[Ada] Argument_String_To_List creates empty items from whitespace
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 poly_int64_pod initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 poly_int64_pod offset; /* Current offset between the two regs. */
270 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
455 }
456
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
459 {
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
462 }
463
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
467 }
468
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
471
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
475 {
476 struct insn_chain *c;
477
478 if (unused_insn_chains == 0)
479 {
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
483 }
484 else
485 {
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
488 }
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
494 }
495
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
498
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
501 {
502 unsigned int regno;
503 reg_set_iterator rsi;
504
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
506 {
507 int r = reg_renumber[regno];
508
509 if (r < 0)
510 {
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
516 }
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
519 }
520 }
521
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
524
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
527 {
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
532
533 if (! x)
534 return;
535
536 code = GET_CODE (x);
537 if (code == REG)
538 {
539 unsigned int regno = REGNO (x);
540
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
543
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
546 {
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
550 }
551
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
561 {
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
565 }
566
567 return;
568 }
569 else if (code == MEM)
570 {
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
573 }
574
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
583 }
584
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
587
588 static bool
589 has_nonexceptional_receiver (void)
590 {
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
594
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
598
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
601
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
604
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
608
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
611 {
612 bb = *--tos;
613
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
616 {
617 basic_block src = e->src;
618
619 if (!(src->flags & BB_REACHABLE))
620 {
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
623 }
624 }
625 }
626 free (worklist);
627
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
633
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
636 }
637
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
640
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
644 {
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
649
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
654 }
655
656 \f
657 /* Global variables used by reload and its subroutines. */
658
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
661
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
668
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
671
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
674
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
683 {
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
685 {
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
687 {
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
690 {
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
692
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
700 ;
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
705 }
706 }
707 }
708 }
709
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
713 {
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
718
719 if (can_throw_internal (insn))
720 return false;
721
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
724
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
726 {
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
730 }
731 return false;
732 }
733
734 /* Main entry point for the reload pass.
735
736 FIRST is the first insn of the function being compiled.
737
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
743
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
747
748 bool
749 reload (rtx_insn *first, int global)
750 {
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
756
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
759
760 failure = 0;
761
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
763
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
767
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
770
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
773
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
777
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
781
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
788
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
795
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
800
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
805
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
810
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
816
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
818
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
821
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
825
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
829
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
834
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
837
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847
848 maybe_fix_stack_asms ();
849
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
852
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
855
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 {
863 int from = ep->from;
864 int can_eliminate = 0;
865 do
866 {
867 can_eliminate |= ep->can_eliminate;
868 ep++;
869 }
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
873 }
874
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877
878 finish_spills (global);
879
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
884
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
888 {
889 int something_changed;
890 poly_int64 starting_frame_size;
891
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
894
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
897
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
902
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
905
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
912
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
918
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
921
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
924 {
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
927
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
942 {
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
952 }
953 }
954
955 if (caller_save_needed)
956 setup_save_areas ();
957
958 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
959 {
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
969 }
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled
972 || maybe_ne (starting_frame_size, get_frame_size ()))
973 {
974 if (update_eliminables_and_spill ())
975 finish_spills (0);
976 continue;
977 }
978
979 if (caller_save_needed)
980 {
981 save_call_clobbered_regs ();
982 /* That might have allocated new insn_chain structures. */
983 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
984 }
985
986 calculate_needs_all_insns (global);
987
988 if (! ira_conflicts_p)
989 /* Don't do it for IRA. We need this info because we don't
990 change live_throughout and dead_or_set for chains when IRA
991 is used. */
992 CLEAR_REG_SET (&spilled_pseudos);
993
994 something_changed = 0;
995
996 /* If we allocated any new memory locations, make another pass
997 since it might have changed elimination offsets. */
998 if (something_was_spilled
999 || maybe_ne (starting_frame_size, get_frame_size ()))
1000 something_changed = 1;
1001
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1008
1009 if (update_eliminables_and_spill ())
1010 {
1011 finish_spills (0);
1012 something_changed = 1;
1013 }
1014 else
1015 {
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1021 }
1022
1023 if (! something_changed)
1024 break;
1025
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1028
1029 obstack_free (&reload_obstack, reload_firstobj);
1030 }
1031
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1038
1039 remove_init_insns ();
1040
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1044
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1047 {
1048 poly_int64 old_frame_size = get_frame_size ();
1049
1050 reload_as_needed (global);
1051
1052 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1053
1054 gcc_assert (verify_initial_elim_offsets ());
1055 }
1056
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1062
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1066
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1070
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1074
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1079
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1084
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1086 {
1087 rtx addr = 0;
1088
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1091
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1094
1095 if (addr)
1096 {
1097 if (reg_renumber[i] < 0)
1098 {
1099 rtx reg = regno_reg_rtx[i];
1100
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1109 }
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1112 }
1113
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1118 {
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1122
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1131
1132 if (equiv == reg)
1133 continue;
1134
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1136 {
1137 insn = DF_REF_INSN (use);
1138
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1144
1145 if (DEBUG_BIND_INSN_P (insn))
1146 {
1147 if (!equiv)
1148 {
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1151 }
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1156 }
1157 }
1158 }
1159 }
1160
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1165
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1173
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1176 {
1177 rtx *pnote;
1178
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1182
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1195 {
1196 delete_insn (insn);
1197 continue;
1198 }
1199
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1206
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1215 {
1216 delete_insn (insn);
1217 continue;
1218 }
1219
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1222 {
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1229 }
1230
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1233
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1236
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1240 {
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1243 {
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1248 }
1249 }
1250 }
1251
1252 free (temp_pseudo_reg_arr);
1253
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1256
1257 free (reg_max_ref_mode);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1261
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1265
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1269
1270 inserted = fixup_abnormal_edges ();
1271
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1274 {
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1278 }
1279
1280 if (inserted)
1281 commit_edge_insertions ();
1282
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1287
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1295
1296 substitute_stack.release ();
1297
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1299
1300 reload_completed = !failure;
1301
1302 return need_dce;
1303 }
1304
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1311
1312 static void
1313 maybe_fix_stack_asms (void)
1314 {
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 struct insn_chain *chain;
1319
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1321 {
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1325
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1332
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1335
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1338 {
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 }
1343
1344 /* Get the operand values and constraints out of the insn. */
1345 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1346 constraints, operand_mode, NULL);
1347
1348 /* For every operand, see what registers are allowed. */
1349 for (i = 0; i < noperands; i++)
1350 {
1351 const char *p = constraints[i];
1352 /* For every alternative, we compute the class of registers allowed
1353 for reloading in CLS, and merge its contents into the reg set
1354 ALLOWED. */
1355 int cls = (int) NO_REGS;
1356
1357 for (;;)
1358 {
1359 char c = *p;
1360
1361 if (c == '\0' || c == ',' || c == '#')
1362 {
1363 /* End of one alternative - mark the regs in the current
1364 class, and reset the class. */
1365 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1366 cls = NO_REGS;
1367 p++;
1368 if (c == '#')
1369 do {
1370 c = *p++;
1371 } while (c != '\0' && c != ',');
1372 if (c == '\0')
1373 break;
1374 continue;
1375 }
1376
1377 switch (c)
1378 {
1379 case 'g':
1380 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1381 break;
1382
1383 default:
1384 enum constraint_num cn = lookup_constraint (p);
1385 if (insn_extra_address_constraint (cn))
1386 cls = (int) reg_class_subunion[cls]
1387 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1388 ADDRESS, SCRATCH)];
1389 else
1390 cls = (int) reg_class_subunion[cls]
1391 [reg_class_for_constraint (cn)];
1392 break;
1393 }
1394 p += CONSTRAINT_LEN (c, p);
1395 }
1396 }
1397 /* Those of the registers which are clobbered, but allowed by the
1398 constraints, must be usable as reload registers. So clear them
1399 out of the life information. */
1400 AND_HARD_REG_SET (allowed, clobbered);
1401 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1402 if (TEST_HARD_REG_BIT (allowed, i))
1403 {
1404 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1405 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1406 }
1407 }
1408
1409 #endif
1410 }
1411 \f
1412 /* Copy the global variables n_reloads and rld into the corresponding elts
1413 of CHAIN. */
1414 static void
1415 copy_reloads (struct insn_chain *chain)
1416 {
1417 chain->n_reloads = n_reloads;
1418 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1419 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1420 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1421 }
1422
1423 /* Walk the chain of insns, and determine for each whether it needs reloads
1424 and/or eliminations. Build the corresponding insns_need_reload list, and
1425 set something_needs_elimination as appropriate. */
1426 static void
1427 calculate_needs_all_insns (int global)
1428 {
1429 struct insn_chain **pprev_reload = &insns_need_reload;
1430 struct insn_chain *chain, *next = 0;
1431
1432 something_needs_elimination = 0;
1433
1434 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1435 for (chain = reload_insn_chain; chain != 0; chain = next)
1436 {
1437 rtx_insn *insn = chain->insn;
1438
1439 next = chain->next;
1440
1441 /* Clear out the shortcuts. */
1442 chain->n_reloads = 0;
1443 chain->need_elim = 0;
1444 chain->need_reload = 0;
1445 chain->need_operand_change = 0;
1446
1447 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1448 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1449 what effects this has on the known offsets at labels. */
1450
1451 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1452 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1453 set_label_offsets (insn, insn, 0);
1454
1455 if (INSN_P (insn))
1456 {
1457 rtx old_body = PATTERN (insn);
1458 int old_code = INSN_CODE (insn);
1459 rtx old_notes = REG_NOTES (insn);
1460 int did_elimination = 0;
1461 int operands_changed = 0;
1462
1463 /* Skip insns that only set an equivalence. */
1464 if (will_delete_init_insn_p (insn))
1465 continue;
1466
1467 /* If needed, eliminate any eliminable registers. */
1468 if (num_eliminable || num_eliminable_invariants)
1469 did_elimination = eliminate_regs_in_insn (insn, 0);
1470
1471 /* Analyze the instruction. */
1472 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1473 global, spill_reg_order);
1474
1475 /* If a no-op set needs more than one reload, this is likely
1476 to be something that needs input address reloads. We
1477 can't get rid of this cleanly later, and it is of no use
1478 anyway, so discard it now.
1479 We only do this when expensive_optimizations is enabled,
1480 since this complements reload inheritance / output
1481 reload deletion, and it can make debugging harder. */
1482 if (flag_expensive_optimizations && n_reloads > 1)
1483 {
1484 rtx set = single_set (insn);
1485 if (set
1486 &&
1487 ((SET_SRC (set) == SET_DEST (set)
1488 && REG_P (SET_SRC (set))
1489 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1490 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1491 && reg_renumber[REGNO (SET_SRC (set))] < 0
1492 && reg_renumber[REGNO (SET_DEST (set))] < 0
1493 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1494 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1495 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1496 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1497 {
1498 if (ira_conflicts_p)
1499 /* Inform IRA about the insn deletion. */
1500 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1501 REGNO (SET_SRC (set)));
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1513 }
1514 }
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1517
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1523
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1526 {
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1532 }
1533
1534 something_needs_operands_changed |= operands_changed;
1535
1536 if (n_reloads != 0)
1537 {
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1541 }
1542 }
1543 }
1544 *pprev_reload = 0;
1545 }
1546 \f
1547 /* This function is called from the register allocator to set up estimates
1548 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1549 an invariant. The structure is similar to calculate_needs_all_insns. */
1550
1551 void
1552 calculate_elim_costs_all_insns (void)
1553 {
1554 int *reg_equiv_init_cost;
1555 basic_block bb;
1556 int i;
1557
1558 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1559 init_elim_table ();
1560 init_eliminable_invariants (get_insns (), false);
1561
1562 set_initial_elim_offsets ();
1563 set_initial_label_offsets ();
1564
1565 FOR_EACH_BB_FN (bb, cfun)
1566 {
1567 rtx_insn *insn;
1568 elim_bb = bb;
1569
1570 FOR_BB_INSNS (bb, insn)
1571 {
1572 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1573 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1574 what effects this has on the known offsets at labels. */
1575
1576 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1577 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1578 set_label_offsets (insn, insn, 0);
1579
1580 if (INSN_P (insn))
1581 {
1582 rtx set = single_set (insn);
1583
1584 /* Skip insns that only set an equivalence. */
1585 if (set && REG_P (SET_DEST (set))
1586 && reg_renumber[REGNO (SET_DEST (set))] < 0
1587 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1588 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1589 {
1590 unsigned regno = REGNO (SET_DEST (set));
1591 rtx_insn_list *init = reg_equiv_init (regno);
1592 if (init)
1593 {
1594 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1595 false, true);
1596 machine_mode mode = GET_MODE (SET_DEST (set));
1597 int cost = set_src_cost (t, mode,
1598 optimize_bb_for_speed_p (bb));
1599 int freq = REG_FREQ_FROM_BB (bb);
1600
1601 reg_equiv_init_cost[regno] = cost * freq;
1602 continue;
1603 }
1604 }
1605 /* If needed, eliminate any eliminable registers. */
1606 if (num_eliminable || num_eliminable_invariants)
1607 elimination_costs_in_insn (insn);
1608
1609 if (num_eliminable)
1610 update_eliminable_offsets ();
1611 }
1612 }
1613 }
1614 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1615 {
1616 if (reg_equiv_invariant (i))
1617 {
1618 if (reg_equiv_init (i))
1619 {
1620 int cost = reg_equiv_init_cost[i];
1621 if (dump_file)
1622 fprintf (dump_file,
1623 "Reg %d has equivalence, initial gains %d\n", i, cost);
1624 if (cost != 0)
1625 ira_adjust_equiv_reg_cost (i, cost);
1626 }
1627 else
1628 {
1629 if (dump_file)
1630 fprintf (dump_file,
1631 "Reg %d had equivalence, but can't be eliminated\n",
1632 i);
1633 ira_adjust_equiv_reg_cost (i, 0);
1634 }
1635 }
1636 }
1637
1638 free (reg_equiv_init_cost);
1639 free (offsets_known_at);
1640 free (offsets_at);
1641 offsets_at = NULL;
1642 offsets_known_at = NULL;
1643 }
1644 \f
1645 /* Comparison function for qsort to decide which of two reloads
1646 should be handled first. *P1 and *P2 are the reload numbers. */
1647
1648 static int
1649 reload_reg_class_lower (const void *r1p, const void *r2p)
1650 {
1651 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1652 int t;
1653
1654 /* Consider required reloads before optional ones. */
1655 t = rld[r1].optional - rld[r2].optional;
1656 if (t != 0)
1657 return t;
1658
1659 /* Count all solitary classes before non-solitary ones. */
1660 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1661 - (reg_class_size[(int) rld[r1].rclass] == 1));
1662 if (t != 0)
1663 return t;
1664
1665 /* Aside from solitaires, consider all multi-reg groups first. */
1666 t = rld[r2].nregs - rld[r1].nregs;
1667 if (t != 0)
1668 return t;
1669
1670 /* Consider reloads in order of increasing reg-class number. */
1671 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1672 if (t != 0)
1673 return t;
1674
1675 /* If reloads are equally urgent, sort by reload number,
1676 so that the results of qsort leave nothing to chance. */
1677 return r1 - r2;
1678 }
1679 \f
1680 /* The cost of spilling each hard reg. */
1681 static int spill_cost[FIRST_PSEUDO_REGISTER];
1682
1683 /* When spilling multiple hard registers, we use SPILL_COST for the first
1684 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1685 only the first hard reg for a multi-reg pseudo. */
1686 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1687
1688 /* Map of hard regno to pseudo regno currently occupying the hard
1689 reg. */
1690 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1691
1692 /* Update the spill cost arrays, considering that pseudo REG is live. */
1693
1694 static void
1695 count_pseudo (int reg)
1696 {
1697 int freq = REG_FREQ (reg);
1698 int r = reg_renumber[reg];
1699 int nregs;
1700
1701 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1702 if (ira_conflicts_p && r < 0)
1703 return;
1704
1705 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1706 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1707 return;
1708
1709 SET_REGNO_REG_SET (&pseudos_counted, reg);
1710
1711 gcc_assert (r >= 0);
1712
1713 spill_add_cost[r] += freq;
1714 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1715 while (nregs-- > 0)
1716 {
1717 hard_regno_to_pseudo_regno[r + nregs] = reg;
1718 spill_cost[r + nregs] += freq;
1719 }
1720 }
1721
1722 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1723 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1724
1725 static void
1726 order_regs_for_reload (struct insn_chain *chain)
1727 {
1728 unsigned i;
1729 HARD_REG_SET used_by_pseudos;
1730 HARD_REG_SET used_by_pseudos2;
1731 reg_set_iterator rsi;
1732
1733 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1734
1735 memset (spill_cost, 0, sizeof spill_cost);
1736 memset (spill_add_cost, 0, sizeof spill_add_cost);
1737 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1738 hard_regno_to_pseudo_regno[i] = -1;
1739
1740 /* Count number of uses of each hard reg by pseudo regs allocated to it
1741 and then order them by decreasing use. First exclude hard registers
1742 that are live in or across this insn. */
1743
1744 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1746 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1748
1749 /* Now find out which pseudos are allocated to it, and update
1750 hard_reg_n_uses. */
1751 CLEAR_REG_SET (&pseudos_counted);
1752
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1755 {
1756 count_pseudo (i);
1757 }
1758 EXECUTE_IF_SET_IN_REG_SET
1759 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1760 {
1761 count_pseudo (i);
1762 }
1763 CLEAR_REG_SET (&pseudos_counted);
1764 }
1765 \f
1766 /* Vector of reload-numbers showing the order in which the reloads should
1767 be processed. */
1768 static short reload_order[MAX_RELOADS];
1769
1770 /* This is used to keep track of the spill regs used in one insn. */
1771 static HARD_REG_SET used_spill_regs_local;
1772
1773 /* We decided to spill hard register SPILLED, which has a size of
1774 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1775 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1776 update SPILL_COST/SPILL_ADD_COST. */
1777
1778 static void
1779 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1780 {
1781 int freq = REG_FREQ (reg);
1782 int r = reg_renumber[reg];
1783 int nregs;
1784
1785 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1786 if (ira_conflicts_p && r < 0)
1787 return;
1788
1789 gcc_assert (r >= 0);
1790
1791 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1792
1793 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1794 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1795 return;
1796
1797 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1798
1799 spill_add_cost[r] -= freq;
1800 while (nregs-- > 0)
1801 {
1802 hard_regno_to_pseudo_regno[r + nregs] = -1;
1803 spill_cost[r + nregs] -= freq;
1804 }
1805 }
1806
1807 /* Find reload register to use for reload number ORDER. */
1808
1809 static int
1810 find_reg (struct insn_chain *chain, int order)
1811 {
1812 int rnum = reload_order[order];
1813 struct reload *rl = rld + rnum;
1814 int best_cost = INT_MAX;
1815 int best_reg = -1;
1816 unsigned int i, j, n;
1817 int k;
1818 HARD_REG_SET not_usable;
1819 HARD_REG_SET used_by_other_reload;
1820 reg_set_iterator rsi;
1821 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1823
1824 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1825 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1826 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1827
1828 CLEAR_HARD_REG_SET (used_by_other_reload);
1829 for (k = 0; k < order; k++)
1830 {
1831 int other = reload_order[k];
1832
1833 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1834 for (j = 0; j < rld[other].nregs; j++)
1835 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1836 }
1837
1838 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1839 {
1840 #ifdef REG_ALLOC_ORDER
1841 unsigned int regno = reg_alloc_order[i];
1842 #else
1843 unsigned int regno = i;
1844 #endif
1845
1846 if (! TEST_HARD_REG_BIT (not_usable, regno)
1847 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1848 && targetm.hard_regno_mode_ok (regno, rl->mode))
1849 {
1850 int this_cost = spill_cost[regno];
1851 int ok = 1;
1852 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1853
1854 for (j = 1; j < this_nregs; j++)
1855 {
1856 this_cost += spill_add_cost[regno + j];
1857 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1858 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1859 ok = 0;
1860 }
1861 if (! ok)
1862 continue;
1863
1864 if (ira_conflicts_p)
1865 {
1866 /* Ask IRA to find a better pseudo-register for
1867 spilling. */
1868 for (n = j = 0; j < this_nregs; j++)
1869 {
1870 int r = hard_regno_to_pseudo_regno[regno + j];
1871
1872 if (r < 0)
1873 continue;
1874 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1875 regno_pseudo_regs[n++] = r;
1876 }
1877 regno_pseudo_regs[n++] = -1;
1878 if (best_reg < 0
1879 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1880 best_regno_pseudo_regs,
1881 rl->in, rl->out,
1882 chain->insn))
1883 {
1884 best_reg = regno;
1885 for (j = 0;; j++)
1886 {
1887 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1888 if (regno_pseudo_regs[j] < 0)
1889 break;
1890 }
1891 }
1892 continue;
1893 }
1894
1895 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1896 this_cost--;
1897 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1898 this_cost--;
1899 if (this_cost < best_cost
1900 /* Among registers with equal cost, prefer caller-saved ones, or
1901 use REG_ALLOC_ORDER if it is defined. */
1902 || (this_cost == best_cost
1903 #ifdef REG_ALLOC_ORDER
1904 && (inv_reg_alloc_order[regno]
1905 < inv_reg_alloc_order[best_reg])
1906 #else
1907 && call_used_regs[regno]
1908 && ! call_used_regs[best_reg]
1909 #endif
1910 ))
1911 {
1912 best_reg = regno;
1913 best_cost = this_cost;
1914 }
1915 }
1916 }
1917 if (best_reg == -1)
1918 return 0;
1919
1920 if (dump_file)
1921 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1922
1923 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1924 rl->regno = best_reg;
1925
1926 EXECUTE_IF_SET_IN_REG_SET
1927 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1928 {
1929 count_spilled_pseudo (best_reg, rl->nregs, j);
1930 }
1931
1932 EXECUTE_IF_SET_IN_REG_SET
1933 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1934 {
1935 count_spilled_pseudo (best_reg, rl->nregs, j);
1936 }
1937
1938 for (i = 0; i < rl->nregs; i++)
1939 {
1940 gcc_assert (spill_cost[best_reg + i] == 0);
1941 gcc_assert (spill_add_cost[best_reg + i] == 0);
1942 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1943 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1944 }
1945 return 1;
1946 }
1947
1948 /* Find more reload regs to satisfy the remaining need of an insn, which
1949 is given by CHAIN.
1950 Do it by ascending class number, since otherwise a reg
1951 might be spilled for a big class and might fail to count
1952 for a smaller class even though it belongs to that class. */
1953
1954 static void
1955 find_reload_regs (struct insn_chain *chain)
1956 {
1957 int i;
1958
1959 /* In order to be certain of getting the registers we need,
1960 we must sort the reloads into order of increasing register class.
1961 Then our grabbing of reload registers will parallel the process
1962 that provided the reload registers. */
1963 for (i = 0; i < chain->n_reloads; i++)
1964 {
1965 /* Show whether this reload already has a hard reg. */
1966 if (chain->rld[i].reg_rtx)
1967 {
1968 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1969 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1970 }
1971 else
1972 chain->rld[i].regno = -1;
1973 reload_order[i] = i;
1974 }
1975
1976 n_reloads = chain->n_reloads;
1977 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1978
1979 CLEAR_HARD_REG_SET (used_spill_regs_local);
1980
1981 if (dump_file)
1982 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1983
1984 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1985
1986 /* Compute the order of preference for hard registers to spill. */
1987
1988 order_regs_for_reload (chain);
1989
1990 for (i = 0; i < n_reloads; i++)
1991 {
1992 int r = reload_order[i];
1993
1994 /* Ignore reloads that got marked inoperative. */
1995 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1996 && ! rld[r].optional
1997 && rld[r].regno == -1)
1998 if (! find_reg (chain, i))
1999 {
2000 if (dump_file)
2001 fprintf (dump_file, "reload failure for reload %d\n", r);
2002 spill_failure (chain->insn, rld[r].rclass);
2003 failure = 1;
2004 return;
2005 }
2006 }
2007
2008 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2009 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2010
2011 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2012 }
2013
2014 static void
2015 select_reload_regs (void)
2016 {
2017 struct insn_chain *chain;
2018
2019 /* Try to satisfy the needs for each insn. */
2020 for (chain = insns_need_reload; chain != 0;
2021 chain = chain->next_need_reload)
2022 find_reload_regs (chain);
2023 }
2024 \f
2025 /* Delete all insns that were inserted by emit_caller_save_insns during
2026 this iteration. */
2027 static void
2028 delete_caller_save_insns (void)
2029 {
2030 struct insn_chain *c = reload_insn_chain;
2031
2032 while (c != 0)
2033 {
2034 while (c != 0 && c->is_caller_save_insn)
2035 {
2036 struct insn_chain *next = c->next;
2037 rtx_insn *insn = c->insn;
2038
2039 if (c == reload_insn_chain)
2040 reload_insn_chain = next;
2041 delete_insn (insn);
2042
2043 if (next)
2044 next->prev = c->prev;
2045 if (c->prev)
2046 c->prev->next = next;
2047 c->next = unused_insn_chains;
2048 unused_insn_chains = c;
2049 c = next;
2050 }
2051 if (c != 0)
2052 c = c->next;
2053 }
2054 }
2055 \f
2056 /* Handle the failure to find a register to spill.
2057 INSN should be one of the insns which needed this particular spill reg. */
2058
2059 static void
2060 spill_failure (rtx_insn *insn, enum reg_class rclass)
2061 {
2062 if (asm_noperands (PATTERN (insn)) >= 0)
2063 error_for_asm (insn, "can%'t find a register in class %qs while "
2064 "reloading %<asm%>",
2065 reg_class_names[rclass]);
2066 else
2067 {
2068 error ("unable to find a register to spill in class %qs",
2069 reg_class_names[rclass]);
2070
2071 if (dump_file)
2072 {
2073 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2074 debug_reload_to_stream (dump_file);
2075 }
2076 fatal_insn ("this is the insn:", insn);
2077 }
2078 }
2079 \f
2080 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2081 data that is dead in INSN. */
2082
2083 static void
2084 delete_dead_insn (rtx_insn *insn)
2085 {
2086 rtx_insn *prev = prev_active_insn (insn);
2087 rtx prev_dest;
2088
2089 /* If the previous insn sets a register that dies in our insn make
2090 a note that we want to run DCE immediately after reload.
2091
2092 We used to delete the previous insn & recurse, but that's wrong for
2093 block local equivalences. Instead of trying to figure out the exact
2094 circumstances where we can delete the potentially dead insns, just
2095 let DCE do the job. */
2096 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2097 && GET_CODE (PATTERN (prev)) == SET
2098 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2099 && reg_mentioned_p (prev_dest, PATTERN (insn))
2100 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2101 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2102 need_dce = 1;
2103
2104 SET_INSN_DELETED (insn);
2105 }
2106
2107 /* Modify the home of pseudo-reg I.
2108 The new home is present in reg_renumber[I].
2109
2110 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2111 or it may be -1, meaning there is none or it is not relevant.
2112 This is used so that all pseudos spilled from a given hard reg
2113 can share one stack slot. */
2114
2115 static void
2116 alter_reg (int i, int from_reg, bool dont_share_p)
2117 {
2118 /* When outputting an inline function, this can happen
2119 for a reg that isn't actually used. */
2120 if (regno_reg_rtx[i] == 0)
2121 return;
2122
2123 /* If the reg got changed to a MEM at rtl-generation time,
2124 ignore it. */
2125 if (!REG_P (regno_reg_rtx[i]))
2126 return;
2127
2128 /* Modify the reg-rtx to contain the new hard reg
2129 number or else to contain its pseudo reg number. */
2130 SET_REGNO (regno_reg_rtx[i],
2131 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2132
2133 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2134 allocate a stack slot for it. */
2135
2136 if (reg_renumber[i] < 0
2137 && REG_N_REFS (i) > 0
2138 && reg_equiv_constant (i) == 0
2139 && (reg_equiv_invariant (i) == 0
2140 || reg_equiv_init (i) == 0)
2141 && reg_equiv_memory_loc (i) == 0)
2142 {
2143 rtx x = NULL_RTX;
2144 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2145 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2146 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2147 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2148 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2149 /* ??? Seems strange to derive the minimum alignment from the size,
2150 but that's the traditional behavior. For polynomial-size modes,
2151 the natural extension is to use the minimum possible size. */
2152 unsigned int min_align
2153 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2154 poly_int64 adjust = 0;
2155
2156 something_was_spilled = true;
2157
2158 if (ira_conflicts_p)
2159 {
2160 /* Mark the spill for IRA. */
2161 SET_REGNO_REG_SET (&spilled_pseudos, i);
2162 if (!dont_share_p)
2163 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2164 }
2165
2166 if (x)
2167 ;
2168
2169 /* Each pseudo reg has an inherent size which comes from its own mode,
2170 and a total size which provides room for paradoxical subregs
2171 which refer to the pseudo reg in wider modes.
2172
2173 We can use a slot already allocated if it provides both
2174 enough inherent space and enough total space.
2175 Otherwise, we allocate a new slot, making sure that it has no less
2176 inherent space, and no less total space, then the previous slot. */
2177 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2178 {
2179 rtx stack_slot;
2180
2181 /* The sizes are taken from a subreg operation, which guarantees
2182 that they're ordered. */
2183 gcc_checking_assert (ordered_p (total_size, inherent_size));
2184
2185 /* No known place to spill from => no slot to reuse. */
2186 x = assign_stack_local (mode, total_size,
2187 min_align > inherent_align
2188 || maybe_gt (total_size, inherent_size)
2189 ? -1 : 0);
2190
2191 stack_slot = x;
2192
2193 /* Cancel the big-endian correction done in assign_stack_local.
2194 Get the address of the beginning of the slot. This is so we
2195 can do a big-endian correction unconditionally below. */
2196 if (BYTES_BIG_ENDIAN)
2197 {
2198 adjust = inherent_size - total_size;
2199 if (maybe_ne (adjust, 0))
2200 {
2201 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2202 machine_mode mem_mode
2203 = int_mode_for_size (total_bits, 1).else_blk ();
2204 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2205 }
2206 }
2207
2208 if (! dont_share_p && ira_conflicts_p)
2209 /* Inform IRA about allocation a new stack slot. */
2210 ira_mark_new_stack_slot (stack_slot, i, total_size);
2211 }
2212
2213 /* Reuse a stack slot if possible. */
2214 else if (spill_stack_slot[from_reg] != 0
2215 && known_ge (spill_stack_slot_width[from_reg], total_size)
2216 && known_ge (GET_MODE_SIZE
2217 (GET_MODE (spill_stack_slot[from_reg])),
2218 inherent_size)
2219 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2220 x = spill_stack_slot[from_reg];
2221
2222 /* Allocate a bigger slot. */
2223 else
2224 {
2225 /* Compute maximum size needed, both for inherent size
2226 and for total size. */
2227 rtx stack_slot;
2228
2229 if (spill_stack_slot[from_reg])
2230 {
2231 if (partial_subreg_p (mode,
2232 GET_MODE (spill_stack_slot[from_reg])))
2233 mode = GET_MODE (spill_stack_slot[from_reg]);
2234 total_size = ordered_max (total_size,
2235 spill_stack_slot_width[from_reg]);
2236 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2237 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2238 }
2239
2240 /* The sizes are taken from a subreg operation, which guarantees
2241 that they're ordered. */
2242 gcc_checking_assert (ordered_p (total_size, inherent_size));
2243
2244 /* Make a slot with that size. */
2245 x = assign_stack_local (mode, total_size,
2246 min_align > inherent_align
2247 || maybe_gt (total_size, inherent_size)
2248 ? -1 : 0);
2249 stack_slot = x;
2250
2251 /* Cancel the big-endian correction done in assign_stack_local.
2252 Get the address of the beginning of the slot. This is so we
2253 can do a big-endian correction unconditionally below. */
2254 if (BYTES_BIG_ENDIAN)
2255 {
2256 adjust = GET_MODE_SIZE (mode) - total_size;
2257 if (maybe_ne (adjust, 0))
2258 {
2259 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2260 machine_mode mem_mode
2261 = int_mode_for_size (total_bits, 1).else_blk ();
2262 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2263 }
2264 }
2265
2266 spill_stack_slot[from_reg] = stack_slot;
2267 spill_stack_slot_width[from_reg] = total_size;
2268 }
2269
2270 /* On a big endian machine, the "address" of the slot
2271 is the address of the low part that fits its inherent mode. */
2272 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2273
2274 /* If we have any adjustment to make, or if the stack slot is the
2275 wrong mode, make a new stack slot. */
2276 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2277
2278 /* Set all of the memory attributes as appropriate for a spill. */
2279 set_mem_attrs_for_spill (x);
2280
2281 /* Save the stack slot for later. */
2282 reg_equiv_memory_loc (i) = x;
2283 }
2284 }
2285
2286 /* Mark the slots in regs_ever_live for the hard regs used by
2287 pseudo-reg number REGNO, accessed in MODE. */
2288
2289 static void
2290 mark_home_live_1 (int regno, machine_mode mode)
2291 {
2292 int i, lim;
2293
2294 i = reg_renumber[regno];
2295 if (i < 0)
2296 return;
2297 lim = end_hard_regno (mode, i);
2298 while (i < lim)
2299 df_set_regs_ever_live (i++, true);
2300 }
2301
2302 /* Mark the slots in regs_ever_live for the hard regs
2303 used by pseudo-reg number REGNO. */
2304
2305 void
2306 mark_home_live (int regno)
2307 {
2308 if (reg_renumber[regno] >= 0)
2309 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2310 }
2311 \f
2312 /* This function handles the tracking of elimination offsets around branches.
2313
2314 X is a piece of RTL being scanned.
2315
2316 INSN is the insn that it came from, if any.
2317
2318 INITIAL_P is nonzero if we are to set the offset to be the initial
2319 offset and zero if we are setting the offset of the label to be the
2320 current offset. */
2321
2322 static void
2323 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2324 {
2325 enum rtx_code code = GET_CODE (x);
2326 rtx tem;
2327 unsigned int i;
2328 struct elim_table *p;
2329
2330 switch (code)
2331 {
2332 case LABEL_REF:
2333 if (LABEL_REF_NONLOCAL_P (x))
2334 return;
2335
2336 x = label_ref_label (x);
2337
2338 /* fall through */
2339
2340 case CODE_LABEL:
2341 /* If we know nothing about this label, set the desired offsets. Note
2342 that this sets the offset at a label to be the offset before a label
2343 if we don't know anything about the label. This is not correct for
2344 the label after a BARRIER, but is the best guess we can make. If
2345 we guessed wrong, we will suppress an elimination that might have
2346 been possible had we been able to guess correctly. */
2347
2348 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2349 {
2350 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2351 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2352 = (initial_p ? reg_eliminate[i].initial_offset
2353 : reg_eliminate[i].offset);
2354 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2355 }
2356
2357 /* Otherwise, if this is the definition of a label and it is
2358 preceded by a BARRIER, set our offsets to the known offset of
2359 that label. */
2360
2361 else if (x == insn
2362 && (tem = prev_nonnote_insn (insn)) != 0
2363 && BARRIER_P (tem))
2364 set_offsets_for_label (insn);
2365 else
2366 /* If neither of the above cases is true, compare each offset
2367 with those previously recorded and suppress any eliminations
2368 where the offsets disagree. */
2369
2370 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2371 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2372 (initial_p ? reg_eliminate[i].initial_offset
2373 : reg_eliminate[i].offset)))
2374 reg_eliminate[i].can_eliminate = 0;
2375
2376 return;
2377
2378 case JUMP_TABLE_DATA:
2379 set_label_offsets (PATTERN (insn), insn, initial_p);
2380 return;
2381
2382 case JUMP_INSN:
2383 set_label_offsets (PATTERN (insn), insn, initial_p);
2384
2385 /* fall through */
2386
2387 case INSN:
2388 case CALL_INSN:
2389 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2390 to indirectly and hence must have all eliminations at their
2391 initial offsets. */
2392 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2393 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2394 set_label_offsets (XEXP (tem, 0), insn, 1);
2395 return;
2396
2397 case PARALLEL:
2398 case ADDR_VEC:
2399 case ADDR_DIFF_VEC:
2400 /* Each of the labels in the parallel or address vector must be
2401 at their initial offsets. We want the first field for PARALLEL
2402 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2403
2404 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2405 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2406 insn, initial_p);
2407 return;
2408
2409 case SET:
2410 /* We only care about setting PC. If the source is not RETURN,
2411 IF_THEN_ELSE, or a label, disable any eliminations not at
2412 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2413 isn't one of those possibilities. For branches to a label,
2414 call ourselves recursively.
2415
2416 Note that this can disable elimination unnecessarily when we have
2417 a non-local goto since it will look like a non-constant jump to
2418 someplace in the current function. This isn't a significant
2419 problem since such jumps will normally be when all elimination
2420 pairs are back to their initial offsets. */
2421
2422 if (SET_DEST (x) != pc_rtx)
2423 return;
2424
2425 switch (GET_CODE (SET_SRC (x)))
2426 {
2427 case PC:
2428 case RETURN:
2429 return;
2430
2431 case LABEL_REF:
2432 set_label_offsets (SET_SRC (x), insn, initial_p);
2433 return;
2434
2435 case IF_THEN_ELSE:
2436 tem = XEXP (SET_SRC (x), 1);
2437 if (GET_CODE (tem) == LABEL_REF)
2438 set_label_offsets (label_ref_label (tem), insn, initial_p);
2439 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2440 break;
2441
2442 tem = XEXP (SET_SRC (x), 2);
2443 if (GET_CODE (tem) == LABEL_REF)
2444 set_label_offsets (label_ref_label (tem), insn, initial_p);
2445 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2446 break;
2447 return;
2448
2449 default:
2450 break;
2451 }
2452
2453 /* If we reach here, all eliminations must be at their initial
2454 offset because we are doing a jump to a variable address. */
2455 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2456 if (maybe_ne (p->offset, p->initial_offset))
2457 p->can_eliminate = 0;
2458 break;
2459
2460 default:
2461 break;
2462 }
2463 }
2464 \f
2465 /* This function examines every reg that occurs in X and adjusts the
2466 costs for its elimination which are gathered by IRA. INSN is the
2467 insn in which X occurs. We do not recurse into MEM expressions. */
2468
2469 static void
2470 note_reg_elim_costly (const_rtx x, rtx insn)
2471 {
2472 subrtx_iterator::array_type array;
2473 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2474 {
2475 const_rtx x = *iter;
2476 if (MEM_P (x))
2477 iter.skip_subrtxes ();
2478 else if (REG_P (x)
2479 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2480 && reg_equiv_init (REGNO (x))
2481 && reg_equiv_invariant (REGNO (x)))
2482 {
2483 rtx t = reg_equiv_invariant (REGNO (x));
2484 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2485 int cost = set_src_cost (new_rtx, Pmode,
2486 optimize_bb_for_speed_p (elim_bb));
2487 int freq = REG_FREQ_FROM_BB (elim_bb);
2488
2489 if (cost != 0)
2490 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2491 }
2492 }
2493 }
2494
2495 /* Scan X and replace any eliminable registers (such as fp) with a
2496 replacement (such as sp), plus an offset.
2497
2498 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2499 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2500 MEM, we are allowed to replace a sum of a register and the constant zero
2501 with the register, which we cannot do outside a MEM. In addition, we need
2502 to record the fact that a register is referenced outside a MEM.
2503
2504 If INSN is an insn, it is the insn containing X. If we replace a REG
2505 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2506 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2507 the REG is being modified.
2508
2509 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2510 That's used when we eliminate in expressions stored in notes.
2511 This means, do not set ref_outside_mem even if the reference
2512 is outside of MEMs.
2513
2514 If FOR_COSTS is true, we are being called before reload in order to
2515 estimate the costs of keeping registers with an equivalence unallocated.
2516
2517 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2518 replacements done assuming all offsets are at their initial values. If
2519 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2520 encounter, return the actual location so that find_reloads will do
2521 the proper thing. */
2522
2523 static rtx
2524 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2525 bool may_use_invariant, bool for_costs)
2526 {
2527 enum rtx_code code = GET_CODE (x);
2528 struct elim_table *ep;
2529 int regno;
2530 rtx new_rtx;
2531 int i, j;
2532 const char *fmt;
2533 int copied = 0;
2534
2535 if (! current_function_decl)
2536 return x;
2537
2538 switch (code)
2539 {
2540 CASE_CONST_ANY:
2541 case CONST:
2542 case SYMBOL_REF:
2543 case CODE_LABEL:
2544 case PC:
2545 case CC0:
2546 case ASM_INPUT:
2547 case ADDR_VEC:
2548 case ADDR_DIFF_VEC:
2549 case RETURN:
2550 return x;
2551
2552 case REG:
2553 regno = REGNO (x);
2554
2555 /* First handle the case where we encounter a bare register that
2556 is eliminable. Replace it with a PLUS. */
2557 if (regno < FIRST_PSEUDO_REGISTER)
2558 {
2559 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2560 ep++)
2561 if (ep->from_rtx == x && ep->can_eliminate)
2562 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2563
2564 }
2565 else if (reg_renumber && reg_renumber[regno] < 0
2566 && reg_equivs
2567 && reg_equiv_invariant (regno))
2568 {
2569 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2570 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2571 mem_mode, insn, true, for_costs);
2572 /* There exists at least one use of REGNO that cannot be
2573 eliminated. Prevent the defining insn from being deleted. */
2574 reg_equiv_init (regno) = NULL;
2575 if (!for_costs)
2576 alter_reg (regno, -1, true);
2577 }
2578 return x;
2579
2580 /* You might think handling MINUS in a manner similar to PLUS is a
2581 good idea. It is not. It has been tried multiple times and every
2582 time the change has had to have been reverted.
2583
2584 Other parts of reload know a PLUS is special (gen_reload for example)
2585 and require special code to handle code a reloaded PLUS operand.
2586
2587 Also consider backends where the flags register is clobbered by a
2588 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2589 lea instruction comes to mind). If we try to reload a MINUS, we
2590 may kill the flags register that was holding a useful value.
2591
2592 So, please before trying to handle MINUS, consider reload as a
2593 whole instead of this little section as well as the backend issues. */
2594 case PLUS:
2595 /* If this is the sum of an eliminable register and a constant, rework
2596 the sum. */
2597 if (REG_P (XEXP (x, 0))
2598 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2599 && CONSTANT_P (XEXP (x, 1)))
2600 {
2601 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2602 ep++)
2603 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2604 {
2605 /* The only time we want to replace a PLUS with a REG (this
2606 occurs when the constant operand of the PLUS is the negative
2607 of the offset) is when we are inside a MEM. We won't want
2608 to do so at other times because that would change the
2609 structure of the insn in a way that reload can't handle.
2610 We special-case the commonest situation in
2611 eliminate_regs_in_insn, so just replace a PLUS with a
2612 PLUS here, unless inside a MEM. */
2613 if (mem_mode != 0
2614 && CONST_INT_P (XEXP (x, 1))
2615 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2616 return ep->to_rtx;
2617 else
2618 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2619 plus_constant (Pmode, XEXP (x, 1),
2620 ep->previous_offset));
2621 }
2622
2623 /* If the register is not eliminable, we are done since the other
2624 operand is a constant. */
2625 return x;
2626 }
2627
2628 /* If this is part of an address, we want to bring any constant to the
2629 outermost PLUS. We will do this by doing register replacement in
2630 our operands and seeing if a constant shows up in one of them.
2631
2632 Note that there is no risk of modifying the structure of the insn,
2633 since we only get called for its operands, thus we are either
2634 modifying the address inside a MEM, or something like an address
2635 operand of a load-address insn. */
2636
2637 {
2638 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2639 for_costs);
2640 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2641 for_costs);
2642
2643 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2644 {
2645 /* If one side is a PLUS and the other side is a pseudo that
2646 didn't get a hard register but has a reg_equiv_constant,
2647 we must replace the constant here since it may no longer
2648 be in the position of any operand. */
2649 if (GET_CODE (new0) == PLUS && REG_P (new1)
2650 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2651 && reg_renumber[REGNO (new1)] < 0
2652 && reg_equivs
2653 && reg_equiv_constant (REGNO (new1)) != 0)
2654 new1 = reg_equiv_constant (REGNO (new1));
2655 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2656 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2657 && reg_renumber[REGNO (new0)] < 0
2658 && reg_equiv_constant (REGNO (new0)) != 0)
2659 new0 = reg_equiv_constant (REGNO (new0));
2660
2661 new_rtx = form_sum (GET_MODE (x), new0, new1);
2662
2663 /* As above, if we are not inside a MEM we do not want to
2664 turn a PLUS into something else. We might try to do so here
2665 for an addition of 0 if we aren't optimizing. */
2666 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2667 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2668 else
2669 return new_rtx;
2670 }
2671 }
2672 return x;
2673
2674 case MULT:
2675 /* If this is the product of an eliminable register and a
2676 constant, apply the distribute law and move the constant out
2677 so that we have (plus (mult ..) ..). This is needed in order
2678 to keep load-address insns valid. This case is pathological.
2679 We ignore the possibility of overflow here. */
2680 if (REG_P (XEXP (x, 0))
2681 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2682 && CONST_INT_P (XEXP (x, 1)))
2683 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2684 ep++)
2685 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2686 {
2687 if (! mem_mode
2688 /* Refs inside notes or in DEBUG_INSNs don't count for
2689 this purpose. */
2690 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2691 || GET_CODE (insn) == INSN_LIST
2692 || DEBUG_INSN_P (insn))))
2693 ep->ref_outside_mem = 1;
2694
2695 return
2696 plus_constant (Pmode,
2697 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2698 ep->previous_offset * INTVAL (XEXP (x, 1)));
2699 }
2700
2701 /* fall through */
2702
2703 case CALL:
2704 case COMPARE:
2705 /* See comments before PLUS about handling MINUS. */
2706 case MINUS:
2707 case DIV: case UDIV:
2708 case MOD: case UMOD:
2709 case AND: case IOR: case XOR:
2710 case ROTATERT: case ROTATE:
2711 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2712 case NE: case EQ:
2713 case GE: case GT: case GEU: case GTU:
2714 case LE: case LT: case LEU: case LTU:
2715 {
2716 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2717 for_costs);
2718 rtx new1 = XEXP (x, 1)
2719 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2720 for_costs) : 0;
2721
2722 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2723 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2724 }
2725 return x;
2726
2727 case EXPR_LIST:
2728 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2729 if (XEXP (x, 0))
2730 {
2731 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2732 for_costs);
2733 if (new_rtx != XEXP (x, 0))
2734 {
2735 /* If this is a REG_DEAD note, it is not valid anymore.
2736 Using the eliminated version could result in creating a
2737 REG_DEAD note for the stack or frame pointer. */
2738 if (REG_NOTE_KIND (x) == REG_DEAD)
2739 return (XEXP (x, 1)
2740 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2741 for_costs)
2742 : NULL_RTX);
2743
2744 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2745 }
2746 }
2747
2748 /* fall through */
2749
2750 case INSN_LIST:
2751 case INT_LIST:
2752 /* Now do eliminations in the rest of the chain. If this was
2753 an EXPR_LIST, this might result in allocating more memory than is
2754 strictly needed, but it simplifies the code. */
2755 if (XEXP (x, 1))
2756 {
2757 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2758 for_costs);
2759 if (new_rtx != XEXP (x, 1))
2760 return
2761 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2762 }
2763 return x;
2764
2765 case PRE_INC:
2766 case POST_INC:
2767 case PRE_DEC:
2768 case POST_DEC:
2769 /* We do not support elimination of a register that is modified.
2770 elimination_effects has already make sure that this does not
2771 happen. */
2772 return x;
2773
2774 case PRE_MODIFY:
2775 case POST_MODIFY:
2776 /* We do not support elimination of a register that is modified.
2777 elimination_effects has already make sure that this does not
2778 happen. The only remaining case we need to consider here is
2779 that the increment value may be an eliminable register. */
2780 if (GET_CODE (XEXP (x, 1)) == PLUS
2781 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2782 {
2783 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2784 insn, true, for_costs);
2785
2786 if (new_rtx != XEXP (XEXP (x, 1), 1))
2787 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2788 gen_rtx_PLUS (GET_MODE (x),
2789 XEXP (x, 0), new_rtx));
2790 }
2791 return x;
2792
2793 case STRICT_LOW_PART:
2794 case NEG: case NOT:
2795 case SIGN_EXTEND: case ZERO_EXTEND:
2796 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2797 case FLOAT: case FIX:
2798 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2799 case ABS:
2800 case SQRT:
2801 case FFS:
2802 case CLZ:
2803 case CTZ:
2804 case POPCOUNT:
2805 case PARITY:
2806 case BSWAP:
2807 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2808 for_costs);
2809 if (new_rtx != XEXP (x, 0))
2810 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2811 return x;
2812
2813 case SUBREG:
2814 /* Similar to above processing, but preserve SUBREG_BYTE.
2815 Convert (subreg (mem)) to (mem) if not paradoxical.
2816 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2817 pseudo didn't get a hard reg, we must replace this with the
2818 eliminated version of the memory location because push_reload
2819 may do the replacement in certain circumstances. */
2820 if (REG_P (SUBREG_REG (x))
2821 && !paradoxical_subreg_p (x)
2822 && reg_equivs
2823 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2824 {
2825 new_rtx = SUBREG_REG (x);
2826 }
2827 else
2828 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2829
2830 if (new_rtx != SUBREG_REG (x))
2831 {
2832 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2833 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2834
2835 if (MEM_P (new_rtx)
2836 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2837 /* On RISC machines, combine can create rtl of the form
2838 (set (subreg:m1 (reg:m2 R) 0) ...)
2839 where m1 < m2, and expects something interesting to
2840 happen to the entire word. Moreover, it will use the
2841 (reg:m2 R) later, expecting all bits to be preserved.
2842 So if the number of words is the same, preserve the
2843 subreg so that push_reload can see it. */
2844 && !(WORD_REGISTER_OPERATIONS
2845 && known_equal_after_align_down (x_size - 1,
2846 new_size - 1,
2847 UNITS_PER_WORD)))
2848 || known_eq (x_size, new_size))
2849 )
2850 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2851 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2852 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2853 else
2854 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2855 }
2856
2857 return x;
2858
2859 case MEM:
2860 /* Our only special processing is to pass the mode of the MEM to our
2861 recursive call and copy the flags. While we are here, handle this
2862 case more efficiently. */
2863
2864 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2865 for_costs);
2866 if (for_costs
2867 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2868 && !memory_address_p (GET_MODE (x), new_rtx))
2869 note_reg_elim_costly (XEXP (x, 0), insn);
2870
2871 return replace_equiv_address_nv (x, new_rtx);
2872
2873 case USE:
2874 /* Handle insn_list USE that a call to a pure function may generate. */
2875 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2876 for_costs);
2877 if (new_rtx != XEXP (x, 0))
2878 return gen_rtx_USE (GET_MODE (x), new_rtx);
2879 return x;
2880
2881 case CLOBBER:
2882 case ASM_OPERANDS:
2883 gcc_assert (insn && DEBUG_INSN_P (insn));
2884 break;
2885
2886 case SET:
2887 gcc_unreachable ();
2888
2889 default:
2890 break;
2891 }
2892
2893 /* Process each of our operands recursively. If any have changed, make a
2894 copy of the rtx. */
2895 fmt = GET_RTX_FORMAT (code);
2896 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2897 {
2898 if (*fmt == 'e')
2899 {
2900 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2901 for_costs);
2902 if (new_rtx != XEXP (x, i) && ! copied)
2903 {
2904 x = shallow_copy_rtx (x);
2905 copied = 1;
2906 }
2907 XEXP (x, i) = new_rtx;
2908 }
2909 else if (*fmt == 'E')
2910 {
2911 int copied_vec = 0;
2912 for (j = 0; j < XVECLEN (x, i); j++)
2913 {
2914 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2915 for_costs);
2916 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2917 {
2918 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2919 XVEC (x, i)->elem);
2920 if (! copied)
2921 {
2922 x = shallow_copy_rtx (x);
2923 copied = 1;
2924 }
2925 XVEC (x, i) = new_v;
2926 copied_vec = 1;
2927 }
2928 XVECEXP (x, i, j) = new_rtx;
2929 }
2930 }
2931 }
2932
2933 return x;
2934 }
2935
2936 rtx
2937 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2938 {
2939 if (reg_eliminate == NULL)
2940 {
2941 gcc_assert (targetm.no_register_allocation);
2942 return x;
2943 }
2944 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2945 }
2946
2947 /* Scan rtx X for modifications of elimination target registers. Update
2948 the table of eliminables to reflect the changed state. MEM_MODE is
2949 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2950
2951 static void
2952 elimination_effects (rtx x, machine_mode mem_mode)
2953 {
2954 enum rtx_code code = GET_CODE (x);
2955 struct elim_table *ep;
2956 int regno;
2957 int i, j;
2958 const char *fmt;
2959
2960 switch (code)
2961 {
2962 CASE_CONST_ANY:
2963 case CONST:
2964 case SYMBOL_REF:
2965 case CODE_LABEL:
2966 case PC:
2967 case CC0:
2968 case ASM_INPUT:
2969 case ADDR_VEC:
2970 case ADDR_DIFF_VEC:
2971 case RETURN:
2972 return;
2973
2974 case REG:
2975 regno = REGNO (x);
2976
2977 /* First handle the case where we encounter a bare register that
2978 is eliminable. Replace it with a PLUS. */
2979 if (regno < FIRST_PSEUDO_REGISTER)
2980 {
2981 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2982 ep++)
2983 if (ep->from_rtx == x && ep->can_eliminate)
2984 {
2985 if (! mem_mode)
2986 ep->ref_outside_mem = 1;
2987 return;
2988 }
2989
2990 }
2991 else if (reg_renumber[regno] < 0
2992 && reg_equivs
2993 && reg_equiv_constant (regno)
2994 && ! function_invariant_p (reg_equiv_constant (regno)))
2995 elimination_effects (reg_equiv_constant (regno), mem_mode);
2996 return;
2997
2998 case PRE_INC:
2999 case POST_INC:
3000 case PRE_DEC:
3001 case POST_DEC:
3002 case POST_MODIFY:
3003 case PRE_MODIFY:
3004 /* If we modify the source of an elimination rule, disable it. */
3005 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3006 if (ep->from_rtx == XEXP (x, 0))
3007 ep->can_eliminate = 0;
3008
3009 /* If we modify the target of an elimination rule by adding a constant,
3010 update its offset. If we modify the target in any other way, we'll
3011 have to disable the rule as well. */
3012 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3013 if (ep->to_rtx == XEXP (x, 0))
3014 {
3015 poly_int64 size = GET_MODE_SIZE (mem_mode);
3016
3017 /* If more bytes than MEM_MODE are pushed, account for them. */
3018 #ifdef PUSH_ROUNDING
3019 if (ep->to_rtx == stack_pointer_rtx)
3020 size = PUSH_ROUNDING (size);
3021 #endif
3022 if (code == PRE_DEC || code == POST_DEC)
3023 ep->offset += size;
3024 else if (code == PRE_INC || code == POST_INC)
3025 ep->offset -= size;
3026 else if (code == PRE_MODIFY || code == POST_MODIFY)
3027 {
3028 if (GET_CODE (XEXP (x, 1)) == PLUS
3029 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3030 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3031 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3032 else
3033 ep->can_eliminate = 0;
3034 }
3035 }
3036
3037 /* These two aren't unary operators. */
3038 if (code == POST_MODIFY || code == PRE_MODIFY)
3039 break;
3040
3041 /* Fall through to generic unary operation case. */
3042 gcc_fallthrough ();
3043 case STRICT_LOW_PART:
3044 case NEG: case NOT:
3045 case SIGN_EXTEND: case ZERO_EXTEND:
3046 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3047 case FLOAT: case FIX:
3048 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3049 case ABS:
3050 case SQRT:
3051 case FFS:
3052 case CLZ:
3053 case CTZ:
3054 case POPCOUNT:
3055 case PARITY:
3056 case BSWAP:
3057 elimination_effects (XEXP (x, 0), mem_mode);
3058 return;
3059
3060 case SUBREG:
3061 if (REG_P (SUBREG_REG (x))
3062 && !paradoxical_subreg_p (x)
3063 && reg_equivs
3064 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3065 return;
3066
3067 elimination_effects (SUBREG_REG (x), mem_mode);
3068 return;
3069
3070 case USE:
3071 /* If using a register that is the source of an eliminate we still
3072 think can be performed, note it cannot be performed since we don't
3073 know how this register is used. */
3074 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3075 if (ep->from_rtx == XEXP (x, 0))
3076 ep->can_eliminate = 0;
3077
3078 elimination_effects (XEXP (x, 0), mem_mode);
3079 return;
3080
3081 case CLOBBER:
3082 /* If clobbering a register that is the replacement register for an
3083 elimination we still think can be performed, note that it cannot
3084 be performed. Otherwise, we need not be concerned about it. */
3085 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3086 if (ep->to_rtx == XEXP (x, 0))
3087 ep->can_eliminate = 0;
3088
3089 elimination_effects (XEXP (x, 0), mem_mode);
3090 return;
3091
3092 case SET:
3093 /* Check for setting a register that we know about. */
3094 if (REG_P (SET_DEST (x)))
3095 {
3096 /* See if this is setting the replacement register for an
3097 elimination.
3098
3099 If DEST is the hard frame pointer, we do nothing because we
3100 assume that all assignments to the frame pointer are for
3101 non-local gotos and are being done at a time when they are valid
3102 and do not disturb anything else. Some machines want to
3103 eliminate a fake argument pointer (or even a fake frame pointer)
3104 with either the real frame or the stack pointer. Assignments to
3105 the hard frame pointer must not prevent this elimination. */
3106
3107 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3108 ep++)
3109 if (ep->to_rtx == SET_DEST (x)
3110 && SET_DEST (x) != hard_frame_pointer_rtx)
3111 {
3112 /* If it is being incremented, adjust the offset. Otherwise,
3113 this elimination can't be done. */
3114 rtx src = SET_SRC (x);
3115
3116 if (GET_CODE (src) == PLUS
3117 && XEXP (src, 0) == SET_DEST (x)
3118 && CONST_INT_P (XEXP (src, 1)))
3119 ep->offset -= INTVAL (XEXP (src, 1));
3120 else
3121 ep->can_eliminate = 0;
3122 }
3123 }
3124
3125 elimination_effects (SET_DEST (x), VOIDmode);
3126 elimination_effects (SET_SRC (x), VOIDmode);
3127 return;
3128
3129 case MEM:
3130 /* Our only special processing is to pass the mode of the MEM to our
3131 recursive call. */
3132 elimination_effects (XEXP (x, 0), GET_MODE (x));
3133 return;
3134
3135 default:
3136 break;
3137 }
3138
3139 fmt = GET_RTX_FORMAT (code);
3140 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3141 {
3142 if (*fmt == 'e')
3143 elimination_effects (XEXP (x, i), mem_mode);
3144 else if (*fmt == 'E')
3145 for (j = 0; j < XVECLEN (x, i); j++)
3146 elimination_effects (XVECEXP (x, i, j), mem_mode);
3147 }
3148 }
3149
3150 /* Descend through rtx X and verify that no references to eliminable registers
3151 remain. If any do remain, mark the involved register as not
3152 eliminable. */
3153
3154 static void
3155 check_eliminable_occurrences (rtx x)
3156 {
3157 const char *fmt;
3158 int i;
3159 enum rtx_code code;
3160
3161 if (x == 0)
3162 return;
3163
3164 code = GET_CODE (x);
3165
3166 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3167 {
3168 struct elim_table *ep;
3169
3170 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3171 if (ep->from_rtx == x)
3172 ep->can_eliminate = 0;
3173 return;
3174 }
3175
3176 fmt = GET_RTX_FORMAT (code);
3177 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3178 {
3179 if (*fmt == 'e')
3180 check_eliminable_occurrences (XEXP (x, i));
3181 else if (*fmt == 'E')
3182 {
3183 int j;
3184 for (j = 0; j < XVECLEN (x, i); j++)
3185 check_eliminable_occurrences (XVECEXP (x, i, j));
3186 }
3187 }
3188 }
3189 \f
3190 /* Scan INSN and eliminate all eliminable registers in it.
3191
3192 If REPLACE is nonzero, do the replacement destructively. Also
3193 delete the insn as dead it if it is setting an eliminable register.
3194
3195 If REPLACE is zero, do all our allocations in reload_obstack.
3196
3197 If no eliminations were done and this insn doesn't require any elimination
3198 processing (these are not identical conditions: it might be updating sp,
3199 but not referencing fp; this needs to be seen during reload_as_needed so
3200 that the offset between fp and sp can be taken into consideration), zero
3201 is returned. Otherwise, 1 is returned. */
3202
3203 static int
3204 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3205 {
3206 int icode = recog_memoized (insn);
3207 rtx old_body = PATTERN (insn);
3208 int insn_is_asm = asm_noperands (old_body) >= 0;
3209 rtx old_set = single_set (insn);
3210 rtx new_body;
3211 int val = 0;
3212 int i;
3213 rtx substed_operand[MAX_RECOG_OPERANDS];
3214 rtx orig_operand[MAX_RECOG_OPERANDS];
3215 struct elim_table *ep;
3216 rtx plus_src, plus_cst_src;
3217
3218 if (! insn_is_asm && icode < 0)
3219 {
3220 gcc_assert (DEBUG_INSN_P (insn)
3221 || GET_CODE (PATTERN (insn)) == USE
3222 || GET_CODE (PATTERN (insn)) == CLOBBER
3223 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3224 if (DEBUG_BIND_INSN_P (insn))
3225 INSN_VAR_LOCATION_LOC (insn)
3226 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3227 return 0;
3228 }
3229
3230 if (old_set != 0 && REG_P (SET_DEST (old_set))
3231 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3232 {
3233 /* Check for setting an eliminable register. */
3234 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3235 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3236 {
3237 /* If this is setting the frame pointer register to the
3238 hardware frame pointer register and this is an elimination
3239 that will be done (tested above), this insn is really
3240 adjusting the frame pointer downward to compensate for
3241 the adjustment done before a nonlocal goto. */
3242 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3243 && ep->from == FRAME_POINTER_REGNUM
3244 && ep->to == HARD_FRAME_POINTER_REGNUM)
3245 {
3246 rtx base = SET_SRC (old_set);
3247 rtx_insn *base_insn = insn;
3248 HOST_WIDE_INT offset = 0;
3249
3250 while (base != ep->to_rtx)
3251 {
3252 rtx_insn *prev_insn;
3253 rtx prev_set;
3254
3255 if (GET_CODE (base) == PLUS
3256 && CONST_INT_P (XEXP (base, 1)))
3257 {
3258 offset += INTVAL (XEXP (base, 1));
3259 base = XEXP (base, 0);
3260 }
3261 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3262 && (prev_set = single_set (prev_insn)) != 0
3263 && rtx_equal_p (SET_DEST (prev_set), base))
3264 {
3265 base = SET_SRC (prev_set);
3266 base_insn = prev_insn;
3267 }
3268 else
3269 break;
3270 }
3271
3272 if (base == ep->to_rtx)
3273 {
3274 rtx src = plus_constant (Pmode, ep->to_rtx,
3275 offset - ep->offset);
3276
3277 new_body = old_body;
3278 if (! replace)
3279 {
3280 new_body = copy_insn (old_body);
3281 if (REG_NOTES (insn))
3282 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3283 }
3284 PATTERN (insn) = new_body;
3285 old_set = single_set (insn);
3286
3287 /* First see if this insn remains valid when we
3288 make the change. If not, keep the INSN_CODE
3289 the same and let reload fit it up. */
3290 validate_change (insn, &SET_SRC (old_set), src, 1);
3291 validate_change (insn, &SET_DEST (old_set),
3292 ep->to_rtx, 1);
3293 if (! apply_change_group ())
3294 {
3295 SET_SRC (old_set) = src;
3296 SET_DEST (old_set) = ep->to_rtx;
3297 }
3298
3299 val = 1;
3300 goto done;
3301 }
3302 }
3303
3304 /* In this case this insn isn't serving a useful purpose. We
3305 will delete it in reload_as_needed once we know that this
3306 elimination is, in fact, being done.
3307
3308 If REPLACE isn't set, we can't delete this insn, but needn't
3309 process it since it won't be used unless something changes. */
3310 if (replace)
3311 {
3312 delete_dead_insn (insn);
3313 return 1;
3314 }
3315 val = 1;
3316 goto done;
3317 }
3318 }
3319
3320 /* We allow one special case which happens to work on all machines we
3321 currently support: a single set with the source or a REG_EQUAL
3322 note being a PLUS of an eliminable register and a constant. */
3323 plus_src = plus_cst_src = 0;
3324 if (old_set && REG_P (SET_DEST (old_set)))
3325 {
3326 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3327 plus_src = SET_SRC (old_set);
3328 /* First see if the source is of the form (plus (...) CST). */
3329 if (plus_src
3330 && CONST_INT_P (XEXP (plus_src, 1)))
3331 plus_cst_src = plus_src;
3332 else if (REG_P (SET_SRC (old_set))
3333 || plus_src)
3334 {
3335 /* Otherwise, see if we have a REG_EQUAL note of the form
3336 (plus (...) CST). */
3337 rtx links;
3338 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3339 {
3340 if ((REG_NOTE_KIND (links) == REG_EQUAL
3341 || REG_NOTE_KIND (links) == REG_EQUIV)
3342 && GET_CODE (XEXP (links, 0)) == PLUS
3343 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3344 {
3345 plus_cst_src = XEXP (links, 0);
3346 break;
3347 }
3348 }
3349 }
3350
3351 /* Check that the first operand of the PLUS is a hard reg or
3352 the lowpart subreg of one. */
3353 if (plus_cst_src)
3354 {
3355 rtx reg = XEXP (plus_cst_src, 0);
3356 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3357 reg = SUBREG_REG (reg);
3358
3359 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3360 plus_cst_src = 0;
3361 }
3362 }
3363 if (plus_cst_src)
3364 {
3365 rtx reg = XEXP (plus_cst_src, 0);
3366 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3367
3368 if (GET_CODE (reg) == SUBREG)
3369 reg = SUBREG_REG (reg);
3370
3371 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3372 if (ep->from_rtx == reg && ep->can_eliminate)
3373 {
3374 rtx to_rtx = ep->to_rtx;
3375 offset += ep->offset;
3376 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3377
3378 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3379 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3380 to_rtx);
3381 /* If we have a nonzero offset, and the source is already
3382 a simple REG, the following transformation would
3383 increase the cost of the insn by replacing a simple REG
3384 with (plus (reg sp) CST). So try only when we already
3385 had a PLUS before. */
3386 if (known_eq (offset, 0) || plus_src)
3387 {
3388 rtx new_src = plus_constant (GET_MODE (to_rtx),
3389 to_rtx, offset);
3390
3391 new_body = old_body;
3392 if (! replace)
3393 {
3394 new_body = copy_insn (old_body);
3395 if (REG_NOTES (insn))
3396 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3397 }
3398 PATTERN (insn) = new_body;
3399 old_set = single_set (insn);
3400
3401 /* First see if this insn remains valid when we make the
3402 change. If not, try to replace the whole pattern with
3403 a simple set (this may help if the original insn was a
3404 PARALLEL that was only recognized as single_set due to
3405 REG_UNUSED notes). If this isn't valid either, keep
3406 the INSN_CODE the same and let reload fix it up. */
3407 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3408 {
3409 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3410
3411 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3412 SET_SRC (old_set) = new_src;
3413 }
3414 }
3415 else
3416 break;
3417
3418 val = 1;
3419 /* This can't have an effect on elimination offsets, so skip right
3420 to the end. */
3421 goto done;
3422 }
3423 }
3424
3425 /* Determine the effects of this insn on elimination offsets. */
3426 elimination_effects (old_body, VOIDmode);
3427
3428 /* Eliminate all eliminable registers occurring in operands that
3429 can be handled by reload. */
3430 extract_insn (insn);
3431 for (i = 0; i < recog_data.n_operands; i++)
3432 {
3433 orig_operand[i] = recog_data.operand[i];
3434 substed_operand[i] = recog_data.operand[i];
3435
3436 /* For an asm statement, every operand is eliminable. */
3437 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3438 {
3439 bool is_set_src, in_plus;
3440
3441 /* Check for setting a register that we know about. */
3442 if (recog_data.operand_type[i] != OP_IN
3443 && REG_P (orig_operand[i]))
3444 {
3445 /* If we are assigning to a register that can be eliminated, it
3446 must be as part of a PARALLEL, since the code above handles
3447 single SETs. We must indicate that we can no longer
3448 eliminate this reg. */
3449 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3450 ep++)
3451 if (ep->from_rtx == orig_operand[i])
3452 ep->can_eliminate = 0;
3453 }
3454
3455 /* Companion to the above plus substitution, we can allow
3456 invariants as the source of a plain move. */
3457 is_set_src = false;
3458 if (old_set
3459 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3460 is_set_src = true;
3461 in_plus = false;
3462 if (plus_src
3463 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3464 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3465 in_plus = true;
3466
3467 substed_operand[i]
3468 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3469 replace ? insn : NULL_RTX,
3470 is_set_src || in_plus, false);
3471 if (substed_operand[i] != orig_operand[i])
3472 val = 1;
3473 /* Terminate the search in check_eliminable_occurrences at
3474 this point. */
3475 *recog_data.operand_loc[i] = 0;
3476
3477 /* If an output operand changed from a REG to a MEM and INSN is an
3478 insn, write a CLOBBER insn. */
3479 if (recog_data.operand_type[i] != OP_IN
3480 && REG_P (orig_operand[i])
3481 && MEM_P (substed_operand[i])
3482 && replace)
3483 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3484 }
3485 }
3486
3487 for (i = 0; i < recog_data.n_dups; i++)
3488 *recog_data.dup_loc[i]
3489 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3490
3491 /* If any eliminable remain, they aren't eliminable anymore. */
3492 check_eliminable_occurrences (old_body);
3493
3494 /* Substitute the operands; the new values are in the substed_operand
3495 array. */
3496 for (i = 0; i < recog_data.n_operands; i++)
3497 *recog_data.operand_loc[i] = substed_operand[i];
3498 for (i = 0; i < recog_data.n_dups; i++)
3499 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3500
3501 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3502 re-recognize the insn. We do this in case we had a simple addition
3503 but now can do this as a load-address. This saves an insn in this
3504 common case.
3505 If re-recognition fails, the old insn code number will still be used,
3506 and some register operands may have changed into PLUS expressions.
3507 These will be handled by find_reloads by loading them into a register
3508 again. */
3509
3510 if (val)
3511 {
3512 /* If we aren't replacing things permanently and we changed something,
3513 make another copy to ensure that all the RTL is new. Otherwise
3514 things can go wrong if find_reload swaps commutative operands
3515 and one is inside RTL that has been copied while the other is not. */
3516 new_body = old_body;
3517 if (! replace)
3518 {
3519 new_body = copy_insn (old_body);
3520 if (REG_NOTES (insn))
3521 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3522 }
3523 PATTERN (insn) = new_body;
3524
3525 /* If we had a move insn but now we don't, rerecognize it. This will
3526 cause spurious re-recognition if the old move had a PARALLEL since
3527 the new one still will, but we can't call single_set without
3528 having put NEW_BODY into the insn and the re-recognition won't
3529 hurt in this rare case. */
3530 /* ??? Why this huge if statement - why don't we just rerecognize the
3531 thing always? */
3532 if (! insn_is_asm
3533 && old_set != 0
3534 && ((REG_P (SET_SRC (old_set))
3535 && (GET_CODE (new_body) != SET
3536 || !REG_P (SET_SRC (new_body))))
3537 /* If this was a load from or store to memory, compare
3538 the MEM in recog_data.operand to the one in the insn.
3539 If they are not equal, then rerecognize the insn. */
3540 || (old_set != 0
3541 && ((MEM_P (SET_SRC (old_set))
3542 && SET_SRC (old_set) != recog_data.operand[1])
3543 || (MEM_P (SET_DEST (old_set))
3544 && SET_DEST (old_set) != recog_data.operand[0])))
3545 /* If this was an add insn before, rerecognize. */
3546 || GET_CODE (SET_SRC (old_set)) == PLUS))
3547 {
3548 int new_icode = recog (PATTERN (insn), insn, 0);
3549 if (new_icode >= 0)
3550 INSN_CODE (insn) = new_icode;
3551 }
3552 }
3553
3554 /* Restore the old body. If there were any changes to it, we made a copy
3555 of it while the changes were still in place, so we'll correctly return
3556 a modified insn below. */
3557 if (! replace)
3558 {
3559 /* Restore the old body. */
3560 for (i = 0; i < recog_data.n_operands; i++)
3561 /* Restoring a top-level match_parallel would clobber the new_body
3562 we installed in the insn. */
3563 if (recog_data.operand_loc[i] != &PATTERN (insn))
3564 *recog_data.operand_loc[i] = orig_operand[i];
3565 for (i = 0; i < recog_data.n_dups; i++)
3566 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3567 }
3568
3569 /* Update all elimination pairs to reflect the status after the current
3570 insn. The changes we make were determined by the earlier call to
3571 elimination_effects.
3572
3573 We also detect cases where register elimination cannot be done,
3574 namely, if a register would be both changed and referenced outside a MEM
3575 in the resulting insn since such an insn is often undefined and, even if
3576 not, we cannot know what meaning will be given to it. Note that it is
3577 valid to have a register used in an address in an insn that changes it
3578 (presumably with a pre- or post-increment or decrement).
3579
3580 If anything changes, return nonzero. */
3581
3582 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3583 {
3584 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3585 ep->can_eliminate = 0;
3586
3587 ep->ref_outside_mem = 0;
3588
3589 if (maybe_ne (ep->previous_offset, ep->offset))
3590 val = 1;
3591 }
3592
3593 done:
3594 /* If we changed something, perform elimination in REG_NOTES. This is
3595 needed even when REPLACE is zero because a REG_DEAD note might refer
3596 to a register that we eliminate and could cause a different number
3597 of spill registers to be needed in the final reload pass than in
3598 the pre-passes. */
3599 if (val && REG_NOTES (insn) != 0)
3600 REG_NOTES (insn)
3601 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3602 false);
3603
3604 return val;
3605 }
3606
3607 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3608 register allocator. INSN is the instruction we need to examine, we perform
3609 eliminations in its operands and record cases where eliminating a reg with
3610 an invariant equivalence would add extra cost. */
3611
3612 #pragma GCC diagnostic push
3613 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3614 static void
3615 elimination_costs_in_insn (rtx_insn *insn)
3616 {
3617 int icode = recog_memoized (insn);
3618 rtx old_body = PATTERN (insn);
3619 int insn_is_asm = asm_noperands (old_body) >= 0;
3620 rtx old_set = single_set (insn);
3621 int i;
3622 rtx orig_operand[MAX_RECOG_OPERANDS];
3623 rtx orig_dup[MAX_RECOG_OPERANDS];
3624 struct elim_table *ep;
3625 rtx plus_src, plus_cst_src;
3626 bool sets_reg_p;
3627
3628 if (! insn_is_asm && icode < 0)
3629 {
3630 gcc_assert (DEBUG_INSN_P (insn)
3631 || GET_CODE (PATTERN (insn)) == USE
3632 || GET_CODE (PATTERN (insn)) == CLOBBER
3633 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3634 return;
3635 }
3636
3637 if (old_set != 0 && REG_P (SET_DEST (old_set))
3638 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3639 {
3640 /* Check for setting an eliminable register. */
3641 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3642 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3643 return;
3644 }
3645
3646 /* We allow one special case which happens to work on all machines we
3647 currently support: a single set with the source or a REG_EQUAL
3648 note being a PLUS of an eliminable register and a constant. */
3649 plus_src = plus_cst_src = 0;
3650 sets_reg_p = false;
3651 if (old_set && REG_P (SET_DEST (old_set)))
3652 {
3653 sets_reg_p = true;
3654 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3655 plus_src = SET_SRC (old_set);
3656 /* First see if the source is of the form (plus (...) CST). */
3657 if (plus_src
3658 && CONST_INT_P (XEXP (plus_src, 1)))
3659 plus_cst_src = plus_src;
3660 else if (REG_P (SET_SRC (old_set))
3661 || plus_src)
3662 {
3663 /* Otherwise, see if we have a REG_EQUAL note of the form
3664 (plus (...) CST). */
3665 rtx links;
3666 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3667 {
3668 if ((REG_NOTE_KIND (links) == REG_EQUAL
3669 || REG_NOTE_KIND (links) == REG_EQUIV)
3670 && GET_CODE (XEXP (links, 0)) == PLUS
3671 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3672 {
3673 plus_cst_src = XEXP (links, 0);
3674 break;
3675 }
3676 }
3677 }
3678 }
3679
3680 /* Determine the effects of this insn on elimination offsets. */
3681 elimination_effects (old_body, VOIDmode);
3682
3683 /* Eliminate all eliminable registers occurring in operands that
3684 can be handled by reload. */
3685 extract_insn (insn);
3686 int n_dups = recog_data.n_dups;
3687 for (i = 0; i < n_dups; i++)
3688 orig_dup[i] = *recog_data.dup_loc[i];
3689
3690 int n_operands = recog_data.n_operands;
3691 for (i = 0; i < n_operands; i++)
3692 {
3693 orig_operand[i] = recog_data.operand[i];
3694
3695 /* For an asm statement, every operand is eliminable. */
3696 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3697 {
3698 bool is_set_src, in_plus;
3699
3700 /* Check for setting a register that we know about. */
3701 if (recog_data.operand_type[i] != OP_IN
3702 && REG_P (orig_operand[i]))
3703 {
3704 /* If we are assigning to a register that can be eliminated, it
3705 must be as part of a PARALLEL, since the code above handles
3706 single SETs. We must indicate that we can no longer
3707 eliminate this reg. */
3708 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3709 ep++)
3710 if (ep->from_rtx == orig_operand[i])
3711 ep->can_eliminate = 0;
3712 }
3713
3714 /* Companion to the above plus substitution, we can allow
3715 invariants as the source of a plain move. */
3716 is_set_src = false;
3717 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3718 is_set_src = true;
3719 if (is_set_src && !sets_reg_p)
3720 note_reg_elim_costly (SET_SRC (old_set), insn);
3721 in_plus = false;
3722 if (plus_src && sets_reg_p
3723 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3724 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3725 in_plus = true;
3726
3727 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3728 NULL_RTX,
3729 is_set_src || in_plus, true);
3730 /* Terminate the search in check_eliminable_occurrences at
3731 this point. */
3732 *recog_data.operand_loc[i] = 0;
3733 }
3734 }
3735
3736 for (i = 0; i < n_dups; i++)
3737 *recog_data.dup_loc[i]
3738 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3739
3740 /* If any eliminable remain, they aren't eliminable anymore. */
3741 check_eliminable_occurrences (old_body);
3742
3743 /* Restore the old body. */
3744 for (i = 0; i < n_operands; i++)
3745 *recog_data.operand_loc[i] = orig_operand[i];
3746 for (i = 0; i < n_dups; i++)
3747 *recog_data.dup_loc[i] = orig_dup[i];
3748
3749 /* Update all elimination pairs to reflect the status after the current
3750 insn. The changes we make were determined by the earlier call to
3751 elimination_effects. */
3752
3753 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3754 {
3755 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3756 ep->can_eliminate = 0;
3757
3758 ep->ref_outside_mem = 0;
3759 }
3760
3761 return;
3762 }
3763 #pragma GCC diagnostic pop
3764
3765 /* Loop through all elimination pairs.
3766 Recalculate the number not at initial offset.
3767
3768 Compute the maximum offset (minimum offset if the stack does not
3769 grow downward) for each elimination pair. */
3770
3771 static void
3772 update_eliminable_offsets (void)
3773 {
3774 struct elim_table *ep;
3775
3776 num_not_at_initial_offset = 0;
3777 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3778 {
3779 ep->previous_offset = ep->offset;
3780 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3781 num_not_at_initial_offset++;
3782 }
3783 }
3784
3785 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3786 replacement we currently believe is valid, mark it as not eliminable if X
3787 modifies DEST in any way other than by adding a constant integer to it.
3788
3789 If DEST is the frame pointer, we do nothing because we assume that
3790 all assignments to the hard frame pointer are nonlocal gotos and are being
3791 done at a time when they are valid and do not disturb anything else.
3792 Some machines want to eliminate a fake argument pointer with either the
3793 frame or stack pointer. Assignments to the hard frame pointer must not
3794 prevent this elimination.
3795
3796 Called via note_stores from reload before starting its passes to scan
3797 the insns of the function. */
3798
3799 static void
3800 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3801 {
3802 unsigned int i;
3803
3804 /* A SUBREG of a hard register here is just changing its mode. We should
3805 not see a SUBREG of an eliminable hard register, but check just in
3806 case. */
3807 if (GET_CODE (dest) == SUBREG)
3808 dest = SUBREG_REG (dest);
3809
3810 if (dest == hard_frame_pointer_rtx)
3811 return;
3812
3813 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3814 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3815 && (GET_CODE (x) != SET
3816 || GET_CODE (SET_SRC (x)) != PLUS
3817 || XEXP (SET_SRC (x), 0) != dest
3818 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3819 {
3820 reg_eliminate[i].can_eliminate_previous
3821 = reg_eliminate[i].can_eliminate = 0;
3822 num_eliminable--;
3823 }
3824 }
3825
3826 /* Verify that the initial elimination offsets did not change since the
3827 last call to set_initial_elim_offsets. This is used to catch cases
3828 where something illegal happened during reload_as_needed that could
3829 cause incorrect code to be generated if we did not check for it. */
3830
3831 static bool
3832 verify_initial_elim_offsets (void)
3833 {
3834 poly_int64 t;
3835 struct elim_table *ep;
3836
3837 if (!num_eliminable)
3838 return true;
3839
3840 targetm.compute_frame_layout ();
3841 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3842 {
3843 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3844 if (maybe_ne (t, ep->initial_offset))
3845 return false;
3846 }
3847
3848 return true;
3849 }
3850
3851 /* Reset all offsets on eliminable registers to their initial values. */
3852
3853 static void
3854 set_initial_elim_offsets (void)
3855 {
3856 struct elim_table *ep = reg_eliminate;
3857
3858 targetm.compute_frame_layout ();
3859 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3860 {
3861 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3862 ep->previous_offset = ep->offset = ep->initial_offset;
3863 }
3864
3865 num_not_at_initial_offset = 0;
3866 }
3867
3868 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3869
3870 static void
3871 set_initial_eh_label_offset (rtx label)
3872 {
3873 set_label_offsets (label, NULL, 1);
3874 }
3875
3876 /* Initialize the known label offsets.
3877 Set a known offset for each forced label to be at the initial offset
3878 of each elimination. We do this because we assume that all
3879 computed jumps occur from a location where each elimination is
3880 at its initial offset.
3881 For all other labels, show that we don't know the offsets. */
3882
3883 static void
3884 set_initial_label_offsets (void)
3885 {
3886 memset (offsets_known_at, 0, num_labels);
3887
3888 unsigned int i;
3889 rtx_insn *insn;
3890 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3891 set_label_offsets (insn, NULL, 1);
3892
3893 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3894 if (x->insn ())
3895 set_label_offsets (x->insn (), NULL, 1);
3896
3897 for_each_eh_label (set_initial_eh_label_offset);
3898 }
3899
3900 /* Set all elimination offsets to the known values for the code label given
3901 by INSN. */
3902
3903 static void
3904 set_offsets_for_label (rtx_insn *insn)
3905 {
3906 unsigned int i;
3907 int label_nr = CODE_LABEL_NUMBER (insn);
3908 struct elim_table *ep;
3909
3910 num_not_at_initial_offset = 0;
3911 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3912 {
3913 ep->offset = ep->previous_offset
3914 = offsets_at[label_nr - first_label_num][i];
3915 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3916 num_not_at_initial_offset++;
3917 }
3918 }
3919
3920 /* See if anything that happened changes which eliminations are valid.
3921 For example, on the SPARC, whether or not the frame pointer can
3922 be eliminated can depend on what registers have been used. We need
3923 not check some conditions again (such as flag_omit_frame_pointer)
3924 since they can't have changed. */
3925
3926 static void
3927 update_eliminables (HARD_REG_SET *pset)
3928 {
3929 int previous_frame_pointer_needed = frame_pointer_needed;
3930 struct elim_table *ep;
3931
3932 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3933 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3934 && targetm.frame_pointer_required ())
3935 || ! targetm.can_eliminate (ep->from, ep->to)
3936 )
3937 ep->can_eliminate = 0;
3938
3939 /* Look for the case where we have discovered that we can't replace
3940 register A with register B and that means that we will now be
3941 trying to replace register A with register C. This means we can
3942 no longer replace register C with register B and we need to disable
3943 such an elimination, if it exists. This occurs often with A == ap,
3944 B == sp, and C == fp. */
3945
3946 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3947 {
3948 struct elim_table *op;
3949 int new_to = -1;
3950
3951 if (! ep->can_eliminate && ep->can_eliminate_previous)
3952 {
3953 /* Find the current elimination for ep->from, if there is a
3954 new one. */
3955 for (op = reg_eliminate;
3956 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3957 if (op->from == ep->from && op->can_eliminate)
3958 {
3959 new_to = op->to;
3960 break;
3961 }
3962
3963 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3964 disable it. */
3965 for (op = reg_eliminate;
3966 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3967 if (op->from == new_to && op->to == ep->to)
3968 op->can_eliminate = 0;
3969 }
3970 }
3971
3972 /* See if any registers that we thought we could eliminate the previous
3973 time are no longer eliminable. If so, something has changed and we
3974 must spill the register. Also, recompute the number of eliminable
3975 registers and see if the frame pointer is needed; it is if there is
3976 no elimination of the frame pointer that we can perform. */
3977
3978 frame_pointer_needed = 1;
3979 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3980 {
3981 if (ep->can_eliminate
3982 && ep->from == FRAME_POINTER_REGNUM
3983 && ep->to != HARD_FRAME_POINTER_REGNUM
3984 && (! SUPPORTS_STACK_ALIGNMENT
3985 || ! crtl->stack_realign_needed))
3986 frame_pointer_needed = 0;
3987
3988 if (! ep->can_eliminate && ep->can_eliminate_previous)
3989 {
3990 ep->can_eliminate_previous = 0;
3991 SET_HARD_REG_BIT (*pset, ep->from);
3992 num_eliminable--;
3993 }
3994 }
3995
3996 /* If we didn't need a frame pointer last time, but we do now, spill
3997 the hard frame pointer. */
3998 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3999 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4000 }
4001
4002 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4003 Return true iff a register was spilled. */
4004
4005 static bool
4006 update_eliminables_and_spill (void)
4007 {
4008 int i;
4009 bool did_spill = false;
4010 HARD_REG_SET to_spill;
4011 CLEAR_HARD_REG_SET (to_spill);
4012 update_eliminables (&to_spill);
4013 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4014
4015 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4016 if (TEST_HARD_REG_BIT (to_spill, i))
4017 {
4018 spill_hard_reg (i, 1);
4019 did_spill = true;
4020
4021 /* Regardless of the state of spills, if we previously had
4022 a register that we thought we could eliminate, but now can
4023 not eliminate, we must run another pass.
4024
4025 Consider pseudos which have an entry in reg_equiv_* which
4026 reference an eliminable register. We must make another pass
4027 to update reg_equiv_* so that we do not substitute in the
4028 old value from when we thought the elimination could be
4029 performed. */
4030 }
4031 return did_spill;
4032 }
4033
4034 /* Return true if X is used as the target register of an elimination. */
4035
4036 bool
4037 elimination_target_reg_p (rtx x)
4038 {
4039 struct elim_table *ep;
4040
4041 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4042 if (ep->to_rtx == x && ep->can_eliminate)
4043 return true;
4044
4045 return false;
4046 }
4047
4048 /* Initialize the table of registers to eliminate.
4049 Pre-condition: global flag frame_pointer_needed has been set before
4050 calling this function. */
4051
4052 static void
4053 init_elim_table (void)
4054 {
4055 struct elim_table *ep;
4056 const struct elim_table_1 *ep1;
4057
4058 if (!reg_eliminate)
4059 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4060
4061 num_eliminable = 0;
4062
4063 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4064 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4065 {
4066 ep->from = ep1->from;
4067 ep->to = ep1->to;
4068 ep->can_eliminate = ep->can_eliminate_previous
4069 = (targetm.can_eliminate (ep->from, ep->to)
4070 && ! (ep->to == STACK_POINTER_REGNUM
4071 && frame_pointer_needed
4072 && (! SUPPORTS_STACK_ALIGNMENT
4073 || ! stack_realign_fp)));
4074 }
4075
4076 /* Count the number of eliminable registers and build the FROM and TO
4077 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4078 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4079 We depend on this. */
4080 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4081 {
4082 num_eliminable += ep->can_eliminate;
4083 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4084 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4085 }
4086 }
4087
4088 /* Find all the pseudo registers that didn't get hard regs
4089 but do have known equivalent constants or memory slots.
4090 These include parameters (known equivalent to parameter slots)
4091 and cse'd or loop-moved constant memory addresses.
4092
4093 Record constant equivalents in reg_equiv_constant
4094 so they will be substituted by find_reloads.
4095 Record memory equivalents in reg_mem_equiv so they can
4096 be substituted eventually by altering the REG-rtx's. */
4097
4098 static void
4099 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4100 {
4101 int i;
4102 rtx_insn *insn;
4103
4104 grow_reg_equivs ();
4105 if (do_subregs)
4106 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4107 else
4108 reg_max_ref_mode = NULL;
4109
4110 num_eliminable_invariants = 0;
4111
4112 first_label_num = get_first_label_num ();
4113 num_labels = max_label_num () - first_label_num;
4114
4115 /* Allocate the tables used to store offset information at labels. */
4116 offsets_known_at = XNEWVEC (char, num_labels);
4117 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4118 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4119
4120 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4121 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4122 find largest such for each pseudo. FIRST is the head of the insn
4123 list. */
4124
4125 for (insn = first; insn; insn = NEXT_INSN (insn))
4126 {
4127 rtx set = single_set (insn);
4128
4129 /* We may introduce USEs that we want to remove at the end, so
4130 we'll mark them with QImode. Make sure there are no
4131 previously-marked insns left by say regmove. */
4132 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4133 && GET_MODE (insn) != VOIDmode)
4134 PUT_MODE (insn, VOIDmode);
4135
4136 if (do_subregs && NONDEBUG_INSN_P (insn))
4137 scan_paradoxical_subregs (PATTERN (insn));
4138
4139 if (set != 0 && REG_P (SET_DEST (set)))
4140 {
4141 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4142 rtx x;
4143
4144 if (! note)
4145 continue;
4146
4147 i = REGNO (SET_DEST (set));
4148 x = XEXP (note, 0);
4149
4150 if (i <= LAST_VIRTUAL_REGISTER)
4151 continue;
4152
4153 /* If flag_pic and we have constant, verify it's legitimate. */
4154 if (!CONSTANT_P (x)
4155 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4156 {
4157 /* It can happen that a REG_EQUIV note contains a MEM
4158 that is not a legitimate memory operand. As later
4159 stages of reload assume that all addresses found
4160 in the reg_equiv_* arrays were originally legitimate,
4161 we ignore such REG_EQUIV notes. */
4162 if (memory_operand (x, VOIDmode))
4163 {
4164 /* Always unshare the equivalence, so we can
4165 substitute into this insn without touching the
4166 equivalence. */
4167 reg_equiv_memory_loc (i) = copy_rtx (x);
4168 }
4169 else if (function_invariant_p (x))
4170 {
4171 machine_mode mode;
4172
4173 mode = GET_MODE (SET_DEST (set));
4174 if (GET_CODE (x) == PLUS)
4175 {
4176 /* This is PLUS of frame pointer and a constant,
4177 and might be shared. Unshare it. */
4178 reg_equiv_invariant (i) = copy_rtx (x);
4179 num_eliminable_invariants++;
4180 }
4181 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4182 {
4183 reg_equiv_invariant (i) = x;
4184 num_eliminable_invariants++;
4185 }
4186 else if (targetm.legitimate_constant_p (mode, x))
4187 reg_equiv_constant (i) = x;
4188 else
4189 {
4190 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4191 if (! reg_equiv_memory_loc (i))
4192 reg_equiv_init (i) = NULL;
4193 }
4194 }
4195 else
4196 {
4197 reg_equiv_init (i) = NULL;
4198 continue;
4199 }
4200 }
4201 else
4202 reg_equiv_init (i) = NULL;
4203 }
4204 }
4205
4206 if (dump_file)
4207 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4208 if (reg_equiv_init (i))
4209 {
4210 fprintf (dump_file, "init_insns for %u: ", i);
4211 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4212 fprintf (dump_file, "\n");
4213 }
4214 }
4215
4216 /* Indicate that we no longer have known memory locations or constants.
4217 Free all data involved in tracking these. */
4218
4219 static void
4220 free_reg_equiv (void)
4221 {
4222 int i;
4223
4224 free (offsets_known_at);
4225 free (offsets_at);
4226 offsets_at = 0;
4227 offsets_known_at = 0;
4228
4229 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4230 if (reg_equiv_alt_mem_list (i))
4231 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4232 vec_free (reg_equivs);
4233 }
4234 \f
4235 /* Kick all pseudos out of hard register REGNO.
4236
4237 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4238 because we found we can't eliminate some register. In the case, no pseudos
4239 are allowed to be in the register, even if they are only in a block that
4240 doesn't require spill registers, unlike the case when we are spilling this
4241 hard reg to produce another spill register.
4242
4243 Return nonzero if any pseudos needed to be kicked out. */
4244
4245 static void
4246 spill_hard_reg (unsigned int regno, int cant_eliminate)
4247 {
4248 int i;
4249
4250 if (cant_eliminate)
4251 {
4252 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4253 df_set_regs_ever_live (regno, true);
4254 }
4255
4256 /* Spill every pseudo reg that was allocated to this reg
4257 or to something that overlaps this reg. */
4258
4259 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4260 if (reg_renumber[i] >= 0
4261 && (unsigned int) reg_renumber[i] <= regno
4262 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4263 SET_REGNO_REG_SET (&spilled_pseudos, i);
4264 }
4265
4266 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4267 insns that need reloads, this function is used to actually spill pseudo
4268 registers and try to reallocate them. It also sets up the spill_regs
4269 array for use by choose_reload_regs.
4270
4271 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4272 that we displace from hard registers. */
4273
4274 static int
4275 finish_spills (int global)
4276 {
4277 struct insn_chain *chain;
4278 int something_changed = 0;
4279 unsigned i;
4280 reg_set_iterator rsi;
4281
4282 /* Build the spill_regs array for the function. */
4283 /* If there are some registers still to eliminate and one of the spill regs
4284 wasn't ever used before, additional stack space may have to be
4285 allocated to store this register. Thus, we may have changed the offset
4286 between the stack and frame pointers, so mark that something has changed.
4287
4288 One might think that we need only set VAL to 1 if this is a call-used
4289 register. However, the set of registers that must be saved by the
4290 prologue is not identical to the call-used set. For example, the
4291 register used by the call insn for the return PC is a call-used register,
4292 but must be saved by the prologue. */
4293
4294 n_spills = 0;
4295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4296 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4297 {
4298 spill_reg_order[i] = n_spills;
4299 spill_regs[n_spills++] = i;
4300 if (num_eliminable && ! df_regs_ever_live_p (i))
4301 something_changed = 1;
4302 df_set_regs_ever_live (i, true);
4303 }
4304 else
4305 spill_reg_order[i] = -1;
4306
4307 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4308 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4309 {
4310 /* Record the current hard register the pseudo is allocated to
4311 in pseudo_previous_regs so we avoid reallocating it to the
4312 same hard reg in a later pass. */
4313 gcc_assert (reg_renumber[i] >= 0);
4314
4315 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4316 /* Mark it as no longer having a hard register home. */
4317 reg_renumber[i] = -1;
4318 if (ira_conflicts_p)
4319 /* Inform IRA about the change. */
4320 ira_mark_allocation_change (i);
4321 /* We will need to scan everything again. */
4322 something_changed = 1;
4323 }
4324
4325 /* Retry global register allocation if possible. */
4326 if (global && ira_conflicts_p)
4327 {
4328 unsigned int n;
4329
4330 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4331 /* For every insn that needs reloads, set the registers used as spill
4332 regs in pseudo_forbidden_regs for every pseudo live across the
4333 insn. */
4334 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4335 {
4336 EXECUTE_IF_SET_IN_REG_SET
4337 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4338 {
4339 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4340 chain->used_spill_regs);
4341 }
4342 EXECUTE_IF_SET_IN_REG_SET
4343 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4344 {
4345 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4346 chain->used_spill_regs);
4347 }
4348 }
4349
4350 /* Retry allocating the pseudos spilled in IRA and the
4351 reload. For each reg, merge the various reg sets that
4352 indicate which hard regs can't be used, and call
4353 ira_reassign_pseudos. */
4354 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4355 if (reg_old_renumber[i] != reg_renumber[i])
4356 {
4357 if (reg_renumber[i] < 0)
4358 temp_pseudo_reg_arr[n++] = i;
4359 else
4360 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4361 }
4362 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4363 bad_spill_regs_global,
4364 pseudo_forbidden_regs, pseudo_previous_regs,
4365 &spilled_pseudos))
4366 something_changed = 1;
4367 }
4368 /* Fix up the register information in the insn chain.
4369 This involves deleting those of the spilled pseudos which did not get
4370 a new hard register home from the live_{before,after} sets. */
4371 for (chain = reload_insn_chain; chain; chain = chain->next)
4372 {
4373 HARD_REG_SET used_by_pseudos;
4374 HARD_REG_SET used_by_pseudos2;
4375
4376 if (! ira_conflicts_p)
4377 {
4378 /* Don't do it for IRA because IRA and the reload still can
4379 assign hard registers to the spilled pseudos on next
4380 reload iterations. */
4381 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4382 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4383 }
4384 /* Mark any unallocated hard regs as available for spills. That
4385 makes inheritance work somewhat better. */
4386 if (chain->need_reload)
4387 {
4388 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4389 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4390 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4391
4392 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4393 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4394 /* Value of chain->used_spill_regs from previous iteration
4395 may be not included in the value calculated here because
4396 of possible removing caller-saves insns (see function
4397 delete_caller_save_insns. */
4398 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4399 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4400 }
4401 }
4402
4403 CLEAR_REG_SET (&changed_allocation_pseudos);
4404 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4405 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4406 {
4407 int regno = reg_renumber[i];
4408 if (reg_old_renumber[i] == regno)
4409 continue;
4410
4411 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4412
4413 alter_reg (i, reg_old_renumber[i], false);
4414 reg_old_renumber[i] = regno;
4415 if (dump_file)
4416 {
4417 if (regno == -1)
4418 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4419 else
4420 fprintf (dump_file, " Register %d now in %d.\n\n",
4421 i, reg_renumber[i]);
4422 }
4423 }
4424
4425 return something_changed;
4426 }
4427 \f
4428 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4429
4430 static void
4431 scan_paradoxical_subregs (rtx x)
4432 {
4433 int i;
4434 const char *fmt;
4435 enum rtx_code code = GET_CODE (x);
4436
4437 switch (code)
4438 {
4439 case REG:
4440 case CONST:
4441 case SYMBOL_REF:
4442 case LABEL_REF:
4443 CASE_CONST_ANY:
4444 case CC0:
4445 case PC:
4446 case USE:
4447 case CLOBBER:
4448 return;
4449
4450 case SUBREG:
4451 if (REG_P (SUBREG_REG (x)))
4452 {
4453 unsigned int regno = REGNO (SUBREG_REG (x));
4454 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4455 {
4456 reg_max_ref_mode[regno] = GET_MODE (x);
4457 mark_home_live_1 (regno, GET_MODE (x));
4458 }
4459 }
4460 return;
4461
4462 default:
4463 break;
4464 }
4465
4466 fmt = GET_RTX_FORMAT (code);
4467 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4468 {
4469 if (fmt[i] == 'e')
4470 scan_paradoxical_subregs (XEXP (x, i));
4471 else if (fmt[i] == 'E')
4472 {
4473 int j;
4474 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4475 scan_paradoxical_subregs (XVECEXP (x, i, j));
4476 }
4477 }
4478 }
4479
4480 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4481 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4482 and apply the corresponding narrowing subreg to *OTHER_PTR.
4483 Return true if the operands were changed, false otherwise. */
4484
4485 static bool
4486 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4487 {
4488 rtx op, inner, other, tem;
4489
4490 op = *op_ptr;
4491 if (!paradoxical_subreg_p (op))
4492 return false;
4493 inner = SUBREG_REG (op);
4494
4495 other = *other_ptr;
4496 tem = gen_lowpart_common (GET_MODE (inner), other);
4497 if (!tem)
4498 return false;
4499
4500 /* If the lowpart operation turned a hard register into a subreg,
4501 rather than simplifying it to another hard register, then the
4502 mode change cannot be properly represented. For example, OTHER
4503 might be valid in its current mode, but not in the new one. */
4504 if (GET_CODE (tem) == SUBREG
4505 && REG_P (other)
4506 && HARD_REGISTER_P (other))
4507 return false;
4508
4509 *op_ptr = inner;
4510 *other_ptr = tem;
4511 return true;
4512 }
4513 \f
4514 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4515 examine all of the reload insns between PREV and NEXT exclusive, and
4516 annotate all that may trap. */
4517
4518 static void
4519 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4520 {
4521 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4522 if (note == NULL)
4523 return;
4524 if (!insn_could_throw_p (insn))
4525 remove_note (insn, note);
4526 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4527 }
4528
4529 /* Reload pseudo-registers into hard regs around each insn as needed.
4530 Additional register load insns are output before the insn that needs it
4531 and perhaps store insns after insns that modify the reloaded pseudo reg.
4532
4533 reg_last_reload_reg and reg_reloaded_contents keep track of
4534 which registers are already available in reload registers.
4535 We update these for the reloads that we perform,
4536 as the insns are scanned. */
4537
4538 static void
4539 reload_as_needed (int live_known)
4540 {
4541 struct insn_chain *chain;
4542 #if AUTO_INC_DEC
4543 int i;
4544 #endif
4545 rtx_note *marker;
4546
4547 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4548 memset (spill_reg_store, 0, sizeof spill_reg_store);
4549 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4550 INIT_REG_SET (&reg_has_output_reload);
4551 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4552 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4553
4554 set_initial_elim_offsets ();
4555
4556 /* Generate a marker insn that we will move around. */
4557 marker = emit_note (NOTE_INSN_DELETED);
4558 unlink_insn_chain (marker, marker);
4559
4560 for (chain = reload_insn_chain; chain; chain = chain->next)
4561 {
4562 rtx_insn *prev = 0;
4563 rtx_insn *insn = chain->insn;
4564 rtx_insn *old_next = NEXT_INSN (insn);
4565 #if AUTO_INC_DEC
4566 rtx_insn *old_prev = PREV_INSN (insn);
4567 #endif
4568
4569 if (will_delete_init_insn_p (insn))
4570 continue;
4571
4572 /* If we pass a label, copy the offsets from the label information
4573 into the current offsets of each elimination. */
4574 if (LABEL_P (insn))
4575 set_offsets_for_label (insn);
4576
4577 else if (INSN_P (insn))
4578 {
4579 regset_head regs_to_forget;
4580 INIT_REG_SET (&regs_to_forget);
4581 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4582
4583 /* If this is a USE and CLOBBER of a MEM, ensure that any
4584 references to eliminable registers have been removed. */
4585
4586 if ((GET_CODE (PATTERN (insn)) == USE
4587 || GET_CODE (PATTERN (insn)) == CLOBBER)
4588 && MEM_P (XEXP (PATTERN (insn), 0)))
4589 XEXP (XEXP (PATTERN (insn), 0), 0)
4590 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4591 GET_MODE (XEXP (PATTERN (insn), 0)),
4592 NULL_RTX);
4593
4594 /* If we need to do register elimination processing, do so.
4595 This might delete the insn, in which case we are done. */
4596 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4597 {
4598 eliminate_regs_in_insn (insn, 1);
4599 if (NOTE_P (insn))
4600 {
4601 update_eliminable_offsets ();
4602 CLEAR_REG_SET (&regs_to_forget);
4603 continue;
4604 }
4605 }
4606
4607 /* If need_elim is nonzero but need_reload is zero, one might think
4608 that we could simply set n_reloads to 0. However, find_reloads
4609 could have done some manipulation of the insn (such as swapping
4610 commutative operands), and these manipulations are lost during
4611 the first pass for every insn that needs register elimination.
4612 So the actions of find_reloads must be redone here. */
4613
4614 if (! chain->need_elim && ! chain->need_reload
4615 && ! chain->need_operand_change)
4616 n_reloads = 0;
4617 /* First find the pseudo regs that must be reloaded for this insn.
4618 This info is returned in the tables reload_... (see reload.h).
4619 Also modify the body of INSN by substituting RELOAD
4620 rtx's for those pseudo regs. */
4621 else
4622 {
4623 CLEAR_REG_SET (&reg_has_output_reload);
4624 CLEAR_HARD_REG_SET (reg_is_output_reload);
4625
4626 find_reloads (insn, 1, spill_indirect_levels, live_known,
4627 spill_reg_order);
4628 }
4629
4630 if (n_reloads > 0)
4631 {
4632 rtx_insn *next = NEXT_INSN (insn);
4633
4634 /* ??? PREV can get deleted by reload inheritance.
4635 Work around this by emitting a marker note. */
4636 prev = PREV_INSN (insn);
4637 reorder_insns_nobb (marker, marker, prev);
4638
4639 /* Now compute which reload regs to reload them into. Perhaps
4640 reusing reload regs from previous insns, or else output
4641 load insns to reload them. Maybe output store insns too.
4642 Record the choices of reload reg in reload_reg_rtx. */
4643 choose_reload_regs (chain);
4644
4645 /* Generate the insns to reload operands into or out of
4646 their reload regs. */
4647 emit_reload_insns (chain);
4648
4649 /* Substitute the chosen reload regs from reload_reg_rtx
4650 into the insn's body (or perhaps into the bodies of other
4651 load and store insn that we just made for reloading
4652 and that we moved the structure into). */
4653 subst_reloads (insn);
4654
4655 prev = PREV_INSN (marker);
4656 unlink_insn_chain (marker, marker);
4657
4658 /* Adjust the exception region notes for loads and stores. */
4659 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4660 fixup_eh_region_note (insn, prev, next);
4661
4662 /* Adjust the location of REG_ARGS_SIZE. */
4663 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4664 if (p)
4665 {
4666 remove_note (insn, p);
4667 fixup_args_size_notes (prev, PREV_INSN (next),
4668 get_args_size (p));
4669 }
4670
4671 /* If this was an ASM, make sure that all the reload insns
4672 we have generated are valid. If not, give an error
4673 and delete them. */
4674 if (asm_noperands (PATTERN (insn)) >= 0)
4675 for (rtx_insn *p = NEXT_INSN (prev);
4676 p != next;
4677 p = NEXT_INSN (p))
4678 if (p != insn && INSN_P (p)
4679 && GET_CODE (PATTERN (p)) != USE
4680 && (recog_memoized (p) < 0
4681 || (extract_insn (p),
4682 !(constrain_operands (1,
4683 get_enabled_alternatives (p))))))
4684 {
4685 error_for_asm (insn,
4686 "%<asm%> operand requires "
4687 "impossible reload");
4688 delete_insn (p);
4689 }
4690 }
4691
4692 if (num_eliminable && chain->need_elim)
4693 update_eliminable_offsets ();
4694
4695 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4696 is no longer validly lying around to save a future reload.
4697 Note that this does not detect pseudos that were reloaded
4698 for this insn in order to be stored in
4699 (obeying register constraints). That is correct; such reload
4700 registers ARE still valid. */
4701 forget_marked_reloads (&regs_to_forget);
4702 CLEAR_REG_SET (&regs_to_forget);
4703
4704 /* There may have been CLOBBER insns placed after INSN. So scan
4705 between INSN and NEXT and use them to forget old reloads. */
4706 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4707 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4708 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4709
4710 #if AUTO_INC_DEC
4711 /* Likewise for regs altered by auto-increment in this insn.
4712 REG_INC notes have been changed by reloading:
4713 find_reloads_address_1 records substitutions for them,
4714 which have been performed by subst_reloads above. */
4715 for (i = n_reloads - 1; i >= 0; i--)
4716 {
4717 rtx in_reg = rld[i].in_reg;
4718 if (in_reg)
4719 {
4720 enum rtx_code code = GET_CODE (in_reg);
4721 /* PRE_INC / PRE_DEC will have the reload register ending up
4722 with the same value as the stack slot, but that doesn't
4723 hold true for POST_INC / POST_DEC. Either we have to
4724 convert the memory access to a true POST_INC / POST_DEC,
4725 or we can't use the reload register for inheritance. */
4726 if ((code == POST_INC || code == POST_DEC)
4727 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4728 REGNO (rld[i].reg_rtx))
4729 /* Make sure it is the inc/dec pseudo, and not
4730 some other (e.g. output operand) pseudo. */
4731 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4732 == REGNO (XEXP (in_reg, 0))))
4733
4734 {
4735 rtx reload_reg = rld[i].reg_rtx;
4736 machine_mode mode = GET_MODE (reload_reg);
4737 int n = 0;
4738 rtx_insn *p;
4739
4740 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4741 {
4742 /* We really want to ignore REG_INC notes here, so
4743 use PATTERN (p) as argument to reg_set_p . */
4744 if (reg_set_p (reload_reg, PATTERN (p)))
4745 break;
4746 n = count_occurrences (PATTERN (p), reload_reg, 0);
4747 if (! n)
4748 continue;
4749 if (n == 1)
4750 {
4751 rtx replace_reg
4752 = gen_rtx_fmt_e (code, mode, reload_reg);
4753
4754 validate_replace_rtx_group (reload_reg,
4755 replace_reg, p);
4756 n = verify_changes (0);
4757
4758 /* We must also verify that the constraints
4759 are met after the replacement. Make sure
4760 extract_insn is only called for an insn
4761 where the replacements were found to be
4762 valid so far. */
4763 if (n)
4764 {
4765 extract_insn (p);
4766 n = constrain_operands (1,
4767 get_enabled_alternatives (p));
4768 }
4769
4770 /* If the constraints were not met, then
4771 undo the replacement, else confirm it. */
4772 if (!n)
4773 cancel_changes (0);
4774 else
4775 confirm_change_group ();
4776 }
4777 break;
4778 }
4779 if (n == 1)
4780 {
4781 add_reg_note (p, REG_INC, reload_reg);
4782 /* Mark this as having an output reload so that the
4783 REG_INC processing code below won't invalidate
4784 the reload for inheritance. */
4785 SET_HARD_REG_BIT (reg_is_output_reload,
4786 REGNO (reload_reg));
4787 SET_REGNO_REG_SET (&reg_has_output_reload,
4788 REGNO (XEXP (in_reg, 0)));
4789 }
4790 else
4791 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4792 NULL);
4793 }
4794 else if ((code == PRE_INC || code == PRE_DEC)
4795 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4796 REGNO (rld[i].reg_rtx))
4797 /* Make sure it is the inc/dec pseudo, and not
4798 some other (e.g. output operand) pseudo. */
4799 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4800 == REGNO (XEXP (in_reg, 0))))
4801 {
4802 SET_HARD_REG_BIT (reg_is_output_reload,
4803 REGNO (rld[i].reg_rtx));
4804 SET_REGNO_REG_SET (&reg_has_output_reload,
4805 REGNO (XEXP (in_reg, 0)));
4806 }
4807 else if (code == PRE_INC || code == PRE_DEC
4808 || code == POST_INC || code == POST_DEC)
4809 {
4810 int in_regno = REGNO (XEXP (in_reg, 0));
4811
4812 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4813 {
4814 int in_hard_regno;
4815 bool forget_p = true;
4816
4817 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4818 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4819 in_hard_regno))
4820 {
4821 for (rtx_insn *x = (old_prev ?
4822 NEXT_INSN (old_prev) : insn);
4823 x != old_next;
4824 x = NEXT_INSN (x))
4825 if (x == reg_reloaded_insn[in_hard_regno])
4826 {
4827 forget_p = false;
4828 break;
4829 }
4830 }
4831 /* If for some reasons, we didn't set up
4832 reg_last_reload_reg in this insn,
4833 invalidate inheritance from previous
4834 insns for the incremented/decremented
4835 register. Such registers will be not in
4836 reg_has_output_reload. Invalidate it
4837 also if the corresponding element in
4838 reg_reloaded_insn is also
4839 invalidated. */
4840 if (forget_p)
4841 forget_old_reloads_1 (XEXP (in_reg, 0),
4842 NULL_RTX, NULL);
4843 }
4844 }
4845 }
4846 }
4847 /* If a pseudo that got a hard register is auto-incremented,
4848 we must purge records of copying it into pseudos without
4849 hard registers. */
4850 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4851 if (REG_NOTE_KIND (x) == REG_INC)
4852 {
4853 /* See if this pseudo reg was reloaded in this insn.
4854 If so, its last-reload info is still valid
4855 because it is based on this insn's reload. */
4856 for (i = 0; i < n_reloads; i++)
4857 if (rld[i].out == XEXP (x, 0))
4858 break;
4859
4860 if (i == n_reloads)
4861 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4862 }
4863 #endif
4864 }
4865 /* A reload reg's contents are unknown after a label. */
4866 if (LABEL_P (insn))
4867 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4868
4869 /* Don't assume a reload reg is still good after a call insn
4870 if it is a call-used reg, or if it contains a value that will
4871 be partially clobbered by the call. */
4872 else if (CALL_P (insn))
4873 {
4874 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4875 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4876
4877 /* If this is a call to a setjmp-type function, we must not
4878 reuse any reload reg contents across the call; that will
4879 just be clobbered by other uses of the register in later
4880 code, before the longjmp. */
4881 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4882 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4883 }
4884 }
4885
4886 /* Clean up. */
4887 free (reg_last_reload_reg);
4888 CLEAR_REG_SET (&reg_has_output_reload);
4889 }
4890
4891 /* Discard all record of any value reloaded from X,
4892 or reloaded in X from someplace else;
4893 unless X is an output reload reg of the current insn.
4894
4895 X may be a hard reg (the reload reg)
4896 or it may be a pseudo reg that was reloaded from.
4897
4898 When DATA is non-NULL just mark the registers in regset
4899 to be forgotten later. */
4900
4901 static void
4902 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4903 void *data)
4904 {
4905 unsigned int regno;
4906 unsigned int nr;
4907 regset regs = (regset) data;
4908
4909 /* note_stores does give us subregs of hard regs,
4910 subreg_regno_offset requires a hard reg. */
4911 while (GET_CODE (x) == SUBREG)
4912 {
4913 /* We ignore the subreg offset when calculating the regno,
4914 because we are using the entire underlying hard register
4915 below. */
4916 x = SUBREG_REG (x);
4917 }
4918
4919 if (!REG_P (x))
4920 return;
4921
4922 regno = REGNO (x);
4923
4924 if (regno >= FIRST_PSEUDO_REGISTER)
4925 nr = 1;
4926 else
4927 {
4928 unsigned int i;
4929
4930 nr = REG_NREGS (x);
4931 /* Storing into a spilled-reg invalidates its contents.
4932 This can happen if a block-local pseudo is allocated to that reg
4933 and it wasn't spilled because this block's total need is 0.
4934 Then some insn might have an optional reload and use this reg. */
4935 if (!regs)
4936 for (i = 0; i < nr; i++)
4937 /* But don't do this if the reg actually serves as an output
4938 reload reg in the current instruction. */
4939 if (n_reloads == 0
4940 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4941 {
4942 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4943 spill_reg_store[regno + i] = 0;
4944 }
4945 }
4946
4947 if (regs)
4948 while (nr-- > 0)
4949 SET_REGNO_REG_SET (regs, regno + nr);
4950 else
4951 {
4952 /* Since value of X has changed,
4953 forget any value previously copied from it. */
4954
4955 while (nr-- > 0)
4956 /* But don't forget a copy if this is the output reload
4957 that establishes the copy's validity. */
4958 if (n_reloads == 0
4959 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4960 reg_last_reload_reg[regno + nr] = 0;
4961 }
4962 }
4963
4964 /* Forget the reloads marked in regset by previous function. */
4965 static void
4966 forget_marked_reloads (regset regs)
4967 {
4968 unsigned int reg;
4969 reg_set_iterator rsi;
4970 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4971 {
4972 if (reg < FIRST_PSEUDO_REGISTER
4973 /* But don't do this if the reg actually serves as an output
4974 reload reg in the current instruction. */
4975 && (n_reloads == 0
4976 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4977 {
4978 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4979 spill_reg_store[reg] = 0;
4980 }
4981 if (n_reloads == 0
4982 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4983 reg_last_reload_reg[reg] = 0;
4984 }
4985 }
4986 \f
4987 /* The following HARD_REG_SETs indicate when each hard register is
4988 used for a reload of various parts of the current insn. */
4989
4990 /* If reg is unavailable for all reloads. */
4991 static HARD_REG_SET reload_reg_unavailable;
4992 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4993 static HARD_REG_SET reload_reg_used;
4994 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4995 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4996 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5001 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5002 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5003 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5004 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5005 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5006 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5007 static HARD_REG_SET reload_reg_used_in_op_addr;
5008 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5009 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5010 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5011 static HARD_REG_SET reload_reg_used_in_insn;
5012 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5013 static HARD_REG_SET reload_reg_used_in_other_addr;
5014
5015 /* If reg is in use as a reload reg for any sort of reload. */
5016 static HARD_REG_SET reload_reg_used_at_all;
5017
5018 /* If reg is use as an inherited reload. We just mark the first register
5019 in the group. */
5020 static HARD_REG_SET reload_reg_used_for_inherit;
5021
5022 /* Records which hard regs are used in any way, either as explicit use or
5023 by being allocated to a pseudo during any point of the current insn. */
5024 static HARD_REG_SET reg_used_in_insn;
5025
5026 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5027 TYPE. MODE is used to indicate how many consecutive regs are
5028 actually used. */
5029
5030 static void
5031 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5032 machine_mode mode)
5033 {
5034 switch (type)
5035 {
5036 case RELOAD_OTHER:
5037 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5038 break;
5039
5040 case RELOAD_FOR_INPUT_ADDRESS:
5041 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5042 break;
5043
5044 case RELOAD_FOR_INPADDR_ADDRESS:
5045 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5046 break;
5047
5048 case RELOAD_FOR_OUTPUT_ADDRESS:
5049 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5050 break;
5051
5052 case RELOAD_FOR_OUTADDR_ADDRESS:
5053 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5054 break;
5055
5056 case RELOAD_FOR_OPERAND_ADDRESS:
5057 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5058 break;
5059
5060 case RELOAD_FOR_OPADDR_ADDR:
5061 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5062 break;
5063
5064 case RELOAD_FOR_OTHER_ADDRESS:
5065 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5066 break;
5067
5068 case RELOAD_FOR_INPUT:
5069 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5070 break;
5071
5072 case RELOAD_FOR_OUTPUT:
5073 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5074 break;
5075
5076 case RELOAD_FOR_INSN:
5077 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5078 break;
5079 }
5080
5081 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5082 }
5083
5084 /* Similarly, but show REGNO is no longer in use for a reload. */
5085
5086 static void
5087 clear_reload_reg_in_use (unsigned int regno, int opnum,
5088 enum reload_type type, machine_mode mode)
5089 {
5090 unsigned int nregs = hard_regno_nregs (regno, mode);
5091 unsigned int start_regno, end_regno, r;
5092 int i;
5093 /* A complication is that for some reload types, inheritance might
5094 allow multiple reloads of the same types to share a reload register.
5095 We set check_opnum if we have to check only reloads with the same
5096 operand number, and check_any if we have to check all reloads. */
5097 int check_opnum = 0;
5098 int check_any = 0;
5099 HARD_REG_SET *used_in_set;
5100
5101 switch (type)
5102 {
5103 case RELOAD_OTHER:
5104 used_in_set = &reload_reg_used;
5105 break;
5106
5107 case RELOAD_FOR_INPUT_ADDRESS:
5108 used_in_set = &reload_reg_used_in_input_addr[opnum];
5109 break;
5110
5111 case RELOAD_FOR_INPADDR_ADDRESS:
5112 check_opnum = 1;
5113 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5114 break;
5115
5116 case RELOAD_FOR_OUTPUT_ADDRESS:
5117 used_in_set = &reload_reg_used_in_output_addr[opnum];
5118 break;
5119
5120 case RELOAD_FOR_OUTADDR_ADDRESS:
5121 check_opnum = 1;
5122 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5123 break;
5124
5125 case RELOAD_FOR_OPERAND_ADDRESS:
5126 used_in_set = &reload_reg_used_in_op_addr;
5127 break;
5128
5129 case RELOAD_FOR_OPADDR_ADDR:
5130 check_any = 1;
5131 used_in_set = &reload_reg_used_in_op_addr_reload;
5132 break;
5133
5134 case RELOAD_FOR_OTHER_ADDRESS:
5135 used_in_set = &reload_reg_used_in_other_addr;
5136 check_any = 1;
5137 break;
5138
5139 case RELOAD_FOR_INPUT:
5140 used_in_set = &reload_reg_used_in_input[opnum];
5141 break;
5142
5143 case RELOAD_FOR_OUTPUT:
5144 used_in_set = &reload_reg_used_in_output[opnum];
5145 break;
5146
5147 case RELOAD_FOR_INSN:
5148 used_in_set = &reload_reg_used_in_insn;
5149 break;
5150 default:
5151 gcc_unreachable ();
5152 }
5153 /* We resolve conflicts with remaining reloads of the same type by
5154 excluding the intervals of reload registers by them from the
5155 interval of freed reload registers. Since we only keep track of
5156 one set of interval bounds, we might have to exclude somewhat
5157 more than what would be necessary if we used a HARD_REG_SET here.
5158 But this should only happen very infrequently, so there should
5159 be no reason to worry about it. */
5160
5161 start_regno = regno;
5162 end_regno = regno + nregs;
5163 if (check_opnum || check_any)
5164 {
5165 for (i = n_reloads - 1; i >= 0; i--)
5166 {
5167 if (rld[i].when_needed == type
5168 && (check_any || rld[i].opnum == opnum)
5169 && rld[i].reg_rtx)
5170 {
5171 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5172 unsigned int conflict_end
5173 = end_hard_regno (rld[i].mode, conflict_start);
5174
5175 /* If there is an overlap with the first to-be-freed register,
5176 adjust the interval start. */
5177 if (conflict_start <= start_regno && conflict_end > start_regno)
5178 start_regno = conflict_end;
5179 /* Otherwise, if there is a conflict with one of the other
5180 to-be-freed registers, adjust the interval end. */
5181 if (conflict_start > start_regno && conflict_start < end_regno)
5182 end_regno = conflict_start;
5183 }
5184 }
5185 }
5186
5187 for (r = start_regno; r < end_regno; r++)
5188 CLEAR_HARD_REG_BIT (*used_in_set, r);
5189 }
5190
5191 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5192 specified by OPNUM and TYPE. */
5193
5194 static int
5195 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5196 {
5197 int i;
5198
5199 /* In use for a RELOAD_OTHER means it's not available for anything. */
5200 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5201 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5202 return 0;
5203
5204 switch (type)
5205 {
5206 case RELOAD_OTHER:
5207 /* In use for anything means we can't use it for RELOAD_OTHER. */
5208 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5209 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5210 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5212 return 0;
5213
5214 for (i = 0; i < reload_n_operands; i++)
5215 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5216 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5217 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5218 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5221 return 0;
5222
5223 return 1;
5224
5225 case RELOAD_FOR_INPUT:
5226 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5227 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5228 return 0;
5229
5230 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5231 return 0;
5232
5233 /* If it is used for some other input, can't use it. */
5234 for (i = 0; i < reload_n_operands; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5236 return 0;
5237
5238 /* If it is used in a later operand's address, can't use it. */
5239 for (i = opnum + 1; i < reload_n_operands; i++)
5240 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5241 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5242 return 0;
5243
5244 return 1;
5245
5246 case RELOAD_FOR_INPUT_ADDRESS:
5247 /* Can't use a register if it is used for an input address for this
5248 operand or used as an input in an earlier one. */
5249 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5250 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5251 return 0;
5252
5253 for (i = 0; i < opnum; i++)
5254 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5255 return 0;
5256
5257 return 1;
5258
5259 case RELOAD_FOR_INPADDR_ADDRESS:
5260 /* Can't use a register if it is used for an input address
5261 for this operand or used as an input in an earlier
5262 one. */
5263 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5264 return 0;
5265
5266 for (i = 0; i < opnum; i++)
5267 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5268 return 0;
5269
5270 return 1;
5271
5272 case RELOAD_FOR_OUTPUT_ADDRESS:
5273 /* Can't use a register if it is used for an output address for this
5274 operand or used as an output in this or a later operand. Note
5275 that multiple output operands are emitted in reverse order, so
5276 the conflicting ones are those with lower indices. */
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5278 return 0;
5279
5280 for (i = 0; i <= opnum; i++)
5281 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5282 return 0;
5283
5284 return 1;
5285
5286 case RELOAD_FOR_OUTADDR_ADDRESS:
5287 /* Can't use a register if it is used for an output address
5288 for this operand or used as an output in this or a
5289 later operand. Note that multiple output operands are
5290 emitted in reverse order, so the conflicting ones are
5291 those with lower indices. */
5292 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5293 return 0;
5294
5295 for (i = 0; i <= opnum; i++)
5296 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5297 return 0;
5298
5299 return 1;
5300
5301 case RELOAD_FOR_OPERAND_ADDRESS:
5302 for (i = 0; i < reload_n_operands; i++)
5303 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5304 return 0;
5305
5306 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5307 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5308
5309 case RELOAD_FOR_OPADDR_ADDR:
5310 for (i = 0; i < reload_n_operands; i++)
5311 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5312 return 0;
5313
5314 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5315
5316 case RELOAD_FOR_OUTPUT:
5317 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5318 outputs, or an operand address for this or an earlier output.
5319 Note that multiple output operands are emitted in reverse order,
5320 so the conflicting ones are those with higher indices. */
5321 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5322 return 0;
5323
5324 for (i = 0; i < reload_n_operands; i++)
5325 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5326 return 0;
5327
5328 for (i = opnum; i < reload_n_operands; i++)
5329 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5330 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5331 return 0;
5332
5333 return 1;
5334
5335 case RELOAD_FOR_INSN:
5336 for (i = 0; i < reload_n_operands; i++)
5337 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5338 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5339 return 0;
5340
5341 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5342 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5343
5344 case RELOAD_FOR_OTHER_ADDRESS:
5345 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5346
5347 default:
5348 gcc_unreachable ();
5349 }
5350 }
5351
5352 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5353 the number RELOADNUM, is still available in REGNO at the end of the insn.
5354
5355 We can assume that the reload reg was already tested for availability
5356 at the time it is needed, and we should not check this again,
5357 in case the reg has already been marked in use. */
5358
5359 static int
5360 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5361 {
5362 int opnum = rld[reloadnum].opnum;
5363 enum reload_type type = rld[reloadnum].when_needed;
5364 int i;
5365
5366 /* See if there is a reload with the same type for this operand, using
5367 the same register. This case is not handled by the code below. */
5368 for (i = reloadnum + 1; i < n_reloads; i++)
5369 {
5370 rtx reg;
5371
5372 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5373 continue;
5374 reg = rld[i].reg_rtx;
5375 if (reg == NULL_RTX)
5376 continue;
5377 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5378 return 0;
5379 }
5380
5381 switch (type)
5382 {
5383 case RELOAD_OTHER:
5384 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5385 its value must reach the end. */
5386 return 1;
5387
5388 /* If this use is for part of the insn,
5389 its value reaches if no subsequent part uses the same register.
5390 Just like the above function, don't try to do this with lots
5391 of fallthroughs. */
5392
5393 case RELOAD_FOR_OTHER_ADDRESS:
5394 /* Here we check for everything else, since these don't conflict
5395 with anything else and everything comes later. */
5396
5397 for (i = 0; i < reload_n_operands; i++)
5398 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5399 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5400 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5401 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5402 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5403 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5404 return 0;
5405
5406 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5407 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5408 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5409 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5410
5411 case RELOAD_FOR_INPUT_ADDRESS:
5412 case RELOAD_FOR_INPADDR_ADDRESS:
5413 /* Similar, except that we check only for this and subsequent inputs
5414 and the address of only subsequent inputs and we do not need
5415 to check for RELOAD_OTHER objects since they are known not to
5416 conflict. */
5417
5418 for (i = opnum; i < reload_n_operands; i++)
5419 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5420 return 0;
5421
5422 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5423 could be killed if the register is also used by reload with type
5424 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5425 if (type == RELOAD_FOR_INPADDR_ADDRESS
5426 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5427 return 0;
5428
5429 for (i = opnum + 1; i < reload_n_operands; i++)
5430 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5432 return 0;
5433
5434 for (i = 0; i < reload_n_operands; i++)
5435 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5437 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5438 return 0;
5439
5440 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5441 return 0;
5442
5443 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5444 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5445 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5446
5447 case RELOAD_FOR_INPUT:
5448 /* Similar to input address, except we start at the next operand for
5449 both input and input address and we do not check for
5450 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5451 would conflict. */
5452
5453 for (i = opnum + 1; i < reload_n_operands; i++)
5454 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5455 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5457 return 0;
5458
5459 /* ... fall through ... */
5460
5461 case RELOAD_FOR_OPERAND_ADDRESS:
5462 /* Check outputs and their addresses. */
5463
5464 for (i = 0; i < reload_n_operands; i++)
5465 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5466 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5467 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5468 return 0;
5469
5470 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5471
5472 case RELOAD_FOR_OPADDR_ADDR:
5473 for (i = 0; i < reload_n_operands; i++)
5474 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5475 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5476 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5477 return 0;
5478
5479 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5480 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5481 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5482
5483 case RELOAD_FOR_INSN:
5484 /* These conflict with other outputs with RELOAD_OTHER. So
5485 we need only check for output addresses. */
5486
5487 opnum = reload_n_operands;
5488
5489 /* fall through */
5490
5491 case RELOAD_FOR_OUTPUT:
5492 case RELOAD_FOR_OUTPUT_ADDRESS:
5493 case RELOAD_FOR_OUTADDR_ADDRESS:
5494 /* We already know these can't conflict with a later output. So the
5495 only thing to check are later output addresses.
5496 Note that multiple output operands are emitted in reverse order,
5497 so the conflicting ones are those with lower indices. */
5498 for (i = 0; i < opnum; i++)
5499 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5500 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5501 return 0;
5502
5503 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5504 could be killed if the register is also used by reload with type
5505 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5506 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5507 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5508 return 0;
5509
5510 return 1;
5511
5512 default:
5513 gcc_unreachable ();
5514 }
5515 }
5516
5517 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5518 every register in REG. */
5519
5520 static bool
5521 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5522 {
5523 unsigned int i;
5524
5525 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5526 if (!reload_reg_reaches_end_p (i, reloadnum))
5527 return false;
5528 return true;
5529 }
5530 \f
5531
5532 /* Returns whether R1 and R2 are uniquely chained: the value of one
5533 is used by the other, and that value is not used by any other
5534 reload for this insn. This is used to partially undo the decision
5535 made in find_reloads when in the case of multiple
5536 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5537 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5538 reloads. This code tries to avoid the conflict created by that
5539 change. It might be cleaner to explicitly keep track of which
5540 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5541 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5542 this after the fact. */
5543 static bool
5544 reloads_unique_chain_p (int r1, int r2)
5545 {
5546 int i;
5547
5548 /* We only check input reloads. */
5549 if (! rld[r1].in || ! rld[r2].in)
5550 return false;
5551
5552 /* Avoid anything with output reloads. */
5553 if (rld[r1].out || rld[r2].out)
5554 return false;
5555
5556 /* "chained" means one reload is a component of the other reload,
5557 not the same as the other reload. */
5558 if (rld[r1].opnum != rld[r2].opnum
5559 || rtx_equal_p (rld[r1].in, rld[r2].in)
5560 || rld[r1].optional || rld[r2].optional
5561 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5562 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5563 return false;
5564
5565 /* The following loop assumes that r1 is the reload that feeds r2. */
5566 if (r1 > r2)
5567 std::swap (r1, r2);
5568
5569 for (i = 0; i < n_reloads; i ++)
5570 /* Look for input reloads that aren't our two */
5571 if (i != r1 && i != r2 && rld[i].in)
5572 {
5573 /* If our reload is mentioned at all, it isn't a simple chain. */
5574 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5575 return false;
5576 }
5577 return true;
5578 }
5579
5580 /* The recursive function change all occurrences of WHAT in *WHERE
5581 to REPL. */
5582 static void
5583 substitute (rtx *where, const_rtx what, rtx repl)
5584 {
5585 const char *fmt;
5586 int i;
5587 enum rtx_code code;
5588
5589 if (*where == 0)
5590 return;
5591
5592 if (*where == what || rtx_equal_p (*where, what))
5593 {
5594 /* Record the location of the changed rtx. */
5595 substitute_stack.safe_push (where);
5596 *where = repl;
5597 return;
5598 }
5599
5600 code = GET_CODE (*where);
5601 fmt = GET_RTX_FORMAT (code);
5602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5603 {
5604 if (fmt[i] == 'E')
5605 {
5606 int j;
5607
5608 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5609 substitute (&XVECEXP (*where, i, j), what, repl);
5610 }
5611 else if (fmt[i] == 'e')
5612 substitute (&XEXP (*where, i), what, repl);
5613 }
5614 }
5615
5616 /* The function returns TRUE if chain of reload R1 and R2 (in any
5617 order) can be evaluated without usage of intermediate register for
5618 the reload containing another reload. It is important to see
5619 gen_reload to understand what the function is trying to do. As an
5620 example, let us have reload chain
5621
5622 r2: const
5623 r1: <something> + const
5624
5625 and reload R2 got reload reg HR. The function returns true if
5626 there is a correct insn HR = HR + <something>. Otherwise,
5627 gen_reload will use intermediate register (and this is the reload
5628 reg for R1) to reload <something>.
5629
5630 We need this function to find a conflict for chain reloads. In our
5631 example, if HR = HR + <something> is incorrect insn, then we cannot
5632 use HR as a reload register for R2. If we do use it then we get a
5633 wrong code:
5634
5635 HR = const
5636 HR = <something>
5637 HR = HR + HR
5638
5639 */
5640 static bool
5641 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5642 {
5643 /* Assume other cases in gen_reload are not possible for
5644 chain reloads or do need an intermediate hard registers. */
5645 bool result = true;
5646 int regno, code;
5647 rtx out, in;
5648 rtx_insn *insn;
5649 rtx_insn *last = get_last_insn ();
5650
5651 /* Make r2 a component of r1. */
5652 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5653 std::swap (r1, r2);
5654
5655 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5656 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5657 gcc_assert (regno >= 0);
5658 out = gen_rtx_REG (rld[r1].mode, regno);
5659 in = rld[r1].in;
5660 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5661
5662 /* If IN is a paradoxical SUBREG, remove it and try to put the
5663 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5664 strip_paradoxical_subreg (&in, &out);
5665
5666 if (GET_CODE (in) == PLUS
5667 && (REG_P (XEXP (in, 0))
5668 || GET_CODE (XEXP (in, 0)) == SUBREG
5669 || MEM_P (XEXP (in, 0)))
5670 && (REG_P (XEXP (in, 1))
5671 || GET_CODE (XEXP (in, 1)) == SUBREG
5672 || CONSTANT_P (XEXP (in, 1))
5673 || MEM_P (XEXP (in, 1))))
5674 {
5675 insn = emit_insn (gen_rtx_SET (out, in));
5676 code = recog_memoized (insn);
5677 result = false;
5678
5679 if (code >= 0)
5680 {
5681 extract_insn (insn);
5682 /* We want constrain operands to treat this insn strictly in
5683 its validity determination, i.e., the way it would after
5684 reload has completed. */
5685 result = constrain_operands (1, get_enabled_alternatives (insn));
5686 }
5687
5688 delete_insns_since (last);
5689 }
5690
5691 /* Restore the original value at each changed address within R1. */
5692 while (!substitute_stack.is_empty ())
5693 {
5694 rtx *where = substitute_stack.pop ();
5695 *where = rld[r2].in;
5696 }
5697
5698 return result;
5699 }
5700
5701 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5702 Return 0 otherwise.
5703
5704 This function uses the same algorithm as reload_reg_free_p above. */
5705
5706 static int
5707 reloads_conflict (int r1, int r2)
5708 {
5709 enum reload_type r1_type = rld[r1].when_needed;
5710 enum reload_type r2_type = rld[r2].when_needed;
5711 int r1_opnum = rld[r1].opnum;
5712 int r2_opnum = rld[r2].opnum;
5713
5714 /* RELOAD_OTHER conflicts with everything. */
5715 if (r2_type == RELOAD_OTHER)
5716 return 1;
5717
5718 /* Otherwise, check conflicts differently for each type. */
5719
5720 switch (r1_type)
5721 {
5722 case RELOAD_FOR_INPUT:
5723 return (r2_type == RELOAD_FOR_INSN
5724 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5725 || r2_type == RELOAD_FOR_OPADDR_ADDR
5726 || r2_type == RELOAD_FOR_INPUT
5727 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5728 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5729 && r2_opnum > r1_opnum));
5730
5731 case RELOAD_FOR_INPUT_ADDRESS:
5732 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5733 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5734
5735 case RELOAD_FOR_INPADDR_ADDRESS:
5736 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5737 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5738
5739 case RELOAD_FOR_OUTPUT_ADDRESS:
5740 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5741 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5742
5743 case RELOAD_FOR_OUTADDR_ADDRESS:
5744 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5745 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5746
5747 case RELOAD_FOR_OPERAND_ADDRESS:
5748 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5749 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5750 && (!reloads_unique_chain_p (r1, r2)
5751 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5752
5753 case RELOAD_FOR_OPADDR_ADDR:
5754 return (r2_type == RELOAD_FOR_INPUT
5755 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5756
5757 case RELOAD_FOR_OUTPUT:
5758 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5759 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5760 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5761 && r2_opnum >= r1_opnum));
5762
5763 case RELOAD_FOR_INSN:
5764 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5765 || r2_type == RELOAD_FOR_INSN
5766 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5767
5768 case RELOAD_FOR_OTHER_ADDRESS:
5769 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5770
5771 case RELOAD_OTHER:
5772 return 1;
5773
5774 default:
5775 gcc_unreachable ();
5776 }
5777 }
5778 \f
5779 /* Indexed by reload number, 1 if incoming value
5780 inherited from previous insns. */
5781 static char reload_inherited[MAX_RELOADS];
5782
5783 /* For an inherited reload, this is the insn the reload was inherited from,
5784 if we know it. Otherwise, this is 0. */
5785 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5786
5787 /* If nonzero, this is a place to get the value of the reload,
5788 rather than using reload_in. */
5789 static rtx reload_override_in[MAX_RELOADS];
5790
5791 /* For each reload, the hard register number of the register used,
5792 or -1 if we did not need a register for this reload. */
5793 static int reload_spill_index[MAX_RELOADS];
5794
5795 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5796 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5797
5798 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5799 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5800
5801 /* Subroutine of free_for_value_p, used to check a single register.
5802 START_REGNO is the starting regno of the full reload register
5803 (possibly comprising multiple hard registers) that we are considering. */
5804
5805 static int
5806 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5807 enum reload_type type, rtx value, rtx out,
5808 int reloadnum, int ignore_address_reloads)
5809 {
5810 int time1;
5811 /* Set if we see an input reload that must not share its reload register
5812 with any new earlyclobber, but might otherwise share the reload
5813 register with an output or input-output reload. */
5814 int check_earlyclobber = 0;
5815 int i;
5816 int copy = 0;
5817
5818 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5819 return 0;
5820
5821 if (out == const0_rtx)
5822 {
5823 copy = 1;
5824 out = NULL_RTX;
5825 }
5826
5827 /* We use some pseudo 'time' value to check if the lifetimes of the
5828 new register use would overlap with the one of a previous reload
5829 that is not read-only or uses a different value.
5830 The 'time' used doesn't have to be linear in any shape or form, just
5831 monotonic.
5832 Some reload types use different 'buckets' for each operand.
5833 So there are MAX_RECOG_OPERANDS different time values for each
5834 such reload type.
5835 We compute TIME1 as the time when the register for the prospective
5836 new reload ceases to be live, and TIME2 for each existing
5837 reload as the time when that the reload register of that reload
5838 becomes live.
5839 Where there is little to be gained by exact lifetime calculations,
5840 we just make conservative assumptions, i.e. a longer lifetime;
5841 this is done in the 'default:' cases. */
5842 switch (type)
5843 {
5844 case RELOAD_FOR_OTHER_ADDRESS:
5845 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5846 time1 = copy ? 0 : 1;
5847 break;
5848 case RELOAD_OTHER:
5849 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5850 break;
5851 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5852 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5853 respectively, to the time values for these, we get distinct time
5854 values. To get distinct time values for each operand, we have to
5855 multiply opnum by at least three. We round that up to four because
5856 multiply by four is often cheaper. */
5857 case RELOAD_FOR_INPADDR_ADDRESS:
5858 time1 = opnum * 4 + 2;
5859 break;
5860 case RELOAD_FOR_INPUT_ADDRESS:
5861 time1 = opnum * 4 + 3;
5862 break;
5863 case RELOAD_FOR_INPUT:
5864 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5865 executes (inclusive). */
5866 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5867 break;
5868 case RELOAD_FOR_OPADDR_ADDR:
5869 /* opnum * 4 + 4
5870 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5871 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5872 break;
5873 case RELOAD_FOR_OPERAND_ADDRESS:
5874 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5875 is executed. */
5876 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5877 break;
5878 case RELOAD_FOR_OUTADDR_ADDRESS:
5879 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5880 break;
5881 case RELOAD_FOR_OUTPUT_ADDRESS:
5882 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5883 break;
5884 default:
5885 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5886 }
5887
5888 for (i = 0; i < n_reloads; i++)
5889 {
5890 rtx reg = rld[i].reg_rtx;
5891 if (reg && REG_P (reg)
5892 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5893 && i != reloadnum)
5894 {
5895 rtx other_input = rld[i].in;
5896
5897 /* If the other reload loads the same input value, that
5898 will not cause a conflict only if it's loading it into
5899 the same register. */
5900 if (true_regnum (reg) != start_regno)
5901 other_input = NULL_RTX;
5902 if (! other_input || ! rtx_equal_p (other_input, value)
5903 || rld[i].out || out)
5904 {
5905 int time2;
5906 switch (rld[i].when_needed)
5907 {
5908 case RELOAD_FOR_OTHER_ADDRESS:
5909 time2 = 0;
5910 break;
5911 case RELOAD_FOR_INPADDR_ADDRESS:
5912 /* find_reloads makes sure that a
5913 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5914 by at most one - the first -
5915 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5916 address reload is inherited, the address address reload
5917 goes away, so we can ignore this conflict. */
5918 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5919 && ignore_address_reloads
5920 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5921 Then the address address is still needed to store
5922 back the new address. */
5923 && ! rld[reloadnum].out)
5924 continue;
5925 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5926 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5927 reloads go away. */
5928 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5929 && ignore_address_reloads
5930 /* Unless we are reloading an auto_inc expression. */
5931 && ! rld[reloadnum].out)
5932 continue;
5933 time2 = rld[i].opnum * 4 + 2;
5934 break;
5935 case RELOAD_FOR_INPUT_ADDRESS:
5936 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5937 && ignore_address_reloads
5938 && ! rld[reloadnum].out)
5939 continue;
5940 time2 = rld[i].opnum * 4 + 3;
5941 break;
5942 case RELOAD_FOR_INPUT:
5943 time2 = rld[i].opnum * 4 + 4;
5944 check_earlyclobber = 1;
5945 break;
5946 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5947 == MAX_RECOG_OPERAND * 4 */
5948 case RELOAD_FOR_OPADDR_ADDR:
5949 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5950 && ignore_address_reloads
5951 && ! rld[reloadnum].out)
5952 continue;
5953 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5954 break;
5955 case RELOAD_FOR_OPERAND_ADDRESS:
5956 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5957 check_earlyclobber = 1;
5958 break;
5959 case RELOAD_FOR_INSN:
5960 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5961 break;
5962 case RELOAD_FOR_OUTPUT:
5963 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5964 instruction is executed. */
5965 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5966 break;
5967 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5968 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5969 value. */
5970 case RELOAD_FOR_OUTADDR_ADDRESS:
5971 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5972 && ignore_address_reloads
5973 && ! rld[reloadnum].out)
5974 continue;
5975 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5976 break;
5977 case RELOAD_FOR_OUTPUT_ADDRESS:
5978 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5979 break;
5980 case RELOAD_OTHER:
5981 /* If there is no conflict in the input part, handle this
5982 like an output reload. */
5983 if (! rld[i].in || rtx_equal_p (other_input, value))
5984 {
5985 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5986 /* Earlyclobbered outputs must conflict with inputs. */
5987 if (earlyclobber_operand_p (rld[i].out))
5988 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5989
5990 break;
5991 }
5992 time2 = 1;
5993 /* RELOAD_OTHER might be live beyond instruction execution,
5994 but this is not obvious when we set time2 = 1. So check
5995 here if there might be a problem with the new reload
5996 clobbering the register used by the RELOAD_OTHER. */
5997 if (out)
5998 return 0;
5999 break;
6000 default:
6001 return 0;
6002 }
6003 if ((time1 >= time2
6004 && (! rld[i].in || rld[i].out
6005 || ! rtx_equal_p (other_input, value)))
6006 || (out && rld[reloadnum].out_reg
6007 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6008 return 0;
6009 }
6010 }
6011 }
6012
6013 /* Earlyclobbered outputs must conflict with inputs. */
6014 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6015 return 0;
6016
6017 return 1;
6018 }
6019
6020 /* Return 1 if the value in reload reg REGNO, as used by a reload
6021 needed for the part of the insn specified by OPNUM and TYPE,
6022 may be used to load VALUE into it.
6023
6024 MODE is the mode in which the register is used, this is needed to
6025 determine how many hard regs to test.
6026
6027 Other read-only reloads with the same value do not conflict
6028 unless OUT is nonzero and these other reloads have to live while
6029 output reloads live.
6030 If OUT is CONST0_RTX, this is a special case: it means that the
6031 test should not be for using register REGNO as reload register, but
6032 for copying from register REGNO into the reload register.
6033
6034 RELOADNUM is the number of the reload we want to load this value for;
6035 a reload does not conflict with itself.
6036
6037 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6038 reloads that load an address for the very reload we are considering.
6039
6040 The caller has to make sure that there is no conflict with the return
6041 register. */
6042
6043 static int
6044 free_for_value_p (int regno, machine_mode mode, int opnum,
6045 enum reload_type type, rtx value, rtx out, int reloadnum,
6046 int ignore_address_reloads)
6047 {
6048 int nregs = hard_regno_nregs (regno, mode);
6049 while (nregs-- > 0)
6050 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6051 value, out, reloadnum,
6052 ignore_address_reloads))
6053 return 0;
6054 return 1;
6055 }
6056
6057 /* Return nonzero if the rtx X is invariant over the current function. */
6058 /* ??? Actually, the places where we use this expect exactly what is
6059 tested here, and not everything that is function invariant. In
6060 particular, the frame pointer and arg pointer are special cased;
6061 pic_offset_table_rtx is not, and we must not spill these things to
6062 memory. */
6063
6064 int
6065 function_invariant_p (const_rtx x)
6066 {
6067 if (CONSTANT_P (x))
6068 return 1;
6069 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6070 return 1;
6071 if (GET_CODE (x) == PLUS
6072 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6073 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6074 return 1;
6075 return 0;
6076 }
6077
6078 /* Determine whether the reload reg X overlaps any rtx'es used for
6079 overriding inheritance. Return nonzero if so. */
6080
6081 static int
6082 conflicts_with_override (rtx x)
6083 {
6084 int i;
6085 for (i = 0; i < n_reloads; i++)
6086 if (reload_override_in[i]
6087 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6088 return 1;
6089 return 0;
6090 }
6091 \f
6092 /* Give an error message saying we failed to find a reload for INSN,
6093 and clear out reload R. */
6094 static void
6095 failed_reload (rtx_insn *insn, int r)
6096 {
6097 if (asm_noperands (PATTERN (insn)) < 0)
6098 /* It's the compiler's fault. */
6099 fatal_insn ("could not find a spill register", insn);
6100
6101 /* It's the user's fault; the operand's mode and constraint
6102 don't match. Disable this reload so we don't crash in final. */
6103 error_for_asm (insn,
6104 "%<asm%> operand constraint incompatible with operand size");
6105 rld[r].in = 0;
6106 rld[r].out = 0;
6107 rld[r].reg_rtx = 0;
6108 rld[r].optional = 1;
6109 rld[r].secondary_p = 1;
6110 }
6111
6112 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6113 for reload R. If it's valid, get an rtx for it. Return nonzero if
6114 successful. */
6115 static int
6116 set_reload_reg (int i, int r)
6117 {
6118 int regno;
6119 rtx reg = spill_reg_rtx[i];
6120
6121 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6122 spill_reg_rtx[i] = reg
6123 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6124
6125 regno = true_regnum (reg);
6126
6127 /* Detect when the reload reg can't hold the reload mode.
6128 This used to be one `if', but Sequent compiler can't handle that. */
6129 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6130 {
6131 machine_mode test_mode = VOIDmode;
6132 if (rld[r].in)
6133 test_mode = GET_MODE (rld[r].in);
6134 /* If rld[r].in has VOIDmode, it means we will load it
6135 in whatever mode the reload reg has: to wit, rld[r].mode.
6136 We have already tested that for validity. */
6137 /* Aside from that, we need to test that the expressions
6138 to reload from or into have modes which are valid for this
6139 reload register. Otherwise the reload insns would be invalid. */
6140 if (! (rld[r].in != 0 && test_mode != VOIDmode
6141 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6142 if (! (rld[r].out != 0
6143 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6144 {
6145 /* The reg is OK. */
6146 last_spill_reg = i;
6147
6148 /* Mark as in use for this insn the reload regs we use
6149 for this. */
6150 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6151 rld[r].when_needed, rld[r].mode);
6152
6153 rld[r].reg_rtx = reg;
6154 reload_spill_index[r] = spill_regs[i];
6155 return 1;
6156 }
6157 }
6158 return 0;
6159 }
6160
6161 /* Find a spill register to use as a reload register for reload R.
6162 LAST_RELOAD is nonzero if this is the last reload for the insn being
6163 processed.
6164
6165 Set rld[R].reg_rtx to the register allocated.
6166
6167 We return 1 if successful, or 0 if we couldn't find a spill reg and
6168 we didn't change anything. */
6169
6170 static int
6171 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6172 int last_reload)
6173 {
6174 int i, pass, count;
6175
6176 /* If we put this reload ahead, thinking it is a group,
6177 then insist on finding a group. Otherwise we can grab a
6178 reg that some other reload needs.
6179 (That can happen when we have a 68000 DATA_OR_FP_REG
6180 which is a group of data regs or one fp reg.)
6181 We need not be so restrictive if there are no more reloads
6182 for this insn.
6183
6184 ??? Really it would be nicer to have smarter handling
6185 for that kind of reg class, where a problem like this is normal.
6186 Perhaps those classes should be avoided for reloading
6187 by use of more alternatives. */
6188
6189 int force_group = rld[r].nregs > 1 && ! last_reload;
6190
6191 /* If we want a single register and haven't yet found one,
6192 take any reg in the right class and not in use.
6193 If we want a consecutive group, here is where we look for it.
6194
6195 We use three passes so we can first look for reload regs to
6196 reuse, which are already in use for other reloads in this insn,
6197 and only then use additional registers which are not "bad", then
6198 finally any register.
6199
6200 I think that maximizing reuse is needed to make sure we don't
6201 run out of reload regs. Suppose we have three reloads, and
6202 reloads A and B can share regs. These need two regs.
6203 Suppose A and B are given different regs.
6204 That leaves none for C. */
6205 for (pass = 0; pass < 3; pass++)
6206 {
6207 /* I is the index in spill_regs.
6208 We advance it round-robin between insns to use all spill regs
6209 equally, so that inherited reloads have a chance
6210 of leapfrogging each other. */
6211
6212 i = last_spill_reg;
6213
6214 for (count = 0; count < n_spills; count++)
6215 {
6216 int rclass = (int) rld[r].rclass;
6217 int regnum;
6218
6219 i++;
6220 if (i >= n_spills)
6221 i -= n_spills;
6222 regnum = spill_regs[i];
6223
6224 if ((reload_reg_free_p (regnum, rld[r].opnum,
6225 rld[r].when_needed)
6226 || (rld[r].in
6227 /* We check reload_reg_used to make sure we
6228 don't clobber the return register. */
6229 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6230 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6231 rld[r].when_needed, rld[r].in,
6232 rld[r].out, r, 1)))
6233 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6234 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6235 /* Look first for regs to share, then for unshared. But
6236 don't share regs used for inherited reloads; they are
6237 the ones we want to preserve. */
6238 && (pass
6239 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6240 regnum)
6241 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6242 regnum))))
6243 {
6244 int nr = hard_regno_nregs (regnum, rld[r].mode);
6245
6246 /* During the second pass we want to avoid reload registers
6247 which are "bad" for this reload. */
6248 if (pass == 1
6249 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6250 continue;
6251
6252 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6253 (on 68000) got us two FP regs. If NR is 1,
6254 we would reject both of them. */
6255 if (force_group)
6256 nr = rld[r].nregs;
6257 /* If we need only one reg, we have already won. */
6258 if (nr == 1)
6259 {
6260 /* But reject a single reg if we demand a group. */
6261 if (force_group)
6262 continue;
6263 break;
6264 }
6265 /* Otherwise check that as many consecutive regs as we need
6266 are available here. */
6267 while (nr > 1)
6268 {
6269 int regno = regnum + nr - 1;
6270 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6271 && spill_reg_order[regno] >= 0
6272 && reload_reg_free_p (regno, rld[r].opnum,
6273 rld[r].when_needed)))
6274 break;
6275 nr--;
6276 }
6277 if (nr == 1)
6278 break;
6279 }
6280 }
6281
6282 /* If we found something on the current pass, omit later passes. */
6283 if (count < n_spills)
6284 break;
6285 }
6286
6287 /* We should have found a spill register by now. */
6288 if (count >= n_spills)
6289 return 0;
6290
6291 /* I is the index in SPILL_REG_RTX of the reload register we are to
6292 allocate. Get an rtx for it and find its register number. */
6293
6294 return set_reload_reg (i, r);
6295 }
6296 \f
6297 /* Initialize all the tables needed to allocate reload registers.
6298 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6299 is the array we use to restore the reg_rtx field for every reload. */
6300
6301 static void
6302 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6303 {
6304 int i;
6305
6306 for (i = 0; i < n_reloads; i++)
6307 rld[i].reg_rtx = save_reload_reg_rtx[i];
6308
6309 memset (reload_inherited, 0, MAX_RELOADS);
6310 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6311 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6312
6313 CLEAR_HARD_REG_SET (reload_reg_used);
6314 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6315 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6316 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6317 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6318 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6319
6320 CLEAR_HARD_REG_SET (reg_used_in_insn);
6321 {
6322 HARD_REG_SET tmp;
6323 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6324 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6325 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6326 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6327 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6328 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6329 }
6330
6331 for (i = 0; i < reload_n_operands; i++)
6332 {
6333 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6334 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6335 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6336 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6337 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6338 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6339 }
6340
6341 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6342
6343 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6344
6345 for (i = 0; i < n_reloads; i++)
6346 /* If we have already decided to use a certain register,
6347 don't use it in another way. */
6348 if (rld[i].reg_rtx)
6349 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6350 rld[i].when_needed, rld[i].mode);
6351 }
6352
6353 /* If X is not a subreg, return it unmodified. If it is a subreg,
6354 look up whether we made a replacement for the SUBREG_REG. Return
6355 either the replacement or the SUBREG_REG. */
6356
6357 static rtx
6358 replaced_subreg (rtx x)
6359 {
6360 if (GET_CODE (x) == SUBREG)
6361 return find_replacement (&SUBREG_REG (x));
6362 return x;
6363 }
6364
6365 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6366 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6367 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6368 otherwise it is NULL. */
6369
6370 static poly_int64
6371 compute_reload_subreg_offset (machine_mode outermode,
6372 rtx subreg,
6373 machine_mode innermode)
6374 {
6375 poly_int64 outer_offset;
6376 machine_mode middlemode;
6377
6378 if (!subreg)
6379 return subreg_lowpart_offset (outermode, innermode);
6380
6381 outer_offset = SUBREG_BYTE (subreg);
6382 middlemode = GET_MODE (SUBREG_REG (subreg));
6383
6384 /* If SUBREG is paradoxical then return the normal lowpart offset
6385 for OUTERMODE and INNERMODE. Our caller has already checked
6386 that OUTERMODE fits in INNERMODE. */
6387 if (paradoxical_subreg_p (outermode, middlemode))
6388 return subreg_lowpart_offset (outermode, innermode);
6389
6390 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6391 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6392 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6393 }
6394
6395 /* Assign hard reg targets for the pseudo-registers we must reload
6396 into hard regs for this insn.
6397 Also output the instructions to copy them in and out of the hard regs.
6398
6399 For machines with register classes, we are responsible for
6400 finding a reload reg in the proper class. */
6401
6402 static void
6403 choose_reload_regs (struct insn_chain *chain)
6404 {
6405 rtx_insn *insn = chain->insn;
6406 int i, j;
6407 unsigned int max_group_size = 1;
6408 enum reg_class group_class = NO_REGS;
6409 int pass, win, inheritance;
6410
6411 rtx save_reload_reg_rtx[MAX_RELOADS];
6412
6413 /* In order to be certain of getting the registers we need,
6414 we must sort the reloads into order of increasing register class.
6415 Then our grabbing of reload registers will parallel the process
6416 that provided the reload registers.
6417
6418 Also note whether any of the reloads wants a consecutive group of regs.
6419 If so, record the maximum size of the group desired and what
6420 register class contains all the groups needed by this insn. */
6421
6422 for (j = 0; j < n_reloads; j++)
6423 {
6424 reload_order[j] = j;
6425 if (rld[j].reg_rtx != NULL_RTX)
6426 {
6427 gcc_assert (REG_P (rld[j].reg_rtx)
6428 && HARD_REGISTER_P (rld[j].reg_rtx));
6429 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6430 }
6431 else
6432 reload_spill_index[j] = -1;
6433
6434 if (rld[j].nregs > 1)
6435 {
6436 max_group_size = MAX (rld[j].nregs, max_group_size);
6437 group_class
6438 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6439 }
6440
6441 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6442 }
6443
6444 if (n_reloads > 1)
6445 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6446
6447 /* If -O, try first with inheritance, then turning it off.
6448 If not -O, don't do inheritance.
6449 Using inheritance when not optimizing leads to paradoxes
6450 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6451 because one side of the comparison might be inherited. */
6452 win = 0;
6453 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6454 {
6455 choose_reload_regs_init (chain, save_reload_reg_rtx);
6456
6457 /* Process the reloads in order of preference just found.
6458 Beyond this point, subregs can be found in reload_reg_rtx.
6459
6460 This used to look for an existing reloaded home for all of the
6461 reloads, and only then perform any new reloads. But that could lose
6462 if the reloads were done out of reg-class order because a later
6463 reload with a looser constraint might have an old home in a register
6464 needed by an earlier reload with a tighter constraint.
6465
6466 To solve this, we make two passes over the reloads, in the order
6467 described above. In the first pass we try to inherit a reload
6468 from a previous insn. If there is a later reload that needs a
6469 class that is a proper subset of the class being processed, we must
6470 also allocate a spill register during the first pass.
6471
6472 Then make a second pass over the reloads to allocate any reloads
6473 that haven't been given registers yet. */
6474
6475 for (j = 0; j < n_reloads; j++)
6476 {
6477 int r = reload_order[j];
6478 rtx search_equiv = NULL_RTX;
6479
6480 /* Ignore reloads that got marked inoperative. */
6481 if (rld[r].out == 0 && rld[r].in == 0
6482 && ! rld[r].secondary_p)
6483 continue;
6484
6485 /* If find_reloads chose to use reload_in or reload_out as a reload
6486 register, we don't need to chose one. Otherwise, try even if it
6487 found one since we might save an insn if we find the value lying
6488 around.
6489 Try also when reload_in is a pseudo without a hard reg. */
6490 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6491 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6492 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6493 && !MEM_P (rld[r].in)
6494 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6495 continue;
6496
6497 #if 0 /* No longer needed for correct operation.
6498 It might give better code, or might not; worth an experiment? */
6499 /* If this is an optional reload, we can't inherit from earlier insns
6500 until we are sure that any non-optional reloads have been allocated.
6501 The following code takes advantage of the fact that optional reloads
6502 are at the end of reload_order. */
6503 if (rld[r].optional != 0)
6504 for (i = 0; i < j; i++)
6505 if ((rld[reload_order[i]].out != 0
6506 || rld[reload_order[i]].in != 0
6507 || rld[reload_order[i]].secondary_p)
6508 && ! rld[reload_order[i]].optional
6509 && rld[reload_order[i]].reg_rtx == 0)
6510 allocate_reload_reg (chain, reload_order[i], 0);
6511 #endif
6512
6513 /* First see if this pseudo is already available as reloaded
6514 for a previous insn. We cannot try to inherit for reloads
6515 that are smaller than the maximum number of registers needed
6516 for groups unless the register we would allocate cannot be used
6517 for the groups.
6518
6519 We could check here to see if this is a secondary reload for
6520 an object that is already in a register of the desired class.
6521 This would avoid the need for the secondary reload register.
6522 But this is complex because we can't easily determine what
6523 objects might want to be loaded via this reload. So let a
6524 register be allocated here. In `emit_reload_insns' we suppress
6525 one of the loads in the case described above. */
6526
6527 if (inheritance)
6528 {
6529 poly_int64 byte = 0;
6530 int regno = -1;
6531 machine_mode mode = VOIDmode;
6532 rtx subreg = NULL_RTX;
6533
6534 if (rld[r].in == 0)
6535 ;
6536 else if (REG_P (rld[r].in))
6537 {
6538 regno = REGNO (rld[r].in);
6539 mode = GET_MODE (rld[r].in);
6540 }
6541 else if (REG_P (rld[r].in_reg))
6542 {
6543 regno = REGNO (rld[r].in_reg);
6544 mode = GET_MODE (rld[r].in_reg);
6545 }
6546 else if (GET_CODE (rld[r].in_reg) == SUBREG
6547 && REG_P (SUBREG_REG (rld[r].in_reg)))
6548 {
6549 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6550 if (regno < FIRST_PSEUDO_REGISTER)
6551 regno = subreg_regno (rld[r].in_reg);
6552 else
6553 {
6554 subreg = rld[r].in_reg;
6555 byte = SUBREG_BYTE (subreg);
6556 }
6557 mode = GET_MODE (rld[r].in_reg);
6558 }
6559 #if AUTO_INC_DEC
6560 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6561 && REG_P (XEXP (rld[r].in_reg, 0)))
6562 {
6563 regno = REGNO (XEXP (rld[r].in_reg, 0));
6564 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6565 rld[r].out = rld[r].in;
6566 }
6567 #endif
6568 #if 0
6569 /* This won't work, since REGNO can be a pseudo reg number.
6570 Also, it takes much more hair to keep track of all the things
6571 that can invalidate an inherited reload of part of a pseudoreg. */
6572 else if (GET_CODE (rld[r].in) == SUBREG
6573 && REG_P (SUBREG_REG (rld[r].in)))
6574 regno = subreg_regno (rld[r].in);
6575 #endif
6576
6577 if (regno >= 0
6578 && reg_last_reload_reg[regno] != 0
6579 && (known_ge
6580 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6581 GET_MODE_SIZE (mode) + byte))
6582 /* Verify that the register it's in can be used in
6583 mode MODE. */
6584 && (REG_CAN_CHANGE_MODE_P
6585 (REGNO (reg_last_reload_reg[regno]),
6586 GET_MODE (reg_last_reload_reg[regno]),
6587 mode)))
6588 {
6589 enum reg_class rclass = rld[r].rclass, last_class;
6590 rtx last_reg = reg_last_reload_reg[regno];
6591
6592 i = REGNO (last_reg);
6593 byte = compute_reload_subreg_offset (mode,
6594 subreg,
6595 GET_MODE (last_reg));
6596 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6597 last_class = REGNO_REG_CLASS (i);
6598
6599 if (reg_reloaded_contents[i] == regno
6600 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6601 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6602 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6603 /* Even if we can't use this register as a reload
6604 register, we might use it for reload_override_in,
6605 if copying it to the desired class is cheap
6606 enough. */
6607 || ((register_move_cost (mode, last_class, rclass)
6608 < memory_move_cost (mode, rclass, true))
6609 && (secondary_reload_class (1, rclass, mode,
6610 last_reg)
6611 == NO_REGS)
6612 && !(targetm.secondary_memory_needed
6613 (mode, last_class, rclass))))
6614 && (rld[r].nregs == max_group_size
6615 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6616 i))
6617 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6618 rld[r].when_needed, rld[r].in,
6619 const0_rtx, r, 1))
6620 {
6621 /* If a group is needed, verify that all the subsequent
6622 registers still have their values intact. */
6623 int nr = hard_regno_nregs (i, rld[r].mode);
6624 int k;
6625
6626 for (k = 1; k < nr; k++)
6627 if (reg_reloaded_contents[i + k] != regno
6628 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6629 break;
6630
6631 if (k == nr)
6632 {
6633 int i1;
6634 int bad_for_class;
6635
6636 last_reg = (GET_MODE (last_reg) == mode
6637 ? last_reg : gen_rtx_REG (mode, i));
6638
6639 bad_for_class = 0;
6640 for (k = 0; k < nr; k++)
6641 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6642 i+k);
6643
6644 /* We found a register that contains the
6645 value we need. If this register is the
6646 same as an `earlyclobber' operand of the
6647 current insn, just mark it as a place to
6648 reload from since we can't use it as the
6649 reload register itself. */
6650
6651 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6652 if (reg_overlap_mentioned_for_reload_p
6653 (reg_last_reload_reg[regno],
6654 reload_earlyclobbers[i1]))
6655 break;
6656
6657 if (i1 != n_earlyclobbers
6658 || ! (free_for_value_p (i, rld[r].mode,
6659 rld[r].opnum,
6660 rld[r].when_needed, rld[r].in,
6661 rld[r].out, r, 1))
6662 /* Don't use it if we'd clobber a pseudo reg. */
6663 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6664 && rld[r].out
6665 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6666 /* Don't clobber the frame pointer. */
6667 || (i == HARD_FRAME_POINTER_REGNUM
6668 && frame_pointer_needed
6669 && rld[r].out)
6670 /* Don't really use the inherited spill reg
6671 if we need it wider than we've got it. */
6672 || paradoxical_subreg_p (rld[r].mode, mode)
6673 || bad_for_class
6674
6675 /* If find_reloads chose reload_out as reload
6676 register, stay with it - that leaves the
6677 inherited register for subsequent reloads. */
6678 || (rld[r].out && rld[r].reg_rtx
6679 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6680 {
6681 if (! rld[r].optional)
6682 {
6683 reload_override_in[r] = last_reg;
6684 reload_inheritance_insn[r]
6685 = reg_reloaded_insn[i];
6686 }
6687 }
6688 else
6689 {
6690 int k;
6691 /* We can use this as a reload reg. */
6692 /* Mark the register as in use for this part of
6693 the insn. */
6694 mark_reload_reg_in_use (i,
6695 rld[r].opnum,
6696 rld[r].when_needed,
6697 rld[r].mode);
6698 rld[r].reg_rtx = last_reg;
6699 reload_inherited[r] = 1;
6700 reload_inheritance_insn[r]
6701 = reg_reloaded_insn[i];
6702 reload_spill_index[r] = i;
6703 for (k = 0; k < nr; k++)
6704 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6705 i + k);
6706 }
6707 }
6708 }
6709 }
6710 }
6711
6712 /* Here's another way to see if the value is already lying around. */
6713 if (inheritance
6714 && rld[r].in != 0
6715 && ! reload_inherited[r]
6716 && rld[r].out == 0
6717 && (CONSTANT_P (rld[r].in)
6718 || GET_CODE (rld[r].in) == PLUS
6719 || REG_P (rld[r].in)
6720 || MEM_P (rld[r].in))
6721 && (rld[r].nregs == max_group_size
6722 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6723 search_equiv = rld[r].in;
6724
6725 if (search_equiv)
6726 {
6727 rtx equiv
6728 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6729 -1, NULL, 0, rld[r].mode);
6730 int regno = 0;
6731
6732 if (equiv != 0)
6733 {
6734 if (REG_P (equiv))
6735 regno = REGNO (equiv);
6736 else
6737 {
6738 /* This must be a SUBREG of a hard register.
6739 Make a new REG since this might be used in an
6740 address and not all machines support SUBREGs
6741 there. */
6742 gcc_assert (GET_CODE (equiv) == SUBREG);
6743 regno = subreg_regno (equiv);
6744 equiv = gen_rtx_REG (rld[r].mode, regno);
6745 /* If we choose EQUIV as the reload register, but the
6746 loop below decides to cancel the inheritance, we'll
6747 end up reloading EQUIV in rld[r].mode, not the mode
6748 it had originally. That isn't safe when EQUIV isn't
6749 available as a spill register since its value might
6750 still be live at this point. */
6751 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6752 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6753 equiv = 0;
6754 }
6755 }
6756
6757 /* If we found a spill reg, reject it unless it is free
6758 and of the desired class. */
6759 if (equiv != 0)
6760 {
6761 int regs_used = 0;
6762 int bad_for_class = 0;
6763 int max_regno = regno + rld[r].nregs;
6764
6765 for (i = regno; i < max_regno; i++)
6766 {
6767 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6768 i);
6769 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6770 i);
6771 }
6772
6773 if ((regs_used
6774 && ! free_for_value_p (regno, rld[r].mode,
6775 rld[r].opnum, rld[r].when_needed,
6776 rld[r].in, rld[r].out, r, 1))
6777 || bad_for_class)
6778 equiv = 0;
6779 }
6780
6781 if (equiv != 0
6782 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6783 equiv = 0;
6784
6785 /* We found a register that contains the value we need.
6786 If this register is the same as an `earlyclobber' operand
6787 of the current insn, just mark it as a place to reload from
6788 since we can't use it as the reload register itself. */
6789
6790 if (equiv != 0)
6791 for (i = 0; i < n_earlyclobbers; i++)
6792 if (reg_overlap_mentioned_for_reload_p (equiv,
6793 reload_earlyclobbers[i]))
6794 {
6795 if (! rld[r].optional)
6796 reload_override_in[r] = equiv;
6797 equiv = 0;
6798 break;
6799 }
6800
6801 /* If the equiv register we have found is explicitly clobbered
6802 in the current insn, it depends on the reload type if we
6803 can use it, use it for reload_override_in, or not at all.
6804 In particular, we then can't use EQUIV for a
6805 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6806
6807 if (equiv != 0)
6808 {
6809 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6810 switch (rld[r].when_needed)
6811 {
6812 case RELOAD_FOR_OTHER_ADDRESS:
6813 case RELOAD_FOR_INPADDR_ADDRESS:
6814 case RELOAD_FOR_INPUT_ADDRESS:
6815 case RELOAD_FOR_OPADDR_ADDR:
6816 break;
6817 case RELOAD_OTHER:
6818 case RELOAD_FOR_INPUT:
6819 case RELOAD_FOR_OPERAND_ADDRESS:
6820 if (! rld[r].optional)
6821 reload_override_in[r] = equiv;
6822 /* Fall through. */
6823 default:
6824 equiv = 0;
6825 break;
6826 }
6827 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6828 switch (rld[r].when_needed)
6829 {
6830 case RELOAD_FOR_OTHER_ADDRESS:
6831 case RELOAD_FOR_INPADDR_ADDRESS:
6832 case RELOAD_FOR_INPUT_ADDRESS:
6833 case RELOAD_FOR_OPADDR_ADDR:
6834 case RELOAD_FOR_OPERAND_ADDRESS:
6835 case RELOAD_FOR_INPUT:
6836 break;
6837 case RELOAD_OTHER:
6838 if (! rld[r].optional)
6839 reload_override_in[r] = equiv;
6840 /* Fall through. */
6841 default:
6842 equiv = 0;
6843 break;
6844 }
6845 }
6846
6847 /* If we found an equivalent reg, say no code need be generated
6848 to load it, and use it as our reload reg. */
6849 if (equiv != 0
6850 && (regno != HARD_FRAME_POINTER_REGNUM
6851 || !frame_pointer_needed))
6852 {
6853 int nr = hard_regno_nregs (regno, rld[r].mode);
6854 int k;
6855 rld[r].reg_rtx = equiv;
6856 reload_spill_index[r] = regno;
6857 reload_inherited[r] = 1;
6858
6859 /* If reg_reloaded_valid is not set for this register,
6860 there might be a stale spill_reg_store lying around.
6861 We must clear it, since otherwise emit_reload_insns
6862 might delete the store. */
6863 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6864 spill_reg_store[regno] = NULL;
6865 /* If any of the hard registers in EQUIV are spill
6866 registers, mark them as in use for this insn. */
6867 for (k = 0; k < nr; k++)
6868 {
6869 i = spill_reg_order[regno + k];
6870 if (i >= 0)
6871 {
6872 mark_reload_reg_in_use (regno, rld[r].opnum,
6873 rld[r].when_needed,
6874 rld[r].mode);
6875 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6876 regno + k);
6877 }
6878 }
6879 }
6880 }
6881
6882 /* If we found a register to use already, or if this is an optional
6883 reload, we are done. */
6884 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6885 continue;
6886
6887 #if 0
6888 /* No longer needed for correct operation. Might or might
6889 not give better code on the average. Want to experiment? */
6890
6891 /* See if there is a later reload that has a class different from our
6892 class that intersects our class or that requires less register
6893 than our reload. If so, we must allocate a register to this
6894 reload now, since that reload might inherit a previous reload
6895 and take the only available register in our class. Don't do this
6896 for optional reloads since they will force all previous reloads
6897 to be allocated. Also don't do this for reloads that have been
6898 turned off. */
6899
6900 for (i = j + 1; i < n_reloads; i++)
6901 {
6902 int s = reload_order[i];
6903
6904 if ((rld[s].in == 0 && rld[s].out == 0
6905 && ! rld[s].secondary_p)
6906 || rld[s].optional)
6907 continue;
6908
6909 if ((rld[s].rclass != rld[r].rclass
6910 && reg_classes_intersect_p (rld[r].rclass,
6911 rld[s].rclass))
6912 || rld[s].nregs < rld[r].nregs)
6913 break;
6914 }
6915
6916 if (i == n_reloads)
6917 continue;
6918
6919 allocate_reload_reg (chain, r, j == n_reloads - 1);
6920 #endif
6921 }
6922
6923 /* Now allocate reload registers for anything non-optional that
6924 didn't get one yet. */
6925 for (j = 0; j < n_reloads; j++)
6926 {
6927 int r = reload_order[j];
6928
6929 /* Ignore reloads that got marked inoperative. */
6930 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6931 continue;
6932
6933 /* Skip reloads that already have a register allocated or are
6934 optional. */
6935 if (rld[r].reg_rtx != 0 || rld[r].optional)
6936 continue;
6937
6938 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6939 break;
6940 }
6941
6942 /* If that loop got all the way, we have won. */
6943 if (j == n_reloads)
6944 {
6945 win = 1;
6946 break;
6947 }
6948
6949 /* Loop around and try without any inheritance. */
6950 }
6951
6952 if (! win)
6953 {
6954 /* First undo everything done by the failed attempt
6955 to allocate with inheritance. */
6956 choose_reload_regs_init (chain, save_reload_reg_rtx);
6957
6958 /* Some sanity tests to verify that the reloads found in the first
6959 pass are identical to the ones we have now. */
6960 gcc_assert (chain->n_reloads == n_reloads);
6961
6962 for (i = 0; i < n_reloads; i++)
6963 {
6964 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6965 continue;
6966 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6967 for (j = 0; j < n_spills; j++)
6968 if (spill_regs[j] == chain->rld[i].regno)
6969 if (! set_reload_reg (j, i))
6970 failed_reload (chain->insn, i);
6971 }
6972 }
6973
6974 /* If we thought we could inherit a reload, because it seemed that
6975 nothing else wanted the same reload register earlier in the insn,
6976 verify that assumption, now that all reloads have been assigned.
6977 Likewise for reloads where reload_override_in has been set. */
6978
6979 /* If doing expensive optimizations, do one preliminary pass that doesn't
6980 cancel any inheritance, but removes reloads that have been needed only
6981 for reloads that we know can be inherited. */
6982 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6983 {
6984 for (j = 0; j < n_reloads; j++)
6985 {
6986 int r = reload_order[j];
6987 rtx check_reg;
6988 rtx tem;
6989 if (reload_inherited[r] && rld[r].reg_rtx)
6990 check_reg = rld[r].reg_rtx;
6991 else if (reload_override_in[r]
6992 && (REG_P (reload_override_in[r])
6993 || GET_CODE (reload_override_in[r]) == SUBREG))
6994 check_reg = reload_override_in[r];
6995 else
6996 continue;
6997 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6998 rld[r].opnum, rld[r].when_needed, rld[r].in,
6999 (reload_inherited[r]
7000 ? rld[r].out : const0_rtx),
7001 r, 1))
7002 {
7003 if (pass)
7004 continue;
7005 reload_inherited[r] = 0;
7006 reload_override_in[r] = 0;
7007 }
7008 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7009 reload_override_in, then we do not need its related
7010 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7011 likewise for other reload types.
7012 We handle this by removing a reload when its only replacement
7013 is mentioned in reload_in of the reload we are going to inherit.
7014 A special case are auto_inc expressions; even if the input is
7015 inherited, we still need the address for the output. We can
7016 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7017 If we succeeded removing some reload and we are doing a preliminary
7018 pass just to remove such reloads, make another pass, since the
7019 removal of one reload might allow us to inherit another one. */
7020 else if (rld[r].in
7021 && rld[r].out != rld[r].in
7022 && remove_address_replacements (rld[r].in))
7023 {
7024 if (pass)
7025 pass = 2;
7026 }
7027 /* If we needed a memory location for the reload, we also have to
7028 remove its related reloads. */
7029 else if (rld[r].in
7030 && rld[r].out != rld[r].in
7031 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7032 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7033 && (targetm.secondary_memory_needed
7034 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
7035 rld[r].rclass))
7036 && remove_address_replacements
7037 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7038 rld[r].when_needed)))
7039 {
7040 if (pass)
7041 pass = 2;
7042 }
7043 }
7044 }
7045
7046 /* Now that reload_override_in is known valid,
7047 actually override reload_in. */
7048 for (j = 0; j < n_reloads; j++)
7049 if (reload_override_in[j])
7050 rld[j].in = reload_override_in[j];
7051
7052 /* If this reload won't be done because it has been canceled or is
7053 optional and not inherited, clear reload_reg_rtx so other
7054 routines (such as subst_reloads) don't get confused. */
7055 for (j = 0; j < n_reloads; j++)
7056 if (rld[j].reg_rtx != 0
7057 && ((rld[j].optional && ! reload_inherited[j])
7058 || (rld[j].in == 0 && rld[j].out == 0
7059 && ! rld[j].secondary_p)))
7060 {
7061 int regno = true_regnum (rld[j].reg_rtx);
7062
7063 if (spill_reg_order[regno] >= 0)
7064 clear_reload_reg_in_use (regno, rld[j].opnum,
7065 rld[j].when_needed, rld[j].mode);
7066 rld[j].reg_rtx = 0;
7067 reload_spill_index[j] = -1;
7068 }
7069
7070 /* Record which pseudos and which spill regs have output reloads. */
7071 for (j = 0; j < n_reloads; j++)
7072 {
7073 int r = reload_order[j];
7074
7075 i = reload_spill_index[r];
7076
7077 /* I is nonneg if this reload uses a register.
7078 If rld[r].reg_rtx is 0, this is an optional reload
7079 that we opted to ignore. */
7080 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7081 && rld[r].reg_rtx != 0)
7082 {
7083 int nregno = REGNO (rld[r].out_reg);
7084 int nr = 1;
7085
7086 if (nregno < FIRST_PSEUDO_REGISTER)
7087 nr = hard_regno_nregs (nregno, rld[r].mode);
7088
7089 while (--nr >= 0)
7090 SET_REGNO_REG_SET (&reg_has_output_reload,
7091 nregno + nr);
7092
7093 if (i >= 0)
7094 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7095
7096 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7097 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7098 || rld[r].when_needed == RELOAD_FOR_INSN);
7099 }
7100 }
7101 }
7102
7103 /* Deallocate the reload register for reload R. This is called from
7104 remove_address_replacements. */
7105
7106 void
7107 deallocate_reload_reg (int r)
7108 {
7109 int regno;
7110
7111 if (! rld[r].reg_rtx)
7112 return;
7113 regno = true_regnum (rld[r].reg_rtx);
7114 rld[r].reg_rtx = 0;
7115 if (spill_reg_order[regno] >= 0)
7116 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7117 rld[r].mode);
7118 reload_spill_index[r] = -1;
7119 }
7120 \f
7121 /* These arrays are filled by emit_reload_insns and its subroutines. */
7122 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *other_input_address_reload_insns = 0;
7124 static rtx_insn *other_input_reload_insns = 0;
7125 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7126 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7127 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7128 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7129 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7130 static rtx_insn *operand_reload_insns = 0;
7131 static rtx_insn *other_operand_reload_insns = 0;
7132 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7133
7134 /* Values to be put in spill_reg_store are put here first. Instructions
7135 must only be placed here if the associated reload register reaches
7136 the end of the instruction's reload sequence. */
7137 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7138 static HARD_REG_SET reg_reloaded_died;
7139
7140 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7141 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7142 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7143 adjusted register, and return true. Otherwise, return false. */
7144 static bool
7145 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7146 enum reg_class new_class,
7147 machine_mode new_mode)
7148
7149 {
7150 rtx reg;
7151
7152 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7153 {
7154 unsigned regno = REGNO (reg);
7155
7156 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7157 continue;
7158 if (GET_MODE (reg) != new_mode)
7159 {
7160 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7161 continue;
7162 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7163 continue;
7164 reg = reload_adjust_reg_for_mode (reg, new_mode);
7165 }
7166 *reload_reg = reg;
7167 return true;
7168 }
7169 return false;
7170 }
7171
7172 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7173 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7174 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7175 adjusted register, and return true. Otherwise, return false. */
7176 static bool
7177 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7178 enum insn_code icode)
7179
7180 {
7181 enum reg_class new_class = scratch_reload_class (icode);
7182 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7183
7184 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7185 new_class, new_mode);
7186 }
7187
7188 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7189 has the number J. OLD contains the value to be used as input. */
7190
7191 static void
7192 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7193 rtx old, int j)
7194 {
7195 rtx_insn *insn = chain->insn;
7196 rtx reloadreg;
7197 rtx oldequiv_reg = 0;
7198 rtx oldequiv = 0;
7199 int special = 0;
7200 machine_mode mode;
7201 rtx_insn **where;
7202
7203 /* delete_output_reload is only invoked properly if old contains
7204 the original pseudo register. Since this is replaced with a
7205 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7206 find the pseudo in RELOAD_IN_REG. This is also used to
7207 determine whether a secondary reload is needed. */
7208 if (reload_override_in[j]
7209 && (REG_P (rl->in_reg)
7210 || (GET_CODE (rl->in_reg) == SUBREG
7211 && REG_P (SUBREG_REG (rl->in_reg)))))
7212 {
7213 oldequiv = old;
7214 old = rl->in_reg;
7215 }
7216 if (oldequiv == 0)
7217 oldequiv = old;
7218 else if (REG_P (oldequiv))
7219 oldequiv_reg = oldequiv;
7220 else if (GET_CODE (oldequiv) == SUBREG)
7221 oldequiv_reg = SUBREG_REG (oldequiv);
7222
7223 reloadreg = reload_reg_rtx_for_input[j];
7224 mode = GET_MODE (reloadreg);
7225
7226 /* If we are reloading from a register that was recently stored in
7227 with an output-reload, see if we can prove there was
7228 actually no need to store the old value in it. */
7229
7230 if (optimize && REG_P (oldequiv)
7231 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7232 && spill_reg_store[REGNO (oldequiv)]
7233 && REG_P (old)
7234 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7235 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7236 rl->out_reg)))
7237 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7238
7239 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7240 OLDEQUIV. */
7241
7242 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7243 oldequiv = SUBREG_REG (oldequiv);
7244 if (GET_MODE (oldequiv) != VOIDmode
7245 && mode != GET_MODE (oldequiv))
7246 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7247
7248 /* Switch to the right place to emit the reload insns. */
7249 switch (rl->when_needed)
7250 {
7251 case RELOAD_OTHER:
7252 where = &other_input_reload_insns;
7253 break;
7254 case RELOAD_FOR_INPUT:
7255 where = &input_reload_insns[rl->opnum];
7256 break;
7257 case RELOAD_FOR_INPUT_ADDRESS:
7258 where = &input_address_reload_insns[rl->opnum];
7259 break;
7260 case RELOAD_FOR_INPADDR_ADDRESS:
7261 where = &inpaddr_address_reload_insns[rl->opnum];
7262 break;
7263 case RELOAD_FOR_OUTPUT_ADDRESS:
7264 where = &output_address_reload_insns[rl->opnum];
7265 break;
7266 case RELOAD_FOR_OUTADDR_ADDRESS:
7267 where = &outaddr_address_reload_insns[rl->opnum];
7268 break;
7269 case RELOAD_FOR_OPERAND_ADDRESS:
7270 where = &operand_reload_insns;
7271 break;
7272 case RELOAD_FOR_OPADDR_ADDR:
7273 where = &other_operand_reload_insns;
7274 break;
7275 case RELOAD_FOR_OTHER_ADDRESS:
7276 where = &other_input_address_reload_insns;
7277 break;
7278 default:
7279 gcc_unreachable ();
7280 }
7281
7282 push_to_sequence (*where);
7283
7284 /* Auto-increment addresses must be reloaded in a special way. */
7285 if (rl->out && ! rl->out_reg)
7286 {
7287 /* We are not going to bother supporting the case where a
7288 incremented register can't be copied directly from
7289 OLDEQUIV since this seems highly unlikely. */
7290 gcc_assert (rl->secondary_in_reload < 0);
7291
7292 if (reload_inherited[j])
7293 oldequiv = reloadreg;
7294
7295 old = XEXP (rl->in_reg, 0);
7296
7297 /* Prevent normal processing of this reload. */
7298 special = 1;
7299 /* Output a special code sequence for this case. */
7300 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7301 }
7302
7303 /* If we are reloading a pseudo-register that was set by the previous
7304 insn, see if we can get rid of that pseudo-register entirely
7305 by redirecting the previous insn into our reload register. */
7306
7307 else if (optimize && REG_P (old)
7308 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7309 && dead_or_set_p (insn, old)
7310 /* This is unsafe if some other reload
7311 uses the same reg first. */
7312 && ! conflicts_with_override (reloadreg)
7313 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7314 rl->when_needed, old, rl->out, j, 0))
7315 {
7316 rtx_insn *temp = PREV_INSN (insn);
7317 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7318 temp = PREV_INSN (temp);
7319 if (temp
7320 && NONJUMP_INSN_P (temp)
7321 && GET_CODE (PATTERN (temp)) == SET
7322 && SET_DEST (PATTERN (temp)) == old
7323 /* Make sure we can access insn_operand_constraint. */
7324 && asm_noperands (PATTERN (temp)) < 0
7325 /* This is unsafe if operand occurs more than once in current
7326 insn. Perhaps some occurrences aren't reloaded. */
7327 && count_occurrences (PATTERN (insn), old, 0) == 1)
7328 {
7329 rtx old = SET_DEST (PATTERN (temp));
7330 /* Store into the reload register instead of the pseudo. */
7331 SET_DEST (PATTERN (temp)) = reloadreg;
7332
7333 /* Verify that resulting insn is valid.
7334
7335 Note that we have replaced the destination of TEMP with
7336 RELOADREG. If TEMP references RELOADREG within an
7337 autoincrement addressing mode, then the resulting insn
7338 is ill-formed and we must reject this optimization. */
7339 extract_insn (temp);
7340 if (constrain_operands (1, get_enabled_alternatives (temp))
7341 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7342 {
7343 /* If the previous insn is an output reload, the source is
7344 a reload register, and its spill_reg_store entry will
7345 contain the previous destination. This is now
7346 invalid. */
7347 if (REG_P (SET_SRC (PATTERN (temp)))
7348 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7349 {
7350 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7351 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7352 }
7353
7354 /* If these are the only uses of the pseudo reg,
7355 pretend for GDB it lives in the reload reg we used. */
7356 if (REG_N_DEATHS (REGNO (old)) == 1
7357 && REG_N_SETS (REGNO (old)) == 1)
7358 {
7359 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7360 if (ira_conflicts_p)
7361 /* Inform IRA about the change. */
7362 ira_mark_allocation_change (REGNO (old));
7363 alter_reg (REGNO (old), -1, false);
7364 }
7365 special = 1;
7366
7367 /* Adjust any debug insns between temp and insn. */
7368 while ((temp = NEXT_INSN (temp)) != insn)
7369 if (DEBUG_BIND_INSN_P (temp))
7370 INSN_VAR_LOCATION_LOC (temp)
7371 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7372 old, reloadreg);
7373 else
7374 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7375 }
7376 else
7377 {
7378 SET_DEST (PATTERN (temp)) = old;
7379 }
7380 }
7381 }
7382
7383 /* We can't do that, so output an insn to load RELOADREG. */
7384
7385 /* If we have a secondary reload, pick up the secondary register
7386 and icode, if any. If OLDEQUIV and OLD are different or
7387 if this is an in-out reload, recompute whether or not we
7388 still need a secondary register and what the icode should
7389 be. If we still need a secondary register and the class or
7390 icode is different, go back to reloading from OLD if using
7391 OLDEQUIV means that we got the wrong type of register. We
7392 cannot have different class or icode due to an in-out reload
7393 because we don't make such reloads when both the input and
7394 output need secondary reload registers. */
7395
7396 if (! special && rl->secondary_in_reload >= 0)
7397 {
7398 rtx second_reload_reg = 0;
7399 rtx third_reload_reg = 0;
7400 int secondary_reload = rl->secondary_in_reload;
7401 rtx real_oldequiv = oldequiv;
7402 rtx real_old = old;
7403 rtx tmp;
7404 enum insn_code icode;
7405 enum insn_code tertiary_icode = CODE_FOR_nothing;
7406
7407 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7408 and similarly for OLD.
7409 See comments in get_secondary_reload in reload.c. */
7410 /* If it is a pseudo that cannot be replaced with its
7411 equivalent MEM, we must fall back to reload_in, which
7412 will have all the necessary substitutions registered.
7413 Likewise for a pseudo that can't be replaced with its
7414 equivalent constant.
7415
7416 Take extra care for subregs of such pseudos. Note that
7417 we cannot use reg_equiv_mem in this case because it is
7418 not in the right mode. */
7419
7420 tmp = oldequiv;
7421 if (GET_CODE (tmp) == SUBREG)
7422 tmp = SUBREG_REG (tmp);
7423 if (REG_P (tmp)
7424 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7425 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7426 || reg_equiv_constant (REGNO (tmp)) != 0))
7427 {
7428 if (! reg_equiv_mem (REGNO (tmp))
7429 || num_not_at_initial_offset
7430 || GET_CODE (oldequiv) == SUBREG)
7431 real_oldequiv = rl->in;
7432 else
7433 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7434 }
7435
7436 tmp = old;
7437 if (GET_CODE (tmp) == SUBREG)
7438 tmp = SUBREG_REG (tmp);
7439 if (REG_P (tmp)
7440 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7441 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7442 || reg_equiv_constant (REGNO (tmp)) != 0))
7443 {
7444 if (! reg_equiv_mem (REGNO (tmp))
7445 || num_not_at_initial_offset
7446 || GET_CODE (old) == SUBREG)
7447 real_old = rl->in;
7448 else
7449 real_old = reg_equiv_mem (REGNO (tmp));
7450 }
7451
7452 second_reload_reg = rld[secondary_reload].reg_rtx;
7453 if (rld[secondary_reload].secondary_in_reload >= 0)
7454 {
7455 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7456
7457 third_reload_reg = rld[tertiary_reload].reg_rtx;
7458 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7459 /* We'd have to add more code for quartary reloads. */
7460 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7461 }
7462 icode = rl->secondary_in_icode;
7463
7464 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7465 || (rl->in != 0 && rl->out != 0))
7466 {
7467 secondary_reload_info sri, sri2;
7468 enum reg_class new_class, new_t_class;
7469
7470 sri.icode = CODE_FOR_nothing;
7471 sri.prev_sri = NULL;
7472 new_class
7473 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7474 rl->rclass, mode,
7475 &sri);
7476
7477 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7478 second_reload_reg = 0;
7479 else if (new_class == NO_REGS)
7480 {
7481 if (reload_adjust_reg_for_icode (&second_reload_reg,
7482 third_reload_reg,
7483 (enum insn_code) sri.icode))
7484 {
7485 icode = (enum insn_code) sri.icode;
7486 third_reload_reg = 0;
7487 }
7488 else
7489 {
7490 oldequiv = old;
7491 real_oldequiv = real_old;
7492 }
7493 }
7494 else if (sri.icode != CODE_FOR_nothing)
7495 /* We currently lack a way to express this in reloads. */
7496 gcc_unreachable ();
7497 else
7498 {
7499 sri2.icode = CODE_FOR_nothing;
7500 sri2.prev_sri = &sri;
7501 new_t_class
7502 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7503 new_class, mode,
7504 &sri);
7505 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7506 {
7507 if (reload_adjust_reg_for_temp (&second_reload_reg,
7508 third_reload_reg,
7509 new_class, mode))
7510 {
7511 third_reload_reg = 0;
7512 tertiary_icode = (enum insn_code) sri2.icode;
7513 }
7514 else
7515 {
7516 oldequiv = old;
7517 real_oldequiv = real_old;
7518 }
7519 }
7520 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7521 {
7522 rtx intermediate = second_reload_reg;
7523
7524 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7525 new_class, mode)
7526 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7527 ((enum insn_code)
7528 sri2.icode)))
7529 {
7530 second_reload_reg = intermediate;
7531 tertiary_icode = (enum insn_code) sri2.icode;
7532 }
7533 else
7534 {
7535 oldequiv = old;
7536 real_oldequiv = real_old;
7537 }
7538 }
7539 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7540 {
7541 rtx intermediate = second_reload_reg;
7542
7543 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7544 new_class, mode)
7545 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7546 new_t_class, mode))
7547 {
7548 second_reload_reg = intermediate;
7549 tertiary_icode = (enum insn_code) sri2.icode;
7550 }
7551 else
7552 {
7553 oldequiv = old;
7554 real_oldequiv = real_old;
7555 }
7556 }
7557 else
7558 {
7559 /* This could be handled more intelligently too. */
7560 oldequiv = old;
7561 real_oldequiv = real_old;
7562 }
7563 }
7564 }
7565
7566 /* If we still need a secondary reload register, check
7567 to see if it is being used as a scratch or intermediate
7568 register and generate code appropriately. If we need
7569 a scratch register, use REAL_OLDEQUIV since the form of
7570 the insn may depend on the actual address if it is
7571 a MEM. */
7572
7573 if (second_reload_reg)
7574 {
7575 if (icode != CODE_FOR_nothing)
7576 {
7577 /* We'd have to add extra code to handle this case. */
7578 gcc_assert (!third_reload_reg);
7579
7580 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7581 second_reload_reg));
7582 special = 1;
7583 }
7584 else
7585 {
7586 /* See if we need a scratch register to load the
7587 intermediate register (a tertiary reload). */
7588 if (tertiary_icode != CODE_FOR_nothing)
7589 {
7590 emit_insn ((GEN_FCN (tertiary_icode)
7591 (second_reload_reg, real_oldequiv,
7592 third_reload_reg)));
7593 }
7594 else if (third_reload_reg)
7595 {
7596 gen_reload (third_reload_reg, real_oldequiv,
7597 rl->opnum,
7598 rl->when_needed);
7599 gen_reload (second_reload_reg, third_reload_reg,
7600 rl->opnum,
7601 rl->when_needed);
7602 }
7603 else
7604 gen_reload (second_reload_reg, real_oldequiv,
7605 rl->opnum,
7606 rl->when_needed);
7607
7608 oldequiv = second_reload_reg;
7609 }
7610 }
7611 }
7612
7613 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7614 {
7615 rtx real_oldequiv = oldequiv;
7616
7617 if ((REG_P (oldequiv)
7618 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7619 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7620 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7621 || (GET_CODE (oldequiv) == SUBREG
7622 && REG_P (SUBREG_REG (oldequiv))
7623 && (REGNO (SUBREG_REG (oldequiv))
7624 >= FIRST_PSEUDO_REGISTER)
7625 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7626 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7627 || (CONSTANT_P (oldequiv)
7628 && (targetm.preferred_reload_class (oldequiv,
7629 REGNO_REG_CLASS (REGNO (reloadreg)))
7630 == NO_REGS)))
7631 real_oldequiv = rl->in;
7632 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7633 rl->when_needed);
7634 }
7635
7636 if (cfun->can_throw_non_call_exceptions)
7637 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7638
7639 /* End this sequence. */
7640 *where = get_insns ();
7641 end_sequence ();
7642
7643 /* Update reload_override_in so that delete_address_reloads_1
7644 can see the actual register usage. */
7645 if (oldequiv_reg)
7646 reload_override_in[j] = oldequiv;
7647 }
7648
7649 /* Generate insns to for the output reload RL, which is for the insn described
7650 by CHAIN and has the number J. */
7651 static void
7652 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7653 int j)
7654 {
7655 rtx reloadreg;
7656 rtx_insn *insn = chain->insn;
7657 int special = 0;
7658 rtx old = rl->out;
7659 machine_mode mode;
7660 rtx_insn *p;
7661 rtx rl_reg_rtx;
7662
7663 if (rl->when_needed == RELOAD_OTHER)
7664 start_sequence ();
7665 else
7666 push_to_sequence (output_reload_insns[rl->opnum]);
7667
7668 rl_reg_rtx = reload_reg_rtx_for_output[j];
7669 mode = GET_MODE (rl_reg_rtx);
7670
7671 reloadreg = rl_reg_rtx;
7672
7673 /* If we need two reload regs, set RELOADREG to the intermediate
7674 one, since it will be stored into OLD. We might need a secondary
7675 register only for an input reload, so check again here. */
7676
7677 if (rl->secondary_out_reload >= 0)
7678 {
7679 rtx real_old = old;
7680 int secondary_reload = rl->secondary_out_reload;
7681 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7682
7683 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7684 && reg_equiv_mem (REGNO (old)) != 0)
7685 real_old = reg_equiv_mem (REGNO (old));
7686
7687 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7688 {
7689 rtx second_reloadreg = reloadreg;
7690 reloadreg = rld[secondary_reload].reg_rtx;
7691
7692 /* See if RELOADREG is to be used as a scratch register
7693 or as an intermediate register. */
7694 if (rl->secondary_out_icode != CODE_FOR_nothing)
7695 {
7696 /* We'd have to add extra code to handle this case. */
7697 gcc_assert (tertiary_reload < 0);
7698
7699 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7700 (real_old, second_reloadreg, reloadreg)));
7701 special = 1;
7702 }
7703 else
7704 {
7705 /* See if we need both a scratch and intermediate reload
7706 register. */
7707
7708 enum insn_code tertiary_icode
7709 = rld[secondary_reload].secondary_out_icode;
7710
7711 /* We'd have to add more code for quartary reloads. */
7712 gcc_assert (tertiary_reload < 0
7713 || rld[tertiary_reload].secondary_out_reload < 0);
7714
7715 if (GET_MODE (reloadreg) != mode)
7716 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7717
7718 if (tertiary_icode != CODE_FOR_nothing)
7719 {
7720 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7721
7722 /* Copy primary reload reg to secondary reload reg.
7723 (Note that these have been swapped above, then
7724 secondary reload reg to OLD using our insn.) */
7725
7726 /* If REAL_OLD is a paradoxical SUBREG, remove it
7727 and try to put the opposite SUBREG on
7728 RELOADREG. */
7729 strip_paradoxical_subreg (&real_old, &reloadreg);
7730
7731 gen_reload (reloadreg, second_reloadreg,
7732 rl->opnum, rl->when_needed);
7733 emit_insn ((GEN_FCN (tertiary_icode)
7734 (real_old, reloadreg, third_reloadreg)));
7735 special = 1;
7736 }
7737
7738 else
7739 {
7740 /* Copy between the reload regs here and then to
7741 OUT later. */
7742
7743 gen_reload (reloadreg, second_reloadreg,
7744 rl->opnum, rl->when_needed);
7745 if (tertiary_reload >= 0)
7746 {
7747 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7748
7749 gen_reload (third_reloadreg, reloadreg,
7750 rl->opnum, rl->when_needed);
7751 reloadreg = third_reloadreg;
7752 }
7753 }
7754 }
7755 }
7756 }
7757
7758 /* Output the last reload insn. */
7759 if (! special)
7760 {
7761 rtx set;
7762
7763 /* Don't output the last reload if OLD is not the dest of
7764 INSN and is in the src and is clobbered by INSN. */
7765 if (! flag_expensive_optimizations
7766 || !REG_P (old)
7767 || !(set = single_set (insn))
7768 || rtx_equal_p (old, SET_DEST (set))
7769 || !reg_mentioned_p (old, SET_SRC (set))
7770 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7771 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7772 gen_reload (old, reloadreg, rl->opnum,
7773 rl->when_needed);
7774 }
7775
7776 /* Look at all insns we emitted, just to be safe. */
7777 for (p = get_insns (); p; p = NEXT_INSN (p))
7778 if (INSN_P (p))
7779 {
7780 rtx pat = PATTERN (p);
7781
7782 /* If this output reload doesn't come from a spill reg,
7783 clear any memory of reloaded copies of the pseudo reg.
7784 If this output reload comes from a spill reg,
7785 reg_has_output_reload will make this do nothing. */
7786 note_stores (pat, forget_old_reloads_1, NULL);
7787
7788 if (reg_mentioned_p (rl_reg_rtx, pat))
7789 {
7790 rtx set = single_set (insn);
7791 if (reload_spill_index[j] < 0
7792 && set
7793 && SET_SRC (set) == rl_reg_rtx)
7794 {
7795 int src = REGNO (SET_SRC (set));
7796
7797 reload_spill_index[j] = src;
7798 SET_HARD_REG_BIT (reg_is_output_reload, src);
7799 if (find_regno_note (insn, REG_DEAD, src))
7800 SET_HARD_REG_BIT (reg_reloaded_died, src);
7801 }
7802 if (HARD_REGISTER_P (rl_reg_rtx))
7803 {
7804 int s = rl->secondary_out_reload;
7805 set = single_set (p);
7806 /* If this reload copies only to the secondary reload
7807 register, the secondary reload does the actual
7808 store. */
7809 if (s >= 0 && set == NULL_RTX)
7810 /* We can't tell what function the secondary reload
7811 has and where the actual store to the pseudo is
7812 made; leave new_spill_reg_store alone. */
7813 ;
7814 else if (s >= 0
7815 && SET_SRC (set) == rl_reg_rtx
7816 && SET_DEST (set) == rld[s].reg_rtx)
7817 {
7818 /* Usually the next instruction will be the
7819 secondary reload insn; if we can confirm
7820 that it is, setting new_spill_reg_store to
7821 that insn will allow an extra optimization. */
7822 rtx s_reg = rld[s].reg_rtx;
7823 rtx_insn *next = NEXT_INSN (p);
7824 rld[s].out = rl->out;
7825 rld[s].out_reg = rl->out_reg;
7826 set = single_set (next);
7827 if (set && SET_SRC (set) == s_reg
7828 && reload_reg_rtx_reaches_end_p (s_reg, s))
7829 {
7830 SET_HARD_REG_BIT (reg_is_output_reload,
7831 REGNO (s_reg));
7832 new_spill_reg_store[REGNO (s_reg)] = next;
7833 }
7834 }
7835 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7836 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7837 }
7838 }
7839 }
7840
7841 if (rl->when_needed == RELOAD_OTHER)
7842 {
7843 emit_insn (other_output_reload_insns[rl->opnum]);
7844 other_output_reload_insns[rl->opnum] = get_insns ();
7845 }
7846 else
7847 output_reload_insns[rl->opnum] = get_insns ();
7848
7849 if (cfun->can_throw_non_call_exceptions)
7850 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7851
7852 end_sequence ();
7853 }
7854
7855 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7856 and has the number J. */
7857 static void
7858 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7859 {
7860 rtx_insn *insn = chain->insn;
7861 rtx old = (rl->in && MEM_P (rl->in)
7862 ? rl->in_reg : rl->in);
7863 rtx reg_rtx = rl->reg_rtx;
7864
7865 if (old && reg_rtx)
7866 {
7867 machine_mode mode;
7868
7869 /* Determine the mode to reload in.
7870 This is very tricky because we have three to choose from.
7871 There is the mode the insn operand wants (rl->inmode).
7872 There is the mode of the reload register RELOADREG.
7873 There is the intrinsic mode of the operand, which we could find
7874 by stripping some SUBREGs.
7875 It turns out that RELOADREG's mode is irrelevant:
7876 we can change that arbitrarily.
7877
7878 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7879 then the reload reg may not support QImode moves, so use SImode.
7880 If foo is in memory due to spilling a pseudo reg, this is safe,
7881 because the QImode value is in the least significant part of a
7882 slot big enough for a SImode. If foo is some other sort of
7883 memory reference, then it is impossible to reload this case,
7884 so previous passes had better make sure this never happens.
7885
7886 Then consider a one-word union which has SImode and one of its
7887 members is a float, being fetched as (SUBREG:SF union:SI).
7888 We must fetch that as SFmode because we could be loading into
7889 a float-only register. In this case OLD's mode is correct.
7890
7891 Consider an immediate integer: it has VOIDmode. Here we need
7892 to get a mode from something else.
7893
7894 In some cases, there is a fourth mode, the operand's
7895 containing mode. If the insn specifies a containing mode for
7896 this operand, it overrides all others.
7897
7898 I am not sure whether the algorithm here is always right,
7899 but it does the right things in those cases. */
7900
7901 mode = GET_MODE (old);
7902 if (mode == VOIDmode)
7903 mode = rl->inmode;
7904
7905 /* We cannot use gen_lowpart_common since it can do the wrong thing
7906 when REG_RTX has a multi-word mode. Note that REG_RTX must
7907 always be a REG here. */
7908 if (GET_MODE (reg_rtx) != mode)
7909 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7910 }
7911 reload_reg_rtx_for_input[j] = reg_rtx;
7912
7913 if (old != 0
7914 /* AUTO_INC reloads need to be handled even if inherited. We got an
7915 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7916 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7917 && ! rtx_equal_p (reg_rtx, old)
7918 && reg_rtx != 0)
7919 emit_input_reload_insns (chain, rld + j, old, j);
7920
7921 /* When inheriting a wider reload, we have a MEM in rl->in,
7922 e.g. inheriting a SImode output reload for
7923 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7924 if (optimize && reload_inherited[j] && rl->in
7925 && MEM_P (rl->in)
7926 && MEM_P (rl->in_reg)
7927 && reload_spill_index[j] >= 0
7928 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7929 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7930
7931 /* If we are reloading a register that was recently stored in with an
7932 output-reload, see if we can prove there was
7933 actually no need to store the old value in it. */
7934
7935 if (optimize
7936 && (reload_inherited[j] || reload_override_in[j])
7937 && reg_rtx
7938 && REG_P (reg_rtx)
7939 && spill_reg_store[REGNO (reg_rtx)] != 0
7940 #if 0
7941 /* There doesn't seem to be any reason to restrict this to pseudos
7942 and doing so loses in the case where we are copying from a
7943 register of the wrong class. */
7944 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7945 #endif
7946 /* The insn might have already some references to stackslots
7947 replaced by MEMs, while reload_out_reg still names the
7948 original pseudo. */
7949 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7950 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7951 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7952 }
7953
7954 /* Do output reloading for reload RL, which is for the insn described by
7955 CHAIN and has the number J.
7956 ??? At some point we need to support handling output reloads of
7957 JUMP_INSNs or insns that set cc0. */
7958 static void
7959 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7960 {
7961 rtx note, old;
7962 rtx_insn *insn = chain->insn;
7963 /* If this is an output reload that stores something that is
7964 not loaded in this same reload, see if we can eliminate a previous
7965 store. */
7966 rtx pseudo = rl->out_reg;
7967 rtx reg_rtx = rl->reg_rtx;
7968
7969 if (rl->out && reg_rtx)
7970 {
7971 machine_mode mode;
7972
7973 /* Determine the mode to reload in.
7974 See comments above (for input reloading). */
7975 mode = GET_MODE (rl->out);
7976 if (mode == VOIDmode)
7977 {
7978 /* VOIDmode should never happen for an output. */
7979 if (asm_noperands (PATTERN (insn)) < 0)
7980 /* It's the compiler's fault. */
7981 fatal_insn ("VOIDmode on an output", insn);
7982 error_for_asm (insn, "output operand is constant in %<asm%>");
7983 /* Prevent crash--use something we know is valid. */
7984 mode = word_mode;
7985 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7986 }
7987 if (GET_MODE (reg_rtx) != mode)
7988 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7989 }
7990 reload_reg_rtx_for_output[j] = reg_rtx;
7991
7992 if (pseudo
7993 && optimize
7994 && REG_P (pseudo)
7995 && ! rtx_equal_p (rl->in_reg, pseudo)
7996 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7997 && reg_last_reload_reg[REGNO (pseudo)])
7998 {
7999 int pseudo_no = REGNO (pseudo);
8000 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8001
8002 /* We don't need to test full validity of last_regno for
8003 inherit here; we only want to know if the store actually
8004 matches the pseudo. */
8005 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8006 && reg_reloaded_contents[last_regno] == pseudo_no
8007 && spill_reg_store[last_regno]
8008 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8009 delete_output_reload (insn, j, last_regno, reg_rtx);
8010 }
8011
8012 old = rl->out_reg;
8013 if (old == 0
8014 || reg_rtx == 0
8015 || rtx_equal_p (old, reg_rtx))
8016 return;
8017
8018 /* An output operand that dies right away does need a reload,
8019 but need not be copied from it. Show the new location in the
8020 REG_UNUSED note. */
8021 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8022 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8023 {
8024 XEXP (note, 0) = reg_rtx;
8025 return;
8026 }
8027 /* Likewise for a SUBREG of an operand that dies. */
8028 else if (GET_CODE (old) == SUBREG
8029 && REG_P (SUBREG_REG (old))
8030 && (note = find_reg_note (insn, REG_UNUSED,
8031 SUBREG_REG (old))) != 0)
8032 {
8033 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8034 return;
8035 }
8036 else if (GET_CODE (old) == SCRATCH)
8037 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8038 but we don't want to make an output reload. */
8039 return;
8040
8041 /* If is a JUMP_INSN, we can't support output reloads yet. */
8042 gcc_assert (NONJUMP_INSN_P (insn));
8043
8044 emit_output_reload_insns (chain, rld + j, j);
8045 }
8046
8047 /* A reload copies values of MODE from register SRC to register DEST.
8048 Return true if it can be treated for inheritance purposes like a
8049 group of reloads, each one reloading a single hard register. The
8050 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8051 occupy the same number of hard registers. */
8052
8053 static bool
8054 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8055 int src ATTRIBUTE_UNUSED,
8056 machine_mode mode ATTRIBUTE_UNUSED)
8057 {
8058 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8059 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8060 }
8061
8062 /* Output insns to reload values in and out of the chosen reload regs. */
8063
8064 static void
8065 emit_reload_insns (struct insn_chain *chain)
8066 {
8067 rtx_insn *insn = chain->insn;
8068
8069 int j;
8070
8071 CLEAR_HARD_REG_SET (reg_reloaded_died);
8072
8073 for (j = 0; j < reload_n_operands; j++)
8074 input_reload_insns[j] = input_address_reload_insns[j]
8075 = inpaddr_address_reload_insns[j]
8076 = output_reload_insns[j] = output_address_reload_insns[j]
8077 = outaddr_address_reload_insns[j]
8078 = other_output_reload_insns[j] = 0;
8079 other_input_address_reload_insns = 0;
8080 other_input_reload_insns = 0;
8081 operand_reload_insns = 0;
8082 other_operand_reload_insns = 0;
8083
8084 /* Dump reloads into the dump file. */
8085 if (dump_file)
8086 {
8087 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8088 debug_reload_to_stream (dump_file);
8089 }
8090
8091 for (j = 0; j < n_reloads; j++)
8092 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8093 {
8094 unsigned int i;
8095
8096 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8097 new_spill_reg_store[i] = 0;
8098 }
8099
8100 /* Now output the instructions to copy the data into and out of the
8101 reload registers. Do these in the order that the reloads were reported,
8102 since reloads of base and index registers precede reloads of operands
8103 and the operands may need the base and index registers reloaded. */
8104
8105 for (j = 0; j < n_reloads; j++)
8106 {
8107 do_input_reload (chain, rld + j, j);
8108 do_output_reload (chain, rld + j, j);
8109 }
8110
8111 /* Now write all the insns we made for reloads in the order expected by
8112 the allocation functions. Prior to the insn being reloaded, we write
8113 the following reloads:
8114
8115 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8116
8117 RELOAD_OTHER reloads.
8118
8119 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8120 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8121 RELOAD_FOR_INPUT reload for the operand.
8122
8123 RELOAD_FOR_OPADDR_ADDRS reloads.
8124
8125 RELOAD_FOR_OPERAND_ADDRESS reloads.
8126
8127 After the insn being reloaded, we write the following:
8128
8129 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8130 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8131 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8132 reloads for the operand. The RELOAD_OTHER output reloads are
8133 output in descending order by reload number. */
8134
8135 emit_insn_before (other_input_address_reload_insns, insn);
8136 emit_insn_before (other_input_reload_insns, insn);
8137
8138 for (j = 0; j < reload_n_operands; j++)
8139 {
8140 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8141 emit_insn_before (input_address_reload_insns[j], insn);
8142 emit_insn_before (input_reload_insns[j], insn);
8143 }
8144
8145 emit_insn_before (other_operand_reload_insns, insn);
8146 emit_insn_before (operand_reload_insns, insn);
8147
8148 for (j = 0; j < reload_n_operands; j++)
8149 {
8150 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8151 x = emit_insn_after (output_address_reload_insns[j], x);
8152 x = emit_insn_after (output_reload_insns[j], x);
8153 emit_insn_after (other_output_reload_insns[j], x);
8154 }
8155
8156 /* For all the spill regs newly reloaded in this instruction,
8157 record what they were reloaded from, so subsequent instructions
8158 can inherit the reloads.
8159
8160 Update spill_reg_store for the reloads of this insn.
8161 Copy the elements that were updated in the loop above. */
8162
8163 for (j = 0; j < n_reloads; j++)
8164 {
8165 int r = reload_order[j];
8166 int i = reload_spill_index[r];
8167
8168 /* If this is a non-inherited input reload from a pseudo, we must
8169 clear any memory of a previous store to the same pseudo. Only do
8170 something if there will not be an output reload for the pseudo
8171 being reloaded. */
8172 if (rld[r].in_reg != 0
8173 && ! (reload_inherited[r] || reload_override_in[r]))
8174 {
8175 rtx reg = rld[r].in_reg;
8176
8177 if (GET_CODE (reg) == SUBREG)
8178 reg = SUBREG_REG (reg);
8179
8180 if (REG_P (reg)
8181 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8182 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8183 {
8184 int nregno = REGNO (reg);
8185
8186 if (reg_last_reload_reg[nregno])
8187 {
8188 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8189
8190 if (reg_reloaded_contents[last_regno] == nregno)
8191 spill_reg_store[last_regno] = 0;
8192 }
8193 }
8194 }
8195
8196 /* I is nonneg if this reload used a register.
8197 If rld[r].reg_rtx is 0, this is an optional reload
8198 that we opted to ignore. */
8199
8200 if (i >= 0 && rld[r].reg_rtx != 0)
8201 {
8202 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8203 int k;
8204
8205 /* For a multi register reload, we need to check if all or part
8206 of the value lives to the end. */
8207 for (k = 0; k < nr; k++)
8208 if (reload_reg_reaches_end_p (i + k, r))
8209 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8210
8211 /* Maybe the spill reg contains a copy of reload_out. */
8212 if (rld[r].out != 0
8213 && (REG_P (rld[r].out)
8214 || (rld[r].out_reg
8215 ? REG_P (rld[r].out_reg)
8216 /* The reload value is an auto-modification of
8217 some kind. For PRE_INC, POST_INC, PRE_DEC
8218 and POST_DEC, we record an equivalence
8219 between the reload register and the operand
8220 on the optimistic assumption that we can make
8221 the equivalence hold. reload_as_needed must
8222 then either make it hold or invalidate the
8223 equivalence.
8224
8225 PRE_MODIFY and POST_MODIFY addresses are reloaded
8226 somewhat differently, and allowing them here leads
8227 to problems. */
8228 : (GET_CODE (rld[r].out) != POST_MODIFY
8229 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8230 {
8231 rtx reg;
8232
8233 reg = reload_reg_rtx_for_output[r];
8234 if (reload_reg_rtx_reaches_end_p (reg, r))
8235 {
8236 machine_mode mode = GET_MODE (reg);
8237 int regno = REGNO (reg);
8238 int nregs = REG_NREGS (reg);
8239 rtx out = (REG_P (rld[r].out)
8240 ? rld[r].out
8241 : rld[r].out_reg
8242 ? rld[r].out_reg
8243 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8244 int out_regno = REGNO (out);
8245 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8246 : hard_regno_nregs (out_regno, mode));
8247 bool piecemeal;
8248
8249 spill_reg_store[regno] = new_spill_reg_store[regno];
8250 spill_reg_stored_to[regno] = out;
8251 reg_last_reload_reg[out_regno] = reg;
8252
8253 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8254 && nregs == out_nregs
8255 && inherit_piecemeal_p (out_regno, regno, mode));
8256
8257 /* If OUT_REGNO is a hard register, it may occupy more than
8258 one register. If it does, say what is in the
8259 rest of the registers assuming that both registers
8260 agree on how many words the object takes. If not,
8261 invalidate the subsequent registers. */
8262
8263 if (HARD_REGISTER_NUM_P (out_regno))
8264 for (k = 1; k < out_nregs; k++)
8265 reg_last_reload_reg[out_regno + k]
8266 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8267
8268 /* Now do the inverse operation. */
8269 for (k = 0; k < nregs; k++)
8270 {
8271 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8272 reg_reloaded_contents[regno + k]
8273 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8274 ? out_regno
8275 : out_regno + k);
8276 reg_reloaded_insn[regno + k] = insn;
8277 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8278 if (targetm.hard_regno_call_part_clobbered (regno + k,
8279 mode))
8280 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8281 regno + k);
8282 else
8283 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8284 regno + k);
8285 }
8286 }
8287 }
8288 /* Maybe the spill reg contains a copy of reload_in. Only do
8289 something if there will not be an output reload for
8290 the register being reloaded. */
8291 else if (rld[r].out_reg == 0
8292 && rld[r].in != 0
8293 && ((REG_P (rld[r].in)
8294 && !HARD_REGISTER_P (rld[r].in)
8295 && !REGNO_REG_SET_P (&reg_has_output_reload,
8296 REGNO (rld[r].in)))
8297 || (REG_P (rld[r].in_reg)
8298 && !REGNO_REG_SET_P (&reg_has_output_reload,
8299 REGNO (rld[r].in_reg))))
8300 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8301 {
8302 rtx reg;
8303
8304 reg = reload_reg_rtx_for_input[r];
8305 if (reload_reg_rtx_reaches_end_p (reg, r))
8306 {
8307 machine_mode mode;
8308 int regno;
8309 int nregs;
8310 int in_regno;
8311 int in_nregs;
8312 rtx in;
8313 bool piecemeal;
8314
8315 mode = GET_MODE (reg);
8316 regno = REGNO (reg);
8317 nregs = REG_NREGS (reg);
8318 if (REG_P (rld[r].in)
8319 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8320 in = rld[r].in;
8321 else if (REG_P (rld[r].in_reg))
8322 in = rld[r].in_reg;
8323 else
8324 in = XEXP (rld[r].in_reg, 0);
8325 in_regno = REGNO (in);
8326
8327 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8328 : hard_regno_nregs (in_regno, mode));
8329
8330 reg_last_reload_reg[in_regno] = reg;
8331
8332 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8333 && nregs == in_nregs
8334 && inherit_piecemeal_p (regno, in_regno, mode));
8335
8336 if (HARD_REGISTER_NUM_P (in_regno))
8337 for (k = 1; k < in_nregs; k++)
8338 reg_last_reload_reg[in_regno + k]
8339 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8340
8341 /* Unless we inherited this reload, show we haven't
8342 recently done a store.
8343 Previous stores of inherited auto_inc expressions
8344 also have to be discarded. */
8345 if (! reload_inherited[r]
8346 || (rld[r].out && ! rld[r].out_reg))
8347 spill_reg_store[regno] = 0;
8348
8349 for (k = 0; k < nregs; k++)
8350 {
8351 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8352 reg_reloaded_contents[regno + k]
8353 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8354 ? in_regno
8355 : in_regno + k);
8356 reg_reloaded_insn[regno + k] = insn;
8357 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8358 if (targetm.hard_regno_call_part_clobbered (regno + k,
8359 mode))
8360 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8361 regno + k);
8362 else
8363 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8364 regno + k);
8365 }
8366 }
8367 }
8368 }
8369
8370 /* The following if-statement was #if 0'd in 1.34 (or before...).
8371 It's reenabled in 1.35 because supposedly nothing else
8372 deals with this problem. */
8373
8374 /* If a register gets output-reloaded from a non-spill register,
8375 that invalidates any previous reloaded copy of it.
8376 But forget_old_reloads_1 won't get to see it, because
8377 it thinks only about the original insn. So invalidate it here.
8378 Also do the same thing for RELOAD_OTHER constraints where the
8379 output is discarded. */
8380 if (i < 0
8381 && ((rld[r].out != 0
8382 && (REG_P (rld[r].out)
8383 || (MEM_P (rld[r].out)
8384 && REG_P (rld[r].out_reg))))
8385 || (rld[r].out == 0 && rld[r].out_reg
8386 && REG_P (rld[r].out_reg))))
8387 {
8388 rtx out = ((rld[r].out && REG_P (rld[r].out))
8389 ? rld[r].out : rld[r].out_reg);
8390 int out_regno = REGNO (out);
8391 machine_mode mode = GET_MODE (out);
8392
8393 /* REG_RTX is now set or clobbered by the main instruction.
8394 As the comment above explains, forget_old_reloads_1 only
8395 sees the original instruction, and there is no guarantee
8396 that the original instruction also clobbered REG_RTX.
8397 For example, if find_reloads sees that the input side of
8398 a matched operand pair dies in this instruction, it may
8399 use the input register as the reload register.
8400
8401 Calling forget_old_reloads_1 is a waste of effort if
8402 REG_RTX is also the output register.
8403
8404 If we know that REG_RTX holds the value of a pseudo
8405 register, the code after the call will record that fact. */
8406 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8407 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8408
8409 if (!HARD_REGISTER_NUM_P (out_regno))
8410 {
8411 rtx src_reg;
8412 rtx_insn *store_insn = NULL;
8413
8414 reg_last_reload_reg[out_regno] = 0;
8415
8416 /* If we can find a hard register that is stored, record
8417 the storing insn so that we may delete this insn with
8418 delete_output_reload. */
8419 src_reg = reload_reg_rtx_for_output[r];
8420
8421 if (src_reg)
8422 {
8423 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8424 store_insn = new_spill_reg_store[REGNO (src_reg)];
8425 else
8426 src_reg = NULL_RTX;
8427 }
8428 else
8429 {
8430 /* If this is an optional reload, try to find the
8431 source reg from an input reload. */
8432 rtx set = single_set (insn);
8433 if (set && SET_DEST (set) == rld[r].out)
8434 {
8435 int k;
8436
8437 src_reg = SET_SRC (set);
8438 store_insn = insn;
8439 for (k = 0; k < n_reloads; k++)
8440 {
8441 if (rld[k].in == src_reg)
8442 {
8443 src_reg = reload_reg_rtx_for_input[k];
8444 break;
8445 }
8446 }
8447 }
8448 }
8449 if (src_reg && REG_P (src_reg)
8450 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8451 {
8452 int src_regno, src_nregs, k;
8453 rtx note;
8454
8455 gcc_assert (GET_MODE (src_reg) == mode);
8456 src_regno = REGNO (src_reg);
8457 src_nregs = hard_regno_nregs (src_regno, mode);
8458 /* The place where to find a death note varies with
8459 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8460 necessarily checked exactly in the code that moves
8461 notes, so just check both locations. */
8462 note = find_regno_note (insn, REG_DEAD, src_regno);
8463 if (! note && store_insn)
8464 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8465 for (k = 0; k < src_nregs; k++)
8466 {
8467 spill_reg_store[src_regno + k] = store_insn;
8468 spill_reg_stored_to[src_regno + k] = out;
8469 reg_reloaded_contents[src_regno + k] = out_regno;
8470 reg_reloaded_insn[src_regno + k] = store_insn;
8471 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8472 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8473 if (targetm.hard_regno_call_part_clobbered
8474 (src_regno + k, mode))
8475 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8476 src_regno + k);
8477 else
8478 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8479 src_regno + k);
8480 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8481 if (note)
8482 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8483 else
8484 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8485 }
8486 reg_last_reload_reg[out_regno] = src_reg;
8487 /* We have to set reg_has_output_reload here, or else
8488 forget_old_reloads_1 will clear reg_last_reload_reg
8489 right away. */
8490 SET_REGNO_REG_SET (&reg_has_output_reload,
8491 out_regno);
8492 }
8493 }
8494 else
8495 {
8496 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8497
8498 for (k = 0; k < out_nregs; k++)
8499 reg_last_reload_reg[out_regno + k] = 0;
8500 }
8501 }
8502 }
8503 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8504 }
8505 \f
8506 /* Go through the motions to emit INSN and test if it is strictly valid.
8507 Return the emitted insn if valid, else return NULL. */
8508
8509 static rtx_insn *
8510 emit_insn_if_valid_for_reload (rtx pat)
8511 {
8512 rtx_insn *last = get_last_insn ();
8513 int code;
8514
8515 rtx_insn *insn = emit_insn (pat);
8516 code = recog_memoized (insn);
8517
8518 if (code >= 0)
8519 {
8520 extract_insn (insn);
8521 /* We want constrain operands to treat this insn strictly in its
8522 validity determination, i.e., the way it would after reload has
8523 completed. */
8524 if (constrain_operands (1, get_enabled_alternatives (insn)))
8525 return insn;
8526 }
8527
8528 delete_insns_since (last);
8529 return NULL;
8530 }
8531
8532 /* Emit code to perform a reload from IN (which may be a reload register) to
8533 OUT (which may also be a reload register). IN or OUT is from operand
8534 OPNUM with reload type TYPE.
8535
8536 Returns first insn emitted. */
8537
8538 static rtx_insn *
8539 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8540 {
8541 rtx_insn *last = get_last_insn ();
8542 rtx_insn *tem;
8543 rtx tem1, tem2;
8544
8545 /* If IN is a paradoxical SUBREG, remove it and try to put the
8546 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8547 if (!strip_paradoxical_subreg (&in, &out))
8548 strip_paradoxical_subreg (&out, &in);
8549
8550 /* How to do this reload can get quite tricky. Normally, we are being
8551 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8552 register that didn't get a hard register. In that case we can just
8553 call emit_move_insn.
8554
8555 We can also be asked to reload a PLUS that adds a register or a MEM to
8556 another register, constant or MEM. This can occur during frame pointer
8557 elimination and while reloading addresses. This case is handled by
8558 trying to emit a single insn to perform the add. If it is not valid,
8559 we use a two insn sequence.
8560
8561 Or we can be asked to reload an unary operand that was a fragment of
8562 an addressing mode, into a register. If it isn't recognized as-is,
8563 we try making the unop operand and the reload-register the same:
8564 (set reg:X (unop:X expr:Y))
8565 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8566
8567 Finally, we could be called to handle an 'o' constraint by putting
8568 an address into a register. In that case, we first try to do this
8569 with a named pattern of "reload_load_address". If no such pattern
8570 exists, we just emit a SET insn and hope for the best (it will normally
8571 be valid on machines that use 'o').
8572
8573 This entire process is made complex because reload will never
8574 process the insns we generate here and so we must ensure that
8575 they will fit their constraints and also by the fact that parts of
8576 IN might be being reloaded separately and replaced with spill registers.
8577 Because of this, we are, in some sense, just guessing the right approach
8578 here. The one listed above seems to work.
8579
8580 ??? At some point, this whole thing needs to be rethought. */
8581
8582 if (GET_CODE (in) == PLUS
8583 && (REG_P (XEXP (in, 0))
8584 || GET_CODE (XEXP (in, 0)) == SUBREG
8585 || MEM_P (XEXP (in, 0)))
8586 && (REG_P (XEXP (in, 1))
8587 || GET_CODE (XEXP (in, 1)) == SUBREG
8588 || CONSTANT_P (XEXP (in, 1))
8589 || MEM_P (XEXP (in, 1))))
8590 {
8591 /* We need to compute the sum of a register or a MEM and another
8592 register, constant, or MEM, and put it into the reload
8593 register. The best possible way of doing this is if the machine
8594 has a three-operand ADD insn that accepts the required operands.
8595
8596 The simplest approach is to try to generate such an insn and see if it
8597 is recognized and matches its constraints. If so, it can be used.
8598
8599 It might be better not to actually emit the insn unless it is valid,
8600 but we need to pass the insn as an operand to `recog' and
8601 `extract_insn' and it is simpler to emit and then delete the insn if
8602 not valid than to dummy things up. */
8603
8604 rtx op0, op1, tem;
8605 rtx_insn *insn;
8606 enum insn_code code;
8607
8608 op0 = find_replacement (&XEXP (in, 0));
8609 op1 = find_replacement (&XEXP (in, 1));
8610
8611 /* Since constraint checking is strict, commutativity won't be
8612 checked, so we need to do that here to avoid spurious failure
8613 if the add instruction is two-address and the second operand
8614 of the add is the same as the reload reg, which is frequently
8615 the case. If the insn would be A = B + A, rearrange it so
8616 it will be A = A + B as constrain_operands expects. */
8617
8618 if (REG_P (XEXP (in, 1))
8619 && REGNO (out) == REGNO (XEXP (in, 1)))
8620 tem = op0, op0 = op1, op1 = tem;
8621
8622 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8623 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8624
8625 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8626 if (insn)
8627 return insn;
8628
8629 /* If that failed, we must use a conservative two-insn sequence.
8630
8631 Use a move to copy one operand into the reload register. Prefer
8632 to reload a constant, MEM or pseudo since the move patterns can
8633 handle an arbitrary operand. If OP1 is not a constant, MEM or
8634 pseudo and OP1 is not a valid operand for an add instruction, then
8635 reload OP1.
8636
8637 After reloading one of the operands into the reload register, add
8638 the reload register to the output register.
8639
8640 If there is another way to do this for a specific machine, a
8641 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8642 we emit below. */
8643
8644 code = optab_handler (add_optab, GET_MODE (out));
8645
8646 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8647 || (REG_P (op1)
8648 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8649 || (code != CODE_FOR_nothing
8650 && !insn_operand_matches (code, 2, op1)))
8651 tem = op0, op0 = op1, op1 = tem;
8652
8653 gen_reload (out, op0, opnum, type);
8654
8655 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8656 This fixes a problem on the 32K where the stack pointer cannot
8657 be used as an operand of an add insn. */
8658
8659 if (rtx_equal_p (op0, op1))
8660 op1 = out;
8661
8662 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8663 if (insn)
8664 {
8665 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8666 set_dst_reg_note (insn, REG_EQUIV, in, out);
8667 return insn;
8668 }
8669
8670 /* If that failed, copy the address register to the reload register.
8671 Then add the constant to the reload register. */
8672
8673 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8674 gen_reload (out, op1, opnum, type);
8675 insn = emit_insn (gen_add2_insn (out, op0));
8676 set_dst_reg_note (insn, REG_EQUIV, in, out);
8677 }
8678
8679 /* If we need a memory location to do the move, do it that way. */
8680 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8681 (REG_P (tem1) && REG_P (tem2)))
8682 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8683 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8684 && targetm.secondary_memory_needed (GET_MODE (out),
8685 REGNO_REG_CLASS (REGNO (tem1)),
8686 REGNO_REG_CLASS (REGNO (tem2))))
8687 {
8688 /* Get the memory to use and rewrite both registers to its mode. */
8689 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8690
8691 if (GET_MODE (loc) != GET_MODE (out))
8692 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8693
8694 if (GET_MODE (loc) != GET_MODE (in))
8695 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8696
8697 gen_reload (loc, in, opnum, type);
8698 gen_reload (out, loc, opnum, type);
8699 }
8700 else if (REG_P (out) && UNARY_P (in))
8701 {
8702 rtx op1;
8703 rtx out_moded;
8704 rtx_insn *set;
8705
8706 op1 = find_replacement (&XEXP (in, 0));
8707 if (op1 != XEXP (in, 0))
8708 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8709
8710 /* First, try a plain SET. */
8711 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8712 if (set)
8713 return set;
8714
8715 /* If that failed, move the inner operand to the reload
8716 register, and try the same unop with the inner expression
8717 replaced with the reload register. */
8718
8719 if (GET_MODE (op1) != GET_MODE (out))
8720 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8721 else
8722 out_moded = out;
8723
8724 gen_reload (out_moded, op1, opnum, type);
8725
8726 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8727 out_moded));
8728 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8729 if (insn)
8730 {
8731 set_unique_reg_note (insn, REG_EQUIV, in);
8732 return insn;
8733 }
8734
8735 fatal_insn ("failure trying to reload:", set);
8736 }
8737 /* If IN is a simple operand, use gen_move_insn. */
8738 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8739 {
8740 tem = emit_insn (gen_move_insn (out, in));
8741 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8742 mark_jump_label (in, tem, 0);
8743 }
8744
8745 else if (targetm.have_reload_load_address ())
8746 emit_insn (targetm.gen_reload_load_address (out, in));
8747
8748 /* Otherwise, just write (set OUT IN) and hope for the best. */
8749 else
8750 emit_insn (gen_rtx_SET (out, in));
8751
8752 /* Return the first insn emitted.
8753 We can not just return get_last_insn, because there may have
8754 been multiple instructions emitted. Also note that gen_move_insn may
8755 emit more than one insn itself, so we can not assume that there is one
8756 insn emitted per emit_insn_before call. */
8757
8758 return last ? NEXT_INSN (last) : get_insns ();
8759 }
8760 \f
8761 /* Delete a previously made output-reload whose result we now believe
8762 is not needed. First we double-check.
8763
8764 INSN is the insn now being processed.
8765 LAST_RELOAD_REG is the hard register number for which we want to delete
8766 the last output reload.
8767 J is the reload-number that originally used REG. The caller has made
8768 certain that reload J doesn't use REG any longer for input.
8769 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8770
8771 static void
8772 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8773 rtx new_reload_reg)
8774 {
8775 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8776 rtx reg = spill_reg_stored_to[last_reload_reg];
8777 int k;
8778 int n_occurrences;
8779 int n_inherited = 0;
8780 rtx substed;
8781 unsigned regno;
8782 int nregs;
8783
8784 /* It is possible that this reload has been only used to set another reload
8785 we eliminated earlier and thus deleted this instruction too. */
8786 if (output_reload_insn->deleted ())
8787 return;
8788
8789 /* Get the raw pseudo-register referred to. */
8790
8791 while (GET_CODE (reg) == SUBREG)
8792 reg = SUBREG_REG (reg);
8793 substed = reg_equiv_memory_loc (REGNO (reg));
8794
8795 /* This is unsafe if the operand occurs more often in the current
8796 insn than it is inherited. */
8797 for (k = n_reloads - 1; k >= 0; k--)
8798 {
8799 rtx reg2 = rld[k].in;
8800 if (! reg2)
8801 continue;
8802 if (MEM_P (reg2) || reload_override_in[k])
8803 reg2 = rld[k].in_reg;
8804
8805 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8806 reg2 = XEXP (rld[k].in_reg, 0);
8807
8808 while (GET_CODE (reg2) == SUBREG)
8809 reg2 = SUBREG_REG (reg2);
8810 if (rtx_equal_p (reg2, reg))
8811 {
8812 if (reload_inherited[k] || reload_override_in[k] || k == j)
8813 n_inherited++;
8814 else
8815 return;
8816 }
8817 }
8818 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8819 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8820 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8821 reg, 0);
8822 if (substed)
8823 n_occurrences += count_occurrences (PATTERN (insn),
8824 eliminate_regs (substed, VOIDmode,
8825 NULL_RTX), 0);
8826 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8827 {
8828 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8829 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8830 }
8831 if (n_occurrences > n_inherited)
8832 return;
8833
8834 regno = REGNO (reg);
8835 nregs = REG_NREGS (reg);
8836
8837 /* If the pseudo-reg we are reloading is no longer referenced
8838 anywhere between the store into it and here,
8839 and we're within the same basic block, then the value can only
8840 pass through the reload reg and end up here.
8841 Otherwise, give up--return. */
8842 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8843 i1 != insn; i1 = NEXT_INSN (i1))
8844 {
8845 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8846 return;
8847 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8848 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8849 {
8850 /* If this is USE in front of INSN, we only have to check that
8851 there are no more references than accounted for by inheritance. */
8852 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8853 {
8854 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8855 i1 = NEXT_INSN (i1);
8856 }
8857 if (n_occurrences <= n_inherited && i1 == insn)
8858 break;
8859 return;
8860 }
8861 }
8862
8863 /* We will be deleting the insn. Remove the spill reg information. */
8864 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8865 {
8866 spill_reg_store[last_reload_reg + k] = 0;
8867 spill_reg_stored_to[last_reload_reg + k] = 0;
8868 }
8869
8870 /* The caller has already checked that REG dies or is set in INSN.
8871 It has also checked that we are optimizing, and thus some
8872 inaccuracies in the debugging information are acceptable.
8873 So we could just delete output_reload_insn. But in some cases
8874 we can improve the debugging information without sacrificing
8875 optimization - maybe even improving the code: See if the pseudo
8876 reg has been completely replaced with reload regs. If so, delete
8877 the store insn and forget we had a stack slot for the pseudo. */
8878 if (rld[j].out != rld[j].in
8879 && REG_N_DEATHS (REGNO (reg)) == 1
8880 && REG_N_SETS (REGNO (reg)) == 1
8881 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8882 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8883 {
8884 rtx_insn *i2;
8885
8886 /* We know that it was used only between here and the beginning of
8887 the current basic block. (We also know that the last use before
8888 INSN was the output reload we are thinking of deleting, but never
8889 mind that.) Search that range; see if any ref remains. */
8890 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8891 {
8892 rtx set = single_set (i2);
8893
8894 /* Uses which just store in the pseudo don't count,
8895 since if they are the only uses, they are dead. */
8896 if (set != 0 && SET_DEST (set) == reg)
8897 continue;
8898 if (LABEL_P (i2) || JUMP_P (i2))
8899 break;
8900 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8901 && reg_mentioned_p (reg, PATTERN (i2)))
8902 {
8903 /* Some other ref remains; just delete the output reload we
8904 know to be dead. */
8905 delete_address_reloads (output_reload_insn, insn);
8906 delete_insn (output_reload_insn);
8907 return;
8908 }
8909 }
8910
8911 /* Delete the now-dead stores into this pseudo. Note that this
8912 loop also takes care of deleting output_reload_insn. */
8913 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8914 {
8915 rtx set = single_set (i2);
8916
8917 if (set != 0 && SET_DEST (set) == reg)
8918 {
8919 delete_address_reloads (i2, insn);
8920 delete_insn (i2);
8921 }
8922 if (LABEL_P (i2) || JUMP_P (i2))
8923 break;
8924 }
8925
8926 /* For the debugging info, say the pseudo lives in this reload reg. */
8927 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8928 if (ira_conflicts_p)
8929 /* Inform IRA about the change. */
8930 ira_mark_allocation_change (REGNO (reg));
8931 alter_reg (REGNO (reg), -1, false);
8932 }
8933 else
8934 {
8935 delete_address_reloads (output_reload_insn, insn);
8936 delete_insn (output_reload_insn);
8937 }
8938 }
8939
8940 /* We are going to delete DEAD_INSN. Recursively delete loads of
8941 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8942 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8943 static void
8944 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8945 {
8946 rtx set = single_set (dead_insn);
8947 rtx set2, dst;
8948 rtx_insn *prev, *next;
8949 if (set)
8950 {
8951 rtx dst = SET_DEST (set);
8952 if (MEM_P (dst))
8953 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8954 }
8955 /* If we deleted the store from a reloaded post_{in,de}c expression,
8956 we can delete the matching adds. */
8957 prev = PREV_INSN (dead_insn);
8958 next = NEXT_INSN (dead_insn);
8959 if (! prev || ! next)
8960 return;
8961 set = single_set (next);
8962 set2 = single_set (prev);
8963 if (! set || ! set2
8964 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8965 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8966 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8967 return;
8968 dst = SET_DEST (set);
8969 if (! rtx_equal_p (dst, SET_DEST (set2))
8970 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8971 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8972 || (INTVAL (XEXP (SET_SRC (set), 1))
8973 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8974 return;
8975 delete_related_insns (prev);
8976 delete_related_insns (next);
8977 }
8978
8979 /* Subfunction of delete_address_reloads: process registers found in X. */
8980 static void
8981 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8982 {
8983 rtx_insn *prev, *i2;
8984 rtx set, dst;
8985 int i, j;
8986 enum rtx_code code = GET_CODE (x);
8987
8988 if (code != REG)
8989 {
8990 const char *fmt = GET_RTX_FORMAT (code);
8991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8992 {
8993 if (fmt[i] == 'e')
8994 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8995 else if (fmt[i] == 'E')
8996 {
8997 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8998 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8999 current_insn);
9000 }
9001 }
9002 return;
9003 }
9004
9005 if (spill_reg_order[REGNO (x)] < 0)
9006 return;
9007
9008 /* Scan backwards for the insn that sets x. This might be a way back due
9009 to inheritance. */
9010 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9011 {
9012 code = GET_CODE (prev);
9013 if (code == CODE_LABEL || code == JUMP_INSN)
9014 return;
9015 if (!INSN_P (prev))
9016 continue;
9017 if (reg_set_p (x, PATTERN (prev)))
9018 break;
9019 if (reg_referenced_p (x, PATTERN (prev)))
9020 return;
9021 }
9022 if (! prev || INSN_UID (prev) < reload_first_uid)
9023 return;
9024 /* Check that PREV only sets the reload register. */
9025 set = single_set (prev);
9026 if (! set)
9027 return;
9028 dst = SET_DEST (set);
9029 if (!REG_P (dst)
9030 || ! rtx_equal_p (dst, x))
9031 return;
9032 if (! reg_set_p (dst, PATTERN (dead_insn)))
9033 {
9034 /* Check if DST was used in a later insn -
9035 it might have been inherited. */
9036 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9037 {
9038 if (LABEL_P (i2))
9039 break;
9040 if (! INSN_P (i2))
9041 continue;
9042 if (reg_referenced_p (dst, PATTERN (i2)))
9043 {
9044 /* If there is a reference to the register in the current insn,
9045 it might be loaded in a non-inherited reload. If no other
9046 reload uses it, that means the register is set before
9047 referenced. */
9048 if (i2 == current_insn)
9049 {
9050 for (j = n_reloads - 1; j >= 0; j--)
9051 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9052 || reload_override_in[j] == dst)
9053 return;
9054 for (j = n_reloads - 1; j >= 0; j--)
9055 if (rld[j].in && rld[j].reg_rtx == dst)
9056 break;
9057 if (j >= 0)
9058 break;
9059 }
9060 return;
9061 }
9062 if (JUMP_P (i2))
9063 break;
9064 /* If DST is still live at CURRENT_INSN, check if it is used for
9065 any reload. Note that even if CURRENT_INSN sets DST, we still
9066 have to check the reloads. */
9067 if (i2 == current_insn)
9068 {
9069 for (j = n_reloads - 1; j >= 0; j--)
9070 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9071 || reload_override_in[j] == dst)
9072 return;
9073 /* ??? We can't finish the loop here, because dst might be
9074 allocated to a pseudo in this block if no reload in this
9075 block needs any of the classes containing DST - see
9076 spill_hard_reg. There is no easy way to tell this, so we
9077 have to scan till the end of the basic block. */
9078 }
9079 if (reg_set_p (dst, PATTERN (i2)))
9080 break;
9081 }
9082 }
9083 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9084 reg_reloaded_contents[REGNO (dst)] = -1;
9085 delete_insn (prev);
9086 }
9087 \f
9088 /* Output reload-insns to reload VALUE into RELOADREG.
9089 VALUE is an autoincrement or autodecrement RTX whose operand
9090 is a register or memory location;
9091 so reloading involves incrementing that location.
9092 IN is either identical to VALUE, or some cheaper place to reload from.
9093
9094 INC_AMOUNT is the number to increment or decrement by (always positive).
9095 This cannot be deduced from VALUE. */
9096
9097 static void
9098 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9099 {
9100 /* REG or MEM to be copied and incremented. */
9101 rtx incloc = find_replacement (&XEXP (value, 0));
9102 /* Nonzero if increment after copying. */
9103 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9104 || GET_CODE (value) == POST_MODIFY);
9105 rtx_insn *last;
9106 rtx inc;
9107 rtx_insn *add_insn;
9108 int code;
9109 rtx real_in = in == value ? incloc : in;
9110
9111 /* No hard register is equivalent to this register after
9112 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9113 we could inc/dec that register as well (maybe even using it for
9114 the source), but I'm not sure it's worth worrying about. */
9115 if (REG_P (incloc))
9116 reg_last_reload_reg[REGNO (incloc)] = 0;
9117
9118 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9119 {
9120 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9121 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9122 }
9123 else
9124 {
9125 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9126 inc_amount = -inc_amount;
9127
9128 inc = gen_int_mode (inc_amount, Pmode);
9129 }
9130
9131 /* If this is post-increment, first copy the location to the reload reg. */
9132 if (post && real_in != reloadreg)
9133 emit_insn (gen_move_insn (reloadreg, real_in));
9134
9135 if (in == value)
9136 {
9137 /* See if we can directly increment INCLOC. Use a method similar to
9138 that in gen_reload. */
9139
9140 last = get_last_insn ();
9141 add_insn = emit_insn (gen_rtx_SET (incloc,
9142 gen_rtx_PLUS (GET_MODE (incloc),
9143 incloc, inc)));
9144
9145 code = recog_memoized (add_insn);
9146 if (code >= 0)
9147 {
9148 extract_insn (add_insn);
9149 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9150 {
9151 /* If this is a pre-increment and we have incremented the value
9152 where it lives, copy the incremented value to RELOADREG to
9153 be used as an address. */
9154
9155 if (! post)
9156 emit_insn (gen_move_insn (reloadreg, incloc));
9157 return;
9158 }
9159 }
9160 delete_insns_since (last);
9161 }
9162
9163 /* If couldn't do the increment directly, must increment in RELOADREG.
9164 The way we do this depends on whether this is pre- or post-increment.
9165 For pre-increment, copy INCLOC to the reload register, increment it
9166 there, then save back. */
9167
9168 if (! post)
9169 {
9170 if (in != reloadreg)
9171 emit_insn (gen_move_insn (reloadreg, real_in));
9172 emit_insn (gen_add2_insn (reloadreg, inc));
9173 emit_insn (gen_move_insn (incloc, reloadreg));
9174 }
9175 else
9176 {
9177 /* Postincrement.
9178 Because this might be a jump insn or a compare, and because RELOADREG
9179 may not be available after the insn in an input reload, we must do
9180 the incrementation before the insn being reloaded for.
9181
9182 We have already copied IN to RELOADREG. Increment the copy in
9183 RELOADREG, save that back, then decrement RELOADREG so it has
9184 the original value. */
9185
9186 emit_insn (gen_add2_insn (reloadreg, inc));
9187 emit_insn (gen_move_insn (incloc, reloadreg));
9188 if (CONST_INT_P (inc))
9189 emit_insn (gen_add2_insn (reloadreg,
9190 gen_int_mode (-INTVAL (inc),
9191 GET_MODE (reloadreg))));
9192 else
9193 emit_insn (gen_sub2_insn (reloadreg, inc));
9194 }
9195 }
9196 \f
9197 static void
9198 add_auto_inc_notes (rtx_insn *insn, rtx x)
9199 {
9200 enum rtx_code code = GET_CODE (x);
9201 const char *fmt;
9202 int i, j;
9203
9204 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9205 {
9206 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9207 return;
9208 }
9209
9210 /* Scan all the operand sub-expressions. */
9211 fmt = GET_RTX_FORMAT (code);
9212 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9213 {
9214 if (fmt[i] == 'e')
9215 add_auto_inc_notes (insn, XEXP (x, i));
9216 else if (fmt[i] == 'E')
9217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9218 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9219 }
9220 }