avr.c (asm_output_section_name): output section attributes.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25
26 #include "machmode.h"
27 #include "hard-reg-set.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "obstack.h"
31 #include "insn-config.h"
32 #include "insn-flags.h"
33 #include "insn-codes.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45
46 #if !defined PREFERRED_STACK_BOUNDARY && defined STACK_BOUNDARY
47 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
48 #endif
49
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
56
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
60
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
64
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
72
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
76
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
83
84
85 #ifndef REGISTER_MOVE_COST
86 #define REGISTER_MOVE_COST(x, y) 2
87 #endif
88 \f
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
92
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static char *reg_has_output_reload;
96
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
100
101 /* Element N is the constant value to which pseudo reg N is equivalent,
102 or zero if pseudo reg N is not equivalent to a constant.
103 find_reloads looks at this in order to replace pseudo reg N
104 with the constant it stands for. */
105 rtx *reg_equiv_constant;
106
107 /* Element N is a memory location to which pseudo reg N is equivalent,
108 prior to any register elimination (such as frame pointer to stack
109 pointer). Depending on whether or not it is a valid address, this value
110 is transferred to either reg_equiv_address or reg_equiv_mem. */
111 rtx *reg_equiv_memory_loc;
112
113 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
114 This is used when the address is not valid as a memory address
115 (because its displacement is too big for the machine.) */
116 rtx *reg_equiv_address;
117
118 /* Element N is the memory slot to which pseudo reg N is equivalent,
119 or zero if pseudo reg N is not equivalent to a memory slot. */
120 rtx *reg_equiv_mem;
121
122 /* Widest width in which each pseudo reg is referred to (via subreg). */
123 static unsigned int *reg_max_ref_width;
124
125 /* Element N is the list of insns that initialized reg N from its equivalent
126 constant or memory slot. */
127 static rtx *reg_equiv_init;
128
129 /* Vector to remember old contents of reg_renumber before spilling. */
130 static short *reg_old_renumber;
131
132 /* During reload_as_needed, element N contains the last pseudo regno reloaded
133 into hard register N. If that pseudo reg occupied more than one register,
134 reg_reloaded_contents points to that pseudo for each spill register in
135 use; all of these must remain set for an inheritance to occur. */
136 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
137
138 /* During reload_as_needed, element N contains the insn for which
139 hard register N was last used. Its contents are significant only
140 when reg_reloaded_valid is set for this register. */
141 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
142
143 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
144 static HARD_REG_SET reg_reloaded_valid;
145 /* Indicate if the register was dead at the end of the reload.
146 This is only valid if reg_reloaded_contents is set and valid. */
147 static HARD_REG_SET reg_reloaded_dead;
148
149 /* Number of spill-regs so far; number of valid elements of spill_regs. */
150 static int n_spills;
151
152 /* In parallel with spill_regs, contains REG rtx's for those regs.
153 Holds the last rtx used for any given reg, or 0 if it has never
154 been used for spilling yet. This rtx is reused, provided it has
155 the proper mode. */
156 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
157
158 /* In parallel with spill_regs, contains nonzero for a spill reg
159 that was stored after the last time it was used.
160 The precise value is the insn generated to do the store. */
161 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
162
163 /* This is the register that was stored with spill_reg_store. This is a
164 copy of reload_out / reload_out_reg when the value was stored; if
165 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
166 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
167
168 /* This table is the inverse mapping of spill_regs:
169 indexed by hard reg number,
170 it contains the position of that reg in spill_regs,
171 or -1 for something that is not in spill_regs.
172
173 ?!? This is no longer accurate. */
174 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
175
176 /* This reg set indicates registers that can't be used as spill registers for
177 the currently processed insn. These are the hard registers which are live
178 during the insn, but not allocated to pseudos, as well as fixed
179 registers. */
180 static HARD_REG_SET bad_spill_regs;
181
182 /* These are the hard registers that can't be used as spill register for any
183 insn. This includes registers used for user variables and registers that
184 we can't eliminate. A register that appears in this set also can't be used
185 to retry register allocation. */
186 static HARD_REG_SET bad_spill_regs_global;
187
188 /* Describes order of use of registers for reloading
189 of spilled pseudo-registers. `n_spills' is the number of
190 elements that are actually valid; new ones are added at the end.
191
192 Both spill_regs and spill_reg_order are used on two occasions:
193 once during find_reload_regs, where they keep track of the spill registers
194 for a single insn, but also during reload_as_needed where they show all
195 the registers ever used by reload. For the latter case, the information
196 is calculated during finish_spills. */
197 static short spill_regs[FIRST_PSEUDO_REGISTER];
198
199 /* This vector of reg sets indicates, for each pseudo, which hard registers
200 may not be used for retrying global allocation because the register was
201 formerly spilled from one of them. If we allowed reallocating a pseudo to
202 a register that it was already allocated to, reload might not
203 terminate. */
204 static HARD_REG_SET *pseudo_previous_regs;
205
206 /* This vector of reg sets indicates, for each pseudo, which hard
207 registers may not be used for retrying global allocation because they
208 are used as spill registers during one of the insns in which the
209 pseudo is live. */
210 static HARD_REG_SET *pseudo_forbidden_regs;
211
212 /* All hard regs that have been used as spill registers for any insn are
213 marked in this set. */
214 static HARD_REG_SET used_spill_regs;
215
216 /* Index of last register assigned as a spill register. We allocate in
217 a round-robin fashion. */
218 static int last_spill_reg;
219
220 /* Nonzero if indirect addressing is supported on the machine; this means
221 that spilling (REG n) does not require reloading it into a register in
222 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
223 value indicates the level of indirect addressing supported, e.g., two
224 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
225 a hard register. */
226 static char spill_indirect_levels;
227
228 /* Nonzero if indirect addressing is supported when the innermost MEM is
229 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
230 which these are valid is the same as spill_indirect_levels, above. */
231 char indirect_symref_ok;
232
233 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
234 char double_reg_address_ok;
235
236 /* Record the stack slot for each spilled hard register. */
237 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
238
239 /* Width allocated so far for that stack slot. */
240 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
241
242 /* Record which pseudos needed to be spilled. */
243 static regset_head spilled_pseudos;
244
245 /* Used for communication between order_regs_for_reload and count_pseudo.
246 Used to avoid counting one pseudo twice. */
247 static regset_head pseudos_counted;
248
249 /* First uid used by insns created by reload in this function.
250 Used in find_equiv_reg. */
251 int reload_first_uid;
252
253 /* Flag set by local-alloc or global-alloc if anything is live in
254 a call-clobbered reg across calls. */
255 int caller_save_needed;
256
257 /* Set to 1 while reload_as_needed is operating.
258 Required by some machines to handle any generated moves differently. */
259 int reload_in_progress = 0;
260
261 /* These arrays record the insn_code of insns that may be needed to
262 perform input and output reloads of special objects. They provide a
263 place to pass a scratch register. */
264 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
265 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
266
267 /* This obstack is used for allocation of rtl during register elimination.
268 The allocated storage can be freed once find_reloads has processed the
269 insn. */
270 struct obstack reload_obstack;
271
272 /* Points to the beginning of the reload_obstack. All insn_chain structures
273 are allocated first. */
274 char *reload_startobj;
275
276 /* The point after all insn_chain structures. Used to quickly deallocate
277 memory allocated in copy_reloads during calculate_needs_all_insns. */
278 char *reload_firstobj;
279
280 /* This points before all local rtl generated by register elimination.
281 Used to quickly free all memory after processing one insn. */
282 static char *reload_insn_firstobj;
283
284 #define obstack_chunk_alloc xmalloc
285 #define obstack_chunk_free free
286
287 /* List of insn_chain instructions, one for every insn that reload needs to
288 examine. */
289 struct insn_chain *reload_insn_chain;
290
291 #ifdef TREE_CODE
292 extern tree current_function_decl;
293 #else
294 extern union tree_node *current_function_decl;
295 #endif
296
297 /* List of all insns needing reloads. */
298 static struct insn_chain *insns_need_reload;
299 \f
300 /* This structure is used to record information about register eliminations.
301 Each array entry describes one possible way of eliminating a register
302 in favor of another. If there is more than one way of eliminating a
303 particular register, the most preferred should be specified first. */
304
305 struct elim_table
306 {
307 int from; /* Register number to be eliminated. */
308 int to; /* Register number used as replacement. */
309 int initial_offset; /* Initial difference between values. */
310 int can_eliminate; /* Non-zero if this elimination can be done. */
311 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
312 insns made by reload. */
313 int offset; /* Current offset between the two regs. */
314 int previous_offset; /* Offset at end of previous insn. */
315 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
316 rtx from_rtx; /* REG rtx for the register to be eliminated.
317 We cannot simply compare the number since
318 we might then spuriously replace a hard
319 register corresponding to a pseudo
320 assigned to the reg to be eliminated. */
321 rtx to_rtx; /* REG rtx for the replacement. */
322 };
323
324 static struct elim_table * reg_eliminate = 0;
325
326 /* This is an intermediate structure to initialize the table. It has
327 exactly the members provided by ELIMINABLE_REGS. */
328 static struct elim_table_1
329 {
330 int from;
331 int to;
332 } reg_eliminate_1[] =
333
334 /* If a set of eliminable registers was specified, define the table from it.
335 Otherwise, default to the normal case of the frame pointer being
336 replaced by the stack pointer. */
337
338 #ifdef ELIMINABLE_REGS
339 ELIMINABLE_REGS;
340 #else
341 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
342 #endif
343
344 #define NUM_ELIMINABLE_REGS (sizeof reg_eliminate_1/sizeof reg_eliminate_1[0])
345
346 /* Record the number of pending eliminations that have an offset not equal
347 to their initial offset. If non-zero, we use a new copy of each
348 replacement result in any insns encountered. */
349 int num_not_at_initial_offset;
350
351 /* Count the number of registers that we may be able to eliminate. */
352 static int num_eliminable;
353 /* And the number of registers that are equivalent to a constant that
354 can be eliminated to frame_pointer / arg_pointer + constant. */
355 static int num_eliminable_invariants;
356
357 /* For each label, we record the offset of each elimination. If we reach
358 a label by more than one path and an offset differs, we cannot do the
359 elimination. This information is indexed by the number of the label.
360 The first table is an array of flags that records whether we have yet
361 encountered a label and the second table is an array of arrays, one
362 entry in the latter array for each elimination. */
363
364 static char *offsets_known_at;
365 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
366
367 /* Number of labels in the current function. */
368
369 static int num_labels;
370 \f
371 static void maybe_fix_stack_asms PARAMS ((void));
372 static void copy_reloads PARAMS ((struct insn_chain *));
373 static void calculate_needs_all_insns PARAMS ((int));
374 static int find_reg PARAMS ((struct insn_chain *, int,
375 FILE *));
376 static void find_reload_regs PARAMS ((struct insn_chain *, FILE *));
377 static void select_reload_regs PARAMS ((FILE *));
378 static void delete_caller_save_insns PARAMS ((void));
379
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, FILE *, int));
397 static int finish_spills PARAMS ((int, FILE *));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, enum reload_type,
414 rtx, rtx, int, int));
415 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
416 enum reload_type));
417 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
418 int));
419 static void failed_reload PARAMS ((rtx, int));
420 static int set_reload_reg PARAMS ((int, int));
421 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
422 static void choose_reload_regs PARAMS ((struct insn_chain *));
423 static void merge_assigned_reloads PARAMS ((rtx));
424 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
425 struct reload *, rtx, int));
426 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
427 struct reload *, int));
428 static void do_input_reload PARAMS ((struct insn_chain *,
429 struct reload *, int));
430 static void do_output_reload PARAMS ((struct insn_chain *,
431 struct reload *, int));
432 static void emit_reload_insns PARAMS ((struct insn_chain *));
433 static void delete_output_reload PARAMS ((rtx, int, int));
434 static void delete_address_reloads PARAMS ((rtx, rtx));
435 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
436 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
437 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
438 static void reload_cse_regs_1 PARAMS ((rtx));
439 static int reload_cse_noop_set_p PARAMS ((rtx));
440 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
441 static int reload_cse_simplify_operands PARAMS ((rtx));
442 static void reload_combine PARAMS ((void));
443 static void reload_combine_note_use PARAMS ((rtx *, rtx));
444 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
445 static void reload_cse_move2add PARAMS ((rtx));
446 static void move2add_note_store PARAMS ((rtx, rtx, void *));
447 #ifdef AUTO_INC_DEC
448 static void add_auto_inc_notes PARAMS ((rtx, rtx));
449 #endif
450 static rtx gen_mode_int PARAMS ((enum machine_mode,
451 HOST_WIDE_INT));
452 static void failed_reload PARAMS ((rtx, int));
453 static int set_reload_reg PARAMS ((int, int));
454 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
455 static void reload_cse_simplify PARAMS ((rtx));
456 extern void dump_needs PARAMS ((struct insn_chain *, FILE *));
457 \f
458 /* Initialize the reload pass once per compilation. */
459
460 void
461 init_reload ()
462 {
463 register int i;
464
465 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
466 Set spill_indirect_levels to the number of levels such addressing is
467 permitted, zero if it is not permitted at all. */
468
469 register rtx tem
470 = gen_rtx_MEM (Pmode,
471 gen_rtx_PLUS (Pmode,
472 gen_rtx_REG (Pmode,
473 LAST_VIRTUAL_REGISTER + 1),
474 GEN_INT (4)));
475 spill_indirect_levels = 0;
476
477 while (memory_address_p (QImode, tem))
478 {
479 spill_indirect_levels++;
480 tem = gen_rtx_MEM (Pmode, tem);
481 }
482
483 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
484
485 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
486 indirect_symref_ok = memory_address_p (QImode, tem);
487
488 /* See if reg+reg is a valid (and offsettable) address. */
489
490 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
491 {
492 tem = gen_rtx_PLUS (Pmode,
493 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
494 gen_rtx_REG (Pmode, i));
495
496 /* This way, we make sure that reg+reg is an offsettable address. */
497 tem = plus_constant (tem, 4);
498
499 if (memory_address_p (QImode, tem))
500 {
501 double_reg_address_ok = 1;
502 break;
503 }
504 }
505
506 /* Initialize obstack for our rtl allocation. */
507 gcc_obstack_init (&reload_obstack);
508 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
509
510 INIT_REG_SET (&spilled_pseudos);
511 INIT_REG_SET (&pseudos_counted);
512 }
513
514 /* List of insn chains that are currently unused. */
515 static struct insn_chain *unused_insn_chains = 0;
516
517 /* Allocate an empty insn_chain structure. */
518 struct insn_chain *
519 new_insn_chain ()
520 {
521 struct insn_chain *c;
522
523 if (unused_insn_chains == 0)
524 {
525 c = (struct insn_chain *)
526 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
527 INIT_REG_SET (&c->live_throughout);
528 INIT_REG_SET (&c->dead_or_set);
529 }
530 else
531 {
532 c = unused_insn_chains;
533 unused_insn_chains = c->next;
534 }
535 c->is_caller_save_insn = 0;
536 c->need_operand_change = 0;
537 c->need_reload = 0;
538 c->need_elim = 0;
539 return c;
540 }
541
542 /* Small utility function to set all regs in hard reg set TO which are
543 allocated to pseudos in regset FROM. */
544
545 void
546 compute_use_by_pseudos (to, from)
547 HARD_REG_SET *to;
548 regset from;
549 {
550 unsigned int regno;
551
552 EXECUTE_IF_SET_IN_REG_SET
553 (from, FIRST_PSEUDO_REGISTER, regno,
554 {
555 int r = reg_renumber[regno];
556 int nregs;
557
558 if (r < 0)
559 {
560 /* reload_combine uses the information from
561 BASIC_BLOCK->global_live_at_start, which might still
562 contain registers that have not actually been allocated
563 since they have an equivalence. */
564 if (! reload_completed)
565 abort ();
566 }
567 else
568 {
569 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
570 while (nregs-- > 0)
571 SET_HARD_REG_BIT (*to, r + nregs);
572 }
573 });
574 }
575 \f
576 /* Global variables used by reload and its subroutines. */
577
578 /* Set during calculate_needs if an insn needs register elimination. */
579 static int something_needs_elimination;
580 /* Set during calculate_needs if an insn needs an operand changed. */
581 int something_needs_operands_changed;
582
583 /* Nonzero means we couldn't get enough spill regs. */
584 static int failure;
585
586 /* Main entry point for the reload pass.
587
588 FIRST is the first insn of the function being compiled.
589
590 GLOBAL nonzero means we were called from global_alloc
591 and should attempt to reallocate any pseudoregs that we
592 displace from hard regs we will use for reloads.
593 If GLOBAL is zero, we do not have enough information to do that,
594 so any pseudo reg that is spilled must go to the stack.
595
596 DUMPFILE is the global-reg debugging dump file stream, or 0.
597 If it is nonzero, messages are written to it to describe
598 which registers are seized as reload regs, which pseudo regs
599 are spilled from them, and where the pseudo regs are reallocated to.
600
601 Return value is nonzero if reload failed
602 and we must not do any more for this function. */
603
604 int
605 reload (first, global, dumpfile)
606 rtx first;
607 int global;
608 FILE *dumpfile;
609 {
610 register int i;
611 register rtx insn;
612 register struct elim_table *ep;
613
614 /* The two pointers used to track the true location of the memory used
615 for label offsets. */
616 char *real_known_ptr = NULL_PTR;
617 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
618
619 /* Make sure even insns with volatile mem refs are recognizable. */
620 init_recog ();
621
622 failure = 0;
623
624 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
625
626 /* Make sure that the last insn in the chain
627 is not something that needs reloading. */
628 emit_note (NULL_PTR, NOTE_INSN_DELETED);
629
630 /* Enable find_equiv_reg to distinguish insns made by reload. */
631 reload_first_uid = get_max_uid ();
632
633 #ifdef SECONDARY_MEMORY_NEEDED
634 /* Initialize the secondary memory table. */
635 clear_secondary_mem ();
636 #endif
637
638 /* We don't have a stack slot for any spill reg yet. */
639 bzero ((char *) spill_stack_slot, sizeof spill_stack_slot);
640 bzero ((char *) spill_stack_slot_width, sizeof spill_stack_slot_width);
641
642 /* Initialize the save area information for caller-save, in case some
643 are needed. */
644 init_save_areas ();
645
646 /* Compute which hard registers are now in use
647 as homes for pseudo registers.
648 This is done here rather than (eg) in global_alloc
649 because this point is reached even if not optimizing. */
650 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
651 mark_home_live (i);
652
653 /* A function that receives a nonlocal goto must save all call-saved
654 registers. */
655 if (current_function_has_nonlocal_label)
656 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
657 {
658 if (! call_used_regs[i] && ! fixed_regs[i])
659 regs_ever_live[i] = 1;
660 }
661
662 /* Find all the pseudo registers that didn't get hard regs
663 but do have known equivalent constants or memory slots.
664 These include parameters (known equivalent to parameter slots)
665 and cse'd or loop-moved constant memory addresses.
666
667 Record constant equivalents in reg_equiv_constant
668 so they will be substituted by find_reloads.
669 Record memory equivalents in reg_mem_equiv so they can
670 be substituted eventually by altering the REG-rtx's. */
671
672 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
673 reg_equiv_memory_loc = (rtx *) xcalloc (max_regno, sizeof (rtx));
674 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
675 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
676 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
677 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
678 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
679 bcopy ((PTR) reg_renumber, (PTR) reg_old_renumber, max_regno * sizeof (short));
680 pseudo_forbidden_regs
681 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
682 pseudo_previous_regs
683 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
684
685 CLEAR_HARD_REG_SET (bad_spill_regs_global);
686
687 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
688 Also find all paradoxical subregs and find largest such for each pseudo.
689 On machines with small register classes, record hard registers that
690 are used for user variables. These can never be used for spills.
691 Also look for a "constant" NOTE_INSN_SETJMP. This means that all
692 caller-saved registers must be marked live. */
693
694 num_eliminable_invariants = 0;
695 for (insn = first; insn; insn = NEXT_INSN (insn))
696 {
697 rtx set = single_set (insn);
698
699 if (GET_CODE (insn) == NOTE && CONST_CALL_P (insn)
700 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
702 if (! call_used_regs[i])
703 regs_ever_live[i] = 1;
704
705 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
706 {
707 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
708 if (note
709 #ifdef LEGITIMATE_PIC_OPERAND_P
710 && (! function_invariant_p (XEXP (note, 0))
711 || ! flag_pic
712 || LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0)))
713 #endif
714 )
715 {
716 rtx x = XEXP (note, 0);
717 i = REGNO (SET_DEST (set));
718 if (i > LAST_VIRTUAL_REGISTER)
719 {
720 if (GET_CODE (x) == MEM)
721 {
722 /* If the operand is a PLUS, the MEM may be shared,
723 so make sure we have an unshared copy here. */
724 if (GET_CODE (XEXP (x, 0)) == PLUS)
725 x = copy_rtx (x);
726
727 reg_equiv_memory_loc[i] = x;
728 }
729 else if (function_invariant_p (x))
730 {
731 if (GET_CODE (x) == PLUS)
732 {
733 /* This is PLUS of frame pointer and a constant,
734 and might be shared. Unshare it. */
735 reg_equiv_constant[i] = copy_rtx (x);
736 num_eliminable_invariants++;
737 }
738 else if (x == frame_pointer_rtx
739 || x == arg_pointer_rtx)
740 {
741 reg_equiv_constant[i] = x;
742 num_eliminable_invariants++;
743 }
744 else if (LEGITIMATE_CONSTANT_P (x))
745 reg_equiv_constant[i] = x;
746 else
747 reg_equiv_memory_loc[i]
748 = force_const_mem (GET_MODE (SET_DEST (set)), x);
749 }
750 else
751 continue;
752
753 /* If this register is being made equivalent to a MEM
754 and the MEM is not SET_SRC, the equivalencing insn
755 is one with the MEM as a SET_DEST and it occurs later.
756 So don't mark this insn now. */
757 if (GET_CODE (x) != MEM
758 || rtx_equal_p (SET_SRC (set), x))
759 reg_equiv_init[i]
760 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
761 }
762 }
763 }
764
765 /* If this insn is setting a MEM from a register equivalent to it,
766 this is the equivalencing insn. */
767 else if (set && GET_CODE (SET_DEST (set)) == MEM
768 && GET_CODE (SET_SRC (set)) == REG
769 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
770 && rtx_equal_p (SET_DEST (set),
771 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
772 reg_equiv_init[REGNO (SET_SRC (set))]
773 = gen_rtx_INSN_LIST (VOIDmode, insn,
774 reg_equiv_init[REGNO (SET_SRC (set))]);
775
776 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
777 scan_paradoxical_subregs (PATTERN (insn));
778 }
779
780 init_elim_table ();
781
782 num_labels = max_label_num () - get_first_label_num ();
783
784 /* Allocate the tables used to store offset information at labels. */
785 /* We used to use alloca here, but the size of what it would try to
786 allocate would occasionally cause it to exceed the stack limit and
787 cause a core dump. */
788 real_known_ptr = xmalloc (num_labels);
789 real_at_ptr
790 = (int (*)[NUM_ELIMINABLE_REGS])
791 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
792
793 offsets_known_at = real_known_ptr - get_first_label_num ();
794 offsets_at
795 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
796
797 /* Alter each pseudo-reg rtx to contain its hard reg number.
798 Assign stack slots to the pseudos that lack hard regs or equivalents.
799 Do not touch virtual registers. */
800
801 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
802 alter_reg (i, -1);
803
804 /* If we have some registers we think can be eliminated, scan all insns to
805 see if there is an insn that sets one of these registers to something
806 other than itself plus a constant. If so, the register cannot be
807 eliminated. Doing this scan here eliminates an extra pass through the
808 main reload loop in the most common case where register elimination
809 cannot be done. */
810 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
811 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
812 || GET_CODE (insn) == CALL_INSN)
813 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
814
815 maybe_fix_stack_asms ();
816
817 insns_need_reload = 0;
818 something_needs_elimination = 0;
819
820 /* Initialize to -1, which means take the first spill register. */
821 last_spill_reg = -1;
822
823 /* Spill any hard regs that we know we can't eliminate. */
824 CLEAR_HARD_REG_SET (used_spill_regs);
825 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
826 if (! ep->can_eliminate)
827 spill_hard_reg (ep->from, dumpfile, 1);
828
829 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
830 if (frame_pointer_needed)
831 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, dumpfile, 1);
832 #endif
833 finish_spills (global, dumpfile);
834
835 /* From now on, we may need to generate moves differently. We may also
836 allow modifications of insns which cause them to not be recognized.
837 Any such modifications will be cleaned up during reload itself. */
838 reload_in_progress = 1;
839
840 /* This loop scans the entire function each go-round
841 and repeats until one repetition spills no additional hard regs. */
842 for (;;)
843 {
844 int something_changed;
845 int did_spill;
846
847 HOST_WIDE_INT starting_frame_size;
848
849 /* Round size of stack frame to stack_alignment_needed. This must be done
850 here because the stack size may be a part of the offset computation
851 for register elimination, and there might have been new stack slots
852 created in the last iteration of this loop. */
853 if (cfun->stack_alignment_needed)
854 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
855
856 starting_frame_size = get_frame_size ();
857
858 set_initial_elim_offsets ();
859 set_initial_label_offsets ();
860
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
865
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
868
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
875
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
881
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
884
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
887 {
888 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
889
890 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
891 XEXP (x, 0)))
892 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
893 else if (CONSTANT_P (XEXP (x, 0))
894 || (GET_CODE (XEXP (x, 0)) == REG
895 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
896 || (GET_CODE (XEXP (x, 0)) == PLUS
897 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
898 && (REGNO (XEXP (XEXP (x, 0), 0))
899 < FIRST_PSEUDO_REGISTER)
900 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
901 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
902 else
903 {
904 /* Make a new stack slot. Then indicate that something
905 changed so we go back and recompute offsets for
906 eliminable registers because the allocation of memory
907 below might change some offset. reg_equiv_{mem,address}
908 will be set up for this pseudo on the next pass around
909 the loop. */
910 reg_equiv_memory_loc[i] = 0;
911 reg_equiv_init[i] = 0;
912 alter_reg (i, -1);
913 }
914 }
915
916 if (caller_save_needed)
917 setup_save_areas ();
918
919 /* If we allocated another stack slot, redo elimination bookkeeping. */
920 if (starting_frame_size != get_frame_size ())
921 continue;
922
923 if (caller_save_needed)
924 {
925 save_call_clobbered_regs ();
926 /* That might have allocated new insn_chain structures. */
927 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
928 }
929
930 calculate_needs_all_insns (global);
931
932 CLEAR_REG_SET (&spilled_pseudos);
933 did_spill = 0;
934
935 something_changed = 0;
936
937 /* If we allocated any new memory locations, make another pass
938 since it might have changed elimination offsets. */
939 if (starting_frame_size != get_frame_size ())
940 something_changed = 1;
941
942 {
943 HARD_REG_SET to_spill;
944 CLEAR_HARD_REG_SET (to_spill);
945 update_eliminables (&to_spill);
946 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
947 if (TEST_HARD_REG_BIT (to_spill, i))
948 {
949 spill_hard_reg (i, dumpfile, 1);
950 did_spill = 1;
951
952 /* Regardless of the state of spills, if we previously had
953 a register that we thought we could eliminate, but no can
954 not eliminate, we must run another pass.
955
956 Consider pseudos which have an entry in reg_equiv_* which
957 reference an eliminable register. We must make another pass
958 to update reg_equiv_* so that we do not substitute in the
959 old value from when we thought the elimination could be
960 performed. */
961 something_changed = 1;
962 }
963 }
964
965 select_reload_regs (dumpfile);
966 if (failure)
967 goto failed;
968
969 if (insns_need_reload != 0 || did_spill)
970 something_changed |= finish_spills (global, dumpfile);
971
972 if (! something_changed)
973 break;
974
975 if (caller_save_needed)
976 delete_caller_save_insns ();
977
978 obstack_free (&reload_obstack, reload_firstobj);
979 }
980
981 /* If global-alloc was run, notify it of any register eliminations we have
982 done. */
983 if (global)
984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
985 if (ep->can_eliminate)
986 mark_elimination (ep->from, ep->to);
987
988 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
989 If that insn didn't set the register (i.e., it copied the register to
990 memory), just delete that insn instead of the equivalencing insn plus
991 anything now dead. If we call delete_dead_insn on that insn, we may
992 delete the insn that actually sets the register if the register dies
993 there and that is incorrect. */
994
995 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
996 {
997 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
998 {
999 rtx list;
1000 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1001 {
1002 rtx equiv_insn = XEXP (list, 0);
1003 if (GET_CODE (equiv_insn) == NOTE)
1004 continue;
1005 if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1006 delete_dead_insn (equiv_insn);
1007 else
1008 {
1009 PUT_CODE (equiv_insn, NOTE);
1010 NOTE_SOURCE_FILE (equiv_insn) = 0;
1011 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1012 }
1013 }
1014 }
1015 }
1016
1017 /* Use the reload registers where necessary
1018 by generating move instructions to move the must-be-register
1019 values into or out of the reload registers. */
1020
1021 if (insns_need_reload != 0 || something_needs_elimination
1022 || something_needs_operands_changed)
1023 {
1024 int old_frame_size = get_frame_size ();
1025
1026 reload_as_needed (global);
1027
1028 if (old_frame_size != get_frame_size ())
1029 abort ();
1030
1031 if (num_eliminable)
1032 verify_initial_elim_offsets ();
1033 }
1034
1035 /* If we were able to eliminate the frame pointer, show that it is no
1036 longer live at the start of any basic block. If it ls live by
1037 virtue of being in a pseudo, that pseudo will be marked live
1038 and hence the frame pointer will be known to be live via that
1039 pseudo. */
1040
1041 if (! frame_pointer_needed)
1042 for (i = 0; i < n_basic_blocks; i++)
1043 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1044 HARD_FRAME_POINTER_REGNUM);
1045
1046 /* Come here (with failure set nonzero) if we can't get enough spill regs
1047 and we decide not to abort about it. */
1048 failed:
1049
1050 CLEAR_REG_SET (&spilled_pseudos);
1051 reload_in_progress = 0;
1052
1053 /* Now eliminate all pseudo regs by modifying them into
1054 their equivalent memory references.
1055 The REG-rtx's for the pseudos are modified in place,
1056 so all insns that used to refer to them now refer to memory.
1057
1058 For a reg that has a reg_equiv_address, all those insns
1059 were changed by reloading so that no insns refer to it any longer;
1060 but the DECL_RTL of a variable decl may refer to it,
1061 and if so this causes the debugging info to mention the variable. */
1062
1063 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1064 {
1065 rtx addr = 0;
1066 int in_struct = 0;
1067 int is_scalar = 0;
1068 int is_readonly = 0;
1069
1070 if (reg_equiv_memory_loc[i])
1071 {
1072 in_struct = MEM_IN_STRUCT_P (reg_equiv_memory_loc[i]);
1073 is_scalar = MEM_SCALAR_P (reg_equiv_memory_loc[i]);
1074 is_readonly = RTX_UNCHANGING_P (reg_equiv_memory_loc[i]);
1075 }
1076
1077 if (reg_equiv_mem[i])
1078 addr = XEXP (reg_equiv_mem[i], 0);
1079
1080 if (reg_equiv_address[i])
1081 addr = reg_equiv_address[i];
1082
1083 if (addr)
1084 {
1085 if (reg_renumber[i] < 0)
1086 {
1087 rtx reg = regno_reg_rtx[i];
1088 PUT_CODE (reg, MEM);
1089 XEXP (reg, 0) = addr;
1090 REG_USERVAR_P (reg) = 0;
1091 RTX_UNCHANGING_P (reg) = is_readonly;
1092 MEM_IN_STRUCT_P (reg) = in_struct;
1093 MEM_SCALAR_P (reg) = is_scalar;
1094 /* We have no alias information about this newly created
1095 MEM. */
1096 MEM_ALIAS_SET (reg) = 0;
1097 }
1098 else if (reg_equiv_mem[i])
1099 XEXP (reg_equiv_mem[i], 0) = addr;
1100 }
1101 }
1102
1103 /* We must set reload_completed now since the cleanup_subreg_operands call
1104 below will re-recognize each insn and reload may have generated insns
1105 which are only valid during and after reload. */
1106 reload_completed = 1;
1107
1108 /* Make a pass over all the insns and delete all USEs which we inserted
1109 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1110 notes. Delete all CLOBBER insns that don't refer to the return value
1111 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1112 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1113 and regenerate REG_INC notes that may have been moved around. */
1114
1115 for (insn = first; insn; insn = NEXT_INSN (insn))
1116 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1117 {
1118 rtx *pnote;
1119
1120 if ((GET_CODE (PATTERN (insn)) == USE
1121 && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1122 || (GET_CODE (PATTERN (insn)) == CLOBBER
1123 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1124 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1125 {
1126 PUT_CODE (insn, NOTE);
1127 NOTE_SOURCE_FILE (insn) = 0;
1128 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1129 continue;
1130 }
1131
1132 pnote = &REG_NOTES (insn);
1133 while (*pnote != 0)
1134 {
1135 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1136 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1137 || REG_NOTE_KIND (*pnote) == REG_INC
1138 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1139 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1140 *pnote = XEXP (*pnote, 1);
1141 else
1142 pnote = &XEXP (*pnote, 1);
1143 }
1144
1145 #ifdef AUTO_INC_DEC
1146 add_auto_inc_notes (insn, PATTERN (insn));
1147 #endif
1148
1149 /* And simplify (subreg (reg)) if it appears as an operand. */
1150 cleanup_subreg_operands (insn);
1151 }
1152
1153 /* If we are doing stack checking, give a warning if this function's
1154 frame size is larger than we expect. */
1155 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1156 {
1157 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1158 static int verbose_warned = 0;
1159
1160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1162 size += UNITS_PER_WORD;
1163
1164 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1165 {
1166 warning ("frame size too large for reliable stack checking");
1167 if (! verbose_warned)
1168 {
1169 warning ("try reducing the number of local variables");
1170 verbose_warned = 1;
1171 }
1172 }
1173 }
1174
1175 /* Indicate that we no longer have known memory locations or constants. */
1176 if (reg_equiv_constant)
1177 free (reg_equiv_constant);
1178 reg_equiv_constant = 0;
1179 if (reg_equiv_memory_loc)
1180 free (reg_equiv_memory_loc);
1181 reg_equiv_memory_loc = 0;
1182
1183 if (real_known_ptr)
1184 free (real_known_ptr);
1185 if (real_at_ptr)
1186 free (real_at_ptr);
1187
1188 free (reg_equiv_mem);
1189 free (reg_equiv_init);
1190 free (reg_equiv_address);
1191 free (reg_max_ref_width);
1192 free (reg_old_renumber);
1193 free (pseudo_previous_regs);
1194 free (pseudo_forbidden_regs);
1195
1196 CLEAR_HARD_REG_SET (used_spill_regs);
1197 for (i = 0; i < n_spills; i++)
1198 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1199
1200 /* Free all the insn_chain structures at once. */
1201 obstack_free (&reload_obstack, reload_startobj);
1202 unused_insn_chains = 0;
1203
1204 return failure;
1205 }
1206
1207 /* Yet another special case. Unfortunately, reg-stack forces people to
1208 write incorrect clobbers in asm statements. These clobbers must not
1209 cause the register to appear in bad_spill_regs, otherwise we'll call
1210 fatal_insn later. We clear the corresponding regnos in the live
1211 register sets to avoid this.
1212 The whole thing is rather sick, I'm afraid. */
1213
1214 static void
1215 maybe_fix_stack_asms ()
1216 {
1217 #ifdef STACK_REGS
1218 const char *constraints[MAX_RECOG_OPERANDS];
1219 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1220 struct insn_chain *chain;
1221
1222 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1223 {
1224 int i, noperands;
1225 HARD_REG_SET clobbered, allowed;
1226 rtx pat;
1227
1228 if (GET_RTX_CLASS (GET_CODE (chain->insn)) != 'i'
1229 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1230 continue;
1231 pat = PATTERN (chain->insn);
1232 if (GET_CODE (pat) != PARALLEL)
1233 continue;
1234
1235 CLEAR_HARD_REG_SET (clobbered);
1236 CLEAR_HARD_REG_SET (allowed);
1237
1238 /* First, make a mask of all stack regs that are clobbered. */
1239 for (i = 0; i < XVECLEN (pat, 0); i++)
1240 {
1241 rtx t = XVECEXP (pat, 0, i);
1242 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1243 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1244 }
1245
1246 /* Get the operand values and constraints out of the insn. */
1247 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1248 constraints, operand_mode);
1249
1250 /* For every operand, see what registers are allowed. */
1251 for (i = 0; i < noperands; i++)
1252 {
1253 const char *p = constraints[i];
1254 /* For every alternative, we compute the class of registers allowed
1255 for reloading in CLS, and merge its contents into the reg set
1256 ALLOWED. */
1257 int cls = (int) NO_REGS;
1258
1259 for (;;)
1260 {
1261 char c = *p++;
1262
1263 if (c == '\0' || c == ',' || c == '#')
1264 {
1265 /* End of one alternative - mark the regs in the current
1266 class, and reset the class. */
1267 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1268 cls = NO_REGS;
1269 if (c == '#')
1270 do {
1271 c = *p++;
1272 } while (c != '\0' && c != ',');
1273 if (c == '\0')
1274 break;
1275 continue;
1276 }
1277
1278 switch (c)
1279 {
1280 case '=': case '+': case '*': case '%': case '?': case '!':
1281 case '0': case '1': case '2': case '3': case '4': case 'm':
1282 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1283 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1284 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1285 case 'P':
1286 #ifdef EXTRA_CONSTRAINT
1287 case 'Q': case 'R': case 'S': case 'T': case 'U':
1288 #endif
1289 break;
1290
1291 case 'p':
1292 cls = (int) reg_class_subunion[cls][(int) BASE_REG_CLASS];
1293 break;
1294
1295 case 'g':
1296 case 'r':
1297 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1298 break;
1299
1300 default:
1301 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1302
1303 }
1304 }
1305 }
1306 /* Those of the registers which are clobbered, but allowed by the
1307 constraints, must be usable as reload registers. So clear them
1308 out of the life information. */
1309 AND_HARD_REG_SET (allowed, clobbered);
1310 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1311 if (TEST_HARD_REG_BIT (allowed, i))
1312 {
1313 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1314 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1315 }
1316 }
1317
1318 #endif
1319 }
1320 \f
1321 /* Copy the global variables n_reloads and rld into the corresponding elts
1322 of CHAIN. */
1323 static void
1324 copy_reloads (chain)
1325 struct insn_chain *chain;
1326 {
1327 chain->n_reloads = n_reloads;
1328 chain->rld
1329 = (struct reload *) obstack_alloc (&reload_obstack,
1330 n_reloads * sizeof (struct reload));
1331 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1332 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1333 }
1334
1335 /* Walk the chain of insns, and determine for each whether it needs reloads
1336 and/or eliminations. Build the corresponding insns_need_reload list, and
1337 set something_needs_elimination as appropriate. */
1338 static void
1339 calculate_needs_all_insns (global)
1340 int global;
1341 {
1342 struct insn_chain **pprev_reload = &insns_need_reload;
1343 struct insn_chain *chain;
1344
1345 something_needs_elimination = 0;
1346
1347 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1348 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1349 {
1350 rtx insn = chain->insn;
1351
1352 /* Clear out the shortcuts. */
1353 chain->n_reloads = 0;
1354 chain->need_elim = 0;
1355 chain->need_reload = 0;
1356 chain->need_operand_change = 0;
1357
1358 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1359 include REG_LABEL), we need to see what effects this has on the
1360 known offsets at labels. */
1361
1362 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1363 || (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
1364 && REG_NOTES (insn) != 0))
1365 set_label_offsets (insn, insn, 0);
1366
1367 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1368 {
1369 rtx old_body = PATTERN (insn);
1370 int old_code = INSN_CODE (insn);
1371 rtx old_notes = REG_NOTES (insn);
1372 int did_elimination = 0;
1373 int operands_changed = 0;
1374 rtx set = single_set (insn);
1375
1376 /* Skip insns that only set an equivalence. */
1377 if (set && GET_CODE (SET_DEST (set)) == REG
1378 && reg_renumber[REGNO (SET_DEST (set))] < 0
1379 && reg_equiv_constant[REGNO (SET_DEST (set))])
1380 continue;
1381
1382 /* If needed, eliminate any eliminable registers. */
1383 if (num_eliminable || num_eliminable_invariants)
1384 did_elimination = eliminate_regs_in_insn (insn, 0);
1385
1386 /* Analyze the instruction. */
1387 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1388 global, spill_reg_order);
1389
1390 /* If a no-op set needs more than one reload, this is likely
1391 to be something that needs input address reloads. We
1392 can't get rid of this cleanly later, and it is of no use
1393 anyway, so discard it now.
1394 We only do this when expensive_optimizations is enabled,
1395 since this complements reload inheritance / output
1396 reload deletion, and it can make debugging harder. */
1397 if (flag_expensive_optimizations && n_reloads > 1)
1398 {
1399 rtx set = single_set (insn);
1400 if (set
1401 && SET_SRC (set) == SET_DEST (set)
1402 && GET_CODE (SET_SRC (set)) == REG
1403 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1404 {
1405 PUT_CODE (insn, NOTE);
1406 NOTE_SOURCE_FILE (insn) = 0;
1407 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1408 continue;
1409 }
1410 }
1411 if (num_eliminable)
1412 update_eliminable_offsets ();
1413
1414 /* Remember for later shortcuts which insns had any reloads or
1415 register eliminations. */
1416 chain->need_elim = did_elimination;
1417 chain->need_reload = n_reloads > 0;
1418 chain->need_operand_change = operands_changed;
1419
1420 /* Discard any register replacements done. */
1421 if (did_elimination)
1422 {
1423 obstack_free (&reload_obstack, reload_insn_firstobj);
1424 PATTERN (insn) = old_body;
1425 INSN_CODE (insn) = old_code;
1426 REG_NOTES (insn) = old_notes;
1427 something_needs_elimination = 1;
1428 }
1429
1430 something_needs_operands_changed |= operands_changed;
1431
1432 if (n_reloads != 0)
1433 {
1434 copy_reloads (chain);
1435 *pprev_reload = chain;
1436 pprev_reload = &chain->next_need_reload;
1437 }
1438 }
1439 }
1440 *pprev_reload = 0;
1441 }
1442 \f
1443 /* Comparison function for qsort to decide which of two reloads
1444 should be handled first. *P1 and *P2 are the reload numbers. */
1445
1446 static int
1447 reload_reg_class_lower (r1p, r2p)
1448 const PTR r1p;
1449 const PTR r2p;
1450 {
1451 register int r1 = *(const short *)r1p, r2 = *(const short *)r2p;
1452 register int t;
1453
1454 /* Consider required reloads before optional ones. */
1455 t = rld[r1].optional - rld[r2].optional;
1456 if (t != 0)
1457 return t;
1458
1459 /* Count all solitary classes before non-solitary ones. */
1460 t = ((reg_class_size[(int) rld[r2].class] == 1)
1461 - (reg_class_size[(int) rld[r1].class] == 1));
1462 if (t != 0)
1463 return t;
1464
1465 /* Aside from solitaires, consider all multi-reg groups first. */
1466 t = rld[r2].nregs - rld[r1].nregs;
1467 if (t != 0)
1468 return t;
1469
1470 /* Consider reloads in order of increasing reg-class number. */
1471 t = (int) rld[r1].class - (int) rld[r2].class;
1472 if (t != 0)
1473 return t;
1474
1475 /* If reloads are equally urgent, sort by reload number,
1476 so that the results of qsort leave nothing to chance. */
1477 return r1 - r2;
1478 }
1479 \f
1480 /* The cost of spilling each hard reg. */
1481 static int spill_cost[FIRST_PSEUDO_REGISTER];
1482
1483 /* When spilling multiple hard registers, we use SPILL_COST for the first
1484 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1485 only the first hard reg for a multi-reg pseudo. */
1486 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1487
1488 /* Update the spill cost arrays, considering that pseudo REG is live. */
1489
1490 static void
1491 count_pseudo (reg)
1492 int reg;
1493 {
1494 int n_refs = REG_N_REFS (reg);
1495 int r = reg_renumber[reg];
1496 int nregs;
1497
1498 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1499 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1500 return;
1501
1502 SET_REGNO_REG_SET (&pseudos_counted, reg);
1503
1504 if (r < 0)
1505 abort ();
1506
1507 spill_add_cost[r] += n_refs;
1508
1509 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1510 while (nregs-- > 0)
1511 spill_cost[r + nregs] += n_refs;
1512 }
1513
1514 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1515 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1516
1517 static void
1518 order_regs_for_reload (chain)
1519 struct insn_chain *chain;
1520 {
1521 int i;
1522 HARD_REG_SET used_by_pseudos;
1523 HARD_REG_SET used_by_pseudos2;
1524
1525 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1526
1527 memset (spill_cost, 0, sizeof spill_cost);
1528 memset (spill_add_cost, 0, sizeof spill_add_cost);
1529
1530 /* Count number of uses of each hard reg by pseudo regs allocated to it
1531 and then order them by decreasing use. First exclude hard registers
1532 that are live in or across this insn. */
1533
1534 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1535 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1536 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1537 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1538
1539 /* Now find out which pseudos are allocated to it, and update
1540 hard_reg_n_uses. */
1541 CLEAR_REG_SET (&pseudos_counted);
1542
1543 EXECUTE_IF_SET_IN_REG_SET
1544 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1545 {
1546 count_pseudo (i);
1547 });
1548 EXECUTE_IF_SET_IN_REG_SET
1549 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1550 {
1551 count_pseudo (i);
1552 });
1553 CLEAR_REG_SET (&pseudos_counted);
1554 }
1555 \f
1556 /* Vector of reload-numbers showing the order in which the reloads should
1557 be processed. */
1558 static short reload_order[MAX_RELOADS];
1559
1560 /* This is used to keep track of the spill regs used in one insn. */
1561 static HARD_REG_SET used_spill_regs_local;
1562
1563 /* We decided to spill hard register SPILLED, which has a size of
1564 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1565 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1566 update SPILL_COST/SPILL_ADD_COST. */
1567
1568 static void
1569 count_spilled_pseudo (spilled, spilled_nregs, reg)
1570 int spilled, spilled_nregs, reg;
1571 {
1572 int r = reg_renumber[reg];
1573 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1574
1575 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1576 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1577 return;
1578
1579 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1580
1581 spill_add_cost[r] -= REG_N_REFS (reg);
1582 while (nregs-- > 0)
1583 spill_cost[r + nregs] -= REG_N_REFS (reg);
1584 }
1585
1586 /* Find reload register to use for reload number ORDER. */
1587
1588 static int
1589 find_reg (chain, order, dumpfile)
1590 struct insn_chain *chain;
1591 int order;
1592 FILE *dumpfile;
1593 {
1594 int rnum = reload_order[order];
1595 struct reload *rl = rld + rnum;
1596 int best_cost = INT_MAX;
1597 int best_reg = -1;
1598 unsigned int i, j;
1599 int k;
1600 HARD_REG_SET not_usable;
1601 HARD_REG_SET used_by_other_reload;
1602
1603 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1604 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1605 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1606
1607 CLEAR_HARD_REG_SET (used_by_other_reload);
1608 for (k = 0; k < order; k++)
1609 {
1610 int other = reload_order[k];
1611
1612 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1613 for (j = 0; j < rld[other].nregs; j++)
1614 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1615 }
1616
1617 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1618 {
1619 unsigned int regno = i;
1620
1621 if (! TEST_HARD_REG_BIT (not_usable, regno)
1622 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1623 && HARD_REGNO_MODE_OK (regno, rl->mode))
1624 {
1625 int this_cost = spill_cost[regno];
1626 int ok = 1;
1627 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1628
1629 for (j = 1; j < this_nregs; j++)
1630 {
1631 this_cost += spill_add_cost[regno + j];
1632 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1633 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1634 ok = 0;
1635 }
1636 if (! ok)
1637 continue;
1638 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1639 this_cost--;
1640 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1641 this_cost--;
1642 if (this_cost < best_cost
1643 /* Among registers with equal cost, prefer caller-saved ones, or
1644 use REG_ALLOC_ORDER if it is defined. */
1645 || (this_cost == best_cost
1646 #ifdef REG_ALLOC_ORDER
1647 && (inv_reg_alloc_order[regno]
1648 < inv_reg_alloc_order[best_reg])
1649 #else
1650 && call_used_regs[regno]
1651 && ! call_used_regs[best_reg]
1652 #endif
1653 ))
1654 {
1655 best_reg = regno;
1656 best_cost = this_cost;
1657 }
1658 }
1659 }
1660 if (best_reg == -1)
1661 return 0;
1662
1663 if (dumpfile)
1664 fprintf (dumpfile, "Using reg %d for reload %d\n", best_reg, rnum);
1665
1666 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1667 rl->regno = best_reg;
1668
1669 EXECUTE_IF_SET_IN_REG_SET
1670 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1671 {
1672 count_spilled_pseudo (best_reg, rl->nregs, j);
1673 });
1674
1675 EXECUTE_IF_SET_IN_REG_SET
1676 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1677 {
1678 count_spilled_pseudo (best_reg, rl->nregs, j);
1679 });
1680
1681 for (i = 0; i < rl->nregs; i++)
1682 {
1683 if (spill_cost[best_reg + i] != 0
1684 || spill_add_cost[best_reg + i] != 0)
1685 abort ();
1686 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1687 }
1688 return 1;
1689 }
1690
1691 /* Find more reload regs to satisfy the remaining need of an insn, which
1692 is given by CHAIN.
1693 Do it by ascending class number, since otherwise a reg
1694 might be spilled for a big class and might fail to count
1695 for a smaller class even though it belongs to that class. */
1696
1697 static void
1698 find_reload_regs (chain, dumpfile)
1699 struct insn_chain *chain;
1700 FILE *dumpfile;
1701 {
1702 int i;
1703
1704 /* In order to be certain of getting the registers we need,
1705 we must sort the reloads into order of increasing register class.
1706 Then our grabbing of reload registers will parallel the process
1707 that provided the reload registers. */
1708 for (i = 0; i < chain->n_reloads; i++)
1709 {
1710 /* Show whether this reload already has a hard reg. */
1711 if (chain->rld[i].reg_rtx)
1712 {
1713 int regno = REGNO (chain->rld[i].reg_rtx);
1714 chain->rld[i].regno = regno;
1715 chain->rld[i].nregs
1716 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1717 }
1718 else
1719 chain->rld[i].regno = -1;
1720 reload_order[i] = i;
1721 }
1722
1723 n_reloads = chain->n_reloads;
1724 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1725
1726 CLEAR_HARD_REG_SET (used_spill_regs_local);
1727
1728 if (dumpfile)
1729 fprintf (dumpfile, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1730
1731 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1732
1733 /* Compute the order of preference for hard registers to spill. */
1734
1735 order_regs_for_reload (chain);
1736
1737 for (i = 0; i < n_reloads; i++)
1738 {
1739 int r = reload_order[i];
1740
1741 /* Ignore reloads that got marked inoperative. */
1742 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1743 && ! rld[r].optional
1744 && rld[r].regno == -1)
1745 if (! find_reg (chain, i, dumpfile))
1746 {
1747 spill_failure (chain->insn, rld[r].class);
1748 failure = 1;
1749 return;
1750 }
1751 }
1752
1753 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1754 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1755
1756 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1757 }
1758
1759 static void
1760 select_reload_regs (dumpfile)
1761 FILE *dumpfile;
1762 {
1763 struct insn_chain *chain;
1764
1765 /* Try to satisfy the needs for each insn. */
1766 for (chain = insns_need_reload; chain != 0;
1767 chain = chain->next_need_reload)
1768 find_reload_regs (chain, dumpfile);
1769 }
1770 \f
1771 /* Delete all insns that were inserted by emit_caller_save_insns during
1772 this iteration. */
1773 static void
1774 delete_caller_save_insns ()
1775 {
1776 struct insn_chain *c = reload_insn_chain;
1777
1778 while (c != 0)
1779 {
1780 while (c != 0 && c->is_caller_save_insn)
1781 {
1782 struct insn_chain *next = c->next;
1783 rtx insn = c->insn;
1784
1785 if (insn == BLOCK_HEAD (c->block))
1786 BLOCK_HEAD (c->block) = NEXT_INSN (insn);
1787 if (insn == BLOCK_END (c->block))
1788 BLOCK_END (c->block) = PREV_INSN (insn);
1789 if (c == reload_insn_chain)
1790 reload_insn_chain = next;
1791
1792 if (NEXT_INSN (insn) != 0)
1793 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1794 if (PREV_INSN (insn) != 0)
1795 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1796
1797 if (next)
1798 next->prev = c->prev;
1799 if (c->prev)
1800 c->prev->next = next;
1801 c->next = unused_insn_chains;
1802 unused_insn_chains = c;
1803 c = next;
1804 }
1805 if (c != 0)
1806 c = c->next;
1807 }
1808 }
1809 \f
1810 /* Handle the failure to find a register to spill.
1811 INSN should be one of the insns which needed this particular spill reg. */
1812
1813 static void
1814 spill_failure (insn, class)
1815 rtx insn;
1816 enum reg_class class;
1817 {
1818 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1819 if (asm_noperands (PATTERN (insn)) >= 0)
1820 error_for_asm (insn, "Can't find a register in class `%s' while reloading `asm'.",
1821 reg_class_names[class]);
1822 else
1823 {
1824 error ("Unable to find a register to spill in class `%s'.",
1825 reg_class_names[class]);
1826 fatal_insn ("This is the insn:", insn);
1827 }
1828 }
1829 \f
1830 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1831 data that is dead in INSN. */
1832
1833 static void
1834 delete_dead_insn (insn)
1835 rtx insn;
1836 {
1837 rtx prev = prev_real_insn (insn);
1838 rtx prev_dest;
1839
1840 /* If the previous insn sets a register that dies in our insn, delete it
1841 too. */
1842 if (prev && GET_CODE (PATTERN (prev)) == SET
1843 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1844 && reg_mentioned_p (prev_dest, PATTERN (insn))
1845 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1846 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1847 delete_dead_insn (prev);
1848
1849 PUT_CODE (insn, NOTE);
1850 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1851 NOTE_SOURCE_FILE (insn) = 0;
1852 }
1853
1854 /* Modify the home of pseudo-reg I.
1855 The new home is present in reg_renumber[I].
1856
1857 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1858 or it may be -1, meaning there is none or it is not relevant.
1859 This is used so that all pseudos spilled from a given hard reg
1860 can share one stack slot. */
1861
1862 static void
1863 alter_reg (i, from_reg)
1864 register int i;
1865 int from_reg;
1866 {
1867 /* When outputting an inline function, this can happen
1868 for a reg that isn't actually used. */
1869 if (regno_reg_rtx[i] == 0)
1870 return;
1871
1872 /* If the reg got changed to a MEM at rtl-generation time,
1873 ignore it. */
1874 if (GET_CODE (regno_reg_rtx[i]) != REG)
1875 return;
1876
1877 /* Modify the reg-rtx to contain the new hard reg
1878 number or else to contain its pseudo reg number. */
1879 REGNO (regno_reg_rtx[i])
1880 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1881
1882 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1883 allocate a stack slot for it. */
1884
1885 if (reg_renumber[i] < 0
1886 && REG_N_REFS (i) > 0
1887 && reg_equiv_constant[i] == 0
1888 && reg_equiv_memory_loc[i] == 0)
1889 {
1890 register rtx x;
1891 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1892 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1893 int adjust = 0;
1894
1895 /* Each pseudo reg has an inherent size which comes from its own mode,
1896 and a total size which provides room for paradoxical subregs
1897 which refer to the pseudo reg in wider modes.
1898
1899 We can use a slot already allocated if it provides both
1900 enough inherent space and enough total space.
1901 Otherwise, we allocate a new slot, making sure that it has no less
1902 inherent space, and no less total space, then the previous slot. */
1903 if (from_reg == -1)
1904 {
1905 /* No known place to spill from => no slot to reuse. */
1906 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1907 inherent_size == total_size ? 0 : -1);
1908 if (BYTES_BIG_ENDIAN)
1909 /* Cancel the big-endian correction done in assign_stack_local.
1910 Get the address of the beginning of the slot.
1911 This is so we can do a big-endian correction unconditionally
1912 below. */
1913 adjust = inherent_size - total_size;
1914
1915 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1916
1917 /* Nothing can alias this slot except this pseudo. */
1918 MEM_ALIAS_SET (x) = new_alias_set ();
1919 }
1920
1921 /* Reuse a stack slot if possible. */
1922 else if (spill_stack_slot[from_reg] != 0
1923 && spill_stack_slot_width[from_reg] >= total_size
1924 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1925 >= inherent_size))
1926 x = spill_stack_slot[from_reg];
1927
1928 /* Allocate a bigger slot. */
1929 else
1930 {
1931 /* Compute maximum size needed, both for inherent size
1932 and for total size. */
1933 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1934 rtx stack_slot;
1935
1936 if (spill_stack_slot[from_reg])
1937 {
1938 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1939 > inherent_size)
1940 mode = GET_MODE (spill_stack_slot[from_reg]);
1941 if (spill_stack_slot_width[from_reg] > total_size)
1942 total_size = spill_stack_slot_width[from_reg];
1943 }
1944
1945 /* Make a slot with that size. */
1946 x = assign_stack_local (mode, total_size,
1947 inherent_size == total_size ? 0 : -1);
1948 stack_slot = x;
1949
1950 /* All pseudos mapped to this slot can alias each other. */
1951 if (spill_stack_slot[from_reg])
1952 MEM_ALIAS_SET (x) = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
1953 else
1954 MEM_ALIAS_SET (x) = new_alias_set ();
1955
1956 if (BYTES_BIG_ENDIAN)
1957 {
1958 /* Cancel the big-endian correction done in assign_stack_local.
1959 Get the address of the beginning of the slot.
1960 This is so we can do a big-endian correction unconditionally
1961 below. */
1962 adjust = GET_MODE_SIZE (mode) - total_size;
1963 if (adjust)
1964 stack_slot = gen_rtx_MEM (mode_for_size (total_size
1965 * BITS_PER_UNIT,
1966 MODE_INT, 1),
1967 plus_constant (XEXP (x, 0), adjust));
1968 }
1969
1970 spill_stack_slot[from_reg] = stack_slot;
1971 spill_stack_slot_width[from_reg] = total_size;
1972 }
1973
1974 /* On a big endian machine, the "address" of the slot
1975 is the address of the low part that fits its inherent mode. */
1976 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
1977 adjust += (total_size - inherent_size);
1978
1979 /* If we have any adjustment to make, or if the stack slot is the
1980 wrong mode, make a new stack slot. */
1981 if (adjust != 0 || GET_MODE (x) != GET_MODE (regno_reg_rtx[i]))
1982 {
1983 rtx new = gen_rtx_MEM (GET_MODE (regno_reg_rtx[i]),
1984 plus_constant (XEXP (x, 0), adjust));
1985
1986 MEM_COPY_ATTRIBUTES (new, x);
1987 x = new;
1988 }
1989
1990 /* Save the stack slot for later. */
1991 reg_equiv_memory_loc[i] = x;
1992 }
1993 }
1994
1995 /* Mark the slots in regs_ever_live for the hard regs
1996 used by pseudo-reg number REGNO. */
1997
1998 void
1999 mark_home_live (regno)
2000 int regno;
2001 {
2002 register int i, lim;
2003
2004 i = reg_renumber[regno];
2005 if (i < 0)
2006 return;
2007 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2008 while (i < lim)
2009 regs_ever_live[i++] = 1;
2010 }
2011 \f
2012 /* This function handles the tracking of elimination offsets around branches.
2013
2014 X is a piece of RTL being scanned.
2015
2016 INSN is the insn that it came from, if any.
2017
2018 INITIAL_P is non-zero if we are to set the offset to be the initial
2019 offset and zero if we are setting the offset of the label to be the
2020 current offset. */
2021
2022 static void
2023 set_label_offsets (x, insn, initial_p)
2024 rtx x;
2025 rtx insn;
2026 int initial_p;
2027 {
2028 enum rtx_code code = GET_CODE (x);
2029 rtx tem;
2030 unsigned int i;
2031 struct elim_table *p;
2032
2033 switch (code)
2034 {
2035 case LABEL_REF:
2036 if (LABEL_REF_NONLOCAL_P (x))
2037 return;
2038
2039 x = XEXP (x, 0);
2040
2041 /* ... fall through ... */
2042
2043 case CODE_LABEL:
2044 /* If we know nothing about this label, set the desired offsets. Note
2045 that this sets the offset at a label to be the offset before a label
2046 if we don't know anything about the label. This is not correct for
2047 the label after a BARRIER, but is the best guess we can make. If
2048 we guessed wrong, we will suppress an elimination that might have
2049 been possible had we been able to guess correctly. */
2050
2051 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2052 {
2053 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2054 offsets_at[CODE_LABEL_NUMBER (x)][i]
2055 = (initial_p ? reg_eliminate[i].initial_offset
2056 : reg_eliminate[i].offset);
2057 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2058 }
2059
2060 /* Otherwise, if this is the definition of a label and it is
2061 preceded by a BARRIER, set our offsets to the known offset of
2062 that label. */
2063
2064 else if (x == insn
2065 && (tem = prev_nonnote_insn (insn)) != 0
2066 && GET_CODE (tem) == BARRIER)
2067 set_offsets_for_label (insn);
2068 else
2069 /* If neither of the above cases is true, compare each offset
2070 with those previously recorded and suppress any eliminations
2071 where the offsets disagree. */
2072
2073 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2074 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2075 != (initial_p ? reg_eliminate[i].initial_offset
2076 : reg_eliminate[i].offset))
2077 reg_eliminate[i].can_eliminate = 0;
2078
2079 return;
2080
2081 case JUMP_INSN:
2082 set_label_offsets (PATTERN (insn), insn, initial_p);
2083
2084 /* ... fall through ... */
2085
2086 case INSN:
2087 case CALL_INSN:
2088 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2089 and hence must have all eliminations at their initial offsets. */
2090 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2091 if (REG_NOTE_KIND (tem) == REG_LABEL)
2092 set_label_offsets (XEXP (tem, 0), insn, 1);
2093 return;
2094
2095 case ADDR_VEC:
2096 case ADDR_DIFF_VEC:
2097 /* Each of the labels in the address vector must be at their initial
2098 offsets. We want the first field for ADDR_VEC and the second
2099 field for ADDR_DIFF_VEC. */
2100
2101 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2102 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2103 insn, initial_p);
2104 return;
2105
2106 case SET:
2107 /* We only care about setting PC. If the source is not RETURN,
2108 IF_THEN_ELSE, or a label, disable any eliminations not at
2109 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2110 isn't one of those possibilities. For branches to a label,
2111 call ourselves recursively.
2112
2113 Note that this can disable elimination unnecessarily when we have
2114 a non-local goto since it will look like a non-constant jump to
2115 someplace in the current function. This isn't a significant
2116 problem since such jumps will normally be when all elimination
2117 pairs are back to their initial offsets. */
2118
2119 if (SET_DEST (x) != pc_rtx)
2120 return;
2121
2122 switch (GET_CODE (SET_SRC (x)))
2123 {
2124 case PC:
2125 case RETURN:
2126 return;
2127
2128 case LABEL_REF:
2129 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2130 return;
2131
2132 case IF_THEN_ELSE:
2133 tem = XEXP (SET_SRC (x), 1);
2134 if (GET_CODE (tem) == LABEL_REF)
2135 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2136 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2137 break;
2138
2139 tem = XEXP (SET_SRC (x), 2);
2140 if (GET_CODE (tem) == LABEL_REF)
2141 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2142 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2143 break;
2144 return;
2145
2146 default:
2147 break;
2148 }
2149
2150 /* If we reach here, all eliminations must be at their initial
2151 offset because we are doing a jump to a variable address. */
2152 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2153 if (p->offset != p->initial_offset)
2154 p->can_eliminate = 0;
2155 break;
2156
2157 default:
2158 break;
2159 }
2160 }
2161 \f
2162 /* Scan X and replace any eliminable registers (such as fp) with a
2163 replacement (such as sp), plus an offset.
2164
2165 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2166 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2167 MEM, we are allowed to replace a sum of a register and the constant zero
2168 with the register, which we cannot do outside a MEM. In addition, we need
2169 to record the fact that a register is referenced outside a MEM.
2170
2171 If INSN is an insn, it is the insn containing X. If we replace a REG
2172 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2173 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2174 the REG is being modified.
2175
2176 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2177 That's used when we eliminate in expressions stored in notes.
2178 This means, do not set ref_outside_mem even if the reference
2179 is outside of MEMs.
2180
2181 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2182 replacements done assuming all offsets are at their initial values. If
2183 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2184 encounter, return the actual location so that find_reloads will do
2185 the proper thing. */
2186
2187 rtx
2188 eliminate_regs (x, mem_mode, insn)
2189 rtx x;
2190 enum machine_mode mem_mode;
2191 rtx insn;
2192 {
2193 enum rtx_code code = GET_CODE (x);
2194 struct elim_table *ep;
2195 int regno;
2196 rtx new;
2197 int i, j;
2198 const char *fmt;
2199 int copied = 0;
2200
2201 if (! current_function_decl)
2202 return x;
2203
2204 switch (code)
2205 {
2206 case CONST_INT:
2207 case CONST_DOUBLE:
2208 case CONST:
2209 case SYMBOL_REF:
2210 case CODE_LABEL:
2211 case PC:
2212 case CC0:
2213 case ASM_INPUT:
2214 case ADDR_VEC:
2215 case ADDR_DIFF_VEC:
2216 case RETURN:
2217 return x;
2218
2219 case ADDRESSOF:
2220 /* This is only for the benefit of the debugging backends, which call
2221 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2222 removed after CSE. */
2223 new = eliminate_regs (XEXP (x, 0), 0, insn);
2224 if (GET_CODE (new) == MEM)
2225 return XEXP (new, 0);
2226 return x;
2227
2228 case REG:
2229 regno = REGNO (x);
2230
2231 /* First handle the case where we encounter a bare register that
2232 is eliminable. Replace it with a PLUS. */
2233 if (regno < FIRST_PSEUDO_REGISTER)
2234 {
2235 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2236 ep++)
2237 if (ep->from_rtx == x && ep->can_eliminate)
2238 return plus_constant (ep->to_rtx, ep->previous_offset);
2239
2240 }
2241 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2242 && reg_equiv_constant[regno]
2243 && ! CONSTANT_P (reg_equiv_constant[regno]))
2244 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2245 mem_mode, insn);
2246 return x;
2247
2248 /* You might think handling MINUS in a manner similar to PLUS is a
2249 good idea. It is not. It has been tried multiple times and every
2250 time the change has had to have been reverted.
2251
2252 Other parts of reload know a PLUS is special (gen_reload for example)
2253 and require special code to handle code a reloaded PLUS operand.
2254
2255 Also consider backends where the flags register is clobbered by a
2256 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2257 lea instruction comes to mind). If we try to reload a MINUS, we
2258 may kill the flags register that was holding a useful value.
2259
2260 So, please before trying to handle MINUS, consider reload as a
2261 whole instead of this little section as well as the backend issues. */
2262 case PLUS:
2263 /* If this is the sum of an eliminable register and a constant, rework
2264 the sum. */
2265 if (GET_CODE (XEXP (x, 0)) == REG
2266 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2267 && CONSTANT_P (XEXP (x, 1)))
2268 {
2269 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2270 ep++)
2271 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2272 {
2273 /* The only time we want to replace a PLUS with a REG (this
2274 occurs when the constant operand of the PLUS is the negative
2275 of the offset) is when we are inside a MEM. We won't want
2276 to do so at other times because that would change the
2277 structure of the insn in a way that reload can't handle.
2278 We special-case the commonest situation in
2279 eliminate_regs_in_insn, so just replace a PLUS with a
2280 PLUS here, unless inside a MEM. */
2281 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2282 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2283 return ep->to_rtx;
2284 else
2285 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2286 plus_constant (XEXP (x, 1),
2287 ep->previous_offset));
2288 }
2289
2290 /* If the register is not eliminable, we are done since the other
2291 operand is a constant. */
2292 return x;
2293 }
2294
2295 /* If this is part of an address, we want to bring any constant to the
2296 outermost PLUS. We will do this by doing register replacement in
2297 our operands and seeing if a constant shows up in one of them.
2298
2299 Note that there is no risk of modifying the structure of the insn,
2300 since we only get called for its operands, thus we are either
2301 modifying the address inside a MEM, or something like an address
2302 operand of a load-address insn. */
2303
2304 {
2305 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2306 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2307
2308 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2309 {
2310 /* If one side is a PLUS and the other side is a pseudo that
2311 didn't get a hard register but has a reg_equiv_constant,
2312 we must replace the constant here since it may no longer
2313 be in the position of any operand. */
2314 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2315 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2316 && reg_renumber[REGNO (new1)] < 0
2317 && reg_equiv_constant != 0
2318 && reg_equiv_constant[REGNO (new1)] != 0)
2319 new1 = reg_equiv_constant[REGNO (new1)];
2320 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2321 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2322 && reg_renumber[REGNO (new0)] < 0
2323 && reg_equiv_constant[REGNO (new0)] != 0)
2324 new0 = reg_equiv_constant[REGNO (new0)];
2325
2326 new = form_sum (new0, new1);
2327
2328 /* As above, if we are not inside a MEM we do not want to
2329 turn a PLUS into something else. We might try to do so here
2330 for an addition of 0 if we aren't optimizing. */
2331 if (! mem_mode && GET_CODE (new) != PLUS)
2332 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2333 else
2334 return new;
2335 }
2336 }
2337 return x;
2338
2339 case MULT:
2340 /* If this is the product of an eliminable register and a
2341 constant, apply the distribute law and move the constant out
2342 so that we have (plus (mult ..) ..). This is needed in order
2343 to keep load-address insns valid. This case is pathological.
2344 We ignore the possibility of overflow here. */
2345 if (GET_CODE (XEXP (x, 0)) == REG
2346 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2347 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2348 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2349 ep++)
2350 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2351 {
2352 if (! mem_mode
2353 /* Refs inside notes don't count for this purpose. */
2354 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2355 || GET_CODE (insn) == INSN_LIST)))
2356 ep->ref_outside_mem = 1;
2357
2358 return
2359 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2360 ep->previous_offset * INTVAL (XEXP (x, 1)));
2361 }
2362
2363 /* ... fall through ... */
2364
2365 case CALL:
2366 case COMPARE:
2367 /* See comments before PLUS about handling MINUS. */
2368 case MINUS:
2369 case DIV: case UDIV:
2370 case MOD: case UMOD:
2371 case AND: case IOR: case XOR:
2372 case ROTATERT: case ROTATE:
2373 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2374 case NE: case EQ:
2375 case GE: case GT: case GEU: case GTU:
2376 case LE: case LT: case LEU: case LTU:
2377 {
2378 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2379 rtx new1
2380 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2381
2382 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2383 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2384 }
2385 return x;
2386
2387 case EXPR_LIST:
2388 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2389 if (XEXP (x, 0))
2390 {
2391 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2392 if (new != XEXP (x, 0))
2393 {
2394 /* If this is a REG_DEAD note, it is not valid anymore.
2395 Using the eliminated version could result in creating a
2396 REG_DEAD note for the stack or frame pointer. */
2397 if (GET_MODE (x) == REG_DEAD)
2398 return (XEXP (x, 1)
2399 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2400 : NULL_RTX);
2401
2402 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2403 }
2404 }
2405
2406 /* ... fall through ... */
2407
2408 case INSN_LIST:
2409 /* Now do eliminations in the rest of the chain. If this was
2410 an EXPR_LIST, this might result in allocating more memory than is
2411 strictly needed, but it simplifies the code. */
2412 if (XEXP (x, 1))
2413 {
2414 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2415 if (new != XEXP (x, 1))
2416 return gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2417 }
2418 return x;
2419
2420 case PRE_INC:
2421 case POST_INC:
2422 case PRE_DEC:
2423 case POST_DEC:
2424 case STRICT_LOW_PART:
2425 case NEG: case NOT:
2426 case SIGN_EXTEND: case ZERO_EXTEND:
2427 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2428 case FLOAT: case FIX:
2429 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2430 case ABS:
2431 case SQRT:
2432 case FFS:
2433 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2434 if (new != XEXP (x, 0))
2435 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2436 return x;
2437
2438 case SUBREG:
2439 /* Similar to above processing, but preserve SUBREG_WORD.
2440 Convert (subreg (mem)) to (mem) if not paradoxical.
2441 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2442 pseudo didn't get a hard reg, we must replace this with the
2443 eliminated version of the memory location because push_reloads
2444 may do the replacement in certain circumstances. */
2445 if (GET_CODE (SUBREG_REG (x)) == REG
2446 && (GET_MODE_SIZE (GET_MODE (x))
2447 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2448 && reg_equiv_memory_loc != 0
2449 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2450 {
2451 new = SUBREG_REG (x);
2452 }
2453 else
2454 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2455
2456 if (new != XEXP (x, 0))
2457 {
2458 int x_size = GET_MODE_SIZE (GET_MODE (x));
2459 int new_size = GET_MODE_SIZE (GET_MODE (new));
2460
2461 if (GET_CODE (new) == MEM
2462 && ((x_size < new_size
2463 #ifdef WORD_REGISTER_OPERATIONS
2464 /* On these machines, combine can create rtl of the form
2465 (set (subreg:m1 (reg:m2 R) 0) ...)
2466 where m1 < m2, and expects something interesting to
2467 happen to the entire word. Moreover, it will use the
2468 (reg:m2 R) later, expecting all bits to be preserved.
2469 So if the number of words is the same, preserve the
2470 subreg so that push_reloads can see it. */
2471 && ! ((x_size-1)/UNITS_PER_WORD == (new_size-1)/UNITS_PER_WORD)
2472 #endif
2473 )
2474 || (x_size == new_size))
2475 )
2476 {
2477 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2478 enum machine_mode mode = GET_MODE (x);
2479
2480 if (BYTES_BIG_ENDIAN)
2481 offset += (MIN (UNITS_PER_WORD,
2482 GET_MODE_SIZE (GET_MODE (new)))
2483 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2484
2485 PUT_MODE (new, mode);
2486 XEXP (new, 0) = plus_constant (XEXP (new, 0), offset);
2487 return new;
2488 }
2489 else
2490 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_WORD (x));
2491 }
2492
2493 return x;
2494
2495 case MEM:
2496 /* This is only for the benefit of the debugging backends, which call
2497 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2498 removed after CSE. */
2499 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2500 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2501
2502 /* Our only special processing is to pass the mode of the MEM to our
2503 recursive call and copy the flags. While we are here, handle this
2504 case more efficiently. */
2505 new = eliminate_regs (XEXP (x, 0), GET_MODE (x), insn);
2506 if (new != XEXP (x, 0))
2507 {
2508 new = gen_rtx_MEM (GET_MODE (x), new);
2509 MEM_COPY_ATTRIBUTES (new, x);
2510 return new;
2511 }
2512 else
2513 return x;
2514
2515 case USE:
2516 case CLOBBER:
2517 case ASM_OPERANDS:
2518 case SET:
2519 abort ();
2520
2521 default:
2522 break;
2523 }
2524
2525 /* Process each of our operands recursively. If any have changed, make a
2526 copy of the rtx. */
2527 fmt = GET_RTX_FORMAT (code);
2528 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2529 {
2530 if (*fmt == 'e')
2531 {
2532 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2533 if (new != XEXP (x, i) && ! copied)
2534 {
2535 rtx new_x = rtx_alloc (code);
2536 bcopy ((char *) x, (char *) new_x,
2537 (sizeof (*new_x) - sizeof (new_x->fld)
2538 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2539 x = new_x;
2540 copied = 1;
2541 }
2542 XEXP (x, i) = new;
2543 }
2544 else if (*fmt == 'E')
2545 {
2546 int copied_vec = 0;
2547 for (j = 0; j < XVECLEN (x, i); j++)
2548 {
2549 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2550 if (new != XVECEXP (x, i, j) && ! copied_vec)
2551 {
2552 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2553 XVEC (x, i)->elem);
2554 if (! copied)
2555 {
2556 rtx new_x = rtx_alloc (code);
2557 bcopy ((char *) x, (char *) new_x,
2558 (sizeof (*new_x) - sizeof (new_x->fld)
2559 + (sizeof (new_x->fld[0])
2560 * GET_RTX_LENGTH (code))));
2561 x = new_x;
2562 copied = 1;
2563 }
2564 XVEC (x, i) = new_v;
2565 copied_vec = 1;
2566 }
2567 XVECEXP (x, i, j) = new;
2568 }
2569 }
2570 }
2571
2572 return x;
2573 }
2574
2575 /* Scan rtx X for modifications of elimination target registers. Update
2576 the table of eliminables to reflect the changed state. MEM_MODE is
2577 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2578
2579 static void
2580 elimination_effects (x, mem_mode)
2581 rtx x;
2582 enum machine_mode mem_mode;
2583
2584 {
2585 enum rtx_code code = GET_CODE (x);
2586 struct elim_table *ep;
2587 int regno;
2588 int i, j;
2589 const char *fmt;
2590
2591 switch (code)
2592 {
2593 case CONST_INT:
2594 case CONST_DOUBLE:
2595 case CONST:
2596 case SYMBOL_REF:
2597 case CODE_LABEL:
2598 case PC:
2599 case CC0:
2600 case ASM_INPUT:
2601 case ADDR_VEC:
2602 case ADDR_DIFF_VEC:
2603 case RETURN:
2604 return;
2605
2606 case ADDRESSOF:
2607 abort ();
2608
2609 case REG:
2610 regno = REGNO (x);
2611
2612 /* First handle the case where we encounter a bare register that
2613 is eliminable. Replace it with a PLUS. */
2614 if (regno < FIRST_PSEUDO_REGISTER)
2615 {
2616 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2617 ep++)
2618 if (ep->from_rtx == x && ep->can_eliminate)
2619 {
2620 if (! mem_mode)
2621 ep->ref_outside_mem = 1;
2622 return;
2623 }
2624
2625 }
2626 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2627 && reg_equiv_constant[regno]
2628 && ! CONSTANT_P (reg_equiv_constant[regno]))
2629 elimination_effects (reg_equiv_constant[regno], mem_mode);
2630 return;
2631
2632 case PRE_INC:
2633 case POST_INC:
2634 case PRE_DEC:
2635 case POST_DEC:
2636 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2637 if (ep->to_rtx == XEXP (x, 0))
2638 {
2639 int size = GET_MODE_SIZE (mem_mode);
2640
2641 /* If more bytes than MEM_MODE are pushed, account for them. */
2642 #ifdef PUSH_ROUNDING
2643 if (ep->to_rtx == stack_pointer_rtx)
2644 size = PUSH_ROUNDING (size);
2645 #endif
2646 if (code == PRE_DEC || code == POST_DEC)
2647 ep->offset += size;
2648 else
2649 ep->offset -= size;
2650 }
2651
2652 /* Fall through to generic unary operation case. */
2653 case STRICT_LOW_PART:
2654 case NEG: case NOT:
2655 case SIGN_EXTEND: case ZERO_EXTEND:
2656 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2657 case FLOAT: case FIX:
2658 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2659 case ABS:
2660 case SQRT:
2661 case FFS:
2662 elimination_effects (XEXP (x, 0), mem_mode);
2663 return;
2664
2665 case SUBREG:
2666 if (GET_CODE (SUBREG_REG (x)) == REG
2667 && (GET_MODE_SIZE (GET_MODE (x))
2668 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2669 && reg_equiv_memory_loc != 0
2670 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2671 return;
2672
2673 elimination_effects (SUBREG_REG (x), mem_mode);
2674 return;
2675
2676 case USE:
2677 /* If using a register that is the source of an eliminate we still
2678 think can be performed, note it cannot be performed since we don't
2679 know how this register is used. */
2680 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2681 if (ep->from_rtx == XEXP (x, 0))
2682 ep->can_eliminate = 0;
2683
2684 elimination_effects (XEXP (x, 0), mem_mode);
2685 return;
2686
2687 case CLOBBER:
2688 /* If clobbering a register that is the replacement register for an
2689 elimination we still think can be performed, note that it cannot
2690 be performed. Otherwise, we need not be concerned about it. */
2691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2692 if (ep->to_rtx == XEXP (x, 0))
2693 ep->can_eliminate = 0;
2694
2695 elimination_effects (XEXP (x, 0), mem_mode);
2696 return;
2697
2698 case SET:
2699 /* Check for setting a register that we know about. */
2700 if (GET_CODE (SET_DEST (x)) == REG)
2701 {
2702 /* See if this is setting the replacement register for an
2703 elimination.
2704
2705 If DEST is the hard frame pointer, we do nothing because we
2706 assume that all assignments to the frame pointer are for
2707 non-local gotos and are being done at a time when they are valid
2708 and do not disturb anything else. Some machines want to
2709 eliminate a fake argument pointer (or even a fake frame pointer)
2710 with either the real frame or the stack pointer. Assignments to
2711 the hard frame pointer must not prevent this elimination. */
2712
2713 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2714 ep++)
2715 if (ep->to_rtx == SET_DEST (x)
2716 && SET_DEST (x) != hard_frame_pointer_rtx)
2717 {
2718 /* If it is being incremented, adjust the offset. Otherwise,
2719 this elimination can't be done. */
2720 rtx src = SET_SRC (x);
2721
2722 if (GET_CODE (src) == PLUS
2723 && XEXP (src, 0) == SET_DEST (x)
2724 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2725 ep->offset -= INTVAL (XEXP (src, 1));
2726 else
2727 ep->can_eliminate = 0;
2728 }
2729 }
2730
2731 elimination_effects (SET_DEST (x), 0);
2732 elimination_effects (SET_SRC (x), 0);
2733 return;
2734
2735 case MEM:
2736 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2737 abort ();
2738
2739 /* Our only special processing is to pass the mode of the MEM to our
2740 recursive call. */
2741 elimination_effects (XEXP (x, 0), GET_MODE (x));
2742 return;
2743
2744 default:
2745 break;
2746 }
2747
2748 fmt = GET_RTX_FORMAT (code);
2749 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2750 {
2751 if (*fmt == 'e')
2752 elimination_effects (XEXP (x, i), mem_mode);
2753 else if (*fmt == 'E')
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 elimination_effects (XVECEXP (x, i, j), mem_mode);
2756 }
2757 }
2758
2759 /* Descend through rtx X and verify that no references to eliminable registers
2760 remain. If any do remain, mark the involved register as not
2761 eliminable. */
2762
2763 static void
2764 check_eliminable_occurrences (x)
2765 rtx x;
2766 {
2767 const char *fmt;
2768 int i;
2769 enum rtx_code code;
2770
2771 if (x == 0)
2772 return;
2773
2774 code = GET_CODE (x);
2775
2776 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2777 {
2778 struct elim_table *ep;
2779
2780 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2781 if (ep->from_rtx == x && ep->can_eliminate)
2782 ep->can_eliminate = 0;
2783 return;
2784 }
2785
2786 fmt = GET_RTX_FORMAT (code);
2787 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2788 {
2789 if (*fmt == 'e')
2790 check_eliminable_occurrences (XEXP (x, i));
2791 else if (*fmt == 'E')
2792 {
2793 int j;
2794 for (j = 0; j < XVECLEN (x, i); j++)
2795 check_eliminable_occurrences (XVECEXP (x, i, j));
2796 }
2797 }
2798 }
2799 \f
2800 /* Scan INSN and eliminate all eliminable registers in it.
2801
2802 If REPLACE is nonzero, do the replacement destructively. Also
2803 delete the insn as dead it if it is setting an eliminable register.
2804
2805 If REPLACE is zero, do all our allocations in reload_obstack.
2806
2807 If no eliminations were done and this insn doesn't require any elimination
2808 processing (these are not identical conditions: it might be updating sp,
2809 but not referencing fp; this needs to be seen during reload_as_needed so
2810 that the offset between fp and sp can be taken into consideration), zero
2811 is returned. Otherwise, 1 is returned. */
2812
2813 static int
2814 eliminate_regs_in_insn (insn, replace)
2815 rtx insn;
2816 int replace;
2817 {
2818 int icode = recog_memoized (insn);
2819 rtx old_body = PATTERN (insn);
2820 int insn_is_asm = asm_noperands (old_body) >= 0;
2821 rtx old_set = single_set (insn);
2822 rtx new_body;
2823 int val = 0;
2824 int i, any_changes;
2825 rtx substed_operand[MAX_RECOG_OPERANDS];
2826 rtx orig_operand[MAX_RECOG_OPERANDS];
2827 struct elim_table *ep;
2828
2829 if (! insn_is_asm && icode < 0)
2830 {
2831 if (GET_CODE (PATTERN (insn)) == USE
2832 || GET_CODE (PATTERN (insn)) == CLOBBER
2833 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2834 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2835 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2836 return 0;
2837 abort ();
2838 }
2839
2840 if (! replace)
2841 push_obstacks (&reload_obstack, &reload_obstack);
2842
2843 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2844 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2845 {
2846 /* Check for setting an eliminable register. */
2847 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2848 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2849 {
2850 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2851 /* If this is setting the frame pointer register to the
2852 hardware frame pointer register and this is an elimination
2853 that will be done (tested above), this insn is really
2854 adjusting the frame pointer downward to compensate for
2855 the adjustment done before a nonlocal goto. */
2856 if (ep->from == FRAME_POINTER_REGNUM
2857 && ep->to == HARD_FRAME_POINTER_REGNUM)
2858 {
2859 rtx src = SET_SRC (old_set);
2860 int offset = 0, ok = 0;
2861 rtx prev_insn, prev_set;
2862
2863 if (src == ep->to_rtx)
2864 offset = 0, ok = 1;
2865 else if (GET_CODE (src) == PLUS
2866 && GET_CODE (XEXP (src, 0)) == CONST_INT
2867 && XEXP (src, 1) == ep->to_rtx)
2868 offset = INTVAL (XEXP (src, 0)), ok = 1;
2869 else if (GET_CODE (src) == PLUS
2870 && GET_CODE (XEXP (src, 1)) == CONST_INT
2871 && XEXP (src, 0) == ep->to_rtx)
2872 offset = INTVAL (XEXP (src, 1)), ok = 1;
2873 else if ((prev_insn = prev_nonnote_insn (insn)) != 0
2874 && (prev_set = single_set (prev_insn)) != 0
2875 && rtx_equal_p (SET_DEST (prev_set), src))
2876 {
2877 src = SET_SRC (prev_set);
2878 if (src == ep->to_rtx)
2879 offset = 0, ok = 1;
2880 else if (GET_CODE (src) == PLUS
2881 && GET_CODE (XEXP (src, 0)) == CONST_INT
2882 && XEXP (src, 1) == ep->to_rtx)
2883 offset = INTVAL (XEXP (src, 0)), ok = 1;
2884 else if (GET_CODE (src) == PLUS
2885 && GET_CODE (XEXP (src, 1)) == CONST_INT
2886 && XEXP (src, 0) == ep->to_rtx)
2887 offset = INTVAL (XEXP (src, 1)), ok = 1;
2888 }
2889
2890 if (ok)
2891 {
2892 if (replace)
2893 {
2894 rtx src
2895 = plus_constant (ep->to_rtx, offset - ep->offset);
2896
2897 /* First see if this insn remains valid when we
2898 make the change. If not, keep the INSN_CODE
2899 the same and let reload fit it up. */
2900 validate_change (insn, &SET_SRC (old_set), src, 1);
2901 validate_change (insn, &SET_DEST (old_set),
2902 ep->to_rtx, 1);
2903 if (! apply_change_group ())
2904 {
2905 SET_SRC (old_set) = src;
2906 SET_DEST (old_set) = ep->to_rtx;
2907 }
2908 }
2909
2910 val = 1;
2911 goto done;
2912 }
2913 }
2914 #endif
2915
2916 /* In this case this insn isn't serving a useful purpose. We
2917 will delete it in reload_as_needed once we know that this
2918 elimination is, in fact, being done.
2919
2920 If REPLACE isn't set, we can't delete this insn, but needn't
2921 process it since it won't be used unless something changes. */
2922 if (replace)
2923 {
2924 delete_dead_insn (insn);
2925 return 1;
2926 }
2927 val = 1;
2928 goto done;
2929 }
2930 }
2931
2932 /* We allow one special case which happens to work on all machines we
2933 currently support: a single set with the source being a PLUS of an
2934 eliminable register and a constant. */
2935 if (old_set
2936 && GET_CODE (SET_SRC (old_set)) == PLUS
2937 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
2938 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2939 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2940 {
2941 rtx reg = XEXP (SET_SRC (old_set), 0);
2942 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
2943
2944 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2945 if (ep->from_rtx == reg && ep->can_eliminate)
2946 {
2947 offset += ep->offset;
2948
2949 if (offset == 0)
2950 {
2951 /* We assume here that we don't need a PARALLEL of
2952 any CLOBBERs for this assignment. There's not
2953 much we can do if we do need it. */
2954 PATTERN (insn) = gen_rtx_SET (VOIDmode,
2955 SET_DEST (old_set),
2956 ep->to_rtx);
2957 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
2958 if (INSN_CODE (insn) < 0)
2959 abort ();
2960 }
2961 else
2962 {
2963 new_body = old_body;
2964 if (! replace)
2965 {
2966 new_body = copy_insn (old_body);
2967 if (REG_NOTES (insn))
2968 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2969 }
2970 PATTERN (insn) = new_body;
2971 old_set = single_set (insn);
2972
2973 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
2974 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
2975 }
2976 val = 1;
2977 /* This can't have an effect on elimination offsets, so skip right
2978 to the end. */
2979 goto done;
2980 }
2981 }
2982
2983 /* Determine the effects of this insn on elimination offsets. */
2984 elimination_effects (old_body, 0);
2985
2986 /* Eliminate all eliminable registers occurring in operands that
2987 can be handled by reload. */
2988 extract_insn (insn);
2989 any_changes = 0;
2990 for (i = 0; i < recog_data.n_operands; i++)
2991 {
2992 orig_operand[i] = recog_data.operand[i];
2993 substed_operand[i] = recog_data.operand[i];
2994
2995 /* For an asm statement, every operand is eliminable. */
2996 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
2997 {
2998 /* Check for setting a register that we know about. */
2999 if (recog_data.operand_type[i] != OP_IN
3000 && GET_CODE (orig_operand[i]) == REG)
3001 {
3002 /* If we are assigning to a register that can be eliminated, it
3003 must be as part of a PARALLEL, since the code above handles
3004 single SETs. We must indicate that we can no longer
3005 eliminate this reg. */
3006 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3007 ep++)
3008 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3009 ep->can_eliminate = 0;
3010 }
3011
3012 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3013 replace ? insn : NULL_RTX);
3014 if (substed_operand[i] != orig_operand[i])
3015 val = any_changes = 1;
3016 /* Terminate the search in check_eliminable_occurrences at
3017 this point. */
3018 *recog_data.operand_loc[i] = 0;
3019
3020 /* If an output operand changed from a REG to a MEM and INSN is an
3021 insn, write a CLOBBER insn. */
3022 if (recog_data.operand_type[i] != OP_IN
3023 && GET_CODE (orig_operand[i]) == REG
3024 && GET_CODE (substed_operand[i]) == MEM
3025 && replace)
3026 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3027 insn);
3028 }
3029 }
3030
3031 for (i = 0; i < recog_data.n_dups; i++)
3032 *recog_data.dup_loc[i]
3033 = *recog_data.operand_loc[(int)recog_data.dup_num[i]];
3034
3035 /* If any eliminable remain, they aren't eliminable anymore. */
3036 check_eliminable_occurrences (old_body);
3037
3038 /* Substitute the operands; the new values are in the substed_operand
3039 array. */
3040 for (i = 0; i < recog_data.n_operands; i++)
3041 *recog_data.operand_loc[i] = substed_operand[i];
3042 for (i = 0; i < recog_data.n_dups; i++)
3043 *recog_data.dup_loc[i] = substed_operand[(int)recog_data.dup_num[i]];
3044
3045 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3046 re-recognize the insn. We do this in case we had a simple addition
3047 but now can do this as a load-address. This saves an insn in this
3048 common case.
3049 If re-recognition fails, the old insn code number will still be used,
3050 and some register operands may have changed into PLUS expressions.
3051 These will be handled by find_reloads by loading them into a register
3052 again.*/
3053
3054 if (val)
3055 {
3056 /* If we aren't replacing things permanently and we changed something,
3057 make another copy to ensure that all the RTL is new. Otherwise
3058 things can go wrong if find_reload swaps commutative operands
3059 and one is inside RTL that has been copied while the other is not. */
3060 new_body = old_body;
3061 if (! replace)
3062 {
3063 new_body = copy_insn (old_body);
3064 if (REG_NOTES (insn))
3065 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3066 }
3067 PATTERN (insn) = new_body;
3068
3069 /* If we had a move insn but now we don't, rerecognize it. This will
3070 cause spurious re-recognition if the old move had a PARALLEL since
3071 the new one still will, but we can't call single_set without
3072 having put NEW_BODY into the insn and the re-recognition won't
3073 hurt in this rare case. */
3074 /* ??? Why this huge if statement - why don't we just rerecognize the
3075 thing always? */
3076 if (! insn_is_asm
3077 && old_set != 0
3078 && ((GET_CODE (SET_SRC (old_set)) == REG
3079 && (GET_CODE (new_body) != SET
3080 || GET_CODE (SET_SRC (new_body)) != REG))
3081 /* If this was a load from or store to memory, compare
3082 the MEM in recog_data.operand to the one in the insn.
3083 If they are not equal, then rerecognize the insn. */
3084 || (old_set != 0
3085 && ((GET_CODE (SET_SRC (old_set)) == MEM
3086 && SET_SRC (old_set) != recog_data.operand[1])
3087 || (GET_CODE (SET_DEST (old_set)) == MEM
3088 && SET_DEST (old_set) != recog_data.operand[0])))
3089 /* If this was an add insn before, rerecognize. */
3090 || GET_CODE (SET_SRC (old_set)) == PLUS))
3091 {
3092 int new_icode = recog (PATTERN (insn), insn, 0);
3093 if (new_icode < 0)
3094 INSN_CODE (insn) = icode;
3095 }
3096 }
3097
3098 /* Restore the old body. If there were any changes to it, we made a copy
3099 of it while the changes were still in place, so we'll correctly return
3100 a modified insn below. */
3101 if (! replace)
3102 {
3103 /* Restore the old body. */
3104 for (i = 0; i < recog_data.n_operands; i++)
3105 *recog_data.operand_loc[i] = orig_operand[i];
3106 for (i = 0; i < recog_data.n_dups; i++)
3107 *recog_data.dup_loc[i] = orig_operand[(int)recog_data.dup_num[i]];
3108 }
3109
3110 /* Update all elimination pairs to reflect the status after the current
3111 insn. The changes we make were determined by the earlier call to
3112 elimination_effects.
3113
3114 We also detect a cases where register elimination cannot be done,
3115 namely, if a register would be both changed and referenced outside a MEM
3116 in the resulting insn since such an insn is often undefined and, even if
3117 not, we cannot know what meaning will be given to it. Note that it is
3118 valid to have a register used in an address in an insn that changes it
3119 (presumably with a pre- or post-increment or decrement).
3120
3121 If anything changes, return nonzero. */
3122
3123 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3124 {
3125 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3126 ep->can_eliminate = 0;
3127
3128 ep->ref_outside_mem = 0;
3129
3130 if (ep->previous_offset != ep->offset)
3131 val = 1;
3132 }
3133
3134 done:
3135 /* If we changed something, perform elimination in REG_NOTES. This is
3136 needed even when REPLACE is zero because a REG_DEAD note might refer
3137 to a register that we eliminate and could cause a different number
3138 of spill registers to be needed in the final reload pass than in
3139 the pre-passes. */
3140 if (val && REG_NOTES (insn) != 0)
3141 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3142
3143 if (! replace)
3144 pop_obstacks ();
3145
3146 return val;
3147 }
3148
3149 /* Loop through all elimination pairs.
3150 Recalculate the number not at initial offset.
3151
3152 Compute the maximum offset (minimum offset if the stack does not
3153 grow downward) for each elimination pair. */
3154
3155 static void
3156 update_eliminable_offsets ()
3157 {
3158 struct elim_table *ep;
3159
3160 num_not_at_initial_offset = 0;
3161 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3162 {
3163 ep->previous_offset = ep->offset;
3164 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3165 num_not_at_initial_offset++;
3166 }
3167 }
3168
3169 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3170 replacement we currently believe is valid, mark it as not eliminable if X
3171 modifies DEST in any way other than by adding a constant integer to it.
3172
3173 If DEST is the frame pointer, we do nothing because we assume that
3174 all assignments to the hard frame pointer are nonlocal gotos and are being
3175 done at a time when they are valid and do not disturb anything else.
3176 Some machines want to eliminate a fake argument pointer with either the
3177 frame or stack pointer. Assignments to the hard frame pointer must not
3178 prevent this elimination.
3179
3180 Called via note_stores from reload before starting its passes to scan
3181 the insns of the function. */
3182
3183 static void
3184 mark_not_eliminable (dest, x, data)
3185 rtx dest;
3186 rtx x;
3187 void *data ATTRIBUTE_UNUSED;
3188 {
3189 register unsigned int i;
3190
3191 /* A SUBREG of a hard register here is just changing its mode. We should
3192 not see a SUBREG of an eliminable hard register, but check just in
3193 case. */
3194 if (GET_CODE (dest) == SUBREG)
3195 dest = SUBREG_REG (dest);
3196
3197 if (dest == hard_frame_pointer_rtx)
3198 return;
3199
3200 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3201 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3202 && (GET_CODE (x) != SET
3203 || GET_CODE (SET_SRC (x)) != PLUS
3204 || XEXP (SET_SRC (x), 0) != dest
3205 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3206 {
3207 reg_eliminate[i].can_eliminate_previous
3208 = reg_eliminate[i].can_eliminate = 0;
3209 num_eliminable--;
3210 }
3211 }
3212
3213 /* Verify that the initial elimination offsets did not change since the
3214 last call to set_initial_elim_offsets. This is used to catch cases
3215 where something illegal happened during reload_as_needed that could
3216 cause incorrect code to be generated if we did not check for it. */
3217
3218 static void
3219 verify_initial_elim_offsets ()
3220 {
3221 int t;
3222
3223 #ifdef ELIMINABLE_REGS
3224 struct elim_table *ep;
3225
3226 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3227 {
3228 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3229 if (t != ep->initial_offset)
3230 abort ();
3231 }
3232 #else
3233 INITIAL_FRAME_POINTER_OFFSET (t);
3234 if (t != reg_eliminate[0].initial_offset)
3235 abort ();
3236 #endif
3237 }
3238
3239 /* Reset all offsets on eliminable registers to their initial values. */
3240
3241 static void
3242 set_initial_elim_offsets ()
3243 {
3244 struct elim_table *ep = reg_eliminate;
3245
3246 #ifdef ELIMINABLE_REGS
3247 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3248 {
3249 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3250 ep->previous_offset = ep->offset = ep->initial_offset;
3251 }
3252 #else
3253 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3254 ep->previous_offset = ep->offset = ep->initial_offset;
3255 #endif
3256
3257 num_not_at_initial_offset = 0;
3258 }
3259
3260 /* Initialize the known label offsets.
3261 Set a known offset for each forced label to be at the initial offset
3262 of each elimination. We do this because we assume that all
3263 computed jumps occur from a location where each elimination is
3264 at its initial offset.
3265 For all other labels, show that we don't know the offsets. */
3266
3267 static void
3268 set_initial_label_offsets ()
3269 {
3270 rtx x;
3271 bzero ((char *) &offsets_known_at[get_first_label_num ()], num_labels);
3272
3273 for (x = forced_labels; x; x = XEXP (x, 1))
3274 if (XEXP (x, 0))
3275 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3276 }
3277
3278 /* Set all elimination offsets to the known values for the code label given
3279 by INSN. */
3280
3281 static void
3282 set_offsets_for_label (insn)
3283 rtx insn;
3284 {
3285 unsigned int i;
3286 int label_nr = CODE_LABEL_NUMBER (insn);
3287 struct elim_table *ep;
3288
3289 num_not_at_initial_offset = 0;
3290 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3291 {
3292 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3293 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3294 num_not_at_initial_offset++;
3295 }
3296 }
3297
3298 /* See if anything that happened changes which eliminations are valid.
3299 For example, on the Sparc, whether or not the frame pointer can
3300 be eliminated can depend on what registers have been used. We need
3301 not check some conditions again (such as flag_omit_frame_pointer)
3302 since they can't have changed. */
3303
3304 static void
3305 update_eliminables (pset)
3306 HARD_REG_SET *pset;
3307 {
3308 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3309 int previous_frame_pointer_needed = frame_pointer_needed;
3310 #endif
3311 struct elim_table *ep;
3312
3313 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3314 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3315 #ifdef ELIMINABLE_REGS
3316 || ! CAN_ELIMINATE (ep->from, ep->to)
3317 #endif
3318 )
3319 ep->can_eliminate = 0;
3320
3321 /* Look for the case where we have discovered that we can't replace
3322 register A with register B and that means that we will now be
3323 trying to replace register A with register C. This means we can
3324 no longer replace register C with register B and we need to disable
3325 such an elimination, if it exists. This occurs often with A == ap,
3326 B == sp, and C == fp. */
3327
3328 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3329 {
3330 struct elim_table *op;
3331 register int new_to = -1;
3332
3333 if (! ep->can_eliminate && ep->can_eliminate_previous)
3334 {
3335 /* Find the current elimination for ep->from, if there is a
3336 new one. */
3337 for (op = reg_eliminate;
3338 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3339 if (op->from == ep->from && op->can_eliminate)
3340 {
3341 new_to = op->to;
3342 break;
3343 }
3344
3345 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3346 disable it. */
3347 for (op = reg_eliminate;
3348 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3349 if (op->from == new_to && op->to == ep->to)
3350 op->can_eliminate = 0;
3351 }
3352 }
3353
3354 /* See if any registers that we thought we could eliminate the previous
3355 time are no longer eliminable. If so, something has changed and we
3356 must spill the register. Also, recompute the number of eliminable
3357 registers and see if the frame pointer is needed; it is if there is
3358 no elimination of the frame pointer that we can perform. */
3359
3360 frame_pointer_needed = 1;
3361 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3362 {
3363 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3364 && ep->to != HARD_FRAME_POINTER_REGNUM)
3365 frame_pointer_needed = 0;
3366
3367 if (! ep->can_eliminate && ep->can_eliminate_previous)
3368 {
3369 ep->can_eliminate_previous = 0;
3370 SET_HARD_REG_BIT (*pset, ep->from);
3371 num_eliminable--;
3372 }
3373 }
3374
3375 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3376 /* If we didn't need a frame pointer last time, but we do now, spill
3377 the hard frame pointer. */
3378 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3379 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3380 #endif
3381 }
3382
3383 /* Initialize the table of registers to eliminate. */
3384
3385 static void
3386 init_elim_table ()
3387 {
3388 struct elim_table *ep;
3389 #ifdef ELIMINABLE_REGS
3390 struct elim_table_1 *ep1;
3391 #endif
3392
3393 if (!reg_eliminate)
3394 reg_eliminate = (struct elim_table *)
3395 xcalloc(sizeof(struct elim_table), NUM_ELIMINABLE_REGS);
3396
3397 /* Does this function require a frame pointer? */
3398
3399 frame_pointer_needed = (! flag_omit_frame_pointer
3400 #ifdef EXIT_IGNORE_STACK
3401 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3402 and restore sp for alloca. So we can't eliminate
3403 the frame pointer in that case. At some point,
3404 we should improve this by emitting the
3405 sp-adjusting insns for this case. */
3406 || (current_function_calls_alloca
3407 && EXIT_IGNORE_STACK)
3408 #endif
3409 || FRAME_POINTER_REQUIRED);
3410
3411 num_eliminable = 0;
3412
3413 #ifdef ELIMINABLE_REGS
3414 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3415 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3416 {
3417 ep->from = ep1->from;
3418 ep->to = ep1->to;
3419 ep->can_eliminate = ep->can_eliminate_previous
3420 = (CAN_ELIMINATE (ep->from, ep->to)
3421 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3422 }
3423 #else
3424 reg_eliminate[0].from = reg_eliminate_1[0].from;
3425 reg_eliminate[0].to = reg_eliminate_1[0].to;
3426 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3427 = ! frame_pointer_needed;
3428 #endif
3429
3430 /* Count the number of eliminable registers and build the FROM and TO
3431 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3432 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3433 We depend on this. */
3434 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3435 {
3436 num_eliminable += ep->can_eliminate;
3437 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3438 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3439 }
3440 }
3441 \f
3442 /* Kick all pseudos out of hard register REGNO.
3443 If DUMPFILE is nonzero, log actions taken on that file.
3444
3445 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3446 because we found we can't eliminate some register. In the case, no pseudos
3447 are allowed to be in the register, even if they are only in a block that
3448 doesn't require spill registers, unlike the case when we are spilling this
3449 hard reg to produce another spill register.
3450
3451 Return nonzero if any pseudos needed to be kicked out. */
3452
3453 static void
3454 spill_hard_reg (regno, dumpfile, cant_eliminate)
3455 unsigned int regno;
3456 FILE *dumpfile ATTRIBUTE_UNUSED;
3457 int cant_eliminate;
3458 {
3459 register int i;
3460
3461 if (cant_eliminate)
3462 {
3463 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3464 regs_ever_live[regno] = 1;
3465 }
3466
3467 /* Spill every pseudo reg that was allocated to this reg
3468 or to something that overlaps this reg. */
3469
3470 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3471 if (reg_renumber[i] >= 0
3472 && (unsigned int) reg_renumber[i] <= regno
3473 && ((unsigned int) reg_renumber[i]
3474 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3475 PSEUDO_REGNO_MODE (i))
3476 > regno))
3477 SET_REGNO_REG_SET (&spilled_pseudos, i);
3478 }
3479
3480 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3481 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3482
3483 static void
3484 ior_hard_reg_set (set1, set2)
3485 HARD_REG_SET *set1, *set2;
3486 {
3487 IOR_HARD_REG_SET (*set1, *set2);
3488 }
3489
3490 /* After find_reload_regs has been run for all insn that need reloads,
3491 and/or spill_hard_regs was called, this function is used to actually
3492 spill pseudo registers and try to reallocate them. It also sets up the
3493 spill_regs array for use by choose_reload_regs. */
3494
3495 static int
3496 finish_spills (global, dumpfile)
3497 int global;
3498 FILE *dumpfile;
3499 {
3500 struct insn_chain *chain;
3501 int something_changed = 0;
3502 int i;
3503
3504 /* Build the spill_regs array for the function. */
3505 /* If there are some registers still to eliminate and one of the spill regs
3506 wasn't ever used before, additional stack space may have to be
3507 allocated to store this register. Thus, we may have changed the offset
3508 between the stack and frame pointers, so mark that something has changed.
3509
3510 One might think that we need only set VAL to 1 if this is a call-used
3511 register. However, the set of registers that must be saved by the
3512 prologue is not identical to the call-used set. For example, the
3513 register used by the call insn for the return PC is a call-used register,
3514 but must be saved by the prologue. */
3515
3516 n_spills = 0;
3517 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3518 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3519 {
3520 spill_reg_order[i] = n_spills;
3521 spill_regs[n_spills++] = i;
3522 if (num_eliminable && ! regs_ever_live[i])
3523 something_changed = 1;
3524 regs_ever_live[i] = 1;
3525 }
3526 else
3527 spill_reg_order[i] = -1;
3528
3529 EXECUTE_IF_SET_IN_REG_SET
3530 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3531 {
3532 /* Record the current hard register the pseudo is allocated to in
3533 pseudo_previous_regs so we avoid reallocating it to the same
3534 hard reg in a later pass. */
3535 if (reg_renumber[i] < 0)
3536 abort ();
3537
3538 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3539 /* Mark it as no longer having a hard register home. */
3540 reg_renumber[i] = -1;
3541 /* We will need to scan everything again. */
3542 something_changed = 1;
3543 });
3544
3545 /* Retry global register allocation if possible. */
3546 if (global)
3547 {
3548 bzero ((char *) pseudo_forbidden_regs, max_regno * sizeof (HARD_REG_SET));
3549 /* For every insn that needs reloads, set the registers used as spill
3550 regs in pseudo_forbidden_regs for every pseudo live across the
3551 insn. */
3552 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3553 {
3554 EXECUTE_IF_SET_IN_REG_SET
3555 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3556 {
3557 ior_hard_reg_set (pseudo_forbidden_regs + i,
3558 &chain->used_spill_regs);
3559 });
3560 EXECUTE_IF_SET_IN_REG_SET
3561 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3562 {
3563 ior_hard_reg_set (pseudo_forbidden_regs + i,
3564 &chain->used_spill_regs);
3565 });
3566 }
3567
3568 /* Retry allocating the spilled pseudos. For each reg, merge the
3569 various reg sets that indicate which hard regs can't be used,
3570 and call retry_global_alloc.
3571 We change spill_pseudos here to only contain pseudos that did not
3572 get a new hard register. */
3573 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3574 if (reg_old_renumber[i] != reg_renumber[i])
3575 {
3576 HARD_REG_SET forbidden;
3577 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3578 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3579 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3580 retry_global_alloc (i, forbidden);
3581 if (reg_renumber[i] >= 0)
3582 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3583 }
3584 }
3585
3586 /* Fix up the register information in the insn chain.
3587 This involves deleting those of the spilled pseudos which did not get
3588 a new hard register home from the live_{before,after} sets. */
3589 for (chain = reload_insn_chain; chain; chain = chain->next)
3590 {
3591 HARD_REG_SET used_by_pseudos;
3592 HARD_REG_SET used_by_pseudos2;
3593
3594 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3595 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3596
3597 /* Mark any unallocated hard regs as available for spills. That
3598 makes inheritance work somewhat better. */
3599 if (chain->need_reload)
3600 {
3601 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3602 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3603 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3604
3605 /* Save the old value for the sanity test below. */
3606 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3607
3608 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3609 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3610 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3611 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3612
3613 /* Make sure we only enlarge the set. */
3614 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3615 abort ();
3616 ok:;
3617 }
3618 }
3619
3620 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3621 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3622 {
3623 int regno = reg_renumber[i];
3624 if (reg_old_renumber[i] == regno)
3625 continue;
3626
3627 alter_reg (i, reg_old_renumber[i]);
3628 reg_old_renumber[i] = regno;
3629 if (dumpfile)
3630 {
3631 if (regno == -1)
3632 fprintf (dumpfile, " Register %d now on stack.\n\n", i);
3633 else
3634 fprintf (dumpfile, " Register %d now in %d.\n\n",
3635 i, reg_renumber[i]);
3636 }
3637 }
3638
3639 return something_changed;
3640 }
3641 \f
3642 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3643 Also mark any hard registers used to store user variables as
3644 forbidden from being used for spill registers. */
3645
3646 static void
3647 scan_paradoxical_subregs (x)
3648 register rtx x;
3649 {
3650 register int i;
3651 register const char *fmt;
3652 register enum rtx_code code = GET_CODE (x);
3653
3654 switch (code)
3655 {
3656 case REG:
3657 #if 0
3658 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3659 && REG_USERVAR_P (x))
3660 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3661 #endif
3662 return;
3663
3664 case CONST_INT:
3665 case CONST:
3666 case SYMBOL_REF:
3667 case LABEL_REF:
3668 case CONST_DOUBLE:
3669 case CC0:
3670 case PC:
3671 case USE:
3672 case CLOBBER:
3673 return;
3674
3675 case SUBREG:
3676 if (GET_CODE (SUBREG_REG (x)) == REG
3677 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3678 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3679 = GET_MODE_SIZE (GET_MODE (x));
3680 return;
3681
3682 default:
3683 break;
3684 }
3685
3686 fmt = GET_RTX_FORMAT (code);
3687 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3688 {
3689 if (fmt[i] == 'e')
3690 scan_paradoxical_subregs (XEXP (x, i));
3691 else if (fmt[i] == 'E')
3692 {
3693 register int j;
3694 for (j = XVECLEN (x, i) - 1; j >=0; j--)
3695 scan_paradoxical_subregs (XVECEXP (x, i, j));
3696 }
3697 }
3698 }
3699 \f
3700 /* Reload pseudo-registers into hard regs around each insn as needed.
3701 Additional register load insns are output before the insn that needs it
3702 and perhaps store insns after insns that modify the reloaded pseudo reg.
3703
3704 reg_last_reload_reg and reg_reloaded_contents keep track of
3705 which registers are already available in reload registers.
3706 We update these for the reloads that we perform,
3707 as the insns are scanned. */
3708
3709 static void
3710 reload_as_needed (live_known)
3711 int live_known;
3712 {
3713 struct insn_chain *chain;
3714 #if defined (AUTO_INC_DEC)
3715 register int i;
3716 #endif
3717 rtx x;
3718
3719 bzero ((char *) spill_reg_rtx, sizeof spill_reg_rtx);
3720 bzero ((char *) spill_reg_store, sizeof spill_reg_store);
3721 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3722 reg_has_output_reload = (char *) xmalloc (max_regno);
3723 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3724
3725 set_initial_elim_offsets ();
3726
3727 for (chain = reload_insn_chain; chain; chain = chain->next)
3728 {
3729 rtx prev;
3730 rtx insn = chain->insn;
3731 rtx old_next = NEXT_INSN (insn);
3732
3733 /* If we pass a label, copy the offsets from the label information
3734 into the current offsets of each elimination. */
3735 if (GET_CODE (insn) == CODE_LABEL)
3736 set_offsets_for_label (insn);
3737
3738 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3739 {
3740 rtx oldpat = PATTERN (insn);
3741
3742 /* If this is a USE and CLOBBER of a MEM, ensure that any
3743 references to eliminable registers have been removed. */
3744
3745 if ((GET_CODE (PATTERN (insn)) == USE
3746 || GET_CODE (PATTERN (insn)) == CLOBBER)
3747 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3748 XEXP (XEXP (PATTERN (insn), 0), 0)
3749 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3750 GET_MODE (XEXP (PATTERN (insn), 0)),
3751 NULL_RTX);
3752
3753 /* If we need to do register elimination processing, do so.
3754 This might delete the insn, in which case we are done. */
3755 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3756 {
3757 eliminate_regs_in_insn (insn, 1);
3758 if (GET_CODE (insn) == NOTE)
3759 {
3760 update_eliminable_offsets ();
3761 continue;
3762 }
3763 }
3764
3765 /* If need_elim is nonzero but need_reload is zero, one might think
3766 that we could simply set n_reloads to 0. However, find_reloads
3767 could have done some manipulation of the insn (such as swapping
3768 commutative operands), and these manipulations are lost during
3769 the first pass for every insn that needs register elimination.
3770 So the actions of find_reloads must be redone here. */
3771
3772 if (! chain->need_elim && ! chain->need_reload
3773 && ! chain->need_operand_change)
3774 n_reloads = 0;
3775 /* First find the pseudo regs that must be reloaded for this insn.
3776 This info is returned in the tables reload_... (see reload.h).
3777 Also modify the body of INSN by substituting RELOAD
3778 rtx's for those pseudo regs. */
3779 else
3780 {
3781 bzero (reg_has_output_reload, max_regno);
3782 CLEAR_HARD_REG_SET (reg_is_output_reload);
3783
3784 find_reloads (insn, 1, spill_indirect_levels, live_known,
3785 spill_reg_order);
3786 }
3787
3788 if (num_eliminable && chain->need_elim)
3789 update_eliminable_offsets ();
3790
3791 if (n_reloads > 0)
3792 {
3793 rtx next = NEXT_INSN (insn);
3794 rtx p;
3795
3796 prev = PREV_INSN (insn);
3797
3798 /* Now compute which reload regs to reload them into. Perhaps
3799 reusing reload regs from previous insns, or else output
3800 load insns to reload them. Maybe output store insns too.
3801 Record the choices of reload reg in reload_reg_rtx. */
3802 choose_reload_regs (chain);
3803
3804 /* Merge any reloads that we didn't combine for fear of
3805 increasing the number of spill registers needed but now
3806 discover can be safely merged. */
3807 if (SMALL_REGISTER_CLASSES)
3808 merge_assigned_reloads (insn);
3809
3810 /* Generate the insns to reload operands into or out of
3811 their reload regs. */
3812 emit_reload_insns (chain);
3813
3814 /* Substitute the chosen reload regs from reload_reg_rtx
3815 into the insn's body (or perhaps into the bodies of other
3816 load and store insn that we just made for reloading
3817 and that we moved the structure into). */
3818 subst_reloads ();
3819
3820 /* If this was an ASM, make sure that all the reload insns
3821 we have generated are valid. If not, give an error
3822 and delete them. */
3823
3824 if (asm_noperands (PATTERN (insn)) >= 0)
3825 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3826 if (p != insn && GET_RTX_CLASS (GET_CODE (p)) == 'i'
3827 && (recog_memoized (p) < 0
3828 || (extract_insn (p), ! constrain_operands (1))))
3829 {
3830 error_for_asm (insn,
3831 "`asm' operand requires impossible reload");
3832 PUT_CODE (p, NOTE);
3833 NOTE_SOURCE_FILE (p) = 0;
3834 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
3835 }
3836 }
3837 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3838 is no longer validly lying around to save a future reload.
3839 Note that this does not detect pseudos that were reloaded
3840 for this insn in order to be stored in
3841 (obeying register constraints). That is correct; such reload
3842 registers ARE still valid. */
3843 note_stores (oldpat, forget_old_reloads_1, NULL);
3844
3845 /* There may have been CLOBBER insns placed after INSN. So scan
3846 between INSN and NEXT and use them to forget old reloads. */
3847 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3848 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3849 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3850
3851 #ifdef AUTO_INC_DEC
3852 /* Likewise for regs altered by auto-increment in this insn.
3853 REG_INC notes have been changed by reloading:
3854 find_reloads_address_1 records substitutions for them,
3855 which have been performed by subst_reloads above. */
3856 for (i = n_reloads - 1; i >= 0; i--)
3857 {
3858 rtx in_reg = rld[i].in_reg;
3859 if (in_reg)
3860 {
3861 enum rtx_code code = GET_CODE (in_reg);
3862 /* PRE_INC / PRE_DEC will have the reload register ending up
3863 with the same value as the stack slot, but that doesn't
3864 hold true for POST_INC / POST_DEC. Either we have to
3865 convert the memory access to a true POST_INC / POST_DEC,
3866 or we can't use the reload register for inheritance. */
3867 if ((code == POST_INC || code == POST_DEC)
3868 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3869 REGNO (rld[i].reg_rtx))
3870 /* Make sure it is the inc/dec pseudo, and not
3871 some other (e.g. output operand) pseudo. */
3872 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3873 == REGNO (XEXP (in_reg, 0))))
3874
3875 {
3876 rtx reload_reg = rld[i].reg_rtx;
3877 enum machine_mode mode = GET_MODE (reload_reg);
3878 int n = 0;
3879 rtx p;
3880
3881 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3882 {
3883 /* We really want to ignore REG_INC notes here, so
3884 use PATTERN (p) as argument to reg_set_p . */
3885 if (reg_set_p (reload_reg, PATTERN (p)))
3886 break;
3887 n = count_occurrences (PATTERN (p), reload_reg);
3888 if (! n)
3889 continue;
3890 if (n == 1)
3891 {
3892 n = validate_replace_rtx (reload_reg,
3893 gen_rtx (code, mode,
3894 reload_reg),
3895 p);
3896
3897 /* We must also verify that the constraints
3898 are met after the replacement. */
3899 extract_insn (p);
3900 if (n)
3901 n = constrain_operands (1);
3902 else
3903 break;
3904
3905 /* If the constraints were not met, then
3906 undo the replacement. */
3907 if (!n)
3908 {
3909 validate_replace_rtx (gen_rtx (code, mode,
3910 reload_reg),
3911 reload_reg, p);
3912 break;
3913 }
3914
3915 }
3916 break;
3917 }
3918 if (n == 1)
3919 {
3920 REG_NOTES (p)
3921 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
3922 REG_NOTES (p));
3923 /* Mark this as having an output reload so that the
3924 REG_INC processing code below won't invalidate
3925 the reload for inheritance. */
3926 SET_HARD_REG_BIT (reg_is_output_reload,
3927 REGNO (reload_reg));
3928 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3929 }
3930 else
3931 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
3932 NULL);
3933 }
3934 else if ((code == PRE_INC || code == PRE_DEC)
3935 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3936 REGNO (rld[i].reg_rtx))
3937 /* Make sure it is the inc/dec pseudo, and not
3938 some other (e.g. output operand) pseudo. */
3939 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3940 == REGNO (XEXP (in_reg, 0))))
3941 {
3942 SET_HARD_REG_BIT (reg_is_output_reload,
3943 REGNO (rld[i].reg_rtx));
3944 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
3945 }
3946 }
3947 }
3948 /* If a pseudo that got a hard register is auto-incremented,
3949 we must purge records of copying it into pseudos without
3950 hard registers. */
3951 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
3952 if (REG_NOTE_KIND (x) == REG_INC)
3953 {
3954 /* See if this pseudo reg was reloaded in this insn.
3955 If so, its last-reload info is still valid
3956 because it is based on this insn's reload. */
3957 for (i = 0; i < n_reloads; i++)
3958 if (rld[i].out == XEXP (x, 0))
3959 break;
3960
3961 if (i == n_reloads)
3962 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
3963 }
3964 #endif
3965 }
3966 /* A reload reg's contents are unknown after a label. */
3967 if (GET_CODE (insn) == CODE_LABEL)
3968 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3969
3970 /* Don't assume a reload reg is still good after a call insn
3971 if it is a call-used reg. */
3972 else if (GET_CODE (insn) == CALL_INSN)
3973 AND_COMPL_HARD_REG_SET(reg_reloaded_valid, call_used_reg_set);
3974 }
3975
3976 /* Clean up. */
3977 free (reg_last_reload_reg);
3978 free (reg_has_output_reload);
3979 }
3980
3981 /* Discard all record of any value reloaded from X,
3982 or reloaded in X from someplace else;
3983 unless X is an output reload reg of the current insn.
3984
3985 X may be a hard reg (the reload reg)
3986 or it may be a pseudo reg that was reloaded from. */
3987
3988 static void
3989 forget_old_reloads_1 (x, ignored, data)
3990 rtx x;
3991 rtx ignored ATTRIBUTE_UNUSED;
3992 void *data ATTRIBUTE_UNUSED;
3993 {
3994 unsigned int regno;
3995 unsigned int nr;
3996 int offset = 0;
3997
3998 /* note_stores does give us subregs of hard regs. */
3999 while (GET_CODE (x) == SUBREG)
4000 {
4001 offset += SUBREG_WORD (x);
4002 x = SUBREG_REG (x);
4003 }
4004
4005 if (GET_CODE (x) != REG)
4006 return;
4007
4008 regno = REGNO (x) + offset;
4009
4010 if (regno >= FIRST_PSEUDO_REGISTER)
4011 nr = 1;
4012 else
4013 {
4014 unsigned int i;
4015
4016 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4017 /* Storing into a spilled-reg invalidates its contents.
4018 This can happen if a block-local pseudo is allocated to that reg
4019 and it wasn't spilled because this block's total need is 0.
4020 Then some insn might have an optional reload and use this reg. */
4021 for (i = 0; i < nr; i++)
4022 /* But don't do this if the reg actually serves as an output
4023 reload reg in the current instruction. */
4024 if (n_reloads == 0
4025 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4026 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4027 }
4028
4029 /* Since value of X has changed,
4030 forget any value previously copied from it. */
4031
4032 while (nr-- > 0)
4033 /* But don't forget a copy if this is the output reload
4034 that establishes the copy's validity. */
4035 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4036 reg_last_reload_reg[regno + nr] = 0;
4037 }
4038 \f
4039 /* The following HARD_REG_SETs indicate when each hard register is
4040 used for a reload of various parts of the current insn. */
4041
4042 /* If reg is unavailable for all reloads. */
4043 static HARD_REG_SET reload_reg_unavailable;
4044 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4045 static HARD_REG_SET reload_reg_used;
4046 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4047 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4048 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4049 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4050 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4051 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4052 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4053 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4054 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4055 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4056 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4057 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4058 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4059 static HARD_REG_SET reload_reg_used_in_op_addr;
4060 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4061 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4062 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4063 static HARD_REG_SET reload_reg_used_in_insn;
4064 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4065 static HARD_REG_SET reload_reg_used_in_other_addr;
4066
4067 /* If reg is in use as a reload reg for any sort of reload. */
4068 static HARD_REG_SET reload_reg_used_at_all;
4069
4070 /* If reg is use as an inherited reload. We just mark the first register
4071 in the group. */
4072 static HARD_REG_SET reload_reg_used_for_inherit;
4073
4074 /* Records which hard regs are used in any way, either as explicit use or
4075 by being allocated to a pseudo during any point of the current insn. */
4076 static HARD_REG_SET reg_used_in_insn;
4077
4078 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4079 TYPE. MODE is used to indicate how many consecutive regs are
4080 actually used. */
4081
4082 static void
4083 mark_reload_reg_in_use (regno, opnum, type, mode)
4084 unsigned int regno;
4085 int opnum;
4086 enum reload_type type;
4087 enum machine_mode mode;
4088 {
4089 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4090 unsigned int i;
4091
4092 for (i = regno; i < nregs + regno; i++)
4093 {
4094 switch (type)
4095 {
4096 case RELOAD_OTHER:
4097 SET_HARD_REG_BIT (reload_reg_used, i);
4098 break;
4099
4100 case RELOAD_FOR_INPUT_ADDRESS:
4101 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4102 break;
4103
4104 case RELOAD_FOR_INPADDR_ADDRESS:
4105 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4106 break;
4107
4108 case RELOAD_FOR_OUTPUT_ADDRESS:
4109 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4110 break;
4111
4112 case RELOAD_FOR_OUTADDR_ADDRESS:
4113 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4114 break;
4115
4116 case RELOAD_FOR_OPERAND_ADDRESS:
4117 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4118 break;
4119
4120 case RELOAD_FOR_OPADDR_ADDR:
4121 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4122 break;
4123
4124 case RELOAD_FOR_OTHER_ADDRESS:
4125 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4126 break;
4127
4128 case RELOAD_FOR_INPUT:
4129 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4130 break;
4131
4132 case RELOAD_FOR_OUTPUT:
4133 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4134 break;
4135
4136 case RELOAD_FOR_INSN:
4137 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4138 break;
4139 }
4140
4141 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4142 }
4143 }
4144
4145 /* Similarly, but show REGNO is no longer in use for a reload. */
4146
4147 static void
4148 clear_reload_reg_in_use (regno, opnum, type, mode)
4149 unsigned int regno;
4150 int opnum;
4151 enum reload_type type;
4152 enum machine_mode mode;
4153 {
4154 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4155 unsigned int start_regno, end_regno, r;
4156 int i;
4157 /* A complication is that for some reload types, inheritance might
4158 allow multiple reloads of the same types to share a reload register.
4159 We set check_opnum if we have to check only reloads with the same
4160 operand number, and check_any if we have to check all reloads. */
4161 int check_opnum = 0;
4162 int check_any = 0;
4163 HARD_REG_SET *used_in_set;
4164
4165 switch (type)
4166 {
4167 case RELOAD_OTHER:
4168 used_in_set = &reload_reg_used;
4169 break;
4170
4171 case RELOAD_FOR_INPUT_ADDRESS:
4172 used_in_set = &reload_reg_used_in_input_addr[opnum];
4173 break;
4174
4175 case RELOAD_FOR_INPADDR_ADDRESS:
4176 check_opnum = 1;
4177 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4178 break;
4179
4180 case RELOAD_FOR_OUTPUT_ADDRESS:
4181 used_in_set = &reload_reg_used_in_output_addr[opnum];
4182 break;
4183
4184 case RELOAD_FOR_OUTADDR_ADDRESS:
4185 check_opnum = 1;
4186 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4187 break;
4188
4189 case RELOAD_FOR_OPERAND_ADDRESS:
4190 used_in_set = &reload_reg_used_in_op_addr;
4191 break;
4192
4193 case RELOAD_FOR_OPADDR_ADDR:
4194 check_any = 1;
4195 used_in_set = &reload_reg_used_in_op_addr_reload;
4196 break;
4197
4198 case RELOAD_FOR_OTHER_ADDRESS:
4199 used_in_set = &reload_reg_used_in_other_addr;
4200 check_any = 1;
4201 break;
4202
4203 case RELOAD_FOR_INPUT:
4204 used_in_set = &reload_reg_used_in_input[opnum];
4205 break;
4206
4207 case RELOAD_FOR_OUTPUT:
4208 used_in_set = &reload_reg_used_in_output[opnum];
4209 break;
4210
4211 case RELOAD_FOR_INSN:
4212 used_in_set = &reload_reg_used_in_insn;
4213 break;
4214 default:
4215 abort ();
4216 }
4217 /* We resolve conflicts with remaining reloads of the same type by
4218 excluding the intervals of of reload registers by them from the
4219 interval of freed reload registers. Since we only keep track of
4220 one set of interval bounds, we might have to exclude somewhat
4221 more then what would be necessary if we used a HARD_REG_SET here.
4222 But this should only happen very infrequently, so there should
4223 be no reason to worry about it. */
4224
4225 start_regno = regno;
4226 end_regno = regno + nregs;
4227 if (check_opnum || check_any)
4228 {
4229 for (i = n_reloads - 1; i >= 0; i--)
4230 {
4231 if (rld[i].when_needed == type
4232 && (check_any || rld[i].opnum == opnum)
4233 && rld[i].reg_rtx)
4234 {
4235 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4236 unsigned int conflict_end
4237 = (conflict_start
4238 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4239
4240 /* If there is an overlap with the first to-be-freed register,
4241 adjust the interval start. */
4242 if (conflict_start <= start_regno && conflict_end > start_regno)
4243 start_regno = conflict_end;
4244 /* Otherwise, if there is a conflict with one of the other
4245 to-be-freed registers, adjust the interval end. */
4246 if (conflict_start > start_regno && conflict_start < end_regno)
4247 end_regno = conflict_start;
4248 }
4249 }
4250 }
4251
4252 for (r = start_regno; r < end_regno; r++)
4253 CLEAR_HARD_REG_BIT (*used_in_set, r);
4254 }
4255
4256 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4257 specified by OPNUM and TYPE. */
4258
4259 static int
4260 reload_reg_free_p (regno, opnum, type)
4261 unsigned int regno;
4262 int opnum;
4263 enum reload_type type;
4264 {
4265 int i;
4266
4267 /* In use for a RELOAD_OTHER means it's not available for anything. */
4268 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4269 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4270 return 0;
4271
4272 switch (type)
4273 {
4274 case RELOAD_OTHER:
4275 /* In use for anything means we can't use it for RELOAD_OTHER. */
4276 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4277 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4278 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4279 return 0;
4280
4281 for (i = 0; i < reload_n_operands; i++)
4282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4283 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4284 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4285 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4286 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4287 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4288 return 0;
4289
4290 return 1;
4291
4292 case RELOAD_FOR_INPUT:
4293 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4294 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4295 return 0;
4296
4297 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4298 return 0;
4299
4300 /* If it is used for some other input, can't use it. */
4301 for (i = 0; i < reload_n_operands; i++)
4302 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4303 return 0;
4304
4305 /* If it is used in a later operand's address, can't use it. */
4306 for (i = opnum + 1; i < reload_n_operands; i++)
4307 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4308 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4309 return 0;
4310
4311 return 1;
4312
4313 case RELOAD_FOR_INPUT_ADDRESS:
4314 /* Can't use a register if it is used for an input address for this
4315 operand or used as an input in an earlier one. */
4316 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4317 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4318 return 0;
4319
4320 for (i = 0; i < opnum; i++)
4321 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4322 return 0;
4323
4324 return 1;
4325
4326 case RELOAD_FOR_INPADDR_ADDRESS:
4327 /* Can't use a register if it is used for an input address
4328 for this operand or used as an input in an earlier
4329 one. */
4330 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4331 return 0;
4332
4333 for (i = 0; i < opnum; i++)
4334 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4335 return 0;
4336
4337 return 1;
4338
4339 case RELOAD_FOR_OUTPUT_ADDRESS:
4340 /* Can't use a register if it is used for an output address for this
4341 operand or used as an output in this or a later operand. */
4342 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4343 return 0;
4344
4345 for (i = opnum; i < reload_n_operands; i++)
4346 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4347 return 0;
4348
4349 return 1;
4350
4351 case RELOAD_FOR_OUTADDR_ADDRESS:
4352 /* Can't use a register if it is used for an output address
4353 for this operand or used as an output in this or a
4354 later operand. */
4355 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4356 return 0;
4357
4358 for (i = opnum; i < reload_n_operands; i++)
4359 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4360 return 0;
4361
4362 return 1;
4363
4364 case RELOAD_FOR_OPERAND_ADDRESS:
4365 for (i = 0; i < reload_n_operands; i++)
4366 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4367 return 0;
4368
4369 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4370 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4371
4372 case RELOAD_FOR_OPADDR_ADDR:
4373 for (i = 0; i < reload_n_operands; i++)
4374 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4375 return 0;
4376
4377 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4378
4379 case RELOAD_FOR_OUTPUT:
4380 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4381 outputs, or an operand address for this or an earlier output. */
4382 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4383 return 0;
4384
4385 for (i = 0; i < reload_n_operands; i++)
4386 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4387 return 0;
4388
4389 for (i = 0; i <= opnum; i++)
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4392 return 0;
4393
4394 return 1;
4395
4396 case RELOAD_FOR_INSN:
4397 for (i = 0; i < reload_n_operands; i++)
4398 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4399 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4400 return 0;
4401
4402 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4403 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4404
4405 case RELOAD_FOR_OTHER_ADDRESS:
4406 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4407 }
4408 abort ();
4409 }
4410
4411 /* Return 1 if the value in reload reg REGNO, as used by a reload
4412 needed for the part of the insn specified by OPNUM and TYPE,
4413 is still available in REGNO at the end of the insn.
4414
4415 We can assume that the reload reg was already tested for availability
4416 at the time it is needed, and we should not check this again,
4417 in case the reg has already been marked in use. */
4418
4419 static int
4420 reload_reg_reaches_end_p (regno, opnum, type)
4421 unsigned int regno;
4422 int opnum;
4423 enum reload_type type;
4424 {
4425 int i;
4426
4427 switch (type)
4428 {
4429 case RELOAD_OTHER:
4430 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4431 its value must reach the end. */
4432 return 1;
4433
4434 /* If this use is for part of the insn,
4435 its value reaches if no subsequent part uses the same register.
4436 Just like the above function, don't try to do this with lots
4437 of fallthroughs. */
4438
4439 case RELOAD_FOR_OTHER_ADDRESS:
4440 /* Here we check for everything else, since these don't conflict
4441 with anything else and everything comes later. */
4442
4443 for (i = 0; i < reload_n_operands; i++)
4444 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4445 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4446 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4447 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4448 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4449 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4450 return 0;
4451
4452 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4453 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4454 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4455
4456 case RELOAD_FOR_INPUT_ADDRESS:
4457 case RELOAD_FOR_INPADDR_ADDRESS:
4458 /* Similar, except that we check only for this and subsequent inputs
4459 and the address of only subsequent inputs and we do not need
4460 to check for RELOAD_OTHER objects since they are known not to
4461 conflict. */
4462
4463 for (i = opnum; i < reload_n_operands; i++)
4464 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4465 return 0;
4466
4467 for (i = opnum + 1; i < reload_n_operands; i++)
4468 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4469 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4470 return 0;
4471
4472 for (i = 0; i < reload_n_operands; i++)
4473 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4474 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4475 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4476 return 0;
4477
4478 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4479 return 0;
4480
4481 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4482 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4483
4484 case RELOAD_FOR_INPUT:
4485 /* Similar to input address, except we start at the next operand for
4486 both input and input address and we do not check for
4487 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4488 would conflict. */
4489
4490 for (i = opnum + 1; i < reload_n_operands; i++)
4491 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4492 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4493 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4494 return 0;
4495
4496 /* ... fall through ... */
4497
4498 case RELOAD_FOR_OPERAND_ADDRESS:
4499 /* Check outputs and their addresses. */
4500
4501 for (i = 0; i < reload_n_operands; i++)
4502 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4503 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4504 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4505 return 0;
4506
4507 return 1;
4508
4509 case RELOAD_FOR_OPADDR_ADDR:
4510 for (i = 0; i < reload_n_operands; i++)
4511 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4512 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4513 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4514 return 0;
4515
4516 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4517 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno));
4518
4519 case RELOAD_FOR_INSN:
4520 /* These conflict with other outputs with RELOAD_OTHER. So
4521 we need only check for output addresses. */
4522
4523 opnum = -1;
4524
4525 /* ... fall through ... */
4526
4527 case RELOAD_FOR_OUTPUT:
4528 case RELOAD_FOR_OUTPUT_ADDRESS:
4529 case RELOAD_FOR_OUTADDR_ADDRESS:
4530 /* We already know these can't conflict with a later output. So the
4531 only thing to check are later output addresses. */
4532 for (i = opnum + 1; i < reload_n_operands; i++)
4533 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4534 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4535 return 0;
4536
4537 return 1;
4538 }
4539
4540 abort ();
4541 }
4542 \f
4543 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4544 Return 0 otherwise.
4545
4546 This function uses the same algorithm as reload_reg_free_p above. */
4547
4548 int
4549 reloads_conflict (r1, r2)
4550 int r1, r2;
4551 {
4552 enum reload_type r1_type = rld[r1].when_needed;
4553 enum reload_type r2_type = rld[r2].when_needed;
4554 int r1_opnum = rld[r1].opnum;
4555 int r2_opnum = rld[r2].opnum;
4556
4557 /* RELOAD_OTHER conflicts with everything. */
4558 if (r2_type == RELOAD_OTHER)
4559 return 1;
4560
4561 /* Otherwise, check conflicts differently for each type. */
4562
4563 switch (r1_type)
4564 {
4565 case RELOAD_FOR_INPUT:
4566 return (r2_type == RELOAD_FOR_INSN
4567 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4568 || r2_type == RELOAD_FOR_OPADDR_ADDR
4569 || r2_type == RELOAD_FOR_INPUT
4570 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4571 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4572 && r2_opnum > r1_opnum));
4573
4574 case RELOAD_FOR_INPUT_ADDRESS:
4575 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4576 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4577
4578 case RELOAD_FOR_INPADDR_ADDRESS:
4579 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4580 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4581
4582 case RELOAD_FOR_OUTPUT_ADDRESS:
4583 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4584 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4585
4586 case RELOAD_FOR_OUTADDR_ADDRESS:
4587 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4588 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum >= r1_opnum));
4589
4590 case RELOAD_FOR_OPERAND_ADDRESS:
4591 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4592 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4593
4594 case RELOAD_FOR_OPADDR_ADDR:
4595 return (r2_type == RELOAD_FOR_INPUT
4596 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4597
4598 case RELOAD_FOR_OUTPUT:
4599 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4600 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4601 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4602 && r2_opnum <= r1_opnum));
4603
4604 case RELOAD_FOR_INSN:
4605 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4606 || r2_type == RELOAD_FOR_INSN
4607 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4608
4609 case RELOAD_FOR_OTHER_ADDRESS:
4610 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4611
4612 case RELOAD_OTHER:
4613 return 1;
4614
4615 default:
4616 abort ();
4617 }
4618 }
4619 \f
4620 /* Indexed by reload number, 1 if incoming value
4621 inherited from previous insns. */
4622 char reload_inherited[MAX_RELOADS];
4623
4624 /* For an inherited reload, this is the insn the reload was inherited from,
4625 if we know it. Otherwise, this is 0. */
4626 rtx reload_inheritance_insn[MAX_RELOADS];
4627
4628 /* If non-zero, this is a place to get the value of the reload,
4629 rather than using reload_in. */
4630 rtx reload_override_in[MAX_RELOADS];
4631
4632 /* For each reload, the hard register number of the register used,
4633 or -1 if we did not need a register for this reload. */
4634 int reload_spill_index[MAX_RELOADS];
4635
4636 /* Return 1 if the value in reload reg REGNO, as used by a reload
4637 needed for the part of the insn specified by OPNUM and TYPE,
4638 may be used to load VALUE into it.
4639
4640 Other read-only reloads with the same value do not conflict
4641 unless OUT is non-zero and these other reloads have to live while
4642 output reloads live.
4643 If OUT is CONST0_RTX, this is a special case: it means that the
4644 test should not be for using register REGNO as reload register, but
4645 for copying from register REGNO into the reload register.
4646
4647 RELOADNUM is the number of the reload we want to load this value for;
4648 a reload does not conflict with itself.
4649
4650 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4651 reloads that load an address for the very reload we are considering.
4652
4653 The caller has to make sure that there is no conflict with the return
4654 register. */
4655 static int
4656 reload_reg_free_for_value_p (regno, opnum, type, value, out, reloadnum,
4657 ignore_address_reloads)
4658 int regno;
4659 int opnum;
4660 enum reload_type type;
4661 rtx value, out;
4662 int reloadnum;
4663 int ignore_address_reloads;
4664 {
4665 int time1;
4666 /* Set if we see an input reload that must not share its reload register
4667 with any new earlyclobber, but might otherwise share the reload
4668 register with an output or input-output reload. */
4669 int check_earlyclobber = 0;
4670 int i;
4671 int copy = 0;
4672
4673 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4674 return 0;
4675
4676 if (out == const0_rtx)
4677 {
4678 copy = 1;
4679 out = NULL_RTX;
4680 }
4681
4682 /* We use some pseudo 'time' value to check if the lifetimes of the
4683 new register use would overlap with the one of a previous reload
4684 that is not read-only or uses a different value.
4685 The 'time' used doesn't have to be linear in any shape or form, just
4686 monotonic.
4687 Some reload types use different 'buckets' for each operand.
4688 So there are MAX_RECOG_OPERANDS different time values for each
4689 such reload type.
4690 We compute TIME1 as the time when the register for the prospective
4691 new reload ceases to be live, and TIME2 for each existing
4692 reload as the time when that the reload register of that reload
4693 becomes live.
4694 Where there is little to be gained by exact lifetime calculations,
4695 we just make conservative assumptions, i.e. a longer lifetime;
4696 this is done in the 'default:' cases. */
4697 switch (type)
4698 {
4699 case RELOAD_FOR_OTHER_ADDRESS:
4700 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4701 time1 = copy ? 0 : 1;
4702 break;
4703 case RELOAD_OTHER:
4704 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4705 break;
4706 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4707 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4708 respectively, to the time values for these, we get distinct time
4709 values. To get distinct time values for each operand, we have to
4710 multiply opnum by at least three. We round that up to four because
4711 multiply by four is often cheaper. */
4712 case RELOAD_FOR_INPADDR_ADDRESS:
4713 time1 = opnum * 4 + 2;
4714 break;
4715 case RELOAD_FOR_INPUT_ADDRESS:
4716 time1 = opnum * 4 + 3;
4717 break;
4718 case RELOAD_FOR_INPUT:
4719 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4720 executes (inclusive). */
4721 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4722 break;
4723 case RELOAD_FOR_OPADDR_ADDR:
4724 /* opnum * 4 + 4
4725 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4726 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4727 break;
4728 case RELOAD_FOR_OPERAND_ADDRESS:
4729 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4730 is executed. */
4731 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4732 break;
4733 case RELOAD_FOR_OUTADDR_ADDRESS:
4734 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4735 break;
4736 case RELOAD_FOR_OUTPUT_ADDRESS:
4737 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4738 break;
4739 default:
4740 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4741 }
4742
4743 for (i = 0; i < n_reloads; i++)
4744 {
4745 rtx reg = rld[i].reg_rtx;
4746 if (reg && GET_CODE (reg) == REG
4747 && ((unsigned) regno - true_regnum (reg)
4748 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned)1)
4749 && i != reloadnum)
4750 {
4751 if (! rld[i].in || ! rtx_equal_p (rld[i].in, value)
4752 || rld[i].out || out)
4753 {
4754 int time2;
4755 switch (rld[i].when_needed)
4756 {
4757 case RELOAD_FOR_OTHER_ADDRESS:
4758 time2 = 0;
4759 break;
4760 case RELOAD_FOR_INPADDR_ADDRESS:
4761 /* find_reloads makes sure that a
4762 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4763 by at most one - the first -
4764 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4765 address reload is inherited, the address address reload
4766 goes away, so we can ignore this conflict. */
4767 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4768 && ignore_address_reloads
4769 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4770 Then the address address is still needed to store
4771 back the new address. */
4772 && ! rld[reloadnum].out)
4773 continue;
4774 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4775 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4776 reloads go away. */
4777 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4778 && ignore_address_reloads
4779 /* Unless we are reloading an auto_inc expression. */
4780 && ! rld[reloadnum].out)
4781 continue;
4782 time2 = rld[i].opnum * 4 + 2;
4783 break;
4784 case RELOAD_FOR_INPUT_ADDRESS:
4785 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4786 && ignore_address_reloads
4787 && ! rld[reloadnum].out)
4788 continue;
4789 time2 = rld[i].opnum * 4 + 3;
4790 break;
4791 case RELOAD_FOR_INPUT:
4792 time2 = rld[i].opnum * 4 + 4;
4793 check_earlyclobber = 1;
4794 break;
4795 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4796 == MAX_RECOG_OPERAND * 4 */
4797 case RELOAD_FOR_OPADDR_ADDR:
4798 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4799 && ignore_address_reloads
4800 && ! rld[reloadnum].out)
4801 continue;
4802 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4803 break;
4804 case RELOAD_FOR_OPERAND_ADDRESS:
4805 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4806 check_earlyclobber = 1;
4807 break;
4808 case RELOAD_FOR_INSN:
4809 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4810 break;
4811 case RELOAD_FOR_OUTPUT:
4812 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4813 instruction is executed. */
4814 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4815 break;
4816 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4817 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4818 value. */
4819 case RELOAD_FOR_OUTADDR_ADDRESS:
4820 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4821 && ignore_address_reloads
4822 && ! rld[reloadnum].out)
4823 continue;
4824 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4825 break;
4826 case RELOAD_FOR_OUTPUT_ADDRESS:
4827 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4828 break;
4829 case RELOAD_OTHER:
4830 /* If there is no conflict in the input part, handle this
4831 like an output reload. */
4832 if (! rld[i].in || rtx_equal_p (rld[i].in, value))
4833 {
4834 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4835 /* Earlyclobbered outputs must conflict with inputs. */
4836 if (earlyclobber_operand_p (rld[i].out))
4837 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4838
4839 break;
4840 }
4841 time2 = 1;
4842 /* RELOAD_OTHER might be live beyond instruction execution,
4843 but this is not obvious when we set time2 = 1. So check
4844 here if there might be a problem with the new reload
4845 clobbering the register used by the RELOAD_OTHER. */
4846 if (out)
4847 return 0;
4848 break;
4849 default:
4850 return 0;
4851 }
4852 if ((time1 >= time2
4853 && (! rld[i].in || rld[i].out
4854 || ! rtx_equal_p (rld[i].in, value)))
4855 || (out && rld[reloadnum].out_reg
4856 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4857 return 0;
4858 }
4859 }
4860 }
4861
4862 /* Earlyclobbered outputs must conflict with inputs. */
4863 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4864 return 0;
4865
4866 return 1;
4867 }
4868
4869 /* Give an error message saying we failed to find a reload for INSN,
4870 and clear out reload R. */
4871 static void
4872 failed_reload (insn, r)
4873 rtx insn;
4874 int r;
4875 {
4876 if (asm_noperands (PATTERN (insn)) < 0)
4877 /* It's the compiler's fault. */
4878 fatal_insn ("Could not find a spill register", insn);
4879
4880 /* It's the user's fault; the operand's mode and constraint
4881 don't match. Disable this reload so we don't crash in final. */
4882 error_for_asm (insn,
4883 "`asm' operand constraint incompatible with operand size");
4884 rld[r].in = 0;
4885 rld[r].out = 0;
4886 rld[r].reg_rtx = 0;
4887 rld[r].optional = 1;
4888 rld[r].secondary_p = 1;
4889 }
4890
4891 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
4892 for reload R. If it's valid, get an rtx for it. Return nonzero if
4893 successful. */
4894 static int
4895 set_reload_reg (i, r)
4896 int i, r;
4897 {
4898 int regno;
4899 rtx reg = spill_reg_rtx[i];
4900
4901 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
4902 spill_reg_rtx[i] = reg
4903 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
4904
4905 regno = true_regnum (reg);
4906
4907 /* Detect when the reload reg can't hold the reload mode.
4908 This used to be one `if', but Sequent compiler can't handle that. */
4909 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
4910 {
4911 enum machine_mode test_mode = VOIDmode;
4912 if (rld[r].in)
4913 test_mode = GET_MODE (rld[r].in);
4914 /* If rld[r].in has VOIDmode, it means we will load it
4915 in whatever mode the reload reg has: to wit, rld[r].mode.
4916 We have already tested that for validity. */
4917 /* Aside from that, we need to test that the expressions
4918 to reload from or into have modes which are valid for this
4919 reload register. Otherwise the reload insns would be invalid. */
4920 if (! (rld[r].in != 0 && test_mode != VOIDmode
4921 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
4922 if (! (rld[r].out != 0
4923 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
4924 {
4925 /* The reg is OK. */
4926 last_spill_reg = i;
4927
4928 /* Mark as in use for this insn the reload regs we use
4929 for this. */
4930 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
4931 rld[r].when_needed, rld[r].mode);
4932
4933 rld[r].reg_rtx = reg;
4934 reload_spill_index[r] = spill_regs[i];
4935 return 1;
4936 }
4937 }
4938 return 0;
4939 }
4940
4941 /* Find a spill register to use as a reload register for reload R.
4942 LAST_RELOAD is non-zero if this is the last reload for the insn being
4943 processed.
4944
4945 Set rld[R].reg_rtx to the register allocated.
4946
4947 We return 1 if successful, or 0 if we couldn't find a spill reg and
4948 we didn't change anything. */
4949
4950 static int
4951 allocate_reload_reg (chain, r, last_reload)
4952 struct insn_chain *chain ATTRIBUTE_UNUSED;
4953 int r;
4954 int last_reload;
4955 {
4956 int i, pass, count;
4957
4958 /* If we put this reload ahead, thinking it is a group,
4959 then insist on finding a group. Otherwise we can grab a
4960 reg that some other reload needs.
4961 (That can happen when we have a 68000 DATA_OR_FP_REG
4962 which is a group of data regs or one fp reg.)
4963 We need not be so restrictive if there are no more reloads
4964 for this insn.
4965
4966 ??? Really it would be nicer to have smarter handling
4967 for that kind of reg class, where a problem like this is normal.
4968 Perhaps those classes should be avoided for reloading
4969 by use of more alternatives. */
4970
4971 int force_group = rld[r].nregs > 1 && ! last_reload;
4972
4973 /* If we want a single register and haven't yet found one,
4974 take any reg in the right class and not in use.
4975 If we want a consecutive group, here is where we look for it.
4976
4977 We use two passes so we can first look for reload regs to
4978 reuse, which are already in use for other reloads in this insn,
4979 and only then use additional registers.
4980 I think that maximizing reuse is needed to make sure we don't
4981 run out of reload regs. Suppose we have three reloads, and
4982 reloads A and B can share regs. These need two regs.
4983 Suppose A and B are given different regs.
4984 That leaves none for C. */
4985 for (pass = 0; pass < 2; pass++)
4986 {
4987 /* I is the index in spill_regs.
4988 We advance it round-robin between insns to use all spill regs
4989 equally, so that inherited reloads have a chance
4990 of leapfrogging each other. */
4991
4992 i = last_spill_reg;
4993
4994 for (count = 0; count < n_spills; count++)
4995 {
4996 int class = (int) rld[r].class;
4997 int regnum;
4998
4999 i++;
5000 if (i >= n_spills)
5001 i -= n_spills;
5002 regnum = spill_regs[i];
5003
5004 if ((reload_reg_free_p (regnum, rld[r].opnum,
5005 rld[r].when_needed)
5006 || (rld[r].in
5007 /* We check reload_reg_used to make sure we
5008 don't clobber the return register. */
5009 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5010 && reload_reg_free_for_value_p (regnum,
5011 rld[r].opnum,
5012 rld[r].when_needed,
5013 rld[r].in,
5014 rld[r].out, r, 1)))
5015 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5016 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5017 /* Look first for regs to share, then for unshared. But
5018 don't share regs used for inherited reloads; they are
5019 the ones we want to preserve. */
5020 && (pass
5021 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5022 regnum)
5023 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5024 regnum))))
5025 {
5026 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5027 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5028 (on 68000) got us two FP regs. If NR is 1,
5029 we would reject both of them. */
5030 if (force_group)
5031 nr = rld[r].nregs;
5032 /* If we need only one reg, we have already won. */
5033 if (nr == 1)
5034 {
5035 /* But reject a single reg if we demand a group. */
5036 if (force_group)
5037 continue;
5038 break;
5039 }
5040 /* Otherwise check that as many consecutive regs as we need
5041 are available here. */
5042 while (nr > 1)
5043 {
5044 int regno = regnum + nr - 1;
5045 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5046 && spill_reg_order[regno] >= 0
5047 && reload_reg_free_p (regno, rld[r].opnum,
5048 rld[r].when_needed)))
5049 break;
5050 nr--;
5051 }
5052 if (nr == 1)
5053 break;
5054 }
5055 }
5056
5057 /* If we found something on pass 1, omit pass 2. */
5058 if (count < n_spills)
5059 break;
5060 }
5061
5062 /* We should have found a spill register by now. */
5063 if (count >= n_spills)
5064 return 0;
5065
5066 /* I is the index in SPILL_REG_RTX of the reload register we are to
5067 allocate. Get an rtx for it and find its register number. */
5068
5069 return set_reload_reg (i, r);
5070 }
5071 \f
5072 /* Initialize all the tables needed to allocate reload registers.
5073 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5074 is the array we use to restore the reg_rtx field for every reload. */
5075
5076 static void
5077 choose_reload_regs_init (chain, save_reload_reg_rtx)
5078 struct insn_chain *chain;
5079 rtx *save_reload_reg_rtx;
5080 {
5081 int i;
5082
5083 for (i = 0; i < n_reloads; i++)
5084 rld[i].reg_rtx = save_reload_reg_rtx[i];
5085
5086 bzero (reload_inherited, MAX_RELOADS);
5087 bzero ((char *) reload_inheritance_insn, MAX_RELOADS * sizeof (rtx));
5088 bzero ((char *) reload_override_in, MAX_RELOADS * sizeof (rtx));
5089
5090 CLEAR_HARD_REG_SET (reload_reg_used);
5091 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5092 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5093 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5094 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5095 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5096
5097 CLEAR_HARD_REG_SET (reg_used_in_insn);
5098 {
5099 HARD_REG_SET tmp;
5100 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5101 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5102 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5103 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5104 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5105 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5106 }
5107
5108 for (i = 0; i < reload_n_operands; i++)
5109 {
5110 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5111 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5112 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5113 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5114 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5115 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5116 }
5117
5118 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5119
5120 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5121
5122 for (i = 0; i < n_reloads; i++)
5123 /* If we have already decided to use a certain register,
5124 don't use it in another way. */
5125 if (rld[i].reg_rtx)
5126 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5127 rld[i].when_needed, rld[i].mode);
5128 }
5129
5130 /* Assign hard reg targets for the pseudo-registers we must reload
5131 into hard regs for this insn.
5132 Also output the instructions to copy them in and out of the hard regs.
5133
5134 For machines with register classes, we are responsible for
5135 finding a reload reg in the proper class. */
5136
5137 static void
5138 choose_reload_regs (chain)
5139 struct insn_chain *chain;
5140 {
5141 rtx insn = chain->insn;
5142 register int i, j;
5143 unsigned int max_group_size = 1;
5144 enum reg_class group_class = NO_REGS;
5145 int pass, win, inheritance;
5146
5147 rtx save_reload_reg_rtx[MAX_RELOADS];
5148
5149 /* In order to be certain of getting the registers we need,
5150 we must sort the reloads into order of increasing register class.
5151 Then our grabbing of reload registers will parallel the process
5152 that provided the reload registers.
5153
5154 Also note whether any of the reloads wants a consecutive group of regs.
5155 If so, record the maximum size of the group desired and what
5156 register class contains all the groups needed by this insn. */
5157
5158 for (j = 0; j < n_reloads; j++)
5159 {
5160 reload_order[j] = j;
5161 reload_spill_index[j] = -1;
5162
5163 if (rld[j].nregs > 1)
5164 {
5165 max_group_size = MAX (rld[j].nregs, max_group_size);
5166 group_class
5167 = reg_class_superunion[(int)rld[j].class][(int)group_class];
5168 }
5169
5170 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5171 }
5172
5173 if (n_reloads > 1)
5174 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5175
5176 /* If -O, try first with inheritance, then turning it off.
5177 If not -O, don't do inheritance.
5178 Using inheritance when not optimizing leads to paradoxes
5179 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5180 because one side of the comparison might be inherited. */
5181 win = 0;
5182 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5183 {
5184 choose_reload_regs_init (chain, save_reload_reg_rtx);
5185
5186 /* Process the reloads in order of preference just found.
5187 Beyond this point, subregs can be found in reload_reg_rtx.
5188
5189 This used to look for an existing reloaded home for all of the
5190 reloads, and only then perform any new reloads. But that could lose
5191 if the reloads were done out of reg-class order because a later
5192 reload with a looser constraint might have an old home in a register
5193 needed by an earlier reload with a tighter constraint.
5194
5195 To solve this, we make two passes over the reloads, in the order
5196 described above. In the first pass we try to inherit a reload
5197 from a previous insn. If there is a later reload that needs a
5198 class that is a proper subset of the class being processed, we must
5199 also allocate a spill register during the first pass.
5200
5201 Then make a second pass over the reloads to allocate any reloads
5202 that haven't been given registers yet. */
5203
5204 for (j = 0; j < n_reloads; j++)
5205 {
5206 register int r = reload_order[j];
5207 rtx search_equiv = NULL_RTX;
5208
5209 /* Ignore reloads that got marked inoperative. */
5210 if (rld[r].out == 0 && rld[r].in == 0
5211 && ! rld[r].secondary_p)
5212 continue;
5213
5214 /* If find_reloads chose to use reload_in or reload_out as a reload
5215 register, we don't need to chose one. Otherwise, try even if it
5216 found one since we might save an insn if we find the value lying
5217 around.
5218 Try also when reload_in is a pseudo without a hard reg. */
5219 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5220 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5221 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5222 && GET_CODE (rld[r].in) != MEM
5223 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5224 continue;
5225
5226 #if 0 /* No longer needed for correct operation.
5227 It might give better code, or might not; worth an experiment? */
5228 /* If this is an optional reload, we can't inherit from earlier insns
5229 until we are sure that any non-optional reloads have been allocated.
5230 The following code takes advantage of the fact that optional reloads
5231 are at the end of reload_order. */
5232 if (rld[r].optional != 0)
5233 for (i = 0; i < j; i++)
5234 if ((rld[reload_order[i]].out != 0
5235 || rld[reload_order[i]].in != 0
5236 || rld[reload_order[i]].secondary_p)
5237 && ! rld[reload_order[i]].optional
5238 && rld[reload_order[i]].reg_rtx == 0)
5239 allocate_reload_reg (chain, reload_order[i], 0);
5240 #endif
5241
5242 /* First see if this pseudo is already available as reloaded
5243 for a previous insn. We cannot try to inherit for reloads
5244 that are smaller than the maximum number of registers needed
5245 for groups unless the register we would allocate cannot be used
5246 for the groups.
5247
5248 We could check here to see if this is a secondary reload for
5249 an object that is already in a register of the desired class.
5250 This would avoid the need for the secondary reload register.
5251 But this is complex because we can't easily determine what
5252 objects might want to be loaded via this reload. So let a
5253 register be allocated here. In `emit_reload_insns' we suppress
5254 one of the loads in the case described above. */
5255
5256 if (inheritance)
5257 {
5258 int word = 0;
5259 register int regno = -1;
5260 enum machine_mode mode = VOIDmode;
5261
5262 if (rld[r].in == 0)
5263 ;
5264 else if (GET_CODE (rld[r].in) == REG)
5265 {
5266 regno = REGNO (rld[r].in);
5267 mode = GET_MODE (rld[r].in);
5268 }
5269 else if (GET_CODE (rld[r].in_reg) == REG)
5270 {
5271 regno = REGNO (rld[r].in_reg);
5272 mode = GET_MODE (rld[r].in_reg);
5273 }
5274 else if (GET_CODE (rld[r].in_reg) == SUBREG
5275 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5276 {
5277 word = SUBREG_WORD (rld[r].in_reg);
5278 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5279 if (regno < FIRST_PSEUDO_REGISTER)
5280 regno += word;
5281 mode = GET_MODE (rld[r].in_reg);
5282 }
5283 #ifdef AUTO_INC_DEC
5284 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5285 || GET_CODE (rld[r].in_reg) == PRE_DEC
5286 || GET_CODE (rld[r].in_reg) == POST_INC
5287 || GET_CODE (rld[r].in_reg) == POST_DEC)
5288 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5289 {
5290 regno = REGNO (XEXP (rld[r].in_reg, 0));
5291 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5292 rld[r].out = rld[r].in;
5293 }
5294 #endif
5295 #if 0
5296 /* This won't work, since REGNO can be a pseudo reg number.
5297 Also, it takes much more hair to keep track of all the things
5298 that can invalidate an inherited reload of part of a pseudoreg. */
5299 else if (GET_CODE (rld[r].in) == SUBREG
5300 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5301 regno = REGNO (SUBREG_REG (rld[r].in)) + SUBREG_WORD (rld[r].in);
5302 #endif
5303
5304 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5305 {
5306 enum reg_class class = rld[r].class, last_class;
5307 rtx last_reg = reg_last_reload_reg[regno];
5308
5309 i = REGNO (last_reg) + word;
5310 last_class = REGNO_REG_CLASS (i);
5311 if (
5312 #ifdef CLASS_CANNOT_CHANGE_SIZE
5313 (TEST_HARD_REG_BIT
5314 (reg_class_contents[CLASS_CANNOT_CHANGE_SIZE], i)
5315 ? (GET_MODE_SIZE (GET_MODE (last_reg))
5316 == GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
5317 : (GET_MODE_SIZE (GET_MODE (last_reg))
5318 >= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD))
5319 #else
5320 (GET_MODE_SIZE (GET_MODE (last_reg))
5321 >= GET_MODE_SIZE (mode) + word * UNITS_PER_WORD)
5322 #endif
5323 && reg_reloaded_contents[i] == regno
5324 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5325 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5326 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5327 /* Even if we can't use this register as a reload
5328 register, we might use it for reload_override_in,
5329 if copying it to the desired class is cheap
5330 enough. */
5331 || ((REGISTER_MOVE_COST (last_class, class)
5332 < MEMORY_MOVE_COST (mode, class, 1))
5333 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5334 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5335 last_reg)
5336 == NO_REGS)
5337 #endif
5338 #ifdef SECONDARY_MEMORY_NEEDED
5339 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5340 mode)
5341 #endif
5342 ))
5343
5344 && (rld[r].nregs == max_group_size
5345 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5346 i))
5347 && reload_reg_free_for_value_p (i, rld[r].opnum,
5348 rld[r].when_needed,
5349 rld[r].in,
5350 const0_rtx, r, 1))
5351 {
5352 /* If a group is needed, verify that all the subsequent
5353 registers still have their values intact. */
5354 int nr
5355 = HARD_REGNO_NREGS (i, rld[r].mode);
5356 int k;
5357
5358 for (k = 1; k < nr; k++)
5359 if (reg_reloaded_contents[i + k] != regno
5360 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5361 break;
5362
5363 if (k == nr)
5364 {
5365 int i1;
5366
5367 last_reg = (GET_MODE (last_reg) == mode
5368 ? last_reg : gen_rtx_REG (mode, i));
5369
5370 /* We found a register that contains the
5371 value we need. If this register is the
5372 same as an `earlyclobber' operand of the
5373 current insn, just mark it as a place to
5374 reload from since we can't use it as the
5375 reload register itself. */
5376
5377 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5378 if (reg_overlap_mentioned_for_reload_p
5379 (reg_last_reload_reg[regno],
5380 reload_earlyclobbers[i1]))
5381 break;
5382
5383 if (i1 != n_earlyclobbers
5384 || ! (reload_reg_free_for_value_p
5385 (i, rld[r].opnum, rld[r].when_needed,
5386 rld[r].in, rld[r].out, r, 1))
5387 /* Don't use it if we'd clobber a pseudo reg. */
5388 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5389 && rld[r].out
5390 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5391 /* Don't clobber the frame pointer. */
5392 || (i == HARD_FRAME_POINTER_REGNUM && rld[r].out)
5393 /* Don't really use the inherited spill reg
5394 if we need it wider than we've got it. */
5395 || (GET_MODE_SIZE (rld[r].mode)
5396 > GET_MODE_SIZE (mode))
5397 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5398 i)
5399
5400 /* If find_reloads chose reload_out as reload
5401 register, stay with it - that leaves the
5402 inherited register for subsequent reloads. */
5403 || (rld[r].out && rld[r].reg_rtx
5404 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5405 {
5406 reload_override_in[r] = last_reg;
5407 reload_inheritance_insn[r]
5408 = reg_reloaded_insn[i];
5409 }
5410 else
5411 {
5412 int k;
5413 /* We can use this as a reload reg. */
5414 /* Mark the register as in use for this part of
5415 the insn. */
5416 mark_reload_reg_in_use (i,
5417 rld[r].opnum,
5418 rld[r].when_needed,
5419 rld[r].mode);
5420 rld[r].reg_rtx = last_reg;
5421 reload_inherited[r] = 1;
5422 reload_inheritance_insn[r]
5423 = reg_reloaded_insn[i];
5424 reload_spill_index[r] = i;
5425 for (k = 0; k < nr; k++)
5426 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5427 i + k);
5428 }
5429 }
5430 }
5431 }
5432 }
5433
5434 /* Here's another way to see if the value is already lying around. */
5435 if (inheritance
5436 && rld[r].in != 0
5437 && ! reload_inherited[r]
5438 && rld[r].out == 0
5439 && (CONSTANT_P (rld[r].in)
5440 || GET_CODE (rld[r].in) == PLUS
5441 || GET_CODE (rld[r].in) == REG
5442 || GET_CODE (rld[r].in) == MEM)
5443 && (rld[r].nregs == max_group_size
5444 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5445 search_equiv = rld[r].in;
5446 /* If this is an output reload from a simple move insn, look
5447 if an equivalence for the input is available. */
5448 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5449 {
5450 rtx set = single_set (insn);
5451
5452 if (set
5453 && rtx_equal_p (rld[r].out, SET_DEST (set))
5454 && CONSTANT_P (SET_SRC (set)))
5455 search_equiv = SET_SRC (set);
5456 }
5457
5458 if (search_equiv)
5459 {
5460 register rtx equiv
5461 = find_equiv_reg (search_equiv, insn, rld[r].class,
5462 -1, NULL_PTR, 0, rld[r].mode);
5463 int regno = 0;
5464
5465 if (equiv != 0)
5466 {
5467 if (GET_CODE (equiv) == REG)
5468 regno = REGNO (equiv);
5469 else if (GET_CODE (equiv) == SUBREG)
5470 {
5471 /* This must be a SUBREG of a hard register.
5472 Make a new REG since this might be used in an
5473 address and not all machines support SUBREGs
5474 there. */
5475 regno = REGNO (SUBREG_REG (equiv)) + SUBREG_WORD (equiv);
5476 equiv = gen_rtx_REG (rld[r].mode, regno);
5477 }
5478 else
5479 abort ();
5480 }
5481
5482 /* If we found a spill reg, reject it unless it is free
5483 and of the desired class. */
5484 if (equiv != 0
5485 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5486 && ! reload_reg_free_for_value_p (regno, rld[r].opnum,
5487 rld[r].when_needed,
5488 rld[r].in,
5489 rld[r].out, r, 1))
5490 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5491 regno)))
5492 equiv = 0;
5493
5494 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5495 equiv = 0;
5496
5497 /* We found a register that contains the value we need.
5498 If this register is the same as an `earlyclobber' operand
5499 of the current insn, just mark it as a place to reload from
5500 since we can't use it as the reload register itself. */
5501
5502 if (equiv != 0)
5503 for (i = 0; i < n_earlyclobbers; i++)
5504 if (reg_overlap_mentioned_for_reload_p (equiv,
5505 reload_earlyclobbers[i]))
5506 {
5507 reload_override_in[r] = equiv;
5508 equiv = 0;
5509 break;
5510 }
5511
5512 /* If the equiv register we have found is explicitly clobbered
5513 in the current insn, it depends on the reload type if we
5514 can use it, use it for reload_override_in, or not at all.
5515 In particular, we then can't use EQUIV for a
5516 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5517
5518 if (equiv != 0 && regno_clobbered_p (regno, insn))
5519 {
5520 switch (rld[r].when_needed)
5521 {
5522 case RELOAD_FOR_OTHER_ADDRESS:
5523 case RELOAD_FOR_INPADDR_ADDRESS:
5524 case RELOAD_FOR_INPUT_ADDRESS:
5525 case RELOAD_FOR_OPADDR_ADDR:
5526 break;
5527 case RELOAD_OTHER:
5528 case RELOAD_FOR_INPUT:
5529 case RELOAD_FOR_OPERAND_ADDRESS:
5530 reload_override_in[r] = equiv;
5531 /* Fall through. */
5532 default:
5533 equiv = 0;
5534 break;
5535 }
5536 }
5537
5538 /* If we found an equivalent reg, say no code need be generated
5539 to load it, and use it as our reload reg. */
5540 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5541 {
5542 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5543 int k;
5544 rld[r].reg_rtx = equiv;
5545 reload_inherited[r] = 1;
5546
5547 /* If reg_reloaded_valid is not set for this register,
5548 there might be a stale spill_reg_store lying around.
5549 We must clear it, since otherwise emit_reload_insns
5550 might delete the store. */
5551 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5552 spill_reg_store[regno] = NULL_RTX;
5553 /* If any of the hard registers in EQUIV are spill
5554 registers, mark them as in use for this insn. */
5555 for (k = 0; k < nr; k++)
5556 {
5557 i = spill_reg_order[regno + k];
5558 if (i >= 0)
5559 {
5560 mark_reload_reg_in_use (regno, rld[r].opnum,
5561 rld[r].when_needed,
5562 rld[r].mode);
5563 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5564 regno + k);
5565 }
5566 }
5567 }
5568 }
5569
5570 /* If we found a register to use already, or if this is an optional
5571 reload, we are done. */
5572 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5573 continue;
5574
5575 #if 0 /* No longer needed for correct operation. Might or might not
5576 give better code on the average. Want to experiment? */
5577
5578 /* See if there is a later reload that has a class different from our
5579 class that intersects our class or that requires less register
5580 than our reload. If so, we must allocate a register to this
5581 reload now, since that reload might inherit a previous reload
5582 and take the only available register in our class. Don't do this
5583 for optional reloads since they will force all previous reloads
5584 to be allocated. Also don't do this for reloads that have been
5585 turned off. */
5586
5587 for (i = j + 1; i < n_reloads; i++)
5588 {
5589 int s = reload_order[i];
5590
5591 if ((rld[s].in == 0 && rld[s].out == 0
5592 && ! rld[s].secondary_p)
5593 || rld[s].optional)
5594 continue;
5595
5596 if ((rld[s].class != rld[r].class
5597 && reg_classes_intersect_p (rld[r].class,
5598 rld[s].class))
5599 || rld[s].nregs < rld[r].nregs)
5600 break;
5601 }
5602
5603 if (i == n_reloads)
5604 continue;
5605
5606 allocate_reload_reg (chain, r, j == n_reloads - 1);
5607 #endif
5608 }
5609
5610 /* Now allocate reload registers for anything non-optional that
5611 didn't get one yet. */
5612 for (j = 0; j < n_reloads; j++)
5613 {
5614 register int r = reload_order[j];
5615
5616 /* Ignore reloads that got marked inoperative. */
5617 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5618 continue;
5619
5620 /* Skip reloads that already have a register allocated or are
5621 optional. */
5622 if (rld[r].reg_rtx != 0 || rld[r].optional)
5623 continue;
5624
5625 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5626 break;
5627 }
5628
5629 /* If that loop got all the way, we have won. */
5630 if (j == n_reloads)
5631 {
5632 win = 1;
5633 break;
5634 }
5635
5636 /* Loop around and try without any inheritance. */
5637 }
5638
5639 if (! win)
5640 {
5641 /* First undo everything done by the failed attempt
5642 to allocate with inheritance. */
5643 choose_reload_regs_init (chain, save_reload_reg_rtx);
5644
5645 /* Some sanity tests to verify that the reloads found in the first
5646 pass are identical to the ones we have now. */
5647 if (chain->n_reloads != n_reloads)
5648 abort ();
5649
5650 for (i = 0; i < n_reloads; i++)
5651 {
5652 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5653 continue;
5654 if (chain->rld[i].when_needed != rld[i].when_needed)
5655 abort ();
5656 for (j = 0; j < n_spills; j++)
5657 if (spill_regs[j] == chain->rld[i].regno)
5658 if (! set_reload_reg (j, i))
5659 failed_reload (chain->insn, i);
5660 }
5661 }
5662
5663 /* If we thought we could inherit a reload, because it seemed that
5664 nothing else wanted the same reload register earlier in the insn,
5665 verify that assumption, now that all reloads have been assigned.
5666 Likewise for reloads where reload_override_in has been set. */
5667
5668 /* If doing expensive optimizations, do one preliminary pass that doesn't
5669 cancel any inheritance, but removes reloads that have been needed only
5670 for reloads that we know can be inherited. */
5671 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5672 {
5673 for (j = 0; j < n_reloads; j++)
5674 {
5675 register int r = reload_order[j];
5676 rtx check_reg;
5677 if (reload_inherited[r] && rld[r].reg_rtx)
5678 check_reg = rld[r].reg_rtx;
5679 else if (reload_override_in[r]
5680 && (GET_CODE (reload_override_in[r]) == REG
5681 || GET_CODE (reload_override_in[r]) == SUBREG))
5682 check_reg = reload_override_in[r];
5683 else
5684 continue;
5685 if (! reload_reg_free_for_value_p (true_regnum (check_reg),
5686 rld[r].opnum,
5687 rld[r].when_needed,
5688 rld[r].in,
5689 (reload_inherited[r]
5690 ? rld[r].out : const0_rtx),
5691 r, 1))
5692 {
5693 if (pass)
5694 continue;
5695 reload_inherited[r] = 0;
5696 reload_override_in[r] = 0;
5697 }
5698 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5699 reload_override_in, then we do not need its related
5700 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5701 likewise for other reload types.
5702 We handle this by removing a reload when its only replacement
5703 is mentioned in reload_in of the reload we are going to inherit.
5704 A special case are auto_inc expressions; even if the input is
5705 inherited, we still need the address for the output. We can
5706 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5707 If we suceeded removing some reload and we are doing a preliminary
5708 pass just to remove such reloads, make another pass, since the
5709 removal of one reload might allow us to inherit another one. */
5710 else if (rld[r].in
5711 && rld[r].out != rld[r].in
5712 && remove_address_replacements (rld[r].in) && pass)
5713 pass = 2;
5714 }
5715 }
5716
5717 /* Now that reload_override_in is known valid,
5718 actually override reload_in. */
5719 for (j = 0; j < n_reloads; j++)
5720 if (reload_override_in[j])
5721 rld[j].in = reload_override_in[j];
5722
5723 /* If this reload won't be done because it has been cancelled or is
5724 optional and not inherited, clear reload_reg_rtx so other
5725 routines (such as subst_reloads) don't get confused. */
5726 for (j = 0; j < n_reloads; j++)
5727 if (rld[j].reg_rtx != 0
5728 && ((rld[j].optional && ! reload_inherited[j])
5729 || (rld[j].in == 0 && rld[j].out == 0
5730 && ! rld[j].secondary_p)))
5731 {
5732 int regno = true_regnum (rld[j].reg_rtx);
5733
5734 if (spill_reg_order[regno] >= 0)
5735 clear_reload_reg_in_use (regno, rld[j].opnum,
5736 rld[j].when_needed, rld[j].mode);
5737 rld[j].reg_rtx = 0;
5738 reload_spill_index[j] = -1;
5739 }
5740
5741 /* Record which pseudos and which spill regs have output reloads. */
5742 for (j = 0; j < n_reloads; j++)
5743 {
5744 register int r = reload_order[j];
5745
5746 i = reload_spill_index[r];
5747
5748 /* I is nonneg if this reload uses a register.
5749 If rld[r].reg_rtx is 0, this is an optional reload
5750 that we opted to ignore. */
5751 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5752 && rld[r].reg_rtx != 0)
5753 {
5754 register int nregno = REGNO (rld[r].out_reg);
5755 int nr = 1;
5756
5757 if (nregno < FIRST_PSEUDO_REGISTER)
5758 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5759
5760 while (--nr >= 0)
5761 reg_has_output_reload[nregno + nr] = 1;
5762
5763 if (i >= 0)
5764 {
5765 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5766 while (--nr >= 0)
5767 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5768 }
5769
5770 if (rld[r].when_needed != RELOAD_OTHER
5771 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5772 && rld[r].when_needed != RELOAD_FOR_INSN)
5773 abort ();
5774 }
5775 }
5776 }
5777
5778 /* Deallocate the reload register for reload R. This is called from
5779 remove_address_replacements. */
5780
5781 void
5782 deallocate_reload_reg (r)
5783 int r;
5784 {
5785 int regno;
5786
5787 if (! rld[r].reg_rtx)
5788 return;
5789 regno = true_regnum (rld[r].reg_rtx);
5790 rld[r].reg_rtx = 0;
5791 if (spill_reg_order[regno] >= 0)
5792 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5793 rld[r].mode);
5794 reload_spill_index[r] = -1;
5795 }
5796 \f
5797 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5798 reloads of the same item for fear that we might not have enough reload
5799 registers. However, normally they will get the same reload register
5800 and hence actually need not be loaded twice.
5801
5802 Here we check for the most common case of this phenomenon: when we have
5803 a number of reloads for the same object, each of which were allocated
5804 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5805 reload, and is not modified in the insn itself. If we find such,
5806 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5807 This will not increase the number of spill registers needed and will
5808 prevent redundant code. */
5809
5810 static void
5811 merge_assigned_reloads (insn)
5812 rtx insn;
5813 {
5814 int i, j;
5815
5816 /* Scan all the reloads looking for ones that only load values and
5817 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
5818 assigned and not modified by INSN. */
5819
5820 for (i = 0; i < n_reloads; i++)
5821 {
5822 int conflicting_input = 0;
5823 int max_input_address_opnum = -1;
5824 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
5825
5826 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
5827 || rld[i].out != 0 || rld[i].reg_rtx == 0
5828 || reg_set_p (rld[i].reg_rtx, insn))
5829 continue;
5830
5831 /* Look at all other reloads. Ensure that the only use of this
5832 reload_reg_rtx is in a reload that just loads the same value
5833 as we do. Note that any secondary reloads must be of the identical
5834 class since the values, modes, and result registers are the
5835 same, so we need not do anything with any secondary reloads. */
5836
5837 for (j = 0; j < n_reloads; j++)
5838 {
5839 if (i == j || rld[j].reg_rtx == 0
5840 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
5841 rld[i].reg_rtx))
5842 continue;
5843
5844 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5845 && rld[j].opnum > max_input_address_opnum)
5846 max_input_address_opnum = rld[j].opnum;
5847
5848 /* If the reload regs aren't exactly the same (e.g, different modes)
5849 or if the values are different, we can't merge this reload.
5850 But if it is an input reload, we might still merge
5851 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
5852
5853 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5854 || rld[j].out != 0 || rld[j].in == 0
5855 || ! rtx_equal_p (rld[i].in, rld[j].in))
5856 {
5857 if (rld[j].when_needed != RELOAD_FOR_INPUT
5858 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
5859 || rld[i].opnum > rld[j].opnum)
5860 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
5861 break;
5862 conflicting_input = 1;
5863 if (min_conflicting_input_opnum > rld[j].opnum)
5864 min_conflicting_input_opnum = rld[j].opnum;
5865 }
5866 }
5867
5868 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
5869 we, in fact, found any matching reloads. */
5870
5871 if (j == n_reloads
5872 && max_input_address_opnum <= min_conflicting_input_opnum)
5873 {
5874 for (j = 0; j < n_reloads; j++)
5875 if (i != j && rld[j].reg_rtx != 0
5876 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
5877 && (! conflicting_input
5878 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
5879 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
5880 {
5881 rld[i].when_needed = RELOAD_OTHER;
5882 rld[j].in = 0;
5883 reload_spill_index[j] = -1;
5884 transfer_replacements (i, j);
5885 }
5886
5887 /* If this is now RELOAD_OTHER, look for any reloads that load
5888 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
5889 if they were for inputs, RELOAD_OTHER for outputs. Note that
5890 this test is equivalent to looking for reloads for this operand
5891 number. */
5892
5893 if (rld[i].when_needed == RELOAD_OTHER)
5894 for (j = 0; j < n_reloads; j++)
5895 if (rld[j].in != 0
5896 && rld[i].when_needed != RELOAD_OTHER
5897 && reg_overlap_mentioned_for_reload_p (rld[j].in,
5898 rld[i].in))
5899 rld[j].when_needed
5900 = ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
5901 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
5902 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
5903 }
5904 }
5905 }
5906
5907 \f
5908 /* These arrays are filled by emit_reload_insns and its subroutines. */
5909 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
5910 static rtx other_input_address_reload_insns = 0;
5911 static rtx other_input_reload_insns = 0;
5912 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
5913 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5914 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
5915 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
5916 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
5917 static rtx operand_reload_insns = 0;
5918 static rtx other_operand_reload_insns = 0;
5919 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
5920
5921 /* Values to be put in spill_reg_store are put here first. */
5922 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
5923 static HARD_REG_SET reg_reloaded_died;
5924
5925 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
5926 has the number J. OLD contains the value to be used as input. */
5927
5928 static void
5929 emit_input_reload_insns (chain, rl, old, j)
5930 struct insn_chain *chain;
5931 struct reload *rl;
5932 rtx old;
5933 int j;
5934 {
5935 rtx insn = chain->insn;
5936 register rtx reloadreg = rl->reg_rtx;
5937 rtx oldequiv_reg = 0;
5938 rtx oldequiv = 0;
5939 int special = 0;
5940 enum machine_mode mode;
5941 rtx *where;
5942
5943 /* Determine the mode to reload in.
5944 This is very tricky because we have three to choose from.
5945 There is the mode the insn operand wants (rl->inmode).
5946 There is the mode of the reload register RELOADREG.
5947 There is the intrinsic mode of the operand, which we could find
5948 by stripping some SUBREGs.
5949 It turns out that RELOADREG's mode is irrelevant:
5950 we can change that arbitrarily.
5951
5952 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
5953 then the reload reg may not support QImode moves, so use SImode.
5954 If foo is in memory due to spilling a pseudo reg, this is safe,
5955 because the QImode value is in the least significant part of a
5956 slot big enough for a SImode. If foo is some other sort of
5957 memory reference, then it is impossible to reload this case,
5958 so previous passes had better make sure this never happens.
5959
5960 Then consider a one-word union which has SImode and one of its
5961 members is a float, being fetched as (SUBREG:SF union:SI).
5962 We must fetch that as SFmode because we could be loading into
5963 a float-only register. In this case OLD's mode is correct.
5964
5965 Consider an immediate integer: it has VOIDmode. Here we need
5966 to get a mode from something else.
5967
5968 In some cases, there is a fourth mode, the operand's
5969 containing mode. If the insn specifies a containing mode for
5970 this operand, it overrides all others.
5971
5972 I am not sure whether the algorithm here is always right,
5973 but it does the right things in those cases. */
5974
5975 mode = GET_MODE (old);
5976 if (mode == VOIDmode)
5977 mode = rl->inmode;
5978
5979 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5980 /* If we need a secondary register for this operation, see if
5981 the value is already in a register in that class. Don't
5982 do this if the secondary register will be used as a scratch
5983 register. */
5984
5985 if (rl->secondary_in_reload >= 0
5986 && rl->secondary_in_icode == CODE_FOR_nothing
5987 && optimize)
5988 oldequiv
5989 = find_equiv_reg (old, insn,
5990 rld[rl->secondary_in_reload].class,
5991 -1, NULL_PTR, 0, mode);
5992 #endif
5993
5994 /* If reloading from memory, see if there is a register
5995 that already holds the same value. If so, reload from there.
5996 We can pass 0 as the reload_reg_p argument because
5997 any other reload has either already been emitted,
5998 in which case find_equiv_reg will see the reload-insn,
5999 or has yet to be emitted, in which case it doesn't matter
6000 because we will use this equiv reg right away. */
6001
6002 if (oldequiv == 0 && optimize
6003 && (GET_CODE (old) == MEM
6004 || (GET_CODE (old) == REG
6005 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6006 && reg_renumber[REGNO (old)] < 0)))
6007 oldequiv = find_equiv_reg (old, insn, ALL_REGS,
6008 -1, NULL_PTR, 0, mode);
6009
6010 if (oldequiv)
6011 {
6012 unsigned int regno = true_regnum (oldequiv);
6013
6014 /* Don't use OLDEQUIV if any other reload changes it at an
6015 earlier stage of this insn or at this stage. */
6016 if (! reload_reg_free_for_value_p (regno, rl->opnum,
6017 rl->when_needed,
6018 rl->in, const0_rtx, j,
6019 0))
6020 oldequiv = 0;
6021
6022 /* If it is no cheaper to copy from OLDEQUIV into the
6023 reload register than it would be to move from memory,
6024 don't use it. Likewise, if we need a secondary register
6025 or memory. */
6026
6027 if (oldequiv != 0
6028 && ((REGNO_REG_CLASS (regno) != rl->class
6029 && (REGISTER_MOVE_COST (REGNO_REG_CLASS (regno),
6030 rl->class)
6031 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6032 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6033 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6034 mode, oldequiv)
6035 != NO_REGS)
6036 #endif
6037 #ifdef SECONDARY_MEMORY_NEEDED
6038 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6039 rl->class,
6040 mode)
6041 #endif
6042 ))
6043 oldequiv = 0;
6044 }
6045
6046 /* delete_output_reload is only invoked properly if old contains
6047 the original pseudo register. Since this is replaced with a
6048 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6049 find the pseudo in RELOAD_IN_REG. */
6050 if (oldequiv == 0
6051 && reload_override_in[j]
6052 && GET_CODE (rl->in_reg) == REG)
6053 {
6054 oldequiv = old;
6055 old = rl->in_reg;
6056 }
6057 if (oldequiv == 0)
6058 oldequiv = old;
6059 else if (GET_CODE (oldequiv) == REG)
6060 oldequiv_reg = oldequiv;
6061 else if (GET_CODE (oldequiv) == SUBREG)
6062 oldequiv_reg = SUBREG_REG (oldequiv);
6063
6064 /* If we are reloading from a register that was recently stored in
6065 with an output-reload, see if we can prove there was
6066 actually no need to store the old value in it. */
6067
6068 if (optimize && GET_CODE (oldequiv) == REG
6069 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6070 && spill_reg_store[REGNO (oldequiv)]
6071 && GET_CODE (old) == REG
6072 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6073 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6074 rl->out_reg)))
6075 delete_output_reload (insn, j, REGNO (oldequiv));
6076
6077 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6078 then load RELOADREG from OLDEQUIV. Note that we cannot use
6079 gen_lowpart_common since it can do the wrong thing when
6080 RELOADREG has a multi-word mode. Note that RELOADREG
6081 must always be a REG here. */
6082
6083 if (GET_MODE (reloadreg) != mode)
6084 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6085 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6086 oldequiv = SUBREG_REG (oldequiv);
6087 if (GET_MODE (oldequiv) != VOIDmode
6088 && mode != GET_MODE (oldequiv))
6089 oldequiv = gen_rtx_SUBREG (mode, oldequiv, 0);
6090
6091 /* Switch to the right place to emit the reload insns. */
6092 switch (rl->when_needed)
6093 {
6094 case RELOAD_OTHER:
6095 where = &other_input_reload_insns;
6096 break;
6097 case RELOAD_FOR_INPUT:
6098 where = &input_reload_insns[rl->opnum];
6099 break;
6100 case RELOAD_FOR_INPUT_ADDRESS:
6101 where = &input_address_reload_insns[rl->opnum];
6102 break;
6103 case RELOAD_FOR_INPADDR_ADDRESS:
6104 where = &inpaddr_address_reload_insns[rl->opnum];
6105 break;
6106 case RELOAD_FOR_OUTPUT_ADDRESS:
6107 where = &output_address_reload_insns[rl->opnum];
6108 break;
6109 case RELOAD_FOR_OUTADDR_ADDRESS:
6110 where = &outaddr_address_reload_insns[rl->opnum];
6111 break;
6112 case RELOAD_FOR_OPERAND_ADDRESS:
6113 where = &operand_reload_insns;
6114 break;
6115 case RELOAD_FOR_OPADDR_ADDR:
6116 where = &other_operand_reload_insns;
6117 break;
6118 case RELOAD_FOR_OTHER_ADDRESS:
6119 where = &other_input_address_reload_insns;
6120 break;
6121 default:
6122 abort ();
6123 }
6124
6125 push_to_sequence (*where);
6126
6127 /* Auto-increment addresses must be reloaded in a special way. */
6128 if (rl->out && ! rl->out_reg)
6129 {
6130 /* We are not going to bother supporting the case where a
6131 incremented register can't be copied directly from
6132 OLDEQUIV since this seems highly unlikely. */
6133 if (rl->secondary_in_reload >= 0)
6134 abort ();
6135
6136 if (reload_inherited[j])
6137 oldequiv = reloadreg;
6138
6139 old = XEXP (rl->in_reg, 0);
6140
6141 if (optimize && GET_CODE (oldequiv) == REG
6142 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6143 && spill_reg_store[REGNO (oldequiv)]
6144 && GET_CODE (old) == REG
6145 && (dead_or_set_p (insn,
6146 spill_reg_stored_to[REGNO (oldequiv)])
6147 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6148 old)))
6149 delete_output_reload (insn, j, REGNO (oldequiv));
6150
6151 /* Prevent normal processing of this reload. */
6152 special = 1;
6153 /* Output a special code sequence for this case. */
6154 new_spill_reg_store[REGNO (reloadreg)]
6155 = inc_for_reload (reloadreg, oldequiv, rl->out,
6156 rl->inc);
6157 }
6158
6159 /* If we are reloading a pseudo-register that was set by the previous
6160 insn, see if we can get rid of that pseudo-register entirely
6161 by redirecting the previous insn into our reload register. */
6162
6163 else if (optimize && GET_CODE (old) == REG
6164 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6165 && dead_or_set_p (insn, old)
6166 /* This is unsafe if some other reload
6167 uses the same reg first. */
6168 && reload_reg_free_for_value_p (REGNO (reloadreg),
6169 rl->opnum,
6170 rl->when_needed,
6171 old, rl->out,
6172 j, 0))
6173 {
6174 rtx temp = PREV_INSN (insn);
6175 while (temp && GET_CODE (temp) == NOTE)
6176 temp = PREV_INSN (temp);
6177 if (temp
6178 && GET_CODE (temp) == INSN
6179 && GET_CODE (PATTERN (temp)) == SET
6180 && SET_DEST (PATTERN (temp)) == old
6181 /* Make sure we can access insn_operand_constraint. */
6182 && asm_noperands (PATTERN (temp)) < 0
6183 /* This is unsafe if prev insn rejects our reload reg. */
6184 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6185 reloadreg)
6186 /* This is unsafe if operand occurs more than once in current
6187 insn. Perhaps some occurrences aren't reloaded. */
6188 && count_occurrences (PATTERN (insn), old) == 1
6189 /* Don't risk splitting a matching pair of operands. */
6190 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6191 {
6192 /* Store into the reload register instead of the pseudo. */
6193 SET_DEST (PATTERN (temp)) = reloadreg;
6194
6195 /* If the previous insn is an output reload, the source is
6196 a reload register, and its spill_reg_store entry will
6197 contain the previous destination. This is now
6198 invalid. */
6199 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6200 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6201 {
6202 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6203 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6204 }
6205
6206 /* If these are the only uses of the pseudo reg,
6207 pretend for GDB it lives in the reload reg we used. */
6208 if (REG_N_DEATHS (REGNO (old)) == 1
6209 && REG_N_SETS (REGNO (old)) == 1)
6210 {
6211 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6212 alter_reg (REGNO (old), -1);
6213 }
6214 special = 1;
6215 }
6216 }
6217
6218 /* We can't do that, so output an insn to load RELOADREG. */
6219
6220 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6221 /* If we have a secondary reload, pick up the secondary register
6222 and icode, if any. If OLDEQUIV and OLD are different or
6223 if this is an in-out reload, recompute whether or not we
6224 still need a secondary register and what the icode should
6225 be. If we still need a secondary register and the class or
6226 icode is different, go back to reloading from OLD if using
6227 OLDEQUIV means that we got the wrong type of register. We
6228 cannot have different class or icode due to an in-out reload
6229 because we don't make such reloads when both the input and
6230 output need secondary reload registers. */
6231
6232 if (! special && rl->secondary_in_reload >= 0)
6233 {
6234 rtx second_reload_reg = 0;
6235 int secondary_reload = rl->secondary_in_reload;
6236 rtx real_oldequiv = oldequiv;
6237 rtx real_old = old;
6238 rtx tmp;
6239 enum insn_code icode;
6240
6241 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6242 and similarly for OLD.
6243 See comments in get_secondary_reload in reload.c. */
6244 /* If it is a pseudo that cannot be replaced with its
6245 equivalent MEM, we must fall back to reload_in, which
6246 will have all the necessary substitutions registered.
6247 Likewise for a pseudo that can't be replaced with its
6248 equivalent constant.
6249
6250 Take extra care for subregs of such pseudos. Note that
6251 we cannot use reg_equiv_mem in this case because it is
6252 not in the right mode. */
6253
6254 tmp = oldequiv;
6255 if (GET_CODE (tmp) == SUBREG)
6256 tmp = SUBREG_REG (tmp);
6257 if (GET_CODE (tmp) == REG
6258 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6259 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6260 || reg_equiv_constant[REGNO (tmp)] != 0))
6261 {
6262 if (! reg_equiv_mem[REGNO (tmp)]
6263 || num_not_at_initial_offset
6264 || GET_CODE (oldequiv) == SUBREG)
6265 real_oldequiv = rl->in;
6266 else
6267 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6268 }
6269
6270 tmp = old;
6271 if (GET_CODE (tmp) == SUBREG)
6272 tmp = SUBREG_REG (tmp);
6273 if (GET_CODE (tmp) == REG
6274 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6275 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6276 || reg_equiv_constant[REGNO (tmp)] != 0))
6277 {
6278 if (! reg_equiv_mem[REGNO (tmp)]
6279 || num_not_at_initial_offset
6280 || GET_CODE (old) == SUBREG)
6281 real_old = rl->in;
6282 else
6283 real_old = reg_equiv_mem[REGNO (tmp)];
6284 }
6285
6286 second_reload_reg = rld[secondary_reload].reg_rtx;
6287 icode = rl->secondary_in_icode;
6288
6289 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6290 || (rl->in != 0 && rl->out != 0))
6291 {
6292 enum reg_class new_class
6293 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6294 mode, real_oldequiv);
6295
6296 if (new_class == NO_REGS)
6297 second_reload_reg = 0;
6298 else
6299 {
6300 enum insn_code new_icode;
6301 enum machine_mode new_mode;
6302
6303 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6304 REGNO (second_reload_reg)))
6305 oldequiv = old, real_oldequiv = real_old;
6306 else
6307 {
6308 new_icode = reload_in_optab[(int) mode];
6309 if (new_icode != CODE_FOR_nothing
6310 && ((insn_data[(int) new_icode].operand[0].predicate
6311 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6312 (reloadreg, mode)))
6313 || (insn_data[(int) new_icode].operand[1].predicate
6314 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6315 (real_oldequiv, mode)))))
6316 new_icode = CODE_FOR_nothing;
6317
6318 if (new_icode == CODE_FOR_nothing)
6319 new_mode = mode;
6320 else
6321 new_mode = insn_data[(int) new_icode].operand[2].mode;
6322
6323 if (GET_MODE (second_reload_reg) != new_mode)
6324 {
6325 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6326 new_mode))
6327 oldequiv = old, real_oldequiv = real_old;
6328 else
6329 second_reload_reg
6330 = gen_rtx_REG (new_mode,
6331 REGNO (second_reload_reg));
6332 }
6333 }
6334 }
6335 }
6336
6337 /* If we still need a secondary reload register, check
6338 to see if it is being used as a scratch or intermediate
6339 register and generate code appropriately. If we need
6340 a scratch register, use REAL_OLDEQUIV since the form of
6341 the insn may depend on the actual address if it is
6342 a MEM. */
6343
6344 if (second_reload_reg)
6345 {
6346 if (icode != CODE_FOR_nothing)
6347 {
6348 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6349 second_reload_reg));
6350 special = 1;
6351 }
6352 else
6353 {
6354 /* See if we need a scratch register to load the
6355 intermediate register (a tertiary reload). */
6356 enum insn_code tertiary_icode
6357 = rld[secondary_reload].secondary_in_icode;
6358
6359 if (tertiary_icode != CODE_FOR_nothing)
6360 {
6361 rtx third_reload_reg
6362 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6363
6364 emit_insn ((GEN_FCN (tertiary_icode)
6365 (second_reload_reg, real_oldequiv,
6366 third_reload_reg)));
6367 }
6368 else
6369 gen_reload (second_reload_reg, real_oldequiv,
6370 rl->opnum,
6371 rl->when_needed);
6372
6373 oldequiv = second_reload_reg;
6374 }
6375 }
6376 }
6377 #endif
6378
6379 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6380 {
6381 rtx real_oldequiv = oldequiv;
6382
6383 if ((GET_CODE (oldequiv) == REG
6384 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6385 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6386 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6387 || (GET_CODE (oldequiv) == SUBREG
6388 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6389 && (REGNO (SUBREG_REG (oldequiv))
6390 >= FIRST_PSEUDO_REGISTER)
6391 && ((reg_equiv_memory_loc
6392 [REGNO (SUBREG_REG (oldequiv))] != 0)
6393 || (reg_equiv_constant
6394 [REGNO (SUBREG_REG (oldequiv))] != 0))))
6395 real_oldequiv = rl->in;
6396 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6397 rl->when_needed);
6398 }
6399
6400 /* End this sequence. */
6401 *where = get_insns ();
6402 end_sequence ();
6403
6404 /* Update reload_override_in so that delete_address_reloads_1
6405 can see the actual register usage. */
6406 if (oldequiv_reg)
6407 reload_override_in[j] = oldequiv;
6408 }
6409
6410 /* Generate insns to for the output reload RL, which is for the insn described
6411 by CHAIN and has the number J. */
6412 static void
6413 emit_output_reload_insns (chain, rl, j)
6414 struct insn_chain *chain;
6415 struct reload *rl;
6416 int j;
6417 {
6418 rtx reloadreg = rl->reg_rtx;
6419 rtx insn = chain->insn;
6420 int special = 0;
6421 rtx old = rl->out;
6422 enum machine_mode mode = GET_MODE (old);
6423 rtx p;
6424
6425 if (rl->when_needed == RELOAD_OTHER)
6426 start_sequence ();
6427 else
6428 push_to_sequence (output_reload_insns[rl->opnum]);
6429
6430 /* Determine the mode to reload in.
6431 See comments above (for input reloading). */
6432
6433 if (mode == VOIDmode)
6434 {
6435 /* VOIDmode should never happen for an output. */
6436 if (asm_noperands (PATTERN (insn)) < 0)
6437 /* It's the compiler's fault. */
6438 fatal_insn ("VOIDmode on an output", insn);
6439 error_for_asm (insn, "output operand is constant in `asm'");
6440 /* Prevent crash--use something we know is valid. */
6441 mode = word_mode;
6442 old = gen_rtx_REG (mode, REGNO (reloadreg));
6443 }
6444
6445 if (GET_MODE (reloadreg) != mode)
6446 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6447
6448 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6449
6450 /* If we need two reload regs, set RELOADREG to the intermediate
6451 one, since it will be stored into OLD. We might need a secondary
6452 register only for an input reload, so check again here. */
6453
6454 if (rl->secondary_out_reload >= 0)
6455 {
6456 rtx real_old = old;
6457
6458 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6459 && reg_equiv_mem[REGNO (old)] != 0)
6460 real_old = reg_equiv_mem[REGNO (old)];
6461
6462 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6463 mode, real_old)
6464 != NO_REGS))
6465 {
6466 rtx second_reloadreg = reloadreg;
6467 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6468
6469 /* See if RELOADREG is to be used as a scratch register
6470 or as an intermediate register. */
6471 if (rl->secondary_out_icode != CODE_FOR_nothing)
6472 {
6473 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6474 (real_old, second_reloadreg, reloadreg)));
6475 special = 1;
6476 }
6477 else
6478 {
6479 /* See if we need both a scratch and intermediate reload
6480 register. */
6481
6482 int secondary_reload = rl->secondary_out_reload;
6483 enum insn_code tertiary_icode
6484 = rld[secondary_reload].secondary_out_icode;
6485
6486 if (GET_MODE (reloadreg) != mode)
6487 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6488
6489 if (tertiary_icode != CODE_FOR_nothing)
6490 {
6491 rtx third_reloadreg
6492 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6493 rtx tem;
6494
6495 /* Copy primary reload reg to secondary reload reg.
6496 (Note that these have been swapped above, then
6497 secondary reload reg to OLD using our insn. */
6498
6499 /* If REAL_OLD is a paradoxical SUBREG, remove it
6500 and try to put the opposite SUBREG on
6501 RELOADREG. */
6502 if (GET_CODE (real_old) == SUBREG
6503 && (GET_MODE_SIZE (GET_MODE (real_old))
6504 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6505 && 0 != (tem = gen_lowpart_common
6506 (GET_MODE (SUBREG_REG (real_old)),
6507 reloadreg)))
6508 real_old = SUBREG_REG (real_old), reloadreg = tem;
6509
6510 gen_reload (reloadreg, second_reloadreg,
6511 rl->opnum, rl->when_needed);
6512 emit_insn ((GEN_FCN (tertiary_icode)
6513 (real_old, reloadreg, third_reloadreg)));
6514 special = 1;
6515 }
6516
6517 else
6518 /* Copy between the reload regs here and then to
6519 OUT later. */
6520
6521 gen_reload (reloadreg, second_reloadreg,
6522 rl->opnum, rl->when_needed);
6523 }
6524 }
6525 }
6526 #endif
6527
6528 /* Output the last reload insn. */
6529 if (! special)
6530 {
6531 rtx set;
6532
6533 /* Don't output the last reload if OLD is not the dest of
6534 INSN and is in the src and is clobbered by INSN. */
6535 if (! flag_expensive_optimizations
6536 || GET_CODE (old) != REG
6537 || !(set = single_set (insn))
6538 || rtx_equal_p (old, SET_DEST (set))
6539 || !reg_mentioned_p (old, SET_SRC (set))
6540 || !regno_clobbered_p (REGNO (old), insn))
6541 gen_reload (old, reloadreg, rl->opnum,
6542 rl->when_needed);
6543 }
6544
6545 /* Look at all insns we emitted, just to be safe. */
6546 for (p = get_insns (); p; p = NEXT_INSN (p))
6547 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
6548 {
6549 rtx pat = PATTERN (p);
6550
6551 /* If this output reload doesn't come from a spill reg,
6552 clear any memory of reloaded copies of the pseudo reg.
6553 If this output reload comes from a spill reg,
6554 reg_has_output_reload will make this do nothing. */
6555 note_stores (pat, forget_old_reloads_1, NULL);
6556
6557 if (reg_mentioned_p (rl->reg_rtx, pat))
6558 {
6559 rtx set = single_set (insn);
6560 if (reload_spill_index[j] < 0
6561 && set
6562 && SET_SRC (set) == rl->reg_rtx)
6563 {
6564 int src = REGNO (SET_SRC (set));
6565
6566 reload_spill_index[j] = src;
6567 SET_HARD_REG_BIT (reg_is_output_reload, src);
6568 if (find_regno_note (insn, REG_DEAD, src))
6569 SET_HARD_REG_BIT (reg_reloaded_died, src);
6570 }
6571 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6572 {
6573 int s = rl->secondary_out_reload;
6574 set = single_set (p);
6575 /* If this reload copies only to the secondary reload
6576 register, the secondary reload does the actual
6577 store. */
6578 if (s >= 0 && set == NULL_RTX)
6579 ; /* We can't tell what function the secondary reload
6580 has and where the actual store to the pseudo is
6581 made; leave new_spill_reg_store alone. */
6582 else if (s >= 0
6583 && SET_SRC (set) == rl->reg_rtx
6584 && SET_DEST (set) == rld[s].reg_rtx)
6585 {
6586 /* Usually the next instruction will be the
6587 secondary reload insn; if we can confirm
6588 that it is, setting new_spill_reg_store to
6589 that insn will allow an extra optimization. */
6590 rtx s_reg = rld[s].reg_rtx;
6591 rtx next = NEXT_INSN (p);
6592 rld[s].out = rl->out;
6593 rld[s].out_reg = rl->out_reg;
6594 set = single_set (next);
6595 if (set && SET_SRC (set) == s_reg
6596 && ! new_spill_reg_store[REGNO (s_reg)])
6597 {
6598 SET_HARD_REG_BIT (reg_is_output_reload,
6599 REGNO (s_reg));
6600 new_spill_reg_store[REGNO (s_reg)] = next;
6601 }
6602 }
6603 else
6604 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6605 }
6606 }
6607 }
6608
6609 if (rl->when_needed == RELOAD_OTHER)
6610 {
6611 emit_insns (other_output_reload_insns[rl->opnum]);
6612 other_output_reload_insns[rl->opnum] = get_insns ();
6613 }
6614 else
6615 output_reload_insns[rl->opnum] = get_insns ();
6616
6617 end_sequence ();
6618 }
6619
6620 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6621 and has the number J. */
6622 static void
6623 do_input_reload (chain, rl, j)
6624 struct insn_chain *chain;
6625 struct reload *rl;
6626 int j;
6627 {
6628 int expect_occurrences = 1;
6629 rtx insn = chain->insn;
6630 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6631 ? rl->in_reg : rl->in);
6632
6633 if (old != 0
6634 /* AUTO_INC reloads need to be handled even if inherited. We got an
6635 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6636 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6637 && ! rtx_equal_p (rl->reg_rtx, old)
6638 && rl->reg_rtx != 0)
6639 emit_input_reload_insns (chain, rld + j, old, j);
6640
6641 /* When inheriting a wider reload, we have a MEM in rl->in,
6642 e.g. inheriting a SImode output reload for
6643 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6644 if (optimize && reload_inherited[j] && rl->in
6645 && GET_CODE (rl->in) == MEM
6646 && GET_CODE (rl->in_reg) == MEM
6647 && reload_spill_index[j] >= 0
6648 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6649 {
6650 expect_occurrences
6651 = count_occurrences (PATTERN (insn), rl->in) == 1 ? 0 : -1;
6652 rl->in
6653 = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6654 }
6655
6656 /* If we are reloading a register that was recently stored in with an
6657 output-reload, see if we can prove there was
6658 actually no need to store the old value in it. */
6659
6660 if (optimize
6661 && (reload_inherited[j] || reload_override_in[j])
6662 && rl->reg_rtx
6663 && GET_CODE (rl->reg_rtx) == REG
6664 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6665 #if 0
6666 /* There doesn't seem to be any reason to restrict this to pseudos
6667 and doing so loses in the case where we are copying from a
6668 register of the wrong class. */
6669 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6670 >= FIRST_PSEUDO_REGISTER)
6671 #endif
6672 /* The insn might have already some references to stackslots
6673 replaced by MEMs, while reload_out_reg still names the
6674 original pseudo. */
6675 && (dead_or_set_p (insn,
6676 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6677 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6678 rl->out_reg)))
6679 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6680 }
6681
6682 /* Do output reloading for reload RL, which is for the insn described by
6683 CHAIN and has the number J.
6684 ??? At some point we need to support handling output reloads of
6685 JUMP_INSNs or insns that set cc0. */
6686 static void
6687 do_output_reload (chain, rl, j)
6688 struct insn_chain *chain;
6689 struct reload *rl;
6690 int j;
6691 {
6692 rtx note, old;
6693 rtx insn = chain->insn;
6694 /* If this is an output reload that stores something that is
6695 not loaded in this same reload, see if we can eliminate a previous
6696 store. */
6697 rtx pseudo = rl->out_reg;
6698
6699 if (pseudo
6700 && GET_CODE (pseudo) == REG
6701 && ! rtx_equal_p (rl->in_reg, pseudo)
6702 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6703 && reg_last_reload_reg[REGNO (pseudo)])
6704 {
6705 int pseudo_no = REGNO (pseudo);
6706 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6707
6708 /* We don't need to test full validity of last_regno for
6709 inherit here; we only want to know if the store actually
6710 matches the pseudo. */
6711 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6712 && reg_reloaded_contents[last_regno] == pseudo_no
6713 && spill_reg_store[last_regno]
6714 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6715 delete_output_reload (insn, j, last_regno);
6716 }
6717
6718 old = rl->out_reg;
6719 if (old == 0
6720 || rl->reg_rtx == old
6721 || rl->reg_rtx == 0)
6722 return;
6723
6724 /* An output operand that dies right away does need a reload,
6725 but need not be copied from it. Show the new location in the
6726 REG_UNUSED note. */
6727 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6728 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6729 {
6730 XEXP (note, 0) = rl->reg_rtx;
6731 return;
6732 }
6733 /* Likewise for a SUBREG of an operand that dies. */
6734 else if (GET_CODE (old) == SUBREG
6735 && GET_CODE (SUBREG_REG (old)) == REG
6736 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6737 SUBREG_REG (old))))
6738 {
6739 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6740 rl->reg_rtx);
6741 return;
6742 }
6743 else if (GET_CODE (old) == SCRATCH)
6744 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6745 but we don't want to make an output reload. */
6746 return;
6747
6748 /* If is a JUMP_INSN, we can't support output reloads yet. */
6749 if (GET_CODE (insn) == JUMP_INSN)
6750 abort ();
6751
6752 emit_output_reload_insns (chain, rld + j, j);
6753 }
6754
6755 /* Output insns to reload values in and out of the chosen reload regs. */
6756
6757 static void
6758 emit_reload_insns (chain)
6759 struct insn_chain *chain;
6760 {
6761 rtx insn = chain->insn;
6762
6763 register int j;
6764 rtx following_insn = NEXT_INSN (insn);
6765 rtx before_insn = PREV_INSN (insn);
6766
6767 CLEAR_HARD_REG_SET (reg_reloaded_died);
6768
6769 for (j = 0; j < reload_n_operands; j++)
6770 input_reload_insns[j] = input_address_reload_insns[j]
6771 = inpaddr_address_reload_insns[j]
6772 = output_reload_insns[j] = output_address_reload_insns[j]
6773 = outaddr_address_reload_insns[j]
6774 = other_output_reload_insns[j] = 0;
6775 other_input_address_reload_insns = 0;
6776 other_input_reload_insns = 0;
6777 operand_reload_insns = 0;
6778 other_operand_reload_insns = 0;
6779
6780 /* Now output the instructions to copy the data into and out of the
6781 reload registers. Do these in the order that the reloads were reported,
6782 since reloads of base and index registers precede reloads of operands
6783 and the operands may need the base and index registers reloaded. */
6784
6785 for (j = 0; j < n_reloads; j++)
6786 {
6787 if (rld[j].reg_rtx
6788 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6789 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6790
6791 do_input_reload (chain, rld + j, j);
6792 do_output_reload (chain, rld + j, j);
6793 }
6794
6795 /* Now write all the insns we made for reloads in the order expected by
6796 the allocation functions. Prior to the insn being reloaded, we write
6797 the following reloads:
6798
6799 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
6800
6801 RELOAD_OTHER reloads.
6802
6803 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
6804 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
6805 RELOAD_FOR_INPUT reload for the operand.
6806
6807 RELOAD_FOR_OPADDR_ADDRS reloads.
6808
6809 RELOAD_FOR_OPERAND_ADDRESS reloads.
6810
6811 After the insn being reloaded, we write the following:
6812
6813 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
6814 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
6815 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
6816 reloads for the operand. The RELOAD_OTHER output reloads are
6817 output in descending order by reload number. */
6818
6819 emit_insns_before (other_input_address_reload_insns, insn);
6820 emit_insns_before (other_input_reload_insns, insn);
6821
6822 for (j = 0; j < reload_n_operands; j++)
6823 {
6824 emit_insns_before (inpaddr_address_reload_insns[j], insn);
6825 emit_insns_before (input_address_reload_insns[j], insn);
6826 emit_insns_before (input_reload_insns[j], insn);
6827 }
6828
6829 emit_insns_before (other_operand_reload_insns, insn);
6830 emit_insns_before (operand_reload_insns, insn);
6831
6832 for (j = 0; j < reload_n_operands; j++)
6833 {
6834 emit_insns_before (outaddr_address_reload_insns[j], following_insn);
6835 emit_insns_before (output_address_reload_insns[j], following_insn);
6836 emit_insns_before (output_reload_insns[j], following_insn);
6837 emit_insns_before (other_output_reload_insns[j], following_insn);
6838 }
6839
6840 /* Keep basic block info up to date. */
6841 if (n_basic_blocks)
6842 {
6843 if (BLOCK_HEAD (chain->block) == insn)
6844 BLOCK_HEAD (chain->block) = NEXT_INSN (before_insn);
6845 if (BLOCK_END (chain->block) == insn)
6846 BLOCK_END (chain->block) = PREV_INSN (following_insn);
6847 }
6848
6849 /* For all the spill regs newly reloaded in this instruction,
6850 record what they were reloaded from, so subsequent instructions
6851 can inherit the reloads.
6852
6853 Update spill_reg_store for the reloads of this insn.
6854 Copy the elements that were updated in the loop above. */
6855
6856 for (j = 0; j < n_reloads; j++)
6857 {
6858 register int r = reload_order[j];
6859 register int i = reload_spill_index[r];
6860
6861 /* If this is a non-inherited input reload from a pseudo, we must
6862 clear any memory of a previous store to the same pseudo. Only do
6863 something if there will not be an output reload for the pseudo
6864 being reloaded. */
6865 if (rld[r].in_reg != 0
6866 && ! (reload_inherited[r] || reload_override_in[r]))
6867 {
6868 rtx reg = rld[r].in_reg;
6869
6870 if (GET_CODE (reg) == SUBREG)
6871 reg = SUBREG_REG (reg);
6872
6873 if (GET_CODE (reg) == REG
6874 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
6875 && ! reg_has_output_reload[REGNO (reg)])
6876 {
6877 int nregno = REGNO (reg);
6878
6879 if (reg_last_reload_reg[nregno])
6880 {
6881 int last_regno = REGNO (reg_last_reload_reg[nregno]);
6882
6883 if (reg_reloaded_contents[last_regno] == nregno)
6884 spill_reg_store[last_regno] = 0;
6885 }
6886 }
6887 }
6888
6889 /* I is nonneg if this reload used a register.
6890 If rld[r].reg_rtx is 0, this is an optional reload
6891 that we opted to ignore. */
6892
6893 if (i >= 0 && rld[r].reg_rtx != 0)
6894 {
6895 int nr
6896 = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
6897 int k;
6898 int part_reaches_end = 0;
6899 int all_reaches_end = 1;
6900
6901 /* For a multi register reload, we need to check if all or part
6902 of the value lives to the end. */
6903 for (k = 0; k < nr; k++)
6904 {
6905 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
6906 rld[r].when_needed))
6907 part_reaches_end = 1;
6908 else
6909 all_reaches_end = 0;
6910 }
6911
6912 /* Ignore reloads that don't reach the end of the insn in
6913 entirety. */
6914 if (all_reaches_end)
6915 {
6916 /* First, clear out memory of what used to be in this spill reg.
6917 If consecutive registers are used, clear them all. */
6918
6919 for (k = 0; k < nr; k++)
6920 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
6921
6922 /* Maybe the spill reg contains a copy of reload_out. */
6923 if (rld[r].out != 0
6924 && (GET_CODE (rld[r].out) == REG
6925 #ifdef AUTO_INC_DEC
6926 || ! rld[r].out_reg
6927 #endif
6928 || GET_CODE (rld[r].out_reg) == REG))
6929 {
6930 rtx out = (GET_CODE (rld[r].out) == REG
6931 ? rld[r].out
6932 : rld[r].out_reg
6933 ? rld[r].out_reg
6934 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
6935 register int nregno = REGNO (out);
6936 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6937 : HARD_REGNO_NREGS (nregno,
6938 GET_MODE (rld[r].reg_rtx)));
6939
6940 spill_reg_store[i] = new_spill_reg_store[i];
6941 spill_reg_stored_to[i] = out;
6942 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
6943
6944 /* If NREGNO is a hard register, it may occupy more than
6945 one register. If it does, say what is in the
6946 rest of the registers assuming that both registers
6947 agree on how many words the object takes. If not,
6948 invalidate the subsequent registers. */
6949
6950 if (nregno < FIRST_PSEUDO_REGISTER)
6951 for (k = 1; k < nnr; k++)
6952 reg_last_reload_reg[nregno + k]
6953 = (nr == nnr
6954 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
6955 REGNO (rld[r].reg_rtx) + k)
6956 : 0);
6957
6958 /* Now do the inverse operation. */
6959 for (k = 0; k < nr; k++)
6960 {
6961 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
6962 reg_reloaded_contents[i + k]
6963 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
6964 ? nregno
6965 : nregno + k);
6966 reg_reloaded_insn[i + k] = insn;
6967 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
6968 }
6969 }
6970
6971 /* Maybe the spill reg contains a copy of reload_in. Only do
6972 something if there will not be an output reload for
6973 the register being reloaded. */
6974 else if (rld[r].out_reg == 0
6975 && rld[r].in != 0
6976 && ((GET_CODE (rld[r].in) == REG
6977 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
6978 && ! reg_has_output_reload[REGNO (rld[r].in)])
6979 || (GET_CODE (rld[r].in_reg) == REG
6980 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
6981 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
6982 {
6983 register int nregno;
6984 int nnr;
6985
6986 if (GET_CODE (rld[r].in) == REG
6987 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
6988 nregno = REGNO (rld[r].in);
6989 else if (GET_CODE (rld[r].in_reg) == REG)
6990 nregno = REGNO (rld[r].in_reg);
6991 else
6992 nregno = REGNO (XEXP (rld[r].in_reg, 0));
6993
6994 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
6995 : HARD_REGNO_NREGS (nregno,
6996 GET_MODE (rld[r].reg_rtx)));
6997
6998 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
6999
7000 if (nregno < FIRST_PSEUDO_REGISTER)
7001 for (k = 1; k < nnr; k++)
7002 reg_last_reload_reg[nregno + k]
7003 = (nr == nnr
7004 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7005 REGNO (rld[r].reg_rtx) + k)
7006 : 0);
7007
7008 /* Unless we inherited this reload, show we haven't
7009 recently done a store.
7010 Previous stores of inherited auto_inc expressions
7011 also have to be discarded. */
7012 if (! reload_inherited[r]
7013 || (rld[r].out && ! rld[r].out_reg))
7014 spill_reg_store[i] = 0;
7015
7016 for (k = 0; k < nr; k++)
7017 {
7018 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7019 reg_reloaded_contents[i + k]
7020 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7021 ? nregno
7022 : nregno + k);
7023 reg_reloaded_insn[i + k] = insn;
7024 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7025 }
7026 }
7027 }
7028
7029 /* However, if part of the reload reaches the end, then we must
7030 invalidate the old info for the part that survives to the end. */
7031 else if (part_reaches_end)
7032 {
7033 for (k = 0; k < nr; k++)
7034 if (reload_reg_reaches_end_p (i + k,
7035 rld[r].opnum,
7036 rld[r].when_needed))
7037 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7038 }
7039 }
7040
7041 /* The following if-statement was #if 0'd in 1.34 (or before...).
7042 It's reenabled in 1.35 because supposedly nothing else
7043 deals with this problem. */
7044
7045 /* If a register gets output-reloaded from a non-spill register,
7046 that invalidates any previous reloaded copy of it.
7047 But forget_old_reloads_1 won't get to see it, because
7048 it thinks only about the original insn. So invalidate it here. */
7049 if (i < 0 && rld[r].out != 0
7050 && (GET_CODE (rld[r].out) == REG
7051 || (GET_CODE (rld[r].out) == MEM
7052 && GET_CODE (rld[r].out_reg) == REG)))
7053 {
7054 rtx out = (GET_CODE (rld[r].out) == REG
7055 ? rld[r].out : rld[r].out_reg);
7056 register int nregno = REGNO (out);
7057 if (nregno >= FIRST_PSEUDO_REGISTER)
7058 {
7059 rtx src_reg, store_insn = NULL_RTX;
7060
7061 reg_last_reload_reg[nregno] = 0;
7062
7063 /* If we can find a hard register that is stored, record
7064 the storing insn so that we may delete this insn with
7065 delete_output_reload. */
7066 src_reg = rld[r].reg_rtx;
7067
7068 /* If this is an optional reload, try to find the source reg
7069 from an input reload. */
7070 if (! src_reg)
7071 {
7072 rtx set = single_set (insn);
7073 if (set && SET_DEST (set) == rld[r].out)
7074 {
7075 int k;
7076
7077 src_reg = SET_SRC (set);
7078 store_insn = insn;
7079 for (k = 0; k < n_reloads; k++)
7080 {
7081 if (rld[k].in == src_reg)
7082 {
7083 src_reg = rld[k].reg_rtx;
7084 break;
7085 }
7086 }
7087 }
7088 }
7089 else
7090 store_insn = new_spill_reg_store[REGNO (src_reg)];
7091 if (src_reg && GET_CODE (src_reg) == REG
7092 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7093 {
7094 int src_regno = REGNO (src_reg);
7095 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7096 /* The place where to find a death note varies with
7097 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7098 necessarily checked exactly in the code that moves
7099 notes, so just check both locations. */
7100 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7101 if (! note)
7102 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7103 while (nr-- > 0)
7104 {
7105 spill_reg_store[src_regno + nr] = store_insn;
7106 spill_reg_stored_to[src_regno + nr] = out;
7107 reg_reloaded_contents[src_regno + nr] = nregno;
7108 reg_reloaded_insn[src_regno + nr] = store_insn;
7109 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7110 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7111 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7112 if (note)
7113 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7114 else
7115 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7116 }
7117 reg_last_reload_reg[nregno] = src_reg;
7118 }
7119 }
7120 else
7121 {
7122 int num_regs = HARD_REGNO_NREGS (nregno,GET_MODE (rld[r].out));
7123
7124 while (num_regs-- > 0)
7125 reg_last_reload_reg[nregno + num_regs] = 0;
7126 }
7127 }
7128 }
7129 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7130 }
7131 \f
7132 /* Emit code to perform a reload from IN (which may be a reload register) to
7133 OUT (which may also be a reload register). IN or OUT is from operand
7134 OPNUM with reload type TYPE.
7135
7136 Returns first insn emitted. */
7137
7138 rtx
7139 gen_reload (out, in, opnum, type)
7140 rtx out;
7141 rtx in;
7142 int opnum;
7143 enum reload_type type;
7144 {
7145 rtx last = get_last_insn ();
7146 rtx tem;
7147
7148 /* If IN is a paradoxical SUBREG, remove it and try to put the
7149 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7150 if (GET_CODE (in) == SUBREG
7151 && (GET_MODE_SIZE (GET_MODE (in))
7152 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7153 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7154 in = SUBREG_REG (in), out = tem;
7155 else if (GET_CODE (out) == SUBREG
7156 && (GET_MODE_SIZE (GET_MODE (out))
7157 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7158 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7159 out = SUBREG_REG (out), in = tem;
7160
7161 /* How to do this reload can get quite tricky. Normally, we are being
7162 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7163 register that didn't get a hard register. In that case we can just
7164 call emit_move_insn.
7165
7166 We can also be asked to reload a PLUS that adds a register or a MEM to
7167 another register, constant or MEM. This can occur during frame pointer
7168 elimination and while reloading addresses. This case is handled by
7169 trying to emit a single insn to perform the add. If it is not valid,
7170 we use a two insn sequence.
7171
7172 Finally, we could be called to handle an 'o' constraint by putting
7173 an address into a register. In that case, we first try to do this
7174 with a named pattern of "reload_load_address". If no such pattern
7175 exists, we just emit a SET insn and hope for the best (it will normally
7176 be valid on machines that use 'o').
7177
7178 This entire process is made complex because reload will never
7179 process the insns we generate here and so we must ensure that
7180 they will fit their constraints and also by the fact that parts of
7181 IN might be being reloaded separately and replaced with spill registers.
7182 Because of this, we are, in some sense, just guessing the right approach
7183 here. The one listed above seems to work.
7184
7185 ??? At some point, this whole thing needs to be rethought. */
7186
7187 if (GET_CODE (in) == PLUS
7188 && (GET_CODE (XEXP (in, 0)) == REG
7189 || GET_CODE (XEXP (in, 0)) == SUBREG
7190 || GET_CODE (XEXP (in, 0)) == MEM)
7191 && (GET_CODE (XEXP (in, 1)) == REG
7192 || GET_CODE (XEXP (in, 1)) == SUBREG
7193 || CONSTANT_P (XEXP (in, 1))
7194 || GET_CODE (XEXP (in, 1)) == MEM))
7195 {
7196 /* We need to compute the sum of a register or a MEM and another
7197 register, constant, or MEM, and put it into the reload
7198 register. The best possible way of doing this is if the machine
7199 has a three-operand ADD insn that accepts the required operands.
7200
7201 The simplest approach is to try to generate such an insn and see if it
7202 is recognized and matches its constraints. If so, it can be used.
7203
7204 It might be better not to actually emit the insn unless it is valid,
7205 but we need to pass the insn as an operand to `recog' and
7206 `extract_insn' and it is simpler to emit and then delete the insn if
7207 not valid than to dummy things up. */
7208
7209 rtx op0, op1, tem, insn;
7210 int code;
7211
7212 op0 = find_replacement (&XEXP (in, 0));
7213 op1 = find_replacement (&XEXP (in, 1));
7214
7215 /* Since constraint checking is strict, commutativity won't be
7216 checked, so we need to do that here to avoid spurious failure
7217 if the add instruction is two-address and the second operand
7218 of the add is the same as the reload reg, which is frequently
7219 the case. If the insn would be A = B + A, rearrange it so
7220 it will be A = A + B as constrain_operands expects. */
7221
7222 if (GET_CODE (XEXP (in, 1)) == REG
7223 && REGNO (out) == REGNO (XEXP (in, 1)))
7224 tem = op0, op0 = op1, op1 = tem;
7225
7226 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7227 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7228
7229 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7230 code = recog_memoized (insn);
7231
7232 if (code >= 0)
7233 {
7234 extract_insn (insn);
7235 /* We want constrain operands to treat this insn strictly in
7236 its validity determination, i.e., the way it would after reload
7237 has completed. */
7238 if (constrain_operands (1))
7239 return insn;
7240 }
7241
7242 delete_insns_since (last);
7243
7244 /* If that failed, we must use a conservative two-insn sequence.
7245
7246 Use a move to copy one operand into the reload register. Prefer
7247 to reload a constant, MEM or pseudo since the move patterns can
7248 handle an arbitrary operand. If OP1 is not a constant, MEM or
7249 pseudo and OP1 is not a valid operand for an add instruction, then
7250 reload OP1.
7251
7252 After reloading one of the operands into the reload register, add
7253 the reload register to the output register.
7254
7255 If there is another way to do this for a specific machine, a
7256 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7257 we emit below. */
7258
7259 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7260
7261 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7262 || (GET_CODE (op1) == REG
7263 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7264 || (code != CODE_FOR_nothing
7265 && ! ((*insn_data[code].operand[2].predicate)
7266 (op1, insn_data[code].operand[2].mode))))
7267 tem = op0, op0 = op1, op1 = tem;
7268
7269 gen_reload (out, op0, opnum, type);
7270
7271 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7272 This fixes a problem on the 32K where the stack pointer cannot
7273 be used as an operand of an add insn. */
7274
7275 if (rtx_equal_p (op0, op1))
7276 op1 = out;
7277
7278 insn = emit_insn (gen_add2_insn (out, op1));
7279
7280 /* If that failed, copy the address register to the reload register.
7281 Then add the constant to the reload register. */
7282
7283 code = recog_memoized (insn);
7284
7285 if (code >= 0)
7286 {
7287 extract_insn (insn);
7288 /* We want constrain operands to treat this insn strictly in
7289 its validity determination, i.e., the way it would after reload
7290 has completed. */
7291 if (constrain_operands (1))
7292 {
7293 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7294 REG_NOTES (insn)
7295 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7296 return insn;
7297 }
7298 }
7299
7300 delete_insns_since (last);
7301
7302 gen_reload (out, op1, opnum, type);
7303 insn = emit_insn (gen_add2_insn (out, op0));
7304 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7305 }
7306
7307 #ifdef SECONDARY_MEMORY_NEEDED
7308 /* If we need a memory location to do the move, do it that way. */
7309 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7310 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7311 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7312 REGNO_REG_CLASS (REGNO (out)),
7313 GET_MODE (out)))
7314 {
7315 /* Get the memory to use and rewrite both registers to its mode. */
7316 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7317
7318 if (GET_MODE (loc) != GET_MODE (out))
7319 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7320
7321 if (GET_MODE (loc) != GET_MODE (in))
7322 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7323
7324 gen_reload (loc, in, opnum, type);
7325 gen_reload (out, loc, opnum, type);
7326 }
7327 #endif
7328
7329 /* If IN is a simple operand, use gen_move_insn. */
7330 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7331 emit_insn (gen_move_insn (out, in));
7332
7333 #ifdef HAVE_reload_load_address
7334 else if (HAVE_reload_load_address)
7335 emit_insn (gen_reload_load_address (out, in));
7336 #endif
7337
7338 /* Otherwise, just write (set OUT IN) and hope for the best. */
7339 else
7340 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7341
7342 /* Return the first insn emitted.
7343 We can not just return get_last_insn, because there may have
7344 been multiple instructions emitted. Also note that gen_move_insn may
7345 emit more than one insn itself, so we can not assume that there is one
7346 insn emitted per emit_insn_before call. */
7347
7348 return last ? NEXT_INSN (last) : get_insns ();
7349 }
7350 \f
7351 /* Delete a previously made output-reload
7352 whose result we now believe is not needed.
7353 First we double-check.
7354
7355 INSN is the insn now being processed.
7356 LAST_RELOAD_REG is the hard register number for which we want to delete
7357 the last output reload.
7358 J is the reload-number that originally used REG. The caller has made
7359 certain that reload J doesn't use REG any longer for input. */
7360
7361 static void
7362 delete_output_reload (insn, j, last_reload_reg)
7363 rtx insn;
7364 int j;
7365 int last_reload_reg;
7366 {
7367 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7368 rtx reg = spill_reg_stored_to[last_reload_reg];
7369 int k;
7370 int n_occurrences;
7371 int n_inherited = 0;
7372 register rtx i1;
7373 rtx substed;
7374
7375 /* Get the raw pseudo-register referred to. */
7376
7377 while (GET_CODE (reg) == SUBREG)
7378 reg = SUBREG_REG (reg);
7379 substed = reg_equiv_memory_loc[REGNO (reg)];
7380
7381 /* This is unsafe if the operand occurs more often in the current
7382 insn than it is inherited. */
7383 for (k = n_reloads - 1; k >= 0; k--)
7384 {
7385 rtx reg2 = rld[k].in;
7386 if (! reg2)
7387 continue;
7388 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7389 reg2 = rld[k].in_reg;
7390 #ifdef AUTO_INC_DEC
7391 if (rld[k].out && ! rld[k].out_reg)
7392 reg2 = XEXP (rld[k].in_reg, 0);
7393 #endif
7394 while (GET_CODE (reg2) == SUBREG)
7395 reg2 = SUBREG_REG (reg2);
7396 if (rtx_equal_p (reg2, reg))
7397 {
7398 if (reload_inherited[k] || reload_override_in[k] || k == j)
7399 {
7400 n_inherited++;
7401 reg2 = rld[k].out_reg;
7402 if (! reg2)
7403 continue;
7404 while (GET_CODE (reg2) == SUBREG)
7405 reg2 = XEXP (reg2, 0);
7406 if (rtx_equal_p (reg2, reg))
7407 n_inherited++;
7408 }
7409 else
7410 return;
7411 }
7412 }
7413 n_occurrences = count_occurrences (PATTERN (insn), reg);
7414 if (substed)
7415 n_occurrences += count_occurrences (PATTERN (insn), substed);
7416 if (n_occurrences > n_inherited)
7417 return;
7418
7419 /* If the pseudo-reg we are reloading is no longer referenced
7420 anywhere between the store into it and here,
7421 and no jumps or labels intervene, then the value can get
7422 here through the reload reg alone.
7423 Otherwise, give up--return. */
7424 for (i1 = NEXT_INSN (output_reload_insn);
7425 i1 != insn; i1 = NEXT_INSN (i1))
7426 {
7427 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7428 return;
7429 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7430 && reg_mentioned_p (reg, PATTERN (i1)))
7431 {
7432 /* If this is USE in front of INSN, we only have to check that
7433 there are no more references than accounted for by inheritance. */
7434 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7435 {
7436 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7437 i1 = NEXT_INSN (i1);
7438 }
7439 if (n_occurrences <= n_inherited && i1 == insn)
7440 break;
7441 return;
7442 }
7443 }
7444
7445 /* The caller has already checked that REG dies or is set in INSN.
7446 It has also checked that we are optimizing, and thus some inaccurancies
7447 in the debugging information are acceptable.
7448 So we could just delete output_reload_insn.
7449 But in some cases we can improve the debugging information without
7450 sacrificing optimization - maybe even improving the code:
7451 See if the pseudo reg has been completely replaced
7452 with reload regs. If so, delete the store insn
7453 and forget we had a stack slot for the pseudo. */
7454 if (rld[j].out != rld[j].in
7455 && REG_N_DEATHS (REGNO (reg)) == 1
7456 && REG_N_SETS (REGNO (reg)) == 1
7457 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7458 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7459 {
7460 rtx i2;
7461
7462 /* We know that it was used only between here
7463 and the beginning of the current basic block.
7464 (We also know that the last use before INSN was
7465 the output reload we are thinking of deleting, but never mind that.)
7466 Search that range; see if any ref remains. */
7467 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7468 {
7469 rtx set = single_set (i2);
7470
7471 /* Uses which just store in the pseudo don't count,
7472 since if they are the only uses, they are dead. */
7473 if (set != 0 && SET_DEST (set) == reg)
7474 continue;
7475 if (GET_CODE (i2) == CODE_LABEL
7476 || GET_CODE (i2) == JUMP_INSN)
7477 break;
7478 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7479 && reg_mentioned_p (reg, PATTERN (i2)))
7480 {
7481 /* Some other ref remains; just delete the output reload we
7482 know to be dead. */
7483 delete_address_reloads (output_reload_insn, insn);
7484 PUT_CODE (output_reload_insn, NOTE);
7485 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7486 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7487 return;
7488 }
7489 }
7490
7491 /* Delete the now-dead stores into this pseudo. */
7492 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7493 {
7494 rtx set = single_set (i2);
7495
7496 if (set != 0 && SET_DEST (set) == reg)
7497 {
7498 delete_address_reloads (i2, insn);
7499 /* This might be a basic block head,
7500 thus don't use delete_insn. */
7501 PUT_CODE (i2, NOTE);
7502 NOTE_SOURCE_FILE (i2) = 0;
7503 NOTE_LINE_NUMBER (i2) = NOTE_INSN_DELETED;
7504 }
7505 if (GET_CODE (i2) == CODE_LABEL
7506 || GET_CODE (i2) == JUMP_INSN)
7507 break;
7508 }
7509
7510 /* For the debugging info,
7511 say the pseudo lives in this reload reg. */
7512 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7513 alter_reg (REGNO (reg), -1);
7514 }
7515 delete_address_reloads (output_reload_insn, insn);
7516 PUT_CODE (output_reload_insn, NOTE);
7517 NOTE_SOURCE_FILE (output_reload_insn) = 0;
7518 NOTE_LINE_NUMBER (output_reload_insn) = NOTE_INSN_DELETED;
7519
7520 }
7521
7522 /* We are going to delete DEAD_INSN. Recursively delete loads of
7523 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7524 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7525 static void
7526 delete_address_reloads (dead_insn, current_insn)
7527 rtx dead_insn, current_insn;
7528 {
7529 rtx set = single_set (dead_insn);
7530 rtx set2, dst, prev, next;
7531 if (set)
7532 {
7533 rtx dst = SET_DEST (set);
7534 if (GET_CODE (dst) == MEM)
7535 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7536 }
7537 /* If we deleted the store from a reloaded post_{in,de}c expression,
7538 we can delete the matching adds. */
7539 prev = PREV_INSN (dead_insn);
7540 next = NEXT_INSN (dead_insn);
7541 if (! prev || ! next)
7542 return;
7543 set = single_set (next);
7544 set2 = single_set (prev);
7545 if (! set || ! set2
7546 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7547 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7548 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7549 return;
7550 dst = SET_DEST (set);
7551 if (! rtx_equal_p (dst, SET_DEST (set2))
7552 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7553 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7554 || (INTVAL (XEXP (SET_SRC (set), 1))
7555 != - INTVAL (XEXP (SET_SRC (set2), 1))))
7556 return;
7557 delete_insn (prev);
7558 delete_insn (next);
7559 }
7560
7561 /* Subfunction of delete_address_reloads: process registers found in X. */
7562 static void
7563 delete_address_reloads_1 (dead_insn, x, current_insn)
7564 rtx dead_insn, x, current_insn;
7565 {
7566 rtx prev, set, dst, i2;
7567 int i, j;
7568 enum rtx_code code = GET_CODE (x);
7569
7570 if (code != REG)
7571 {
7572 const char *fmt= GET_RTX_FORMAT (code);
7573 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7574 {
7575 if (fmt[i] == 'e')
7576 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7577 else if (fmt[i] == 'E')
7578 {
7579 for (j = XVECLEN (x, i) - 1; j >=0; j--)
7580 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7581 current_insn);
7582 }
7583 }
7584 return;
7585 }
7586
7587 if (spill_reg_order[REGNO (x)] < 0)
7588 return;
7589
7590 /* Scan backwards for the insn that sets x. This might be a way back due
7591 to inheritance. */
7592 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7593 {
7594 code = GET_CODE (prev);
7595 if (code == CODE_LABEL || code == JUMP_INSN)
7596 return;
7597 if (GET_RTX_CLASS (code) != 'i')
7598 continue;
7599 if (reg_set_p (x, PATTERN (prev)))
7600 break;
7601 if (reg_referenced_p (x, PATTERN (prev)))
7602 return;
7603 }
7604 if (! prev || INSN_UID (prev) < reload_first_uid)
7605 return;
7606 /* Check that PREV only sets the reload register. */
7607 set = single_set (prev);
7608 if (! set)
7609 return;
7610 dst = SET_DEST (set);
7611 if (GET_CODE (dst) != REG
7612 || ! rtx_equal_p (dst, x))
7613 return;
7614 if (! reg_set_p (dst, PATTERN (dead_insn)))
7615 {
7616 /* Check if DST was used in a later insn -
7617 it might have been inherited. */
7618 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7619 {
7620 if (GET_CODE (i2) == CODE_LABEL)
7621 break;
7622 if (GET_RTX_CLASS (GET_CODE (i2)) != 'i')
7623 continue;
7624 if (reg_referenced_p (dst, PATTERN (i2)))
7625 {
7626 /* If there is a reference to the register in the current insn,
7627 it might be loaded in a non-inherited reload. If no other
7628 reload uses it, that means the register is set before
7629 referenced. */
7630 if (i2 == current_insn)
7631 {
7632 for (j = n_reloads - 1; j >= 0; j--)
7633 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7634 || reload_override_in[j] == dst)
7635 return;
7636 for (j = n_reloads - 1; j >= 0; j--)
7637 if (rld[j].in && rld[j].reg_rtx == dst)
7638 break;
7639 if (j >= 0)
7640 break;
7641 }
7642 return;
7643 }
7644 if (GET_CODE (i2) == JUMP_INSN)
7645 break;
7646 /* If DST is still live at CURRENT_INSN, check if it is used for
7647 any reload. Note that even if CURRENT_INSN sets DST, we still
7648 have to check the reloads. */
7649 if (i2 == current_insn)
7650 {
7651 for (j = n_reloads - 1; j >= 0; j--)
7652 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7653 || reload_override_in[j] == dst)
7654 return;
7655 /* ??? We can't finish the loop here, because dst might be
7656 allocated to a pseudo in this block if no reload in this
7657 block needs any of the clsses containing DST - see
7658 spill_hard_reg. There is no easy way to tell this, so we
7659 have to scan till the end of the basic block. */
7660 }
7661 if (reg_set_p (dst, PATTERN (i2)))
7662 break;
7663 }
7664 }
7665 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7666 reg_reloaded_contents[REGNO (dst)] = -1;
7667 /* Can't use delete_insn here because PREV might be a basic block head. */
7668 PUT_CODE (prev, NOTE);
7669 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
7670 NOTE_SOURCE_FILE (prev) = 0;
7671 }
7672 \f
7673 /* Output reload-insns to reload VALUE into RELOADREG.
7674 VALUE is an autoincrement or autodecrement RTX whose operand
7675 is a register or memory location;
7676 so reloading involves incrementing that location.
7677 IN is either identical to VALUE, or some cheaper place to reload from.
7678
7679 INC_AMOUNT is the number to increment or decrement by (always positive).
7680 This cannot be deduced from VALUE.
7681
7682 Return the instruction that stores into RELOADREG. */
7683
7684 static rtx
7685 inc_for_reload (reloadreg, in, value, inc_amount)
7686 rtx reloadreg;
7687 rtx in, value;
7688 int inc_amount;
7689 {
7690 /* REG or MEM to be copied and incremented. */
7691 rtx incloc = XEXP (value, 0);
7692 /* Nonzero if increment after copying. */
7693 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7694 rtx last;
7695 rtx inc;
7696 rtx add_insn;
7697 int code;
7698 rtx store;
7699 rtx real_in = in == value ? XEXP (in, 0) : in;
7700
7701 /* No hard register is equivalent to this register after
7702 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7703 we could inc/dec that register as well (maybe even using it for
7704 the source), but I'm not sure it's worth worrying about. */
7705 if (GET_CODE (incloc) == REG)
7706 reg_last_reload_reg[REGNO (incloc)] = 0;
7707
7708 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7709 inc_amount = - inc_amount;
7710
7711 inc = GEN_INT (inc_amount);
7712
7713 /* If this is post-increment, first copy the location to the reload reg. */
7714 if (post && real_in != reloadreg)
7715 emit_insn (gen_move_insn (reloadreg, real_in));
7716
7717 if (in == value)
7718 {
7719 /* See if we can directly increment INCLOC. Use a method similar to
7720 that in gen_reload. */
7721
7722 last = get_last_insn ();
7723 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7724 gen_rtx_PLUS (GET_MODE (incloc),
7725 incloc, inc)));
7726
7727 code = recog_memoized (add_insn);
7728 if (code >= 0)
7729 {
7730 extract_insn (add_insn);
7731 if (constrain_operands (1))
7732 {
7733 /* If this is a pre-increment and we have incremented the value
7734 where it lives, copy the incremented value to RELOADREG to
7735 be used as an address. */
7736
7737 if (! post)
7738 emit_insn (gen_move_insn (reloadreg, incloc));
7739
7740 return add_insn;
7741 }
7742 }
7743 delete_insns_since (last);
7744 }
7745
7746 /* If couldn't do the increment directly, must increment in RELOADREG.
7747 The way we do this depends on whether this is pre- or post-increment.
7748 For pre-increment, copy INCLOC to the reload register, increment it
7749 there, then save back. */
7750
7751 if (! post)
7752 {
7753 if (in != reloadreg)
7754 emit_insn (gen_move_insn (reloadreg, real_in));
7755 emit_insn (gen_add2_insn (reloadreg, inc));
7756 store = emit_insn (gen_move_insn (incloc, reloadreg));
7757 }
7758 else
7759 {
7760 /* Postincrement.
7761 Because this might be a jump insn or a compare, and because RELOADREG
7762 may not be available after the insn in an input reload, we must do
7763 the incrementation before the insn being reloaded for.
7764
7765 We have already copied IN to RELOADREG. Increment the copy in
7766 RELOADREG, save that back, then decrement RELOADREG so it has
7767 the original value. */
7768
7769 emit_insn (gen_add2_insn (reloadreg, inc));
7770 store = emit_insn (gen_move_insn (incloc, reloadreg));
7771 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7772 }
7773
7774 return store;
7775 }
7776 \f
7777 /* Return 1 if we are certain that the constraint-string STRING allows
7778 the hard register REG. Return 0 if we can't be sure of this. */
7779
7780 static int
7781 constraint_accepts_reg_p (string, reg)
7782 const char *string;
7783 rtx reg;
7784 {
7785 int value = 0;
7786 int regno = true_regnum (reg);
7787 int c;
7788
7789 /* Initialize for first alternative. */
7790 value = 0;
7791 /* Check that each alternative contains `g' or `r'. */
7792 while (1)
7793 switch (c = *string++)
7794 {
7795 case 0:
7796 /* If an alternative lacks `g' or `r', we lose. */
7797 return value;
7798 case ',':
7799 /* If an alternative lacks `g' or `r', we lose. */
7800 if (value == 0)
7801 return 0;
7802 /* Initialize for next alternative. */
7803 value = 0;
7804 break;
7805 case 'g':
7806 case 'r':
7807 /* Any general reg wins for this alternative. */
7808 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7809 value = 1;
7810 break;
7811 default:
7812 /* Any reg in specified class wins for this alternative. */
7813 {
7814 enum reg_class class = REG_CLASS_FROM_LETTER (c);
7815
7816 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
7817 value = 1;
7818 }
7819 }
7820 }
7821 \f
7822 /* Return the number of places FIND appears within X, but don't count
7823 an occurrence if some SET_DEST is FIND. */
7824
7825 int
7826 count_occurrences (x, find)
7827 register rtx x, find;
7828 {
7829 register int i, j;
7830 register enum rtx_code code;
7831 register const char *format_ptr;
7832 int count;
7833
7834 if (x == find)
7835 return 1;
7836 if (x == 0)
7837 return 0;
7838
7839 code = GET_CODE (x);
7840
7841 switch (code)
7842 {
7843 case REG:
7844 case QUEUED:
7845 case CONST_INT:
7846 case CONST_DOUBLE:
7847 case SYMBOL_REF:
7848 case CODE_LABEL:
7849 case PC:
7850 case CC0:
7851 return 0;
7852
7853 case MEM:
7854 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
7855 return 1;
7856 break;
7857 case SET:
7858 if (SET_DEST (x) == find)
7859 return count_occurrences (SET_SRC (x), find);
7860 break;
7861
7862 default:
7863 break;
7864 }
7865
7866 format_ptr = GET_RTX_FORMAT (code);
7867 count = 0;
7868
7869 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7870 {
7871 switch (*format_ptr++)
7872 {
7873 case 'e':
7874 count += count_occurrences (XEXP (x, i), find);
7875 break;
7876
7877 case 'E':
7878 if (XVEC (x, i) != NULL)
7879 {
7880 for (j = 0; j < XVECLEN (x, i); j++)
7881 count += count_occurrences (XVECEXP (x, i, j), find);
7882 }
7883 break;
7884 }
7885 }
7886 return count;
7887 }
7888 \f
7889 /* INSN is a no-op; delete it.
7890 If this sets the return value of the function, we must keep a USE around,
7891 in case this is in a different basic block than the final USE. Otherwise,
7892 we could loose important register lifeness information on
7893 SMALL_REGISTER_CLASSES machines, where return registers might be used as
7894 spills: subsequent passes assume that spill registers are dead at the end
7895 of a basic block.
7896 VALUE must be the return value in such a case, NULL otherwise. */
7897 static void
7898 reload_cse_delete_noop_set (insn, value)
7899 rtx insn, value;
7900 {
7901 if (value)
7902 {
7903 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
7904 INSN_CODE (insn) = -1;
7905 REG_NOTES (insn) = NULL_RTX;
7906 }
7907 else
7908 {
7909 PUT_CODE (insn, NOTE);
7910 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7911 NOTE_SOURCE_FILE (insn) = 0;
7912 }
7913 }
7914
7915 /* See whether a single set SET is a noop. */
7916 static int
7917 reload_cse_noop_set_p (set)
7918 rtx set;
7919 {
7920 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
7921 }
7922
7923 /* Try to simplify INSN. */
7924 static void
7925 reload_cse_simplify (insn)
7926 rtx insn;
7927 {
7928 rtx body = PATTERN (insn);
7929
7930 if (GET_CODE (body) == SET)
7931 {
7932 int count = 0;
7933 if (reload_cse_noop_set_p (body))
7934 {
7935 rtx value = SET_DEST (body);
7936 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
7937 value = 0;
7938 reload_cse_delete_noop_set (insn, value);
7939 return;
7940 }
7941
7942 /* It's not a no-op, but we can try to simplify it. */
7943 count += reload_cse_simplify_set (body, insn);
7944
7945 if (count > 0)
7946 apply_change_group ();
7947 else
7948 reload_cse_simplify_operands (insn);
7949 }
7950 else if (GET_CODE (body) == PARALLEL)
7951 {
7952 int i;
7953 int count = 0;
7954 rtx value = NULL_RTX;
7955
7956 /* If every action in a PARALLEL is a noop, we can delete
7957 the entire PARALLEL. */
7958 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7959 {
7960 rtx part = XVECEXP (body, 0, i);
7961 if (GET_CODE (part) == SET)
7962 {
7963 if (! reload_cse_noop_set_p (part))
7964 break;
7965 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
7966 {
7967 if (value)
7968 break;
7969 value = SET_DEST (part);
7970 }
7971 }
7972 else if (GET_CODE (part) != CLOBBER)
7973 break;
7974 }
7975
7976 if (i < 0)
7977 {
7978 reload_cse_delete_noop_set (insn, value);
7979 /* We're done with this insn. */
7980 return;
7981 }
7982
7983 /* It's not a no-op, but we can try to simplify it. */
7984 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
7985 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
7986 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
7987
7988 if (count > 0)
7989 apply_change_group ();
7990 else
7991 reload_cse_simplify_operands (insn);
7992 }
7993 }
7994
7995 /* Do a very simple CSE pass over the hard registers.
7996
7997 This function detects no-op moves where we happened to assign two
7998 different pseudo-registers to the same hard register, and then
7999 copied one to the other. Reload will generate a useless
8000 instruction copying a register to itself.
8001
8002 This function also detects cases where we load a value from memory
8003 into two different registers, and (if memory is more expensive than
8004 registers) changes it to simply copy the first register into the
8005 second register.
8006
8007 Another optimization is performed that scans the operands of each
8008 instruction to see whether the value is already available in a
8009 hard register. It then replaces the operand with the hard register
8010 if possible, much like an optional reload would. */
8011
8012 static void
8013 reload_cse_regs_1 (first)
8014 rtx first;
8015 {
8016 rtx insn;
8017
8018 cselib_init ();
8019 init_alias_analysis ();
8020
8021 for (insn = first; insn; insn = NEXT_INSN (insn))
8022 {
8023 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8024 reload_cse_simplify (insn);
8025
8026 cselib_process_insn (insn);
8027 }
8028
8029 /* Clean up. */
8030 end_alias_analysis ();
8031 cselib_finish ();
8032 }
8033
8034 /* Call cse / combine like post-reload optimization phases.
8035 FIRST is the first instruction. */
8036 void
8037 reload_cse_regs (first)
8038 rtx first;
8039 {
8040 reload_cse_regs_1 (first);
8041 reload_combine ();
8042 reload_cse_move2add (first);
8043 if (flag_expensive_optimizations)
8044 reload_cse_regs_1 (first);
8045 }
8046
8047 /* Try to simplify a single SET instruction. SET is the set pattern.
8048 INSN is the instruction it came from.
8049 This function only handles one case: if we set a register to a value
8050 which is not a register, we try to find that value in some other register
8051 and change the set into a register copy. */
8052
8053 static int
8054 reload_cse_simplify_set (set, insn)
8055 rtx set;
8056 rtx insn;
8057 {
8058 int did_change = 0;
8059 int dreg;
8060 rtx src;
8061 enum reg_class dclass;
8062 int old_cost;
8063 cselib_val *val;
8064 struct elt_loc_list *l;
8065
8066 dreg = true_regnum (SET_DEST (set));
8067 if (dreg < 0)
8068 return 0;
8069
8070 src = SET_SRC (set);
8071 if (side_effects_p (src) || true_regnum (src) >= 0)
8072 return 0;
8073
8074 dclass = REGNO_REG_CLASS (dreg);
8075
8076 /* If memory loads are cheaper than register copies, don't change them. */
8077 if (GET_CODE (src) == MEM)
8078 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8079 else if (CONSTANT_P (src))
8080 old_cost = rtx_cost (src, SET);
8081 else if (GET_CODE (src) == REG)
8082 old_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (src)), dclass);
8083 else
8084 /* ??? */
8085 old_cost = rtx_cost (src, SET);
8086
8087 val = cselib_lookup (src, VOIDmode, 0);
8088 if (! val)
8089 return 0;
8090 for (l = val->locs; l; l = l->next)
8091 {
8092 int this_cost;
8093 if (CONSTANT_P (l->loc) && ! references_value_p (l->loc, 0))
8094 this_cost = rtx_cost (l->loc, SET);
8095 else if (GET_CODE (l->loc) == REG)
8096 this_cost = REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (l->loc)),
8097 dclass);
8098 else
8099 continue;
8100 /* If equal costs, prefer registers over anything else. That tends to
8101 lead to smaller instructions on some machines. */
8102 if ((this_cost < old_cost
8103 || (this_cost == old_cost
8104 && GET_CODE (l->loc) == REG
8105 && GET_CODE (SET_SRC (set)) != REG))
8106 && validate_change (insn, &SET_SRC (set), copy_rtx (l->loc), 1))
8107 old_cost = this_cost, did_change = 1;
8108 }
8109
8110 return did_change;
8111 }
8112
8113 /* Try to replace operands in INSN with equivalent values that are already
8114 in registers. This can be viewed as optional reloading.
8115
8116 For each non-register operand in the insn, see if any hard regs are
8117 known to be equivalent to that operand. Record the alternatives which
8118 can accept these hard registers. Among all alternatives, select the
8119 ones which are better or equal to the one currently matching, where
8120 "better" is in terms of '?' and '!' constraints. Among the remaining
8121 alternatives, select the one which replaces most operands with
8122 hard registers. */
8123
8124 static int
8125 reload_cse_simplify_operands (insn)
8126 rtx insn;
8127 {
8128 int i,j;
8129
8130 /* For each operand, all registers that are equivalent to it. */
8131 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8132
8133 const char *constraints[MAX_RECOG_OPERANDS];
8134
8135 /* Vector recording how bad an alternative is. */
8136 int *alternative_reject;
8137 /* Vector recording how many registers can be introduced by choosing
8138 this alternative. */
8139 int *alternative_nregs;
8140 /* Array of vectors recording, for each operand and each alternative,
8141 which hard register to substitute, or -1 if the operand should be
8142 left as it is. */
8143 int *op_alt_regno[MAX_RECOG_OPERANDS];
8144 /* Array of alternatives, sorted in order of decreasing desirability. */
8145 int *alternative_order;
8146 rtx reg = gen_rtx_REG (VOIDmode, -1);
8147
8148 extract_insn (insn);
8149
8150 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8151 return 0;
8152
8153 /* Figure out which alternative currently matches. */
8154 if (! constrain_operands (1))
8155 fatal_insn_not_found (insn);
8156
8157 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8158 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8159 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8160 bzero ((char *)alternative_reject, recog_data.n_alternatives * sizeof (int));
8161 bzero ((char *)alternative_nregs, recog_data.n_alternatives * sizeof (int));
8162
8163 /* For each operand, find out which regs are equivalent. */
8164 for (i = 0; i < recog_data.n_operands; i++)
8165 {
8166 cselib_val *v;
8167 struct elt_loc_list *l;
8168
8169 CLEAR_HARD_REG_SET (equiv_regs[i]);
8170
8171 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8172 right, so avoid the problem here. */
8173 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL)
8174 continue;
8175
8176 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8177 if (! v)
8178 continue;
8179
8180 for (l = v->locs; l; l = l->next)
8181 if (GET_CODE (l->loc) == REG)
8182 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8183 }
8184
8185 for (i = 0; i < recog_data.n_operands; i++)
8186 {
8187 enum machine_mode mode;
8188 int regno;
8189 const char *p;
8190
8191 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8192 for (j = 0; j < recog_data.n_alternatives; j++)
8193 op_alt_regno[i][j] = -1;
8194
8195 p = constraints[i] = recog_data.constraints[i];
8196 mode = recog_data.operand_mode[i];
8197
8198 /* Add the reject values for each alternative given by the constraints
8199 for this operand. */
8200 j = 0;
8201 while (*p != '\0')
8202 {
8203 char c = *p++;
8204 if (c == ',')
8205 j++;
8206 else if (c == '?')
8207 alternative_reject[j] += 3;
8208 else if (c == '!')
8209 alternative_reject[j] += 300;
8210 }
8211
8212 /* We won't change operands which are already registers. We
8213 also don't want to modify output operands. */
8214 regno = true_regnum (recog_data.operand[i]);
8215 if (regno >= 0
8216 || constraints[i][0] == '='
8217 || constraints[i][0] == '+')
8218 continue;
8219
8220 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8221 {
8222 int class = (int) NO_REGS;
8223
8224 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8225 continue;
8226
8227 REGNO (reg) = regno;
8228 PUT_MODE (reg, mode);
8229
8230 /* We found a register equal to this operand. Now look for all
8231 alternatives that can accept this register and have not been
8232 assigned a register they can use yet. */
8233 j = 0;
8234 p = constraints[i];
8235 for (;;)
8236 {
8237 char c = *p++;
8238
8239 switch (c)
8240 {
8241 case '=': case '+': case '?':
8242 case '#': case '&': case '!':
8243 case '*': case '%':
8244 case '0': case '1': case '2': case '3': case '4':
8245 case '5': case '6': case '7': case '8': case '9':
8246 case 'm': case '<': case '>': case 'V': case 'o':
8247 case 'E': case 'F': case 'G': case 'H':
8248 case 's': case 'i': case 'n':
8249 case 'I': case 'J': case 'K': case 'L':
8250 case 'M': case 'N': case 'O': case 'P':
8251 #ifdef EXTRA_CONSTRAINT
8252 case 'Q': case 'R': case 'S': case 'T': case 'U':
8253 #endif
8254 case 'p': case 'X':
8255 /* These don't say anything we care about. */
8256 break;
8257
8258 case 'g': case 'r':
8259 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8260 break;
8261
8262 default:
8263 class
8264 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char)c)];
8265 break;
8266
8267 case ',': case '\0':
8268 /* See if REGNO fits this alternative, and set it up as the
8269 replacement register if we don't have one for this
8270 alternative yet and the operand being replaced is not
8271 a cheap CONST_INT. */
8272 if (op_alt_regno[i][j] == -1
8273 && reg_fits_class_p (reg, class, 0, mode)
8274 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8275 || (rtx_cost (recog_data.operand[i], SET)
8276 > rtx_cost (reg, SET))))
8277 {
8278 alternative_nregs[j]++;
8279 op_alt_regno[i][j] = regno;
8280 }
8281 j++;
8282 break;
8283 }
8284
8285 if (c == '\0')
8286 break;
8287 }
8288 }
8289 }
8290
8291 /* Record all alternatives which are better or equal to the currently
8292 matching one in the alternative_order array. */
8293 for (i = j = 0; i < recog_data.n_alternatives; i++)
8294 if (alternative_reject[i] <= alternative_reject[which_alternative])
8295 alternative_order[j++] = i;
8296 recog_data.n_alternatives = j;
8297
8298 /* Sort it. Given a small number of alternatives, a dumb algorithm
8299 won't hurt too much. */
8300 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8301 {
8302 int best = i;
8303 int best_reject = alternative_reject[alternative_order[i]];
8304 int best_nregs = alternative_nregs[alternative_order[i]];
8305 int tmp;
8306
8307 for (j = i + 1; j < recog_data.n_alternatives; j++)
8308 {
8309 int this_reject = alternative_reject[alternative_order[j]];
8310 int this_nregs = alternative_nregs[alternative_order[j]];
8311
8312 if (this_reject < best_reject
8313 || (this_reject == best_reject && this_nregs < best_nregs))
8314 {
8315 best = j;
8316 best_reject = this_reject;
8317 best_nregs = this_nregs;
8318 }
8319 }
8320
8321 tmp = alternative_order[best];
8322 alternative_order[best] = alternative_order[i];
8323 alternative_order[i] = tmp;
8324 }
8325
8326 /* Substitute the operands as determined by op_alt_regno for the best
8327 alternative. */
8328 j = alternative_order[0];
8329
8330 for (i = 0; i < recog_data.n_operands; i++)
8331 {
8332 enum machine_mode mode = recog_data.operand_mode[i];
8333 if (op_alt_regno[i][j] == -1)
8334 continue;
8335
8336 validate_change (insn, recog_data.operand_loc[i],
8337 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8338 }
8339
8340 for (i = recog_data.n_dups - 1; i >= 0; i--)
8341 {
8342 int op = recog_data.dup_num[i];
8343 enum machine_mode mode = recog_data.operand_mode[op];
8344
8345 if (op_alt_regno[op][j] == -1)
8346 continue;
8347
8348 validate_change (insn, recog_data.dup_loc[i],
8349 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8350 }
8351
8352 return apply_change_group ();
8353 }
8354 \f
8355 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8356 addressing now.
8357 This code might also be useful when reload gave up on reg+reg addresssing
8358 because of clashes between the return register and INDEX_REG_CLASS. */
8359
8360 /* The maximum number of uses of a register we can keep track of to
8361 replace them with reg+reg addressing. */
8362 #define RELOAD_COMBINE_MAX_USES 6
8363
8364 /* INSN is the insn where a register has ben used, and USEP points to the
8365 location of the register within the rtl. */
8366 struct reg_use { rtx insn, *usep; };
8367
8368 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8369 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8370 indicates where it becomes live again.
8371 Otherwise, USE_INDEX is the index of the last encountered use of the
8372 register (which is first among these we have seen since we scan backwards),
8373 OFFSET contains the constant offset that is added to the register in
8374 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8375 last, of these uses.
8376 STORE_RUID is always meaningful if we only want to use a value in a
8377 register in a different place: it denotes the next insn in the insn
8378 stream (i.e. the last ecountered) that sets or clobbers the register. */
8379 static struct
8380 {
8381 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8382 int use_index;
8383 rtx offset;
8384 int store_ruid;
8385 int use_ruid;
8386 } reg_state[FIRST_PSEUDO_REGISTER];
8387
8388 /* Reverse linear uid. This is increased in reload_combine while scanning
8389 the instructions from last to first. It is used to set last_label_ruid
8390 and the store_ruid / use_ruid fields in reg_state. */
8391 static int reload_combine_ruid;
8392
8393 #define LABEL_LIVE(LABEL) \
8394 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8395
8396 static void
8397 reload_combine ()
8398 {
8399 rtx insn, set;
8400 int first_index_reg = 1, last_index_reg = 0;
8401 int i;
8402 unsigned int r;
8403 int last_label_ruid;
8404 int min_labelno, n_labels;
8405 HARD_REG_SET ever_live_at_start, *label_live;
8406
8407 /* If reg+reg can be used in offsetable memory adresses, the main chunk of
8408 reload has already used it where appropriate, so there is no use in
8409 trying to generate it now. */
8410 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8411 return;
8412
8413 /* To avoid wasting too much time later searching for an index register,
8414 determine the minimum and maximum index register numbers. */
8415 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8416 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8417 {
8418 if (! first_index_reg)
8419 first_index_reg = r;
8420
8421 last_index_reg = r;
8422 }
8423
8424 /* If no index register is available, we can quit now. */
8425 if (first_index_reg > last_index_reg)
8426 return;
8427
8428 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8429 information is a bit fuzzy immediately after reload, but it's
8430 still good enough to determine which registers are live at a jump
8431 destination. */
8432 min_labelno = get_first_label_num ();
8433 n_labels = max_label_num () - min_labelno;
8434 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8435 CLEAR_HARD_REG_SET (ever_live_at_start);
8436
8437 for (i = n_basic_blocks - 1; i >= 0; i--)
8438 {
8439 insn = BLOCK_HEAD (i);
8440 if (GET_CODE (insn) == CODE_LABEL)
8441 {
8442 HARD_REG_SET live;
8443
8444 REG_SET_TO_HARD_REG_SET (live,
8445 BASIC_BLOCK (i)->global_live_at_start);
8446 compute_use_by_pseudos (&live,
8447 BASIC_BLOCK (i)->global_live_at_start);
8448 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8449 IOR_HARD_REG_SET (ever_live_at_start, live);
8450 }
8451 }
8452
8453 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8454 last_label_ruid = reload_combine_ruid = 0;
8455 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8456 {
8457 reg_state[r].store_ruid = reload_combine_ruid;
8458 if (fixed_regs[r])
8459 reg_state[r].use_index = -1;
8460 else
8461 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8462 }
8463
8464 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8465 {
8466 rtx note;
8467
8468 /* We cannot do our optimization across labels. Invalidating all the use
8469 information we have would be costly, so we just note where the label
8470 is and then later disable any optimization that would cross it. */
8471 if (GET_CODE (insn) == CODE_LABEL)
8472 last_label_ruid = reload_combine_ruid;
8473 else if (GET_CODE (insn) == BARRIER)
8474 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8475 if (! fixed_regs[r])
8476 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8477
8478 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8479 continue;
8480
8481 reload_combine_ruid++;
8482
8483 /* Look for (set (REGX) (CONST_INT))
8484 (set (REGX) (PLUS (REGX) (REGY)))
8485 ...
8486 ... (MEM (REGX)) ...
8487 and convert it to
8488 (set (REGZ) (CONST_INT))
8489 ...
8490 ... (MEM (PLUS (REGZ) (REGY)))... .
8491
8492 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8493 and that we know all uses of REGX before it dies. */
8494 set = single_set (insn);
8495 if (set != NULL_RTX
8496 && GET_CODE (SET_DEST (set)) == REG
8497 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8498 GET_MODE (SET_DEST (set)))
8499 == 1)
8500 && GET_CODE (SET_SRC (set)) == PLUS
8501 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8502 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8503 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8504 {
8505 rtx reg = SET_DEST (set);
8506 rtx plus = SET_SRC (set);
8507 rtx base = XEXP (plus, 1);
8508 rtx prev = prev_nonnote_insn (insn);
8509 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8510 unsigned int regno = REGNO (reg);
8511 rtx const_reg = NULL_RTX;
8512 rtx reg_sum = NULL_RTX;
8513
8514 /* Now, we need an index register.
8515 We'll set index_reg to this index register, const_reg to the
8516 register that is to be loaded with the constant
8517 (denoted as REGZ in the substitution illustration above),
8518 and reg_sum to the register-register that we want to use to
8519 substitute uses of REG (typically in MEMs) with.
8520 First check REG and BASE for being index registers;
8521 we can use them even if they are not dead. */
8522 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8523 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8524 REGNO (base)))
8525 {
8526 const_reg = reg;
8527 reg_sum = plus;
8528 }
8529 else
8530 {
8531 /* Otherwise, look for a free index register. Since we have
8532 checked above that neiter REG nor BASE are index registers,
8533 if we find anything at all, it will be different from these
8534 two registers. */
8535 for (i = first_index_reg; i <= last_index_reg; i++)
8536 {
8537 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8538 i)
8539 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8540 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8541 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8542 {
8543 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8544
8545 const_reg = index_reg;
8546 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8547 break;
8548 }
8549 }
8550 }
8551
8552 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8553 (REGY), i.e. BASE, is not clobbered before the last use we'll
8554 create. */
8555 if (prev_set != 0
8556 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8557 && rtx_equal_p (SET_DEST (prev_set), reg)
8558 && reg_state[regno].use_index >= 0
8559 && (reg_state[REGNO (base)].store_ruid
8560 <= reg_state[regno].use_ruid)
8561 && reg_sum != 0)
8562 {
8563 int i;
8564
8565 /* Change destination register and, if necessary, the
8566 constant value in PREV, the constant loading instruction. */
8567 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8568 if (reg_state[regno].offset != const0_rtx)
8569 validate_change (prev,
8570 &SET_SRC (prev_set),
8571 GEN_INT (INTVAL (SET_SRC (prev_set))
8572 + INTVAL (reg_state[regno].offset)),
8573 1);
8574
8575 /* Now for every use of REG that we have recorded, replace REG
8576 with REG_SUM. */
8577 for (i = reg_state[regno].use_index;
8578 i < RELOAD_COMBINE_MAX_USES; i++)
8579 validate_change (reg_state[regno].reg_use[i].insn,
8580 reg_state[regno].reg_use[i].usep,
8581 reg_sum, 1);
8582
8583 if (apply_change_group ())
8584 {
8585 rtx *np;
8586
8587 /* Delete the reg-reg addition. */
8588 PUT_CODE (insn, NOTE);
8589 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8590 NOTE_SOURCE_FILE (insn) = 0;
8591
8592 if (reg_state[regno].offset != const0_rtx)
8593 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8594 are now invalid. */
8595 for (np = &REG_NOTES (prev); *np; )
8596 {
8597 if (REG_NOTE_KIND (*np) == REG_EQUAL
8598 || REG_NOTE_KIND (*np) == REG_EQUIV)
8599 *np = XEXP (*np, 1);
8600 else
8601 np = &XEXP (*np, 1);
8602 }
8603
8604 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8605 reg_state[REGNO (const_reg)].store_ruid
8606 = reload_combine_ruid;
8607 continue;
8608 }
8609 }
8610 }
8611
8612 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8613
8614 if (GET_CODE (insn) == CALL_INSN)
8615 {
8616 rtx link;
8617
8618 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8619 if (call_used_regs[r])
8620 {
8621 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8622 reg_state[r].store_ruid = reload_combine_ruid;
8623 }
8624
8625 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8626 link = XEXP (link, 1))
8627 if (GET_CODE (XEXP (XEXP (link, 0), 0)) == REG)
8628 {
8629 unsigned int regno = REGNO (XEXP (XEXP (link, 0), 0));
8630
8631 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8632 {
8633 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8634 reg_state[regno].store_ruid = reload_combine_ruid;
8635 }
8636 else
8637 reg_state[regno].use_index = -1;
8638 }
8639 }
8640
8641 else if (GET_CODE (insn) == JUMP_INSN
8642 && GET_CODE (PATTERN (insn)) != RETURN)
8643 {
8644 /* Non-spill registers might be used at the call destination in
8645 some unknown fashion, so we have to mark the unknown use. */
8646 HARD_REG_SET *live;
8647
8648 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8649 && JUMP_LABEL (insn))
8650 live = &LABEL_LIVE (JUMP_LABEL (insn));
8651 else
8652 live = &ever_live_at_start;
8653
8654 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8655 if (TEST_HARD_REG_BIT (*live, i))
8656 reg_state[i].use_index = -1;
8657 }
8658
8659 reload_combine_note_use (&PATTERN (insn), insn);
8660 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8661 {
8662 if (REG_NOTE_KIND (note) == REG_INC
8663 && GET_CODE (XEXP (note, 0)) == REG)
8664 {
8665 int regno = REGNO (XEXP (note, 0));
8666
8667 reg_state[regno].store_ruid = reload_combine_ruid;
8668 reg_state[regno].use_index = -1;
8669 }
8670 }
8671 }
8672
8673 free (label_live);
8674 }
8675
8676 /* Check if DST is a register or a subreg of a register; if it is,
8677 update reg_state[regno].store_ruid and reg_state[regno].use_index
8678 accordingly. Called via note_stores from reload_combine. */
8679
8680 static void
8681 reload_combine_note_store (dst, set, data)
8682 rtx dst, set;
8683 void *data ATTRIBUTE_UNUSED;
8684 {
8685 int regno = 0;
8686 int i;
8687 enum machine_mode mode = GET_MODE (dst);
8688
8689 if (GET_CODE (dst) == SUBREG)
8690 {
8691 regno = SUBREG_WORD (dst);
8692 dst = SUBREG_REG (dst);
8693 }
8694 if (GET_CODE (dst) != REG)
8695 return;
8696 regno += REGNO (dst);
8697
8698 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8699 careful with registers / register parts that are not full words.
8700
8701 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8702 if (GET_CODE (set) != SET
8703 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8704 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8705 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8706 {
8707 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8708 {
8709 reg_state[i].use_index = -1;
8710 reg_state[i].store_ruid = reload_combine_ruid;
8711 }
8712 }
8713 else
8714 {
8715 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8716 {
8717 reg_state[i].store_ruid = reload_combine_ruid;
8718 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8719 }
8720 }
8721 }
8722
8723 /* XP points to a piece of rtl that has to be checked for any uses of
8724 registers.
8725 *XP is the pattern of INSN, or a part of it.
8726 Called from reload_combine, and recursively by itself. */
8727 static void
8728 reload_combine_note_use (xp, insn)
8729 rtx *xp, insn;
8730 {
8731 rtx x = *xp;
8732 enum rtx_code code = x->code;
8733 const char *fmt;
8734 int i, j;
8735 rtx offset = const0_rtx; /* For the REG case below. */
8736
8737 switch (code)
8738 {
8739 case SET:
8740 if (GET_CODE (SET_DEST (x)) == REG)
8741 {
8742 reload_combine_note_use (&SET_SRC (x), insn);
8743 return;
8744 }
8745 break;
8746
8747 case USE:
8748 /* If this is the USE of a return value, we can't change it. */
8749 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8750 {
8751 /* Mark the return register as used in an unknown fashion. */
8752 rtx reg = XEXP (x, 0);
8753 int regno = REGNO (reg);
8754 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8755
8756 while (--nregs >= 0)
8757 reg_state[regno + nregs].use_index = -1;
8758 return;
8759 }
8760 break;
8761
8762 case CLOBBER:
8763 if (GET_CODE (SET_DEST (x)) == REG)
8764 return;
8765 break;
8766
8767 case PLUS:
8768 /* We are interested in (plus (reg) (const_int)) . */
8769 if (GET_CODE (XEXP (x, 0)) != REG || GET_CODE (XEXP (x, 1)) != CONST_INT)
8770 break;
8771 offset = XEXP (x, 1);
8772 x = XEXP (x, 0);
8773 /* Fall through. */
8774 case REG:
8775 {
8776 int regno = REGNO (x);
8777 int use_index;
8778 int nregs;
8779
8780 /* Some spurious USEs of pseudo registers might remain.
8781 Just ignore them. */
8782 if (regno >= FIRST_PSEUDO_REGISTER)
8783 return;
8784
8785 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8786
8787 /* We can't substitute into multi-hard-reg uses. */
8788 if (nregs > 1)
8789 {
8790 while (--nregs >= 0)
8791 reg_state[regno + nregs].use_index = -1;
8792 return;
8793 }
8794
8795 /* If this register is already used in some unknown fashion, we
8796 can't do anything.
8797 If we decrement the index from zero to -1, we can't store more
8798 uses, so this register becomes used in an unknown fashion. */
8799 use_index = --reg_state[regno].use_index;
8800 if (use_index < 0)
8801 return;
8802
8803 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
8804 {
8805 /* We have found another use for a register that is already
8806 used later. Check if the offsets match; if not, mark the
8807 register as used in an unknown fashion. */
8808 if (! rtx_equal_p (offset, reg_state[regno].offset))
8809 {
8810 reg_state[regno].use_index = -1;
8811 return;
8812 }
8813 }
8814 else
8815 {
8816 /* This is the first use of this register we have seen since we
8817 marked it as dead. */
8818 reg_state[regno].offset = offset;
8819 reg_state[regno].use_ruid = reload_combine_ruid;
8820 }
8821 reg_state[regno].reg_use[use_index].insn = insn;
8822 reg_state[regno].reg_use[use_index].usep = xp;
8823 return;
8824 }
8825
8826 default:
8827 break;
8828 }
8829
8830 /* Recursively process the components of X. */
8831 fmt = GET_RTX_FORMAT (code);
8832 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8833 {
8834 if (fmt[i] == 'e')
8835 reload_combine_note_use (&XEXP (x, i), insn);
8836 else if (fmt[i] == 'E')
8837 {
8838 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8839 reload_combine_note_use (&XVECEXP (x, i, j), insn);
8840 }
8841 }
8842 }
8843 \f
8844 /* See if we can reduce the cost of a constant by replacing a move with
8845 an add. */
8846 /* We cannot do our optimization across labels. Invalidating all the
8847 information about register contents we have would be costly, so we
8848 use last_label_luid (local variable of reload_cse_move2add) to note
8849 where the label is and then later disable any optimization that would
8850 cross it.
8851 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
8852 reg_set_luid[n] is larger than last_label_luid[n] . */
8853 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
8854
8855 /* reg_offset[n] has to be CONST_INT for it and reg_base_reg[n] /
8856 reg_mode[n] to be valid.
8857 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is negative, register n
8858 has been set to reg_offset[n] in mode reg_mode[n] .
8859 If reg_offset[n] is a CONST_INT and reg_base_reg[n] is non-negative,
8860 register n has been set to the sum of reg_offset[n] and register
8861 reg_base_reg[n], calculated in mode reg_mode[n] . */
8862 static rtx reg_offset[FIRST_PSEUDO_REGISTER];
8863 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
8864 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
8865
8866 /* move2add_luid is linearily increased while scanning the instructions
8867 from first to last. It is used to set reg_set_luid in
8868 reload_cse_move2add and move2add_note_store. */
8869 static int move2add_luid;
8870
8871 /* Generate a CONST_INT and force it in the range of MODE. */
8872
8873 static rtx
8874 gen_mode_int (mode, value)
8875 enum machine_mode mode;
8876 HOST_WIDE_INT value;
8877 {
8878 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
8879 int width = GET_MODE_BITSIZE (mode);
8880
8881 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
8882 sign extend it. */
8883 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
8884 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
8885 cval |= (HOST_WIDE_INT) -1 << width;
8886
8887 return GEN_INT (cval);
8888 }
8889
8890 static void
8891 reload_cse_move2add (first)
8892 rtx first;
8893 {
8894 int i;
8895 rtx insn;
8896 int last_label_luid;
8897
8898 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
8899 reg_set_luid[i] = 0;
8900
8901 last_label_luid = 0;
8902 move2add_luid = 1;
8903 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
8904 {
8905 rtx pat, note;
8906
8907 if (GET_CODE (insn) == CODE_LABEL)
8908 last_label_luid = move2add_luid;
8909 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8910 continue;
8911 pat = PATTERN (insn);
8912 /* For simplicity, we only perform this optimization on
8913 straightforward SETs. */
8914 if (GET_CODE (pat) == SET
8915 && GET_CODE (SET_DEST (pat)) == REG)
8916 {
8917 rtx reg = SET_DEST (pat);
8918 int regno = REGNO (reg);
8919 rtx src = SET_SRC (pat);
8920
8921 /* Check if we have valid information on the contents of this
8922 register in the mode of REG. */
8923 /* ??? We don't know how zero / sign extension is handled, hence
8924 we can't go from a narrower to a wider mode. */
8925 if (reg_set_luid[regno] > last_label_luid
8926 && ((GET_MODE_SIZE (GET_MODE (reg))
8927 == GET_MODE_SIZE (reg_mode[regno]))
8928 || ((GET_MODE_SIZE (GET_MODE (reg))
8929 <= GET_MODE_SIZE (reg_mode[regno]))
8930 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (reg)),
8931 GET_MODE_BITSIZE (reg_mode[regno]))))
8932 && GET_CODE (reg_offset[regno]) == CONST_INT)
8933 {
8934 /* Try to transform (set (REGX) (CONST_INT A))
8935 ...
8936 (set (REGX) (CONST_INT B))
8937 to
8938 (set (REGX) (CONST_INT A))
8939 ...
8940 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8941
8942 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
8943 {
8944 int success = 0;
8945 rtx new_src
8946 = gen_mode_int (GET_MODE (reg),
8947 INTVAL (src) - INTVAL (reg_offset[regno]));
8948 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
8949 use (set (reg) (reg)) instead.
8950 We don't delete this insn, nor do we convert it into a
8951 note, to avoid losing register notes or the return
8952 value flag. jump2 already knowns how to get rid of
8953 no-op moves. */
8954 if (new_src == const0_rtx)
8955 success = validate_change (insn, &SET_SRC (pat), reg, 0);
8956 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
8957 && have_add2_insn (GET_MODE (reg)))
8958 success = validate_change (insn, &PATTERN (insn),
8959 gen_add2_insn (reg, new_src), 0);
8960 reg_set_luid[regno] = move2add_luid;
8961 reg_mode[regno] = GET_MODE (reg);
8962 reg_offset[regno] = src;
8963 continue;
8964 }
8965
8966 /* Try to transform (set (REGX) (REGY))
8967 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8968 ...
8969 (set (REGX) (REGY))
8970 (set (REGX) (PLUS (REGX) (CONST_INT B)))
8971 to
8972 (REGX) (REGY))
8973 (set (REGX) (PLUS (REGX) (CONST_INT A)))
8974 ...
8975 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
8976 else if (GET_CODE (src) == REG
8977 && reg_base_reg[regno] == (int) REGNO (src)
8978 && reg_set_luid[regno] > reg_set_luid[REGNO (src)])
8979 {
8980 rtx next = next_nonnote_insn (insn);
8981 rtx set = NULL_RTX;
8982 if (next)
8983 set = single_set (next);
8984 if (next
8985 && set
8986 && SET_DEST (set) == reg
8987 && GET_CODE (SET_SRC (set)) == PLUS
8988 && XEXP (SET_SRC (set), 0) == reg
8989 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
8990 {
8991 rtx src3 = XEXP (SET_SRC (set), 1);
8992 rtx new_src
8993 = gen_mode_int (GET_MODE (reg),
8994 INTVAL (src3)
8995 - INTVAL (reg_offset[regno]));
8996 int success = 0;
8997
8998 if (new_src == const0_rtx)
8999 /* See above why we create (set (reg) (reg)) here. */
9000 success
9001 = validate_change (next, &SET_SRC (set), reg, 0);
9002 else if ((rtx_cost (new_src, PLUS)
9003 < 2 + rtx_cost (src3, SET))
9004 && have_add2_insn (GET_MODE (reg)))
9005 success
9006 = validate_change (next, &PATTERN (next),
9007 gen_add2_insn (reg, new_src), 0);
9008 if (success)
9009 {
9010 /* INSN might be the first insn in a basic block
9011 if the preceding insn is a conditional jump
9012 or a possible-throwing call. */
9013 PUT_CODE (insn, NOTE);
9014 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
9015 NOTE_SOURCE_FILE (insn) = 0;
9016 }
9017 insn = next;
9018 reg_set_luid[regno] = move2add_luid;
9019 reg_mode[regno] = GET_MODE (reg);
9020 reg_offset[regno] = src3;
9021 continue;
9022 }
9023 }
9024 }
9025 }
9026
9027 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9028 {
9029 if (REG_NOTE_KIND (note) == REG_INC
9030 && GET_CODE (XEXP (note, 0)) == REG)
9031 {
9032 /* Indicate that this register has been recently written to,
9033 but the exact contents are not available. */
9034 int regno = REGNO (XEXP (note, 0));
9035 if (regno < FIRST_PSEUDO_REGISTER)
9036 {
9037 reg_set_luid[regno] = move2add_luid;
9038 reg_offset[regno] = note;
9039 }
9040 }
9041 }
9042 note_stores (PATTERN (insn), move2add_note_store, NULL);
9043 /* If this is a CALL_INSN, all call used registers are stored with
9044 unknown values. */
9045 if (GET_CODE (insn) == CALL_INSN)
9046 {
9047 for (i = FIRST_PSEUDO_REGISTER-1; i >= 0; i--)
9048 {
9049 if (call_used_regs[i])
9050 {
9051 reg_set_luid[i] = move2add_luid;
9052 reg_offset[i] = insn; /* Invalidate contents. */
9053 }
9054 }
9055 }
9056 }
9057 }
9058
9059 /* SET is a SET or CLOBBER that sets DST.
9060 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9061 Called from reload_cse_move2add via note_stores. */
9062
9063 static void
9064 move2add_note_store (dst, set, data)
9065 rtx dst, set;
9066 void *data ATTRIBUTE_UNUSED;
9067 {
9068 unsigned int regno = 0;
9069 unsigned int i;
9070 enum machine_mode mode = GET_MODE (dst);
9071
9072 if (GET_CODE (dst) == SUBREG)
9073 {
9074 regno = SUBREG_WORD (dst);
9075 dst = SUBREG_REG (dst);
9076 }
9077
9078 if (GET_CODE (dst) != REG)
9079 return;
9080
9081 regno += REGNO (dst);
9082
9083 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9084 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9085 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9086 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9087 {
9088 rtx src = SET_SRC (set);
9089
9090 reg_mode[regno] = mode;
9091 switch (GET_CODE (src))
9092 {
9093 case PLUS:
9094 {
9095 rtx src0 = XEXP (src, 0);
9096
9097 if (GET_CODE (src0) == REG)
9098 {
9099 if (REGNO (src0) != regno
9100 || reg_offset[regno] != const0_rtx)
9101 {
9102 reg_base_reg[regno] = REGNO (src0);
9103 reg_set_luid[regno] = move2add_luid;
9104 }
9105
9106 reg_offset[regno] = XEXP (src, 1);
9107 break;
9108 }
9109
9110 reg_set_luid[regno] = move2add_luid;
9111 reg_offset[regno] = set; /* Invalidate contents. */
9112 break;
9113 }
9114
9115 case REG:
9116 reg_base_reg[regno] = REGNO (SET_SRC (set));
9117 reg_offset[regno] = const0_rtx;
9118 reg_set_luid[regno] = move2add_luid;
9119 break;
9120
9121 default:
9122 reg_base_reg[regno] = -1;
9123 reg_offset[regno] = SET_SRC (set);
9124 reg_set_luid[regno] = move2add_luid;
9125 break;
9126 }
9127 }
9128 else
9129 {
9130 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9131
9132 for (i = regno; i < endregno; i++)
9133 {
9134 /* Indicate that this register has been recently written to,
9135 but the exact contents are not available. */
9136 reg_set_luid[i] = move2add_luid;
9137 reg_offset[i] = dst;
9138 }
9139 }
9140 }
9141
9142 #ifdef AUTO_INC_DEC
9143 static void
9144 add_auto_inc_notes (insn, x)
9145 rtx insn;
9146 rtx x;
9147 {
9148 enum rtx_code code = GET_CODE (x);
9149 const char *fmt;
9150 int i, j;
9151
9152 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9153 {
9154 REG_NOTES (insn)
9155 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9156 return;
9157 }
9158
9159 /* Scan all the operand sub-expressions. */
9160 fmt = GET_RTX_FORMAT (code);
9161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9162 {
9163 if (fmt[i] == 'e')
9164 add_auto_inc_notes (insn, XEXP (x, i));
9165 else if (fmt[i] == 'E')
9166 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9167 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9168 }
9169 }
9170 #endif