7f4136657470ce199f88f5dd96d42c1aed1489a7
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "addresses.h"
39 #include "basic-block.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "output.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "df.h"
48 #include "target.h"
49 #include "dse.h"
50
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
57
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
61
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
65
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
73
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
77
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
84 \f
85 /* During reload_as_needed, element N contains a REG rtx for the hard reg
86 into which reg N has been reloaded (perhaps for a previous insn). */
87 static rtx *reg_last_reload_reg;
88
89 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
90 for an output reload that stores into reg N. */
91 static regset_head reg_has_output_reload;
92
93 /* Indicates which hard regs are reload-registers for an output reload
94 in the current insn. */
95 static HARD_REG_SET reg_is_output_reload;
96
97 /* Element N is the constant value to which pseudo reg N is equivalent,
98 or zero if pseudo reg N is not equivalent to a constant.
99 find_reloads looks at this in order to replace pseudo reg N
100 with the constant it stands for. */
101 rtx *reg_equiv_constant;
102
103 /* Element N is an invariant value to which pseudo reg N is equivalent.
104 eliminate_regs_in_insn uses this to replace pseudos in particular
105 contexts. */
106 rtx *reg_equiv_invariant;
107
108 /* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
112 rtx *reg_equiv_memory_loc;
113
114 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
115 collector can keep track of what is inside. */
116 VEC(rtx,gc) *reg_equiv_memory_loc_vec;
117
118 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
119 This is used when the address is not valid as a memory address
120 (because its displacement is too big for the machine.) */
121 rtx *reg_equiv_address;
122
123 /* Element N is the memory slot to which pseudo reg N is equivalent,
124 or zero if pseudo reg N is not equivalent to a memory slot. */
125 rtx *reg_equiv_mem;
126
127 /* Element N is an EXPR_LIST of REG_EQUIVs containing MEMs with
128 alternate representations of the location of pseudo reg N. */
129 rtx *reg_equiv_alt_mem_list;
130
131 /* Widest width in which each pseudo reg is referred to (via subreg). */
132 static unsigned int *reg_max_ref_width;
133
134 /* Element N is the list of insns that initialized reg N from its equivalent
135 constant or memory slot. */
136 rtx *reg_equiv_init;
137 int reg_equiv_init_size;
138
139 /* Vector to remember old contents of reg_renumber before spilling. */
140 static short *reg_old_renumber;
141
142 /* During reload_as_needed, element N contains the last pseudo regno reloaded
143 into hard register N. If that pseudo reg occupied more than one register,
144 reg_reloaded_contents points to that pseudo for each spill register in
145 use; all of these must remain set for an inheritance to occur. */
146 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
147
148 /* During reload_as_needed, element N contains the insn for which
149 hard register N was last used. Its contents are significant only
150 when reg_reloaded_valid is set for this register. */
151 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
152
153 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
154 static HARD_REG_SET reg_reloaded_valid;
155 /* Indicate if the register was dead at the end of the reload.
156 This is only valid if reg_reloaded_contents is set and valid. */
157 static HARD_REG_SET reg_reloaded_dead;
158
159 /* Indicate whether the register's current value is one that is not
160 safe to retain across a call, even for registers that are normally
161 call-saved. This is only meaningful for members of reg_reloaded_valid. */
162 static HARD_REG_SET reg_reloaded_call_part_clobbered;
163
164 /* Number of spill-regs so far; number of valid elements of spill_regs. */
165 static int n_spills;
166
167 /* In parallel with spill_regs, contains REG rtx's for those regs.
168 Holds the last rtx used for any given reg, or 0 if it has never
169 been used for spilling yet. This rtx is reused, provided it has
170 the proper mode. */
171 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
172
173 /* In parallel with spill_regs, contains nonzero for a spill reg
174 that was stored after the last time it was used.
175 The precise value is the insn generated to do the store. */
176 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
177
178 /* This is the register that was stored with spill_reg_store. This is a
179 copy of reload_out / reload_out_reg when the value was stored; if
180 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
181 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
182
183 /* This table is the inverse mapping of spill_regs:
184 indexed by hard reg number,
185 it contains the position of that reg in spill_regs,
186 or -1 for something that is not in spill_regs.
187
188 ?!? This is no longer accurate. */
189 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
190
191 /* This reg set indicates registers that can't be used as spill registers for
192 the currently processed insn. These are the hard registers which are live
193 during the insn, but not allocated to pseudos, as well as fixed
194 registers. */
195 static HARD_REG_SET bad_spill_regs;
196
197 /* These are the hard registers that can't be used as spill register for any
198 insn. This includes registers used for user variables and registers that
199 we can't eliminate. A register that appears in this set also can't be used
200 to retry register allocation. */
201 static HARD_REG_SET bad_spill_regs_global;
202
203 /* Describes order of use of registers for reloading
204 of spilled pseudo-registers. `n_spills' is the number of
205 elements that are actually valid; new ones are added at the end.
206
207 Both spill_regs and spill_reg_order are used on two occasions:
208 once during find_reload_regs, where they keep track of the spill registers
209 for a single insn, but also during reload_as_needed where they show all
210 the registers ever used by reload. For the latter case, the information
211 is calculated during finish_spills. */
212 static short spill_regs[FIRST_PSEUDO_REGISTER];
213
214 /* This vector of reg sets indicates, for each pseudo, which hard registers
215 may not be used for retrying global allocation because the register was
216 formerly spilled from one of them. If we allowed reallocating a pseudo to
217 a register that it was already allocated to, reload might not
218 terminate. */
219 static HARD_REG_SET *pseudo_previous_regs;
220
221 /* This vector of reg sets indicates, for each pseudo, which hard
222 registers may not be used for retrying global allocation because they
223 are used as spill registers during one of the insns in which the
224 pseudo is live. */
225 static HARD_REG_SET *pseudo_forbidden_regs;
226
227 /* All hard regs that have been used as spill registers for any insn are
228 marked in this set. */
229 static HARD_REG_SET used_spill_regs;
230
231 /* Index of last register assigned as a spill register. We allocate in
232 a round-robin fashion. */
233 static int last_spill_reg;
234
235 /* Nonzero if indirect addressing is supported on the machine; this means
236 that spilling (REG n) does not require reloading it into a register in
237 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
238 value indicates the level of indirect addressing supported, e.g., two
239 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
240 a hard register. */
241 static char spill_indirect_levels;
242
243 /* Nonzero if indirect addressing is supported when the innermost MEM is
244 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
245 which these are valid is the same as spill_indirect_levels, above. */
246 char indirect_symref_ok;
247
248 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
249 char double_reg_address_ok;
250
251 /* Record the stack slot for each spilled hard register. */
252 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
253
254 /* Width allocated so far for that stack slot. */
255 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
256
257 /* Record which pseudos needed to be spilled. */
258 static regset_head spilled_pseudos;
259
260 /* Used for communication between order_regs_for_reload and count_pseudo.
261 Used to avoid counting one pseudo twice. */
262 static regset_head pseudos_counted;
263
264 /* First uid used by insns created by reload in this function.
265 Used in find_equiv_reg. */
266 int reload_first_uid;
267
268 /* Flag set by local-alloc or global-alloc if anything is live in
269 a call-clobbered reg across calls. */
270 int caller_save_needed;
271
272 /* Set to 1 while reload_as_needed is operating.
273 Required by some machines to handle any generated moves differently. */
274 int reload_in_progress = 0;
275
276 /* These arrays record the insn_code of insns that may be needed to
277 perform input and output reloads of special objects. They provide a
278 place to pass a scratch register. */
279 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
280 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
281
282 /* This obstack is used for allocation of rtl during register elimination.
283 The allocated storage can be freed once find_reloads has processed the
284 insn. */
285 static struct obstack reload_obstack;
286
287 /* Points to the beginning of the reload_obstack. All insn_chain structures
288 are allocated first. */
289 static char *reload_startobj;
290
291 /* The point after all insn_chain structures. Used to quickly deallocate
292 memory allocated in copy_reloads during calculate_needs_all_insns. */
293 static char *reload_firstobj;
294
295 /* This points before all local rtl generated by register elimination.
296 Used to quickly free all memory after processing one insn. */
297 static char *reload_insn_firstobj;
298
299 /* List of insn_chain instructions, one for every insn that reload needs to
300 examine. */
301 struct insn_chain *reload_insn_chain;
302
303 /* List of all insns needing reloads. */
304 static struct insn_chain *insns_need_reload;
305 \f
306 /* This structure is used to record information about register eliminations.
307 Each array entry describes one possible way of eliminating a register
308 in favor of another. If there is more than one way of eliminating a
309 particular register, the most preferred should be specified first. */
310
311 struct elim_table
312 {
313 int from; /* Register number to be eliminated. */
314 int to; /* Register number used as replacement. */
315 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
316 int can_eliminate; /* Nonzero if this elimination can be done. */
317 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
318 insns made by reload. */
319 HOST_WIDE_INT offset; /* Current offset between the two regs. */
320 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
321 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
322 rtx from_rtx; /* REG rtx for the register to be eliminated.
323 We cannot simply compare the number since
324 we might then spuriously replace a hard
325 register corresponding to a pseudo
326 assigned to the reg to be eliminated. */
327 rtx to_rtx; /* REG rtx for the replacement. */
328 };
329
330 static struct elim_table *reg_eliminate = 0;
331
332 /* This is an intermediate structure to initialize the table. It has
333 exactly the members provided by ELIMINABLE_REGS. */
334 static const struct elim_table_1
335 {
336 const int from;
337 const int to;
338 } reg_eliminate_1[] =
339
340 /* If a set of eliminable registers was specified, define the table from it.
341 Otherwise, default to the normal case of the frame pointer being
342 replaced by the stack pointer. */
343
344 #ifdef ELIMINABLE_REGS
345 ELIMINABLE_REGS;
346 #else
347 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
348 #endif
349
350 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
351
352 /* Record the number of pending eliminations that have an offset not equal
353 to their initial offset. If nonzero, we use a new copy of each
354 replacement result in any insns encountered. */
355 int num_not_at_initial_offset;
356
357 /* Count the number of registers that we may be able to eliminate. */
358 static int num_eliminable;
359 /* And the number of registers that are equivalent to a constant that
360 can be eliminated to frame_pointer / arg_pointer + constant. */
361 static int num_eliminable_invariants;
362
363 /* For each label, we record the offset of each elimination. If we reach
364 a label by more than one path and an offset differs, we cannot do the
365 elimination. This information is indexed by the difference of the
366 number of the label and the first label number. We can't offset the
367 pointer itself as this can cause problems on machines with segmented
368 memory. The first table is an array of flags that records whether we
369 have yet encountered a label and the second table is an array of arrays,
370 one entry in the latter array for each elimination. */
371
372 static int first_label_num;
373 static char *offsets_known_at;
374 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
375
376 /* Number of labels in the current function. */
377
378 static int num_labels;
379 \f
380 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
381 static void maybe_fix_stack_asms (void);
382 static void copy_reloads (struct insn_chain *);
383 static void calculate_needs_all_insns (int);
384 static int find_reg (struct insn_chain *, int);
385 static void find_reload_regs (struct insn_chain *);
386 static void select_reload_regs (void);
387 static void delete_caller_save_insns (void);
388
389 static void spill_failure (rtx, enum reg_class);
390 static void count_spilled_pseudo (int, int, int);
391 static void delete_dead_insn (rtx);
392 static void alter_reg (int, int);
393 static void set_label_offsets (rtx, rtx, int);
394 static void check_eliminable_occurrences (rtx);
395 static void elimination_effects (rtx, enum machine_mode);
396 static int eliminate_regs_in_insn (rtx, int);
397 static void update_eliminable_offsets (void);
398 static void mark_not_eliminable (rtx, const_rtx, void *);
399 static void set_initial_elim_offsets (void);
400 static bool verify_initial_elim_offsets (void);
401 static void set_initial_label_offsets (void);
402 static void set_offsets_for_label (rtx);
403 static void init_elim_table (void);
404 static void update_eliminables (HARD_REG_SET *);
405 static void spill_hard_reg (unsigned int, int);
406 static int finish_spills (int);
407 static void scan_paradoxical_subregs (rtx);
408 static void count_pseudo (int);
409 static void order_regs_for_reload (struct insn_chain *);
410 static void reload_as_needed (int);
411 static void forget_old_reloads_1 (rtx, const_rtx, void *);
412 static void forget_marked_reloads (regset);
413 static int reload_reg_class_lower (const void *, const void *);
414 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
415 enum machine_mode);
416 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
417 enum machine_mode);
418 static int reload_reg_free_p (unsigned int, int, enum reload_type);
419 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
420 rtx, rtx, int, int);
421 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
422 rtx, rtx, int, int);
423 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
424 static int allocate_reload_reg (struct insn_chain *, int, int);
425 static int conflicts_with_override (rtx);
426 static void failed_reload (rtx, int);
427 static int set_reload_reg (int, int);
428 static void choose_reload_regs_init (struct insn_chain *, rtx *);
429 static void choose_reload_regs (struct insn_chain *);
430 static void merge_assigned_reloads (rtx);
431 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
432 rtx, int);
433 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
434 int);
435 static void do_input_reload (struct insn_chain *, struct reload *, int);
436 static void do_output_reload (struct insn_chain *, struct reload *, int);
437 static void emit_reload_insns (struct insn_chain *);
438 static void delete_output_reload (rtx, int, int, rtx);
439 static void delete_address_reloads (rtx, rtx);
440 static void delete_address_reloads_1 (rtx, rtx, rtx);
441 static rtx inc_for_reload (rtx, rtx, rtx, int);
442 #ifdef AUTO_INC_DEC
443 static void add_auto_inc_notes (rtx, rtx);
444 #endif
445 static void copy_eh_notes (rtx, rtx);
446 static int reloads_conflict (int, int);
447 static rtx gen_reload (rtx, rtx, int, enum reload_type);
448 static rtx emit_insn_if_valid_for_reload (rtx);
449 \f
450 /* Initialize the reload pass. This is called at the beginning of compilation
451 and may be called again if the target is reinitialized. */
452
453 void
454 init_reload (void)
455 {
456 int i;
457
458 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
459 Set spill_indirect_levels to the number of levels such addressing is
460 permitted, zero if it is not permitted at all. */
461
462 rtx tem
463 = gen_rtx_MEM (Pmode,
464 gen_rtx_PLUS (Pmode,
465 gen_rtx_REG (Pmode,
466 LAST_VIRTUAL_REGISTER + 1),
467 GEN_INT (4)));
468 spill_indirect_levels = 0;
469
470 while (memory_address_p (QImode, tem))
471 {
472 spill_indirect_levels++;
473 tem = gen_rtx_MEM (Pmode, tem);
474 }
475
476 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
477
478 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
479 indirect_symref_ok = memory_address_p (QImode, tem);
480
481 /* See if reg+reg is a valid (and offsettable) address. */
482
483 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 {
485 tem = gen_rtx_PLUS (Pmode,
486 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
487 gen_rtx_REG (Pmode, i));
488
489 /* This way, we make sure that reg+reg is an offsettable address. */
490 tem = plus_constant (tem, 4);
491
492 if (memory_address_p (QImode, tem))
493 {
494 double_reg_address_ok = 1;
495 break;
496 }
497 }
498
499 /* Initialize obstack for our rtl allocation. */
500 gcc_obstack_init (&reload_obstack);
501 reload_startobj = obstack_alloc (&reload_obstack, 0);
502
503 INIT_REG_SET (&spilled_pseudos);
504 INIT_REG_SET (&pseudos_counted);
505 }
506
507 /* List of insn chains that are currently unused. */
508 static struct insn_chain *unused_insn_chains = 0;
509
510 /* Allocate an empty insn_chain structure. */
511 struct insn_chain *
512 new_insn_chain (void)
513 {
514 struct insn_chain *c;
515
516 if (unused_insn_chains == 0)
517 {
518 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
519 INIT_REG_SET (&c->live_throughout);
520 INIT_REG_SET (&c->dead_or_set);
521 }
522 else
523 {
524 c = unused_insn_chains;
525 unused_insn_chains = c->next;
526 }
527 c->is_caller_save_insn = 0;
528 c->need_operand_change = 0;
529 c->need_reload = 0;
530 c->need_elim = 0;
531 return c;
532 }
533
534 /* Small utility function to set all regs in hard reg set TO which are
535 allocated to pseudos in regset FROM. */
536
537 void
538 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
539 {
540 unsigned int regno;
541 reg_set_iterator rsi;
542
543 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
544 {
545 int r = reg_renumber[regno];
546
547 if (r < 0)
548 {
549 /* reload_combine uses the information from
550 DF_LIVE_IN (BASIC_BLOCK), which might still
551 contain registers that have not actually been allocated
552 since they have an equivalence. */
553 gcc_assert (reload_completed);
554 }
555 else
556 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
557 }
558 }
559
560 /* Replace all pseudos found in LOC with their corresponding
561 equivalences. */
562
563 static void
564 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
565 {
566 rtx x = *loc;
567 enum rtx_code code;
568 const char *fmt;
569 int i, j;
570
571 if (! x)
572 return;
573
574 code = GET_CODE (x);
575 if (code == REG)
576 {
577 unsigned int regno = REGNO (x);
578
579 if (regno < FIRST_PSEUDO_REGISTER)
580 return;
581
582 x = eliminate_regs (x, mem_mode, usage);
583 if (x != *loc)
584 {
585 *loc = x;
586 replace_pseudos_in (loc, mem_mode, usage);
587 return;
588 }
589
590 if (reg_equiv_constant[regno])
591 *loc = reg_equiv_constant[regno];
592 else if (reg_equiv_mem[regno])
593 *loc = reg_equiv_mem[regno];
594 else if (reg_equiv_address[regno])
595 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
596 else
597 {
598 gcc_assert (!REG_P (regno_reg_rtx[regno])
599 || REGNO (regno_reg_rtx[regno]) != regno);
600 *loc = regno_reg_rtx[regno];
601 }
602
603 return;
604 }
605 else if (code == MEM)
606 {
607 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
608 return;
609 }
610
611 /* Process each of our operands recursively. */
612 fmt = GET_RTX_FORMAT (code);
613 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
614 if (*fmt == 'e')
615 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
616 else if (*fmt == 'E')
617 for (j = 0; j < XVECLEN (x, i); j++)
618 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
619 }
620
621 /* Determine if the current function has an exception receiver block
622 that reaches the exit block via non-exceptional edges */
623
624 static bool
625 has_nonexceptional_receiver (void)
626 {
627 edge e;
628 edge_iterator ei;
629 basic_block *tos, *worklist, bb;
630
631 /* If we're not optimizing, then just err on the safe side. */
632 if (!optimize)
633 return true;
634
635 /* First determine which blocks can reach exit via normal paths. */
636 tos = worklist = xmalloc (sizeof (basic_block) * (n_basic_blocks + 1));
637
638 FOR_EACH_BB (bb)
639 bb->flags &= ~BB_REACHABLE;
640
641 /* Place the exit block on our worklist. */
642 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
643 *tos++ = EXIT_BLOCK_PTR;
644
645 /* Iterate: find everything reachable from what we've already seen. */
646 while (tos != worklist)
647 {
648 bb = *--tos;
649
650 FOR_EACH_EDGE (e, ei, bb->preds)
651 if (!(e->flags & EDGE_ABNORMAL))
652 {
653 basic_block src = e->src;
654
655 if (!(src->flags & BB_REACHABLE))
656 {
657 src->flags |= BB_REACHABLE;
658 *tos++ = src;
659 }
660 }
661 }
662 free (worklist);
663
664 /* Now see if there's a reachable block with an exceptional incoming
665 edge. */
666 FOR_EACH_BB (bb)
667 if (bb->flags & BB_REACHABLE)
668 FOR_EACH_EDGE (e, ei, bb->preds)
669 if (e->flags & EDGE_ABNORMAL)
670 return true;
671
672 /* No exceptional block reached exit unexceptionally. */
673 return false;
674 }
675
676 \f
677 /* Global variables used by reload and its subroutines. */
678
679 /* Set during calculate_needs if an insn needs register elimination. */
680 static int something_needs_elimination;
681 /* Set during calculate_needs if an insn needs an operand changed. */
682 static int something_needs_operands_changed;
683
684 /* Nonzero means we couldn't get enough spill regs. */
685 static int failure;
686
687 /* Main entry point for the reload pass.
688
689 FIRST is the first insn of the function being compiled.
690
691 GLOBAL nonzero means we were called from global_alloc
692 and should attempt to reallocate any pseudoregs that we
693 displace from hard regs we will use for reloads.
694 If GLOBAL is zero, we do not have enough information to do that,
695 so any pseudo reg that is spilled must go to the stack.
696
697 Return value is nonzero if reload failed
698 and we must not do any more for this function. */
699
700 int
701 reload (rtx first, int global)
702 {
703 int i;
704 rtx insn;
705 struct elim_table *ep;
706 basic_block bb;
707
708 /* Make sure even insns with volatile mem refs are recognizable. */
709 init_recog ();
710
711 failure = 0;
712
713 reload_firstobj = obstack_alloc (&reload_obstack, 0);
714
715 /* Make sure that the last insn in the chain
716 is not something that needs reloading. */
717 emit_note (NOTE_INSN_DELETED);
718
719 /* Enable find_equiv_reg to distinguish insns made by reload. */
720 reload_first_uid = get_max_uid ();
721
722 #ifdef SECONDARY_MEMORY_NEEDED
723 /* Initialize the secondary memory table. */
724 clear_secondary_mem ();
725 #endif
726
727 /* We don't have a stack slot for any spill reg yet. */
728 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
729 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
730
731 /* Initialize the save area information for caller-save, in case some
732 are needed. */
733 init_save_areas ();
734
735 /* Compute which hard registers are now in use
736 as homes for pseudo registers.
737 This is done here rather than (eg) in global_alloc
738 because this point is reached even if not optimizing. */
739 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
740 mark_home_live (i);
741
742 /* A function that has a nonlocal label that can reach the exit
743 block via non-exceptional paths must save all call-saved
744 registers. */
745 if (cfun->has_nonlocal_label
746 && has_nonexceptional_receiver ())
747 crtl->saves_all_registers = 1;
748
749 if (crtl->saves_all_registers)
750 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
751 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
752 df_set_regs_ever_live (i, true);
753
754 /* Find all the pseudo registers that didn't get hard regs
755 but do have known equivalent constants or memory slots.
756 These include parameters (known equivalent to parameter slots)
757 and cse'd or loop-moved constant memory addresses.
758
759 Record constant equivalents in reg_equiv_constant
760 so they will be substituted by find_reloads.
761 Record memory equivalents in reg_mem_equiv so they can
762 be substituted eventually by altering the REG-rtx's. */
763
764 reg_equiv_constant = XCNEWVEC (rtx, max_regno);
765 reg_equiv_invariant = XCNEWVEC (rtx, max_regno);
766 reg_equiv_mem = XCNEWVEC (rtx, max_regno);
767 reg_equiv_alt_mem_list = XCNEWVEC (rtx, max_regno);
768 reg_equiv_address = XCNEWVEC (rtx, max_regno);
769 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
770 reg_old_renumber = XCNEWVEC (short, max_regno);
771 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
772 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
773 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
774
775 CLEAR_HARD_REG_SET (bad_spill_regs_global);
776
777 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
778 to. Also find all paradoxical subregs and find largest such for
779 each pseudo. */
780
781 num_eliminable_invariants = 0;
782 for (insn = first; insn; insn = NEXT_INSN (insn))
783 {
784 rtx set = single_set (insn);
785
786 /* We may introduce USEs that we want to remove at the end, so
787 we'll mark them with QImode. Make sure there are no
788 previously-marked insns left by say regmove. */
789 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
790 && GET_MODE (insn) != VOIDmode)
791 PUT_MODE (insn, VOIDmode);
792
793 if (INSN_P (insn))
794 scan_paradoxical_subregs (PATTERN (insn));
795
796 if (set != 0 && REG_P (SET_DEST (set)))
797 {
798 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
799 rtx x;
800
801 if (! note)
802 continue;
803
804 i = REGNO (SET_DEST (set));
805 x = XEXP (note, 0);
806
807 if (i <= LAST_VIRTUAL_REGISTER)
808 continue;
809
810 if (! function_invariant_p (x)
811 || ! flag_pic
812 /* A function invariant is often CONSTANT_P but may
813 include a register. We promise to only pass
814 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
815 || (CONSTANT_P (x)
816 && LEGITIMATE_PIC_OPERAND_P (x)))
817 {
818 /* It can happen that a REG_EQUIV note contains a MEM
819 that is not a legitimate memory operand. As later
820 stages of reload assume that all addresses found
821 in the reg_equiv_* arrays were originally legitimate,
822 we ignore such REG_EQUIV notes. */
823 if (memory_operand (x, VOIDmode))
824 {
825 /* Always unshare the equivalence, so we can
826 substitute into this insn without touching the
827 equivalence. */
828 reg_equiv_memory_loc[i] = copy_rtx (x);
829 }
830 else if (function_invariant_p (x))
831 {
832 if (GET_CODE (x) == PLUS)
833 {
834 /* This is PLUS of frame pointer and a constant,
835 and might be shared. Unshare it. */
836 reg_equiv_invariant[i] = copy_rtx (x);
837 num_eliminable_invariants++;
838 }
839 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
840 {
841 reg_equiv_invariant[i] = x;
842 num_eliminable_invariants++;
843 }
844 else if (LEGITIMATE_CONSTANT_P (x))
845 reg_equiv_constant[i] = x;
846 else
847 {
848 reg_equiv_memory_loc[i]
849 = force_const_mem (GET_MODE (SET_DEST (set)), x);
850 if (! reg_equiv_memory_loc[i])
851 reg_equiv_init[i] = NULL_RTX;
852 }
853 }
854 else
855 {
856 reg_equiv_init[i] = NULL_RTX;
857 continue;
858 }
859 }
860 else
861 reg_equiv_init[i] = NULL_RTX;
862 }
863 }
864
865 if (dump_file)
866 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
867 if (reg_equiv_init[i])
868 {
869 fprintf (dump_file, "init_insns for %u: ", i);
870 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
871 fprintf (dump_file, "\n");
872 }
873
874 init_elim_table ();
875
876 first_label_num = get_first_label_num ();
877 num_labels = max_label_num () - first_label_num;
878
879 /* Allocate the tables used to store offset information at labels. */
880 /* We used to use alloca here, but the size of what it would try to
881 allocate would occasionally cause it to exceed the stack limit and
882 cause a core dump. */
883 offsets_known_at = XNEWVEC (char, num_labels);
884 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
885
886 /* Alter each pseudo-reg rtx to contain its hard reg number.
887 Assign stack slots to the pseudos that lack hard regs or equivalents.
888 Do not touch virtual registers. */
889
890 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
891 alter_reg (i, -1);
892
893 /* If we have some registers we think can be eliminated, scan all insns to
894 see if there is an insn that sets one of these registers to something
895 other than itself plus a constant. If so, the register cannot be
896 eliminated. Doing this scan here eliminates an extra pass through the
897 main reload loop in the most common case where register elimination
898 cannot be done. */
899 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
900 if (INSN_P (insn))
901 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
902
903 maybe_fix_stack_asms ();
904
905 insns_need_reload = 0;
906 something_needs_elimination = 0;
907
908 /* Initialize to -1, which means take the first spill register. */
909 last_spill_reg = -1;
910
911 /* Spill any hard regs that we know we can't eliminate. */
912 CLEAR_HARD_REG_SET (used_spill_regs);
913 /* There can be multiple ways to eliminate a register;
914 they should be listed adjacently.
915 Elimination for any register fails only if all possible ways fail. */
916 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
917 {
918 int from = ep->from;
919 int can_eliminate = 0;
920 do
921 {
922 can_eliminate |= ep->can_eliminate;
923 ep++;
924 }
925 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
926 if (! can_eliminate)
927 spill_hard_reg (from, 1);
928 }
929
930 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
931 if (frame_pointer_needed)
932 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
933 #endif
934 finish_spills (global);
935
936 /* From now on, we may need to generate moves differently. We may also
937 allow modifications of insns which cause them to not be recognized.
938 Any such modifications will be cleaned up during reload itself. */
939 reload_in_progress = 1;
940
941 /* This loop scans the entire function each go-round
942 and repeats until one repetition spills no additional hard regs. */
943 for (;;)
944 {
945 int something_changed;
946 int did_spill;
947 HOST_WIDE_INT starting_frame_size;
948
949 starting_frame_size = get_frame_size ();
950
951 set_initial_elim_offsets ();
952 set_initial_label_offsets ();
953
954 /* For each pseudo register that has an equivalent location defined,
955 try to eliminate any eliminable registers (such as the frame pointer)
956 assuming initial offsets for the replacement register, which
957 is the normal case.
958
959 If the resulting location is directly addressable, substitute
960 the MEM we just got directly for the old REG.
961
962 If it is not addressable but is a constant or the sum of a hard reg
963 and constant, it is probably not addressable because the constant is
964 out of range, in that case record the address; we will generate
965 hairy code to compute the address in a register each time it is
966 needed. Similarly if it is a hard register, but one that is not
967 valid as an address register.
968
969 If the location is not addressable, but does not have one of the
970 above forms, assign a stack slot. We have to do this to avoid the
971 potential of producing lots of reloads if, e.g., a location involves
972 a pseudo that didn't get a hard register and has an equivalent memory
973 location that also involves a pseudo that didn't get a hard register.
974
975 Perhaps at some point we will improve reload_when_needed handling
976 so this problem goes away. But that's very hairy. */
977
978 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
979 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
980 {
981 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
982
983 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
984 XEXP (x, 0)))
985 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
986 else if (CONSTANT_P (XEXP (x, 0))
987 || (REG_P (XEXP (x, 0))
988 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
989 || (GET_CODE (XEXP (x, 0)) == PLUS
990 && REG_P (XEXP (XEXP (x, 0), 0))
991 && (REGNO (XEXP (XEXP (x, 0), 0))
992 < FIRST_PSEUDO_REGISTER)
993 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
994 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
995 else
996 {
997 /* Make a new stack slot. Then indicate that something
998 changed so we go back and recompute offsets for
999 eliminable registers because the allocation of memory
1000 below might change some offset. reg_equiv_{mem,address}
1001 will be set up for this pseudo on the next pass around
1002 the loop. */
1003 reg_equiv_memory_loc[i] = 0;
1004 reg_equiv_init[i] = 0;
1005 alter_reg (i, -1);
1006 }
1007 }
1008
1009 if (caller_save_needed)
1010 setup_save_areas ();
1011
1012 /* If we allocated another stack slot, redo elimination bookkeeping. */
1013 if (starting_frame_size != get_frame_size ())
1014 continue;
1015 if (starting_frame_size && crtl->stack_alignment_needed)
1016 {
1017 /* If we have a stack frame, we must align it now. The
1018 stack size may be a part of the offset computation for
1019 register elimination. So if this changes the stack size,
1020 then repeat the elimination bookkeeping. We don't
1021 realign when there is no stack, as that will cause a
1022 stack frame when none is needed should
1023 STARTING_FRAME_OFFSET not be already aligned to
1024 STACK_BOUNDARY. */
1025 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
1026 if (starting_frame_size != get_frame_size ())
1027 continue;
1028 }
1029
1030 if (caller_save_needed)
1031 {
1032 save_call_clobbered_regs ();
1033 /* That might have allocated new insn_chain structures. */
1034 reload_firstobj = obstack_alloc (&reload_obstack, 0);
1035 }
1036
1037 calculate_needs_all_insns (global);
1038
1039 CLEAR_REG_SET (&spilled_pseudos);
1040 did_spill = 0;
1041
1042 something_changed = 0;
1043
1044 /* If we allocated any new memory locations, make another pass
1045 since it might have changed elimination offsets. */
1046 if (starting_frame_size != get_frame_size ())
1047 something_changed = 1;
1048
1049 /* Even if the frame size remained the same, we might still have
1050 changed elimination offsets, e.g. if find_reloads called
1051 force_const_mem requiring the back end to allocate a constant
1052 pool base register that needs to be saved on the stack. */
1053 else if (!verify_initial_elim_offsets ())
1054 something_changed = 1;
1055
1056 {
1057 HARD_REG_SET to_spill;
1058 CLEAR_HARD_REG_SET (to_spill);
1059 update_eliminables (&to_spill);
1060 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
1061
1062 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1063 if (TEST_HARD_REG_BIT (to_spill, i))
1064 {
1065 spill_hard_reg (i, 1);
1066 did_spill = 1;
1067
1068 /* Regardless of the state of spills, if we previously had
1069 a register that we thought we could eliminate, but now can
1070 not eliminate, we must run another pass.
1071
1072 Consider pseudos which have an entry in reg_equiv_* which
1073 reference an eliminable register. We must make another pass
1074 to update reg_equiv_* so that we do not substitute in the
1075 old value from when we thought the elimination could be
1076 performed. */
1077 something_changed = 1;
1078 }
1079 }
1080
1081 select_reload_regs ();
1082 if (failure)
1083 goto failed;
1084
1085 if (insns_need_reload != 0 || did_spill)
1086 something_changed |= finish_spills (global);
1087
1088 if (! something_changed)
1089 break;
1090
1091 if (caller_save_needed)
1092 delete_caller_save_insns ();
1093
1094 obstack_free (&reload_obstack, reload_firstobj);
1095 }
1096
1097 /* If global-alloc was run, notify it of any register eliminations we have
1098 done. */
1099 if (global)
1100 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1101 if (ep->can_eliminate)
1102 mark_elimination (ep->from, ep->to);
1103
1104 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1105 If that insn didn't set the register (i.e., it copied the register to
1106 memory), just delete that insn instead of the equivalencing insn plus
1107 anything now dead. If we call delete_dead_insn on that insn, we may
1108 delete the insn that actually sets the register if the register dies
1109 there and that is incorrect. */
1110
1111 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1112 {
1113 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1114 {
1115 rtx list;
1116 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1117 {
1118 rtx equiv_insn = XEXP (list, 0);
1119
1120 /* If we already deleted the insn or if it may trap, we can't
1121 delete it. The latter case shouldn't happen, but can
1122 if an insn has a variable address, gets a REG_EH_REGION
1123 note added to it, and then gets converted into a load
1124 from a constant address. */
1125 if (NOTE_P (equiv_insn)
1126 || can_throw_internal (equiv_insn))
1127 ;
1128 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1129 delete_dead_insn (equiv_insn);
1130 else
1131 SET_INSN_DELETED (equiv_insn);
1132 }
1133 }
1134 }
1135
1136 /* Use the reload registers where necessary
1137 by generating move instructions to move the must-be-register
1138 values into or out of the reload registers. */
1139
1140 if (insns_need_reload != 0 || something_needs_elimination
1141 || something_needs_operands_changed)
1142 {
1143 HOST_WIDE_INT old_frame_size = get_frame_size ();
1144
1145 reload_as_needed (global);
1146
1147 gcc_assert (old_frame_size == get_frame_size ());
1148
1149 gcc_assert (verify_initial_elim_offsets ());
1150 }
1151
1152 /* If we were able to eliminate the frame pointer, show that it is no
1153 longer live at the start of any basic block. If it ls live by
1154 virtue of being in a pseudo, that pseudo will be marked live
1155 and hence the frame pointer will be known to be live via that
1156 pseudo. */
1157
1158 if (! frame_pointer_needed)
1159 FOR_EACH_BB (bb)
1160 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1161
1162 /* Come here (with failure set nonzero) if we can't get enough spill
1163 regs. */
1164 failed:
1165
1166 CLEAR_REG_SET (&spilled_pseudos);
1167 reload_in_progress = 0;
1168
1169 /* Now eliminate all pseudo regs by modifying them into
1170 their equivalent memory references.
1171 The REG-rtx's for the pseudos are modified in place,
1172 so all insns that used to refer to them now refer to memory.
1173
1174 For a reg that has a reg_equiv_address, all those insns
1175 were changed by reloading so that no insns refer to it any longer;
1176 but the DECL_RTL of a variable decl may refer to it,
1177 and if so this causes the debugging info to mention the variable. */
1178
1179 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1180 {
1181 rtx addr = 0;
1182
1183 if (reg_equiv_mem[i])
1184 addr = XEXP (reg_equiv_mem[i], 0);
1185
1186 if (reg_equiv_address[i])
1187 addr = reg_equiv_address[i];
1188
1189 if (addr)
1190 {
1191 if (reg_renumber[i] < 0)
1192 {
1193 rtx reg = regno_reg_rtx[i];
1194
1195 REG_USERVAR_P (reg) = 0;
1196 PUT_CODE (reg, MEM);
1197 XEXP (reg, 0) = addr;
1198 if (reg_equiv_memory_loc[i])
1199 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1200 else
1201 {
1202 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1203 MEM_ATTRS (reg) = 0;
1204 }
1205 MEM_NOTRAP_P (reg) = 1;
1206 }
1207 else if (reg_equiv_mem[i])
1208 XEXP (reg_equiv_mem[i], 0) = addr;
1209 }
1210 }
1211
1212 /* We must set reload_completed now since the cleanup_subreg_operands call
1213 below will re-recognize each insn and reload may have generated insns
1214 which are only valid during and after reload. */
1215 reload_completed = 1;
1216
1217 /* Make a pass over all the insns and delete all USEs which we inserted
1218 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1219 notes. Delete all CLOBBER insns, except those that refer to the return
1220 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1221 from misarranging variable-array code, and simplify (subreg (reg))
1222 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1223 are no longer useful or accurate. Strip and regenerate REG_INC notes
1224 that may have been moved around. */
1225
1226 for (insn = first; insn; insn = NEXT_INSN (insn))
1227 if (INSN_P (insn))
1228 {
1229 rtx *pnote;
1230
1231 if (CALL_P (insn))
1232 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1233 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1234
1235 if ((GET_CODE (PATTERN (insn)) == USE
1236 /* We mark with QImode USEs introduced by reload itself. */
1237 && (GET_MODE (insn) == QImode
1238 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1239 || (GET_CODE (PATTERN (insn)) == CLOBBER
1240 && (!MEM_P (XEXP (PATTERN (insn), 0))
1241 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1242 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1243 && XEXP (XEXP (PATTERN (insn), 0), 0)
1244 != stack_pointer_rtx))
1245 && (!REG_P (XEXP (PATTERN (insn), 0))
1246 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1247 {
1248 delete_insn (insn);
1249 continue;
1250 }
1251
1252 /* Some CLOBBERs may survive until here and still reference unassigned
1253 pseudos with const equivalent, which may in turn cause ICE in later
1254 passes if the reference remains in place. */
1255 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1256 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1257 VOIDmode, PATTERN (insn));
1258
1259 /* Discard obvious no-ops, even without -O. This optimization
1260 is fast and doesn't interfere with debugging. */
1261 if (NONJUMP_INSN_P (insn)
1262 && GET_CODE (PATTERN (insn)) == SET
1263 && REG_P (SET_SRC (PATTERN (insn)))
1264 && REG_P (SET_DEST (PATTERN (insn)))
1265 && (REGNO (SET_SRC (PATTERN (insn)))
1266 == REGNO (SET_DEST (PATTERN (insn)))))
1267 {
1268 delete_insn (insn);
1269 continue;
1270 }
1271
1272 pnote = &REG_NOTES (insn);
1273 while (*pnote != 0)
1274 {
1275 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1276 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1277 || REG_NOTE_KIND (*pnote) == REG_INC
1278 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1279 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1280 *pnote = XEXP (*pnote, 1);
1281 else
1282 pnote = &XEXP (*pnote, 1);
1283 }
1284
1285 #ifdef AUTO_INC_DEC
1286 add_auto_inc_notes (insn, PATTERN (insn));
1287 #endif
1288
1289 /* Simplify (subreg (reg)) if it appears as an operand. */
1290 cleanup_subreg_operands (insn);
1291
1292 /* Clean up invalid ASMs so that they don't confuse later passes.
1293 See PR 21299. */
1294 if (asm_noperands (PATTERN (insn)) >= 0)
1295 {
1296 extract_insn (insn);
1297 if (!constrain_operands (1))
1298 {
1299 error_for_asm (insn,
1300 "%<asm%> operand has impossible constraints");
1301 delete_insn (insn);
1302 continue;
1303 }
1304 }
1305 }
1306
1307 /* If we are doing stack checking, give a warning if this function's
1308 frame size is larger than we expect. */
1309 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1310 {
1311 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1312 static int verbose_warned = 0;
1313
1314 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1315 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1316 size += UNITS_PER_WORD;
1317
1318 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1319 {
1320 warning (0, "frame size too large for reliable stack checking");
1321 if (! verbose_warned)
1322 {
1323 warning (0, "try reducing the number of local variables");
1324 verbose_warned = 1;
1325 }
1326 }
1327 }
1328
1329 /* Indicate that we no longer have known memory locations or constants. */
1330 if (reg_equiv_constant)
1331 free (reg_equiv_constant);
1332 if (reg_equiv_invariant)
1333 free (reg_equiv_invariant);
1334 reg_equiv_constant = 0;
1335 reg_equiv_invariant = 0;
1336 VEC_free (rtx, gc, reg_equiv_memory_loc_vec);
1337 reg_equiv_memory_loc = 0;
1338
1339 if (offsets_known_at)
1340 free (offsets_known_at);
1341 if (offsets_at)
1342 free (offsets_at);
1343
1344 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1345 if (reg_equiv_alt_mem_list[i])
1346 free_EXPR_LIST_list (&reg_equiv_alt_mem_list[i]);
1347 free (reg_equiv_alt_mem_list);
1348
1349 free (reg_equiv_mem);
1350 reg_equiv_init = 0;
1351 free (reg_equiv_address);
1352 free (reg_max_ref_width);
1353 free (reg_old_renumber);
1354 free (pseudo_previous_regs);
1355 free (pseudo_forbidden_regs);
1356
1357 CLEAR_HARD_REG_SET (used_spill_regs);
1358 for (i = 0; i < n_spills; i++)
1359 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1360
1361 /* Free all the insn_chain structures at once. */
1362 obstack_free (&reload_obstack, reload_startobj);
1363 unused_insn_chains = 0;
1364 fixup_abnormal_edges ();
1365
1366 /* Replacing pseudos with their memory equivalents might have
1367 created shared rtx. Subsequent passes would get confused
1368 by this, so unshare everything here. */
1369 unshare_all_rtl_again (first);
1370
1371 #ifdef STACK_BOUNDARY
1372 /* init_emit has set the alignment of the hard frame pointer
1373 to STACK_BOUNDARY. It is very likely no longer valid if
1374 the hard frame pointer was used for register allocation. */
1375 if (!frame_pointer_needed)
1376 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1377 #endif
1378
1379 return failure;
1380 }
1381
1382 /* Yet another special case. Unfortunately, reg-stack forces people to
1383 write incorrect clobbers in asm statements. These clobbers must not
1384 cause the register to appear in bad_spill_regs, otherwise we'll call
1385 fatal_insn later. We clear the corresponding regnos in the live
1386 register sets to avoid this.
1387 The whole thing is rather sick, I'm afraid. */
1388
1389 static void
1390 maybe_fix_stack_asms (void)
1391 {
1392 #ifdef STACK_REGS
1393 const char *constraints[MAX_RECOG_OPERANDS];
1394 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1395 struct insn_chain *chain;
1396
1397 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1398 {
1399 int i, noperands;
1400 HARD_REG_SET clobbered, allowed;
1401 rtx pat;
1402
1403 if (! INSN_P (chain->insn)
1404 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1405 continue;
1406 pat = PATTERN (chain->insn);
1407 if (GET_CODE (pat) != PARALLEL)
1408 continue;
1409
1410 CLEAR_HARD_REG_SET (clobbered);
1411 CLEAR_HARD_REG_SET (allowed);
1412
1413 /* First, make a mask of all stack regs that are clobbered. */
1414 for (i = 0; i < XVECLEN (pat, 0); i++)
1415 {
1416 rtx t = XVECEXP (pat, 0, i);
1417 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1418 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1419 }
1420
1421 /* Get the operand values and constraints out of the insn. */
1422 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1423 constraints, operand_mode, NULL);
1424
1425 /* For every operand, see what registers are allowed. */
1426 for (i = 0; i < noperands; i++)
1427 {
1428 const char *p = constraints[i];
1429 /* For every alternative, we compute the class of registers allowed
1430 for reloading in CLS, and merge its contents into the reg set
1431 ALLOWED. */
1432 int cls = (int) NO_REGS;
1433
1434 for (;;)
1435 {
1436 char c = *p;
1437
1438 if (c == '\0' || c == ',' || c == '#')
1439 {
1440 /* End of one alternative - mark the regs in the current
1441 class, and reset the class. */
1442 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1443 cls = NO_REGS;
1444 p++;
1445 if (c == '#')
1446 do {
1447 c = *p++;
1448 } while (c != '\0' && c != ',');
1449 if (c == '\0')
1450 break;
1451 continue;
1452 }
1453
1454 switch (c)
1455 {
1456 case '=': case '+': case '*': case '%': case '?': case '!':
1457 case '0': case '1': case '2': case '3': case '4': case '<':
1458 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1459 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1460 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1461 case TARGET_MEM_CONSTRAINT:
1462 break;
1463
1464 case 'p':
1465 cls = (int) reg_class_subunion[cls]
1466 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1467 break;
1468
1469 case 'g':
1470 case 'r':
1471 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1472 break;
1473
1474 default:
1475 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1476 cls = (int) reg_class_subunion[cls]
1477 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1478 else
1479 cls = (int) reg_class_subunion[cls]
1480 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1481 }
1482 p += CONSTRAINT_LEN (c, p);
1483 }
1484 }
1485 /* Those of the registers which are clobbered, but allowed by the
1486 constraints, must be usable as reload registers. So clear them
1487 out of the life information. */
1488 AND_HARD_REG_SET (allowed, clobbered);
1489 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1490 if (TEST_HARD_REG_BIT (allowed, i))
1491 {
1492 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1493 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1494 }
1495 }
1496
1497 #endif
1498 }
1499 \f
1500 /* Copy the global variables n_reloads and rld into the corresponding elts
1501 of CHAIN. */
1502 static void
1503 copy_reloads (struct insn_chain *chain)
1504 {
1505 chain->n_reloads = n_reloads;
1506 chain->rld = obstack_alloc (&reload_obstack,
1507 n_reloads * sizeof (struct reload));
1508 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1509 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1510 }
1511
1512 /* Walk the chain of insns, and determine for each whether it needs reloads
1513 and/or eliminations. Build the corresponding insns_need_reload list, and
1514 set something_needs_elimination as appropriate. */
1515 static void
1516 calculate_needs_all_insns (int global)
1517 {
1518 struct insn_chain **pprev_reload = &insns_need_reload;
1519 struct insn_chain *chain, *next = 0;
1520
1521 something_needs_elimination = 0;
1522
1523 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1524 for (chain = reload_insn_chain; chain != 0; chain = next)
1525 {
1526 rtx insn = chain->insn;
1527
1528 next = chain->next;
1529
1530 /* Clear out the shortcuts. */
1531 chain->n_reloads = 0;
1532 chain->need_elim = 0;
1533 chain->need_reload = 0;
1534 chain->need_operand_change = 0;
1535
1536 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1537 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1538 what effects this has on the known offsets at labels. */
1539
1540 if (LABEL_P (insn) || JUMP_P (insn)
1541 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1542 set_label_offsets (insn, insn, 0);
1543
1544 if (INSN_P (insn))
1545 {
1546 rtx old_body = PATTERN (insn);
1547 int old_code = INSN_CODE (insn);
1548 rtx old_notes = REG_NOTES (insn);
1549 int did_elimination = 0;
1550 int operands_changed = 0;
1551 rtx set = single_set (insn);
1552
1553 /* Skip insns that only set an equivalence. */
1554 if (set && REG_P (SET_DEST (set))
1555 && reg_renumber[REGNO (SET_DEST (set))] < 0
1556 && (reg_equiv_constant[REGNO (SET_DEST (set))]
1557 || (reg_equiv_invariant[REGNO (SET_DEST (set))]))
1558 && reg_equiv_init[REGNO (SET_DEST (set))])
1559 continue;
1560
1561 /* If needed, eliminate any eliminable registers. */
1562 if (num_eliminable || num_eliminable_invariants)
1563 did_elimination = eliminate_regs_in_insn (insn, 0);
1564
1565 /* Analyze the instruction. */
1566 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1567 global, spill_reg_order);
1568
1569 /* If a no-op set needs more than one reload, this is likely
1570 to be something that needs input address reloads. We
1571 can't get rid of this cleanly later, and it is of no use
1572 anyway, so discard it now.
1573 We only do this when expensive_optimizations is enabled,
1574 since this complements reload inheritance / output
1575 reload deletion, and it can make debugging harder. */
1576 if (flag_expensive_optimizations && n_reloads > 1)
1577 {
1578 rtx set = single_set (insn);
1579 if (set
1580 && SET_SRC (set) == SET_DEST (set)
1581 && REG_P (SET_SRC (set))
1582 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1583 {
1584 delete_insn (insn);
1585 /* Delete it from the reload chain. */
1586 if (chain->prev)
1587 chain->prev->next = next;
1588 else
1589 reload_insn_chain = next;
1590 if (next)
1591 next->prev = chain->prev;
1592 chain->next = unused_insn_chains;
1593 unused_insn_chains = chain;
1594 continue;
1595 }
1596 }
1597 if (num_eliminable)
1598 update_eliminable_offsets ();
1599
1600 /* Remember for later shortcuts which insns had any reloads or
1601 register eliminations. */
1602 chain->need_elim = did_elimination;
1603 chain->need_reload = n_reloads > 0;
1604 chain->need_operand_change = operands_changed;
1605
1606 /* Discard any register replacements done. */
1607 if (did_elimination)
1608 {
1609 obstack_free (&reload_obstack, reload_insn_firstobj);
1610 PATTERN (insn) = old_body;
1611 INSN_CODE (insn) = old_code;
1612 REG_NOTES (insn) = old_notes;
1613 something_needs_elimination = 1;
1614 }
1615
1616 something_needs_operands_changed |= operands_changed;
1617
1618 if (n_reloads != 0)
1619 {
1620 copy_reloads (chain);
1621 *pprev_reload = chain;
1622 pprev_reload = &chain->next_need_reload;
1623 }
1624 }
1625 }
1626 *pprev_reload = 0;
1627 }
1628 \f
1629 /* Comparison function for qsort to decide which of two reloads
1630 should be handled first. *P1 and *P2 are the reload numbers. */
1631
1632 static int
1633 reload_reg_class_lower (const void *r1p, const void *r2p)
1634 {
1635 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1636 int t;
1637
1638 /* Consider required reloads before optional ones. */
1639 t = rld[r1].optional - rld[r2].optional;
1640 if (t != 0)
1641 return t;
1642
1643 /* Count all solitary classes before non-solitary ones. */
1644 t = ((reg_class_size[(int) rld[r2].class] == 1)
1645 - (reg_class_size[(int) rld[r1].class] == 1));
1646 if (t != 0)
1647 return t;
1648
1649 /* Aside from solitaires, consider all multi-reg groups first. */
1650 t = rld[r2].nregs - rld[r1].nregs;
1651 if (t != 0)
1652 return t;
1653
1654 /* Consider reloads in order of increasing reg-class number. */
1655 t = (int) rld[r1].class - (int) rld[r2].class;
1656 if (t != 0)
1657 return t;
1658
1659 /* If reloads are equally urgent, sort by reload number,
1660 so that the results of qsort leave nothing to chance. */
1661 return r1 - r2;
1662 }
1663 \f
1664 /* The cost of spilling each hard reg. */
1665 static int spill_cost[FIRST_PSEUDO_REGISTER];
1666
1667 /* When spilling multiple hard registers, we use SPILL_COST for the first
1668 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1669 only the first hard reg for a multi-reg pseudo. */
1670 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1671
1672 /* Update the spill cost arrays, considering that pseudo REG is live. */
1673
1674 static void
1675 count_pseudo (int reg)
1676 {
1677 int freq = REG_FREQ (reg);
1678 int r = reg_renumber[reg];
1679 int nregs;
1680
1681 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1682 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1683 return;
1684
1685 SET_REGNO_REG_SET (&pseudos_counted, reg);
1686
1687 gcc_assert (r >= 0);
1688
1689 spill_add_cost[r] += freq;
1690
1691 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1692 while (nregs-- > 0)
1693 spill_cost[r + nregs] += freq;
1694 }
1695
1696 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1697 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1698
1699 static void
1700 order_regs_for_reload (struct insn_chain *chain)
1701 {
1702 unsigned i;
1703 HARD_REG_SET used_by_pseudos;
1704 HARD_REG_SET used_by_pseudos2;
1705 reg_set_iterator rsi;
1706
1707 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1708
1709 memset (spill_cost, 0, sizeof spill_cost);
1710 memset (spill_add_cost, 0, sizeof spill_add_cost);
1711
1712 /* Count number of uses of each hard reg by pseudo regs allocated to it
1713 and then order them by decreasing use. First exclude hard registers
1714 that are live in or across this insn. */
1715
1716 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1717 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1718 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1719 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1720
1721 /* Now find out which pseudos are allocated to it, and update
1722 hard_reg_n_uses. */
1723 CLEAR_REG_SET (&pseudos_counted);
1724
1725 EXECUTE_IF_SET_IN_REG_SET
1726 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1727 {
1728 count_pseudo (i);
1729 }
1730 EXECUTE_IF_SET_IN_REG_SET
1731 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1732 {
1733 count_pseudo (i);
1734 }
1735 CLEAR_REG_SET (&pseudos_counted);
1736 }
1737 \f
1738 /* Vector of reload-numbers showing the order in which the reloads should
1739 be processed. */
1740 static short reload_order[MAX_RELOADS];
1741
1742 /* This is used to keep track of the spill regs used in one insn. */
1743 static HARD_REG_SET used_spill_regs_local;
1744
1745 /* We decided to spill hard register SPILLED, which has a size of
1746 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1747 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1748 update SPILL_COST/SPILL_ADD_COST. */
1749
1750 static void
1751 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1752 {
1753 int r = reg_renumber[reg];
1754 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1755
1756 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1757 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1758 return;
1759
1760 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1761
1762 spill_add_cost[r] -= REG_FREQ (reg);
1763 while (nregs-- > 0)
1764 spill_cost[r + nregs] -= REG_FREQ (reg);
1765 }
1766
1767 /* Find reload register to use for reload number ORDER. */
1768
1769 static int
1770 find_reg (struct insn_chain *chain, int order)
1771 {
1772 int rnum = reload_order[order];
1773 struct reload *rl = rld + rnum;
1774 int best_cost = INT_MAX;
1775 int best_reg = -1;
1776 unsigned int i, j;
1777 int k;
1778 HARD_REG_SET not_usable;
1779 HARD_REG_SET used_by_other_reload;
1780 reg_set_iterator rsi;
1781
1782 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1783 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1784 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1785
1786 CLEAR_HARD_REG_SET (used_by_other_reload);
1787 for (k = 0; k < order; k++)
1788 {
1789 int other = reload_order[k];
1790
1791 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1792 for (j = 0; j < rld[other].nregs; j++)
1793 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1794 }
1795
1796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1797 {
1798 unsigned int regno = i;
1799
1800 if (! TEST_HARD_REG_BIT (not_usable, regno)
1801 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1802 && HARD_REGNO_MODE_OK (regno, rl->mode))
1803 {
1804 int this_cost = spill_cost[regno];
1805 int ok = 1;
1806 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1807
1808 for (j = 1; j < this_nregs; j++)
1809 {
1810 this_cost += spill_add_cost[regno + j];
1811 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1812 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1813 ok = 0;
1814 }
1815 if (! ok)
1816 continue;
1817 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1818 this_cost--;
1819 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1820 this_cost--;
1821 if (this_cost < best_cost
1822 /* Among registers with equal cost, prefer caller-saved ones, or
1823 use REG_ALLOC_ORDER if it is defined. */
1824 || (this_cost == best_cost
1825 #ifdef REG_ALLOC_ORDER
1826 && (inv_reg_alloc_order[regno]
1827 < inv_reg_alloc_order[best_reg])
1828 #else
1829 && call_used_regs[regno]
1830 && ! call_used_regs[best_reg]
1831 #endif
1832 ))
1833 {
1834 best_reg = regno;
1835 best_cost = this_cost;
1836 }
1837 }
1838 }
1839 if (best_reg == -1)
1840 return 0;
1841
1842 if (dump_file)
1843 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1844
1845 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1846 rl->regno = best_reg;
1847
1848 EXECUTE_IF_SET_IN_REG_SET
1849 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1850 {
1851 count_spilled_pseudo (best_reg, rl->nregs, j);
1852 }
1853
1854 EXECUTE_IF_SET_IN_REG_SET
1855 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1856 {
1857 count_spilled_pseudo (best_reg, rl->nregs, j);
1858 }
1859
1860 for (i = 0; i < rl->nregs; i++)
1861 {
1862 gcc_assert (spill_cost[best_reg + i] == 0);
1863 gcc_assert (spill_add_cost[best_reg + i] == 0);
1864 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1865 }
1866 return 1;
1867 }
1868
1869 /* Find more reload regs to satisfy the remaining need of an insn, which
1870 is given by CHAIN.
1871 Do it by ascending class number, since otherwise a reg
1872 might be spilled for a big class and might fail to count
1873 for a smaller class even though it belongs to that class. */
1874
1875 static void
1876 find_reload_regs (struct insn_chain *chain)
1877 {
1878 int i;
1879
1880 /* In order to be certain of getting the registers we need,
1881 we must sort the reloads into order of increasing register class.
1882 Then our grabbing of reload registers will parallel the process
1883 that provided the reload registers. */
1884 for (i = 0; i < chain->n_reloads; i++)
1885 {
1886 /* Show whether this reload already has a hard reg. */
1887 if (chain->rld[i].reg_rtx)
1888 {
1889 int regno = REGNO (chain->rld[i].reg_rtx);
1890 chain->rld[i].regno = regno;
1891 chain->rld[i].nregs
1892 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1893 }
1894 else
1895 chain->rld[i].regno = -1;
1896 reload_order[i] = i;
1897 }
1898
1899 n_reloads = chain->n_reloads;
1900 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1901
1902 CLEAR_HARD_REG_SET (used_spill_regs_local);
1903
1904 if (dump_file)
1905 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1906
1907 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1908
1909 /* Compute the order of preference for hard registers to spill. */
1910
1911 order_regs_for_reload (chain);
1912
1913 for (i = 0; i < n_reloads; i++)
1914 {
1915 int r = reload_order[i];
1916
1917 /* Ignore reloads that got marked inoperative. */
1918 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1919 && ! rld[r].optional
1920 && rld[r].regno == -1)
1921 if (! find_reg (chain, i))
1922 {
1923 if (dump_file)
1924 fprintf (dump_file, "reload failure for reload %d\n", r);
1925 spill_failure (chain->insn, rld[r].class);
1926 failure = 1;
1927 return;
1928 }
1929 }
1930
1931 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1932 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1933
1934 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1935 }
1936
1937 static void
1938 select_reload_regs (void)
1939 {
1940 struct insn_chain *chain;
1941
1942 /* Try to satisfy the needs for each insn. */
1943 for (chain = insns_need_reload; chain != 0;
1944 chain = chain->next_need_reload)
1945 find_reload_regs (chain);
1946 }
1947 \f
1948 /* Delete all insns that were inserted by emit_caller_save_insns during
1949 this iteration. */
1950 static void
1951 delete_caller_save_insns (void)
1952 {
1953 struct insn_chain *c = reload_insn_chain;
1954
1955 while (c != 0)
1956 {
1957 while (c != 0 && c->is_caller_save_insn)
1958 {
1959 struct insn_chain *next = c->next;
1960 rtx insn = c->insn;
1961
1962 if (c == reload_insn_chain)
1963 reload_insn_chain = next;
1964 delete_insn (insn);
1965
1966 if (next)
1967 next->prev = c->prev;
1968 if (c->prev)
1969 c->prev->next = next;
1970 c->next = unused_insn_chains;
1971 unused_insn_chains = c;
1972 c = next;
1973 }
1974 if (c != 0)
1975 c = c->next;
1976 }
1977 }
1978 \f
1979 /* Handle the failure to find a register to spill.
1980 INSN should be one of the insns which needed this particular spill reg. */
1981
1982 static void
1983 spill_failure (rtx insn, enum reg_class class)
1984 {
1985 if (asm_noperands (PATTERN (insn)) >= 0)
1986 error_for_asm (insn, "can't find a register in class %qs while "
1987 "reloading %<asm%>",
1988 reg_class_names[class]);
1989 else
1990 {
1991 error ("unable to find a register to spill in class %qs",
1992 reg_class_names[class]);
1993
1994 if (dump_file)
1995 {
1996 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
1997 debug_reload_to_stream (dump_file);
1998 }
1999 fatal_insn ("this is the insn:", insn);
2000 }
2001 }
2002 \f
2003 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2004 data that is dead in INSN. */
2005
2006 static void
2007 delete_dead_insn (rtx insn)
2008 {
2009 rtx prev = prev_real_insn (insn);
2010 rtx prev_dest;
2011
2012 /* If the previous insn sets a register that dies in our insn, delete it
2013 too. */
2014 if (prev && GET_CODE (PATTERN (prev)) == SET
2015 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2016 && reg_mentioned_p (prev_dest, PATTERN (insn))
2017 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2018 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2019 delete_dead_insn (prev);
2020
2021 SET_INSN_DELETED (insn);
2022 }
2023
2024 /* Modify the home of pseudo-reg I.
2025 The new home is present in reg_renumber[I].
2026
2027 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2028 or it may be -1, meaning there is none or it is not relevant.
2029 This is used so that all pseudos spilled from a given hard reg
2030 can share one stack slot. */
2031
2032 static void
2033 alter_reg (int i, int from_reg)
2034 {
2035 /* When outputting an inline function, this can happen
2036 for a reg that isn't actually used. */
2037 if (regno_reg_rtx[i] == 0)
2038 return;
2039
2040 /* If the reg got changed to a MEM at rtl-generation time,
2041 ignore it. */
2042 if (!REG_P (regno_reg_rtx[i]))
2043 return;
2044
2045 /* Modify the reg-rtx to contain the new hard reg
2046 number or else to contain its pseudo reg number. */
2047 SET_REGNO (regno_reg_rtx[i],
2048 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2049
2050 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2051 allocate a stack slot for it. */
2052
2053 if (reg_renumber[i] < 0
2054 && REG_N_REFS (i) > 0
2055 && reg_equiv_constant[i] == 0
2056 && (reg_equiv_invariant[i] == 0 || reg_equiv_init[i] == 0)
2057 && reg_equiv_memory_loc[i] == 0)
2058 {
2059 rtx x;
2060 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2061 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2062 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2063 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2064 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2065 int adjust = 0;
2066
2067 /* Each pseudo reg has an inherent size which comes from its own mode,
2068 and a total size which provides room for paradoxical subregs
2069 which refer to the pseudo reg in wider modes.
2070
2071 We can use a slot already allocated if it provides both
2072 enough inherent space and enough total space.
2073 Otherwise, we allocate a new slot, making sure that it has no less
2074 inherent space, and no less total space, then the previous slot. */
2075 if (from_reg == -1)
2076 {
2077 alias_set_type alias_set = new_alias_set ();
2078
2079 /* No known place to spill from => no slot to reuse. */
2080 x = assign_stack_local (mode, total_size,
2081 min_align > inherent_align
2082 || total_size > inherent_size ? -1 : 0);
2083 if (BYTES_BIG_ENDIAN)
2084 /* Cancel the big-endian correction done in assign_stack_local.
2085 Get the address of the beginning of the slot.
2086 This is so we can do a big-endian correction unconditionally
2087 below. */
2088 adjust = inherent_size - total_size;
2089
2090 /* Nothing can alias this slot except this pseudo. */
2091 set_mem_alias_set (x, alias_set);
2092 dse_record_singleton_alias_set (alias_set, mode);
2093 }
2094
2095 /* Reuse a stack slot if possible. */
2096 else if (spill_stack_slot[from_reg] != 0
2097 && spill_stack_slot_width[from_reg] >= total_size
2098 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2099 >= inherent_size)
2100 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2101 x = spill_stack_slot[from_reg];
2102 /* Allocate a bigger slot. */
2103 else
2104 {
2105 /* Compute maximum size needed, both for inherent size
2106 and for total size. */
2107 rtx stack_slot;
2108
2109 if (spill_stack_slot[from_reg])
2110 {
2111 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2112 > inherent_size)
2113 mode = GET_MODE (spill_stack_slot[from_reg]);
2114 if (spill_stack_slot_width[from_reg] > total_size)
2115 total_size = spill_stack_slot_width[from_reg];
2116 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2117 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2118 }
2119
2120 /* Make a slot with that size. */
2121 x = assign_stack_local (mode, total_size,
2122 min_align > inherent_align
2123 || total_size > inherent_size ? -1 : 0);
2124 stack_slot = x;
2125
2126 /* All pseudos mapped to this slot can alias each other. */
2127 if (spill_stack_slot[from_reg])
2128 {
2129 alias_set_type alias_set
2130 = MEM_ALIAS_SET (spill_stack_slot[from_reg]);
2131 set_mem_alias_set (x, alias_set);
2132 dse_invalidate_singleton_alias_set (alias_set);
2133 }
2134 else
2135 {
2136 alias_set_type alias_set = new_alias_set ();
2137 set_mem_alias_set (x, alias_set);
2138 dse_record_singleton_alias_set (alias_set, mode);
2139 }
2140
2141 if (BYTES_BIG_ENDIAN)
2142 {
2143 /* Cancel the big-endian correction done in assign_stack_local.
2144 Get the address of the beginning of the slot.
2145 This is so we can do a big-endian correction unconditionally
2146 below. */
2147 adjust = GET_MODE_SIZE (mode) - total_size;
2148 if (adjust)
2149 stack_slot
2150 = adjust_address_nv (x, mode_for_size (total_size
2151 * BITS_PER_UNIT,
2152 MODE_INT, 1),
2153 adjust);
2154 }
2155
2156 spill_stack_slot[from_reg] = stack_slot;
2157 spill_stack_slot_width[from_reg] = total_size;
2158 }
2159
2160 /* On a big endian machine, the "address" of the slot
2161 is the address of the low part that fits its inherent mode. */
2162 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2163 adjust += (total_size - inherent_size);
2164
2165 /* If we have any adjustment to make, or if the stack slot is the
2166 wrong mode, make a new stack slot. */
2167 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2168
2169 /* If we have a decl for the original register, set it for the
2170 memory. If this is a shared MEM, make a copy. */
2171 if (REG_EXPR (regno_reg_rtx[i])
2172 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2173 {
2174 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2175
2176 /* We can do this only for the DECLs home pseudo, not for
2177 any copies of it, since otherwise when the stack slot
2178 is reused, nonoverlapping_memrefs_p might think they
2179 cannot overlap. */
2180 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2181 {
2182 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2183 x = copy_rtx (x);
2184
2185 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2186 }
2187 }
2188
2189 /* Save the stack slot for later. */
2190 reg_equiv_memory_loc[i] = x;
2191 }
2192 }
2193
2194 /* Mark the slots in regs_ever_live for the hard regs used by
2195 pseudo-reg number REGNO, accessed in MODE. */
2196
2197 static void
2198 mark_home_live_1 (int regno, enum machine_mode mode)
2199 {
2200 int i, lim;
2201
2202 i = reg_renumber[regno];
2203 if (i < 0)
2204 return;
2205 lim = end_hard_regno (mode, i);
2206 while (i < lim)
2207 df_set_regs_ever_live(i++, true);
2208 }
2209
2210 /* Mark the slots in regs_ever_live for the hard regs
2211 used by pseudo-reg number REGNO. */
2212
2213 void
2214 mark_home_live (int regno)
2215 {
2216 if (reg_renumber[regno] >= 0)
2217 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2218 }
2219 \f
2220 /* This function handles the tracking of elimination offsets around branches.
2221
2222 X is a piece of RTL being scanned.
2223
2224 INSN is the insn that it came from, if any.
2225
2226 INITIAL_P is nonzero if we are to set the offset to be the initial
2227 offset and zero if we are setting the offset of the label to be the
2228 current offset. */
2229
2230 static void
2231 set_label_offsets (rtx x, rtx insn, int initial_p)
2232 {
2233 enum rtx_code code = GET_CODE (x);
2234 rtx tem;
2235 unsigned int i;
2236 struct elim_table *p;
2237
2238 switch (code)
2239 {
2240 case LABEL_REF:
2241 if (LABEL_REF_NONLOCAL_P (x))
2242 return;
2243
2244 x = XEXP (x, 0);
2245
2246 /* ... fall through ... */
2247
2248 case CODE_LABEL:
2249 /* If we know nothing about this label, set the desired offsets. Note
2250 that this sets the offset at a label to be the offset before a label
2251 if we don't know anything about the label. This is not correct for
2252 the label after a BARRIER, but is the best guess we can make. If
2253 we guessed wrong, we will suppress an elimination that might have
2254 been possible had we been able to guess correctly. */
2255
2256 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2257 {
2258 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2259 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2260 = (initial_p ? reg_eliminate[i].initial_offset
2261 : reg_eliminate[i].offset);
2262 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2263 }
2264
2265 /* Otherwise, if this is the definition of a label and it is
2266 preceded by a BARRIER, set our offsets to the known offset of
2267 that label. */
2268
2269 else if (x == insn
2270 && (tem = prev_nonnote_insn (insn)) != 0
2271 && BARRIER_P (tem))
2272 set_offsets_for_label (insn);
2273 else
2274 /* If neither of the above cases is true, compare each offset
2275 with those previously recorded and suppress any eliminations
2276 where the offsets disagree. */
2277
2278 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2279 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2280 != (initial_p ? reg_eliminate[i].initial_offset
2281 : reg_eliminate[i].offset))
2282 reg_eliminate[i].can_eliminate = 0;
2283
2284 return;
2285
2286 case JUMP_INSN:
2287 set_label_offsets (PATTERN (insn), insn, initial_p);
2288
2289 /* ... fall through ... */
2290
2291 case INSN:
2292 case CALL_INSN:
2293 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2294 to indirectly and hence must have all eliminations at their
2295 initial offsets. */
2296 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2297 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2298 set_label_offsets (XEXP (tem, 0), insn, 1);
2299 return;
2300
2301 case PARALLEL:
2302 case ADDR_VEC:
2303 case ADDR_DIFF_VEC:
2304 /* Each of the labels in the parallel or address vector must be
2305 at their initial offsets. We want the first field for PARALLEL
2306 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2307
2308 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2309 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2310 insn, initial_p);
2311 return;
2312
2313 case SET:
2314 /* We only care about setting PC. If the source is not RETURN,
2315 IF_THEN_ELSE, or a label, disable any eliminations not at
2316 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2317 isn't one of those possibilities. For branches to a label,
2318 call ourselves recursively.
2319
2320 Note that this can disable elimination unnecessarily when we have
2321 a non-local goto since it will look like a non-constant jump to
2322 someplace in the current function. This isn't a significant
2323 problem since such jumps will normally be when all elimination
2324 pairs are back to their initial offsets. */
2325
2326 if (SET_DEST (x) != pc_rtx)
2327 return;
2328
2329 switch (GET_CODE (SET_SRC (x)))
2330 {
2331 case PC:
2332 case RETURN:
2333 return;
2334
2335 case LABEL_REF:
2336 set_label_offsets (SET_SRC (x), insn, initial_p);
2337 return;
2338
2339 case IF_THEN_ELSE:
2340 tem = XEXP (SET_SRC (x), 1);
2341 if (GET_CODE (tem) == LABEL_REF)
2342 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2343 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2344 break;
2345
2346 tem = XEXP (SET_SRC (x), 2);
2347 if (GET_CODE (tem) == LABEL_REF)
2348 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2349 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2350 break;
2351 return;
2352
2353 default:
2354 break;
2355 }
2356
2357 /* If we reach here, all eliminations must be at their initial
2358 offset because we are doing a jump to a variable address. */
2359 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2360 if (p->offset != p->initial_offset)
2361 p->can_eliminate = 0;
2362 break;
2363
2364 default:
2365 break;
2366 }
2367 }
2368 \f
2369 /* Scan X and replace any eliminable registers (such as fp) with a
2370 replacement (such as sp), plus an offset.
2371
2372 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2373 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2374 MEM, we are allowed to replace a sum of a register and the constant zero
2375 with the register, which we cannot do outside a MEM. In addition, we need
2376 to record the fact that a register is referenced outside a MEM.
2377
2378 If INSN is an insn, it is the insn containing X. If we replace a REG
2379 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2380 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2381 the REG is being modified.
2382
2383 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2384 That's used when we eliminate in expressions stored in notes.
2385 This means, do not set ref_outside_mem even if the reference
2386 is outside of MEMs.
2387
2388 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2389 replacements done assuming all offsets are at their initial values. If
2390 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2391 encounter, return the actual location so that find_reloads will do
2392 the proper thing. */
2393
2394 static rtx
2395 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2396 bool may_use_invariant)
2397 {
2398 enum rtx_code code = GET_CODE (x);
2399 struct elim_table *ep;
2400 int regno;
2401 rtx new;
2402 int i, j;
2403 const char *fmt;
2404 int copied = 0;
2405
2406 if (! current_function_decl)
2407 return x;
2408
2409 switch (code)
2410 {
2411 case CONST_INT:
2412 case CONST_DOUBLE:
2413 case CONST_FIXED:
2414 case CONST_VECTOR:
2415 case CONST:
2416 case SYMBOL_REF:
2417 case CODE_LABEL:
2418 case PC:
2419 case CC0:
2420 case ASM_INPUT:
2421 case ADDR_VEC:
2422 case ADDR_DIFF_VEC:
2423 case RETURN:
2424 return x;
2425
2426 case REG:
2427 regno = REGNO (x);
2428
2429 /* First handle the case where we encounter a bare register that
2430 is eliminable. Replace it with a PLUS. */
2431 if (regno < FIRST_PSEUDO_REGISTER)
2432 {
2433 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2434 ep++)
2435 if (ep->from_rtx == x && ep->can_eliminate)
2436 return plus_constant (ep->to_rtx, ep->previous_offset);
2437
2438 }
2439 else if (reg_renumber && reg_renumber[regno] < 0
2440 && reg_equiv_invariant && reg_equiv_invariant[regno])
2441 {
2442 if (may_use_invariant)
2443 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant[regno]),
2444 mem_mode, insn, true);
2445 /* There exists at least one use of REGNO that cannot be
2446 eliminated. Prevent the defining insn from being deleted. */
2447 reg_equiv_init[regno] = NULL_RTX;
2448 alter_reg (regno, -1);
2449 }
2450 return x;
2451
2452 /* You might think handling MINUS in a manner similar to PLUS is a
2453 good idea. It is not. It has been tried multiple times and every
2454 time the change has had to have been reverted.
2455
2456 Other parts of reload know a PLUS is special (gen_reload for example)
2457 and require special code to handle code a reloaded PLUS operand.
2458
2459 Also consider backends where the flags register is clobbered by a
2460 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2461 lea instruction comes to mind). If we try to reload a MINUS, we
2462 may kill the flags register that was holding a useful value.
2463
2464 So, please before trying to handle MINUS, consider reload as a
2465 whole instead of this little section as well as the backend issues. */
2466 case PLUS:
2467 /* If this is the sum of an eliminable register and a constant, rework
2468 the sum. */
2469 if (REG_P (XEXP (x, 0))
2470 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2471 && CONSTANT_P (XEXP (x, 1)))
2472 {
2473 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2474 ep++)
2475 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2476 {
2477 /* The only time we want to replace a PLUS with a REG (this
2478 occurs when the constant operand of the PLUS is the negative
2479 of the offset) is when we are inside a MEM. We won't want
2480 to do so at other times because that would change the
2481 structure of the insn in a way that reload can't handle.
2482 We special-case the commonest situation in
2483 eliminate_regs_in_insn, so just replace a PLUS with a
2484 PLUS here, unless inside a MEM. */
2485 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2486 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2487 return ep->to_rtx;
2488 else
2489 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2490 plus_constant (XEXP (x, 1),
2491 ep->previous_offset));
2492 }
2493
2494 /* If the register is not eliminable, we are done since the other
2495 operand is a constant. */
2496 return x;
2497 }
2498
2499 /* If this is part of an address, we want to bring any constant to the
2500 outermost PLUS. We will do this by doing register replacement in
2501 our operands and seeing if a constant shows up in one of them.
2502
2503 Note that there is no risk of modifying the structure of the insn,
2504 since we only get called for its operands, thus we are either
2505 modifying the address inside a MEM, or something like an address
2506 operand of a load-address insn. */
2507
2508 {
2509 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2510 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2511
2512 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2513 {
2514 /* If one side is a PLUS and the other side is a pseudo that
2515 didn't get a hard register but has a reg_equiv_constant,
2516 we must replace the constant here since it may no longer
2517 be in the position of any operand. */
2518 if (GET_CODE (new0) == PLUS && REG_P (new1)
2519 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2520 && reg_renumber[REGNO (new1)] < 0
2521 && reg_equiv_constant != 0
2522 && reg_equiv_constant[REGNO (new1)] != 0)
2523 new1 = reg_equiv_constant[REGNO (new1)];
2524 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2525 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2526 && reg_renumber[REGNO (new0)] < 0
2527 && reg_equiv_constant[REGNO (new0)] != 0)
2528 new0 = reg_equiv_constant[REGNO (new0)];
2529
2530 new = form_sum (new0, new1);
2531
2532 /* As above, if we are not inside a MEM we do not want to
2533 turn a PLUS into something else. We might try to do so here
2534 for an addition of 0 if we aren't optimizing. */
2535 if (! mem_mode && GET_CODE (new) != PLUS)
2536 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2537 else
2538 return new;
2539 }
2540 }
2541 return x;
2542
2543 case MULT:
2544 /* If this is the product of an eliminable register and a
2545 constant, apply the distribute law and move the constant out
2546 so that we have (plus (mult ..) ..). This is needed in order
2547 to keep load-address insns valid. This case is pathological.
2548 We ignore the possibility of overflow here. */
2549 if (REG_P (XEXP (x, 0))
2550 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2551 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2552 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2553 ep++)
2554 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2555 {
2556 if (! mem_mode
2557 /* Refs inside notes don't count for this purpose. */
2558 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2559 || GET_CODE (insn) == INSN_LIST)))
2560 ep->ref_outside_mem = 1;
2561
2562 return
2563 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2564 ep->previous_offset * INTVAL (XEXP (x, 1)));
2565 }
2566
2567 /* ... fall through ... */
2568
2569 case CALL:
2570 case COMPARE:
2571 /* See comments before PLUS about handling MINUS. */
2572 case MINUS:
2573 case DIV: case UDIV:
2574 case MOD: case UMOD:
2575 case AND: case IOR: case XOR:
2576 case ROTATERT: case ROTATE:
2577 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2578 case NE: case EQ:
2579 case GE: case GT: case GEU: case GTU:
2580 case LE: case LT: case LEU: case LTU:
2581 {
2582 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2583 rtx new1 = XEXP (x, 1)
2584 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false) : 0;
2585
2586 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2587 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2588 }
2589 return x;
2590
2591 case EXPR_LIST:
2592 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2593 if (XEXP (x, 0))
2594 {
2595 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true);
2596 if (new != XEXP (x, 0))
2597 {
2598 /* If this is a REG_DEAD note, it is not valid anymore.
2599 Using the eliminated version could result in creating a
2600 REG_DEAD note for the stack or frame pointer. */
2601 if (GET_MODE (x) == REG_DEAD)
2602 return (XEXP (x, 1)
2603 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true)
2604 : NULL_RTX);
2605
2606 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2607 }
2608 }
2609
2610 /* ... fall through ... */
2611
2612 case INSN_LIST:
2613 /* Now do eliminations in the rest of the chain. If this was
2614 an EXPR_LIST, this might result in allocating more memory than is
2615 strictly needed, but it simplifies the code. */
2616 if (XEXP (x, 1))
2617 {
2618 new = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true);
2619 if (new != XEXP (x, 1))
2620 return
2621 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2622 }
2623 return x;
2624
2625 case PRE_INC:
2626 case POST_INC:
2627 case PRE_DEC:
2628 case POST_DEC:
2629 /* We do not support elimination of a register that is modified.
2630 elimination_effects has already make sure that this does not
2631 happen. */
2632 return x;
2633
2634 case PRE_MODIFY:
2635 case POST_MODIFY:
2636 /* We do not support elimination of a register that is modified.
2637 elimination_effects has already make sure that this does not
2638 happen. The only remaining case we need to consider here is
2639 that the increment value may be an eliminable register. */
2640 if (GET_CODE (XEXP (x, 1)) == PLUS
2641 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2642 {
2643 rtx new = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2644 insn, true);
2645
2646 if (new != XEXP (XEXP (x, 1), 1))
2647 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2648 gen_rtx_PLUS (GET_MODE (x),
2649 XEXP (x, 0), new));
2650 }
2651 return x;
2652
2653 case STRICT_LOW_PART:
2654 case NEG: case NOT:
2655 case SIGN_EXTEND: case ZERO_EXTEND:
2656 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2657 case FLOAT: case FIX:
2658 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2659 case ABS:
2660 case SQRT:
2661 case FFS:
2662 case CLZ:
2663 case CTZ:
2664 case POPCOUNT:
2665 case PARITY:
2666 case BSWAP:
2667 new = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false);
2668 if (new != XEXP (x, 0))
2669 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2670 return x;
2671
2672 case SUBREG:
2673 /* Similar to above processing, but preserve SUBREG_BYTE.
2674 Convert (subreg (mem)) to (mem) if not paradoxical.
2675 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2676 pseudo didn't get a hard reg, we must replace this with the
2677 eliminated version of the memory location because push_reload
2678 may do the replacement in certain circumstances. */
2679 if (REG_P (SUBREG_REG (x))
2680 && (GET_MODE_SIZE (GET_MODE (x))
2681 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2682 && reg_equiv_memory_loc != 0
2683 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2684 {
2685 new = SUBREG_REG (x);
2686 }
2687 else
2688 new = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false);
2689
2690 if (new != SUBREG_REG (x))
2691 {
2692 int x_size = GET_MODE_SIZE (GET_MODE (x));
2693 int new_size = GET_MODE_SIZE (GET_MODE (new));
2694
2695 if (MEM_P (new)
2696 && ((x_size < new_size
2697 #ifdef WORD_REGISTER_OPERATIONS
2698 /* On these machines, combine can create rtl of the form
2699 (set (subreg:m1 (reg:m2 R) 0) ...)
2700 where m1 < m2, and expects something interesting to
2701 happen to the entire word. Moreover, it will use the
2702 (reg:m2 R) later, expecting all bits to be preserved.
2703 So if the number of words is the same, preserve the
2704 subreg so that push_reload can see it. */
2705 && ! ((x_size - 1) / UNITS_PER_WORD
2706 == (new_size -1 ) / UNITS_PER_WORD)
2707 #endif
2708 )
2709 || x_size == new_size)
2710 )
2711 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2712 else
2713 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2714 }
2715
2716 return x;
2717
2718 case MEM:
2719 /* Our only special processing is to pass the mode of the MEM to our
2720 recursive call and copy the flags. While we are here, handle this
2721 case more efficiently. */
2722 return
2723 replace_equiv_address_nv (x,
2724 eliminate_regs_1 (XEXP (x, 0), GET_MODE (x),
2725 insn, true));
2726
2727 case USE:
2728 /* Handle insn_list USE that a call to a pure function may generate. */
2729 new = eliminate_regs_1 (XEXP (x, 0), 0, insn, false);
2730 if (new != XEXP (x, 0))
2731 return gen_rtx_USE (GET_MODE (x), new);
2732 return x;
2733
2734 case CLOBBER:
2735 case ASM_OPERANDS:
2736 case SET:
2737 gcc_unreachable ();
2738
2739 default:
2740 break;
2741 }
2742
2743 /* Process each of our operands recursively. If any have changed, make a
2744 copy of the rtx. */
2745 fmt = GET_RTX_FORMAT (code);
2746 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2747 {
2748 if (*fmt == 'e')
2749 {
2750 new = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false);
2751 if (new != XEXP (x, i) && ! copied)
2752 {
2753 x = shallow_copy_rtx (x);
2754 copied = 1;
2755 }
2756 XEXP (x, i) = new;
2757 }
2758 else if (*fmt == 'E')
2759 {
2760 int copied_vec = 0;
2761 for (j = 0; j < XVECLEN (x, i); j++)
2762 {
2763 new = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false);
2764 if (new != XVECEXP (x, i, j) && ! copied_vec)
2765 {
2766 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2767 XVEC (x, i)->elem);
2768 if (! copied)
2769 {
2770 x = shallow_copy_rtx (x);
2771 copied = 1;
2772 }
2773 XVEC (x, i) = new_v;
2774 copied_vec = 1;
2775 }
2776 XVECEXP (x, i, j) = new;
2777 }
2778 }
2779 }
2780
2781 return x;
2782 }
2783
2784 rtx
2785 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2786 {
2787 return eliminate_regs_1 (x, mem_mode, insn, false);
2788 }
2789
2790 /* Scan rtx X for modifications of elimination target registers. Update
2791 the table of eliminables to reflect the changed state. MEM_MODE is
2792 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2793
2794 static void
2795 elimination_effects (rtx x, enum machine_mode mem_mode)
2796 {
2797 enum rtx_code code = GET_CODE (x);
2798 struct elim_table *ep;
2799 int regno;
2800 int i, j;
2801 const char *fmt;
2802
2803 switch (code)
2804 {
2805 case CONST_INT:
2806 case CONST_DOUBLE:
2807 case CONST_FIXED:
2808 case CONST_VECTOR:
2809 case CONST:
2810 case SYMBOL_REF:
2811 case CODE_LABEL:
2812 case PC:
2813 case CC0:
2814 case ASM_INPUT:
2815 case ADDR_VEC:
2816 case ADDR_DIFF_VEC:
2817 case RETURN:
2818 return;
2819
2820 case REG:
2821 regno = REGNO (x);
2822
2823 /* First handle the case where we encounter a bare register that
2824 is eliminable. Replace it with a PLUS. */
2825 if (regno < FIRST_PSEUDO_REGISTER)
2826 {
2827 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2828 ep++)
2829 if (ep->from_rtx == x && ep->can_eliminate)
2830 {
2831 if (! mem_mode)
2832 ep->ref_outside_mem = 1;
2833 return;
2834 }
2835
2836 }
2837 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2838 && reg_equiv_constant[regno]
2839 && ! function_invariant_p (reg_equiv_constant[regno]))
2840 elimination_effects (reg_equiv_constant[regno], mem_mode);
2841 return;
2842
2843 case PRE_INC:
2844 case POST_INC:
2845 case PRE_DEC:
2846 case POST_DEC:
2847 case POST_MODIFY:
2848 case PRE_MODIFY:
2849 /* If we modify the source of an elimination rule, disable it. */
2850 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2851 if (ep->from_rtx == XEXP (x, 0))
2852 ep->can_eliminate = 0;
2853
2854 /* If we modify the target of an elimination rule by adding a constant,
2855 update its offset. If we modify the target in any other way, we'll
2856 have to disable the rule as well. */
2857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2858 if (ep->to_rtx == XEXP (x, 0))
2859 {
2860 int size = GET_MODE_SIZE (mem_mode);
2861
2862 /* If more bytes than MEM_MODE are pushed, account for them. */
2863 #ifdef PUSH_ROUNDING
2864 if (ep->to_rtx == stack_pointer_rtx)
2865 size = PUSH_ROUNDING (size);
2866 #endif
2867 if (code == PRE_DEC || code == POST_DEC)
2868 ep->offset += size;
2869 else if (code == PRE_INC || code == POST_INC)
2870 ep->offset -= size;
2871 else if (code == PRE_MODIFY || code == POST_MODIFY)
2872 {
2873 if (GET_CODE (XEXP (x, 1)) == PLUS
2874 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2875 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
2876 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2877 else
2878 ep->can_eliminate = 0;
2879 }
2880 }
2881
2882 /* These two aren't unary operators. */
2883 if (code == POST_MODIFY || code == PRE_MODIFY)
2884 break;
2885
2886 /* Fall through to generic unary operation case. */
2887 case STRICT_LOW_PART:
2888 case NEG: case NOT:
2889 case SIGN_EXTEND: case ZERO_EXTEND:
2890 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2891 case FLOAT: case FIX:
2892 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2893 case ABS:
2894 case SQRT:
2895 case FFS:
2896 case CLZ:
2897 case CTZ:
2898 case POPCOUNT:
2899 case PARITY:
2900 case BSWAP:
2901 elimination_effects (XEXP (x, 0), mem_mode);
2902 return;
2903
2904 case SUBREG:
2905 if (REG_P (SUBREG_REG (x))
2906 && (GET_MODE_SIZE (GET_MODE (x))
2907 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2908 && reg_equiv_memory_loc != 0
2909 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2910 return;
2911
2912 elimination_effects (SUBREG_REG (x), mem_mode);
2913 return;
2914
2915 case USE:
2916 /* If using a register that is the source of an eliminate we still
2917 think can be performed, note it cannot be performed since we don't
2918 know how this register is used. */
2919 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2920 if (ep->from_rtx == XEXP (x, 0))
2921 ep->can_eliminate = 0;
2922
2923 elimination_effects (XEXP (x, 0), mem_mode);
2924 return;
2925
2926 case CLOBBER:
2927 /* If clobbering a register that is the replacement register for an
2928 elimination we still think can be performed, note that it cannot
2929 be performed. Otherwise, we need not be concerned about it. */
2930 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2931 if (ep->to_rtx == XEXP (x, 0))
2932 ep->can_eliminate = 0;
2933
2934 elimination_effects (XEXP (x, 0), mem_mode);
2935 return;
2936
2937 case SET:
2938 /* Check for setting a register that we know about. */
2939 if (REG_P (SET_DEST (x)))
2940 {
2941 /* See if this is setting the replacement register for an
2942 elimination.
2943
2944 If DEST is the hard frame pointer, we do nothing because we
2945 assume that all assignments to the frame pointer are for
2946 non-local gotos and are being done at a time when they are valid
2947 and do not disturb anything else. Some machines want to
2948 eliminate a fake argument pointer (or even a fake frame pointer)
2949 with either the real frame or the stack pointer. Assignments to
2950 the hard frame pointer must not prevent this elimination. */
2951
2952 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2953 ep++)
2954 if (ep->to_rtx == SET_DEST (x)
2955 && SET_DEST (x) != hard_frame_pointer_rtx)
2956 {
2957 /* If it is being incremented, adjust the offset. Otherwise,
2958 this elimination can't be done. */
2959 rtx src = SET_SRC (x);
2960
2961 if (GET_CODE (src) == PLUS
2962 && XEXP (src, 0) == SET_DEST (x)
2963 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2964 ep->offset -= INTVAL (XEXP (src, 1));
2965 else
2966 ep->can_eliminate = 0;
2967 }
2968 }
2969
2970 elimination_effects (SET_DEST (x), 0);
2971 elimination_effects (SET_SRC (x), 0);
2972 return;
2973
2974 case MEM:
2975 /* Our only special processing is to pass the mode of the MEM to our
2976 recursive call. */
2977 elimination_effects (XEXP (x, 0), GET_MODE (x));
2978 return;
2979
2980 default:
2981 break;
2982 }
2983
2984 fmt = GET_RTX_FORMAT (code);
2985 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2986 {
2987 if (*fmt == 'e')
2988 elimination_effects (XEXP (x, i), mem_mode);
2989 else if (*fmt == 'E')
2990 for (j = 0; j < XVECLEN (x, i); j++)
2991 elimination_effects (XVECEXP (x, i, j), mem_mode);
2992 }
2993 }
2994
2995 /* Descend through rtx X and verify that no references to eliminable registers
2996 remain. If any do remain, mark the involved register as not
2997 eliminable. */
2998
2999 static void
3000 check_eliminable_occurrences (rtx x)
3001 {
3002 const char *fmt;
3003 int i;
3004 enum rtx_code code;
3005
3006 if (x == 0)
3007 return;
3008
3009 code = GET_CODE (x);
3010
3011 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3012 {
3013 struct elim_table *ep;
3014
3015 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3016 if (ep->from_rtx == x)
3017 ep->can_eliminate = 0;
3018 return;
3019 }
3020
3021 fmt = GET_RTX_FORMAT (code);
3022 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3023 {
3024 if (*fmt == 'e')
3025 check_eliminable_occurrences (XEXP (x, i));
3026 else if (*fmt == 'E')
3027 {
3028 int j;
3029 for (j = 0; j < XVECLEN (x, i); j++)
3030 check_eliminable_occurrences (XVECEXP (x, i, j));
3031 }
3032 }
3033 }
3034 \f
3035 /* Scan INSN and eliminate all eliminable registers in it.
3036
3037 If REPLACE is nonzero, do the replacement destructively. Also
3038 delete the insn as dead it if it is setting an eliminable register.
3039
3040 If REPLACE is zero, do all our allocations in reload_obstack.
3041
3042 If no eliminations were done and this insn doesn't require any elimination
3043 processing (these are not identical conditions: it might be updating sp,
3044 but not referencing fp; this needs to be seen during reload_as_needed so
3045 that the offset between fp and sp can be taken into consideration), zero
3046 is returned. Otherwise, 1 is returned. */
3047
3048 static int
3049 eliminate_regs_in_insn (rtx insn, int replace)
3050 {
3051 int icode = recog_memoized (insn);
3052 rtx old_body = PATTERN (insn);
3053 int insn_is_asm = asm_noperands (old_body) >= 0;
3054 rtx old_set = single_set (insn);
3055 rtx new_body;
3056 int val = 0;
3057 int i;
3058 rtx substed_operand[MAX_RECOG_OPERANDS];
3059 rtx orig_operand[MAX_RECOG_OPERANDS];
3060 struct elim_table *ep;
3061 rtx plus_src, plus_cst_src;
3062
3063 if (! insn_is_asm && icode < 0)
3064 {
3065 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3066 || GET_CODE (PATTERN (insn)) == CLOBBER
3067 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3068 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3069 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3070 return 0;
3071 }
3072
3073 if (old_set != 0 && REG_P (SET_DEST (old_set))
3074 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3075 {
3076 /* Check for setting an eliminable register. */
3077 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3078 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3079 {
3080 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3081 /* If this is setting the frame pointer register to the
3082 hardware frame pointer register and this is an elimination
3083 that will be done (tested above), this insn is really
3084 adjusting the frame pointer downward to compensate for
3085 the adjustment done before a nonlocal goto. */
3086 if (ep->from == FRAME_POINTER_REGNUM
3087 && ep->to == HARD_FRAME_POINTER_REGNUM)
3088 {
3089 rtx base = SET_SRC (old_set);
3090 rtx base_insn = insn;
3091 HOST_WIDE_INT offset = 0;
3092
3093 while (base != ep->to_rtx)
3094 {
3095 rtx prev_insn, prev_set;
3096
3097 if (GET_CODE (base) == PLUS
3098 && GET_CODE (XEXP (base, 1)) == CONST_INT)
3099 {
3100 offset += INTVAL (XEXP (base, 1));
3101 base = XEXP (base, 0);
3102 }
3103 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3104 && (prev_set = single_set (prev_insn)) != 0
3105 && rtx_equal_p (SET_DEST (prev_set), base))
3106 {
3107 base = SET_SRC (prev_set);
3108 base_insn = prev_insn;
3109 }
3110 else
3111 break;
3112 }
3113
3114 if (base == ep->to_rtx)
3115 {
3116 rtx src
3117 = plus_constant (ep->to_rtx, offset - ep->offset);
3118
3119 new_body = old_body;
3120 if (! replace)
3121 {
3122 new_body = copy_insn (old_body);
3123 if (REG_NOTES (insn))
3124 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3125 }
3126 PATTERN (insn) = new_body;
3127 old_set = single_set (insn);
3128
3129 /* First see if this insn remains valid when we
3130 make the change. If not, keep the INSN_CODE
3131 the same and let reload fit it up. */
3132 validate_change (insn, &SET_SRC (old_set), src, 1);
3133 validate_change (insn, &SET_DEST (old_set),
3134 ep->to_rtx, 1);
3135 if (! apply_change_group ())
3136 {
3137 SET_SRC (old_set) = src;
3138 SET_DEST (old_set) = ep->to_rtx;
3139 }
3140
3141 val = 1;
3142 goto done;
3143 }
3144 }
3145 #endif
3146
3147 /* In this case this insn isn't serving a useful purpose. We
3148 will delete it in reload_as_needed once we know that this
3149 elimination is, in fact, being done.
3150
3151 If REPLACE isn't set, we can't delete this insn, but needn't
3152 process it since it won't be used unless something changes. */
3153 if (replace)
3154 {
3155 delete_dead_insn (insn);
3156 return 1;
3157 }
3158 val = 1;
3159 goto done;
3160 }
3161 }
3162
3163 /* We allow one special case which happens to work on all machines we
3164 currently support: a single set with the source or a REG_EQUAL
3165 note being a PLUS of an eliminable register and a constant. */
3166 plus_src = plus_cst_src = 0;
3167 if (old_set && REG_P (SET_DEST (old_set)))
3168 {
3169 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3170 plus_src = SET_SRC (old_set);
3171 /* First see if the source is of the form (plus (...) CST). */
3172 if (plus_src
3173 && GET_CODE (XEXP (plus_src, 1)) == CONST_INT)
3174 plus_cst_src = plus_src;
3175 else if (REG_P (SET_SRC (old_set))
3176 || plus_src)
3177 {
3178 /* Otherwise, see if we have a REG_EQUAL note of the form
3179 (plus (...) CST). */
3180 rtx links;
3181 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3182 {
3183 if ((REG_NOTE_KIND (links) == REG_EQUAL
3184 || REG_NOTE_KIND (links) == REG_EQUIV)
3185 && GET_CODE (XEXP (links, 0)) == PLUS
3186 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT)
3187 {
3188 plus_cst_src = XEXP (links, 0);
3189 break;
3190 }
3191 }
3192 }
3193
3194 /* Check that the first operand of the PLUS is a hard reg or
3195 the lowpart subreg of one. */
3196 if (plus_cst_src)
3197 {
3198 rtx reg = XEXP (plus_cst_src, 0);
3199 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3200 reg = SUBREG_REG (reg);
3201
3202 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3203 plus_cst_src = 0;
3204 }
3205 }
3206 if (plus_cst_src)
3207 {
3208 rtx reg = XEXP (plus_cst_src, 0);
3209 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3210
3211 if (GET_CODE (reg) == SUBREG)
3212 reg = SUBREG_REG (reg);
3213
3214 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3215 if (ep->from_rtx == reg && ep->can_eliminate)
3216 {
3217 rtx to_rtx = ep->to_rtx;
3218 offset += ep->offset;
3219 offset = trunc_int_for_mode (offset, GET_MODE (reg));
3220
3221 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3222 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3223 to_rtx);
3224 /* If we have a nonzero offset, and the source is already
3225 a simple REG, the following transformation would
3226 increase the cost of the insn by replacing a simple REG
3227 with (plus (reg sp) CST). So try only when we already
3228 had a PLUS before. */
3229 if (offset == 0 || plus_src)
3230 {
3231 rtx new_src = plus_constant (to_rtx, offset);
3232
3233 new_body = old_body;
3234 if (! replace)
3235 {
3236 new_body = copy_insn (old_body);
3237 if (REG_NOTES (insn))
3238 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3239 }
3240 PATTERN (insn) = new_body;
3241 old_set = single_set (insn);
3242
3243 /* First see if this insn remains valid when we make the
3244 change. If not, try to replace the whole pattern with
3245 a simple set (this may help if the original insn was a
3246 PARALLEL that was only recognized as single_set due to
3247 REG_UNUSED notes). If this isn't valid either, keep
3248 the INSN_CODE the same and let reload fix it up. */
3249 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3250 {
3251 rtx new_pat = gen_rtx_SET (VOIDmode,
3252 SET_DEST (old_set), new_src);
3253
3254 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3255 SET_SRC (old_set) = new_src;
3256 }
3257 }
3258 else
3259 break;
3260
3261 val = 1;
3262 /* This can't have an effect on elimination offsets, so skip right
3263 to the end. */
3264 goto done;
3265 }
3266 }
3267
3268 /* Determine the effects of this insn on elimination offsets. */
3269 elimination_effects (old_body, 0);
3270
3271 /* Eliminate all eliminable registers occurring in operands that
3272 can be handled by reload. */
3273 extract_insn (insn);
3274 for (i = 0; i < recog_data.n_operands; i++)
3275 {
3276 orig_operand[i] = recog_data.operand[i];
3277 substed_operand[i] = recog_data.operand[i];
3278
3279 /* For an asm statement, every operand is eliminable. */
3280 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3281 {
3282 bool is_set_src, in_plus;
3283
3284 /* Check for setting a register that we know about. */
3285 if (recog_data.operand_type[i] != OP_IN
3286 && REG_P (orig_operand[i]))
3287 {
3288 /* If we are assigning to a register that can be eliminated, it
3289 must be as part of a PARALLEL, since the code above handles
3290 single SETs. We must indicate that we can no longer
3291 eliminate this reg. */
3292 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3293 ep++)
3294 if (ep->from_rtx == orig_operand[i])
3295 ep->can_eliminate = 0;
3296 }
3297
3298 /* Companion to the above plus substitution, we can allow
3299 invariants as the source of a plain move. */
3300 is_set_src = false;
3301 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3302 is_set_src = true;
3303 in_plus = false;
3304 if (plus_src
3305 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3306 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3307 in_plus = true;
3308
3309 substed_operand[i]
3310 = eliminate_regs_1 (recog_data.operand[i], 0,
3311 replace ? insn : NULL_RTX,
3312 is_set_src || in_plus);
3313 if (substed_operand[i] != orig_operand[i])
3314 val = 1;
3315 /* Terminate the search in check_eliminable_occurrences at
3316 this point. */
3317 *recog_data.operand_loc[i] = 0;
3318
3319 /* If an output operand changed from a REG to a MEM and INSN is an
3320 insn, write a CLOBBER insn. */
3321 if (recog_data.operand_type[i] != OP_IN
3322 && REG_P (orig_operand[i])
3323 && MEM_P (substed_operand[i])
3324 && replace)
3325 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3326 }
3327 }
3328
3329 for (i = 0; i < recog_data.n_dups; i++)
3330 *recog_data.dup_loc[i]
3331 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3332
3333 /* If any eliminable remain, they aren't eliminable anymore. */
3334 check_eliminable_occurrences (old_body);
3335
3336 /* Substitute the operands; the new values are in the substed_operand
3337 array. */
3338 for (i = 0; i < recog_data.n_operands; i++)
3339 *recog_data.operand_loc[i] = substed_operand[i];
3340 for (i = 0; i < recog_data.n_dups; i++)
3341 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3342
3343 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3344 re-recognize the insn. We do this in case we had a simple addition
3345 but now can do this as a load-address. This saves an insn in this
3346 common case.
3347 If re-recognition fails, the old insn code number will still be used,
3348 and some register operands may have changed into PLUS expressions.
3349 These will be handled by find_reloads by loading them into a register
3350 again. */
3351
3352 if (val)
3353 {
3354 /* If we aren't replacing things permanently and we changed something,
3355 make another copy to ensure that all the RTL is new. Otherwise
3356 things can go wrong if find_reload swaps commutative operands
3357 and one is inside RTL that has been copied while the other is not. */
3358 new_body = old_body;
3359 if (! replace)
3360 {
3361 new_body = copy_insn (old_body);
3362 if (REG_NOTES (insn))
3363 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3364 }
3365 PATTERN (insn) = new_body;
3366
3367 /* If we had a move insn but now we don't, rerecognize it. This will
3368 cause spurious re-recognition if the old move had a PARALLEL since
3369 the new one still will, but we can't call single_set without
3370 having put NEW_BODY into the insn and the re-recognition won't
3371 hurt in this rare case. */
3372 /* ??? Why this huge if statement - why don't we just rerecognize the
3373 thing always? */
3374 if (! insn_is_asm
3375 && old_set != 0
3376 && ((REG_P (SET_SRC (old_set))
3377 && (GET_CODE (new_body) != SET
3378 || !REG_P (SET_SRC (new_body))))
3379 /* If this was a load from or store to memory, compare
3380 the MEM in recog_data.operand to the one in the insn.
3381 If they are not equal, then rerecognize the insn. */
3382 || (old_set != 0
3383 && ((MEM_P (SET_SRC (old_set))
3384 && SET_SRC (old_set) != recog_data.operand[1])
3385 || (MEM_P (SET_DEST (old_set))
3386 && SET_DEST (old_set) != recog_data.operand[0])))
3387 /* If this was an add insn before, rerecognize. */
3388 || GET_CODE (SET_SRC (old_set)) == PLUS))
3389 {
3390 int new_icode = recog (PATTERN (insn), insn, 0);
3391 if (new_icode >= 0)
3392 INSN_CODE (insn) = new_icode;
3393 }
3394 }
3395
3396 /* Restore the old body. If there were any changes to it, we made a copy
3397 of it while the changes were still in place, so we'll correctly return
3398 a modified insn below. */
3399 if (! replace)
3400 {
3401 /* Restore the old body. */
3402 for (i = 0; i < recog_data.n_operands; i++)
3403 *recog_data.operand_loc[i] = orig_operand[i];
3404 for (i = 0; i < recog_data.n_dups; i++)
3405 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3406 }
3407
3408 /* Update all elimination pairs to reflect the status after the current
3409 insn. The changes we make were determined by the earlier call to
3410 elimination_effects.
3411
3412 We also detect cases where register elimination cannot be done,
3413 namely, if a register would be both changed and referenced outside a MEM
3414 in the resulting insn since such an insn is often undefined and, even if
3415 not, we cannot know what meaning will be given to it. Note that it is
3416 valid to have a register used in an address in an insn that changes it
3417 (presumably with a pre- or post-increment or decrement).
3418
3419 If anything changes, return nonzero. */
3420
3421 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3422 {
3423 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3424 ep->can_eliminate = 0;
3425
3426 ep->ref_outside_mem = 0;
3427
3428 if (ep->previous_offset != ep->offset)
3429 val = 1;
3430 }
3431
3432 done:
3433 /* If we changed something, perform elimination in REG_NOTES. This is
3434 needed even when REPLACE is zero because a REG_DEAD note might refer
3435 to a register that we eliminate and could cause a different number
3436 of spill registers to be needed in the final reload pass than in
3437 the pre-passes. */
3438 if (val && REG_NOTES (insn) != 0)
3439 REG_NOTES (insn)
3440 = eliminate_regs_1 (REG_NOTES (insn), 0, REG_NOTES (insn), true);
3441
3442 return val;
3443 }
3444
3445 /* Loop through all elimination pairs.
3446 Recalculate the number not at initial offset.
3447
3448 Compute the maximum offset (minimum offset if the stack does not
3449 grow downward) for each elimination pair. */
3450
3451 static void
3452 update_eliminable_offsets (void)
3453 {
3454 struct elim_table *ep;
3455
3456 num_not_at_initial_offset = 0;
3457 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3458 {
3459 ep->previous_offset = ep->offset;
3460 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3461 num_not_at_initial_offset++;
3462 }
3463 }
3464
3465 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3466 replacement we currently believe is valid, mark it as not eliminable if X
3467 modifies DEST in any way other than by adding a constant integer to it.
3468
3469 If DEST is the frame pointer, we do nothing because we assume that
3470 all assignments to the hard frame pointer are nonlocal gotos and are being
3471 done at a time when they are valid and do not disturb anything else.
3472 Some machines want to eliminate a fake argument pointer with either the
3473 frame or stack pointer. Assignments to the hard frame pointer must not
3474 prevent this elimination.
3475
3476 Called via note_stores from reload before starting its passes to scan
3477 the insns of the function. */
3478
3479 static void
3480 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3481 {
3482 unsigned int i;
3483
3484 /* A SUBREG of a hard register here is just changing its mode. We should
3485 not see a SUBREG of an eliminable hard register, but check just in
3486 case. */
3487 if (GET_CODE (dest) == SUBREG)
3488 dest = SUBREG_REG (dest);
3489
3490 if (dest == hard_frame_pointer_rtx)
3491 return;
3492
3493 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3494 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3495 && (GET_CODE (x) != SET
3496 || GET_CODE (SET_SRC (x)) != PLUS
3497 || XEXP (SET_SRC (x), 0) != dest
3498 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3499 {
3500 reg_eliminate[i].can_eliminate_previous
3501 = reg_eliminate[i].can_eliminate = 0;
3502 num_eliminable--;
3503 }
3504 }
3505
3506 /* Verify that the initial elimination offsets did not change since the
3507 last call to set_initial_elim_offsets. This is used to catch cases
3508 where something illegal happened during reload_as_needed that could
3509 cause incorrect code to be generated if we did not check for it. */
3510
3511 static bool
3512 verify_initial_elim_offsets (void)
3513 {
3514 HOST_WIDE_INT t;
3515
3516 if (!num_eliminable)
3517 return true;
3518
3519 #ifdef ELIMINABLE_REGS
3520 {
3521 struct elim_table *ep;
3522
3523 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3524 {
3525 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3526 if (t != ep->initial_offset)
3527 return false;
3528 }
3529 }
3530 #else
3531 INITIAL_FRAME_POINTER_OFFSET (t);
3532 if (t != reg_eliminate[0].initial_offset)
3533 return false;
3534 #endif
3535
3536 return true;
3537 }
3538
3539 /* Reset all offsets on eliminable registers to their initial values. */
3540
3541 static void
3542 set_initial_elim_offsets (void)
3543 {
3544 struct elim_table *ep = reg_eliminate;
3545
3546 #ifdef ELIMINABLE_REGS
3547 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3548 {
3549 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3550 ep->previous_offset = ep->offset = ep->initial_offset;
3551 }
3552 #else
3553 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3554 ep->previous_offset = ep->offset = ep->initial_offset;
3555 #endif
3556
3557 num_not_at_initial_offset = 0;
3558 }
3559
3560 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3561
3562 static void
3563 set_initial_eh_label_offset (rtx label)
3564 {
3565 set_label_offsets (label, NULL_RTX, 1);
3566 }
3567
3568 /* Initialize the known label offsets.
3569 Set a known offset for each forced label to be at the initial offset
3570 of each elimination. We do this because we assume that all
3571 computed jumps occur from a location where each elimination is
3572 at its initial offset.
3573 For all other labels, show that we don't know the offsets. */
3574
3575 static void
3576 set_initial_label_offsets (void)
3577 {
3578 rtx x;
3579 memset (offsets_known_at, 0, num_labels);
3580
3581 for (x = forced_labels; x; x = XEXP (x, 1))
3582 if (XEXP (x, 0))
3583 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3584
3585 for_each_eh_label (set_initial_eh_label_offset);
3586 }
3587
3588 /* Set all elimination offsets to the known values for the code label given
3589 by INSN. */
3590
3591 static void
3592 set_offsets_for_label (rtx insn)
3593 {
3594 unsigned int i;
3595 int label_nr = CODE_LABEL_NUMBER (insn);
3596 struct elim_table *ep;
3597
3598 num_not_at_initial_offset = 0;
3599 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3600 {
3601 ep->offset = ep->previous_offset
3602 = offsets_at[label_nr - first_label_num][i];
3603 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3604 num_not_at_initial_offset++;
3605 }
3606 }
3607
3608 /* See if anything that happened changes which eliminations are valid.
3609 For example, on the SPARC, whether or not the frame pointer can
3610 be eliminated can depend on what registers have been used. We need
3611 not check some conditions again (such as flag_omit_frame_pointer)
3612 since they can't have changed. */
3613
3614 static void
3615 update_eliminables (HARD_REG_SET *pset)
3616 {
3617 int previous_frame_pointer_needed = frame_pointer_needed;
3618 struct elim_table *ep;
3619
3620 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3621 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3622 #ifdef ELIMINABLE_REGS
3623 || ! CAN_ELIMINATE (ep->from, ep->to)
3624 #endif
3625 )
3626 ep->can_eliminate = 0;
3627
3628 /* Look for the case where we have discovered that we can't replace
3629 register A with register B and that means that we will now be
3630 trying to replace register A with register C. This means we can
3631 no longer replace register C with register B and we need to disable
3632 such an elimination, if it exists. This occurs often with A == ap,
3633 B == sp, and C == fp. */
3634
3635 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3636 {
3637 struct elim_table *op;
3638 int new_to = -1;
3639
3640 if (! ep->can_eliminate && ep->can_eliminate_previous)
3641 {
3642 /* Find the current elimination for ep->from, if there is a
3643 new one. */
3644 for (op = reg_eliminate;
3645 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3646 if (op->from == ep->from && op->can_eliminate)
3647 {
3648 new_to = op->to;
3649 break;
3650 }
3651
3652 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3653 disable it. */
3654 for (op = reg_eliminate;
3655 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3656 if (op->from == new_to && op->to == ep->to)
3657 op->can_eliminate = 0;
3658 }
3659 }
3660
3661 /* See if any registers that we thought we could eliminate the previous
3662 time are no longer eliminable. If so, something has changed and we
3663 must spill the register. Also, recompute the number of eliminable
3664 registers and see if the frame pointer is needed; it is if there is
3665 no elimination of the frame pointer that we can perform. */
3666
3667 frame_pointer_needed = 1;
3668 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3669 {
3670 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3671 && ep->to != HARD_FRAME_POINTER_REGNUM)
3672 frame_pointer_needed = 0;
3673
3674 if (! ep->can_eliminate && ep->can_eliminate_previous)
3675 {
3676 ep->can_eliminate_previous = 0;
3677 SET_HARD_REG_BIT (*pset, ep->from);
3678 num_eliminable--;
3679 }
3680 }
3681
3682 /* If we didn't need a frame pointer last time, but we do now, spill
3683 the hard frame pointer. */
3684 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3685 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3686 }
3687
3688 /* Return true if X is used as the target register of an elimination. */
3689
3690 bool
3691 elimination_target_reg_p (rtx x)
3692 {
3693 struct elim_table *ep;
3694
3695 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3696 if (ep->to_rtx == x && ep->can_eliminate)
3697 return true;
3698
3699 return false;
3700 }
3701
3702 /* Initialize the table of registers to eliminate. */
3703
3704 static void
3705 init_elim_table (void)
3706 {
3707 struct elim_table *ep;
3708 #ifdef ELIMINABLE_REGS
3709 const struct elim_table_1 *ep1;
3710 #endif
3711
3712 if (!reg_eliminate)
3713 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3714
3715 /* Does this function require a frame pointer? */
3716
3717 frame_pointer_needed = (! flag_omit_frame_pointer
3718 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3719 and restore sp for alloca. So we can't eliminate
3720 the frame pointer in that case. At some point,
3721 we should improve this by emitting the
3722 sp-adjusting insns for this case. */
3723 || (cfun->calls_alloca
3724 && EXIT_IGNORE_STACK)
3725 || crtl->accesses_prior_frames
3726 || FRAME_POINTER_REQUIRED);
3727
3728 num_eliminable = 0;
3729
3730 #ifdef ELIMINABLE_REGS
3731 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3732 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3733 {
3734 ep->from = ep1->from;
3735 ep->to = ep1->to;
3736 ep->can_eliminate = ep->can_eliminate_previous
3737 = (CAN_ELIMINATE (ep->from, ep->to)
3738 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3739 }
3740 #else
3741 reg_eliminate[0].from = reg_eliminate_1[0].from;
3742 reg_eliminate[0].to = reg_eliminate_1[0].to;
3743 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3744 = ! frame_pointer_needed;
3745 #endif
3746
3747 /* Count the number of eliminable registers and build the FROM and TO
3748 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3749 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3750 We depend on this. */
3751 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3752 {
3753 num_eliminable += ep->can_eliminate;
3754 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3755 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3756 }
3757 }
3758 \f
3759 /* Kick all pseudos out of hard register REGNO.
3760
3761 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3762 because we found we can't eliminate some register. In the case, no pseudos
3763 are allowed to be in the register, even if they are only in a block that
3764 doesn't require spill registers, unlike the case when we are spilling this
3765 hard reg to produce another spill register.
3766
3767 Return nonzero if any pseudos needed to be kicked out. */
3768
3769 static void
3770 spill_hard_reg (unsigned int regno, int cant_eliminate)
3771 {
3772 int i;
3773
3774 if (cant_eliminate)
3775 {
3776 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3777 df_set_regs_ever_live (regno, true);
3778 }
3779
3780 /* Spill every pseudo reg that was allocated to this reg
3781 or to something that overlaps this reg. */
3782
3783 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3784 if (reg_renumber[i] >= 0
3785 && (unsigned int) reg_renumber[i] <= regno
3786 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
3787 SET_REGNO_REG_SET (&spilled_pseudos, i);
3788 }
3789
3790 /* After find_reload_regs has been run for all insn that need reloads,
3791 and/or spill_hard_regs was called, this function is used to actually
3792 spill pseudo registers and try to reallocate them. It also sets up the
3793 spill_regs array for use by choose_reload_regs. */
3794
3795 static int
3796 finish_spills (int global)
3797 {
3798 struct insn_chain *chain;
3799 int something_changed = 0;
3800 unsigned i;
3801 reg_set_iterator rsi;
3802
3803 /* Build the spill_regs array for the function. */
3804 /* If there are some registers still to eliminate and one of the spill regs
3805 wasn't ever used before, additional stack space may have to be
3806 allocated to store this register. Thus, we may have changed the offset
3807 between the stack and frame pointers, so mark that something has changed.
3808
3809 One might think that we need only set VAL to 1 if this is a call-used
3810 register. However, the set of registers that must be saved by the
3811 prologue is not identical to the call-used set. For example, the
3812 register used by the call insn for the return PC is a call-used register,
3813 but must be saved by the prologue. */
3814
3815 n_spills = 0;
3816 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3817 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3818 {
3819 spill_reg_order[i] = n_spills;
3820 spill_regs[n_spills++] = i;
3821 if (num_eliminable && ! df_regs_ever_live_p (i))
3822 something_changed = 1;
3823 df_set_regs_ever_live (i, true);
3824 }
3825 else
3826 spill_reg_order[i] = -1;
3827
3828 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3829 {
3830 /* Record the current hard register the pseudo is allocated to in
3831 pseudo_previous_regs so we avoid reallocating it to the same
3832 hard reg in a later pass. */
3833 gcc_assert (reg_renumber[i] >= 0);
3834
3835 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3836 /* Mark it as no longer having a hard register home. */
3837 reg_renumber[i] = -1;
3838 /* We will need to scan everything again. */
3839 something_changed = 1;
3840 }
3841
3842 /* Retry global register allocation if possible. */
3843 if (global)
3844 {
3845 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3846 /* For every insn that needs reloads, set the registers used as spill
3847 regs in pseudo_forbidden_regs for every pseudo live across the
3848 insn. */
3849 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3850 {
3851 EXECUTE_IF_SET_IN_REG_SET
3852 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3853 {
3854 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3855 chain->used_spill_regs);
3856 }
3857 EXECUTE_IF_SET_IN_REG_SET
3858 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3859 {
3860 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3861 chain->used_spill_regs);
3862 }
3863 }
3864
3865 /* Retry allocating the spilled pseudos. For each reg, merge the
3866 various reg sets that indicate which hard regs can't be used,
3867 and call retry_global_alloc.
3868 We change spill_pseudos here to only contain pseudos that did not
3869 get a new hard register. */
3870 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3871 if (reg_old_renumber[i] != reg_renumber[i])
3872 {
3873 HARD_REG_SET forbidden;
3874 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3875 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3876 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3877 retry_global_alloc (i, forbidden);
3878 if (reg_renumber[i] >= 0)
3879 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3880 }
3881 }
3882
3883 /* Fix up the register information in the insn chain.
3884 This involves deleting those of the spilled pseudos which did not get
3885 a new hard register home from the live_{before,after} sets. */
3886 for (chain = reload_insn_chain; chain; chain = chain->next)
3887 {
3888 HARD_REG_SET used_by_pseudos;
3889 HARD_REG_SET used_by_pseudos2;
3890
3891 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3892 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3893
3894 /* Mark any unallocated hard regs as available for spills. That
3895 makes inheritance work somewhat better. */
3896 if (chain->need_reload)
3897 {
3898 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3899 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3900 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3901
3902 /* Save the old value for the sanity test below. */
3903 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3904
3905 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3906 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3907 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3908 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3909
3910 /* Make sure we only enlarge the set. */
3911 gcc_assert (hard_reg_set_subset_p (used_by_pseudos2,
3912 chain->used_spill_regs));
3913 }
3914 }
3915
3916 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3917 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3918 {
3919 int regno = reg_renumber[i];
3920 if (reg_old_renumber[i] == regno)
3921 continue;
3922
3923 alter_reg (i, reg_old_renumber[i]);
3924 reg_old_renumber[i] = regno;
3925 if (dump_file)
3926 {
3927 if (regno == -1)
3928 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3929 else
3930 fprintf (dump_file, " Register %d now in %d.\n\n",
3931 i, reg_renumber[i]);
3932 }
3933 }
3934
3935 return something_changed;
3936 }
3937 \f
3938 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3939
3940 static void
3941 scan_paradoxical_subregs (rtx x)
3942 {
3943 int i;
3944 const char *fmt;
3945 enum rtx_code code = GET_CODE (x);
3946
3947 switch (code)
3948 {
3949 case REG:
3950 case CONST_INT:
3951 case CONST:
3952 case SYMBOL_REF:
3953 case LABEL_REF:
3954 case CONST_DOUBLE:
3955 case CONST_FIXED:
3956 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3957 case CC0:
3958 case PC:
3959 case USE:
3960 case CLOBBER:
3961 return;
3962
3963 case SUBREG:
3964 if (REG_P (SUBREG_REG (x))
3965 && (GET_MODE_SIZE (GET_MODE (x))
3966 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
3967 {
3968 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3969 = GET_MODE_SIZE (GET_MODE (x));
3970 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
3971 }
3972 return;
3973
3974 default:
3975 break;
3976 }
3977
3978 fmt = GET_RTX_FORMAT (code);
3979 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3980 {
3981 if (fmt[i] == 'e')
3982 scan_paradoxical_subregs (XEXP (x, i));
3983 else if (fmt[i] == 'E')
3984 {
3985 int j;
3986 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3987 scan_paradoxical_subregs (XVECEXP (x, i, j));
3988 }
3989 }
3990 }
3991 \f
3992 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3993 examine all of the reload insns between PREV and NEXT exclusive, and
3994 annotate all that may trap. */
3995
3996 static void
3997 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3998 {
3999 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4000 unsigned int trap_count;
4001 rtx i;
4002
4003 if (note == NULL)
4004 return;
4005
4006 if (may_trap_p (PATTERN (insn)))
4007 trap_count = 1;
4008 else
4009 {
4010 remove_note (insn, note);
4011 trap_count = 0;
4012 }
4013
4014 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
4015 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
4016 {
4017 trap_count++;
4018 REG_NOTES (i)
4019 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
4020 }
4021 }
4022
4023 /* Reload pseudo-registers into hard regs around each insn as needed.
4024 Additional register load insns are output before the insn that needs it
4025 and perhaps store insns after insns that modify the reloaded pseudo reg.
4026
4027 reg_last_reload_reg and reg_reloaded_contents keep track of
4028 which registers are already available in reload registers.
4029 We update these for the reloads that we perform,
4030 as the insns are scanned. */
4031
4032 static void
4033 reload_as_needed (int live_known)
4034 {
4035 struct insn_chain *chain;
4036 #if defined (AUTO_INC_DEC)
4037 int i;
4038 #endif
4039 rtx x;
4040
4041 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4042 memset (spill_reg_store, 0, sizeof spill_reg_store);
4043 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4044 INIT_REG_SET (&reg_has_output_reload);
4045 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4046 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4047
4048 set_initial_elim_offsets ();
4049
4050 for (chain = reload_insn_chain; chain; chain = chain->next)
4051 {
4052 rtx prev = 0;
4053 rtx insn = chain->insn;
4054 rtx old_next = NEXT_INSN (insn);
4055
4056 /* If we pass a label, copy the offsets from the label information
4057 into the current offsets of each elimination. */
4058 if (LABEL_P (insn))
4059 set_offsets_for_label (insn);
4060
4061 else if (INSN_P (insn))
4062 {
4063 regset_head regs_to_forget;
4064 INIT_REG_SET (&regs_to_forget);
4065 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4066
4067 /* If this is a USE and CLOBBER of a MEM, ensure that any
4068 references to eliminable registers have been removed. */
4069
4070 if ((GET_CODE (PATTERN (insn)) == USE
4071 || GET_CODE (PATTERN (insn)) == CLOBBER)
4072 && MEM_P (XEXP (PATTERN (insn), 0)))
4073 XEXP (XEXP (PATTERN (insn), 0), 0)
4074 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4075 GET_MODE (XEXP (PATTERN (insn), 0)),
4076 NULL_RTX);
4077
4078 /* If we need to do register elimination processing, do so.
4079 This might delete the insn, in which case we are done. */
4080 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4081 {
4082 eliminate_regs_in_insn (insn, 1);
4083 if (NOTE_P (insn))
4084 {
4085 update_eliminable_offsets ();
4086 CLEAR_REG_SET (&regs_to_forget);
4087 continue;
4088 }
4089 }
4090
4091 /* If need_elim is nonzero but need_reload is zero, one might think
4092 that we could simply set n_reloads to 0. However, find_reloads
4093 could have done some manipulation of the insn (such as swapping
4094 commutative operands), and these manipulations are lost during
4095 the first pass for every insn that needs register elimination.
4096 So the actions of find_reloads must be redone here. */
4097
4098 if (! chain->need_elim && ! chain->need_reload
4099 && ! chain->need_operand_change)
4100 n_reloads = 0;
4101 /* First find the pseudo regs that must be reloaded for this insn.
4102 This info is returned in the tables reload_... (see reload.h).
4103 Also modify the body of INSN by substituting RELOAD
4104 rtx's for those pseudo regs. */
4105 else
4106 {
4107 CLEAR_REG_SET (&reg_has_output_reload);
4108 CLEAR_HARD_REG_SET (reg_is_output_reload);
4109
4110 find_reloads (insn, 1, spill_indirect_levels, live_known,
4111 spill_reg_order);
4112 }
4113
4114 if (n_reloads > 0)
4115 {
4116 rtx next = NEXT_INSN (insn);
4117 rtx p;
4118
4119 prev = PREV_INSN (insn);
4120
4121 /* Now compute which reload regs to reload them into. Perhaps
4122 reusing reload regs from previous insns, or else output
4123 load insns to reload them. Maybe output store insns too.
4124 Record the choices of reload reg in reload_reg_rtx. */
4125 choose_reload_regs (chain);
4126
4127 /* Merge any reloads that we didn't combine for fear of
4128 increasing the number of spill registers needed but now
4129 discover can be safely merged. */
4130 if (SMALL_REGISTER_CLASSES)
4131 merge_assigned_reloads (insn);
4132
4133 /* Generate the insns to reload operands into or out of
4134 their reload regs. */
4135 emit_reload_insns (chain);
4136
4137 /* Substitute the chosen reload regs from reload_reg_rtx
4138 into the insn's body (or perhaps into the bodies of other
4139 load and store insn that we just made for reloading
4140 and that we moved the structure into). */
4141 subst_reloads (insn);
4142
4143 /* Adjust the exception region notes for loads and stores. */
4144 if (flag_non_call_exceptions && !CALL_P (insn))
4145 fixup_eh_region_note (insn, prev, next);
4146
4147 /* If this was an ASM, make sure that all the reload insns
4148 we have generated are valid. If not, give an error
4149 and delete them. */
4150 if (asm_noperands (PATTERN (insn)) >= 0)
4151 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4152 if (p != insn && INSN_P (p)
4153 && GET_CODE (PATTERN (p)) != USE
4154 && (recog_memoized (p) < 0
4155 || (extract_insn (p), ! constrain_operands (1))))
4156 {
4157 error_for_asm (insn,
4158 "%<asm%> operand requires "
4159 "impossible reload");
4160 delete_insn (p);
4161 }
4162 }
4163
4164 if (num_eliminable && chain->need_elim)
4165 update_eliminable_offsets ();
4166
4167 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4168 is no longer validly lying around to save a future reload.
4169 Note that this does not detect pseudos that were reloaded
4170 for this insn in order to be stored in
4171 (obeying register constraints). That is correct; such reload
4172 registers ARE still valid. */
4173 forget_marked_reloads (&regs_to_forget);
4174 CLEAR_REG_SET (&regs_to_forget);
4175
4176 /* There may have been CLOBBER insns placed after INSN. So scan
4177 between INSN and NEXT and use them to forget old reloads. */
4178 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4179 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4180 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4181
4182 #ifdef AUTO_INC_DEC
4183 /* Likewise for regs altered by auto-increment in this insn.
4184 REG_INC notes have been changed by reloading:
4185 find_reloads_address_1 records substitutions for them,
4186 which have been performed by subst_reloads above. */
4187 for (i = n_reloads - 1; i >= 0; i--)
4188 {
4189 rtx in_reg = rld[i].in_reg;
4190 if (in_reg)
4191 {
4192 enum rtx_code code = GET_CODE (in_reg);
4193 /* PRE_INC / PRE_DEC will have the reload register ending up
4194 with the same value as the stack slot, but that doesn't
4195 hold true for POST_INC / POST_DEC. Either we have to
4196 convert the memory access to a true POST_INC / POST_DEC,
4197 or we can't use the reload register for inheritance. */
4198 if ((code == POST_INC || code == POST_DEC)
4199 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4200 REGNO (rld[i].reg_rtx))
4201 /* Make sure it is the inc/dec pseudo, and not
4202 some other (e.g. output operand) pseudo. */
4203 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4204 == REGNO (XEXP (in_reg, 0))))
4205
4206 {
4207 rtx reload_reg = rld[i].reg_rtx;
4208 enum machine_mode mode = GET_MODE (reload_reg);
4209 int n = 0;
4210 rtx p;
4211
4212 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4213 {
4214 /* We really want to ignore REG_INC notes here, so
4215 use PATTERN (p) as argument to reg_set_p . */
4216 if (reg_set_p (reload_reg, PATTERN (p)))
4217 break;
4218 n = count_occurrences (PATTERN (p), reload_reg, 0);
4219 if (! n)
4220 continue;
4221 if (n == 1)
4222 {
4223 n = validate_replace_rtx (reload_reg,
4224 gen_rtx_fmt_e (code,
4225 mode,
4226 reload_reg),
4227 p);
4228
4229 /* We must also verify that the constraints
4230 are met after the replacement. */
4231 extract_insn (p);
4232 if (n)
4233 n = constrain_operands (1);
4234 else
4235 break;
4236
4237 /* If the constraints were not met, then
4238 undo the replacement. */
4239 if (!n)
4240 {
4241 validate_replace_rtx (gen_rtx_fmt_e (code,
4242 mode,
4243 reload_reg),
4244 reload_reg, p);
4245 break;
4246 }
4247
4248 }
4249 break;
4250 }
4251 if (n == 1)
4252 {
4253 REG_NOTES (p)
4254 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4255 REG_NOTES (p));
4256 /* Mark this as having an output reload so that the
4257 REG_INC processing code below won't invalidate
4258 the reload for inheritance. */
4259 SET_HARD_REG_BIT (reg_is_output_reload,
4260 REGNO (reload_reg));
4261 SET_REGNO_REG_SET (&reg_has_output_reload,
4262 REGNO (XEXP (in_reg, 0)));
4263 }
4264 else
4265 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4266 NULL);
4267 }
4268 else if ((code == PRE_INC || code == PRE_DEC)
4269 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4270 REGNO (rld[i].reg_rtx))
4271 /* Make sure it is the inc/dec pseudo, and not
4272 some other (e.g. output operand) pseudo. */
4273 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4274 == REGNO (XEXP (in_reg, 0))))
4275 {
4276 SET_HARD_REG_BIT (reg_is_output_reload,
4277 REGNO (rld[i].reg_rtx));
4278 SET_REGNO_REG_SET (&reg_has_output_reload,
4279 REGNO (XEXP (in_reg, 0)));
4280 }
4281 }
4282 }
4283 /* If a pseudo that got a hard register is auto-incremented,
4284 we must purge records of copying it into pseudos without
4285 hard registers. */
4286 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4287 if (REG_NOTE_KIND (x) == REG_INC)
4288 {
4289 /* See if this pseudo reg was reloaded in this insn.
4290 If so, its last-reload info is still valid
4291 because it is based on this insn's reload. */
4292 for (i = 0; i < n_reloads; i++)
4293 if (rld[i].out == XEXP (x, 0))
4294 break;
4295
4296 if (i == n_reloads)
4297 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4298 }
4299 #endif
4300 }
4301 /* A reload reg's contents are unknown after a label. */
4302 if (LABEL_P (insn))
4303 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4304
4305 /* Don't assume a reload reg is still good after a call insn
4306 if it is a call-used reg, or if it contains a value that will
4307 be partially clobbered by the call. */
4308 else if (CALL_P (insn))
4309 {
4310 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4311 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4312 }
4313 }
4314
4315 /* Clean up. */
4316 free (reg_last_reload_reg);
4317 CLEAR_REG_SET (&reg_has_output_reload);
4318 }
4319
4320 /* Discard all record of any value reloaded from X,
4321 or reloaded in X from someplace else;
4322 unless X is an output reload reg of the current insn.
4323
4324 X may be a hard reg (the reload reg)
4325 or it may be a pseudo reg that was reloaded from.
4326
4327 When DATA is non-NULL just mark the registers in regset
4328 to be forgotten later. */
4329
4330 static void
4331 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4332 void *data)
4333 {
4334 unsigned int regno;
4335 unsigned int nr;
4336 regset regs = (regset) data;
4337
4338 /* note_stores does give us subregs of hard regs,
4339 subreg_regno_offset requires a hard reg. */
4340 while (GET_CODE (x) == SUBREG)
4341 {
4342 /* We ignore the subreg offset when calculating the regno,
4343 because we are using the entire underlying hard register
4344 below. */
4345 x = SUBREG_REG (x);
4346 }
4347
4348 if (!REG_P (x))
4349 return;
4350
4351 regno = REGNO (x);
4352
4353 if (regno >= FIRST_PSEUDO_REGISTER)
4354 nr = 1;
4355 else
4356 {
4357 unsigned int i;
4358
4359 nr = hard_regno_nregs[regno][GET_MODE (x)];
4360 /* Storing into a spilled-reg invalidates its contents.
4361 This can happen if a block-local pseudo is allocated to that reg
4362 and it wasn't spilled because this block's total need is 0.
4363 Then some insn might have an optional reload and use this reg. */
4364 if (!regs)
4365 for (i = 0; i < nr; i++)
4366 /* But don't do this if the reg actually serves as an output
4367 reload reg in the current instruction. */
4368 if (n_reloads == 0
4369 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4370 {
4371 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4372 spill_reg_store[regno + i] = 0;
4373 }
4374 }
4375
4376 if (regs)
4377 while (nr-- > 0)
4378 SET_REGNO_REG_SET (regs, regno + nr);
4379 else
4380 {
4381 /* Since value of X has changed,
4382 forget any value previously copied from it. */
4383
4384 while (nr-- > 0)
4385 /* But don't forget a copy if this is the output reload
4386 that establishes the copy's validity. */
4387 if (n_reloads == 0
4388 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4389 reg_last_reload_reg[regno + nr] = 0;
4390 }
4391 }
4392
4393 /* Forget the reloads marked in regset by previous function. */
4394 static void
4395 forget_marked_reloads (regset regs)
4396 {
4397 unsigned int reg;
4398 reg_set_iterator rsi;
4399 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4400 {
4401 if (reg < FIRST_PSEUDO_REGISTER
4402 /* But don't do this if the reg actually serves as an output
4403 reload reg in the current instruction. */
4404 && (n_reloads == 0
4405 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4406 {
4407 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4408 spill_reg_store[reg] = 0;
4409 }
4410 if (n_reloads == 0
4411 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4412 reg_last_reload_reg[reg] = 0;
4413 }
4414 }
4415 \f
4416 /* The following HARD_REG_SETs indicate when each hard register is
4417 used for a reload of various parts of the current insn. */
4418
4419 /* If reg is unavailable for all reloads. */
4420 static HARD_REG_SET reload_reg_unavailable;
4421 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4422 static HARD_REG_SET reload_reg_used;
4423 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4424 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4425 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4426 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4427 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4428 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4429 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4430 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4431 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4432 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4433 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4434 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4435 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4436 static HARD_REG_SET reload_reg_used_in_op_addr;
4437 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4438 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4439 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4440 static HARD_REG_SET reload_reg_used_in_insn;
4441 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4442 static HARD_REG_SET reload_reg_used_in_other_addr;
4443
4444 /* If reg is in use as a reload reg for any sort of reload. */
4445 static HARD_REG_SET reload_reg_used_at_all;
4446
4447 /* If reg is use as an inherited reload. We just mark the first register
4448 in the group. */
4449 static HARD_REG_SET reload_reg_used_for_inherit;
4450
4451 /* Records which hard regs are used in any way, either as explicit use or
4452 by being allocated to a pseudo during any point of the current insn. */
4453 static HARD_REG_SET reg_used_in_insn;
4454
4455 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4456 TYPE. MODE is used to indicate how many consecutive regs are
4457 actually used. */
4458
4459 static void
4460 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4461 enum machine_mode mode)
4462 {
4463 unsigned int nregs = hard_regno_nregs[regno][mode];
4464 unsigned int i;
4465
4466 for (i = regno; i < nregs + regno; i++)
4467 {
4468 switch (type)
4469 {
4470 case RELOAD_OTHER:
4471 SET_HARD_REG_BIT (reload_reg_used, i);
4472 break;
4473
4474 case RELOAD_FOR_INPUT_ADDRESS:
4475 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4476 break;
4477
4478 case RELOAD_FOR_INPADDR_ADDRESS:
4479 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4480 break;
4481
4482 case RELOAD_FOR_OUTPUT_ADDRESS:
4483 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4484 break;
4485
4486 case RELOAD_FOR_OUTADDR_ADDRESS:
4487 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4488 break;
4489
4490 case RELOAD_FOR_OPERAND_ADDRESS:
4491 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4492 break;
4493
4494 case RELOAD_FOR_OPADDR_ADDR:
4495 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4496 break;
4497
4498 case RELOAD_FOR_OTHER_ADDRESS:
4499 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4500 break;
4501
4502 case RELOAD_FOR_INPUT:
4503 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4504 break;
4505
4506 case RELOAD_FOR_OUTPUT:
4507 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4508 break;
4509
4510 case RELOAD_FOR_INSN:
4511 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4512 break;
4513 }
4514
4515 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4516 }
4517 }
4518
4519 /* Similarly, but show REGNO is no longer in use for a reload. */
4520
4521 static void
4522 clear_reload_reg_in_use (unsigned int regno, int opnum,
4523 enum reload_type type, enum machine_mode mode)
4524 {
4525 unsigned int nregs = hard_regno_nregs[regno][mode];
4526 unsigned int start_regno, end_regno, r;
4527 int i;
4528 /* A complication is that for some reload types, inheritance might
4529 allow multiple reloads of the same types to share a reload register.
4530 We set check_opnum if we have to check only reloads with the same
4531 operand number, and check_any if we have to check all reloads. */
4532 int check_opnum = 0;
4533 int check_any = 0;
4534 HARD_REG_SET *used_in_set;
4535
4536 switch (type)
4537 {
4538 case RELOAD_OTHER:
4539 used_in_set = &reload_reg_used;
4540 break;
4541
4542 case RELOAD_FOR_INPUT_ADDRESS:
4543 used_in_set = &reload_reg_used_in_input_addr[opnum];
4544 break;
4545
4546 case RELOAD_FOR_INPADDR_ADDRESS:
4547 check_opnum = 1;
4548 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4549 break;
4550
4551 case RELOAD_FOR_OUTPUT_ADDRESS:
4552 used_in_set = &reload_reg_used_in_output_addr[opnum];
4553 break;
4554
4555 case RELOAD_FOR_OUTADDR_ADDRESS:
4556 check_opnum = 1;
4557 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4558 break;
4559
4560 case RELOAD_FOR_OPERAND_ADDRESS:
4561 used_in_set = &reload_reg_used_in_op_addr;
4562 break;
4563
4564 case RELOAD_FOR_OPADDR_ADDR:
4565 check_any = 1;
4566 used_in_set = &reload_reg_used_in_op_addr_reload;
4567 break;
4568
4569 case RELOAD_FOR_OTHER_ADDRESS:
4570 used_in_set = &reload_reg_used_in_other_addr;
4571 check_any = 1;
4572 break;
4573
4574 case RELOAD_FOR_INPUT:
4575 used_in_set = &reload_reg_used_in_input[opnum];
4576 break;
4577
4578 case RELOAD_FOR_OUTPUT:
4579 used_in_set = &reload_reg_used_in_output[opnum];
4580 break;
4581
4582 case RELOAD_FOR_INSN:
4583 used_in_set = &reload_reg_used_in_insn;
4584 break;
4585 default:
4586 gcc_unreachable ();
4587 }
4588 /* We resolve conflicts with remaining reloads of the same type by
4589 excluding the intervals of reload registers by them from the
4590 interval of freed reload registers. Since we only keep track of
4591 one set of interval bounds, we might have to exclude somewhat
4592 more than what would be necessary if we used a HARD_REG_SET here.
4593 But this should only happen very infrequently, so there should
4594 be no reason to worry about it. */
4595
4596 start_regno = regno;
4597 end_regno = regno + nregs;
4598 if (check_opnum || check_any)
4599 {
4600 for (i = n_reloads - 1; i >= 0; i--)
4601 {
4602 if (rld[i].when_needed == type
4603 && (check_any || rld[i].opnum == opnum)
4604 && rld[i].reg_rtx)
4605 {
4606 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4607 unsigned int conflict_end
4608 = end_hard_regno (rld[i].mode, conflict_start);
4609
4610 /* If there is an overlap with the first to-be-freed register,
4611 adjust the interval start. */
4612 if (conflict_start <= start_regno && conflict_end > start_regno)
4613 start_regno = conflict_end;
4614 /* Otherwise, if there is a conflict with one of the other
4615 to-be-freed registers, adjust the interval end. */
4616 if (conflict_start > start_regno && conflict_start < end_regno)
4617 end_regno = conflict_start;
4618 }
4619 }
4620 }
4621
4622 for (r = start_regno; r < end_regno; r++)
4623 CLEAR_HARD_REG_BIT (*used_in_set, r);
4624 }
4625
4626 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4627 specified by OPNUM and TYPE. */
4628
4629 static int
4630 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4631 {
4632 int i;
4633
4634 /* In use for a RELOAD_OTHER means it's not available for anything. */
4635 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4636 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4637 return 0;
4638
4639 switch (type)
4640 {
4641 case RELOAD_OTHER:
4642 /* In use for anything means we can't use it for RELOAD_OTHER. */
4643 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4644 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4645 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4646 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4647 return 0;
4648
4649 for (i = 0; i < reload_n_operands; i++)
4650 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4651 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4652 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4653 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4654 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4655 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4656 return 0;
4657
4658 return 1;
4659
4660 case RELOAD_FOR_INPUT:
4661 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4662 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4663 return 0;
4664
4665 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4666 return 0;
4667
4668 /* If it is used for some other input, can't use it. */
4669 for (i = 0; i < reload_n_operands; i++)
4670 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4671 return 0;
4672
4673 /* If it is used in a later operand's address, can't use it. */
4674 for (i = opnum + 1; i < reload_n_operands; i++)
4675 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4676 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4677 return 0;
4678
4679 return 1;
4680
4681 case RELOAD_FOR_INPUT_ADDRESS:
4682 /* Can't use a register if it is used for an input address for this
4683 operand or used as an input in an earlier one. */
4684 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4685 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4686 return 0;
4687
4688 for (i = 0; i < opnum; i++)
4689 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4690 return 0;
4691
4692 return 1;
4693
4694 case RELOAD_FOR_INPADDR_ADDRESS:
4695 /* Can't use a register if it is used for an input address
4696 for this operand or used as an input in an earlier
4697 one. */
4698 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4699 return 0;
4700
4701 for (i = 0; i < opnum; i++)
4702 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4703 return 0;
4704
4705 return 1;
4706
4707 case RELOAD_FOR_OUTPUT_ADDRESS:
4708 /* Can't use a register if it is used for an output address for this
4709 operand or used as an output in this or a later operand. Note
4710 that multiple output operands are emitted in reverse order, so
4711 the conflicting ones are those with lower indices. */
4712 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4713 return 0;
4714
4715 for (i = 0; i <= opnum; i++)
4716 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4717 return 0;
4718
4719 return 1;
4720
4721 case RELOAD_FOR_OUTADDR_ADDRESS:
4722 /* Can't use a register if it is used for an output address
4723 for this operand or used as an output in this or a
4724 later operand. Note that multiple output operands are
4725 emitted in reverse order, so the conflicting ones are
4726 those with lower indices. */
4727 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4728 return 0;
4729
4730 for (i = 0; i <= opnum; i++)
4731 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4732 return 0;
4733
4734 return 1;
4735
4736 case RELOAD_FOR_OPERAND_ADDRESS:
4737 for (i = 0; i < reload_n_operands; i++)
4738 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4739 return 0;
4740
4741 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4742 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4743
4744 case RELOAD_FOR_OPADDR_ADDR:
4745 for (i = 0; i < reload_n_operands; i++)
4746 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4747 return 0;
4748
4749 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4750
4751 case RELOAD_FOR_OUTPUT:
4752 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4753 outputs, or an operand address for this or an earlier output.
4754 Note that multiple output operands are emitted in reverse order,
4755 so the conflicting ones are those with higher indices. */
4756 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4757 return 0;
4758
4759 for (i = 0; i < reload_n_operands; i++)
4760 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4761 return 0;
4762
4763 for (i = opnum; i < reload_n_operands; i++)
4764 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4765 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4766 return 0;
4767
4768 return 1;
4769
4770 case RELOAD_FOR_INSN:
4771 for (i = 0; i < reload_n_operands; i++)
4772 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4773 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4774 return 0;
4775
4776 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4777 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4778
4779 case RELOAD_FOR_OTHER_ADDRESS:
4780 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4781
4782 default:
4783 gcc_unreachable ();
4784 }
4785 }
4786
4787 /* Return 1 if the value in reload reg REGNO, as used by a reload
4788 needed for the part of the insn specified by OPNUM and TYPE,
4789 is still available in REGNO at the end of the insn.
4790
4791 We can assume that the reload reg was already tested for availability
4792 at the time it is needed, and we should not check this again,
4793 in case the reg has already been marked in use. */
4794
4795 static int
4796 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4797 {
4798 int i;
4799
4800 switch (type)
4801 {
4802 case RELOAD_OTHER:
4803 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4804 its value must reach the end. */
4805 return 1;
4806
4807 /* If this use is for part of the insn,
4808 its value reaches if no subsequent part uses the same register.
4809 Just like the above function, don't try to do this with lots
4810 of fallthroughs. */
4811
4812 case RELOAD_FOR_OTHER_ADDRESS:
4813 /* Here we check for everything else, since these don't conflict
4814 with anything else and everything comes later. */
4815
4816 for (i = 0; i < reload_n_operands; i++)
4817 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4818 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4819 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4820 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4821 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4822 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4823 return 0;
4824
4825 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4826 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4827 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4828 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4829
4830 case RELOAD_FOR_INPUT_ADDRESS:
4831 case RELOAD_FOR_INPADDR_ADDRESS:
4832 /* Similar, except that we check only for this and subsequent inputs
4833 and the address of only subsequent inputs and we do not need
4834 to check for RELOAD_OTHER objects since they are known not to
4835 conflict. */
4836
4837 for (i = opnum; i < reload_n_operands; i++)
4838 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4839 return 0;
4840
4841 for (i = opnum + 1; i < reload_n_operands; i++)
4842 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4843 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4844 return 0;
4845
4846 for (i = 0; i < reload_n_operands; i++)
4847 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4848 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4849 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4850 return 0;
4851
4852 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4853 return 0;
4854
4855 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4856 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4857 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4858
4859 case RELOAD_FOR_INPUT:
4860 /* Similar to input address, except we start at the next operand for
4861 both input and input address and we do not check for
4862 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4863 would conflict. */
4864
4865 for (i = opnum + 1; i < reload_n_operands; i++)
4866 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4867 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4868 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4869 return 0;
4870
4871 /* ... fall through ... */
4872
4873 case RELOAD_FOR_OPERAND_ADDRESS:
4874 /* Check outputs and their addresses. */
4875
4876 for (i = 0; i < reload_n_operands; i++)
4877 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4878 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4879 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4880 return 0;
4881
4882 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4883
4884 case RELOAD_FOR_OPADDR_ADDR:
4885 for (i = 0; i < reload_n_operands; i++)
4886 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4887 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4888 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4889 return 0;
4890
4891 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4892 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4893 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4894
4895 case RELOAD_FOR_INSN:
4896 /* These conflict with other outputs with RELOAD_OTHER. So
4897 we need only check for output addresses. */
4898
4899 opnum = reload_n_operands;
4900
4901 /* ... fall through ... */
4902
4903 case RELOAD_FOR_OUTPUT:
4904 case RELOAD_FOR_OUTPUT_ADDRESS:
4905 case RELOAD_FOR_OUTADDR_ADDRESS:
4906 /* We already know these can't conflict with a later output. So the
4907 only thing to check are later output addresses.
4908 Note that multiple output operands are emitted in reverse order,
4909 so the conflicting ones are those with lower indices. */
4910 for (i = 0; i < opnum; i++)
4911 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4912 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4913 return 0;
4914
4915 return 1;
4916
4917 default:
4918 gcc_unreachable ();
4919 }
4920 }
4921
4922 /* Like reload_reg_reaches_end_p, but check that the condition holds for
4923 every register in the range [REGNO, REGNO + NREGS). */
4924
4925 static bool
4926 reload_regs_reach_end_p (unsigned int regno, int nregs,
4927 int opnum, enum reload_type type)
4928 {
4929 int i;
4930
4931 for (i = 0; i < nregs; i++)
4932 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
4933 return false;
4934 return true;
4935 }
4936 \f
4937
4938 /* Returns whether R1 and R2 are uniquely chained: the value of one
4939 is used by the other, and that value is not used by any other
4940 reload for this insn. This is used to partially undo the decision
4941 made in find_reloads when in the case of multiple
4942 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
4943 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
4944 reloads. This code tries to avoid the conflict created by that
4945 change. It might be cleaner to explicitly keep track of which
4946 RELOAD_FOR_OPADDR_ADDR reload is associated with which
4947 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
4948 this after the fact. */
4949 static bool
4950 reloads_unique_chain_p (int r1, int r2)
4951 {
4952 int i;
4953
4954 /* We only check input reloads. */
4955 if (! rld[r1].in || ! rld[r2].in)
4956 return false;
4957
4958 /* Avoid anything with output reloads. */
4959 if (rld[r1].out || rld[r2].out)
4960 return false;
4961
4962 /* "chained" means one reload is a component of the other reload,
4963 not the same as the other reload. */
4964 if (rld[r1].opnum != rld[r2].opnum
4965 || rtx_equal_p (rld[r1].in, rld[r2].in)
4966 || rld[r1].optional || rld[r2].optional
4967 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
4968 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
4969 return false;
4970
4971 for (i = 0; i < n_reloads; i ++)
4972 /* Look for input reloads that aren't our two */
4973 if (i != r1 && i != r2 && rld[i].in)
4974 {
4975 /* If our reload is mentioned at all, it isn't a simple chain. */
4976 if (reg_mentioned_p (rld[r1].in, rld[i].in))
4977 return false;
4978 }
4979 return true;
4980 }
4981
4982 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4983 Return 0 otherwise.
4984
4985 This function uses the same algorithm as reload_reg_free_p above. */
4986
4987 static int
4988 reloads_conflict (int r1, int r2)
4989 {
4990 enum reload_type r1_type = rld[r1].when_needed;
4991 enum reload_type r2_type = rld[r2].when_needed;
4992 int r1_opnum = rld[r1].opnum;
4993 int r2_opnum = rld[r2].opnum;
4994
4995 /* RELOAD_OTHER conflicts with everything. */
4996 if (r2_type == RELOAD_OTHER)
4997 return 1;
4998
4999 /* Otherwise, check conflicts differently for each type. */
5000
5001 switch (r1_type)
5002 {
5003 case RELOAD_FOR_INPUT:
5004 return (r2_type == RELOAD_FOR_INSN
5005 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5006 || r2_type == RELOAD_FOR_OPADDR_ADDR
5007 || r2_type == RELOAD_FOR_INPUT
5008 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5009 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5010 && r2_opnum > r1_opnum));
5011
5012 case RELOAD_FOR_INPUT_ADDRESS:
5013 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5014 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5015
5016 case RELOAD_FOR_INPADDR_ADDRESS:
5017 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5018 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5019
5020 case RELOAD_FOR_OUTPUT_ADDRESS:
5021 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5022 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5023
5024 case RELOAD_FOR_OUTADDR_ADDRESS:
5025 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5026 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5027
5028 case RELOAD_FOR_OPERAND_ADDRESS:
5029 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5030 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5031 && !reloads_unique_chain_p (r1, r2)));
5032
5033 case RELOAD_FOR_OPADDR_ADDR:
5034 return (r2_type == RELOAD_FOR_INPUT
5035 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5036
5037 case RELOAD_FOR_OUTPUT:
5038 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5039 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5040 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5041 && r2_opnum >= r1_opnum));
5042
5043 case RELOAD_FOR_INSN:
5044 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5045 || r2_type == RELOAD_FOR_INSN
5046 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5047
5048 case RELOAD_FOR_OTHER_ADDRESS:
5049 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5050
5051 case RELOAD_OTHER:
5052 return 1;
5053
5054 default:
5055 gcc_unreachable ();
5056 }
5057 }
5058 \f
5059 /* Indexed by reload number, 1 if incoming value
5060 inherited from previous insns. */
5061 static char reload_inherited[MAX_RELOADS];
5062
5063 /* For an inherited reload, this is the insn the reload was inherited from,
5064 if we know it. Otherwise, this is 0. */
5065 static rtx reload_inheritance_insn[MAX_RELOADS];
5066
5067 /* If nonzero, this is a place to get the value of the reload,
5068 rather than using reload_in. */
5069 static rtx reload_override_in[MAX_RELOADS];
5070
5071 /* For each reload, the hard register number of the register used,
5072 or -1 if we did not need a register for this reload. */
5073 static int reload_spill_index[MAX_RELOADS];
5074
5075 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5076 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5077
5078 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5079 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5080
5081 /* Subroutine of free_for_value_p, used to check a single register.
5082 START_REGNO is the starting regno of the full reload register
5083 (possibly comprising multiple hard registers) that we are considering. */
5084
5085 static int
5086 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5087 enum reload_type type, rtx value, rtx out,
5088 int reloadnum, int ignore_address_reloads)
5089 {
5090 int time1;
5091 /* Set if we see an input reload that must not share its reload register
5092 with any new earlyclobber, but might otherwise share the reload
5093 register with an output or input-output reload. */
5094 int check_earlyclobber = 0;
5095 int i;
5096 int copy = 0;
5097
5098 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5099 return 0;
5100
5101 if (out == const0_rtx)
5102 {
5103 copy = 1;
5104 out = NULL_RTX;
5105 }
5106
5107 /* We use some pseudo 'time' value to check if the lifetimes of the
5108 new register use would overlap with the one of a previous reload
5109 that is not read-only or uses a different value.
5110 The 'time' used doesn't have to be linear in any shape or form, just
5111 monotonic.
5112 Some reload types use different 'buckets' for each operand.
5113 So there are MAX_RECOG_OPERANDS different time values for each
5114 such reload type.
5115 We compute TIME1 as the time when the register for the prospective
5116 new reload ceases to be live, and TIME2 for each existing
5117 reload as the time when that the reload register of that reload
5118 becomes live.
5119 Where there is little to be gained by exact lifetime calculations,
5120 we just make conservative assumptions, i.e. a longer lifetime;
5121 this is done in the 'default:' cases. */
5122 switch (type)
5123 {
5124 case RELOAD_FOR_OTHER_ADDRESS:
5125 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5126 time1 = copy ? 0 : 1;
5127 break;
5128 case RELOAD_OTHER:
5129 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5130 break;
5131 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5132 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5133 respectively, to the time values for these, we get distinct time
5134 values. To get distinct time values for each operand, we have to
5135 multiply opnum by at least three. We round that up to four because
5136 multiply by four is often cheaper. */
5137 case RELOAD_FOR_INPADDR_ADDRESS:
5138 time1 = opnum * 4 + 2;
5139 break;
5140 case RELOAD_FOR_INPUT_ADDRESS:
5141 time1 = opnum * 4 + 3;
5142 break;
5143 case RELOAD_FOR_INPUT:
5144 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5145 executes (inclusive). */
5146 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5147 break;
5148 case RELOAD_FOR_OPADDR_ADDR:
5149 /* opnum * 4 + 4
5150 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5151 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5152 break;
5153 case RELOAD_FOR_OPERAND_ADDRESS:
5154 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5155 is executed. */
5156 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5157 break;
5158 case RELOAD_FOR_OUTADDR_ADDRESS:
5159 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5160 break;
5161 case RELOAD_FOR_OUTPUT_ADDRESS:
5162 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5163 break;
5164 default:
5165 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5166 }
5167
5168 for (i = 0; i < n_reloads; i++)
5169 {
5170 rtx reg = rld[i].reg_rtx;
5171 if (reg && REG_P (reg)
5172 && ((unsigned) regno - true_regnum (reg)
5173 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5174 && i != reloadnum)
5175 {
5176 rtx other_input = rld[i].in;
5177
5178 /* If the other reload loads the same input value, that
5179 will not cause a conflict only if it's loading it into
5180 the same register. */
5181 if (true_regnum (reg) != start_regno)
5182 other_input = NULL_RTX;
5183 if (! other_input || ! rtx_equal_p (other_input, value)
5184 || rld[i].out || out)
5185 {
5186 int time2;
5187 switch (rld[i].when_needed)
5188 {
5189 case RELOAD_FOR_OTHER_ADDRESS:
5190 time2 = 0;
5191 break;
5192 case RELOAD_FOR_INPADDR_ADDRESS:
5193 /* find_reloads makes sure that a
5194 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5195 by at most one - the first -
5196 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5197 address reload is inherited, the address address reload
5198 goes away, so we can ignore this conflict. */
5199 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5200 && ignore_address_reloads
5201 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5202 Then the address address is still needed to store
5203 back the new address. */
5204 && ! rld[reloadnum].out)
5205 continue;
5206 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5207 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5208 reloads go away. */
5209 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5210 && ignore_address_reloads
5211 /* Unless we are reloading an auto_inc expression. */
5212 && ! rld[reloadnum].out)
5213 continue;
5214 time2 = rld[i].opnum * 4 + 2;
5215 break;
5216 case RELOAD_FOR_INPUT_ADDRESS:
5217 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5218 && ignore_address_reloads
5219 && ! rld[reloadnum].out)
5220 continue;
5221 time2 = rld[i].opnum * 4 + 3;
5222 break;
5223 case RELOAD_FOR_INPUT:
5224 time2 = rld[i].opnum * 4 + 4;
5225 check_earlyclobber = 1;
5226 break;
5227 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5228 == MAX_RECOG_OPERAND * 4 */
5229 case RELOAD_FOR_OPADDR_ADDR:
5230 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5231 && ignore_address_reloads
5232 && ! rld[reloadnum].out)
5233 continue;
5234 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5235 break;
5236 case RELOAD_FOR_OPERAND_ADDRESS:
5237 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5238 check_earlyclobber = 1;
5239 break;
5240 case RELOAD_FOR_INSN:
5241 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5242 break;
5243 case RELOAD_FOR_OUTPUT:
5244 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5245 instruction is executed. */
5246 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5247 break;
5248 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5249 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5250 value. */
5251 case RELOAD_FOR_OUTADDR_ADDRESS:
5252 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5253 && ignore_address_reloads
5254 && ! rld[reloadnum].out)
5255 continue;
5256 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5257 break;
5258 case RELOAD_FOR_OUTPUT_ADDRESS:
5259 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5260 break;
5261 case RELOAD_OTHER:
5262 /* If there is no conflict in the input part, handle this
5263 like an output reload. */
5264 if (! rld[i].in || rtx_equal_p (other_input, value))
5265 {
5266 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5267 /* Earlyclobbered outputs must conflict with inputs. */
5268 if (earlyclobber_operand_p (rld[i].out))
5269 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5270
5271 break;
5272 }
5273 time2 = 1;
5274 /* RELOAD_OTHER might be live beyond instruction execution,
5275 but this is not obvious when we set time2 = 1. So check
5276 here if there might be a problem with the new reload
5277 clobbering the register used by the RELOAD_OTHER. */
5278 if (out)
5279 return 0;
5280 break;
5281 default:
5282 return 0;
5283 }
5284 if ((time1 >= time2
5285 && (! rld[i].in || rld[i].out
5286 || ! rtx_equal_p (other_input, value)))
5287 || (out && rld[reloadnum].out_reg
5288 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5289 return 0;
5290 }
5291 }
5292 }
5293
5294 /* Earlyclobbered outputs must conflict with inputs. */
5295 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5296 return 0;
5297
5298 return 1;
5299 }
5300
5301 /* Return 1 if the value in reload reg REGNO, as used by a reload
5302 needed for the part of the insn specified by OPNUM and TYPE,
5303 may be used to load VALUE into it.
5304
5305 MODE is the mode in which the register is used, this is needed to
5306 determine how many hard regs to test.
5307
5308 Other read-only reloads with the same value do not conflict
5309 unless OUT is nonzero and these other reloads have to live while
5310 output reloads live.
5311 If OUT is CONST0_RTX, this is a special case: it means that the
5312 test should not be for using register REGNO as reload register, but
5313 for copying from register REGNO into the reload register.
5314
5315 RELOADNUM is the number of the reload we want to load this value for;
5316 a reload does not conflict with itself.
5317
5318 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5319 reloads that load an address for the very reload we are considering.
5320
5321 The caller has to make sure that there is no conflict with the return
5322 register. */
5323
5324 static int
5325 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5326 enum reload_type type, rtx value, rtx out, int reloadnum,
5327 int ignore_address_reloads)
5328 {
5329 int nregs = hard_regno_nregs[regno][mode];
5330 while (nregs-- > 0)
5331 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5332 value, out, reloadnum,
5333 ignore_address_reloads))
5334 return 0;
5335 return 1;
5336 }
5337
5338 /* Return nonzero if the rtx X is invariant over the current function. */
5339 /* ??? Actually, the places where we use this expect exactly what is
5340 tested here, and not everything that is function invariant. In
5341 particular, the frame pointer and arg pointer are special cased;
5342 pic_offset_table_rtx is not, and we must not spill these things to
5343 memory. */
5344
5345 int
5346 function_invariant_p (const_rtx x)
5347 {
5348 if (CONSTANT_P (x))
5349 return 1;
5350 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5351 return 1;
5352 if (GET_CODE (x) == PLUS
5353 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5354 && CONSTANT_P (XEXP (x, 1)))
5355 return 1;
5356 return 0;
5357 }
5358
5359 /* Determine whether the reload reg X overlaps any rtx'es used for
5360 overriding inheritance. Return nonzero if so. */
5361
5362 static int
5363 conflicts_with_override (rtx x)
5364 {
5365 int i;
5366 for (i = 0; i < n_reloads; i++)
5367 if (reload_override_in[i]
5368 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5369 return 1;
5370 return 0;
5371 }
5372 \f
5373 /* Give an error message saying we failed to find a reload for INSN,
5374 and clear out reload R. */
5375 static void
5376 failed_reload (rtx insn, int r)
5377 {
5378 if (asm_noperands (PATTERN (insn)) < 0)
5379 /* It's the compiler's fault. */
5380 fatal_insn ("could not find a spill register", insn);
5381
5382 /* It's the user's fault; the operand's mode and constraint
5383 don't match. Disable this reload so we don't crash in final. */
5384 error_for_asm (insn,
5385 "%<asm%> operand constraint incompatible with operand size");
5386 rld[r].in = 0;
5387 rld[r].out = 0;
5388 rld[r].reg_rtx = 0;
5389 rld[r].optional = 1;
5390 rld[r].secondary_p = 1;
5391 }
5392
5393 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5394 for reload R. If it's valid, get an rtx for it. Return nonzero if
5395 successful. */
5396 static int
5397 set_reload_reg (int i, int r)
5398 {
5399 int regno;
5400 rtx reg = spill_reg_rtx[i];
5401
5402 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5403 spill_reg_rtx[i] = reg
5404 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5405
5406 regno = true_regnum (reg);
5407
5408 /* Detect when the reload reg can't hold the reload mode.
5409 This used to be one `if', but Sequent compiler can't handle that. */
5410 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5411 {
5412 enum machine_mode test_mode = VOIDmode;
5413 if (rld[r].in)
5414 test_mode = GET_MODE (rld[r].in);
5415 /* If rld[r].in has VOIDmode, it means we will load it
5416 in whatever mode the reload reg has: to wit, rld[r].mode.
5417 We have already tested that for validity. */
5418 /* Aside from that, we need to test that the expressions
5419 to reload from or into have modes which are valid for this
5420 reload register. Otherwise the reload insns would be invalid. */
5421 if (! (rld[r].in != 0 && test_mode != VOIDmode
5422 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5423 if (! (rld[r].out != 0
5424 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5425 {
5426 /* The reg is OK. */
5427 last_spill_reg = i;
5428
5429 /* Mark as in use for this insn the reload regs we use
5430 for this. */
5431 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5432 rld[r].when_needed, rld[r].mode);
5433
5434 rld[r].reg_rtx = reg;
5435 reload_spill_index[r] = spill_regs[i];
5436 return 1;
5437 }
5438 }
5439 return 0;
5440 }
5441
5442 /* Find a spill register to use as a reload register for reload R.
5443 LAST_RELOAD is nonzero if this is the last reload for the insn being
5444 processed.
5445
5446 Set rld[R].reg_rtx to the register allocated.
5447
5448 We return 1 if successful, or 0 if we couldn't find a spill reg and
5449 we didn't change anything. */
5450
5451 static int
5452 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5453 int last_reload)
5454 {
5455 int i, pass, count;
5456
5457 /* If we put this reload ahead, thinking it is a group,
5458 then insist on finding a group. Otherwise we can grab a
5459 reg that some other reload needs.
5460 (That can happen when we have a 68000 DATA_OR_FP_REG
5461 which is a group of data regs or one fp reg.)
5462 We need not be so restrictive if there are no more reloads
5463 for this insn.
5464
5465 ??? Really it would be nicer to have smarter handling
5466 for that kind of reg class, where a problem like this is normal.
5467 Perhaps those classes should be avoided for reloading
5468 by use of more alternatives. */
5469
5470 int force_group = rld[r].nregs > 1 && ! last_reload;
5471
5472 /* If we want a single register and haven't yet found one,
5473 take any reg in the right class and not in use.
5474 If we want a consecutive group, here is where we look for it.
5475
5476 We use two passes so we can first look for reload regs to
5477 reuse, which are already in use for other reloads in this insn,
5478 and only then use additional registers.
5479 I think that maximizing reuse is needed to make sure we don't
5480 run out of reload regs. Suppose we have three reloads, and
5481 reloads A and B can share regs. These need two regs.
5482 Suppose A and B are given different regs.
5483 That leaves none for C. */
5484 for (pass = 0; pass < 2; pass++)
5485 {
5486 /* I is the index in spill_regs.
5487 We advance it round-robin between insns to use all spill regs
5488 equally, so that inherited reloads have a chance
5489 of leapfrogging each other. */
5490
5491 i = last_spill_reg;
5492
5493 for (count = 0; count < n_spills; count++)
5494 {
5495 int class = (int) rld[r].class;
5496 int regnum;
5497
5498 i++;
5499 if (i >= n_spills)
5500 i -= n_spills;
5501 regnum = spill_regs[i];
5502
5503 if ((reload_reg_free_p (regnum, rld[r].opnum,
5504 rld[r].when_needed)
5505 || (rld[r].in
5506 /* We check reload_reg_used to make sure we
5507 don't clobber the return register. */
5508 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5509 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5510 rld[r].when_needed, rld[r].in,
5511 rld[r].out, r, 1)))
5512 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5513 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5514 /* Look first for regs to share, then for unshared. But
5515 don't share regs used for inherited reloads; they are
5516 the ones we want to preserve. */
5517 && (pass
5518 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5519 regnum)
5520 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5521 regnum))))
5522 {
5523 int nr = hard_regno_nregs[regnum][rld[r].mode];
5524 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5525 (on 68000) got us two FP regs. If NR is 1,
5526 we would reject both of them. */
5527 if (force_group)
5528 nr = rld[r].nregs;
5529 /* If we need only one reg, we have already won. */
5530 if (nr == 1)
5531 {
5532 /* But reject a single reg if we demand a group. */
5533 if (force_group)
5534 continue;
5535 break;
5536 }
5537 /* Otherwise check that as many consecutive regs as we need
5538 are available here. */
5539 while (nr > 1)
5540 {
5541 int regno = regnum + nr - 1;
5542 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5543 && spill_reg_order[regno] >= 0
5544 && reload_reg_free_p (regno, rld[r].opnum,
5545 rld[r].when_needed)))
5546 break;
5547 nr--;
5548 }
5549 if (nr == 1)
5550 break;
5551 }
5552 }
5553
5554 /* If we found something on pass 1, omit pass 2. */
5555 if (count < n_spills)
5556 break;
5557 }
5558
5559 /* We should have found a spill register by now. */
5560 if (count >= n_spills)
5561 return 0;
5562
5563 /* I is the index in SPILL_REG_RTX of the reload register we are to
5564 allocate. Get an rtx for it and find its register number. */
5565
5566 return set_reload_reg (i, r);
5567 }
5568 \f
5569 /* Initialize all the tables needed to allocate reload registers.
5570 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5571 is the array we use to restore the reg_rtx field for every reload. */
5572
5573 static void
5574 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5575 {
5576 int i;
5577
5578 for (i = 0; i < n_reloads; i++)
5579 rld[i].reg_rtx = save_reload_reg_rtx[i];
5580
5581 memset (reload_inherited, 0, MAX_RELOADS);
5582 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5583 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5584
5585 CLEAR_HARD_REG_SET (reload_reg_used);
5586 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5587 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5588 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5589 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5590 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5591
5592 CLEAR_HARD_REG_SET (reg_used_in_insn);
5593 {
5594 HARD_REG_SET tmp;
5595 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5596 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5597 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5598 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5599 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5600 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5601 }
5602
5603 for (i = 0; i < reload_n_operands; i++)
5604 {
5605 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5606 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5607 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5608 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5609 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5610 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5611 }
5612
5613 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5614
5615 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5616
5617 for (i = 0; i < n_reloads; i++)
5618 /* If we have already decided to use a certain register,
5619 don't use it in another way. */
5620 if (rld[i].reg_rtx)
5621 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5622 rld[i].when_needed, rld[i].mode);
5623 }
5624
5625 /* Assign hard reg targets for the pseudo-registers we must reload
5626 into hard regs for this insn.
5627 Also output the instructions to copy them in and out of the hard regs.
5628
5629 For machines with register classes, we are responsible for
5630 finding a reload reg in the proper class. */
5631
5632 static void
5633 choose_reload_regs (struct insn_chain *chain)
5634 {
5635 rtx insn = chain->insn;
5636 int i, j;
5637 unsigned int max_group_size = 1;
5638 enum reg_class group_class = NO_REGS;
5639 int pass, win, inheritance;
5640
5641 rtx save_reload_reg_rtx[MAX_RELOADS];
5642
5643 /* In order to be certain of getting the registers we need,
5644 we must sort the reloads into order of increasing register class.
5645 Then our grabbing of reload registers will parallel the process
5646 that provided the reload registers.
5647
5648 Also note whether any of the reloads wants a consecutive group of regs.
5649 If so, record the maximum size of the group desired and what
5650 register class contains all the groups needed by this insn. */
5651
5652 for (j = 0; j < n_reloads; j++)
5653 {
5654 reload_order[j] = j;
5655 if (rld[j].reg_rtx != NULL_RTX)
5656 {
5657 gcc_assert (REG_P (rld[j].reg_rtx)
5658 && HARD_REGISTER_P (rld[j].reg_rtx));
5659 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
5660 }
5661 else
5662 reload_spill_index[j] = -1;
5663
5664 if (rld[j].nregs > 1)
5665 {
5666 max_group_size = MAX (rld[j].nregs, max_group_size);
5667 group_class
5668 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5669 }
5670
5671 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5672 }
5673
5674 if (n_reloads > 1)
5675 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5676
5677 /* If -O, try first with inheritance, then turning it off.
5678 If not -O, don't do inheritance.
5679 Using inheritance when not optimizing leads to paradoxes
5680 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5681 because one side of the comparison might be inherited. */
5682 win = 0;
5683 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5684 {
5685 choose_reload_regs_init (chain, save_reload_reg_rtx);
5686
5687 /* Process the reloads in order of preference just found.
5688 Beyond this point, subregs can be found in reload_reg_rtx.
5689
5690 This used to look for an existing reloaded home for all of the
5691 reloads, and only then perform any new reloads. But that could lose
5692 if the reloads were done out of reg-class order because a later
5693 reload with a looser constraint might have an old home in a register
5694 needed by an earlier reload with a tighter constraint.
5695
5696 To solve this, we make two passes over the reloads, in the order
5697 described above. In the first pass we try to inherit a reload
5698 from a previous insn. If there is a later reload that needs a
5699 class that is a proper subset of the class being processed, we must
5700 also allocate a spill register during the first pass.
5701
5702 Then make a second pass over the reloads to allocate any reloads
5703 that haven't been given registers yet. */
5704
5705 for (j = 0; j < n_reloads; j++)
5706 {
5707 int r = reload_order[j];
5708 rtx search_equiv = NULL_RTX;
5709
5710 /* Ignore reloads that got marked inoperative. */
5711 if (rld[r].out == 0 && rld[r].in == 0
5712 && ! rld[r].secondary_p)
5713 continue;
5714
5715 /* If find_reloads chose to use reload_in or reload_out as a reload
5716 register, we don't need to chose one. Otherwise, try even if it
5717 found one since we might save an insn if we find the value lying
5718 around.
5719 Try also when reload_in is a pseudo without a hard reg. */
5720 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5721 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5722 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5723 && !MEM_P (rld[r].in)
5724 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5725 continue;
5726
5727 #if 0 /* No longer needed for correct operation.
5728 It might give better code, or might not; worth an experiment? */
5729 /* If this is an optional reload, we can't inherit from earlier insns
5730 until we are sure that any non-optional reloads have been allocated.
5731 The following code takes advantage of the fact that optional reloads
5732 are at the end of reload_order. */
5733 if (rld[r].optional != 0)
5734 for (i = 0; i < j; i++)
5735 if ((rld[reload_order[i]].out != 0
5736 || rld[reload_order[i]].in != 0
5737 || rld[reload_order[i]].secondary_p)
5738 && ! rld[reload_order[i]].optional
5739 && rld[reload_order[i]].reg_rtx == 0)
5740 allocate_reload_reg (chain, reload_order[i], 0);
5741 #endif
5742
5743 /* First see if this pseudo is already available as reloaded
5744 for a previous insn. We cannot try to inherit for reloads
5745 that are smaller than the maximum number of registers needed
5746 for groups unless the register we would allocate cannot be used
5747 for the groups.
5748
5749 We could check here to see if this is a secondary reload for
5750 an object that is already in a register of the desired class.
5751 This would avoid the need for the secondary reload register.
5752 But this is complex because we can't easily determine what
5753 objects might want to be loaded via this reload. So let a
5754 register be allocated here. In `emit_reload_insns' we suppress
5755 one of the loads in the case described above. */
5756
5757 if (inheritance)
5758 {
5759 int byte = 0;
5760 int regno = -1;
5761 enum machine_mode mode = VOIDmode;
5762
5763 if (rld[r].in == 0)
5764 ;
5765 else if (REG_P (rld[r].in))
5766 {
5767 regno = REGNO (rld[r].in);
5768 mode = GET_MODE (rld[r].in);
5769 }
5770 else if (REG_P (rld[r].in_reg))
5771 {
5772 regno = REGNO (rld[r].in_reg);
5773 mode = GET_MODE (rld[r].in_reg);
5774 }
5775 else if (GET_CODE (rld[r].in_reg) == SUBREG
5776 && REG_P (SUBREG_REG (rld[r].in_reg)))
5777 {
5778 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5779 if (regno < FIRST_PSEUDO_REGISTER)
5780 regno = subreg_regno (rld[r].in_reg);
5781 else
5782 byte = SUBREG_BYTE (rld[r].in_reg);
5783 mode = GET_MODE (rld[r].in_reg);
5784 }
5785 #ifdef AUTO_INC_DEC
5786 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
5787 && REG_P (XEXP (rld[r].in_reg, 0)))
5788 {
5789 regno = REGNO (XEXP (rld[r].in_reg, 0));
5790 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5791 rld[r].out = rld[r].in;
5792 }
5793 #endif
5794 #if 0
5795 /* This won't work, since REGNO can be a pseudo reg number.
5796 Also, it takes much more hair to keep track of all the things
5797 that can invalidate an inherited reload of part of a pseudoreg. */
5798 else if (GET_CODE (rld[r].in) == SUBREG
5799 && REG_P (SUBREG_REG (rld[r].in)))
5800 regno = subreg_regno (rld[r].in);
5801 #endif
5802
5803 if (regno >= 0
5804 && reg_last_reload_reg[regno] != 0
5805 #ifdef CANNOT_CHANGE_MODE_CLASS
5806 /* Verify that the register it's in can be used in
5807 mode MODE. */
5808 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
5809 GET_MODE (reg_last_reload_reg[regno]),
5810 mode)
5811 #endif
5812 )
5813 {
5814 enum reg_class class = rld[r].class, last_class;
5815 rtx last_reg = reg_last_reload_reg[regno];
5816 enum machine_mode need_mode;
5817
5818 i = REGNO (last_reg);
5819 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5820 last_class = REGNO_REG_CLASS (i);
5821
5822 if (byte == 0)
5823 need_mode = mode;
5824 else
5825 need_mode
5826 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5827 + byte * BITS_PER_UNIT,
5828 GET_MODE_CLASS (mode));
5829
5830 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5831 >= GET_MODE_SIZE (need_mode))
5832 && reg_reloaded_contents[i] == regno
5833 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5834 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5835 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5836 /* Even if we can't use this register as a reload
5837 register, we might use it for reload_override_in,
5838 if copying it to the desired class is cheap
5839 enough. */
5840 || ((REGISTER_MOVE_COST (mode, last_class, class)
5841 < MEMORY_MOVE_COST (mode, class, 1))
5842 && (secondary_reload_class (1, class, mode,
5843 last_reg)
5844 == NO_REGS)
5845 #ifdef SECONDARY_MEMORY_NEEDED
5846 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5847 mode)
5848 #endif
5849 ))
5850
5851 && (rld[r].nregs == max_group_size
5852 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5853 i))
5854 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5855 rld[r].when_needed, rld[r].in,
5856 const0_rtx, r, 1))
5857 {
5858 /* If a group is needed, verify that all the subsequent
5859 registers still have their values intact. */
5860 int nr = hard_regno_nregs[i][rld[r].mode];
5861 int k;
5862
5863 for (k = 1; k < nr; k++)
5864 if (reg_reloaded_contents[i + k] != regno
5865 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5866 break;
5867
5868 if (k == nr)
5869 {
5870 int i1;
5871 int bad_for_class;
5872
5873 last_reg = (GET_MODE (last_reg) == mode
5874 ? last_reg : gen_rtx_REG (mode, i));
5875
5876 bad_for_class = 0;
5877 for (k = 0; k < nr; k++)
5878 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5879 i+k);
5880
5881 /* We found a register that contains the
5882 value we need. If this register is the
5883 same as an `earlyclobber' operand of the
5884 current insn, just mark it as a place to
5885 reload from since we can't use it as the
5886 reload register itself. */
5887
5888 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5889 if (reg_overlap_mentioned_for_reload_p
5890 (reg_last_reload_reg[regno],
5891 reload_earlyclobbers[i1]))
5892 break;
5893
5894 if (i1 != n_earlyclobbers
5895 || ! (free_for_value_p (i, rld[r].mode,
5896 rld[r].opnum,
5897 rld[r].when_needed, rld[r].in,
5898 rld[r].out, r, 1))
5899 /* Don't use it if we'd clobber a pseudo reg. */
5900 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5901 && rld[r].out
5902 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5903 /* Don't clobber the frame pointer. */
5904 || (i == HARD_FRAME_POINTER_REGNUM
5905 && frame_pointer_needed
5906 && rld[r].out)
5907 /* Don't really use the inherited spill reg
5908 if we need it wider than we've got it. */
5909 || (GET_MODE_SIZE (rld[r].mode)
5910 > GET_MODE_SIZE (mode))
5911 || bad_for_class
5912
5913 /* If find_reloads chose reload_out as reload
5914 register, stay with it - that leaves the
5915 inherited register for subsequent reloads. */
5916 || (rld[r].out && rld[r].reg_rtx
5917 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5918 {
5919 if (! rld[r].optional)
5920 {
5921 reload_override_in[r] = last_reg;
5922 reload_inheritance_insn[r]
5923 = reg_reloaded_insn[i];
5924 }
5925 }
5926 else
5927 {
5928 int k;
5929 /* We can use this as a reload reg. */
5930 /* Mark the register as in use for this part of
5931 the insn. */
5932 mark_reload_reg_in_use (i,
5933 rld[r].opnum,
5934 rld[r].when_needed,
5935 rld[r].mode);
5936 rld[r].reg_rtx = last_reg;
5937 reload_inherited[r] = 1;
5938 reload_inheritance_insn[r]
5939 = reg_reloaded_insn[i];
5940 reload_spill_index[r] = i;
5941 for (k = 0; k < nr; k++)
5942 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5943 i + k);
5944 }
5945 }
5946 }
5947 }
5948 }
5949
5950 /* Here's another way to see if the value is already lying around. */
5951 if (inheritance
5952 && rld[r].in != 0
5953 && ! reload_inherited[r]
5954 && rld[r].out == 0
5955 && (CONSTANT_P (rld[r].in)
5956 || GET_CODE (rld[r].in) == PLUS
5957 || REG_P (rld[r].in)
5958 || MEM_P (rld[r].in))
5959 && (rld[r].nregs == max_group_size
5960 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5961 search_equiv = rld[r].in;
5962 /* If this is an output reload from a simple move insn, look
5963 if an equivalence for the input is available. */
5964 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5965 {
5966 rtx set = single_set (insn);
5967
5968 if (set
5969 && rtx_equal_p (rld[r].out, SET_DEST (set))
5970 && CONSTANT_P (SET_SRC (set)))
5971 search_equiv = SET_SRC (set);
5972 }
5973
5974 if (search_equiv)
5975 {
5976 rtx equiv
5977 = find_equiv_reg (search_equiv, insn, rld[r].class,
5978 -1, NULL, 0, rld[r].mode);
5979 int regno = 0;
5980
5981 if (equiv != 0)
5982 {
5983 if (REG_P (equiv))
5984 regno = REGNO (equiv);
5985 else
5986 {
5987 /* This must be a SUBREG of a hard register.
5988 Make a new REG since this might be used in an
5989 address and not all machines support SUBREGs
5990 there. */
5991 gcc_assert (GET_CODE (equiv) == SUBREG);
5992 regno = subreg_regno (equiv);
5993 equiv = gen_rtx_REG (rld[r].mode, regno);
5994 /* If we choose EQUIV as the reload register, but the
5995 loop below decides to cancel the inheritance, we'll
5996 end up reloading EQUIV in rld[r].mode, not the mode
5997 it had originally. That isn't safe when EQUIV isn't
5998 available as a spill register since its value might
5999 still be live at this point. */
6000 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6001 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6002 equiv = 0;
6003 }
6004 }
6005
6006 /* If we found a spill reg, reject it unless it is free
6007 and of the desired class. */
6008 if (equiv != 0)
6009 {
6010 int regs_used = 0;
6011 int bad_for_class = 0;
6012 int max_regno = regno + rld[r].nregs;
6013
6014 for (i = regno; i < max_regno; i++)
6015 {
6016 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6017 i);
6018 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
6019 i);
6020 }
6021
6022 if ((regs_used
6023 && ! free_for_value_p (regno, rld[r].mode,
6024 rld[r].opnum, rld[r].when_needed,
6025 rld[r].in, rld[r].out, r, 1))
6026 || bad_for_class)
6027 equiv = 0;
6028 }
6029
6030 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6031 equiv = 0;
6032
6033 /* We found a register that contains the value we need.
6034 If this register is the same as an `earlyclobber' operand
6035 of the current insn, just mark it as a place to reload from
6036 since we can't use it as the reload register itself. */
6037
6038 if (equiv != 0)
6039 for (i = 0; i < n_earlyclobbers; i++)
6040 if (reg_overlap_mentioned_for_reload_p (equiv,
6041 reload_earlyclobbers[i]))
6042 {
6043 if (! rld[r].optional)
6044 reload_override_in[r] = equiv;
6045 equiv = 0;
6046 break;
6047 }
6048
6049 /* If the equiv register we have found is explicitly clobbered
6050 in the current insn, it depends on the reload type if we
6051 can use it, use it for reload_override_in, or not at all.
6052 In particular, we then can't use EQUIV for a
6053 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6054
6055 if (equiv != 0)
6056 {
6057 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6058 switch (rld[r].when_needed)
6059 {
6060 case RELOAD_FOR_OTHER_ADDRESS:
6061 case RELOAD_FOR_INPADDR_ADDRESS:
6062 case RELOAD_FOR_INPUT_ADDRESS:
6063 case RELOAD_FOR_OPADDR_ADDR:
6064 break;
6065 case RELOAD_OTHER:
6066 case RELOAD_FOR_INPUT:
6067 case RELOAD_FOR_OPERAND_ADDRESS:
6068 if (! rld[r].optional)
6069 reload_override_in[r] = equiv;
6070 /* Fall through. */
6071 default:
6072 equiv = 0;
6073 break;
6074 }
6075 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6076 switch (rld[r].when_needed)
6077 {
6078 case RELOAD_FOR_OTHER_ADDRESS:
6079 case RELOAD_FOR_INPADDR_ADDRESS:
6080 case RELOAD_FOR_INPUT_ADDRESS:
6081 case RELOAD_FOR_OPADDR_ADDR:
6082 case RELOAD_FOR_OPERAND_ADDRESS:
6083 case RELOAD_FOR_INPUT:
6084 break;
6085 case RELOAD_OTHER:
6086 if (! rld[r].optional)
6087 reload_override_in[r] = equiv;
6088 /* Fall through. */
6089 default:
6090 equiv = 0;
6091 break;
6092 }
6093 }
6094
6095 /* If we found an equivalent reg, say no code need be generated
6096 to load it, and use it as our reload reg. */
6097 if (equiv != 0
6098 && (regno != HARD_FRAME_POINTER_REGNUM
6099 || !frame_pointer_needed))
6100 {
6101 int nr = hard_regno_nregs[regno][rld[r].mode];
6102 int k;
6103 rld[r].reg_rtx = equiv;
6104 reload_inherited[r] = 1;
6105
6106 /* If reg_reloaded_valid is not set for this register,
6107 there might be a stale spill_reg_store lying around.
6108 We must clear it, since otherwise emit_reload_insns
6109 might delete the store. */
6110 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6111 spill_reg_store[regno] = NULL_RTX;
6112 /* If any of the hard registers in EQUIV are spill
6113 registers, mark them as in use for this insn. */
6114 for (k = 0; k < nr; k++)
6115 {
6116 i = spill_reg_order[regno + k];
6117 if (i >= 0)
6118 {
6119 mark_reload_reg_in_use (regno, rld[r].opnum,
6120 rld[r].when_needed,
6121 rld[r].mode);
6122 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6123 regno + k);
6124 }
6125 }
6126 }
6127 }
6128
6129 /* If we found a register to use already, or if this is an optional
6130 reload, we are done. */
6131 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6132 continue;
6133
6134 #if 0
6135 /* No longer needed for correct operation. Might or might
6136 not give better code on the average. Want to experiment? */
6137
6138 /* See if there is a later reload that has a class different from our
6139 class that intersects our class or that requires less register
6140 than our reload. If so, we must allocate a register to this
6141 reload now, since that reload might inherit a previous reload
6142 and take the only available register in our class. Don't do this
6143 for optional reloads since they will force all previous reloads
6144 to be allocated. Also don't do this for reloads that have been
6145 turned off. */
6146
6147 for (i = j + 1; i < n_reloads; i++)
6148 {
6149 int s = reload_order[i];
6150
6151 if ((rld[s].in == 0 && rld[s].out == 0
6152 && ! rld[s].secondary_p)
6153 || rld[s].optional)
6154 continue;
6155
6156 if ((rld[s].class != rld[r].class
6157 && reg_classes_intersect_p (rld[r].class,
6158 rld[s].class))
6159 || rld[s].nregs < rld[r].nregs)
6160 break;
6161 }
6162
6163 if (i == n_reloads)
6164 continue;
6165
6166 allocate_reload_reg (chain, r, j == n_reloads - 1);
6167 #endif
6168 }
6169
6170 /* Now allocate reload registers for anything non-optional that
6171 didn't get one yet. */
6172 for (j = 0; j < n_reloads; j++)
6173 {
6174 int r = reload_order[j];
6175
6176 /* Ignore reloads that got marked inoperative. */
6177 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6178 continue;
6179
6180 /* Skip reloads that already have a register allocated or are
6181 optional. */
6182 if (rld[r].reg_rtx != 0 || rld[r].optional)
6183 continue;
6184
6185 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6186 break;
6187 }
6188
6189 /* If that loop got all the way, we have won. */
6190 if (j == n_reloads)
6191 {
6192 win = 1;
6193 break;
6194 }
6195
6196 /* Loop around and try without any inheritance. */
6197 }
6198
6199 if (! win)
6200 {
6201 /* First undo everything done by the failed attempt
6202 to allocate with inheritance. */
6203 choose_reload_regs_init (chain, save_reload_reg_rtx);
6204
6205 /* Some sanity tests to verify that the reloads found in the first
6206 pass are identical to the ones we have now. */
6207 gcc_assert (chain->n_reloads == n_reloads);
6208
6209 for (i = 0; i < n_reloads; i++)
6210 {
6211 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6212 continue;
6213 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6214 for (j = 0; j < n_spills; j++)
6215 if (spill_regs[j] == chain->rld[i].regno)
6216 if (! set_reload_reg (j, i))
6217 failed_reload (chain->insn, i);
6218 }
6219 }
6220
6221 /* If we thought we could inherit a reload, because it seemed that
6222 nothing else wanted the same reload register earlier in the insn,
6223 verify that assumption, now that all reloads have been assigned.
6224 Likewise for reloads where reload_override_in has been set. */
6225
6226 /* If doing expensive optimizations, do one preliminary pass that doesn't
6227 cancel any inheritance, but removes reloads that have been needed only
6228 for reloads that we know can be inherited. */
6229 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6230 {
6231 for (j = 0; j < n_reloads; j++)
6232 {
6233 int r = reload_order[j];
6234 rtx check_reg;
6235 if (reload_inherited[r] && rld[r].reg_rtx)
6236 check_reg = rld[r].reg_rtx;
6237 else if (reload_override_in[r]
6238 && (REG_P (reload_override_in[r])
6239 || GET_CODE (reload_override_in[r]) == SUBREG))
6240 check_reg = reload_override_in[r];
6241 else
6242 continue;
6243 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6244 rld[r].opnum, rld[r].when_needed, rld[r].in,
6245 (reload_inherited[r]
6246 ? rld[r].out : const0_rtx),
6247 r, 1))
6248 {
6249 if (pass)
6250 continue;
6251 reload_inherited[r] = 0;
6252 reload_override_in[r] = 0;
6253 }
6254 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6255 reload_override_in, then we do not need its related
6256 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6257 likewise for other reload types.
6258 We handle this by removing a reload when its only replacement
6259 is mentioned in reload_in of the reload we are going to inherit.
6260 A special case are auto_inc expressions; even if the input is
6261 inherited, we still need the address for the output. We can
6262 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6263 If we succeeded removing some reload and we are doing a preliminary
6264 pass just to remove such reloads, make another pass, since the
6265 removal of one reload might allow us to inherit another one. */
6266 else if (rld[r].in
6267 && rld[r].out != rld[r].in
6268 && remove_address_replacements (rld[r].in) && pass)
6269 pass = 2;
6270 }
6271 }
6272
6273 /* Now that reload_override_in is known valid,
6274 actually override reload_in. */
6275 for (j = 0; j < n_reloads; j++)
6276 if (reload_override_in[j])
6277 rld[j].in = reload_override_in[j];
6278
6279 /* If this reload won't be done because it has been canceled or is
6280 optional and not inherited, clear reload_reg_rtx so other
6281 routines (such as subst_reloads) don't get confused. */
6282 for (j = 0; j < n_reloads; j++)
6283 if (rld[j].reg_rtx != 0
6284 && ((rld[j].optional && ! reload_inherited[j])
6285 || (rld[j].in == 0 && rld[j].out == 0
6286 && ! rld[j].secondary_p)))
6287 {
6288 int regno = true_regnum (rld[j].reg_rtx);
6289
6290 if (spill_reg_order[regno] >= 0)
6291 clear_reload_reg_in_use (regno, rld[j].opnum,
6292 rld[j].when_needed, rld[j].mode);
6293 rld[j].reg_rtx = 0;
6294 reload_spill_index[j] = -1;
6295 }
6296
6297 /* Record which pseudos and which spill regs have output reloads. */
6298 for (j = 0; j < n_reloads; j++)
6299 {
6300 int r = reload_order[j];
6301
6302 i = reload_spill_index[r];
6303
6304 /* I is nonneg if this reload uses a register.
6305 If rld[r].reg_rtx is 0, this is an optional reload
6306 that we opted to ignore. */
6307 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6308 && rld[r].reg_rtx != 0)
6309 {
6310 int nregno = REGNO (rld[r].out_reg);
6311 int nr = 1;
6312
6313 if (nregno < FIRST_PSEUDO_REGISTER)
6314 nr = hard_regno_nregs[nregno][rld[r].mode];
6315
6316 while (--nr >= 0)
6317 SET_REGNO_REG_SET (&reg_has_output_reload,
6318 nregno + nr);
6319
6320 if (i >= 0)
6321 {
6322 nr = hard_regno_nregs[i][rld[r].mode];
6323 while (--nr >= 0)
6324 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6325 }
6326
6327 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6328 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6329 || rld[r].when_needed == RELOAD_FOR_INSN);
6330 }
6331 }
6332 }
6333
6334 /* Deallocate the reload register for reload R. This is called from
6335 remove_address_replacements. */
6336
6337 void
6338 deallocate_reload_reg (int r)
6339 {
6340 int regno;
6341
6342 if (! rld[r].reg_rtx)
6343 return;
6344 regno = true_regnum (rld[r].reg_rtx);
6345 rld[r].reg_rtx = 0;
6346 if (spill_reg_order[regno] >= 0)
6347 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6348 rld[r].mode);
6349 reload_spill_index[r] = -1;
6350 }
6351 \f
6352 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6353 reloads of the same item for fear that we might not have enough reload
6354 registers. However, normally they will get the same reload register
6355 and hence actually need not be loaded twice.
6356
6357 Here we check for the most common case of this phenomenon: when we have
6358 a number of reloads for the same object, each of which were allocated
6359 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6360 reload, and is not modified in the insn itself. If we find such,
6361 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6362 This will not increase the number of spill registers needed and will
6363 prevent redundant code. */
6364
6365 static void
6366 merge_assigned_reloads (rtx insn)
6367 {
6368 int i, j;
6369
6370 /* Scan all the reloads looking for ones that only load values and
6371 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6372 assigned and not modified by INSN. */
6373
6374 for (i = 0; i < n_reloads; i++)
6375 {
6376 int conflicting_input = 0;
6377 int max_input_address_opnum = -1;
6378 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6379
6380 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6381 || rld[i].out != 0 || rld[i].reg_rtx == 0
6382 || reg_set_p (rld[i].reg_rtx, insn))
6383 continue;
6384
6385 /* Look at all other reloads. Ensure that the only use of this
6386 reload_reg_rtx is in a reload that just loads the same value
6387 as we do. Note that any secondary reloads must be of the identical
6388 class since the values, modes, and result registers are the
6389 same, so we need not do anything with any secondary reloads. */
6390
6391 for (j = 0; j < n_reloads; j++)
6392 {
6393 if (i == j || rld[j].reg_rtx == 0
6394 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6395 rld[i].reg_rtx))
6396 continue;
6397
6398 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6399 && rld[j].opnum > max_input_address_opnum)
6400 max_input_address_opnum = rld[j].opnum;
6401
6402 /* If the reload regs aren't exactly the same (e.g, different modes)
6403 or if the values are different, we can't merge this reload.
6404 But if it is an input reload, we might still merge
6405 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6406
6407 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6408 || rld[j].out != 0 || rld[j].in == 0
6409 || ! rtx_equal_p (rld[i].in, rld[j].in))
6410 {
6411 if (rld[j].when_needed != RELOAD_FOR_INPUT
6412 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6413 || rld[i].opnum > rld[j].opnum)
6414 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6415 break;
6416 conflicting_input = 1;
6417 if (min_conflicting_input_opnum > rld[j].opnum)
6418 min_conflicting_input_opnum = rld[j].opnum;
6419 }
6420 }
6421
6422 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6423 we, in fact, found any matching reloads. */
6424
6425 if (j == n_reloads
6426 && max_input_address_opnum <= min_conflicting_input_opnum)
6427 {
6428 gcc_assert (rld[i].when_needed != RELOAD_FOR_OUTPUT);
6429
6430 for (j = 0; j < n_reloads; j++)
6431 if (i != j && rld[j].reg_rtx != 0
6432 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6433 && (! conflicting_input
6434 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6435 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6436 {
6437 rld[i].when_needed = RELOAD_OTHER;
6438 rld[j].in = 0;
6439 reload_spill_index[j] = -1;
6440 transfer_replacements (i, j);
6441 }
6442
6443 /* If this is now RELOAD_OTHER, look for any reloads that
6444 load parts of this operand and set them to
6445 RELOAD_FOR_OTHER_ADDRESS if they were for inputs,
6446 RELOAD_OTHER for outputs. Note that this test is
6447 equivalent to looking for reloads for this operand
6448 number.
6449
6450 We must take special care with RELOAD_FOR_OUTPUT_ADDRESS;
6451 it may share registers with a RELOAD_FOR_INPUT, so we can
6452 not change it to RELOAD_FOR_OTHER_ADDRESS. We should
6453 never need to, since we do not modify RELOAD_FOR_OUTPUT.
6454
6455 It is possible that the RELOAD_FOR_OPERAND_ADDRESS
6456 instruction is assigned the same register as the earlier
6457 RELOAD_FOR_OTHER_ADDRESS instruction. Merging these two
6458 instructions will cause the RELOAD_FOR_OTHER_ADDRESS
6459 instruction to be deleted later on. */
6460
6461 if (rld[i].when_needed == RELOAD_OTHER)
6462 for (j = 0; j < n_reloads; j++)
6463 if (rld[j].in != 0
6464 && rld[j].when_needed != RELOAD_OTHER
6465 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6466 && rld[j].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
6467 && rld[j].when_needed != RELOAD_FOR_OPERAND_ADDRESS
6468 && (! conflicting_input
6469 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6470 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6471 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6472 rld[i].in))
6473 {
6474 int k;
6475
6476 rld[j].when_needed
6477 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6478 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6479 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6480
6481 /* Check to see if we accidentally converted two
6482 reloads that use the same reload register with
6483 different inputs to the same type. If so, the
6484 resulting code won't work. */
6485 if (rld[j].reg_rtx)
6486 for (k = 0; k < j; k++)
6487 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6488 || rld[k].when_needed != rld[j].when_needed
6489 || !rtx_equal_p (rld[k].reg_rtx,
6490 rld[j].reg_rtx)
6491 || rtx_equal_p (rld[k].in,
6492 rld[j].in));
6493 }
6494 }
6495 }
6496 }
6497 \f
6498 /* These arrays are filled by emit_reload_insns and its subroutines. */
6499 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6500 static rtx other_input_address_reload_insns = 0;
6501 static rtx other_input_reload_insns = 0;
6502 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6503 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6504 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6505 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6506 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6507 static rtx operand_reload_insns = 0;
6508 static rtx other_operand_reload_insns = 0;
6509 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6510
6511 /* Values to be put in spill_reg_store are put here first. */
6512 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6513 static HARD_REG_SET reg_reloaded_died;
6514
6515 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
6516 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
6517 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
6518 adjusted register, and return true. Otherwise, return false. */
6519 static bool
6520 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
6521 enum reg_class new_class,
6522 enum machine_mode new_mode)
6523
6524 {
6525 rtx reg;
6526
6527 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
6528 {
6529 unsigned regno = REGNO (reg);
6530
6531 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
6532 continue;
6533 if (GET_MODE (reg) != new_mode)
6534 {
6535 if (!HARD_REGNO_MODE_OK (regno, new_mode))
6536 continue;
6537 if (hard_regno_nregs[regno][new_mode]
6538 > hard_regno_nregs[regno][GET_MODE (reg)])
6539 continue;
6540 reg = reload_adjust_reg_for_mode (reg, new_mode);
6541 }
6542 *reload_reg = reg;
6543 return true;
6544 }
6545 return false;
6546 }
6547
6548 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
6549 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
6550 nonzero, if that is suitable. On success, change *RELOAD_REG to the
6551 adjusted register, and return true. Otherwise, return false. */
6552 static bool
6553 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
6554 enum insn_code icode)
6555
6556 {
6557 enum reg_class new_class = scratch_reload_class (icode);
6558 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
6559
6560 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
6561 new_class, new_mode);
6562 }
6563
6564 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6565 has the number J. OLD contains the value to be used as input. */
6566
6567 static void
6568 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6569 rtx old, int j)
6570 {
6571 rtx insn = chain->insn;
6572 rtx reloadreg;
6573 rtx oldequiv_reg = 0;
6574 rtx oldequiv = 0;
6575 int special = 0;
6576 enum machine_mode mode;
6577 rtx *where;
6578
6579 /* delete_output_reload is only invoked properly if old contains
6580 the original pseudo register. Since this is replaced with a
6581 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6582 find the pseudo in RELOAD_IN_REG. */
6583 if (reload_override_in[j]
6584 && REG_P (rl->in_reg))
6585 {
6586 oldequiv = old;
6587 old = rl->in_reg;
6588 }
6589 if (oldequiv == 0)
6590 oldequiv = old;
6591 else if (REG_P (oldequiv))
6592 oldequiv_reg = oldequiv;
6593 else if (GET_CODE (oldequiv) == SUBREG)
6594 oldequiv_reg = SUBREG_REG (oldequiv);
6595
6596 reloadreg = reload_reg_rtx_for_input[j];
6597 mode = GET_MODE (reloadreg);
6598
6599 /* If we are reloading from a register that was recently stored in
6600 with an output-reload, see if we can prove there was
6601 actually no need to store the old value in it. */
6602
6603 if (optimize && REG_P (oldequiv)
6604 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6605 && spill_reg_store[REGNO (oldequiv)]
6606 && REG_P (old)
6607 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6608 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6609 rl->out_reg)))
6610 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6611
6612 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
6613 OLDEQUIV. */
6614
6615 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6616 oldequiv = SUBREG_REG (oldequiv);
6617 if (GET_MODE (oldequiv) != VOIDmode
6618 && mode != GET_MODE (oldequiv))
6619 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6620
6621 /* Switch to the right place to emit the reload insns. */
6622 switch (rl->when_needed)
6623 {
6624 case RELOAD_OTHER:
6625 where = &other_input_reload_insns;
6626 break;
6627 case RELOAD_FOR_INPUT:
6628 where = &input_reload_insns[rl->opnum];
6629 break;
6630 case RELOAD_FOR_INPUT_ADDRESS:
6631 where = &input_address_reload_insns[rl->opnum];
6632 break;
6633 case RELOAD_FOR_INPADDR_ADDRESS:
6634 where = &inpaddr_address_reload_insns[rl->opnum];
6635 break;
6636 case RELOAD_FOR_OUTPUT_ADDRESS:
6637 where = &output_address_reload_insns[rl->opnum];
6638 break;
6639 case RELOAD_FOR_OUTADDR_ADDRESS:
6640 where = &outaddr_address_reload_insns[rl->opnum];
6641 break;
6642 case RELOAD_FOR_OPERAND_ADDRESS:
6643 where = &operand_reload_insns;
6644 break;
6645 case RELOAD_FOR_OPADDR_ADDR:
6646 where = &other_operand_reload_insns;
6647 break;
6648 case RELOAD_FOR_OTHER_ADDRESS:
6649 where = &other_input_address_reload_insns;
6650 break;
6651 default:
6652 gcc_unreachable ();
6653 }
6654
6655 push_to_sequence (*where);
6656
6657 /* Auto-increment addresses must be reloaded in a special way. */
6658 if (rl->out && ! rl->out_reg)
6659 {
6660 /* We are not going to bother supporting the case where a
6661 incremented register can't be copied directly from
6662 OLDEQUIV since this seems highly unlikely. */
6663 gcc_assert (rl->secondary_in_reload < 0);
6664
6665 if (reload_inherited[j])
6666 oldequiv = reloadreg;
6667
6668 old = XEXP (rl->in_reg, 0);
6669
6670 if (optimize && REG_P (oldequiv)
6671 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6672 && spill_reg_store[REGNO (oldequiv)]
6673 && REG_P (old)
6674 && (dead_or_set_p (insn,
6675 spill_reg_stored_to[REGNO (oldequiv)])
6676 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6677 old)))
6678 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
6679
6680 /* Prevent normal processing of this reload. */
6681 special = 1;
6682 /* Output a special code sequence for this case. */
6683 new_spill_reg_store[REGNO (reloadreg)]
6684 = inc_for_reload (reloadreg, oldequiv, rl->out,
6685 rl->inc);
6686 }
6687
6688 /* If we are reloading a pseudo-register that was set by the previous
6689 insn, see if we can get rid of that pseudo-register entirely
6690 by redirecting the previous insn into our reload register. */
6691
6692 else if (optimize && REG_P (old)
6693 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6694 && dead_or_set_p (insn, old)
6695 /* This is unsafe if some other reload
6696 uses the same reg first. */
6697 && ! conflicts_with_override (reloadreg)
6698 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6699 rl->when_needed, old, rl->out, j, 0))
6700 {
6701 rtx temp = PREV_INSN (insn);
6702 while (temp && NOTE_P (temp))
6703 temp = PREV_INSN (temp);
6704 if (temp
6705 && NONJUMP_INSN_P (temp)
6706 && GET_CODE (PATTERN (temp)) == SET
6707 && SET_DEST (PATTERN (temp)) == old
6708 /* Make sure we can access insn_operand_constraint. */
6709 && asm_noperands (PATTERN (temp)) < 0
6710 /* This is unsafe if operand occurs more than once in current
6711 insn. Perhaps some occurrences aren't reloaded. */
6712 && count_occurrences (PATTERN (insn), old, 0) == 1)
6713 {
6714 rtx old = SET_DEST (PATTERN (temp));
6715 /* Store into the reload register instead of the pseudo. */
6716 SET_DEST (PATTERN (temp)) = reloadreg;
6717
6718 /* Verify that resulting insn is valid. */
6719 extract_insn (temp);
6720 if (constrain_operands (1))
6721 {
6722 /* If the previous insn is an output reload, the source is
6723 a reload register, and its spill_reg_store entry will
6724 contain the previous destination. This is now
6725 invalid. */
6726 if (REG_P (SET_SRC (PATTERN (temp)))
6727 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6728 {
6729 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6730 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6731 }
6732
6733 /* If these are the only uses of the pseudo reg,
6734 pretend for GDB it lives in the reload reg we used. */
6735 if (REG_N_DEATHS (REGNO (old)) == 1
6736 && REG_N_SETS (REGNO (old)) == 1)
6737 {
6738 reg_renumber[REGNO (old)] = REGNO (reloadreg);
6739 alter_reg (REGNO (old), -1);
6740 }
6741 special = 1;
6742 }
6743 else
6744 {
6745 SET_DEST (PATTERN (temp)) = old;
6746 }
6747 }
6748 }
6749
6750 /* We can't do that, so output an insn to load RELOADREG. */
6751
6752 /* If we have a secondary reload, pick up the secondary register
6753 and icode, if any. If OLDEQUIV and OLD are different or
6754 if this is an in-out reload, recompute whether or not we
6755 still need a secondary register and what the icode should
6756 be. If we still need a secondary register and the class or
6757 icode is different, go back to reloading from OLD if using
6758 OLDEQUIV means that we got the wrong type of register. We
6759 cannot have different class or icode due to an in-out reload
6760 because we don't make such reloads when both the input and
6761 output need secondary reload registers. */
6762
6763 if (! special && rl->secondary_in_reload >= 0)
6764 {
6765 rtx second_reload_reg = 0;
6766 rtx third_reload_reg = 0;
6767 int secondary_reload = rl->secondary_in_reload;
6768 rtx real_oldequiv = oldequiv;
6769 rtx real_old = old;
6770 rtx tmp;
6771 enum insn_code icode;
6772 enum insn_code tertiary_icode = CODE_FOR_nothing;
6773
6774 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6775 and similarly for OLD.
6776 See comments in get_secondary_reload in reload.c. */
6777 /* If it is a pseudo that cannot be replaced with its
6778 equivalent MEM, we must fall back to reload_in, which
6779 will have all the necessary substitutions registered.
6780 Likewise for a pseudo that can't be replaced with its
6781 equivalent constant.
6782
6783 Take extra care for subregs of such pseudos. Note that
6784 we cannot use reg_equiv_mem in this case because it is
6785 not in the right mode. */
6786
6787 tmp = oldequiv;
6788 if (GET_CODE (tmp) == SUBREG)
6789 tmp = SUBREG_REG (tmp);
6790 if (REG_P (tmp)
6791 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6792 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6793 || reg_equiv_constant[REGNO (tmp)] != 0))
6794 {
6795 if (! reg_equiv_mem[REGNO (tmp)]
6796 || num_not_at_initial_offset
6797 || GET_CODE (oldequiv) == SUBREG)
6798 real_oldequiv = rl->in;
6799 else
6800 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6801 }
6802
6803 tmp = old;
6804 if (GET_CODE (tmp) == SUBREG)
6805 tmp = SUBREG_REG (tmp);
6806 if (REG_P (tmp)
6807 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6808 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6809 || reg_equiv_constant[REGNO (tmp)] != 0))
6810 {
6811 if (! reg_equiv_mem[REGNO (tmp)]
6812 || num_not_at_initial_offset
6813 || GET_CODE (old) == SUBREG)
6814 real_old = rl->in;
6815 else
6816 real_old = reg_equiv_mem[REGNO (tmp)];
6817 }
6818
6819 second_reload_reg = rld[secondary_reload].reg_rtx;
6820 if (rld[secondary_reload].secondary_in_reload >= 0)
6821 {
6822 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
6823
6824 third_reload_reg = rld[tertiary_reload].reg_rtx;
6825 tertiary_icode = rld[secondary_reload].secondary_in_icode;
6826 /* We'd have to add more code for quartary reloads. */
6827 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
6828 }
6829 icode = rl->secondary_in_icode;
6830
6831 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6832 || (rl->in != 0 && rl->out != 0))
6833 {
6834 secondary_reload_info sri, sri2;
6835 enum reg_class new_class, new_t_class;
6836
6837 sri.icode = CODE_FOR_nothing;
6838 sri.prev_sri = NULL;
6839 new_class = targetm.secondary_reload (1, real_oldequiv, rl->class,
6840 mode, &sri);
6841
6842 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
6843 second_reload_reg = 0;
6844 else if (new_class == NO_REGS)
6845 {
6846 if (reload_adjust_reg_for_icode (&second_reload_reg,
6847 third_reload_reg, sri.icode))
6848 icode = sri.icode, third_reload_reg = 0;
6849 else
6850 oldequiv = old, real_oldequiv = real_old;
6851 }
6852 else if (sri.icode != CODE_FOR_nothing)
6853 /* We currently lack a way to express this in reloads. */
6854 gcc_unreachable ();
6855 else
6856 {
6857 sri2.icode = CODE_FOR_nothing;
6858 sri2.prev_sri = &sri;
6859 new_t_class = targetm.secondary_reload (1, real_oldequiv,
6860 new_class, mode, &sri);
6861 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
6862 {
6863 if (reload_adjust_reg_for_temp (&second_reload_reg,
6864 third_reload_reg,
6865 new_class, mode))
6866 third_reload_reg = 0, tertiary_icode = sri2.icode;
6867 else
6868 oldequiv = old, real_oldequiv = real_old;
6869 }
6870 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
6871 {
6872 rtx intermediate = second_reload_reg;
6873
6874 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6875 new_class, mode)
6876 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
6877 sri2.icode))
6878 {
6879 second_reload_reg = intermediate;
6880 tertiary_icode = sri2.icode;
6881 }
6882 else
6883 oldequiv = old, real_oldequiv = real_old;
6884 }
6885 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
6886 {
6887 rtx intermediate = second_reload_reg;
6888
6889 if (reload_adjust_reg_for_temp (&intermediate, NULL,
6890 new_class, mode)
6891 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
6892 new_t_class, mode))
6893 {
6894 second_reload_reg = intermediate;
6895 tertiary_icode = sri2.icode;
6896 }
6897 else
6898 oldequiv = old, real_oldequiv = real_old;
6899 }
6900 else
6901 /* This could be handled more intelligently too. */
6902 oldequiv = old, real_oldequiv = real_old;
6903 }
6904 }
6905
6906 /* If we still need a secondary reload register, check
6907 to see if it is being used as a scratch or intermediate
6908 register and generate code appropriately. If we need
6909 a scratch register, use REAL_OLDEQUIV since the form of
6910 the insn may depend on the actual address if it is
6911 a MEM. */
6912
6913 if (second_reload_reg)
6914 {
6915 if (icode != CODE_FOR_nothing)
6916 {
6917 /* We'd have to add extra code to handle this case. */
6918 gcc_assert (!third_reload_reg);
6919
6920 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6921 second_reload_reg));
6922 special = 1;
6923 }
6924 else
6925 {
6926 /* See if we need a scratch register to load the
6927 intermediate register (a tertiary reload). */
6928 if (tertiary_icode != CODE_FOR_nothing)
6929 {
6930 emit_insn ((GEN_FCN (tertiary_icode)
6931 (second_reload_reg, real_oldequiv,
6932 third_reload_reg)));
6933 }
6934 else if (third_reload_reg)
6935 {
6936 gen_reload (third_reload_reg, real_oldequiv,
6937 rl->opnum,
6938 rl->when_needed);
6939 gen_reload (second_reload_reg, third_reload_reg,
6940 rl->opnum,
6941 rl->when_needed);
6942 }
6943 else
6944 gen_reload (second_reload_reg, real_oldequiv,
6945 rl->opnum,
6946 rl->when_needed);
6947
6948 oldequiv = second_reload_reg;
6949 }
6950 }
6951 }
6952
6953 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6954 {
6955 rtx real_oldequiv = oldequiv;
6956
6957 if ((REG_P (oldequiv)
6958 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6959 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6960 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6961 || (GET_CODE (oldequiv) == SUBREG
6962 && REG_P (SUBREG_REG (oldequiv))
6963 && (REGNO (SUBREG_REG (oldequiv))
6964 >= FIRST_PSEUDO_REGISTER)
6965 && ((reg_equiv_memory_loc
6966 [REGNO (SUBREG_REG (oldequiv))] != 0)
6967 || (reg_equiv_constant
6968 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6969 || (CONSTANT_P (oldequiv)
6970 && (PREFERRED_RELOAD_CLASS (oldequiv,
6971 REGNO_REG_CLASS (REGNO (reloadreg)))
6972 == NO_REGS)))
6973 real_oldequiv = rl->in;
6974 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6975 rl->when_needed);
6976 }
6977
6978 if (flag_non_call_exceptions)
6979 copy_eh_notes (insn, get_insns ());
6980
6981 /* End this sequence. */
6982 *where = get_insns ();
6983 end_sequence ();
6984
6985 /* Update reload_override_in so that delete_address_reloads_1
6986 can see the actual register usage. */
6987 if (oldequiv_reg)
6988 reload_override_in[j] = oldequiv;
6989 }
6990
6991 /* Generate insns to for the output reload RL, which is for the insn described
6992 by CHAIN and has the number J. */
6993 static void
6994 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6995 int j)
6996 {
6997 rtx reloadreg;
6998 rtx insn = chain->insn;
6999 int special = 0;
7000 rtx old = rl->out;
7001 enum machine_mode mode;
7002 rtx p;
7003 rtx rl_reg_rtx;
7004
7005 if (rl->when_needed == RELOAD_OTHER)
7006 start_sequence ();
7007 else
7008 push_to_sequence (output_reload_insns[rl->opnum]);
7009
7010 rl_reg_rtx = reload_reg_rtx_for_output[j];
7011 mode = GET_MODE (rl_reg_rtx);
7012
7013 reloadreg = rl_reg_rtx;
7014
7015 /* If we need two reload regs, set RELOADREG to the intermediate
7016 one, since it will be stored into OLD. We might need a secondary
7017 register only for an input reload, so check again here. */
7018
7019 if (rl->secondary_out_reload >= 0)
7020 {
7021 rtx real_old = old;
7022 int secondary_reload = rl->secondary_out_reload;
7023 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7024
7025 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7026 && reg_equiv_mem[REGNO (old)] != 0)
7027 real_old = reg_equiv_mem[REGNO (old)];
7028
7029 if (secondary_reload_class (0, rl->class, mode, real_old) != NO_REGS)
7030 {
7031 rtx second_reloadreg = reloadreg;
7032 reloadreg = rld[secondary_reload].reg_rtx;
7033
7034 /* See if RELOADREG is to be used as a scratch register
7035 or as an intermediate register. */
7036 if (rl->secondary_out_icode != CODE_FOR_nothing)
7037 {
7038 /* We'd have to add extra code to handle this case. */
7039 gcc_assert (tertiary_reload < 0);
7040
7041 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7042 (real_old, second_reloadreg, reloadreg)));
7043 special = 1;
7044 }
7045 else
7046 {
7047 /* See if we need both a scratch and intermediate reload
7048 register. */
7049
7050 enum insn_code tertiary_icode
7051 = rld[secondary_reload].secondary_out_icode;
7052
7053 /* We'd have to add more code for quartary reloads. */
7054 gcc_assert (tertiary_reload < 0
7055 || rld[tertiary_reload].secondary_out_reload < 0);
7056
7057 if (GET_MODE (reloadreg) != mode)
7058 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7059
7060 if (tertiary_icode != CODE_FOR_nothing)
7061 {
7062 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7063 rtx tem;
7064
7065 /* Copy primary reload reg to secondary reload reg.
7066 (Note that these have been swapped above, then
7067 secondary reload reg to OLD using our insn.) */
7068
7069 /* If REAL_OLD is a paradoxical SUBREG, remove it
7070 and try to put the opposite SUBREG on
7071 RELOADREG. */
7072 if (GET_CODE (real_old) == SUBREG
7073 && (GET_MODE_SIZE (GET_MODE (real_old))
7074 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
7075 && 0 != (tem = gen_lowpart_common
7076 (GET_MODE (SUBREG_REG (real_old)),
7077 reloadreg)))
7078 real_old = SUBREG_REG (real_old), reloadreg = tem;
7079
7080 gen_reload (reloadreg, second_reloadreg,
7081 rl->opnum, rl->when_needed);
7082 emit_insn ((GEN_FCN (tertiary_icode)
7083 (real_old, reloadreg, third_reloadreg)));
7084 special = 1;
7085 }
7086
7087 else
7088 {
7089 /* Copy between the reload regs here and then to
7090 OUT later. */
7091
7092 gen_reload (reloadreg, second_reloadreg,
7093 rl->opnum, rl->when_needed);
7094 if (tertiary_reload >= 0)
7095 {
7096 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7097
7098 gen_reload (third_reloadreg, reloadreg,
7099 rl->opnum, rl->when_needed);
7100 reloadreg = third_reloadreg;
7101 }
7102 }
7103 }
7104 }
7105 }
7106
7107 /* Output the last reload insn. */
7108 if (! special)
7109 {
7110 rtx set;
7111
7112 /* Don't output the last reload if OLD is not the dest of
7113 INSN and is in the src and is clobbered by INSN. */
7114 if (! flag_expensive_optimizations
7115 || !REG_P (old)
7116 || !(set = single_set (insn))
7117 || rtx_equal_p (old, SET_DEST (set))
7118 || !reg_mentioned_p (old, SET_SRC (set))
7119 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7120 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7121 gen_reload (old, reloadreg, rl->opnum,
7122 rl->when_needed);
7123 }
7124
7125 /* Look at all insns we emitted, just to be safe. */
7126 for (p = get_insns (); p; p = NEXT_INSN (p))
7127 if (INSN_P (p))
7128 {
7129 rtx pat = PATTERN (p);
7130
7131 /* If this output reload doesn't come from a spill reg,
7132 clear any memory of reloaded copies of the pseudo reg.
7133 If this output reload comes from a spill reg,
7134 reg_has_output_reload will make this do nothing. */
7135 note_stores (pat, forget_old_reloads_1, NULL);
7136
7137 if (reg_mentioned_p (rl_reg_rtx, pat))
7138 {
7139 rtx set = single_set (insn);
7140 if (reload_spill_index[j] < 0
7141 && set
7142 && SET_SRC (set) == rl_reg_rtx)
7143 {
7144 int src = REGNO (SET_SRC (set));
7145
7146 reload_spill_index[j] = src;
7147 SET_HARD_REG_BIT (reg_is_output_reload, src);
7148 if (find_regno_note (insn, REG_DEAD, src))
7149 SET_HARD_REG_BIT (reg_reloaded_died, src);
7150 }
7151 if (HARD_REGISTER_P (rl_reg_rtx))
7152 {
7153 int s = rl->secondary_out_reload;
7154 set = single_set (p);
7155 /* If this reload copies only to the secondary reload
7156 register, the secondary reload does the actual
7157 store. */
7158 if (s >= 0 && set == NULL_RTX)
7159 /* We can't tell what function the secondary reload
7160 has and where the actual store to the pseudo is
7161 made; leave new_spill_reg_store alone. */
7162 ;
7163 else if (s >= 0
7164 && SET_SRC (set) == rl_reg_rtx
7165 && SET_DEST (set) == rld[s].reg_rtx)
7166 {
7167 /* Usually the next instruction will be the
7168 secondary reload insn; if we can confirm
7169 that it is, setting new_spill_reg_store to
7170 that insn will allow an extra optimization. */
7171 rtx s_reg = rld[s].reg_rtx;
7172 rtx next = NEXT_INSN (p);
7173 rld[s].out = rl->out;
7174 rld[s].out_reg = rl->out_reg;
7175 set = single_set (next);
7176 if (set && SET_SRC (set) == s_reg
7177 && ! new_spill_reg_store[REGNO (s_reg)])
7178 {
7179 SET_HARD_REG_BIT (reg_is_output_reload,
7180 REGNO (s_reg));
7181 new_spill_reg_store[REGNO (s_reg)] = next;
7182 }
7183 }
7184 else
7185 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7186 }
7187 }
7188 }
7189
7190 if (rl->when_needed == RELOAD_OTHER)
7191 {
7192 emit_insn (other_output_reload_insns[rl->opnum]);
7193 other_output_reload_insns[rl->opnum] = get_insns ();
7194 }
7195 else
7196 output_reload_insns[rl->opnum] = get_insns ();
7197
7198 if (flag_non_call_exceptions)
7199 copy_eh_notes (insn, get_insns ());
7200
7201 end_sequence ();
7202 }
7203
7204 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7205 and has the number J. */
7206 static void
7207 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7208 {
7209 rtx insn = chain->insn;
7210 rtx old = (rl->in && MEM_P (rl->in)
7211 ? rl->in_reg : rl->in);
7212 rtx reg_rtx = rl->reg_rtx;
7213
7214 if (old && reg_rtx)
7215 {
7216 enum machine_mode mode;
7217
7218 /* Determine the mode to reload in.
7219 This is very tricky because we have three to choose from.
7220 There is the mode the insn operand wants (rl->inmode).
7221 There is the mode of the reload register RELOADREG.
7222 There is the intrinsic mode of the operand, which we could find
7223 by stripping some SUBREGs.
7224 It turns out that RELOADREG's mode is irrelevant:
7225 we can change that arbitrarily.
7226
7227 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7228 then the reload reg may not support QImode moves, so use SImode.
7229 If foo is in memory due to spilling a pseudo reg, this is safe,
7230 because the QImode value is in the least significant part of a
7231 slot big enough for a SImode. If foo is some other sort of
7232 memory reference, then it is impossible to reload this case,
7233 so previous passes had better make sure this never happens.
7234
7235 Then consider a one-word union which has SImode and one of its
7236 members is a float, being fetched as (SUBREG:SF union:SI).
7237 We must fetch that as SFmode because we could be loading into
7238 a float-only register. In this case OLD's mode is correct.
7239
7240 Consider an immediate integer: it has VOIDmode. Here we need
7241 to get a mode from something else.
7242
7243 In some cases, there is a fourth mode, the operand's
7244 containing mode. If the insn specifies a containing mode for
7245 this operand, it overrides all others.
7246
7247 I am not sure whether the algorithm here is always right,
7248 but it does the right things in those cases. */
7249
7250 mode = GET_MODE (old);
7251 if (mode == VOIDmode)
7252 mode = rl->inmode;
7253
7254 /* We cannot use gen_lowpart_common since it can do the wrong thing
7255 when REG_RTX has a multi-word mode. Note that REG_RTX must
7256 always be a REG here. */
7257 if (GET_MODE (reg_rtx) != mode)
7258 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7259 }
7260 reload_reg_rtx_for_input[j] = reg_rtx;
7261
7262 if (old != 0
7263 /* AUTO_INC reloads need to be handled even if inherited. We got an
7264 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7265 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7266 && ! rtx_equal_p (reg_rtx, old)
7267 && reg_rtx != 0)
7268 emit_input_reload_insns (chain, rld + j, old, j);
7269
7270 /* When inheriting a wider reload, we have a MEM in rl->in,
7271 e.g. inheriting a SImode output reload for
7272 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7273 if (optimize && reload_inherited[j] && rl->in
7274 && MEM_P (rl->in)
7275 && MEM_P (rl->in_reg)
7276 && reload_spill_index[j] >= 0
7277 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7278 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7279
7280 /* If we are reloading a register that was recently stored in with an
7281 output-reload, see if we can prove there was
7282 actually no need to store the old value in it. */
7283
7284 if (optimize
7285 && (reload_inherited[j] || reload_override_in[j])
7286 && reg_rtx
7287 && REG_P (reg_rtx)
7288 && spill_reg_store[REGNO (reg_rtx)] != 0
7289 #if 0
7290 /* There doesn't seem to be any reason to restrict this to pseudos
7291 and doing so loses in the case where we are copying from a
7292 register of the wrong class. */
7293 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7294 #endif
7295 /* The insn might have already some references to stackslots
7296 replaced by MEMs, while reload_out_reg still names the
7297 original pseudo. */
7298 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7299 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7300 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7301 }
7302
7303 /* Do output reloading for reload RL, which is for the insn described by
7304 CHAIN and has the number J.
7305 ??? At some point we need to support handling output reloads of
7306 JUMP_INSNs or insns that set cc0. */
7307 static void
7308 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7309 {
7310 rtx note, old;
7311 rtx insn = chain->insn;
7312 /* If this is an output reload that stores something that is
7313 not loaded in this same reload, see if we can eliminate a previous
7314 store. */
7315 rtx pseudo = rl->out_reg;
7316 rtx reg_rtx = rl->reg_rtx;
7317
7318 if (rl->out && reg_rtx)
7319 {
7320 enum machine_mode mode;
7321
7322 /* Determine the mode to reload in.
7323 See comments above (for input reloading). */
7324 mode = GET_MODE (rl->out);
7325 if (mode == VOIDmode)
7326 {
7327 /* VOIDmode should never happen for an output. */
7328 if (asm_noperands (PATTERN (insn)) < 0)
7329 /* It's the compiler's fault. */
7330 fatal_insn ("VOIDmode on an output", insn);
7331 error_for_asm (insn, "output operand is constant in %<asm%>");
7332 /* Prevent crash--use something we know is valid. */
7333 mode = word_mode;
7334 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7335 }
7336 if (GET_MODE (reg_rtx) != mode)
7337 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7338 }
7339 reload_reg_rtx_for_output[j] = reg_rtx;
7340
7341 if (pseudo
7342 && optimize
7343 && REG_P (pseudo)
7344 && ! rtx_equal_p (rl->in_reg, pseudo)
7345 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7346 && reg_last_reload_reg[REGNO (pseudo)])
7347 {
7348 int pseudo_no = REGNO (pseudo);
7349 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7350
7351 /* We don't need to test full validity of last_regno for
7352 inherit here; we only want to know if the store actually
7353 matches the pseudo. */
7354 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7355 && reg_reloaded_contents[last_regno] == pseudo_no
7356 && spill_reg_store[last_regno]
7357 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7358 delete_output_reload (insn, j, last_regno, reg_rtx);
7359 }
7360
7361 old = rl->out_reg;
7362 if (old == 0
7363 || reg_rtx == 0
7364 || rtx_equal_p (old, reg_rtx))
7365 return;
7366
7367 /* An output operand that dies right away does need a reload,
7368 but need not be copied from it. Show the new location in the
7369 REG_UNUSED note. */
7370 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7371 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7372 {
7373 XEXP (note, 0) = reg_rtx;
7374 return;
7375 }
7376 /* Likewise for a SUBREG of an operand that dies. */
7377 else if (GET_CODE (old) == SUBREG
7378 && REG_P (SUBREG_REG (old))
7379 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7380 SUBREG_REG (old))))
7381 {
7382 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7383 return;
7384 }
7385 else if (GET_CODE (old) == SCRATCH)
7386 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7387 but we don't want to make an output reload. */
7388 return;
7389
7390 /* If is a JUMP_INSN, we can't support output reloads yet. */
7391 gcc_assert (NONJUMP_INSN_P (insn));
7392
7393 emit_output_reload_insns (chain, rld + j, j);
7394 }
7395
7396 /* A reload copies values of MODE from register SRC to register DEST.
7397 Return true if it can be treated for inheritance purposes like a
7398 group of reloads, each one reloading a single hard register. The
7399 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7400 occupy the same number of hard registers. */
7401
7402 static bool
7403 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7404 int src ATTRIBUTE_UNUSED,
7405 enum machine_mode mode ATTRIBUTE_UNUSED)
7406 {
7407 #ifdef CANNOT_CHANGE_MODE_CLASS
7408 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7409 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7410 #else
7411 return true;
7412 #endif
7413 }
7414
7415 /* Output insns to reload values in and out of the chosen reload regs. */
7416
7417 static void
7418 emit_reload_insns (struct insn_chain *chain)
7419 {
7420 rtx insn = chain->insn;
7421
7422 int j;
7423
7424 CLEAR_HARD_REG_SET (reg_reloaded_died);
7425
7426 for (j = 0; j < reload_n_operands; j++)
7427 input_reload_insns[j] = input_address_reload_insns[j]
7428 = inpaddr_address_reload_insns[j]
7429 = output_reload_insns[j] = output_address_reload_insns[j]
7430 = outaddr_address_reload_insns[j]
7431 = other_output_reload_insns[j] = 0;
7432 other_input_address_reload_insns = 0;
7433 other_input_reload_insns = 0;
7434 operand_reload_insns = 0;
7435 other_operand_reload_insns = 0;
7436
7437 /* Dump reloads into the dump file. */
7438 if (dump_file)
7439 {
7440 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7441 debug_reload_to_stream (dump_file);
7442 }
7443
7444 /* Now output the instructions to copy the data into and out of the
7445 reload registers. Do these in the order that the reloads were reported,
7446 since reloads of base and index registers precede reloads of operands
7447 and the operands may need the base and index registers reloaded. */
7448
7449 for (j = 0; j < n_reloads; j++)
7450 {
7451 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7452 {
7453 unsigned int i;
7454
7455 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7456 new_spill_reg_store[i] = 0;
7457 }
7458
7459 do_input_reload (chain, rld + j, j);
7460 do_output_reload (chain, rld + j, j);
7461 }
7462
7463 /* Now write all the insns we made for reloads in the order expected by
7464 the allocation functions. Prior to the insn being reloaded, we write
7465 the following reloads:
7466
7467 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7468
7469 RELOAD_OTHER reloads.
7470
7471 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7472 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7473 RELOAD_FOR_INPUT reload for the operand.
7474
7475 RELOAD_FOR_OPADDR_ADDRS reloads.
7476
7477 RELOAD_FOR_OPERAND_ADDRESS reloads.
7478
7479 After the insn being reloaded, we write the following:
7480
7481 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7482 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7483 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7484 reloads for the operand. The RELOAD_OTHER output reloads are
7485 output in descending order by reload number. */
7486
7487 emit_insn_before (other_input_address_reload_insns, insn);
7488 emit_insn_before (other_input_reload_insns, insn);
7489
7490 for (j = 0; j < reload_n_operands; j++)
7491 {
7492 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7493 emit_insn_before (input_address_reload_insns[j], insn);
7494 emit_insn_before (input_reload_insns[j], insn);
7495 }
7496
7497 emit_insn_before (other_operand_reload_insns, insn);
7498 emit_insn_before (operand_reload_insns, insn);
7499
7500 for (j = 0; j < reload_n_operands; j++)
7501 {
7502 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7503 x = emit_insn_after (output_address_reload_insns[j], x);
7504 x = emit_insn_after (output_reload_insns[j], x);
7505 emit_insn_after (other_output_reload_insns[j], x);
7506 }
7507
7508 /* For all the spill regs newly reloaded in this instruction,
7509 record what they were reloaded from, so subsequent instructions
7510 can inherit the reloads.
7511
7512 Update spill_reg_store for the reloads of this insn.
7513 Copy the elements that were updated in the loop above. */
7514
7515 for (j = 0; j < n_reloads; j++)
7516 {
7517 int r = reload_order[j];
7518 int i = reload_spill_index[r];
7519
7520 /* If this is a non-inherited input reload from a pseudo, we must
7521 clear any memory of a previous store to the same pseudo. Only do
7522 something if there will not be an output reload for the pseudo
7523 being reloaded. */
7524 if (rld[r].in_reg != 0
7525 && ! (reload_inherited[r] || reload_override_in[r]))
7526 {
7527 rtx reg = rld[r].in_reg;
7528
7529 if (GET_CODE (reg) == SUBREG)
7530 reg = SUBREG_REG (reg);
7531
7532 if (REG_P (reg)
7533 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7534 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
7535 {
7536 int nregno = REGNO (reg);
7537
7538 if (reg_last_reload_reg[nregno])
7539 {
7540 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7541
7542 if (reg_reloaded_contents[last_regno] == nregno)
7543 spill_reg_store[last_regno] = 0;
7544 }
7545 }
7546 }
7547
7548 /* I is nonneg if this reload used a register.
7549 If rld[r].reg_rtx is 0, this is an optional reload
7550 that we opted to ignore. */
7551
7552 if (i >= 0 && rld[r].reg_rtx != 0)
7553 {
7554 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7555 int k;
7556
7557 /* For a multi register reload, we need to check if all or part
7558 of the value lives to the end. */
7559 for (k = 0; k < nr; k++)
7560 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7561 rld[r].when_needed))
7562 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7563
7564 /* Maybe the spill reg contains a copy of reload_out. */
7565 if (rld[r].out != 0
7566 && (REG_P (rld[r].out)
7567 #ifdef AUTO_INC_DEC
7568 || ! rld[r].out_reg
7569 #endif
7570 || REG_P (rld[r].out_reg)))
7571 {
7572 rtx reg;
7573 enum machine_mode mode;
7574 int regno, nregs;
7575
7576 reg = reload_reg_rtx_for_output[r];
7577 mode = GET_MODE (reg);
7578 regno = REGNO (reg);
7579 nregs = hard_regno_nregs[regno][mode];
7580 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7581 rld[r].when_needed))
7582 {
7583 rtx out = (REG_P (rld[r].out)
7584 ? rld[r].out
7585 : rld[r].out_reg
7586 ? rld[r].out_reg
7587 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7588 int out_regno = REGNO (out);
7589 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
7590 : hard_regno_nregs[out_regno][mode]);
7591 bool piecemeal;
7592
7593 spill_reg_store[regno] = new_spill_reg_store[regno];
7594 spill_reg_stored_to[regno] = out;
7595 reg_last_reload_reg[out_regno] = reg;
7596
7597 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
7598 && nregs == out_nregs
7599 && inherit_piecemeal_p (out_regno, regno, mode));
7600
7601 /* If OUT_REGNO is a hard register, it may occupy more than
7602 one register. If it does, say what is in the
7603 rest of the registers assuming that both registers
7604 agree on how many words the object takes. If not,
7605 invalidate the subsequent registers. */
7606
7607 if (HARD_REGISTER_NUM_P (out_regno))
7608 for (k = 1; k < out_nregs; k++)
7609 reg_last_reload_reg[out_regno + k]
7610 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7611
7612 /* Now do the inverse operation. */
7613 for (k = 0; k < nregs; k++)
7614 {
7615 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7616 reg_reloaded_contents[regno + k]
7617 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
7618 ? out_regno
7619 : out_regno + k);
7620 reg_reloaded_insn[regno + k] = insn;
7621 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7622 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7623 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7624 regno + k);
7625 else
7626 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7627 regno + k);
7628 }
7629 }
7630 }
7631 /* Maybe the spill reg contains a copy of reload_in. Only do
7632 something if there will not be an output reload for
7633 the register being reloaded. */
7634 else if (rld[r].out_reg == 0
7635 && rld[r].in != 0
7636 && ((REG_P (rld[r].in)
7637 && !HARD_REGISTER_P (rld[r].in)
7638 && !REGNO_REG_SET_P (&reg_has_output_reload,
7639 REGNO (rld[r].in)))
7640 || (REG_P (rld[r].in_reg)
7641 && !REGNO_REG_SET_P (&reg_has_output_reload,
7642 REGNO (rld[r].in_reg))))
7643 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
7644 {
7645 rtx reg;
7646 enum machine_mode mode;
7647 int regno, nregs;
7648
7649 reg = reload_reg_rtx_for_input[r];
7650 mode = GET_MODE (reg);
7651 regno = REGNO (reg);
7652 nregs = hard_regno_nregs[regno][mode];
7653 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
7654 rld[r].when_needed))
7655 {
7656 int in_regno;
7657 int in_nregs;
7658 rtx in;
7659 bool piecemeal;
7660
7661 if (REG_P (rld[r].in)
7662 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7663 in = rld[r].in;
7664 else if (REG_P (rld[r].in_reg))
7665 in = rld[r].in_reg;
7666 else
7667 in = XEXP (rld[r].in_reg, 0);
7668 in_regno = REGNO (in);
7669
7670 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
7671 : hard_regno_nregs[in_regno][mode]);
7672
7673 reg_last_reload_reg[in_regno] = reg;
7674
7675 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
7676 && nregs == in_nregs
7677 && inherit_piecemeal_p (regno, in_regno, mode));
7678
7679 if (HARD_REGISTER_NUM_P (in_regno))
7680 for (k = 1; k < in_nregs; k++)
7681 reg_last_reload_reg[in_regno + k]
7682 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
7683
7684 /* Unless we inherited this reload, show we haven't
7685 recently done a store.
7686 Previous stores of inherited auto_inc expressions
7687 also have to be discarded. */
7688 if (! reload_inherited[r]
7689 || (rld[r].out && ! rld[r].out_reg))
7690 spill_reg_store[regno] = 0;
7691
7692 for (k = 0; k < nregs; k++)
7693 {
7694 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
7695 reg_reloaded_contents[regno + k]
7696 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
7697 ? in_regno
7698 : in_regno + k);
7699 reg_reloaded_insn[regno + k] = insn;
7700 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
7701 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
7702 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7703 regno + k);
7704 else
7705 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7706 regno + k);
7707 }
7708 }
7709 }
7710 }
7711
7712 /* The following if-statement was #if 0'd in 1.34 (or before...).
7713 It's reenabled in 1.35 because supposedly nothing else
7714 deals with this problem. */
7715
7716 /* If a register gets output-reloaded from a non-spill register,
7717 that invalidates any previous reloaded copy of it.
7718 But forget_old_reloads_1 won't get to see it, because
7719 it thinks only about the original insn. So invalidate it here.
7720 Also do the same thing for RELOAD_OTHER constraints where the
7721 output is discarded. */
7722 if (i < 0
7723 && ((rld[r].out != 0
7724 && (REG_P (rld[r].out)
7725 || (MEM_P (rld[r].out)
7726 && REG_P (rld[r].out_reg))))
7727 || (rld[r].out == 0 && rld[r].out_reg
7728 && REG_P (rld[r].out_reg))))
7729 {
7730 rtx out = ((rld[r].out && REG_P (rld[r].out))
7731 ? rld[r].out : rld[r].out_reg);
7732 int out_regno = REGNO (out);
7733 enum machine_mode mode = GET_MODE (out);
7734
7735 /* REG_RTX is now set or clobbered by the main instruction.
7736 As the comment above explains, forget_old_reloads_1 only
7737 sees the original instruction, and there is no guarantee
7738 that the original instruction also clobbered REG_RTX.
7739 For example, if find_reloads sees that the input side of
7740 a matched operand pair dies in this instruction, it may
7741 use the input register as the reload register.
7742
7743 Calling forget_old_reloads_1 is a waste of effort if
7744 REG_RTX is also the output register.
7745
7746 If we know that REG_RTX holds the value of a pseudo
7747 register, the code after the call will record that fact. */
7748 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
7749 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
7750
7751 if (!HARD_REGISTER_NUM_P (out_regno))
7752 {
7753 rtx src_reg, store_insn = NULL_RTX;
7754
7755 reg_last_reload_reg[out_regno] = 0;
7756
7757 /* If we can find a hard register that is stored, record
7758 the storing insn so that we may delete this insn with
7759 delete_output_reload. */
7760 src_reg = reload_reg_rtx_for_output[r];
7761
7762 /* If this is an optional reload, try to find the source reg
7763 from an input reload. */
7764 if (! src_reg)
7765 {
7766 rtx set = single_set (insn);
7767 if (set && SET_DEST (set) == rld[r].out)
7768 {
7769 int k;
7770
7771 src_reg = SET_SRC (set);
7772 store_insn = insn;
7773 for (k = 0; k < n_reloads; k++)
7774 {
7775 if (rld[k].in == src_reg)
7776 {
7777 src_reg = reload_reg_rtx_for_input[k];
7778 break;
7779 }
7780 }
7781 }
7782 }
7783 else
7784 store_insn = new_spill_reg_store[REGNO (src_reg)];
7785 if (src_reg && REG_P (src_reg)
7786 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7787 {
7788 int src_regno, src_nregs, k;
7789 rtx note;
7790
7791 gcc_assert (GET_MODE (src_reg) == mode);
7792 src_regno = REGNO (src_reg);
7793 src_nregs = hard_regno_nregs[src_regno][mode];
7794 /* The place where to find a death note varies with
7795 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7796 necessarily checked exactly in the code that moves
7797 notes, so just check both locations. */
7798 note = find_regno_note (insn, REG_DEAD, src_regno);
7799 if (! note && store_insn)
7800 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7801 for (k = 0; k < src_nregs; k++)
7802 {
7803 spill_reg_store[src_regno + k] = store_insn;
7804 spill_reg_stored_to[src_regno + k] = out;
7805 reg_reloaded_contents[src_regno + k] = out_regno;
7806 reg_reloaded_insn[src_regno + k] = store_insn;
7807 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
7808 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
7809 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
7810 mode))
7811 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7812 src_regno + k);
7813 else
7814 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7815 src_regno + k);
7816 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
7817 if (note)
7818 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7819 else
7820 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7821 }
7822 reg_last_reload_reg[out_regno] = src_reg;
7823 /* We have to set reg_has_output_reload here, or else
7824 forget_old_reloads_1 will clear reg_last_reload_reg
7825 right away. */
7826 SET_REGNO_REG_SET (&reg_has_output_reload,
7827 out_regno);
7828 }
7829 }
7830 else
7831 {
7832 int k, out_nregs = hard_regno_nregs[out_regno][mode];
7833
7834 for (k = 0; k < out_nregs; k++)
7835 reg_last_reload_reg[out_regno + k] = 0;
7836 }
7837 }
7838 }
7839 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7840 }
7841 \f
7842 /* Go through the motions to emit INSN and test if it is strictly valid.
7843 Return the emitted insn if valid, else return NULL. */
7844
7845 static rtx
7846 emit_insn_if_valid_for_reload (rtx insn)
7847 {
7848 rtx last = get_last_insn ();
7849 int code;
7850
7851 insn = emit_insn (insn);
7852 code = recog_memoized (insn);
7853
7854 if (code >= 0)
7855 {
7856 extract_insn (insn);
7857 /* We want constrain operands to treat this insn strictly in its
7858 validity determination, i.e., the way it would after reload has
7859 completed. */
7860 if (constrain_operands (1))
7861 return insn;
7862 }
7863
7864 delete_insns_since (last);
7865 return NULL;
7866 }
7867
7868 /* Emit code to perform a reload from IN (which may be a reload register) to
7869 OUT (which may also be a reload register). IN or OUT is from operand
7870 OPNUM with reload type TYPE.
7871
7872 Returns first insn emitted. */
7873
7874 static rtx
7875 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7876 {
7877 rtx last = get_last_insn ();
7878 rtx tem;
7879
7880 /* If IN is a paradoxical SUBREG, remove it and try to put the
7881 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7882 if (GET_CODE (in) == SUBREG
7883 && (GET_MODE_SIZE (GET_MODE (in))
7884 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7885 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7886 in = SUBREG_REG (in), out = tem;
7887 else if (GET_CODE (out) == SUBREG
7888 && (GET_MODE_SIZE (GET_MODE (out))
7889 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7890 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7891 out = SUBREG_REG (out), in = tem;
7892
7893 /* How to do this reload can get quite tricky. Normally, we are being
7894 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7895 register that didn't get a hard register. In that case we can just
7896 call emit_move_insn.
7897
7898 We can also be asked to reload a PLUS that adds a register or a MEM to
7899 another register, constant or MEM. This can occur during frame pointer
7900 elimination and while reloading addresses. This case is handled by
7901 trying to emit a single insn to perform the add. If it is not valid,
7902 we use a two insn sequence.
7903
7904 Or we can be asked to reload an unary operand that was a fragment of
7905 an addressing mode, into a register. If it isn't recognized as-is,
7906 we try making the unop operand and the reload-register the same:
7907 (set reg:X (unop:X expr:Y))
7908 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
7909
7910 Finally, we could be called to handle an 'o' constraint by putting
7911 an address into a register. In that case, we first try to do this
7912 with a named pattern of "reload_load_address". If no such pattern
7913 exists, we just emit a SET insn and hope for the best (it will normally
7914 be valid on machines that use 'o').
7915
7916 This entire process is made complex because reload will never
7917 process the insns we generate here and so we must ensure that
7918 they will fit their constraints and also by the fact that parts of
7919 IN might be being reloaded separately and replaced with spill registers.
7920 Because of this, we are, in some sense, just guessing the right approach
7921 here. The one listed above seems to work.
7922
7923 ??? At some point, this whole thing needs to be rethought. */
7924
7925 if (GET_CODE (in) == PLUS
7926 && (REG_P (XEXP (in, 0))
7927 || GET_CODE (XEXP (in, 0)) == SUBREG
7928 || MEM_P (XEXP (in, 0)))
7929 && (REG_P (XEXP (in, 1))
7930 || GET_CODE (XEXP (in, 1)) == SUBREG
7931 || CONSTANT_P (XEXP (in, 1))
7932 || MEM_P (XEXP (in, 1))))
7933 {
7934 /* We need to compute the sum of a register or a MEM and another
7935 register, constant, or MEM, and put it into the reload
7936 register. The best possible way of doing this is if the machine
7937 has a three-operand ADD insn that accepts the required operands.
7938
7939 The simplest approach is to try to generate such an insn and see if it
7940 is recognized and matches its constraints. If so, it can be used.
7941
7942 It might be better not to actually emit the insn unless it is valid,
7943 but we need to pass the insn as an operand to `recog' and
7944 `extract_insn' and it is simpler to emit and then delete the insn if
7945 not valid than to dummy things up. */
7946
7947 rtx op0, op1, tem, insn;
7948 int code;
7949
7950 op0 = find_replacement (&XEXP (in, 0));
7951 op1 = find_replacement (&XEXP (in, 1));
7952
7953 /* Since constraint checking is strict, commutativity won't be
7954 checked, so we need to do that here to avoid spurious failure
7955 if the add instruction is two-address and the second operand
7956 of the add is the same as the reload reg, which is frequently
7957 the case. If the insn would be A = B + A, rearrange it so
7958 it will be A = A + B as constrain_operands expects. */
7959
7960 if (REG_P (XEXP (in, 1))
7961 && REGNO (out) == REGNO (XEXP (in, 1)))
7962 tem = op0, op0 = op1, op1 = tem;
7963
7964 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7965 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7966
7967 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
7968 if (insn)
7969 return insn;
7970
7971 /* If that failed, we must use a conservative two-insn sequence.
7972
7973 Use a move to copy one operand into the reload register. Prefer
7974 to reload a constant, MEM or pseudo since the move patterns can
7975 handle an arbitrary operand. If OP1 is not a constant, MEM or
7976 pseudo and OP1 is not a valid operand for an add instruction, then
7977 reload OP1.
7978
7979 After reloading one of the operands into the reload register, add
7980 the reload register to the output register.
7981
7982 If there is another way to do this for a specific machine, a
7983 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7984 we emit below. */
7985
7986 code = (int) optab_handler (add_optab, GET_MODE (out))->insn_code;
7987
7988 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7989 || (REG_P (op1)
7990 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7991 || (code != CODE_FOR_nothing
7992 && ! ((*insn_data[code].operand[2].predicate)
7993 (op1, insn_data[code].operand[2].mode))))
7994 tem = op0, op0 = op1, op1 = tem;
7995
7996 gen_reload (out, op0, opnum, type);
7997
7998 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7999 This fixes a problem on the 32K where the stack pointer cannot
8000 be used as an operand of an add insn. */
8001
8002 if (rtx_equal_p (op0, op1))
8003 op1 = out;
8004
8005 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8006 if (insn)
8007 {
8008 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8009 set_unique_reg_note (insn, REG_EQUIV, in);
8010 return insn;
8011 }
8012
8013 /* If that failed, copy the address register to the reload register.
8014 Then add the constant to the reload register. */
8015
8016 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8017 gen_reload (out, op1, opnum, type);
8018 insn = emit_insn (gen_add2_insn (out, op0));
8019 set_unique_reg_note (insn, REG_EQUIV, in);
8020 }
8021
8022 #ifdef SECONDARY_MEMORY_NEEDED
8023 /* If we need a memory location to do the move, do it that way. */
8024 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
8025 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8026 && (REG_P (out) || GET_CODE (out) == SUBREG)
8027 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8028 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8029 REGNO_REG_CLASS (reg_or_subregno (out)),
8030 GET_MODE (out)))
8031 {
8032 /* Get the memory to use and rewrite both registers to its mode. */
8033 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8034
8035 if (GET_MODE (loc) != GET_MODE (out))
8036 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8037
8038 if (GET_MODE (loc) != GET_MODE (in))
8039 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8040
8041 gen_reload (loc, in, opnum, type);
8042 gen_reload (out, loc, opnum, type);
8043 }
8044 #endif
8045 else if (REG_P (out) && UNARY_P (in))
8046 {
8047 rtx insn;
8048 rtx op1;
8049 rtx out_moded;
8050 rtx set;
8051
8052 op1 = find_replacement (&XEXP (in, 0));
8053 if (op1 != XEXP (in, 0))
8054 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8055
8056 /* First, try a plain SET. */
8057 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8058 if (set)
8059 return set;
8060
8061 /* If that failed, move the inner operand to the reload
8062 register, and try the same unop with the inner expression
8063 replaced with the reload register. */
8064
8065 if (GET_MODE (op1) != GET_MODE (out))
8066 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8067 else
8068 out_moded = out;
8069
8070 gen_reload (out_moded, op1, opnum, type);
8071
8072 insn
8073 = gen_rtx_SET (VOIDmode, out,
8074 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8075 out_moded));
8076 insn = emit_insn_if_valid_for_reload (insn);
8077 if (insn)
8078 {
8079 set_unique_reg_note (insn, REG_EQUIV, in);
8080 return insn;
8081 }
8082
8083 fatal_insn ("Failure trying to reload:", set);
8084 }
8085 /* If IN is a simple operand, use gen_move_insn. */
8086 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8087 {
8088 tem = emit_insn (gen_move_insn (out, in));
8089 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8090 mark_jump_label (in, tem, 0);
8091 }
8092
8093 #ifdef HAVE_reload_load_address
8094 else if (HAVE_reload_load_address)
8095 emit_insn (gen_reload_load_address (out, in));
8096 #endif
8097
8098 /* Otherwise, just write (set OUT IN) and hope for the best. */
8099 else
8100 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8101
8102 /* Return the first insn emitted.
8103 We can not just return get_last_insn, because there may have
8104 been multiple instructions emitted. Also note that gen_move_insn may
8105 emit more than one insn itself, so we can not assume that there is one
8106 insn emitted per emit_insn_before call. */
8107
8108 return last ? NEXT_INSN (last) : get_insns ();
8109 }
8110 \f
8111 /* Delete a previously made output-reload whose result we now believe
8112 is not needed. First we double-check.
8113
8114 INSN is the insn now being processed.
8115 LAST_RELOAD_REG is the hard register number for which we want to delete
8116 the last output reload.
8117 J is the reload-number that originally used REG. The caller has made
8118 certain that reload J doesn't use REG any longer for input.
8119 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8120
8121 static void
8122 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8123 {
8124 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8125 rtx reg = spill_reg_stored_to[last_reload_reg];
8126 int k;
8127 int n_occurrences;
8128 int n_inherited = 0;
8129 rtx i1;
8130 rtx substed;
8131
8132 /* It is possible that this reload has been only used to set another reload
8133 we eliminated earlier and thus deleted this instruction too. */
8134 if (INSN_DELETED_P (output_reload_insn))
8135 return;
8136
8137 /* Get the raw pseudo-register referred to. */
8138
8139 while (GET_CODE (reg) == SUBREG)
8140 reg = SUBREG_REG (reg);
8141 substed = reg_equiv_memory_loc[REGNO (reg)];
8142
8143 /* This is unsafe if the operand occurs more often in the current
8144 insn than it is inherited. */
8145 for (k = n_reloads - 1; k >= 0; k--)
8146 {
8147 rtx reg2 = rld[k].in;
8148 if (! reg2)
8149 continue;
8150 if (MEM_P (reg2) || reload_override_in[k])
8151 reg2 = rld[k].in_reg;
8152 #ifdef AUTO_INC_DEC
8153 if (rld[k].out && ! rld[k].out_reg)
8154 reg2 = XEXP (rld[k].in_reg, 0);
8155 #endif
8156 while (GET_CODE (reg2) == SUBREG)
8157 reg2 = SUBREG_REG (reg2);
8158 if (rtx_equal_p (reg2, reg))
8159 {
8160 if (reload_inherited[k] || reload_override_in[k] || k == j)
8161 n_inherited++;
8162 else
8163 return;
8164 }
8165 }
8166 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8167 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8168 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8169 reg, 0);
8170 if (substed)
8171 n_occurrences += count_occurrences (PATTERN (insn),
8172 eliminate_regs (substed, 0,
8173 NULL_RTX), 0);
8174 for (i1 = reg_equiv_alt_mem_list [REGNO (reg)]; i1; i1 = XEXP (i1, 1))
8175 {
8176 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8177 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8178 }
8179 if (n_occurrences > n_inherited)
8180 return;
8181
8182 /* If the pseudo-reg we are reloading is no longer referenced
8183 anywhere between the store into it and here,
8184 and we're within the same basic block, then the value can only
8185 pass through the reload reg and end up here.
8186 Otherwise, give up--return. */
8187 for (i1 = NEXT_INSN (output_reload_insn);
8188 i1 != insn; i1 = NEXT_INSN (i1))
8189 {
8190 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8191 return;
8192 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8193 && reg_mentioned_p (reg, PATTERN (i1)))
8194 {
8195 /* If this is USE in front of INSN, we only have to check that
8196 there are no more references than accounted for by inheritance. */
8197 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8198 {
8199 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8200 i1 = NEXT_INSN (i1);
8201 }
8202 if (n_occurrences <= n_inherited && i1 == insn)
8203 break;
8204 return;
8205 }
8206 }
8207
8208 /* We will be deleting the insn. Remove the spill reg information. */
8209 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8210 {
8211 spill_reg_store[last_reload_reg + k] = 0;
8212 spill_reg_stored_to[last_reload_reg + k] = 0;
8213 }
8214
8215 /* The caller has already checked that REG dies or is set in INSN.
8216 It has also checked that we are optimizing, and thus some
8217 inaccuracies in the debugging information are acceptable.
8218 So we could just delete output_reload_insn. But in some cases
8219 we can improve the debugging information without sacrificing
8220 optimization - maybe even improving the code: See if the pseudo
8221 reg has been completely replaced with reload regs. If so, delete
8222 the store insn and forget we had a stack slot for the pseudo. */
8223 if (rld[j].out != rld[j].in
8224 && REG_N_DEATHS (REGNO (reg)) == 1
8225 && REG_N_SETS (REGNO (reg)) == 1
8226 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8227 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8228 {
8229 rtx i2;
8230
8231 /* We know that it was used only between here and the beginning of
8232 the current basic block. (We also know that the last use before
8233 INSN was the output reload we are thinking of deleting, but never
8234 mind that.) Search that range; see if any ref remains. */
8235 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8236 {
8237 rtx set = single_set (i2);
8238
8239 /* Uses which just store in the pseudo don't count,
8240 since if they are the only uses, they are dead. */
8241 if (set != 0 && SET_DEST (set) == reg)
8242 continue;
8243 if (LABEL_P (i2)
8244 || JUMP_P (i2))
8245 break;
8246 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8247 && reg_mentioned_p (reg, PATTERN (i2)))
8248 {
8249 /* Some other ref remains; just delete the output reload we
8250 know to be dead. */
8251 delete_address_reloads (output_reload_insn, insn);
8252 delete_insn (output_reload_insn);
8253 return;
8254 }
8255 }
8256
8257 /* Delete the now-dead stores into this pseudo. Note that this
8258 loop also takes care of deleting output_reload_insn. */
8259 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8260 {
8261 rtx set = single_set (i2);
8262
8263 if (set != 0 && SET_DEST (set) == reg)
8264 {
8265 delete_address_reloads (i2, insn);
8266 delete_insn (i2);
8267 }
8268 if (LABEL_P (i2)
8269 || JUMP_P (i2))
8270 break;
8271 }
8272
8273 /* For the debugging info, say the pseudo lives in this reload reg. */
8274 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8275 alter_reg (REGNO (reg), -1);
8276 }
8277 else
8278 {
8279 delete_address_reloads (output_reload_insn, insn);
8280 delete_insn (output_reload_insn);
8281 }
8282 }
8283
8284 /* We are going to delete DEAD_INSN. Recursively delete loads of
8285 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8286 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8287 static void
8288 delete_address_reloads (rtx dead_insn, rtx current_insn)
8289 {
8290 rtx set = single_set (dead_insn);
8291 rtx set2, dst, prev, next;
8292 if (set)
8293 {
8294 rtx dst = SET_DEST (set);
8295 if (MEM_P (dst))
8296 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8297 }
8298 /* If we deleted the store from a reloaded post_{in,de}c expression,
8299 we can delete the matching adds. */
8300 prev = PREV_INSN (dead_insn);
8301 next = NEXT_INSN (dead_insn);
8302 if (! prev || ! next)
8303 return;
8304 set = single_set (next);
8305 set2 = single_set (prev);
8306 if (! set || ! set2
8307 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8308 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
8309 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
8310 return;
8311 dst = SET_DEST (set);
8312 if (! rtx_equal_p (dst, SET_DEST (set2))
8313 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8314 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8315 || (INTVAL (XEXP (SET_SRC (set), 1))
8316 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8317 return;
8318 delete_related_insns (prev);
8319 delete_related_insns (next);
8320 }
8321
8322 /* Subfunction of delete_address_reloads: process registers found in X. */
8323 static void
8324 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8325 {
8326 rtx prev, set, dst, i2;
8327 int i, j;
8328 enum rtx_code code = GET_CODE (x);
8329
8330 if (code != REG)
8331 {
8332 const char *fmt = GET_RTX_FORMAT (code);
8333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8334 {
8335 if (fmt[i] == 'e')
8336 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8337 else if (fmt[i] == 'E')
8338 {
8339 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8340 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8341 current_insn);
8342 }
8343 }
8344 return;
8345 }
8346
8347 if (spill_reg_order[REGNO (x)] < 0)
8348 return;
8349
8350 /* Scan backwards for the insn that sets x. This might be a way back due
8351 to inheritance. */
8352 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8353 {
8354 code = GET_CODE (prev);
8355 if (code == CODE_LABEL || code == JUMP_INSN)
8356 return;
8357 if (!INSN_P (prev))
8358 continue;
8359 if (reg_set_p (x, PATTERN (prev)))
8360 break;
8361 if (reg_referenced_p (x, PATTERN (prev)))
8362 return;
8363 }
8364 if (! prev || INSN_UID (prev) < reload_first_uid)
8365 return;
8366 /* Check that PREV only sets the reload register. */
8367 set = single_set (prev);
8368 if (! set)
8369 return;
8370 dst = SET_DEST (set);
8371 if (!REG_P (dst)
8372 || ! rtx_equal_p (dst, x))
8373 return;
8374 if (! reg_set_p (dst, PATTERN (dead_insn)))
8375 {
8376 /* Check if DST was used in a later insn -
8377 it might have been inherited. */
8378 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8379 {
8380 if (LABEL_P (i2))
8381 break;
8382 if (! INSN_P (i2))
8383 continue;
8384 if (reg_referenced_p (dst, PATTERN (i2)))
8385 {
8386 /* If there is a reference to the register in the current insn,
8387 it might be loaded in a non-inherited reload. If no other
8388 reload uses it, that means the register is set before
8389 referenced. */
8390 if (i2 == current_insn)
8391 {
8392 for (j = n_reloads - 1; j >= 0; j--)
8393 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8394 || reload_override_in[j] == dst)
8395 return;
8396 for (j = n_reloads - 1; j >= 0; j--)
8397 if (rld[j].in && rld[j].reg_rtx == dst)
8398 break;
8399 if (j >= 0)
8400 break;
8401 }
8402 return;
8403 }
8404 if (JUMP_P (i2))
8405 break;
8406 /* If DST is still live at CURRENT_INSN, check if it is used for
8407 any reload. Note that even if CURRENT_INSN sets DST, we still
8408 have to check the reloads. */
8409 if (i2 == current_insn)
8410 {
8411 for (j = n_reloads - 1; j >= 0; j--)
8412 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8413 || reload_override_in[j] == dst)
8414 return;
8415 /* ??? We can't finish the loop here, because dst might be
8416 allocated to a pseudo in this block if no reload in this
8417 block needs any of the classes containing DST - see
8418 spill_hard_reg. There is no easy way to tell this, so we
8419 have to scan till the end of the basic block. */
8420 }
8421 if (reg_set_p (dst, PATTERN (i2)))
8422 break;
8423 }
8424 }
8425 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8426 reg_reloaded_contents[REGNO (dst)] = -1;
8427 delete_insn (prev);
8428 }
8429 \f
8430 /* Output reload-insns to reload VALUE into RELOADREG.
8431 VALUE is an autoincrement or autodecrement RTX whose operand
8432 is a register or memory location;
8433 so reloading involves incrementing that location.
8434 IN is either identical to VALUE, or some cheaper place to reload from.
8435
8436 INC_AMOUNT is the number to increment or decrement by (always positive).
8437 This cannot be deduced from VALUE.
8438
8439 Return the instruction that stores into RELOADREG. */
8440
8441 static rtx
8442 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8443 {
8444 /* REG or MEM to be copied and incremented. */
8445 rtx incloc = find_replacement (&XEXP (value, 0));
8446 /* Nonzero if increment after copying. */
8447 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8448 || GET_CODE (value) == POST_MODIFY);
8449 rtx last;
8450 rtx inc;
8451 rtx add_insn;
8452 int code;
8453 rtx store;
8454 rtx real_in = in == value ? incloc : in;
8455
8456 /* No hard register is equivalent to this register after
8457 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8458 we could inc/dec that register as well (maybe even using it for
8459 the source), but I'm not sure it's worth worrying about. */
8460 if (REG_P (incloc))
8461 reg_last_reload_reg[REGNO (incloc)] = 0;
8462
8463 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8464 {
8465 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8466 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8467 }
8468 else
8469 {
8470 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
8471 inc_amount = -inc_amount;
8472
8473 inc = GEN_INT (inc_amount);
8474 }
8475
8476 /* If this is post-increment, first copy the location to the reload reg. */
8477 if (post && real_in != reloadreg)
8478 emit_insn (gen_move_insn (reloadreg, real_in));
8479
8480 if (in == value)
8481 {
8482 /* See if we can directly increment INCLOC. Use a method similar to
8483 that in gen_reload. */
8484
8485 last = get_last_insn ();
8486 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8487 gen_rtx_PLUS (GET_MODE (incloc),
8488 incloc, inc)));
8489
8490 code = recog_memoized (add_insn);
8491 if (code >= 0)
8492 {
8493 extract_insn (add_insn);
8494 if (constrain_operands (1))
8495 {
8496 /* If this is a pre-increment and we have incremented the value
8497 where it lives, copy the incremented value to RELOADREG to
8498 be used as an address. */
8499
8500 if (! post)
8501 emit_insn (gen_move_insn (reloadreg, incloc));
8502
8503 return add_insn;
8504 }
8505 }
8506 delete_insns_since (last);
8507 }
8508
8509 /* If couldn't do the increment directly, must increment in RELOADREG.
8510 The way we do this depends on whether this is pre- or post-increment.
8511 For pre-increment, copy INCLOC to the reload register, increment it
8512 there, then save back. */
8513
8514 if (! post)
8515 {
8516 if (in != reloadreg)
8517 emit_insn (gen_move_insn (reloadreg, real_in));
8518 emit_insn (gen_add2_insn (reloadreg, inc));
8519 store = emit_insn (gen_move_insn (incloc, reloadreg));
8520 }
8521 else
8522 {
8523 /* Postincrement.
8524 Because this might be a jump insn or a compare, and because RELOADREG
8525 may not be available after the insn in an input reload, we must do
8526 the incrementation before the insn being reloaded for.
8527
8528 We have already copied IN to RELOADREG. Increment the copy in
8529 RELOADREG, save that back, then decrement RELOADREG so it has
8530 the original value. */
8531
8532 emit_insn (gen_add2_insn (reloadreg, inc));
8533 store = emit_insn (gen_move_insn (incloc, reloadreg));
8534 if (GET_CODE (inc) == CONST_INT)
8535 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
8536 else
8537 emit_insn (gen_sub2_insn (reloadreg, inc));
8538 }
8539
8540 return store;
8541 }
8542 \f
8543 #ifdef AUTO_INC_DEC
8544 static void
8545 add_auto_inc_notes (rtx insn, rtx x)
8546 {
8547 enum rtx_code code = GET_CODE (x);
8548 const char *fmt;
8549 int i, j;
8550
8551 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8552 {
8553 REG_NOTES (insn)
8554 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8555 return;
8556 }
8557
8558 /* Scan all the operand sub-expressions. */
8559 fmt = GET_RTX_FORMAT (code);
8560 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8561 {
8562 if (fmt[i] == 'e')
8563 add_auto_inc_notes (insn, XEXP (x, i));
8564 else if (fmt[i] == 'E')
8565 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8566 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8567 }
8568 }
8569 #endif
8570
8571 /* Copy EH notes from an insn to its reloads. */
8572 static void
8573 copy_eh_notes (rtx insn, rtx x)
8574 {
8575 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8576 if (eh_note)
8577 {
8578 for (; x != 0; x = NEXT_INSN (x))
8579 {
8580 if (may_trap_p (PATTERN (x)))
8581 REG_NOTES (x)
8582 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8583 REG_NOTES (x));
8584 }
8585 }
8586 }
8587
8588 /* This is used by reload pass, that does emit some instructions after
8589 abnormal calls moving basic block end, but in fact it wants to emit
8590 them on the edge. Looks for abnormal call edges, find backward the
8591 proper call and fix the damage.
8592
8593 Similar handle instructions throwing exceptions internally. */
8594 void
8595 fixup_abnormal_edges (void)
8596 {
8597 bool inserted = false;
8598 basic_block bb;
8599
8600 FOR_EACH_BB (bb)
8601 {
8602 edge e;
8603 edge_iterator ei;
8604
8605 /* Look for cases we are interested in - calls or instructions causing
8606 exceptions. */
8607 FOR_EACH_EDGE (e, ei, bb->succs)
8608 {
8609 if (e->flags & EDGE_ABNORMAL_CALL)
8610 break;
8611 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8612 == (EDGE_ABNORMAL | EDGE_EH))
8613 break;
8614 }
8615 if (e && !CALL_P (BB_END (bb))
8616 && !can_throw_internal (BB_END (bb)))
8617 {
8618 rtx insn;
8619
8620 /* Get past the new insns generated. Allow notes, as the insns
8621 may be already deleted. */
8622 insn = BB_END (bb);
8623 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8624 && !can_throw_internal (insn)
8625 && insn != BB_HEAD (bb))
8626 insn = PREV_INSN (insn);
8627
8628 if (CALL_P (insn) || can_throw_internal (insn))
8629 {
8630 rtx stop, next;
8631
8632 stop = NEXT_INSN (BB_END (bb));
8633 BB_END (bb) = insn;
8634 insn = NEXT_INSN (insn);
8635
8636 FOR_EACH_EDGE (e, ei, bb->succs)
8637 if (e->flags & EDGE_FALLTHRU)
8638 break;
8639
8640 while (insn && insn != stop)
8641 {
8642 next = NEXT_INSN (insn);
8643 if (INSN_P (insn))
8644 {
8645 delete_insn (insn);
8646
8647 /* Sometimes there's still the return value USE.
8648 If it's placed after a trapping call (i.e. that
8649 call is the last insn anyway), we have no fallthru
8650 edge. Simply delete this use and don't try to insert
8651 on the non-existent edge. */
8652 if (GET_CODE (PATTERN (insn)) != USE)
8653 {
8654 /* We're not deleting it, we're moving it. */
8655 INSN_DELETED_P (insn) = 0;
8656 PREV_INSN (insn) = NULL_RTX;
8657 NEXT_INSN (insn) = NULL_RTX;
8658
8659 insert_insn_on_edge (insn, e);
8660 inserted = true;
8661 }
8662 }
8663 else if (!BARRIER_P (insn))
8664 set_block_for_insn (insn, NULL);
8665 insn = next;
8666 }
8667 }
8668
8669 /* It may be that we don't find any such trapping insn. In this
8670 case we discovered quite late that the insn that had been
8671 marked as can_throw_internal in fact couldn't trap at all.
8672 So we should in fact delete the EH edges out of the block. */
8673 else
8674 purge_dead_edges (bb);
8675 }
8676 }
8677
8678 /* We've possibly turned single trapping insn into multiple ones. */
8679 if (flag_non_call_exceptions)
8680 {
8681 sbitmap blocks;
8682 blocks = sbitmap_alloc (last_basic_block);
8683 sbitmap_ones (blocks);
8684 find_many_sub_basic_blocks (blocks);
8685 sbitmap_free (blocks);
8686 }
8687
8688 if (inserted)
8689 commit_edge_insertions ();
8690
8691 #ifdef ENABLE_CHECKING
8692 /* Verify that we didn't turn one trapping insn into many, and that
8693 we found and corrected all of the problems wrt fixups on the
8694 fallthru edge. */
8695 verify_flow_info ();
8696 #endif
8697 }