST_PSEUDO_REGISTER
4572 /* But don't do this if the reg actually serves as an output
4573 reload reg in the current instruction. */
4574 && (n_reloads == 0
4575 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4576 {
4577 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4578 spill_reg_store[reg] = 0;
4579 }
4580 if (n_reloads == 0
4581 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4582 reg_last_reload_reg[reg] = 0;
4583 }
4584 }
4585 \f
4586 /* The following HARD_REG_SETs indicate when each hard register is
4587 used for a reload of various parts of the current insn. */
4588
4589 /* If reg is unavailable for all reloads. */
4590 static HARD_REG_SET reload_reg_unavailable;
4591 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4592 static HARD_REG_SET reload_reg_used;
4593 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4594 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4595 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4596 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4597 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4598 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4599 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4600 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4601 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4602 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4603 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4604 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4605 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4606 static HARD_REG_SET reload_reg_used_in_op_addr;
4607 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4608 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4609 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4610 static HARD_REG_SET reload_reg_used_in_insn;
4611 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4612 static HARD_REG_SET reload_reg_used_in_other_addr;
4613
4614 /* If reg is in use as a reload reg for any sort of reload. */
4615 static HARD_REG_SET reload_reg_used_at_all;
4616
4617 /* If reg is use as an inherited reload. We just mark the first register
4618 in the group. */
4619 static HARD_REG_SET reload_reg_used_for_inherit;
4620
4621 /* Records which hard regs are used in any way, either as explicit use or
4622 by being allocated to a pseudo during any point of the current insn. */
4623 static HARD_REG_SET reg_used_in_insn;
4624
4625 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4626 TYPE. MODE is used to indicate how many consecutive regs are
4627 actually used. */
4628
4629 static void
4630 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4631 enum machine_mode mode)
4632 {
4633 unsigned int nregs = hard_regno_nregs[regno][mode];
4634 unsigned int i;
4635
4636 for (i = regno; i < nregs + regno; i++)
4637 {
4638 switch (type)
4639 {
4640 case RELOAD_OTHER:
4641 SET_HARD_REG_BIT (reload_reg_used, i);
4642 break;
4643
4644 case RELOAD_FOR_INPUT_ADDRESS:
4645 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4646 break;
4647
4648 case RELOAD_FOR_INPADDR_ADDRESS:
4649 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4650 break;
4651
4652 case RELOAD_FOR_OUTPUT_ADDRESS:
4653 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4654 break;
4655
4656 case RELOAD_FOR_OUTADDR_ADDRESS:
4657 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4658 break;
4659
4660 case RELOAD_FOR_OPERAND_ADDRESS:
4661 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4662 break;
4663
4664 case RELOAD_FOR_OPADDR_ADDR:
4665 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4666 break;
4667
4668 case RELOAD_FOR_OTHER_ADDRESS:
4669 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4670 break;
4671
4672 case RELOAD_FOR_INPUT:
4673 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4674 break;
4675
4676 case RELOAD_FOR_OUTPUT:
4677 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4678 break;
4679
4680 case RELOAD_FOR_INSN:
4681 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4682 break;
4683 }
4684
4685 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4686 }
4687 }
4688
4689 /* Similarly, but show REGNO is no longer in use for a reload. */
4690
4691 static void
4692 clear_reload_reg_in_use (unsigned int regno, int opnum,
4693 enum reload_type type, enum machine_mode mode)
4694 {
4695 unsigned int nregs = hard_regno_nregs[regno][mode];
4696 unsigned int start_regno, end_regno, r;
4697 int i;
4698 /* A complication is that for some reload types, inheritance might
4699 allow multiple reloads of the same types to share a reload register.
4700 We set check_opnum if we have to check only reloads with the same
4701 operand number, and check_any if we have to check all reloads. */
4702 int check_opnum = 0;
4703 int check_any = 0;
4704 HARD_REG_SET *used_in_set;
4705
4706 switch (type)
4707 {
4708 case RELOAD_OTHER:
4709 used_in_set = &reload_reg_used;
4710 break;
4711
4712 case RELOAD_FOR_INPUT_ADDRESS:
4713 used_in_set = &reload_reg_used_in_input_addr[opnum];
4714 break;
4715
4716 case RELOAD_FOR_INPADDR_ADDRESS:
4717 check_opnum = 1;
4718 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4719 break;
4720
4721 case RELOAD_FOR_OUTPUT_ADDRESS:
4722 used_in_set = &reload_reg_used_in_output_addr[opnum];
4723 break;
4724
4725 case RELOAD_FOR_OUTADDR_ADDRESS:
4726 check_opnum = 1;
4727 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4728 break;
4729
4730 case RELOAD_FOR_OPERAND_ADDRESS:
4731 used_in_set = &reload_reg_used_in_op_addr;
4732 break;
4733
4734 case RELOAD_FOR_OPADDR_ADDR:
4735 check_any = 1;
4736 used_in_set = &reload_reg_used_in_op_addr_reload;
4737 break;
4738
4739 case RELOAD_FOR_OTHER_ADDRESS:
4740 used_in_set = &reload_reg_used_in_other_addr;
4741 check_any = 1;
4742 break;
4743
4744 case RELOAD_FOR_INPUT:
4745 used_in_set = &reload_reg_used_in_input[opnum];
4746 break;
4747
4748 case RELOAD_FOR_OUTPUT:
4749 used_in_set = &reload_reg_used_in_output[opnum];
4750 break;
4751
4752 case RELOAD_FOR_INSN:
4753 used_in_set = &reload_reg_used_in_insn;
4754 break;
4755 default:
4756 gcc_unreachable ();
4757 }
4758 /* We resolve conflicts with remaining reloads of the same type by
4759 excluding the intervals of reload registers by them from the
4760 interval of freed reload registers. Since we only keep track of
4761 one set of interval bounds, we might have to exclude somewhat
4762 more than what would be necessary if we used a HARD_REG_SET here.
4763 But this should only happen very infrequently, so there should
4764 be no reason to worry about it. */
4765
4766 start_regno = regno;
4767 end_regno = regno + nregs;
4768 if (check_opnum || check_any)
4769 {
4770 for (i = n_reloads - 1; i >= 0; i--)
4771 {
4772 if (rld[i].when_needed == type
4773 && (check_any || rld[i].opnum == opnum)
4774 && rld[i].reg_rtx)
4775 {
4776 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4777 unsigned int conflict_end
4778 = end_hard_regno (rld[i].mode, conflict_start);
4779
4780 /* If there is an overlap with the first to-be-freed register,
4781 adjust the interval start. */
4782 if (conflict_start <= start_regno && conflict_end > start_regno)
4783 start_regno = conflict_end;
4784 /* Otherwise, if there is a conflict with one of the other
4785 to-be-freed registers, adjust the interval end. */
4786 if (conflict_start > start_regno && conflict_start < end_regno)
4787 end_regno = conflict_start;
4788 }
4789 }
4790 }
4791
4792 for (r = start_regno; r < end_regno; r++)
4793 CLEAR_HARD_REG_BIT (*used_in_set, r);
4794 }
4795
4796 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4797 specified by OPNUM and TYPE. */
4798
4799 static int
4800 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4801 {
4802 int i;
4803
4804 /* In use for a RELOAD_OTHER means it's not available for anything. */
4805 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4806 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4807 return 0;
4808
4809 switch (type)
4810 {
4811 case RELOAD_OTHER:
4812 /* In use for anything means we can't use it for RELOAD_OTHER. */
4813 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4814 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4815 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4816 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4817 return 0;
4818
4819 for (i = 0; i < reload_n_operands; i++)
4820 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4821 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4822 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4823 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4824 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4825 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4826 return 0;
4827
4828 return 1;
4829
4830 case RELOAD_FOR_INPUT:
4831 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4832 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4833 return 0;
4834
4835 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4836 return 0;
4837
4838 /* If it is used for some other input, can't use it. */
4839 for (i = 0; i < reload_n_operands; i++)
4840 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4841 return 0;
4842
4843 /* If it is used in a later operand's address, can't use it. */
4844 for (i = opnum + 1; i < reload_n_operands; i++)
4845 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4846 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4847 return 0;
4848
4849 return 1;
4850
4851 case RELOAD_FOR_INPUT_ADDRESS:
4852 /* Can't use a register if it is used for an input address for this
4853 operand or used as an input in an earlier one. */
4854 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4855 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4856 return 0;
4857
4858 for (i = 0; i < opnum; i++)
4859 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4860 return 0;
4861
4862 return 1;
4863
4864 case RELOAD_FOR_INPADDR_ADDRESS:
4865 /* Can't use a register if it is used for an input address
4866 for this operand or used as an input in an earlier
4867 one. */
4868 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4869 return 0;
4870
4871 for (i = 0; i < opnum; i++)
4872 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4873 return 0;
4874
4875 return 1;
4876
4877 case RELOAD_FOR_OUTPUT_ADDRESS:
4878 /* Can't use a register if it is used for an output address for this
4879 operand or used as an output in this or a later operand. Note
4880 that multiple output operands are emitted in reverse order, so
4881 the conflicting ones are those with lower indices. */
4882 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4883 return 0;
4884
4885 for (i = 0; i <= opnum; i++)
4886 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4887 return 0;
4888
4889 return 1;
4890
4891 case RELOAD_FOR_OUTADDR_ADDRESS:
4892 /* Can't use a register if it is used for an output address
4893 for this operand or used as an output in this or a
4894 later operand. Note that multiple output operands are
4895 emitted in reverse order, so the conflicting ones are
4896 those with lower indices. */
4897 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4898 return 0;
4899
4900 for (i = 0; i <= opnum; i++)
4901 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4902 return 0;
4903
4904 return 1;
4905
4906 case RELOAD_FOR_OPERAND_ADDRESS:
4907 for (i = 0; i < reload_n_operands; i++)
4908 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4909 return 0;
4910
4911 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4912 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4913
4914 case RELOAD_FOR_OPADDR_ADDR:
4915 for (i = 0; i < reload_n_operands; i++)
4916 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4917 return 0;
4918
4919 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4920
4921 case RELOAD_FOR_OUTPUT:
4922 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4923 outputs, or an operand address for this or an earlier output.
4924 Note that multiple output operands are emitted in reverse order,
4925 so the conflicting ones are those with higher indices. */
4926 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4927 return 0;
4928
4929 for (i = 0; i < reload_n_operands; i++)
4930 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4931 return 0;
4932
4933 for (i = opnum; i < reload_n_operands; i++)
4934 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4935 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4936 return 0;
4937
4938 return 1;
4939
4940 case RELOAD_FOR_INSN:
4941 for (i = 0; i < reload_n_operands; i++)
4942 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4943 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4944 return 0;
4945
4946 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4947 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4948
4949 case RELOAD_FOR_OTHER_ADDRESS:
4950 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4951
4952 default:
4953 gcc_unreachable ();
4954 }
4955 }
4956
4957 /* Return 1 if the value in reload reg REGNO, as used by a reload
4958 needed for the part of the insn specified by OPNUM and TYPE,
4959 is still available in REGNO at the end of the insn.
4960
4961 We can assume that the reload reg was already tested for availability
4962 at the time it is needed, and we should not check this again,
4963 in case the reg has already been marked in use. */
4964
4965 static int
4966 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4967 {
4968 int i;
4969
4970 switch (type)
4971 {
4972 case RELOAD_OTHER:
4973 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4974 its value must reach the end. */
4975 return 1;
4976
4977 /* If this use is for part of the insn,
4978 its value reaches if no subsequent part uses the same register.
4979 Just like the above function, don't try to do this with lots
4980 of fallthroughs. */
4981
4982 case RELOAD_FOR_OTHER_ADDRESS:
4983 /* Here we check for everything else, since these don't conflict
4984 with anything else and everything comes later. */
4985
4986 for (i = 0; i < reload_n_operands; i++)
4987 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4988 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4989 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4990 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4991 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4992 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4993 return 0;
4994
4995 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4996 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4997 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4998 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4999
5000 case RELOAD_FOR_INPUT_ADDRESS:
5001 case RELOAD_FOR_INPADDR_ADDRESS:
5002 /* Similar, except that we check only for this and subsequent inputs
5003 and the address of only subsequent inputs and we do not need
5004 to check for RELOAD_OTHER objects since they are known not to
5005 conflict. */
5006
5007 for (i = opnum; i < reload_n_operands; i++)
5008 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5009 return 0;
5010
5011 for (i = opnum + 1; i < reload_n_operands; i++)
5012 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5013 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5014 return 0;
5015
5016 for (i = 0; i < reload_n_operands; i++)
5017 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5018 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5019 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5020 return 0;
5021
5022 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5023 return 0;
5024
5025 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5026 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5027 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5028
5029 case RELOAD_FOR_INPUT:
5030 /* Similar to input address, except we start at the next operand for
5031 both input and input address and we do not check for
5032 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5033 would conflict. */
5034
5035 for (i = opnum + 1; i < reload_n_operands; i++)
5036 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5037 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5038 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5039 return 0;
5040
5041 /* ... fall through ... */
5042
5043 case RELOAD_FOR_OPERAND_ADDRESS:
5044 /* Check outputs and their addresses. */
5045
5046 for (i = 0; i < reload_n_operands; i++)
5047 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5048 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5049 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5050 return 0;
5051
5052 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5053
5054 case RELOAD_FOR_OPADDR_ADDR:
5055 for (i = 0; i < reload_n_operands; i++)
5056 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5057 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5058 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5059 return 0;
5060
5061 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5062 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5063 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5064
5065 case RELOAD_FOR_INSN:
5066 /* These conflict with other outputs with RELOAD_OTHER. So
5067 we need only check for output addresses. */
5068
5069 opnum = reload_n_operands;
5070
5071 /* ... fall through ... */
5072
5073 case RELOAD_FOR_OUTPUT:
5074 case RELOAD_FOR_OUTPUT_ADDRESS:
5075 case RELOAD_FOR_OUTADDR_ADDRESS:
5076 /* We already know these can't conflict with a later output. So the
5077 only thing to check are later output addresses.
5078 Note that multiple output operands are emitted in reverse order,
5079 so the conflicting ones are those with lower indices. */
5080 for (i = 0; i < opnum; i++)
5081 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5082 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5083 return 0;
5084
5085 return 1;
5086
5087 default:
5088 gcc_unreachable ();
5089 }
5090 }
5091
5092 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5093 every register in the range [REGNO, REGNO + NREGS). */
5094
5095 static bool
5096 reload_regs_reach_end_p (unsigned int regno, int nregs,
5097 int opnum, enum reload_type type)
5098 {
5099 int i;
5100
5101 for (i = 0; i < nregs; i++)
5102 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5103 return false;
5104 return true;
5105 }
5106 \f
5107
5108 /* Returns whether R1 and R2 are uniquely chained: the value of one
5109 is used by the other, and that value is not used by any other
5110 reload for this insn. This is used to partially undo the decision
5111 made in find_reloads when in the case of multiple
5112 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5113 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5114 reloads. This code tries to avoid the conflict created by that
5115 change. It might be cleaner to explicitly keep track of which
5116 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5117 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5118 this after the fact. */
5119 static bool
5120 reloads_unique_chain_p (int r1, int r2)
5121 {
5122 int i;
5123
5124 /* We only check input reloads. */
5125 if (! rld[r1].in || ! rld[r2].in)
5126 return false;
5127
5128 /* Avoid anything with output reloads. */
5129 if (rld[r1].out || rld[r2].out)
5130 return false;
5131
5132 /* "chained" means one reload is a component of the other reload,
5133 not the same as the other reload. */
5134 if (rld[r1].opnum != rld[r2].opnum
5135 || rtx_equal_p (rld[r1].in, rld[r2].in)
5136 || rld[r1].optional || rld[r2].optional
5137 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5138 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5139 return false;
5140
5141 for (i = 0; i < n_reloads; i ++)
5142 /* Look for input reloads that aren't our two */
5143 if (i != r1 && i != r2 && rld[i].in)
5144 {
5145 /* If our reload is mentioned at all, it isn't a simple chain. */
5146 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5147 return false;
5148 }
5149 return true;
5150 }
5151
5152
5153 /* The recursive function change all occurrences of WHAT in *WHERE
5154 onto REPL. */
5155 static void
5156 substitute (rtx *where, const_rtx what, rtx repl)
5157 {
5158 const char *fmt;
5159 int i;
5160 enum rtx_code code;
5161
5162 if (*where == 0)
5163 return;
5164
5165 if (*where == what || rtx_equal_p (*where, what))
5166 {
5167 *where = repl;
5168 return;
5169 }
5170
5171 code = GET_CODE (*where);
5172 fmt = GET_RTX_FORMAT (code);
5173 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5174 {
5175 if (fmt[i] == 'E')
5176 {
5177 int j;
5178
5179 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5180 substitute (&XVECEXP (*where, i, j), what, repl);
5181 }
5182 else if (fmt[i] == 'e')
5183 substitute (&XEXP (*where, i), what, repl);
5184 }
5185 }
5186
5187 /* The function returns TRUE if chain of reload R1 and R2 (in any
5188 order) can be evaluated without usage of intermediate register for
5189 the reload containing another reload. It is important to see
5190 gen_reload to understand what the function is trying to do. As an
5191 example, let us have reload chain
5192
5193 r2: const
5194 r1: <something> + const
5195
5196 and reload R2 got reload reg HR. The function returns true if
5197 there is a correct insn HR = HR + <something>. Otherwise,
5198 gen_reload will use intermediate register (and this is the reload
5199 reg for R1) to reload <something>.
5200
5201 We need this function to find a conflict for chain reloads. In our
5202 example, if HR = HR + <something> is incorrect insn, then we cannot
5203 use HR as a reload register for R2. If we do use it then we get a
5204 wrong code:
5205
5206 HR = const
5207 HR = <something>
5208 HR = HR + HR
5209
5210 */
5211 static bool
5212 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5213 {
5214 bool result;
5215 int regno, n, code;
5216 rtx out, in, tem, insn;
5217 rtx last = get_last_insn ();
5218
5219 /* Make r2 a component of r1. */
5220 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5221 {
5222 n = r1;
5223 r1 = r2;
5224 r2 = n;
5225 }
5226 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5227 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5228 gcc_assert (regno >= 0);
5229 out = gen_rtx_REG (rld[r1].mode, regno);
5230 in = copy_rtx (rld[r1].in);
5231 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5232
5233 /* If IN is a paradoxical SUBREG, remove it and try to put the
5234 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5235 if (GET_CODE (in) == SUBREG
5236 && (GET_MODE_SIZE (GET_MODE (in))
5237 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
5238 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
5239 in = SUBREG_REG (in), out = tem;
5240
5241 if (GET_CODE (in) == PLUS
5242 && (REG_P (XEXP (in, 0))
5243 || GET_CODE (XEXP (in, 0)) == SUBREG
5244 || MEM_P (XEXP (in, 0)))
5245 && (REG_P (XEXP (in, 1))
5246 || GET_CODE (XEXP (in, 1)) == SUBREG
5247 || CONSTANT_P (XEXP (in, 1))
5248 || MEM_P (XEXP (in, 1))))
5249 {
5250 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5251 code = recog_memoized (insn);
5252 result = false;
5253
5254 if (code >= 0)
5255 {
5256 extract_insn (insn);
5257 /* We want constrain operands to treat this insn strictly in
5258 its validity determination, i.e., the way it would after
5259 reload has completed. */
5260 result = constrain_operands (1);
5261 }
5262
5263 delete_insns_since (last);
5264 return result;
5265 }
5266
5267 /* It looks like other cases in gen_reload are not possible for
5268 chain reloads or do need an intermediate hard registers. */
5269 return true;
5270 }
5271
5272 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5273 Return 0 otherwise.
5274
5275 This function uses the same algorithm as reload_reg_free_p above. */
5276
5277 static int
5278 reloads_conflict (int r1, int r2)
5279 {
5280 enum reload_type r1_type = rld[r1].when_needed;
5281 enum reload_type r2_type = rld[r2].when_needed;
5282 int r1_opnum = rld[r1].opnum;
5283 int r2_opnum = rld[r2].opnum;
5284
5285 /* RELOAD_OTHER conflicts with everything. */
5286 if (r2_type == RELOAD_OTHER)
5287 return 1;
5288
5289 /* Otherwise, check conflicts differently for each type. */
5290
5291 switch (r1_type)
5292 {
5293 case RELOAD_FOR_INPUT:
5294 return (r2_type == RELOAD_FOR_INSN
5295 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5296 || r2_type == RELOAD_FOR_OPADDR_ADDR
5297 || r2_type == RELOAD_FOR_INPUT
5298 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5299 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5300 && r2_opnum > r1_opnum));
5301
5302 case RELOAD_FOR_INPUT_ADDRESS:
5303 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5304 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5305
5306 case RELOAD_FOR_INPADDR_ADDRESS:
5307 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5308 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5309
5310 case RELOAD_FOR_OUTPUT_ADDRESS:
5311 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5312 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5313
5314 case RELOAD_FOR_OUTADDR_ADDRESS:
5315 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5316 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5317
5318 case RELOAD_FOR_OPERAND_ADDRESS:
5319 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5320 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5321 && (!reloads_unique_chain_p (r1, r2)
5322 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5323
5324 case RELOAD_FOR_OPADDR_ADDR:
5325 return (r2_type == RELOAD_FOR_INPUT
5326 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5327
5328 case RELOAD_FOR_OUTPUT:
5329 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5330 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5331 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5332 && r2_opnum >= r1_opnum));
5333
5334 case RELOAD_FOR_INSN:
5335 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5336 || r2_type == RELOAD_FOR_INSN
5337 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5338
5339 case RELOAD_FOR_OTHER_ADDRESS:
5340 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5341
5342 case RELOAD_OTHER:
5343 return 1;
5344
5345 default:
5346 gcc_unreachable ();
5347 }
5348 }
5349 \f
5350 /* Indexed by reload number, 1 if incoming value
5351 inherited from previous insns. */
5352 static char reload_inherited[MAX_RELOADS];
5353
5354 /* For an inherited reload, this is the insn the reload was inherited from,
5355 if we know it. Otherwise, this is 0. */
5356 static rtx reload_inheritance_insn[MAX_RELOADS];
5357
5358 /* If nonzero, this is a place to get the value of the reload,
5359 rather than using reload_in. */
5360 static rtx reload_override_in[MAX_RELOADS];
5361
5362 /* For each reload, the hard register number of the register used,
5363 or -1 if we did not need a register for this reload. */
5364 static int reload_spill_index[MAX_RELOADS];
5365
5366 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5367 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5368
5369 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5370 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5371
5372 /* Subroutine of free_for_value_p, used to check a single register.
5373 START_REGNO is the starting regno of the full reload register
5374 (possibly comprising multiple hard registers) that we are considering. */
5375
5376 static int
5377 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5378 enum reload_type type, rtx value, rtx out,
5379 int reloadnum, int ignore_address_reloads)
5380 {
5381 int time1;
5382 /* Set if we see an input reload that must not share its reload register
5383 with any new earlyclobber, but might otherwise share the reload
5384 register with an output or input-output reload. */
5385 int check_earlyclobber = 0;
5386 int i;
5387 int copy = 0;
5388
5389 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5390 return 0;
5391
5392 if (out == const0_rtx)
5393 {
5394 copy = 1;
5395 out = NULL_RTX;
5396 }
5397
5398 /* We use some pseudo 'time' value to check if the lifetimes of the
5399 new register use would overlap with the one of a previous reload
5400 that is not read-only or uses a different value.
5401 The 'time' used doesn't have to be linear in any shape or form, just
5402 monotonic.
5403 Some reload types use different 'buckets' for each operand.
5404 So there are MAX_RECOG_OPERANDS different time values for each
5405 such reload type.
5406 We compute TIME1 as the time when the register for the prospective
5407 new reload ceases to be live, and TIME2 for each existing
5408 reload as the time when that the reload register of that reload
5409 becomes live.
5410 Where there is little to be gained by exact lifetime calculations,
5411 we just make conservative assumptions, i.e. a longer lifetime;
5412 this is done in the 'default:' cases. */
5413 switch (type)
5414 {
5415 case RELOAD_FOR_OTHER_ADDRESS:
5416 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5417 time1 = copy ? 0 : 1;
5418 break;
5419 case RELOAD_OTHER:
5420 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5421 break;
5422 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5423 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5424 respectively, to the time values for these, we get distinct time
5425 values. To get distinct time values for each operand, we have to
5426 multiply opnum by at least three. We round that up to four because
5427 multiply by four is often cheaper. */
5428 case RELOAD_FOR_INPADDR_ADDRESS:
5429 time1 = opnum * 4 + 2;
5430 break;
5431 case RELOAD_FOR_INPUT_ADDRESS:
5432 time1 = opnum * 4 + 3;
5433 break;
5434 case RELOAD_FOR_INPUT:
5435 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5436 executes (inclusive). */
5437 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5438 break;
5439 case RELOAD_FOR_OPADDR_ADDR:
5440 /* opnum * 4 + 4
5441 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5442 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5443 break;
5444 case RELOAD_FOR_OPERAND_ADDRESS:
5445 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5446 is executed. */
5447 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5448 break;
5449 case RELOAD_FOR_OUTADDR_ADDRESS:
5450 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5451 break;
5452 case RELOAD_FOR_OUTPUT_ADDRESS:
5453 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5454 break;
5455 default:
5456 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5457 }
5458
5459 for (i = 0; i < n_reloads; i++)
5460 {
5461 rtx reg = rld[i].reg_rtx;
5462 if (reg && REG_P (reg)
5463 && ((unsigned) regno - true_regnum (reg)
5464 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5465 && i != reloadnum)
5466 {
5467 rtx other_input = rld[i].in;
5468
5469 /* If the other reload loads the same input value, that
5470 will not cause a conflict only if it's loading it into
5471 the same register. */
5472 if (true_regnum (reg) != start_regno)
5473 other_input = NULL_RTX;
5474 if (! other_input || ! rtx_equal_p (other_input, value)
5475 || rld[i].out || out)
5476 {
5477 int time2;
5478 switch (rld[i].when_needed)
5479 {
5480 case RELOAD_FOR_OTHER_ADDRESS:
5481 time2 = 0;
5482 break;
5483 case RELOAD_FOR_INPADDR_ADDRESS:
5484 /* find_reloads makes sure that a
5485 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5486 by at most one - the first -
5487 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5488 address reload is inherited, the address address reload
5489 goes away, so we can ignore this conflict. */
5490 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5491 && ignore_address_reloads
5492 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5493 Then the address address is still needed to store
5494 back the new address. */
5495 && ! rld[reloadnum].out)
5496 continue;
5497 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5498 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5499 reloads go away. */
5500 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5501 && ignore_address_reloads
5502 /* Unless we are reloading an auto_inc expression. */
5503 && ! rld[reloadnum].out)
5504 continue;
5505 time2 = rld[i].opnum * 4 + 2;
5506 break;
5507 case RELOAD_FOR_INPUT_ADDRESS:
5508 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5509 && ignore_address_reloads
5510 && ! rld[reloadnum].out)
5511 continue;
5512 time2 = rld[i].opnum * 4 + 3;
5513 break;
5514 case RELOAD_FOR_INPUT:
5515 time2 = rld[i].opnum * 4 + 4;
5516 check_earlyclobber = 1;
5517 break;
5518 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5519 == MAX_RECOG_OPERAND * 4 */
5520 case RELOAD_FOR_OPADDR_ADDR:
5521 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5522 && ignore_address_reloads
5523 && ! rld[reloadnum].out)
5524 continue;
5525 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5526 break;
5527 case RELOAD_FOR_OPERAND_ADDRESS:
5528 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5529 check_earlyclobber = 1;
5530 break;
5531 case RELOAD_FOR_INSN:
5532 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5533 break;
5534 case RELOAD_FOR_OUTPUT:
5535 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5536 instruction is executed. */
5537 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5538 break;
5539 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5540 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5541 value. */
5542 case RELOAD_FOR_OUTADDR_ADDRESS:
5543 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5544 && ignore_address_reloads
5545 && ! rld[reloadnum].out)
5546 continue;
5547 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5548 break;
5549 case RELOAD_FOR_OUTPUT_ADDRESS:
5550 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5551 break;
5552 case RELOAD_OTHER:
5553 /* If there is no conflict in the input part, handle this
5554 like an output reload. */
5555 if (! rld[i].in || rtx_equal_p (other_input, value))
5556 {
5557 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5558 /* Earlyclobbered outputs must conflict with inputs. */
5559 if (earlyclobber_operand_p (rld[i].out))
5560 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5561
5562 break;
5563 }
5564 time2 = 1;
5565 /* RELOAD_OTHER might be live beyond instruction execution,
5566 but this is not obvious when we set time2 = 1. So check
5567 here if there might be a problem with the new reload
5568 clobbering the register used by the RELOAD_OTHER. */
5569 if (out)
5570 return 0;
5571 break;
5572 default:
5573 return 0;
5574 }
5575 if ((time1 >= time2
5576 && (! rld[i].in || rld[i].out
5577 || ! rtx_equal_p (other_input, value)))
5578 || (out && rld[reloadnum].out_reg
5579 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5580 return 0;
5581 }
5582 }
5583 }
5584
5585 /* Earlyclobbered outputs must conflict with inputs. */
5586 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5587 return 0;
5588
5589 return 1;
5590 }
5591
5592 /* Return 1 if the value in reload reg REGNO, as used by a reload
5593 needed for the part of the insn specified by OPNUM and TYPE,
5594 may be used to load VALUE into it.
5595
5596 MODE is the mode in which the register is used, this is needed to
5597 determine how many hard regs to test.
5598
5599 Other read-only reloads with the same value do not conflict
5600 unless OUT is nonzero and these other reloads have to live while
5601 output reloads live.
5602 If OUT is CONST0_RTX, this is a special case: it means that the
5603 test should not be for using register REGNO as reload register, but
5604 for copying from register REGNO into the reload register.
5605
5606 RELOADNUM is the number of the reload we want to load this value for;
5607 a reload does not conflict with itself.
5608
5609 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5610 reloads that load an address for the very reload we are considering.
5611
5612 The caller has to make sure that there is no conflict with the return
5613 register. */
5614
5615 static int
5616 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5617 enum reload_type type, rtx value, rtx out, int reloadnum,
5618 int ignore_address_reloads)
5619 {
5620 int nregs = hard_regno_nregs[regno][mode];
5621 while (nregs-- > 0)
5622 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5623 value, out, reloadnum,
5624 ignore_address_reloads))
5625 return 0;
5626 return 1;
5627 }
5628
5629 /* Return nonzero if the rtx X is invariant over the current function. */
5630 /* ??? Actually, the places where we use this expect exactly what is
5631 tested here, and not everything that is function invariant. In
5632 particular, the frame pointer and arg pointer are special cased;
5633 pic_offset_table_rtx is not, and we must not spill these things to
5634 memory. */
5635
5636 int
5637 function_invariant_p (const_rtx x)
5638 {
5639 if (CONSTANT_P (x))
5640 return 1;
5641 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5642 return 1;
5643 if (GET_CODE (x) == PLUS
5644 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5645 && CONSTANT_P (XEXP (x, 1)))
5646 return 1;
5647 return 0;
5648 }
5649
5650 /* Determine whether the reload reg X overlaps any rtx'es used for
5651 overriding inheritance. Return nonzero if so. */
5652
5653 static int
5654 conflicts_with_override (rtx x)
5655 {
5656 int i;
5657 for (i = 0; i < n_reloads; i++)
5658 if (reload_override_in[i]
5659 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5660 return 1;
5661 return 0;
5662 }
5663 \f
5664 /* Give an error message saying we failed to find a reload for INSN,
5665 and clear out reload R. */
5666 static void
5667 failed_reload (rtx insn, int r)
5668 {
5669 if (asm_noperands (PATTERN (insn)) < 0)
5670 /* It's the compiler's fault. */
5671 fatal_insn ("could not find a spill register", insn);
5672
5673 /* It's the user's fault; the operand's mode and constraint
5674 don't match. Disable this reload so we don't crash in final. */
5675 error_for_asm (insn,
5676 "%<asm%> operand constraint incompatible with operand size");
5677 rld[r].in = 0;
5678 rld[r].out = 0;
5679 rld[r].reg_rtx = 0;
5680 rld[r].optional = 1;
5681 rld[r].secondary_p = 1;
5682 }
5683
5684 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5685 for reload R. If it's valid, get an rtx for it. Return nonzero if
5686 successful. */
5687 static int
5688 set_reload_reg (int i, int r)
5689 {
5690 int regno;
5691 rtx reg = spill_reg_rtx[i];
5692
5693 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5694 spill_reg_rtx[i] = reg
5695 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5696
5697 regno = true_regnum (reg);
5698
5699 /* Detect when the reload reg can't hold the reload mode.
5700 This used to be one `if', but Sequent compiler can't handle that. */
5701 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5702 {
5703 enum machine_mode test_mode = VOIDmode;
5704 if (rld[r].in)
5705 test_mode = GET_MODE (rld[r].in);
5706 /* If rld[r].in has VOIDmode, it means we will load it
5707 in whatever mode the reload reg has: to wit, rld[r].mode.
5708 We have already tested that for validity. */
5709 /* Aside from that, we need to test that the expressions
5710 to reload from or into have modes which are valid for this
5711 reload register. Otherwise the reload insns would be invalid. */
5712 if (! (rld[r].in != 0 && test_mode != VOIDmode
5713 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5714 if (! (rld[r].out != 0
5715 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5716 {
5717 /* The reg is OK. */
5718 last_spill_reg = i;
5719
5720 /* Mark as in use for this insn the reload regs we use
5721 for this. */
5722 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5723 rld[r].when_needed, rld[r].mode);
5724
5725 rld[r].reg_rtx = reg;
5726 reload_spill_index[r] = spill_regs[i];
5727 return 1;
5728 }
5729 }
5730 return 0;
5731 }
5732
5733 /* Find a spill register to use as a reload register for reload R.
5734 LAST_RELOAD is nonzero if this is the last reload for the insn being
5735 processed.
5736
5737 Set rld[R].reg_rtx to the register allocated.
5738
5739 We return 1 if successful, or 0 if we couldn't find a spill reg and
5740 we didn't change anything. */
5741
5742 static int
5743 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5744 int last_reload)
5745 {
5746 int i, pass, count;
5747
5748 /* If we put this reload ahead, thinking it is a group,
5749 then insist on finding a group. Otherwise we can grab a
5750 reg that some other reload needs.
5751 (That can happen when we have a 68000 DATA_OR_FP_REG
5752 which is a group of data regs or one fp reg.)
5753 We need not be so restrictive if there are no more reloads
5754 for this insn.
5755
5756 ??? Really it would be nicer to have smarter handling
5757 for that kind of reg class, where a problem like this is normal.
5758 Perhaps those classes should be avoided for reloading
5759 by use of more alternatives. */
5760
5761 int force_group = rld[r].nregs > 1 && ! last_reload;
5762
5763 /* If we want a single register and haven't yet found one,
5764 take any reg in the right class and not in use.
5765 If we want a consecutive group, here is where we look for it.
5766
5767 We use two passes so we can first look for reload regs to
5768 reuse, which are already in use for other reloads in this insn,
5769 and only then use additional registers.
5770 I think that maximizing reuse is needed to make sure we don't
5771 run out of reload regs. Suppose we have three reloads, and
5772 reloads A and B can share regs. These need two regs.
5773 Suppose A and B are given different regs.
5774 That leaves none for C. */
5775 for (pass = 0; pass < 2; pass++)
5776 {
5777 /* I is the index in spill_regs.
5778 We advance it round-robin between insns to use all spill regs
5779 equally, so that inherited reloads have a chance
5780 of leapfrogging each other. */
5781
5782 i = last_spill_reg;
5783
5784 for (count = 0; count < n_spills; count++)
5785 {
5786 int rclass = (int) rld[r].rclass;
5787 int regnum;
5788
5789 i++;
5790 if (i >= n_spills)
5791 i -= n_spills;
5792 regnum = spill_regs[i];
5793
5794 if ((reload_reg_free_p (regnum, rld[r].opnum,
5795 rld[r].when_needed)
5796 || (rld[r].in
5797 /* We check reload_reg_used to make sure we
5798 don't clobber the return register. */
5799 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5800 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5801 rld[r].when_needed, rld[r].in,
5802 rld[r].out, r, 1)))
5803 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
5804 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5805 /* Look first for regs to share, then for unshared. But
5806 don't share regs used for inherited reloads; they are
5807 the ones we want to preserve. */
5808 && (pass
5809 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5810 regnum)
5811 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5812 regnum))))
5813 {
5814 int nr = hard_regno_nregs[regnum][rld[r].mode];
5815 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5816 (on 68000) got us two FP regs. If NR is 1,
5817 we would reject both of them. */
5818 if (force_group)
5819 nr = rld[r].nregs;
5820 /* If we need only one reg, we have already won. */
5821 if (nr == 1)
5822 {
5823 /* But reject a single reg if we demand a group. */
5824 if (force_group)
5825 continue;
5826 break;
5827 }
5828 /* Otherwise check that as many consecutive regs as we need
5829 are available here. */
5830 while (nr > 1)
5831 {
5832 int regno = regnum + nr - 1;
5833 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
5834 && spill_reg_order[regno] >= 0
5835 && reload_reg_free_p (regno, rld[r].opnum,
5836 rld[r].when_needed)))
5837 break;
5838 nr--;
5839 }
5840 if (nr == 1)
5841 break;
5842 }
5843 }
5844
5845 /* If we found something on pass 1, omit pass 2. */
5846 if (count < n_spills)
5847 break;
5848 }
5849
5850 /* We should have found a spill register by now. */
5851 if (count >= n_spills)
5852 return 0;
5853
5854 /* I is the index in SPILL_REG_RTX of the reload register we are to
5855 allocate. Get an rtx for it and find its register number. */
5856
5857 return set_reload_reg (i, r);
5858 }
5859 \f
5860 /* Initialize all the tables needed to allocate reload registers.
5861 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5862 is the array we use to restore the reg_rtx field for every reload. */
5863
5864 static void
5865 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5866 {
5867 int i;
5868
5869 for (i = 0; i < n_reloads; i++)
5870 rld[i].reg_rtx = save_reload_reg_rtx[i];
5871
5872 memset (reload_inherited, 0, MAX_RELOADS);
5873 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5874 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5875
5876 CLEAR_HARD_REG_SET (reload_reg_used);
5877 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5878 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5879 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5880 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5881 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5882
5883 CLEAR_HARD_REG_SET (reg_used_in_insn);
5884 {
5885 HARD_REG_SET tmp;
5886 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5887 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5888 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5889 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5890 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5891 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5892 }
5893
5894 for (i = 0; i < reload_n_operands; i++)
5895 {
5896 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5897 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5898 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5899 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5900 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5901 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5902 }
5903
5904 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5905
5906 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5907
5908 for (i = 0; i < n_reloads; i++)
5909 /* If we have already decided to use a certain register,
5910 don't use it in another way. */
5911 if (rld[i].reg_rtx)
5912 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5913 rld[i].when_needed, rld[i].mode);
5914 }
5915
5916 /* Assign hard reg targets for the pseudo-registers we must reload
5917 into hard regs for this insn.
5918 Also output the instructions to copy them in and out of the hard regs.
5919
5920 For machines with register classes, we are responsible for
5921 finding a reload reg in the proper class. */
5922
5923 static void
5924 choose_reload_regs (struct insn_chain *chain)
5925 {
5926 rtx insn = chain->insn;
5927 int i, j;
5928 unsigned int max_group_size = 1;
5929 enum reg_class group_class = NO_REGS;
5930 int pass, win, inheritance;
5931
5932 rtx save_reload_reg_rtx[MAX_RELOADS];
5933
5934 /* In order to be certain of getting the registers we need,
5935 we must sort the reloads into order of increasing register class.
5936 Then our grabbing of reload registers will parallel the process
5937 that provided the reload registers.
5938
5939 Also note whether any of the reloads wants a consecutive group of regs.
5940 If so, record the maximum size of the group desired and what
5941 register class contains all the groups needed by this insn. */
5942
5943 for (j = 0; j < n_reloads; j++)
5944 {
5945 reload_order[j] = j;
5946 if (rld[j].reg_rtx != NULL_RTX)
5947 {
5948 gcc_assert (REG_P (rld[j].reg_rtx)
5949 && HARD_REGISTER_P (rld[j].reg_rtx));
5950 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5951 }
5952 else
5953 reload_spill_index[j] = -1;
5954
5955 if (rld[j].nregs > 1)
5956 {
5957 max_group_size = MAX (rld[j].nregs, max_group_size);
5958 group_class
5959 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
5960 }
5961
5962 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5963 }
5964
5965 if (n_reloads > 1)
5966 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5967
5968 /* If -O, try first with inheritance, then turning it off.
5969 If not -O, don't do inheritance.
5970 Using inheritance when not optimizing leads to paradoxes
5971 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5972 because one side of the comparison might be inherited. */
5973 win = 0;
5974 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5975 {
5976 choose_reload_regs_init (chain, save_reload_reg_rtx);
5977
5978 /* Process the reloads in order of preference just found.
5979 Beyond this point, subregs can be found in reload_reg_rtx.
5980
5981 This used to look for an existing reloaded home for all of the
5982 reloads, and only then perform any new reloads. But that could lose
5983 if the reloads were done out of reg-class order because a later
5984 reload with a looser constraint might have an old home in a register
5985 needed by an earlier reload with a tighter constraint.
5986
5987 To solve this, we make two passes over the reloads, in the order
5988 described above. In the first pass we try to inherit a reload
5989 from a previous insn. If there is a later reload that needs a
5990 class that is a proper subset of the class being processed, we must
5991 also allocate a spill register during the first pass.
5992
5993 Then make a second pass over the reloads to allocate any reloads
5994 that haven't been given registers yet. */
5995
5996 for (j = 0; j < n_reloads; j++)
5997 {
5998 int r = reload_order[j];
5999 rtx search_equiv = NULL_RTX;
6000
6001 /* Ignore reloads that got marked inoperative. */
6002 if (rld[r].out == 0 && rld[r].in == 0
6003 && ! rld[r].secondary_p)
6004 continue;
6005
6006 /* If find_reloads chose to use reload_in or reload_out as a reload
6007 register, we don't need to chose one. Otherwise, try even if it
6008 found one since we might save an insn if we find the value lying
6009 around.
6010 Try also when reload_in is a pseudo without a hard reg. */
6011 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6012 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6013 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6014 && !MEM_P (rld[r].in)
6015 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6016 continue;
6017
6018 #if 0 /* No longer needed for correct operation.
6019 It might give better code, or might not; worth an experiment? */
6020 /* If this is an optional reload, we can't inherit from earlier insns
6021 until we are sure that any non-optional reloads have been allocated.
6022 The following code takes advantage of the fact that optional reloads
6023 are at the end of reload_order. */
6024 if (rld[r].optional != 0)
6025 for (i = 0; i < j; i++)
6026 if ((rld[reload_order[i]].out != 0
6027 || rld[reload_order[i]].in != 0
6028 || rld[reload_order[i]].secondary_p)
6029 && ! rld[reload_order[i]].optional
6030 && rld[reload_order[i]].reg_rtx == 0)
6031 allocate_reload_reg (chain, reload_order[i], 0);
6032 #endif
6033
6034 /* First see if this pseudo is already available as reloaded
6035 for a previous insn. We cannot try to inherit for reloads
6036 that are smaller than the maximum number of registers needed
6037 for groups unless the register we would allocate cannot be used
6038 for the groups.
6039
6040 We could check here to see if this is a secondary reload for
6041 an object that is already in a register of the desired class.
6042 This would avoid the need for the secondary reload register.
6043 But this is complex because we can't easily determine what
6044 objects might want to be loaded via this reload. So let a
6045 register be allocated here. In `emit_reload_insns' we suppress
6046 one of the loads in the case described above. */
6047
6048 if (inheritance)
6049 {
6050 int byte = 0;
6051 int regno = -1;
6052 enum machine_mode mode = VOIDmode;
6053
6054 if (rld[r].in == 0)
6055 ;
6056 else if (REG_P (rld[r].in))
6057 {
6058 regno = REGNO (rld[r].in);
6059 mode = GET_MODE (rld[r].in);
6060 }
6061 else if (REG_P (rld[r].in_reg))
6062 {
6063 regno = REGNO (rld[r].in_reg);
6064 mode = GET_MODE (rld[r].in_reg);
6065 }
6066 else if (GET_CODE (rld[r].in_reg) == SUBREG
6067 && REG_P (SUBREG_REG (rld[r].in_reg)))
6068 {
6069 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6070 if (regno < FIRST_PSEUDO_REGISTER)
6071 regno = subreg_regno (rld[r].in_reg);
6072 else
6073 byte = SUBREG_BYTE (rld[r].in_reg);
6074 mode = GET_MODE (rld[r].in_reg);
6075 }
6076 #ifdef AUTO_INC_DEC
6077 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6078 && REG_P (XEXP (rld[r].in_reg, 0)))
6079 {
6080 regno = REGNO (XEXP (rld[r].in_reg, 0));
6081 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6082 rld[r].out = rld[r].in;
6083 }
6084 #endif
6085 #if 0
6086 /* This won't work, since REGNO can be a pseudo reg number.
6087 Also, it takes much more hair to keep track of all the things
6088 that can invalidate an inherited reload of part of a pseudoreg. */
6089 else if (GET_CODE (rld[r].in) == SUBREG
6090 && REG_P (SUBREG_REG (rld[r].in)))
6091 regno = subreg_regno (rld[r].in);
6092 #endif
6093
6094 if (regno >= 0
6095 && reg_last_reload_reg[regno] != 0
6096 #ifdef CANNOT_CHANGE_MODE_CLASS
6097 /* Verify that the register it's in can be used in
6098 mode MODE. */
6099 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6100 GET_MODE (reg_last_reload_reg[regno]),
6101 mode)
6102 #endif
6103 )
6104 {
6105 enum reg_class rclass = rld[r].rclass, last_class;
6106 rtx last_reg = reg_last_reload_reg[regno];
6107 enum machine_mode need_mode;
6108
6109 i = REGNO (last_reg);
6110 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6111 last_class = REGNO_REG_CLASS (i);
6112
6113 if (byte == 0)
6114 need_mode = mode;
6115 else
6116 need_mode
6117 = smallest_mode_for_size
6118 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6119 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6120 ? MODE_INT : GET_MODE_CLASS (mode));
6121
6122 if ((GET_MODE_SIZE (GET_MODE (last_reg))
6123 >= GET_MODE_SIZE (need_mode))
6124 && reg_reloaded_contents[i] == regno
6125 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6126 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6127 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6128 /* Even if we can't use this register as a reload
6129 register, we might use it for reload_override_in,
6130 if copying it to the desired class is cheap
6131 enough. */
6132 || ((REGISTER_MOVE_COST (mode, last_class, rclass)
6133 < MEMORY_MOVE_COST (mode, rclass, 1))
6134 && (secondary_reload_class (1, rclass, mode,
6135 last_reg)
6136 == NO_REGS)
6137 #ifdef SECONDARY_MEMORY_NEEDED
6138 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6139 mode)
6140 #endif
6141 ))
6142
6143 && (rld[r].nregs == max_group_size
6144 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6145 i))
6146 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6147 rld[r].when_needed, rld[r].in,
6148 const0_rtx, r, 1))
6149 {
6150 /* If a group is needed, verify that all the subsequent
6151 registers still have their values intact. */
6152 int nr = hard_regno_nregs[i][rld[r].mode];
6153 int k;
6154
6155 for (k = 1; k < nr; k++)
6156 if (reg_reloaded_contents[i + k] != regno
6157 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6158 break;
6159
6160 if (k == nr)
6161 {
6162 int i1;
6163 int bad_for_class;
6164
6165 last_reg = (GET_MODE (last_reg) == mode
6166 ? last_reg : gen_rtx_REG (mode, i));
6167
6168 bad_for_class = 0;
6169 for (k = 0; k < nr; k++)
6170 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6171 i+k);
6172
6173 /* We found a register that contains the
6174 value we need. If this register is the
6175 same as an `earlyclobber' operand of the
6176 current insn, just mark it as a place to
6177 reload from since we can't use it as the
6178 reload register itself. */
6179
6180 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6181 if (reg_overlap_mentioned_for_reload_p
6182 (reg_last_reload_reg[regno],
6183 reload_earlyclobbers[i1]))
6184 break;
6185
6186 if (i1 != n_earlyclobbers
6187 || ! (free_for_value_p (i, rld[r].mode,
6188 rld[r].opnum,
6189 rld[r].when_needed, rld[r].in,
6190 rld[r].out, r, 1))
6191 /* Don't use it if we'd clobber a pseudo reg. */
6192 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6193 && rld[r].out
6194 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6195 /* Don't clobber the frame pointer. */
6196 || (i == HARD_FRAME_POINTER_REGNUM
6197 && frame_pointer_needed
6198 && rld[r].out)
6199 /* Don't really use the inherited spill reg
6200 if we need it wider than we've got it. */
6201 || (GET_MODE_SIZE (rld[r].mode)
6202 > GET_MODE_SIZE (mode))
6203 || bad_for_class
6204
6205 /* If find_reloads chose reload_out as reload
6206 register, stay with it - that leaves the
6207 inherited register for subsequent reloads. */
6208 || (rld[r].out && rld[r].reg_rtx
6209 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6210 {
6211 if (! rld[r].optional)
6212 {
6213 reload_override_in[r] = last_reg;
6214 reload_inheritance_insn[r]
6215 = reg_reloaded_insn[i];
6216 }
6217 }
6218 else
6219 {
6220 int k;
6221 /* We can use this as a reload reg. */
6222 /* Mark the register as in use for this part of
6223 the insn. */
6224 mark_reload_reg_in_use (i,
6225 rld[r].opnum,
6226 rld[r].when_needed,
6227 rld[r].mode);
6228 rld[r].reg_rtx = last_reg;
6229 reload_inherited[r] = 1;
6230 reload_inheritance_insn[r]
6231 = reg_reloaded_insn[i];
6232 reload_spill_index[r] = i;
6233 for (k = 0; k < nr; k++)
6234 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6235 i + k);
6236 }
6237 }
6238 }
6239 }
6240 }
6241
6242 /* Here's another way to see if the value is already lying around. */
6243 if (inheritance
6244 && rld[r].in != 0
6245 && ! reload_inherited[r]
6246 && rld[r].out == 0
6247 && (CONSTANT_P (rld[r].in)
6248 || GET_CODE (rld[r].in) == PLUS
6249 || REG_P (rld[r].in)
6250 || MEM_P (rld[r].in))
6251 && (rld[r].nregs == max_group_size
6252 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6253 search_equiv = rld[r].in;
6254 /* If this is an output reload from a simple move insn, look
6255 if an equivalence for the input is available. */
6256 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
6257 {
6258 rtx set = single_set (insn);
6259
6260 if (set
6261 && rtx_equal_p (rld[r].out, SET_DEST (set))
6262 && CONSTANT_P (SET_SRC (set)))
6263 search_equiv = SET_SRC (set);
6264 }
6265
6266 if (search_equiv)
6267 {
6268 rtx equiv
6269 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6270 -1, NULL, 0, rld[r].mode);
6271 int regno = 0;
6272
6273 if (equiv != 0)
6274 {
6275 if (REG_P (equiv))
6276 regno = REGNO (equiv);
6277 else
6278 {
6279 /* This must be a SUBREG of a hard register.
6280 Make a new REG since this might be used in an
6281 address and not all machines support SUBREGs
6282 there. */
6283 gcc_assert (GET_CODE (equiv) == SUBREG);
6284 regno = subreg_regno (equiv);
6285 equiv = gen_rtx_REG (rld[r].mode, regno);
6286 /* If we choose EQUIV as the reload register, but the
6287 loop below decides to cancel the inheritance, we'll
6288 end up reloading EQUIV in rld[r].mode, not the mode
6289 it had originally. That isn't safe when EQUIV isn't
6290 available as a spill register since its value might
6291 still be live at this point. */
6292 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6293 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6294 equiv = 0;
6295 }
6296 }
6297
6298 /* If we found a spill reg, reject it unless it is free
6299 and of the desired class. */
6300 if (equiv != 0)
6301 {
6302 int regs_used = 0;
6303 int bad_for_class = 0;
6304 int max_regno = regno + rld[r].nregs;
6305
6306 for (i = regno; i < max_regno; i++)
6307 {
6308 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6309 i);
6310 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6311 i);
6312 }
6313
6314 if ((regs_used
6315 && ! free_for_value_p (regno, rld[r].mode,
6316 rld[r].opnum, rld[r].when_needed,
6317 rld[r].in, rld[r].out, r, 1))
6318 || bad_for_class)
6319 equiv = 0;
6320 }
6321
6322 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6323 equiv = 0;
6324
6325 /* We found a register that contains the value we need.
6326 If this register is the same as an `earlyclobber' operand
6327 of the current insn, just mark it as a place to reload from
6328 since we can't use it as the reload register itself. */
6329
6330 if (equiv != 0)
6331 for (i = 0; i < n_earlyclobbers; i++)
6332 if (reg_overlap_mentioned_for_reload_p (equiv,
6333 reload_earlyclobbers[i]))
6334 {
6335 if (! rld[r].optional)
6336 reload_override_in[r] = equiv;
6337 equiv = 0;
6338 break;
6339 }
6340
6341 /* If the equiv register we have found is explicitly clobbered
6342 in the current insn, it depends on the reload type if we
6343 can use it, use it for reload_override_in, or not at all.
6344 In particular, we then can't use EQUIV for a
6345 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6346
6347 if (equiv != 0)
6348 {
6349 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6350 switch (rld[r].when_needed)
6351 {
6352 case RELOAD_FOR_OTHER_ADDRESS:
6353 case RELOAD_FOR_INPADDR_ADDRESS:
6354 case RELOAD_FOR_INPUT_ADDRESS:
6355 case RELOAD_FOR_OPADDR_ADDR:
6356 break;
6357 case RELOAD_OTHER:
6358 case RELOAD_FOR_INPUT:
6359 case RELOAD_FOR_OPERAND_ADDRESS:
6360 if (! rld[r].optional)
6361 reload_override_in[r] = equiv;
6362 /* Fall through. */
6363 default:
6364 equiv = 0;
6365 break;
6366 }
6367 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6368 switch (rld[r].when_needed)
6369 {
6370 case RELOAD_FOR_OTHER_ADDRESS:
6371 case RELOAD_FOR_INPADDR_ADDRESS:
6372 case RELOAD_FOR_INPUT_ADDRESS:
6373 case RELOAD_FOR_OPADDR_ADDR:
6374 case RELOAD_FOR_OPERAND_ADDRESS:
6375 case RELOAD_FOR_INPUT:
6376 break;
6377 case RELOAD_OTHER:
6378 if (! rld[r].optional)
6379 reload_override_in[r] = equiv;
6380 /* Fall through. */
6381 default:
6382 equiv = 0;
6383 break;
6384 }
6385 }
6386
6387 /* If we found an equivalent reg, say no code need be generated
6388 to load it, and use it as our reload reg. */
6389 if (equiv != 0
6390 && (regno != HARD_FRAME_POINTER_REGNUM
6391 || !frame_pointer_needed))
6392 {
6393 int nr = hard_regno_nregs[regno][rld[r].mode];
6394 int k;
6395 rld[r].reg_rtx = equiv;
6396 reload_spill_index[r] = regno;
6397 reload_inherited[r] = 1;
6398
6399 /* If reg_reloaded_valid is not set for this register,
6400 there might be a stale spill_reg_store lying around.
6401 We must clear it, since otherwise emit_reload_insns
6402 might delete the store. */
6403 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6404 spill_reg_store[regno] = NULL_RTX;
6405 /* If any of the hard registers in EQUIV are spill
6406 registers, mark them as in use for this insn. */
6407 for (k = 0; k < nr; k++)
6408 {
6409 i = spill_reg_order[regno + k];
6410 if (i >= 0)
6411 {
6412 mark_reload_reg_in_use (regno, rld[r].opnum,
6413 rld[r].when_needed,
6414 rld[r].mode);
6415 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6416 regno + k);
6417 }
6418 }
6419 }
6420 }
6421
6422 /* If we found a register to use already, or if this is an optional
6423 reload, we are done. */
6424 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6425 continue;
6426
6427 #if 0
6428 /* No longer needed for correct operation. Might or might
6429 not give better code on the average. Want to experiment? */
6430
6431 /* See if there is a later reload that has a class different from our
6432 class that intersects our class or that requires less register
6433 than our reload. If so, we must allocate a register to this
6434 reload now, since that reload might inherit a previous reload
6435 and take the only available register in our class. Don't do this
6436 for optional reloads since they will force all previous reloads
6437 to be allocated. Also don't do this for reloads that have been
6438 turned off. */
6439
6440 for (i = j + 1; i < n_reloads; i++)
6441 {
6442 int s = reload_order[i];
6443
6444 if ((rld[s].in == 0 && rld[s].out == 0
6445 && ! rld[s].secondary_p)
6446 || rld[s].optional)
6447 continue;
6448
6449 if ((rld[s].rclass != rld[r].rclass
6450 && reg_classes_intersect_p (rld[r].rclass,
6451 rld[s].rclass))
6452 || rld[s].nregs < rld[r].nregs)
6453 break;
6454 }
6455
6456 if (i == n_reloads)
6457 continue;
6458
6459 allocate_reload_reg (chain, r, j == n_reloads - 1);
6460 #endif
6461 }
6462
6463 /* Now allocate reload registers for anything non-optional that
6464 didn't get one yet. */
6465 for (j = 0; j < n_reloads; j++)
6466 {
6467 int r = reload_order[j];
6468
6469 /* Ignore reloads that got marked inoperative. */
6470 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6471 continue;
6472
6473 /* Skip reloads that already have a register allocated or are
6474 optional. */
6475 if (rld[r].reg_rtx != 0 || rld[r].optional)
6476 continue;
6477
6478 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6479 break;
6480 }
6481
6482 /* If that loop got all the way, we have won. */
6483 if (j == n_reloads)
6484 {
6485 win = 1;
6486 break;
6487 }
6488
6489 /* Loop around and try without any inheritance. */
6490 }
6491
6492 if (! win)
6493 {
6494 /* First undo everything done by the failed attempt
6495 to allocate with inheritance. */
6496 choose_reload_regs_init (chain, save_reload_reg_rtx);
6497
6498 /* Some sanity tests to verify that the reloads found in the first
6499 pass are identical to the ones we have now. */
6500 gcc_assert (chain->n_reloads == n_reloads);
6501
6502 for (i = 0; i < n_reloads; i++)
6503 {
6504 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6505 continue;
6506 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6507 for (j = 0; j < n_spills; j++)
6508 if (spill_regs[j] == chain->rld[i].regno)
6509 if (! set_reload_reg (j, i))
6510 failed_reload (chain->insn, i);
6511 }
6512 }
6513
6514 /* If we thought we could inherit a reload, because it seemed that
6515 nothing else wanted the same reload register earlier in the insn,
6516 verify that assumption, now that all reloads have been assigned.
6517 Likewise for reloads where reload_override_in has been set. */
6518
6519 /* If doing expensive optimizations, do one preliminary pass that doesn't
6520 cancel any inheritance, but removes reloads that have been needed only
6521 for reloads that we know can be inherited. */
6522 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6523 {
6524 for (j = 0; j < n_reloads; j++)
6525 {
6526 int r = reload_order[j];
6527 rtx check_reg;
6528 if (reload_inherited[r] && rld[r].reg_rtx)
6529 check_reg = rld[r].reg_rtx;
6530 else if (reload_override_in[r]
6531 && (REG_P (reload_override_in[r])
6532 || GET_CODE (reload_override_in[r]) == SUBREG))
6533 check_reg = reload_override_in[r];
6534 else
6535 continue;
6536 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6537 rld[r].opnum, rld[r].when_needed, rld[r].in,
6538 (reload_inherited[r]
6539 ? rld[r].out : const0_rtx),
6540 r, 1))
6541 {
6542 if (pass)
6543 continue;
6544 reload_inherited[r] = 0;
6545 reload_override_in[r] = 0;
6546 }
6547 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6548 reload_override_in, then we do not need its related
6549 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6550 likewise for other reload types.
6551 We handle this by removing a reload when its only replacement
6552 is mentioned in reload_in of the reload we are going to inherit.
6553 A special case are auto_inc expressions; even if the input is
6554 inherited, we still need the address for the output. We can
6555 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6556 If we succeeded removing some reload and we are doing a preliminary
6557 pass just to remove such reloads, make another pass, since the
6558 removal of one reload might allow us to inherit another one. */
6559 else if (rld[r].in
6560 && rld[r].out != rld[r].in
6561 && remove_address_replacements (rld[r].in) && pass)
6562 pass = 2;
6563 }
6564 }
6565
6566 /* Now that reload_override_in is known valid,
6567 actually override reload_in. */
6568 for (j = 0; j < n_reloads; j++)
6569 if (reload_override_in[j])
6570 rld[j].in = reload_override_in[j];
6571
6572 /* If this reload won't be done because it has been canceled or is
6573 optional and not inherited, clear reload_reg_rtx so other
6574 routines (such as subst_reloads) don't get confused. */
6575 for (j = 0; j < n_reloads; j++)
6576 if (rld[j].reg_rtx != 0
6577 && ((rld[j].optional && ! reload_inherited[j])
6578 || (rld[j].in == 0 && rld[j].out == 0
6579 && ! rld[j].secondary_p)))
6580 {
6581 int regno = true_regnum (rld[j].reg_rtx);
6582
6583 if (spill_reg_order[regno] >= 0)
6584 clear_reload_reg_in_use (regno, rld[j].opnum,
6585 rld[j].when_needed, rld[j].mode);
6586 rld[j].reg_rtx = 0;
6587 reload_spill_index[j] = -1;
6588 }
6589
6590 /* Record which pseudos and which spill regs have output reloads. */
6591 for (j = 0; j < n_reloads; j++)
6592 {
6593 int r = reload_order[j];
6594
6595 i = reload_spill_index[r];
6596
6597 /* I is nonneg if this reload uses a register.
6598 If rld[r].reg_rtx is 0, this is an optional reload
6599 that we opted to ignore. */
6600 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6601 && rld[r].reg_rtx != 0)
6602 {
6603 int nregno = REGNO (rld[r].out_reg);
6604 int nr = 1;
6605
6606 if (nregno < FIRST_PSEUDO_REGISTER)
6607 nr = hard_regno_nregs[nregno][rld[r].mode];
6608
6609 while (--nr >= 0)
6610 SET_REGNO_REG_SET (&reg_has_output_reload,
6611 nregno + nr);
6612
6613 if (i >= 0)
6614 {
6615 nr = hard_regno_nregs[i][rld[r].mode];
6616 while (--nr >= 0)
6617 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6618 }
6619
6620 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6621 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6622 || rld[r].when_needed == RELOAD_FOR_INSN);
6623 }
6624 }
6625 }
6626
6627 /* Deallocate the reload register for reload R. This is called from
6628 remove_address_replacements. */
6629
6630 void
6631 deallocate_reload_reg (int r)
6632 {
6633 int regno;
6634
6635 if (! rld[r].reg_rtx)
6636 return;
6637 regno = true_regnum (rld[r].reg_rtx);
6638 rld[r].reg_rtx = 0;
6639 if (spill_reg_order[regno] >= 0)
6640 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6641 rld[r].mode);
6642 reload_spill_index[r] = -1;
6643 }
6644 \f
6645 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6646 reloads of the same item for fear that we might not have enough reload
6647 registers. However, normally they will get the same reload register
6648 and hence actually need not be loaded twice.
6649
6650 Here we check for the most common case of this phenomenon: when we have
6651 a number of reloads for the same object, each of which were allocated
6652 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6653 reload, and is not modified in the insn itself. If we find such,
6654 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6655 This will not increase the number of spill registers needed and will
6656 prevent redundant code. */
6657
6658 static void
6659 merge_assigned_reloads (rtx insn)
6660 {
6661 int i, j;
6662
6663 /* Scan all the reloads looking for ones that only load values and
6664 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6665 assigned and not modified by INSN. */
6666
6667 for (i = 0; i < n_reloads; i++)
6668 {
6669 int conflicting_input = 0;
6670 int max_input_address_opnum = -1;
6671 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6672
6673 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6674 || rld[i].out != 0 || rld[i].reg_rtx == 0
6675 || reg_set_p (rld[i].reg_rtx, insn))
6676 continue;
6677
6678 /* Look at all other reloads. Ensure that the only use of this
6679 reload_reg_rtx is in a reload that just loads the same value
6680 as we do. Note that any secondary reloads must be of the identical
6681 class since the values, modes, and result registers are the
6682 same, so we need not do anything with any secondary reloads. */
6683
6684 for (j = 0; j < n_reloads; j++)
6685 {
6686 if (i == j || rld[j].reg_rtx == 0
6687 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6688 rld[i].reg_rtx))
6689 continue;
6690
6691 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6692 && rld[j].opnum > max_input_address_opnum)
6693 max_input_address_opnum = rld[j].opnum;
6694
6695 /* If the reload regs aren't exactly the same (e.g, different modes)
6696 or if the values are different, we can't merge this reload.
6697 But if it is an input reload, we might still merge
6698 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6699
6700 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6701 || rld[j].out != 0 || rld[j].in == 0
6702 || ! rtx_equal_p (rld[i].in, rld[j].in))
6703 {
6704 if (rld[j].when_needed != RELOAD_FOR_INPUT
6705 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6706 || rld[i].opnum > rld[j].opnum)
6707 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6708 break;
6709 conflicting_input = 1;
6710 if (min_conflicting_input_opnum > rld[j].opnum)
6711 min_conflicting_input_opnum = rld[j].opnum;
6712 }
6713 }
6714
6715 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6716 we, in fact, found any matching reloads. */
6717
6718 if (j == n_reloads
6719 && max_input_address_opnum <= min_conflicting_input_opnum)
6720 {
6721 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6722
6723 for (j = 0; j < n_reloads; j++)
6724 if (i != j && rld[j].reg_rtx != 0
6725 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6726 && (! conflicting_input
6727 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6728 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6729 {
6730 rld[i].when_needed = RELOAD_OTHER;
6731 rld[j].in = 0;
6732 reload_spill_index[j] = -1;
6733 transfer_replacements (i, j);
6734 }
6735
6736 /* If this is now RELOAD_OTHER, look for any reloads that
6737 load parts of this operand and set them to
6738 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6739 RELOAD_OTHER for outputs. Note that this test is
6740 equivalent to looking for reloads for this operand
6741 number.
6742
6743 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6744 it may share registers with a RELOAD_FOR_INPUT, so we can
6745 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6746 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6747
6748 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6749 instruction is assigned the same register as the earlier
6750 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6751 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6752 instruction to be deleted later on. */
6753
6754 if (rld[i].when_needed == RELOAD_OTHER)
6755 for (j = 0; j < n_reloads; j++)
6756 if (rld[j].in != 0
6757 && rld[j].when_needed != RELOAD_OTHER
6758 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6759 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6760 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6761 && (! conflicting_input
6762 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6763 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6764 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6765 rld[i].in))
6766 {
6767 int k;
6768
6769 rld[j].when_needed
6770 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6771 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6772 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6773
6774 /* Check to see if we accidentally converted two
6775 reloads that use the same reload register with
6776 different inputs to the same type. If so, the
6777 resulting code won't work. */
6778 if (rld[j].reg_rtx)
6779 for (k = 0; k < j; k++)
6780 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6781 || rld[k].when_needed != rld[j].when_needed
6782 || !rtx_equal_p (rld[k].reg_rtx,
6783 rld[j].reg_rtx)
6784 || rtx_equal_p (rld[k].in,
6785 rld[j].in));
6786 }
6787 }
6788 }
6789 }
6790 \f
6791 /* These arrays are filled by emit_reload_insns and its subroutines. */
6792 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6793 static rtx other_input_address_reload_insns = 0;
6794 static rtx other_input_reload_insns = 0;
6795 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6796 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6797 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6798 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6799 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6800 static rtx operand_reload_insns = 0;
6801 static rtx other_operand_reload_insns = 0;
6802 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6803
6804 /* Values to be put in spill_reg_store are put here first. */
6805 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6806 static HARD_REG_SET reg_reloaded_died;
6807
6808 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6809 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6810 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6811 adjusted register, and return true. Otherwise, return false. */
6812 static bool
6813 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6814 enum reg_class new_class,
6815 enum machine_mode new_mode)
6816
6817 {
6818 rtx reg;
6819
6820 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6821 {
6822 unsigned regno = REGNO (reg);
6823
6824 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6825 continue;
6826 if (GET_MODE (reg) != new_mode)
6827 {
6828 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6829 continue;
6830 if (hard_regno_nregs[regno][new_mode]
6831 > hard_regno_nregs[regno][GET_MODE (reg)])
6832 continue;
6833 reg = reload_adjust_reg_for_mode (reg, new_mode);
6834 }
6835 *reload_reg = reg;
6836 return true;
6837 }
6838 return false;
6839 }
6840
6841 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6842 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6843 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6844 adjusted register, and return true. Otherwise, return false. */
6845 static bool
6846 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6847 enum insn_code icode)
6848
6849 {
6850 enum reg_class new_class = scratch_reload_class (icode);
6851 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6852
6853 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6854 new_class, new_mode);
6855 }
6856
6857 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6858 has the number J. OLD contains the value to be used as input. */
6859
6860 static void
6861 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6862 rtx old, int j)
6863 {
6864 rtx insn = chain->insn;
6865 rtx reloadreg;
6866 rtx oldequiv_reg = 0;
6867 rtx oldequiv = 0;
6868 int special = 0;
6869 enum machine_mode mode;
6870 rtx *where;
6871
6872 /* delete_output_reload is only invoked properly if old contains
6873 the original pseudo register. Since this is replaced with a
6874 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6875 find the pseudo in RELOAD_IN_REG. */
6876 if (reload_override_in[j]
6877 && REG_P (rl->in_reg))
6878 {
6879 oldequiv = old;
6880 old = rl->in_reg;
6881 }
6882 if (oldequiv == 0)
6883 oldequiv = old;
6884 else if (REG_P (oldequiv))
6885 oldequiv_reg = oldequiv;
6886 else if (GET_CODE (oldequiv) == SUBREG)
6887 oldequiv_reg = SUBREG_REG (oldequiv);
6888
6889 reloadreg = reload_reg_rtx_for_input[j];
6890 mode = GET_MODE (reloadreg);
6891
6892 /* If we are reloading from a register that was recently stored in
6893 with an output-reload, see if we can prove there was
6894 actually no need to store the old value in it. */
6895
6896 if (optimize && REG_P (oldequiv)
6897 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6898 && spill_reg_store[REGNO (oldequiv)]
6899 && REG_P (old)
6900 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6901 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6902 rl->out_reg)))
6903 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6904
6905 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6906 OLDEQUIV. */
6907
6908 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6909 oldequiv = SUBREG_REG (oldequiv);
6910 if (GET_MODE (oldequiv) != VOIDmode
6911 && mode != GET_MODE (oldequiv))
6912 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6913
6914 /* Switch to the right place to emit the reload insns. */
6915 switch (rl->when_needed)
6916 {
6917 case RELOAD_OTHER:
6918 where = &other_input_reload_insns;
6919 break;
6920 case RELOAD_FOR_INPUT:
6921 where = &input_reload_insns[rl->opnum];
6922 break;
6923 case RELOAD_FOR_INPUT_ADDRESS:
6924 where = &input_address_reload_insns[rl->opnum];
6925 break;
6926 case RELOAD_FOR_INPADDR_ADDRESS:
6927 where = &inpaddr_address_reload_insns[rl->opnum];
6928 break;
6929 case RELOAD_FOR_OUTPUT_ADDRESS:
6930 where = &output_address_reload_insns[rl->opnum];
6931 break;
6932 case RELOAD_FOR_OUTADDR_ADDRESS:
6933 where = &outaddr_address_reload_insns[rl->opnum];
6934 break;
6935 case RELOAD_FOR_OPERAND_ADDRESS:
6936 where = &operand_reload_insns;
6937 break;
6938 case RELOAD_FOR_OPADDR_ADDR:
6939 where = &other_operand_reload_insns;
6940 break;
6941 case RELOAD_FOR_OTHER_ADDRESS:
6942 where = &other_input_address_reload_insns;
6943 break;
6944 default:
6945 gcc_unreachable ();
6946 }
6947
6948 push_to_sequence (*where);
6949
6950 /* Auto-increment addresses must be reloaded in a special way. */
6951 if (rl->out && ! rl->out_reg)
6952 {
6953 /* We are not going to bother supporting the case where a
6954 incremented register can't be copied directly from
6955 OLDEQUIV since this seems highly unlikely. */
6956 gcc_assert (rl->secondary_in_reload < 0);
6957
6958 if (reload_inherited[j])
6959 oldequiv = reloadreg;
6960
6961 old = XEXP (rl->in_reg, 0);
6962
6963 if (optimize && REG_P (oldequiv)
6964 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6965 && spill_reg_store[REGNO (oldequiv)]
6966 && REG_P (old)
6967 && (dead_or_set_p (insn,
6968 spill_reg_stored_to[REGNO (oldequiv)])
6969 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6970 old)))
6971 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6972
6973 /* Prevent normal processing of this reload. */
6974 special = 1;
6975 /* Output a special code sequence for this case. */
6976 new_spill_reg_store[REGNO (reloadreg)]
6977 = inc_for_reload (reloadreg, oldequiv, rl->out,
6978 rl->inc);
6979 }
6980
6981 /* If we are reloading a pseudo-register that was set by the previous
6982 insn, see if we can get rid of that pseudo-register entirely
6983 by redirecting the previous insn into our reload register. */
6984
6985 else if (optimize && REG_P (old)
6986 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6987 && dead_or_set_p (insn, old)
6988 /* This is unsafe if some other reload
6989 uses the same reg first. */
6990 && ! conflicts_with_override (reloadreg)
6991 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6992 rl->when_needed, old, rl->out, j, 0))
6993 {
6994 rtx temp = PREV_INSN (insn);
6995 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
6996 temp = PREV_INSN (temp);
6997 if (temp
6998 && NONJUMP_INSN_P (temp)
6999 && GET_CODE (PATTERN (temp)) == SET
7000 && SET_DEST (PATTERN (temp)) == old
7001 /* Make sure we can access insn_operand_constraint. */
7002 && asm_noperands (PATTERN (temp)) < 0
7003 /* This is unsafe if operand occurs more than once in current
7004 insn. Perhaps some occurrences aren't reloaded. */
7005 && count_occurrences (PATTERN (insn), old, 0) == 1)
7006 {
7007 rtx old = SET_DEST (PATTERN (temp));
7008 /* Store into the reload register instead of the pseudo. */
7009 SET_DEST (PATTERN (temp)) = reloadreg;
7010
7011 /* Verify that resulting insn is valid. */
7012 extract_insn (temp);
7013 if (constrain_operands (1))
7014 {
7015 /* If the previous insn is an output reload, the source is
7016 a reload register, and its spill_reg_store entry will
7017 contain the previous destination. This is now
7018 invalid. */
7019 if (REG_P (SET_SRC (PATTERN (temp)))
7020 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7021 {
7022 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7023 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7024 }
7025
7026 /* If these are the only uses of the pseudo reg,
7027 pretend for GDB it lives in the reload reg we used. */
7028 if (REG_N_DEATHS (REGNO (old)) == 1
7029 && REG_N_SETS (REGNO (old)) == 1)
7030 {
7031 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7032 if (ira_conflicts_p)
7033 /* Inform IRA about the change. */
7034 ira_mark_allocation_change (REGNO (old));
7035 alter_reg (REGNO (old), -1, false);
7036 }
7037 special = 1;
7038
7039 /* Adjust any debug insns between temp and insn. */
7040 while ((temp = NEXT_INSN (temp)) != insn)
7041 if (DEBUG_INSN_P (temp))
7042 replace_rtx (PATTERN (temp), old, reloadreg);
7043 else
7044 gcc_assert (NOTE_P (temp));
7045 }
7046 else
7047 {
7048 SET_DEST (PATTERN (temp)) = old;
7049 }
7050 }
7051 }
7052
7053 /* We can't do that, so output an insn to load RELOADREG. */
7054
7055 /* If we have a secondary reload, pick up the secondary register
7056 and icode, if any. If OLDEQUIV and OLD are different or
7057 if this is an in-out reload, recompute whether or not we
7058 still need a secondary register and what the icode should
7059 be. If we still need a secondary register and the class or
7060 icode is different, go back to reloading from OLD if using
7061 OLDEQUIV means that we got the wrong type of register. We
7062 cannot have different class or icode due to an in-out reload
7063 because we don't make such reloads when both the input and
7064 output need secondary reload registers. */
7065
7066 if (! special && rl->secondary_in_reload >= 0)
7067 {
7068 rtx second_reload_reg = 0;
7069 rtx third_reload_reg = 0;
7070 int secondary_reload = rl->secondary_in_reload;
7071 rtx real_oldequiv = oldequiv;
7072 rtx real_old = old;
7073 rtx tmp;
7074 enum insn_code icode;
7075 enum insn_code tertiary_icode = CODE_FOR_nothing;
7076
7077 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7078 and similarly for OLD.
7079 See comments in get_secondary_reload in reload.c. */
7080 /* If it is a pseudo that cannot be replaced with its
7081 equivalent MEM, we must fall back to reload_in, which
7082 will have all the necessary substitutions registered.
7083 Likewise for a pseudo that can't be replaced with its
7084 equivalent constant.
7085
7086 Take extra care for subregs of such pseudos. Note that
7087 we cannot use reg_equiv_mem in this case because it is
7088 not in the right mode. */
7089
7090 tmp = oldequiv;
7091 if (GET_CODE (tmp) == SUBREG)
7092 tmp = SUBREG_REG (tmp);
7093 if (REG_P (tmp)
7094 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7095 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7096 || reg_equiv_constant[REGNO (tmp)] != 0))
7097 {
7098 if (! reg_equiv_mem[REGNO (tmp)]
7099 || num_not_at_initial_offset
7100 || GET_CODE (oldequiv) == SUBREG)
7101 real_oldequiv = rl->in;
7102 else
7103 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
7104 }
7105
7106 tmp = old;
7107 if (GET_CODE (tmp) == SUBREG)
7108 tmp = SUBREG_REG (tmp);
7109 if (REG_P (tmp)
7110 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7111 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
7112 || reg_equiv_constant[REGNO (tmp)] != 0))
7113 {
7114 if (! reg_equiv_mem[REGNO (tmp)]
7115 || num_not_at_initial_offset
7116 || GET_CODE (old) == SUBREG)
7117 real_old = rl->in;
7118 else
7119 real_old = reg_equiv_mem[REGNO (tmp)];
7120 }
7121
7122 second_reload_reg = rld[secondary_reload].reg_rtx;
7123 if (rld[secondary_reload].secondary_in_reload >= 0)
7124 {
7125 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7126
7127 third_reload_reg = rld[tertiary_reload].reg_rtx;
7128 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7129 /* We'd have to add more code for quartary reloads. */
7130 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7131 }
7132 icode = rl->secondary_in_icode;
7133
7134 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7135 || (rl->in != 0 && rl->out != 0))
7136 {
7137 secondary_reload_info sri, sri2;
7138 enum reg_class new_class, new_t_class;
7139
7140 sri.icode = CODE_FOR_nothing;
7141 sri.prev_sri = NULL;
7142 new_class = targetm.secondary_reload (1, real_oldequiv, rl->rclass,
7143 mode, &sri);
7144
7145 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7146 second_reload_reg = 0;
7147 else if (new_class == NO_REGS)
7148 {
7149 if (reload_adjust_reg_for_icode (&second_reload_reg,
7150 third_reload_reg,
7151 (enum insn_code) sri.icode))
7152 {
7153 icode = (enum insn_code) sri.icode;
7154 third_reload_reg = 0;
7155 }
7156 else
7157 {
7158 oldequiv = old;
7159 real_oldequiv = real_old;
7160 }
7161 }
7162 else if (sri.icode != CODE_FOR_nothing)
7163 /* We currently lack a way to express this in reloads. */
7164 gcc_unreachable ();
7165 else
7166 {
7167 sri2.icode = CODE_FOR_nothing;
7168 sri2.prev_sri = &sri;
7169 new_t_class = targetm.secondary_reload (1, real_oldequiv,
7170 new_class, mode, &sri);
7171 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7172 {
7173 if (reload_adjust_reg_for_temp (&second_reload_reg,
7174 third_reload_reg,
7175 new_class, mode))
7176 {
7177 third_reload_reg = 0;
7178 tertiary_icode = (enum insn_code) sri2.icode;
7179 }
7180 else
7181 {
7182 oldequiv = old;
7183 real_oldequiv = real_old;
7184 }
7185 }
7186 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7187 {
7188 rtx intermediate = second_reload_reg;
7189
7190 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7191 new_class, mode)
7192 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7193 ((enum insn_code)
7194 sri2.icode)))
7195 {
7196 second_reload_reg = intermediate;
7197 tertiary_icode = (enum insn_code) sri2.icode;
7198 }
7199 else
7200 {
7201 oldequiv = old;
7202 real_oldequiv = real_old;
7203 }
7204 }
7205 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7206 {
7207 rtx intermediate = second_reload_reg;
7208
7209 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7210 new_class, mode)
7211 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7212 new_t_class, mode))
7213 {
7214 second_reload_reg = intermediate;
7215 tertiary_icode = (enum insn_code) sri2.icode;
7216 }
7217 else
7218 {
7219 oldequiv = old;
7220 real_oldequiv = real_old;
7221 }
7222 }
7223 else
7224 {
7225 /* This could be handled more intelligently too. */
7226 oldequiv = old;
7227 real_oldequiv = real_old;
7228 }
7229 }
7230 }
7231
7232 /* If we still need a secondary reload register, check
7233 to see if it is being used as a scratch or intermediate
7234 register and generate code appropriately. If we need
7235 a scratch register, use REAL_OLDEQUIV since the form of
7236 the insn may depend on the actual address if it is
7237 a MEM. */
7238
7239 if (second_reload_reg)
7240 {
7241 if (icode != CODE_FOR_nothing)
7242 {
7243 /* We'd have to add extra code to handle this case. */
7244 gcc_assert (!third_reload_reg);
7245
7246 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7247 second_reload_reg));
7248 special = 1;
7249 }
7250 else
7251 {
7252 /* See if we need a scratch register to load the
7253 intermediate register (a tertiary reload). */
7254 if (tertiary_icode != CODE_FOR_nothing)
7255 {
7256 emit_insn ((GEN_FCN (tertiary_icode)
7257 (second_reload_reg, real_oldequiv,
7258 third_reload_reg)));
7259 }
7260 else if (third_reload_reg)
7261 {
7262 gen_reload (third_reload_reg, real_oldequiv,
7263 rl->opnum,
7264 rl->when_needed);
7265 gen_reload (second_reload_reg, third_reload_reg,
7266 rl->opnum,
7267 rl->when_needed);
7268 }
7269 else
7270 gen_reload (second_reload_reg, real_oldequiv,
7271 rl->opnum,
7272 rl->when_needed);
7273
7274 oldequiv = second_reload_reg;
7275 }
7276 }
7277 }
7278
7279 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7280 {
7281 rtx real_oldequiv = oldequiv;
7282
7283 if ((REG_P (oldequiv)
7284 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7285 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
7286 || reg_equiv_constant[REGNO (oldequiv)] != 0))
7287 || (GET_CODE (oldequiv) == SUBREG
7288 && REG_P (SUBREG_REG (oldequiv))
7289 && (REGNO (SUBREG_REG (oldequiv))
7290 >= FIRST_PSEUDO_REGISTER)
7291 && ((reg_equiv_memory_loc
7292 [REGNO (SUBREG_REG (oldequiv))] != 0)
7293 || (reg_equiv_constant
7294 [REGNO (SUBREG_REG (oldequiv))] != 0)))
7295 || (CONSTANT_P (oldequiv)
7296 && (PREFERRED_RELOAD_CLASS (oldequiv,
7297 REGNO_REG_CLASS (REGNO (reloadreg)))
7298 == NO_REGS)))
7299 real_oldequiv = rl->in;
7300 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7301 rl->when_needed);
7302 }
7303
7304 if (flag_non_call_exceptions)
7305 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7306
7307 /* End this sequence. */
7308 *where = get_insns ();
7309 end_sequence ();
7310
7311 /* Update reload_override_in so that delete_address_reloads_1
7312 can see the actual register usage. */
7313 if (oldequiv_reg)
7314 reload_override_in[j] = oldequiv;
7315 }
7316
7317 /* Generate insns to for the output reload RL, which is for the insn described
7318 by CHAIN and has the number J. */
7319 static void
7320 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7321 int j)
7322 {
7323 rtx reloadreg;
7324 rtx insn = chain->insn;
7325 int special = 0;
7326 rtx old = rl->out;
7327 enum machine_mode mode;
7328 rtx p;
7329 rtx rl_reg_rtx;
7330
7331 if (rl->when_needed == RELOAD_OTHER)
7332 start_sequence ();
7333 else
7334 push_to_sequence (output_reload_insns[rl->opnum]);
7335
7336 rl_reg_rtx = reload_reg_rtx_for_output[j];
7337 mode = GET_MODE (rl_reg_rtx);
7338
7339 reloadreg = rl_reg_rtx;
7340
7341 /* If we need two reload regs, set RELOADREG to the intermediate
7342 one, since it will be stored into OLD. We might need a secondary
7343 register only for an input reload, so check again here. */
7344
7345 if (rl->secondary_out_reload >= 0)
7346 {
7347 rtx real_old = old;
7348 int secondary_reload = rl->secondary_out_reload;
7349 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7350
7351 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7352 && reg_equiv_mem[REGNO (old)] != 0)
7353 real_old = reg_equiv_mem[REGNO (old)];
7354
7355 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7356 {
7357 rtx second_reloadreg = reloadreg;
7358 reloadreg = rld[secondary_reload].reg_rtx;
7359
7360 /* See if RELOADREG is to be used as a scratch register
7361 or as an intermediate register. */
7362 if (rl->secondary_out_icode != CODE_FOR_nothing)
7363 {
7364 /* We'd have to add extra code to handle this case. */
7365 gcc_assert (tertiary_reload < 0);
7366
7367 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7368 (real_old, second_reloadreg, reloadreg)));
7369 special = 1;
7370 }
7371 else
7372 {
7373 /* See if we need both a scratch and intermediate reload
7374 register. */
7375
7376 enum insn_code tertiary_icode
7377 = rld[secondary_reload].secondary_out_icode;
7378
7379 /* We'd have to add more code for quartary reloads. */
7380 gcc_assert (tertiary_reload < 0
7381 || rld[tertiary_reload].secondary_out_reload < 0);
7382
7383 if (GET_MODE (reloadreg) != mode)
7384 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7385
7386 if (tertiary_icode != CODE_FOR_nothing)
7387 {
7388 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7389 rtx tem;
7390
7391 /* Copy primary reload reg to secondary reload reg.
7392 (Note that these have been swapped above, then
7393 secondary reload reg to OLD using our insn.) */
7394
7395 /* If REAL_OLD is a paradoxical SUBREG, remove it
7396 and try to put the opposite SUBREG on
7397 RELOADREG. */
7398 if (GET_CODE (real_old) == SUBREG
7399 && (GET_MODE_SIZE (GET_MODE (real_old))
7400 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7401 && 0 != (tem = gen_lowpart_common
7402 (GET_MODE (SUBREG_REG (real_old)),
7403 reloadreg)))
7404 real_old = SUBREG_REG (real_old), reloadreg = tem;
7405
7406 gen_reload (reloadreg, second_reloadreg,
7407 rl->opnum, rl->when_needed);
7408 emit_insn ((GEN_FCN (tertiary_icode)
7409 (real_old, reloadreg, third_reloadreg)));
7410 special = 1;
7411 }
7412
7413 else
7414 {
7415 /* Copy between the reload regs here and then to
7416 OUT later. */
7417
7418 gen_reload (reloadreg, second_reloadreg,
7419 rl->opnum, rl->when_needed);
7420 if (tertiary_reload >= 0)
7421 {
7422 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7423
7424 gen_reload (third_reloadreg, reloadreg,
7425 rl->opnum, rl->when_needed);
7426 reloadreg = third_reloadreg;
7427 }
7428 }
7429 }
7430 }
7431 }
7432
7433 /* Output the last reload insn. */
7434 if (! special)
7435 {
7436 rtx set;
7437
7438 /* Don't output the last reload if OLD is not the dest of
7439 INSN and is in the src and is clobbered by INSN. */
7440 if (! flag_expensive_optimizations
7441 || !REG_P (old)
7442 || !(set = single_set (insn))
7443 || rtx_equal_p (old, SET_DEST (set))
7444 || !reg_mentioned_p (old, SET_SRC (set))
7445 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7446 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7447 gen_reload (old, reloadreg, rl->opnum,
7448 rl->when_needed);
7449 }
7450
7451 /* Look at all insns we emitted, just to be safe. */
7452 for (p = get_insns (); p; p = NEXT_INSN (p))
7453 if (INSN_P (p))
7454 {
7455 rtx pat = PATTERN (p);
7456
7457 /* If this output reload doesn't come from a spill reg,
7458 clear any memory of reloaded copies of the pseudo reg.
7459 If this output reload comes from a spill reg,
7460 reg_has_output_reload will make this do nothing. */
7461 note_stores (pat, forget_old_reloads_1, NULL);
7462
7463 if (reg_mentioned_p (rl_reg_rtx, pat))
7464 {
7465 rtx set = single_set (insn);
7466 if (reload_spill_index[j] < 0
7467 && set
7468 && SET_SRC (set) == rl_reg_rtx)
7469 {
7470 int src = REGNO (SET_SRC (set));
7471
7472 reload_spill_index[j] = src;
7473 SET_HARD_REG_BIT (reg_is_output_reload, src);
7474 if (find_regno_note (insn, REG_DEAD, src))
7475 SET_HARD_REG_BIT (reg_reloaded_died, src);
7476 }
7477 if (HARD_REGISTER_P (rl_reg_rtx))
7478 {
7479 int s = rl->secondary_out_reload;
7480 set = single_set (p);
7481 /* If this reload copies only to the secondary reload
7482 register, the secondary reload does the actual
7483 store. */
7484 if (s >= 0 && set == NULL_RTX)
7485 /* We can't tell what function the secondary reload
7486 has and where the actual store to the pseudo is
7487 made; leave new_spill_reg_store alone. */
7488 ;
7489 else if (s >= 0
7490 && SET_SRC (set) == rl_reg_rtx
7491 && SET_DEST (set) == rld[s].reg_rtx)
7492 {
7493 /* Usually the next instruction will be the
7494 secondary reload insn; if we can confirm
7495 that it is, setting new_spill_reg_store to
7496 that insn will allow an extra optimization. */
7497 rtx s_reg = rld[s].reg_rtx;
7498 rtx next = NEXT_INSN (p);
7499 rld[s].out = rl->out;
7500 rld[s].out_reg = rl->out_reg;
7501 set = single_set (next);
7502 if (set && SET_SRC (set) == s_reg
7503 && ! new_spill_reg_store[REGNO (s_reg)])
7504 {
7505 SET_HARD_REG_BIT (reg_is_output_reload,
7506 REGNO (s_reg));
7507 new_spill_reg_store[REGNO (s_reg)] = next;
7508 }
7509 }
7510 else
7511 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7512 }
7513 }
7514 }
7515
7516 if (rl->when_needed == RELOAD_OTHER)
7517 {
7518 emit_insn (other_output_reload_insns[rl->opnum]);
7519 other_output_reload_insns[rl->opnum] = get_insns ();
7520 }
7521 else
7522 output_reload_insns[rl->opnum] = get_insns ();
7523
7524 if (flag_non_call_exceptions)
7525 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7526
7527 end_sequence ();
7528 }
7529
7530 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7531 and has the number J. */
7532 static void
7533 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7534 {
7535 rtx insn = chain->insn;
7536 rtx old = (rl->in && MEM_P (rl->in)
7537 ? rl->in_reg : rl->in);
7538 rtx reg_rtx = rl->reg_rtx;
7539
7540 if (old && reg_rtx)
7541 {
7542 enum machine_mode mode;
7543
7544 /* Determine the mode to reload in.
7545 This is very tricky because we have three to choose from.
7546 There is the mode the insn operand wants (rl->inmode).
7547 There is the mode of the reload register RELOADREG.
7548 There is the intrinsic mode of the operand, which we could find
7549 by stripping some SUBREGs.
7550 It turns out that RELOADREG's mode is irrelevant:
7551 we can change that arbitrarily.
7552
7553 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7554 then the reload reg may not support QImode moves, so use SImode.
7555 If foo is in memory due to spilling a pseudo reg, this is safe,
7556 because the QImode value is in the least significant part of a
7557 slot big enough for a SImode. If foo is some other sort of
7558 memory reference, then it is impossible to reload this case,
7559 so previous passes had better make sure this never happens.
7560
7561 Then consider a one-word union which has SImode and one of its
7562 members is a float, being fetched as (SUBREG:SF union:SI).
7563 We must fetch that as SFmode because we could be loading into
7564 a float-only register. In this case OLD's mode is correct.
7565
7566 Consider an immediate integer: it has VOIDmode. Here we need
7567 to get a mode from something else.
7568
7569 In some cases, there is a fourth mode, the operand's
7570 containing mode. If the insn specifies a containing mode for
7571 this operand, it overrides all others.
7572
7573 I am not sure whether the algorithm here is always right,
7574 but it does the right things in those cases. */
7575
7576 mode = GET_MODE (old);
7577 if (mode == VOIDmode)
7578 mode = rl->inmode;
7579
7580 /* We cannot use gen_lowpart_common since it can do the wrong thing
7581 when REG_RTX has a multi-word mode. Note that REG_RTX must
7582 always be a REG here. */
7583 if (GET_MODE (reg_rtx) != mode)
7584 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7585 }
7586 reload_reg_rtx_for_input[j] = reg_rtx;
7587
7588 if (old != 0
7589 /* AUTO_INC reloads need to be handled even if inherited. We got an
7590 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7591 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7592 && ! rtx_equal_p (reg_rtx, old)
7593 && reg_rtx != 0)
7594 emit_input_reload_insns (chain, rld + j, old, j);
7595
7596 /* When inheriting a wider reload, we have a MEM in rl->in,
7597 e.g. inheriting a SImode output reload for
7598 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7599 if (optimize && reload_inherited[j] && rl->in
7600 && MEM_P (rl->in)
7601 && MEM_P (rl->in_reg)
7602 && reload_spill_index[j] >= 0
7603 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7604 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7605
7606 /* If we are reloading a register that was recently stored in with an
7607 output-reload, see if we can prove there was
7608 actually no need to store the old value in it. */
7609
7610 if (optimize
7611 && (reload_inherited[j] || reload_override_in[j])
7612 && reg_rtx
7613 && REG_P (reg_rtx)
7614 && spill_reg_store[REGNO (reg_rtx)] != 0
7615 #if 0
7616 /* There doesn't seem to be any reason to restrict this to pseudos
7617 and doing so loses in the case where we are copying from a
7618 register of the wrong class. */
7619 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7620 #endif
7621 /* The insn might have already some references to stackslots
7622 replaced by MEMs, while reload_out_reg still names the
7623 original pseudo. */
7624 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7625 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7626 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7627 }
7628
7629 /* Do output reloading for reload RL, which is for the insn described by
7630 CHAIN and has the number J.
7631 ??? At some point we need to support handling output reloads of
7632 JUMP_INSNs or insns that set cc0. */
7633 static void
7634 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7635 {
7636 rtx note, old;
7637 rtx insn = chain->insn;
7638 /* If this is an output reload that stores something that is
7639 not loaded in this same reload, see if we can eliminate a previous
7640 store. */
7641 rtx pseudo = rl->out_reg;
7642 rtx reg_rtx = rl->reg_rtx;
7643
7644 if (rl->out && reg_rtx)
7645 {
7646 enum machine_mode mode;
7647
7648 /* Determine the mode to reload in.
7649 See comments above (for input reloading). */
7650 mode = GET_MODE (rl->out);
7651 if (mode == VOIDmode)
7652 {
7653 /* VOIDmode should never happen for an output. */
7654 if (asm_noperands (PATTERN (insn)) < 0)
7655 /* It's the compiler's fault. */
7656 fatal_insn ("VOIDmode on an output", insn);
7657 error_for_asm (insn, "output operand is constant in %<asm%>");
7658 /* Prevent crash--use something we know is valid. */
7659 mode = word_mode;
7660 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7661 }
7662 if (GET_MODE (reg_rtx) != mode)
7663 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7664 }
7665 reload_reg_rtx_for_output[j] = reg_rtx;
7666
7667 if (pseudo
7668 && optimize
7669 && REG_P (pseudo)
7670 && ! rtx_equal_p (rl->in_reg, pseudo)
7671 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7672 && reg_last_reload_reg[REGNO (pseudo)])
7673 {
7674 int pseudo_no = REGNO (pseudo);
7675 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7676
7677 /* We don't need to test full validity of last_regno for
7678 inherit here; we only want to know if the store actually
7679 matches the pseudo. */
7680 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7681 && reg_reloaded_contents[last_regno] == pseudo_no
7682 && spill_reg_store[last_regno]
7683 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7684 delete_output_reload (insn, j, last_regno, reg_rtx);
7685 }
7686
7687 old = rl->out_reg;
7688 if (old == 0
7689 || reg_rtx == 0
7690 || rtx_equal_p (old, reg_rtx))
7691 return;
7692
7693 /* An output operand that dies right away does need a reload,
7694 but need not be copied from it. Show the new location in the
7695 REG_UNUSED note. */
7696 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7697 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7698 {
7699 XEXP (note, 0) = reg_rtx;
7700 return;
7701 }
7702 /* Likewise for a SUBREG of an operand that dies. */
7703 else if (GET_CODE (old) == SUBREG
7704 && REG_P (SUBREG_REG (old))
7705 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7706 SUBREG_REG (old))))
7707 {
7708 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7709 return;
7710 }
7711 else if (GET_CODE (old) == SCRATCH)
7712 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7713 but we don't want to make an output reload. */
7714 return;
7715
7716 /* If is a JUMP_INSN, we can't support output reloads yet. */
7717 gcc_assert (NONJUMP_INSN_P (insn));
7718
7719 emit_output_reload_insns (chain, rld + j, j);
7720 }
7721
7722 /* A reload copies values of MODE from register SRC to register DEST.
7723 Return true if it can be treated for inheritance purposes like a
7724 group of reloads, each one reloading a single hard register. The
7725 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7726 occupy the same number of hard registers. */
7727
7728 static bool
7729 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7730 int src ATTRIBUTE_UNUSED,
7731 enum machine_mode mode ATTRIBUTE_UNUSED)
7732 {
7733 #ifdef CANNOT_CHANGE_MODE_CLASS
7734 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7735 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7736 #else
7737 return true;
7738 #endif
7739 }
7740
7741 /* Output insns to reload values in and out of the chosen reload regs. */
7742
7743 static void
7744 emit_reload_insns (struct insn_chain *chain)
7745 {
7746 rtx insn = chain->insn;
7747
7748 int j;
7749
7750 CLEAR_HARD_REG_SET (reg_reloaded_died);
7751
7752 for (j = 0; j < reload_n_operands; j++)
7753 input_reload_insns[j] = input_address_reload_insns[j]
7754 = inpaddr_address_reload_insns[j]
7755 = output_reload_insns[j] = output_address_reload_insns[j]
7756 = outaddr_address_reload_insns[j]
7757 = other_output_reload_insns[j] = 0;
7758 other_input_address_reload_insns = 0;
7759 other_input_reload_insns = 0;
7760 operand_reload_insns = 0;
7761 other_operand_reload_insns = 0;
7762
7763 /* Dump reloads into the dump file. */
7764 if (dump_file)
7765 {
7766 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7767 debug_reload_to_stream (dump_file);
7768 }
7769
7770 /* Now output the instructions to copy the data into and out of the
7771 reload registers. Do these in the order that the reloads were reported,
7772 since reloads of base and index registers precede reloads of operands
7773 and the operands may need the base and index registers reloaded. */
7774
7775 for (j = 0; j < n_reloads; j++)
7776 {
7777 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7778 {
7779 unsigned int i;
7780
7781 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7782 new_spill_reg_store[i] = 0;
7783 }
7784
7785 do_input_reload (chain, rld + j, j);
7786 do_output_reload (chain, rld + j, j);
7787 }
7788
7789 /* Now write all the insns we made for reloads in the order expected by
7790 the allocation functions. Prior to the insn being reloaded, we write
7791 the following reloads:
7792
7793 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7794
7795 RELOAD_OTHER reloads.
7796
7797 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7798 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7799 RELOAD_FOR_INPUT reload for the operand.
7800
7801 RELOAD_FOR_OPADDR_ADDRS reloads.
7802
7803 RELOAD_FOR_OPERAND_ADDRESS reloads.
7804
7805 After the insn being reloaded, we write the following:
7806
7807 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7808 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7809 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7810 reloads for the operand. The RELOAD_OTHER output reloads are
7811 output in descending order by reload number. */
7812
7813 emit_insn_before (other_input_address_reload_insns, insn);
7814 emit_insn_before (other_input_reload_insns, insn);
7815
7816 for (j = 0; j < reload_n_operands; j++)
7817 {
7818 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7819 emit_insn_before (input_address_reload_insns[j], insn);
7820 emit_insn_before (input_reload_insns[j], insn);
7821 }
7822
7823 emit_insn_before (other_operand_reload_insns, insn);
7824 emit_insn_before (operand_reload_insns, insn);
7825
7826 for (j = 0; j < reload_n_operands; j++)
7827 {
7828 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7829 x = emit_insn_after (output_address_reload_insns[j], x);
7830 x = emit_insn_after (output_reload_insns[j], x);
7831 emit_insn_after (other_output_reload_insns[j], x);
7832 }
7833
7834 /* For all the spill regs newly reloaded in this instruction,
7835 record what they were reloaded from, so subsequent instructions
7836 can inherit the reloads.
7837
7838 Update spill_reg_store for the reloads of this insn.
7839 Copy the elements that were updated in the loop above. */
7840
7841 for (j = 0; j < n_reloads; j++)
7842 {
7843 int r = reload_order[j];
7844 int i = reload_spill_index[r];
7845
7846 /* If this is a non-inherited input reload from a pseudo, we must
7847 clear any memory of a previous store to the same pseudo. Only do
7848 something if there will not be an output reload for the pseudo
7849 being reloaded. */
7850 if (rld[r].in_reg != 0
7851 && ! (reload_inherited[r] || reload_override_in[r]))
7852 {
7853 rtx reg = rld[r].in_reg;
7854
7855 if (GET_CODE (reg) == SUBREG)
7856 reg = SUBREG_REG (reg);
7857
7858 if (REG_P (reg)
7859 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7860 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7861 {
7862 int nregno = REGNO (reg);
7863
7864 if (reg_last_reload_reg[nregno])
7865 {
7866 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7867
7868 if (reg_reloaded_contents[last_regno] == nregno)
7869 spill_reg_store[last_regno] = 0;
7870 }
7871 }
7872 }
7873
7874 /* I is nonneg if this reload used a register.
7875 If rld[r].reg_rtx is 0, this is an optional reload
7876 that we opted to ignore. */
7877
7878 if (i >= 0 && rld[r].reg_rtx != 0)
7879 {
7880 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7881 int k;
7882
7883 /* For a multi register reload, we need to check if all or part
7884 of the value lives to the end. */
7885 for (k = 0; k < nr; k++)
7886 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7887 rld[r].when_needed))
7888 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7889
7890 /* Maybe the spill reg contains a copy of reload_out. */
7891 if (rld[r].out != 0
7892 && (REG_P (rld[r].out)
7893 #ifdef AUTO_INC_DEC
7894 || ! rld[r].out_reg
7895 #endif
7896 || REG_P (rld[r].out_reg)))
7897 {
7898 rtx reg;
7899 enum machine_mode mode;
7900 int regno, nregs;
7901
7902 reg = reload_reg_rtx_for_output[r];
7903 mode = GET_MODE (reg);
7904 regno = REGNO (reg);
7905 nregs = hard_regno_nregs[regno][mode];
7906 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7907 rld[r].when_needed))
7908 {
7909 rtx out = (REG_P (rld[r].out)
7910 ? rld[r].out
7911 : rld[r].out_reg
7912 ? rld[r].out_reg
7913 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7914 int out_regno = REGNO (out);
7915 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7916 : hard_regno_nregs[out_regno][mode]);
7917 bool piecemeal;
7918
7919 spill_reg_store[regno] = new_spill_reg_store[regno];
7920 spill_reg_stored_to[regno] = out;
7921 reg_last_reload_reg[out_regno] = reg;
7922
7923 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7924 && nregs == out_nregs
7925 && inherit_piecemeal_p (out_regno, regno, mode));
7926
7927 /* If OUT_REGNO is a hard register, it may occupy more than
7928 one register. If it does, say what is in the
7929 rest of the registers assuming that both registers
7930 agree on how many words the object takes. If not,
7931 invalidate the subsequent registers. */
7932
7933 if (HARD_REGISTER_NUM_P (out_regno))
7934 for (k = 1; k < out_nregs; k++)
7935 reg_last_reload_reg[out_regno + k]
7936 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7937
7938 /* Now do the inverse operation. */
7939 for (k = 0; k < nregs; k++)
7940 {
7941 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7942 reg_reloaded_contents[regno + k]
7943 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7944 ? out_regno
7945 : out_regno + k);
7946 reg_reloaded_insn[regno + k] = insn;
7947 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7948 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7949 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7950 regno + k);
7951 else
7952 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7953 regno + k);
7954 }
7955 }
7956 }
7957 /* Maybe the spill reg contains a copy of reload_in. Only do
7958 something if there will not be an output reload for
7959 the register being reloaded. */
7960 else if (rld[r].out_reg == 0
7961 && rld[r].in != 0
7962 && ((REG_P (rld[r].in)
7963 && !HARD_REGISTER_P (rld[r].in)
7964 && !REGNO_REG_SET_P (&reg_has_output_reload,
7965 REGNO (rld[r].in)))
7966 || (REG_P (rld[r].in_reg)
7967 && !REGNO_REG_SET_P (&reg_has_output_reload,
7968 REGNO (rld[r].in_reg))))
7969 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7970 {
7971 rtx reg;
7972 enum machine_mode mode;
7973 int regno, nregs;
7974
7975 reg = reload_reg_rtx_for_input[r];
7976 mode = GET_MODE (reg);
7977 regno = REGNO (reg);
7978 nregs = hard_regno_nregs[regno][mode];
7979 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7980 rld[r].when_needed))
7981 {
7982 int in_regno;
7983 int in_nregs;
7984 rtx in;
7985 bool piecemeal;
7986
7987 if (REG_P (rld[r].in)
7988 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7989 in = rld[r].in;
7990 else if (REG_P (rld[r].in_reg))
7991 in = rld[r].in_reg;
7992 else
7993 in = XEXP (rld[r].in_reg, 0);
7994 in_regno = REGNO (in);
7995
7996 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7997 : hard_regno_nregs[in_regno][mode]);
7998
7999 reg_last_reload_reg[in_regno] = reg;
8000
8001 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8002 && nregs == in_nregs
8003 && inherit_piecemeal_p (regno, in_regno, mode));
8004
8005 if (HARD_REGISTER_NUM_P (in_regno))
8006 for (k = 1; k < in_nregs; k++)
8007 reg_last_reload_reg[in_regno + k]
8008 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8009
8010 /* Unless we inherited this reload, show we haven't
8011 recently done a store.
8012 Previous stores of inherited auto_inc expressions
8013 also have to be discarded. */
8014 if (! reload_inherited[r]
8015 || (rld[r].out && ! rld[r].out_reg))
8016 spill_reg_store[regno] = 0;
8017
8018 for (k = 0; k < nregs; k++)
8019 {
8020 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8021 reg_reloaded_contents[regno + k]
8022 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8023 ? in_regno
8024 : in_regno + k);
8025 reg_reloaded_insn[regno + k] = insn;
8026 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8027 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8028 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8029 regno + k);
8030 else
8031 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8032 regno + k);
8033 }
8034 }
8035 }
8036 }
8037
8038 /* The following if-statement was #if 0'd in 1.34 (or before...).
8039 It's reenabled in 1.35 because supposedly nothing else
8040 deals with this problem. */
8041
8042 /* If a register gets output-reloaded from a non-spill register,
8043 that invalidates any previous reloaded copy of it.
8044 But forget_old_reloads_1 won't get to see it, because
8045 it thinks only about the original insn. So invalidate it here.
8046 Also do the same thing for RELOAD_OTHER constraints where the
8047 output is discarded. */
8048 if (i < 0
8049 && ((rld[r].out != 0
8050 && (REG_P (rld[r].out)
8051 || (MEM_P (rld[r].out)
8052 && REG_P (rld[r].out_reg))))
8053 || (rld[r].out == 0 && rld[r].out_reg
8054 && REG_P (rld[r].out_reg))))
8055 {
8056 rtx out = ((rld[r].out && REG_P (rld[r].out))
8057 ? rld[r].out : rld[r].out_reg);
8058 int out_regno = REGNO (out);
8059 enum machine_mode mode = GET_MODE (out);
8060
8061 /* REG_RTX is now set or clobbered by the main instruction.
8062 As the comment above explains, forget_old_reloads_1 only
8063 sees the original instruction, and there is no guarantee
8064 that the original instruction also clobbered REG_RTX.
8065 For example, if find_reloads sees that the input side of
8066 a matched operand pair dies in this instruction, it may
8067 use the input register as the reload register.
8068
8069 Calling forget_old_reloads_1 is a waste of effort if
8070 REG_RTX is also the output register.
8071
8072 If we know that REG_RTX holds the value of a pseudo
8073 register, the code after the call will record that fact. */
8074 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8075 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8076
8077 if (!HARD_REGISTER_NUM_P (out_regno))
8078 {
8079 rtx src_reg, store_insn = NULL_RTX;
8080
8081 reg_last_reload_reg[out_regno] = 0;
8082
8083 /* If we can find a hard register that is stored, record
8084 the storing insn so that we may delete this insn with
8085 delete_output_reload. */
8086 src_reg = reload_reg_rtx_for_output[r];
8087
8088 /* If this is an optional reload, try to find the source reg
8089 from an input reload. */
8090 if (! src_reg)
8091 {
8092 rtx set = single_set (insn);
8093 if (set && SET_DEST (set) == rld[r].out)
8094 {
8095 int k;
8096
8097 src_reg = SET_SRC (set);
8098 store_insn = insn;
8099 for (k = 0; k < n_reloads; k++)
8100 {
8101 if (rld[k].in == src_reg)
8102 {
8103 src_reg = reload_reg_rtx_for_input[k];
8104 break;
8105 }
8106 }
8107 }
8108 }
8109 else
8110 store_insn = new_spill_reg_store[REGNO (src_reg)];
8111 if (src_reg && REG_P (src_reg)
8112 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8113 {
8114 int src_regno, src_nregs, k;
8115 rtx note;
8116
8117 gcc_assert (GET_MODE (src_reg) == mode);
8118 src_regno = REGNO (src_reg);
8119 src_nregs = hard_regno_nregs[src_regno][mode];
8120 /* The place where to find a death note varies with
8121 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8122 necessarily checked exactly in the code that moves
8123 notes, so just check both locations. */
8124 note = find_regno_note (insn, REG_DEAD, src_regno);
8125 if (! note && store_insn)
8126 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8127 for (k = 0; k < src_nregs; k++)
8128 {
8129 spill_reg_store[src_regno + k] = store_insn;
8130 spill_reg_stored_to[src_regno + k] = out;
8131 reg_reloaded_contents[src_regno + k] = out_regno;
8132 reg_reloaded_insn[src_regno + k] = store_insn;
8133 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8134 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8135 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8136 mode))
8137 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8138 src_regno + k);
8139 else
8140 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8141 src_regno + k);
8142 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8143 if (note)
8144 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8145 else
8146 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8147 }
8148 reg_last_reload_reg[out_regno] = src_reg;
8149 /* We have to set reg_has_output_reload here, or else
8150 forget_old_reloads_1 will clear reg_last_reload_reg
8151 right away. */
8152 SET_REGNO_REG_SET (&reg_has_output_reload,
8153 out_regno);
8154 }
8155 }
8156 else
8157 {
8158 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8159
8160 for (k = 0; k < out_nregs; k++)
8161 reg_last_reload_reg[out_regno + k] = 0;
8162 }
8163 }
8164 }
8165 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8166 }
8167 \f
8168 /* Go through the motions to emit INSN and test if it is strictly valid.
8169 Return the emitted insn if valid, else return NULL. */
8170
8171 static rtx
8172 emit_insn_if_valid_for_reload (rtx insn)
8173 {
8174 rtx last = get_last_insn ();
8175 int code;
8176
8177 insn = emit_insn (insn);
8178 code = recog_memoized (insn);
8179
8180 if (code >= 0)
8181 {
8182 extract_insn (insn);
8183 /* We want constrain operands to treat this insn strictly in its
8184 validity determination, i.e., the way it would after reload has
8185 completed. */
8186 if (constrain_operands (1))
8187 return insn;
8188 }
8189
8190 delete_insns_since (last);
8191 return NULL;
8192 }
8193
8194 /* Emit code to perform a reload from IN (which may be a reload register) to
8195 OUT (which may also be a reload register). IN or OUT is from operand
8196 OPNUM with reload type TYPE.
8197
8198 Returns first insn emitted. */
8199
8200 static rtx
8201 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8202 {
8203 rtx last = get_last_insn ();
8204 rtx tem;
8205
8206 /* If IN is a paradoxical SUBREG, remove it and try to put the
8207 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8208 if (GET_CODE (in) == SUBREG
8209 && (GET_MODE_SIZE (GET_MODE (in))
8210 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
8211 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
8212 in = SUBREG_REG (in), out = tem;
8213 else if (GET_CODE (out) == SUBREG
8214 && (GET_MODE_SIZE (GET_MODE (out))
8215 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
8216 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
8217 out = SUBREG_REG (out), in = tem;
8218
8219 /* How to do this reload can get quite tricky. Normally, we are being
8220 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8221 register that didn't get a hard register. In that case we can just
8222 call emit_move_insn.
8223
8224 We can also be asked to reload a PLUS that adds a register or a MEM to
8225 another register, constant or MEM. This can occur during frame pointer
8226 elimination and while reloading addresses. This case is handled by
8227 trying to emit a single insn to perform the add. If it is not valid,
8228 we use a two insn sequence.
8229
8230 Or we can be asked to reload an unary operand that was a fragment of
8231 an addressing mode, into a register. If it isn't recognized as-is,
8232 we try making the unop operand and the reload-register the same:
8233 (set reg:X (unop:X expr:Y))
8234 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8235
8236 Finally, we could be called to handle an 'o' constraint by putting
8237 an address into a register. In that case, we first try to do this
8238 with a named pattern of "reload_load_address". If no such pattern
8239 exists, we just emit a SET insn and hope for the best (it will normally
8240 be valid on machines that use 'o').
8241
8242 This entire process is made complex because reload will never
8243 process the insns we generate here and so we must ensure that
8244 they will fit their constraints and also by the fact that parts of
8245 IN might be being reloaded separately and replaced with spill registers.
8246 Because of this, we are, in some sense, just guessing the right approach
8247 here. The one listed above seems to work.
8248
8249 ??? At some point, this whole thing needs to be rethought. */
8250
8251 if (GET_CODE (in) == PLUS
8252 && (REG_P (XEXP (in, 0))
8253 || GET_CODE (XEXP (in, 0)) == SUBREG
8254 || MEM_P (XEXP (in, 0)))
8255 && (REG_P (XEXP (in, 1))
8256 || GET_CODE (XEXP (in, 1)) == SUBREG
8257 || CONSTANT_P (XEXP (in, 1))
8258 || MEM_P (XEXP (in, 1))))
8259 {
8260 /* We need to compute the sum of a register or a MEM and another
8261 register, constant, or MEM, and put it into the reload
8262 register. The best possible way of doing this is if the machine
8263 has a three-operand ADD insn that accepts the required operands.
8264
8265 The simplest approach is to try to generate such an insn and see if it
8266 is recognized and matches its constraints. If so, it can be used.
8267
8268 It might be better not to actually emit the insn unless it is valid,
8269 but we need to pass the insn as an operand to `recog' and
8270 `extract_insn' and it is simpler to emit and then delete the insn if
8271 not valid than to dummy things up. */
8272
8273 rtx op0, op1, tem, insn;
8274 int code;
8275
8276 op0 = find_replacement (&XEXP (in, 0));
8277 op1 = find_replacement (&XEXP (in, 1));
8278
8279 /* Since constraint checking is strict, commutativity won't be
8280 checked, so we need to do that here to avoid spurious failure
8281 if the add instruction is two-address and the second operand
8282 of the add is the same as the reload reg, which is frequently
8283 the case. If the insn would be A = B + A, rearrange it so
8284 it will be A = A + B as constrain_operands expects. */
8285
8286 if (REG_P (XEXP (in, 1))
8287 && REGNO (out) == REGNO (XEXP (in, 1)))
8288 tem = op0, op0 = op1, op1 = tem;
8289
8290 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8291 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8292
8293 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8294 if (insn)
8295 return insn;
8296
8297 /* If that failed, we must use a conservative two-insn sequence.
8298
8299 Use a move to copy one operand into the reload register. Prefer
8300 to reload a constant, MEM or pseudo since the move patterns can
8301 handle an arbitrary operand. If OP1 is not a constant, MEM or
8302 pseudo and OP1 is not a valid operand for an add instruction, then
8303 reload OP1.
8304
8305 After reloading one of the operands into the reload register, add
8306 the reload register to the output register.
8307
8308 If there is another way to do this for a specific machine, a
8309 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8310 we emit below. */
8311
8312 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
8313
8314 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8315 || (REG_P (op1)
8316 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8317 || (code != CODE_FOR_nothing
8318 && ! ((*insn_data[code].operand[2].predicate)
8319 (op1, insn_data[code].operand[2].mode))))
8320 tem = op0, op0 = op1, op1 = tem;
8321
8322 gen_reload (out, op0, opnum, type);
8323
8324 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8325 This fixes a problem on the 32K where the stack pointer cannot
8326 be used as an operand of an add insn. */
8327
8328 if (rtx_equal_p (op0, op1))
8329 op1 = out;
8330
8331 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8332 if (insn)
8333 {
8334 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8335 set_unique_reg_note (insn, REG_EQUIV, in);
8336 return insn;
8337 }
8338
8339 /* If that failed, copy the address register to the reload register.
8340 Then add the constant to the reload register. */
8341
8342 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8343 gen_reload (out, op1, opnum, type);
8344 insn = emit_insn (gen_add2_insn (out, op0));
8345 set_unique_reg_note (insn, REG_EQUIV, in);
8346 }
8347
8348 #ifdef SECONDARY_MEMORY_NEEDED
8349 /* If we need a memory location to do the move, do it that way. */
8350 else if ((REG_P (in)
8351 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8352 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8353 && (REG_P (out)
8354 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8355 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8356 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8357 REGNO_REG_CLASS (reg_or_subregno (out)),
8358 GET_MODE (out)))
8359 {
8360 /* Get the memory to use and rewrite both registers to its mode. */
8361 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8362
8363 if (GET_MODE (loc) != GET_MODE (out))
8364 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8365
8366 if (GET_MODE (loc) != GET_MODE (in))
8367 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8368
8369 gen_reload (loc, in, opnum, type);
8370 gen_reload (out, loc, opnum, type);
8371 }
8372 #endif
8373 else if (REG_P (out) && UNARY_P (in))
8374 {
8375 rtx insn;
8376 rtx op1;
8377 rtx out_moded;
8378 rtx set;
8379
8380 op1 = find_replacement (&XEXP (in, 0));
8381 if (op1 != XEXP (in, 0))
8382 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8383
8384 /* First, try a plain SET. */
8385 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8386 if (set)
8387 return set;
8388
8389 /* If that failed, move the inner operand to the reload
8390 register, and try the same unop with the inner expression
8391 replaced with the reload register. */
8392
8393 if (GET_MODE (op1) != GET_MODE (out))
8394 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8395 else
8396 out_moded = out;
8397
8398 gen_reload (out_moded, op1, opnum, type);
8399
8400 insn
8401 = gen_rtx_SET (VOIDmode, out,
8402 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8403 out_moded));
8404 insn = emit_insn_if_valid_for_reload (insn);
8405 if (insn)
8406 {
8407 set_unique_reg_note (insn, REG_EQUIV, in);
8408 return insn;
8409 }
8410
8411 fatal_insn ("Failure trying to reload:", set);
8412 }
8413 /* If IN is a simple operand, use gen_move_insn. */
8414 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8415 {
8416 tem = emit_insn (gen_move_insn (out, in));
8417 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8418 mark_jump_label (in, tem, 0);
8419 }
8420
8421 #ifdef HAVE_reload_load_address
8422 else if (HAVE_reload_load_address)
8423 emit_insn (gen_reload_load_address (out, in));
8424 #endif
8425
8426 /* Otherwise, just write (set OUT IN) and hope for the best. */
8427 else
8428 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8429
8430 /* Return the first insn emitted.
8431 We can not just return get_last_insn, because there may have
8432 been multiple instructions emitted. Also note that gen_move_insn may
8433 emit more than one insn itself, so we can not assume that there is one
8434 insn emitted per emit_insn_before call. */
8435
8436 return last ? NEXT_INSN (last) : get_insns ();
8437 }
8438 \f
8439 /* Delete a previously made output-reload whose result we now believe
8440 is not needed. First we double-check.
8441
8442 INSN is the insn now being processed.
8443 LAST_RELOAD_REG is the hard register number for which we want to delete
8444 the last output reload.
8445 J is the reload-number that originally used REG. The caller has made
8446 certain that reload J doesn't use REG any longer for input.
8447 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8448
8449 static void
8450 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8451 {
8452 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8453 rtx reg = spill_reg_stored_to[last_reload_reg];
8454 int k;
8455 int n_occurrences;
8456 int n_inherited = 0;
8457 rtx i1;
8458 rtx substed;
8459
8460 /* It is possible that this reload has been only used to set another reload
8461 we eliminated earlier and thus deleted this instruction too. */
8462 if (INSN_DELETED_P (output_reload_insn))
8463 return;
8464
8465 /* Get the raw pseudo-register referred to. */
8466
8467 while (GET_CODE (reg) == SUBREG)
8468 reg = SUBREG_REG (reg);
8469 substed = reg_equiv_memory_loc[REGNO (reg)];
8470
8471 /* This is unsafe if the operand occurs more often in the current
8472 insn than it is inherited. */
8473 for (k = n_reloads - 1; k >= 0; k--)
8474 {
8475 rtx reg2 = rld[k].in;
8476 if (! reg2)
8477 continue;
8478 if (MEM_P (reg2) || reload_override_in[k])
8479 reg2 = rld[k].in_reg;
8480 #ifdef AUTO_INC_DEC
8481 if (rld[k].out && ! rld[k].out_reg)
8482 reg2 = XEXP (rld[k].in_reg, 0);
8483 #endif
8484 while (GET_CODE (reg2) == SUBREG)
8485 reg2 = SUBREG_REG (reg2);
8486 if (rtx_equal_p (reg2, reg))
8487 {
8488 if (reload_inherited[k] || reload_override_in[k] || k == j)
8489 n_inherited++;
8490 else
8491 return;
8492 }
8493 }
8494 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8495 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8496 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8497 reg, 0);
8498 if (substed)
8499 n_occurrences += count_occurrences (PATTERN (insn),
8500 eliminate_regs (substed, VOIDmode,
8501 NULL_RTX), 0);
8502 for (i1 = reg_equiv_alt_mem_list[REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8503 {
8504 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8505 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8506 }
8507 if (n_occurrences > n_inherited)
8508 return;
8509
8510 /* If the pseudo-reg we are reloading is no longer referenced
8511 anywhere between the store into it and here,
8512 and we're within the same basic block, then the value can only
8513 pass through the reload reg and end up here.
8514 Otherwise, give up--return. */
8515 for (i1 = NEXT_INSN (output_reload_insn);
8516 i1 != insn; i1 = NEXT_INSN (i1))
8517 {
8518 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8519 return;
8520 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8521 && reg_mentioned_p (reg, PATTERN (i1)))
8522 {
8523 /* If this is USE in front of INSN, we only have to check that
8524 there are no more references than accounted for by inheritance. */
8525 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8526 {
8527 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8528 i1 = NEXT_INSN (i1);
8529 }
8530 if (n_occurrences <= n_inherited && i1 == insn)
8531 break;
8532 return;
8533 }
8534 }
8535
8536 /* We will be deleting the insn. Remove the spill reg information. */
8537 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8538 {
8539 spill_reg_store[last_reload_reg + k] = 0;
8540 spill_reg_stored_to[last_reload_reg + k] = 0;
8541 }
8542
8543 /* The caller has already checked that REG dies or is set in INSN.
8544 It has also checked that we are optimizing, and thus some
8545 inaccuracies in the debugging information are acceptable.
8546 So we could just delete output_reload_insn. But in some cases
8547 we can improve the debugging information without sacrificing
8548 optimization - maybe even improving the code: See if the pseudo
8549 reg has been completely replaced with reload regs. If so, delete
8550 the store insn and forget we had a stack slot for the pseudo. */
8551 if (rld[j].out != rld[j].in
8552 && REG_N_DEATHS (REGNO (reg)) == 1
8553 && REG_N_SETS (REGNO (reg)) == 1
8554 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8555 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8556 {
8557 rtx i2;
8558
8559 /* We know that it was used only between here and the beginning of
8560 the current basic block. (We also know that the last use before
8561 INSN was the output reload we are thinking of deleting, but never
8562 mind that.) Search that range; see if any ref remains. */
8563 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8564 {
8565 rtx set = single_set (i2);
8566
8567 /* Uses which just store in the pseudo don't count,
8568 since if they are the only uses, they are dead. */
8569 if (set != 0 && SET_DEST (set) == reg)
8570 continue;
8571 if (LABEL_P (i2)
8572 || JUMP_P (i2))
8573 break;
8574 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8575 && reg_mentioned_p (reg, PATTERN (i2)))
8576 {
8577 /* Some other ref remains; just delete the output reload we
8578 know to be dead. */
8579 delete_address_reloads (output_reload_insn, insn);
8580 delete_insn (output_reload_insn);
8581 return;
8582 }
8583 }
8584
8585 /* Delete the now-dead stores into this pseudo. Note that this
8586 loop also takes care of deleting output_reload_insn. */
8587 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8588 {
8589 rtx set = single_set (i2);
8590
8591 if (set != 0 && SET_DEST (set) == reg)
8592 {
8593 delete_address_reloads (i2, insn);
8594 delete_insn (i2);
8595 }
8596 if (LABEL_P (i2)
8597 || JUMP_P (i2))
8598 break;
8599 }
8600
8601 /* For the debugging info, say the pseudo lives in this reload reg. */
8602 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8603 if (ira_conflicts_p)
8604 /* Inform IRA about the change. */
8605 ira_mark_allocation_change (REGNO (reg));
8606 alter_reg (REGNO (reg), -1, false);
8607 }
8608 else
8609 {
8610 delete_address_reloads (output_reload_insn, insn);
8611 delete_insn (output_reload_insn);
8612 }
8613 }
8614
8615 /* We are going to delete DEAD_INSN. Recursively delete loads of
8616 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8617 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8618 static void
8619 delete_address_reloads (rtx dead_insn, rtx current_insn)
8620 {
8621 rtx set = single_set (dead_insn);
8622 rtx set2, dst, prev, next;
8623 if (set)
8624 {
8625 rtx dst = SET_DEST (set);
8626 if (MEM_P (dst))
8627 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8628 }
8629 /* If we deleted the store from a reloaded post_{in,de}c expression,
8630 we can delete the matching adds. */
8631 prev = PREV_INSN (dead_insn);
8632 next = NEXT_INSN (dead_insn);
8633 if (! prev || ! next)
8634 return;
8635 set = single_set (next);
8636 set2 = single_set (prev);
8637 if (! set || ! set2
8638 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8639 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8640 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8641 return;
8642 dst = SET_DEST (set);
8643 if (! rtx_equal_p (dst, SET_DEST (set2))
8644 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8645 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8646 || (INTVAL (XEXP (SET_SRC (set), 1))
8647 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8648 return;
8649 delete_related_insns (prev);
8650 delete_related_insns (next);
8651 }
8652
8653 /* Subfunction of delete_address_reloads: process registers found in X. */
8654 static void
8655 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8656 {
8657 rtx prev, set, dst, i2;
8658 int i, j;
8659 enum rtx_code code = GET_CODE (x);
8660
8661 if (code != REG)
8662 {
8663 const char *fmt = GET_RTX_FORMAT (code);
8664 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8665 {
8666 if (fmt[i] == 'e')
8667 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8668 else if (fmt[i] == 'E')
8669 {
8670 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8671 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8672 current_insn);
8673 }
8674 }
8675 return;
8676 }
8677
8678 if (spill_reg_order[REGNO (x)] < 0)
8679 return;
8680
8681 /* Scan backwards for the insn that sets x. This might be a way back due
8682 to inheritance. */
8683 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8684 {
8685 code = GET_CODE (prev);
8686 if (code == CODE_LABEL || code == JUMP_INSN)
8687 return;
8688 if (!INSN_P (prev))
8689 continue;
8690 if (reg_set_p (x, PATTERN (prev)))
8691 break;
8692 if (reg_referenced_p (x, PATTERN (prev)))
8693 return;
8694 }
8695 if (! prev || INSN_UID (prev) < reload_first_uid)
8696 return;
8697 /* Check that PREV only sets the reload register. */
8698 set = single_set (prev);
8699 if (! set)
8700 return;
8701 dst = SET_DEST (set);
8702 if (!REG_P (dst)
8703 || ! rtx_equal_p (dst, x))
8704 return;
8705 if (! reg_set_p (dst, PATTERN (dead_insn)))
8706 {
8707 /* Check if DST was used in a later insn -
8708 it might have been inherited. */
8709 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8710 {
8711 if (LABEL_P (i2))
8712 break;
8713 if (! INSN_P (i2))
8714 continue;
8715 if (reg_referenced_p (dst, PATTERN (i2)))
8716 {
8717 /* If there is a reference to the register in the current insn,
8718 it might be loaded in a non-inherited reload. If no other
8719 reload uses it, that means the register is set before
8720 referenced. */
8721 if (i2 == current_insn)
8722 {
8723 for (j = n_reloads - 1; j >= 0; j--)
8724 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8725 || reload_override_in[j] == dst)
8726 return;
8727 for (j = n_reloads - 1; j >= 0; j--)
8728 if (rld[j].in && rld[j].reg_rtx == dst)
8729 break;
8730 if (j >= 0)
8731 break;
8732 }
8733 return;
8734 }
8735 if (JUMP_P (i2))
8736 break;
8737 /* If DST is still live at CURRENT_INSN, check if it is used for
8738 any reload. Note that even if CURRENT_INSN sets DST, we still
8739 have to check the reloads. */
8740 if (i2 == current_insn)
8741 {
8742 for (j = n_reloads - 1; j >= 0; j--)
8743 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8744 || reload_override_in[j] == dst)
8745 return;
8746 /* ??? We can't finish the loop here, because dst might be
8747 allocated to a pseudo in this block if no reload in this
8748 block needs any of the classes containing DST - see
8749 spill_hard_reg. There is no easy way to tell this, so we
8750 have to scan till the end of the basic block. */
8751 }
8752 if (reg_set_p (dst, PATTERN (i2)))
8753 break;
8754 }
8755 }
8756 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8757 reg_reloaded_contents[REGNO (dst)] = -1;
8758 delete_insn (prev);
8759 }
8760 \f
8761 /* Output reload-insns to reload VALUE into RELOADREG.
8762 VALUE is an autoincrement or autodecrement RTX whose operand
8763 is a register or memory location;
8764 so reloading involves incrementing that location.
8765 IN is either identical to VALUE, or some cheaper place to reload from.
8766
8767 INC_AMOUNT is the number to increment or decrement by (always positive).
8768 This cannot be deduced from VALUE.
8769
8770 Return the instruction that stores into RELOADREG. */
8771
8772 static rtx
8773 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8774 {
8775 /* REG or MEM to be copied and incremented. */
8776 rtx incloc = find_replacement (&XEXP (value, 0));
8777 /* Nonzero if increment after copying. */
8778 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8779 || GET_CODE (value) == POST_MODIFY);
8780 rtx last;
8781 rtx inc;
8782 rtx add_insn;
8783 int code;
8784 rtx store;
8785 rtx real_in = in == value ? incloc : in;
8786
8787 /* No hard register is equivalent to this register after
8788 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8789 we could inc/dec that register as well (maybe even using it for
8790 the source), but I'm not sure it's worth worrying about. */
8791 if (REG_P (incloc))
8792 reg_last_reload_reg[REGNO (incloc)] = 0;
8793
8794 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8795 {
8796 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8797 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8798 }
8799 else
8800 {
8801 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8802 inc_amount = -inc_amount;
8803
8804 inc = GEN_INT (inc_amount);
8805 }
8806
8807 /* If this is post-increment, first copy the location to the reload reg. */
8808 if (post && real_in != reloadreg)
8809 emit_insn (gen_move_insn (reloadreg, real_in));
8810
8811 if (in == value)
8812 {
8813 /* See if we can directly increment INCLOC. Use a method similar to
8814 that in gen_reload. */
8815
8816 last = get_last_insn ();
8817 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8818 gen_rtx_PLUS (GET_MODE (incloc),
8819 incloc, inc)));
8820
8821 code = recog_memoized (add_insn);
8822 if (code >= 0)
8823 {
8824 extract_insn (add_insn);
8825 if (constrain_operands (1))
8826 {
8827 /* If this is a pre-increment and we have incremented the value
8828 where it lives, copy the incremented value to RELOADREG to
8829 be used as an address. */
8830
8831 if (! post)
8832 emit_insn (gen_move_insn (reloadreg, incloc));
8833
8834 return add_insn;
8835 }
8836 }
8837 delete_insns_since (last);
8838 }
8839
8840 /* If couldn't do the increment directly, must increment in RELOADREG.
8841 The way we do this depends on whether this is pre- or post-increment.
8842 For pre-increment, copy INCLOC to the reload register, increment it
8843 there, then save back. */
8844
8845 if (! post)
8846 {
8847 if (in != reloadreg)
8848 emit_insn (gen_move_insn (reloadreg, real_in));
8849 emit_insn (gen_add2_insn (reloadreg, inc));
8850 store = emit_insn (gen_move_insn (incloc, reloadreg));
8851 }
8852 else
8853 {
8854 /* Postincrement.
8855 Because this might be a jump insn or a compare, and because RELOADREG
8856 may not be available after the insn in an input reload, we must do
8857 the incrementation before the insn being reloaded for.
8858
8859 We have already copied IN to RELOADREG. Increment the copy in
8860 RELOADREG, save that back, then decrement RELOADREG so it has
8861 the original value. */
8862
8863 emit_insn (gen_add2_insn (reloadreg, inc));
8864 store = emit_insn (gen_move_insn (incloc, reloadreg));
8865 if (CONST_INT_P (inc))
8866 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8867 else
8868 emit_insn (gen_sub2_insn (reloadreg, inc));
8869 }
8870
8871 return store;
8872 }
8873 \f
8874 #ifdef AUTO_INC_DEC
8875 static void
8876 add_auto_inc_notes (rtx insn, rtx x)
8877 {
8878 enum rtx_code code = GET_CODE (x);
8879 const char *fmt;
8880 int i, j;
8881
8882 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8883 {
8884 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
8885 return;
8886 }
8887
8888 /* Scan all the operand sub-expressions. */
8889 fmt = GET_RTX_FORMAT (code);
8890 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8891 {
8892 if (fmt[i] == 'e')
8893 add_auto_inc_notes (insn, XEXP (x, i));
8894 else if (fmt[i] == 'E')
8895 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8896 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8897 }
8898 }
8899 #endif
8900
8901 /* This is used by reload pass, that does emit some instructions after
8902 abnormal calls moving basic block end, but in fact it wants to emit
8903 them on the edge. Looks for abnormal call edges, find backward the
8904 proper call and fix the damage.
8905
8906 Similar handle instructions throwing exceptions internally. */
8907 void
8908 fixup_abnormal_edges (void)
8909 {
8910 bool inserted = false;
8911 basic_block bb;
8912
8913 FOR_EACH_BB (bb)
8914 {
8915 edge e;
8916 edge_iterator ei;
8917
8918 /* Look for cases we are interested in - calls or instructions causing
8919 exceptions. */
8920 FOR_EACH_EDGE (e, ei, bb->succs)
8921 {
8922 if (e->flags & EDGE_ABNORMAL_CALL)
8923 break;
8924 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8925 == (EDGE_ABNORMAL | EDGE_EH))
8926 break;
8927 }
8928 if (e && !CALL_P (BB_END (bb))
8929 && !can_throw_internal (BB_END (bb)))
8930 {
8931 rtx insn;
8932
8933 /* Get past the new insns generated. Allow notes, as the insns
8934 may be already deleted. */
8935 insn = BB_END (bb);
8936 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8937 && !can_throw_internal (insn)
8938 && insn != BB_HEAD (bb))
8939 insn = PREV_INSN (insn);
8940
8941 if (CALL_P (insn) || can_throw_internal (insn))
8942 {
8943 rtx stop, next;
8944
8945 stop = NEXT_INSN (BB_END (bb));
8946 BB_END (bb) = insn;
8947 insn = NEXT_INSN (insn);
8948
8949 FOR_EACH_EDGE (e, ei, bb->succs)
8950 if (e->flags & EDGE_FALLTHRU)
8951 break;
8952
8953 while (insn && insn != stop)
8954 {
8955 next = NEXT_INSN (insn);
8956 if (INSN_P (insn))
8957 {
8958 delete_insn (insn);
8959
8960 /* Sometimes there's still the return value USE.
8961 If it's placed after a trapping call (i.e. that
8962 call is the last insn anyway), we have no fallthru
8963 edge. Simply delete this use and don't try to insert
8964 on the non-existent edge. */
8965 if (GET_CODE (PATTERN (insn)) != USE)
8966 {
8967 /* We're not deleting it, we're moving it. */
8968 INSN_DELETED_P (insn) = 0;
8969 PREV_INSN (insn) = NULL_RTX;
8970 NEXT_INSN (insn) = NULL_RTX;
8971
8972 insert_insn_on_edge (insn, e);
8973 inserted = true;
8974 }
8975 }
8976 else if (!BARRIER_P (insn))
8977 set_block_for_insn (insn, NULL);
8978 insn = next;
8979 }
8980 }
8981
8982 /* It may be that we don't find any such trapping insn. In this
8983 case we discovered quite late that the insn that had been
8984 marked as can_throw_internal in fact couldn't trap at all.
8985 So we should in fact delete the EH edges out of the block. */
8986 else
8987 purge_dead_edges (bb);
8988 }
8989 }
8990
8991 /* We've possibly turned single trapping insn into multiple ones. */
8992 if (flag_non_call_exceptions)
8993 {
8994 sbitmap blocks;
8995 blocks = sbitmap_alloc (last_basic_block);
8996 sbitmap_ones (blocks);
8997 find_many_sub_basic_blocks (blocks);
8998 sbitmap_free (blocks);
8999 }
9000
9001 if (inserted)
9002 commit_edge_insertions ();
9003
9004 #ifdef ENABLE_CHECKING
9005 /* Verify that we didn't turn one trapping insn into many, and that
9006 we found and corrected all of the problems wrt fixups on the
9007 fallthru edge. */
9008 verify_flow_info ();
9009 #endif
9010 }