cfgbuild.c (inside_basic_block_p): Use JUMP_TABLE_DATA_P in lieu of tests for JUMP_P...
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
55
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
59
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
63
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
71
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
75
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
82 \f
83 struct target_reload default_target_reload;
84 #if SWITCHABLE_TARGET
85 struct target_reload *this_target_reload = &default_target_reload;
86 #endif
87
88 #define spill_indirect_levels \
89 (this_target_reload->x_spill_indirect_levels)
90
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
94
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static regset_head reg_has_output_reload;
98
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
102
103 /* Widest width in which each pseudo reg is referred to (via subreg). */
104 static unsigned int *reg_max_ref_width;
105
106 /* Vector to remember old contents of reg_renumber before spilling. */
107 static short *reg_old_renumber;
108
109 /* During reload_as_needed, element N contains the last pseudo regno reloaded
110 into hard register N. If that pseudo reg occupied more than one register,
111 reg_reloaded_contents points to that pseudo for each spill register in
112 use; all of these must remain set for an inheritance to occur. */
113 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
114
115 /* During reload_as_needed, element N contains the insn for which
116 hard register N was last used. Its contents are significant only
117 when reg_reloaded_valid is set for this register. */
118 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
119
120 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
121 static HARD_REG_SET reg_reloaded_valid;
122 /* Indicate if the register was dead at the end of the reload.
123 This is only valid if reg_reloaded_contents is set and valid. */
124 static HARD_REG_SET reg_reloaded_dead;
125
126 /* Indicate whether the register's current value is one that is not
127 safe to retain across a call, even for registers that are normally
128 call-saved. This is only meaningful for members of reg_reloaded_valid. */
129 static HARD_REG_SET reg_reloaded_call_part_clobbered;
130
131 /* Number of spill-regs so far; number of valid elements of spill_regs. */
132 static int n_spills;
133
134 /* In parallel with spill_regs, contains REG rtx's for those regs.
135 Holds the last rtx used for any given reg, or 0 if it has never
136 been used for spilling yet. This rtx is reused, provided it has
137 the proper mode. */
138 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
139
140 /* In parallel with spill_regs, contains nonzero for a spill reg
141 that was stored after the last time it was used.
142 The precise value is the insn generated to do the store. */
143 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
144
145 /* This is the register that was stored with spill_reg_store. This is a
146 copy of reload_out / reload_out_reg when the value was stored; if
147 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
148 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
149
150 /* This table is the inverse mapping of spill_regs:
151 indexed by hard reg number,
152 it contains the position of that reg in spill_regs,
153 or -1 for something that is not in spill_regs.
154
155 ?!? This is no longer accurate. */
156 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
157
158 /* This reg set indicates registers that can't be used as spill registers for
159 the currently processed insn. These are the hard registers which are live
160 during the insn, but not allocated to pseudos, as well as fixed
161 registers. */
162 static HARD_REG_SET bad_spill_regs;
163
164 /* These are the hard registers that can't be used as spill register for any
165 insn. This includes registers used for user variables and registers that
166 we can't eliminate. A register that appears in this set also can't be used
167 to retry register allocation. */
168 static HARD_REG_SET bad_spill_regs_global;
169
170 /* Describes order of use of registers for reloading
171 of spilled pseudo-registers. `n_spills' is the number of
172 elements that are actually valid; new ones are added at the end.
173
174 Both spill_regs and spill_reg_order are used on two occasions:
175 once during find_reload_regs, where they keep track of the spill registers
176 for a single insn, but also during reload_as_needed where they show all
177 the registers ever used by reload. For the latter case, the information
178 is calculated during finish_spills. */
179 static short spill_regs[FIRST_PSEUDO_REGISTER];
180
181 /* This vector of reg sets indicates, for each pseudo, which hard registers
182 may not be used for retrying global allocation because the register was
183 formerly spilled from one of them. If we allowed reallocating a pseudo to
184 a register that it was already allocated to, reload might not
185 terminate. */
186 static HARD_REG_SET *pseudo_previous_regs;
187
188 /* This vector of reg sets indicates, for each pseudo, which hard
189 registers may not be used for retrying global allocation because they
190 are used as spill registers during one of the insns in which the
191 pseudo is live. */
192 static HARD_REG_SET *pseudo_forbidden_regs;
193
194 /* All hard regs that have been used as spill registers for any insn are
195 marked in this set. */
196 static HARD_REG_SET used_spill_regs;
197
198 /* Index of last register assigned as a spill register. We allocate in
199 a round-robin fashion. */
200 static int last_spill_reg;
201
202 /* Record the stack slot for each spilled hard register. */
203 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
204
205 /* Width allocated so far for that stack slot. */
206 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
207
208 /* Record which pseudos needed to be spilled. */
209 static regset_head spilled_pseudos;
210
211 /* Record which pseudos changed their allocation in finish_spills. */
212 static regset_head changed_allocation_pseudos;
213
214 /* Used for communication between order_regs_for_reload and count_pseudo.
215 Used to avoid counting one pseudo twice. */
216 static regset_head pseudos_counted;
217
218 /* First uid used by insns created by reload in this function.
219 Used in find_equiv_reg. */
220 int reload_first_uid;
221
222 /* Flag set by local-alloc or global-alloc if anything is live in
223 a call-clobbered reg across calls. */
224 int caller_save_needed;
225
226 /* Set to 1 while reload_as_needed is operating.
227 Required by some machines to handle any generated moves differently. */
228 int reload_in_progress = 0;
229
230 /* This obstack is used for allocation of rtl during register elimination.
231 The allocated storage can be freed once find_reloads has processed the
232 insn. */
233 static struct obstack reload_obstack;
234
235 /* Points to the beginning of the reload_obstack. All insn_chain structures
236 are allocated first. */
237 static char *reload_startobj;
238
239 /* The point after all insn_chain structures. Used to quickly deallocate
240 memory allocated in copy_reloads during calculate_needs_all_insns. */
241 static char *reload_firstobj;
242
243 /* This points before all local rtl generated by register elimination.
244 Used to quickly free all memory after processing one insn. */
245 static char *reload_insn_firstobj;
246
247 /* List of insn_chain instructions, one for every insn that reload needs to
248 examine. */
249 struct insn_chain *reload_insn_chain;
250
251 /* TRUE if we potentially left dead insns in the insn stream and want to
252 run DCE immediately after reload, FALSE otherwise. */
253 static bool need_dce;
254
255 /* List of all insns needing reloads. */
256 static struct insn_chain *insns_need_reload;
257 \f
258 /* This structure is used to record information about register eliminations.
259 Each array entry describes one possible way of eliminating a register
260 in favor of another. If there is more than one way of eliminating a
261 particular register, the most preferred should be specified first. */
262
263 struct elim_table
264 {
265 int from; /* Register number to be eliminated. */
266 int to; /* Register number used as replacement. */
267 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
268 int can_eliminate; /* Nonzero if this elimination can be done. */
269 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
270 target hook in previous scan over insns
271 made by reload. */
272 HOST_WIDE_INT offset; /* Current offset between the two regs. */
273 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
274 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
275 rtx from_rtx; /* REG rtx for the register to be eliminated.
276 We cannot simply compare the number since
277 we might then spuriously replace a hard
278 register corresponding to a pseudo
279 assigned to the reg to be eliminated. */
280 rtx to_rtx; /* REG rtx for the replacement. */
281 };
282
283 static struct elim_table *reg_eliminate = 0;
284
285 /* This is an intermediate structure to initialize the table. It has
286 exactly the members provided by ELIMINABLE_REGS. */
287 static const struct elim_table_1
288 {
289 const int from;
290 const int to;
291 } reg_eliminate_1[] =
292
293 /* If a set of eliminable registers was specified, define the table from it.
294 Otherwise, default to the normal case of the frame pointer being
295 replaced by the stack pointer. */
296
297 #ifdef ELIMINABLE_REGS
298 ELIMINABLE_REGS;
299 #else
300 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
301 #endif
302
303 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
304
305 /* Record the number of pending eliminations that have an offset not equal
306 to their initial offset. If nonzero, we use a new copy of each
307 replacement result in any insns encountered. */
308 int num_not_at_initial_offset;
309
310 /* Count the number of registers that we may be able to eliminate. */
311 static int num_eliminable;
312 /* And the number of registers that are equivalent to a constant that
313 can be eliminated to frame_pointer / arg_pointer + constant. */
314 static int num_eliminable_invariants;
315
316 /* For each label, we record the offset of each elimination. If we reach
317 a label by more than one path and an offset differs, we cannot do the
318 elimination. This information is indexed by the difference of the
319 number of the label and the first label number. We can't offset the
320 pointer itself as this can cause problems on machines with segmented
321 memory. The first table is an array of flags that records whether we
322 have yet encountered a label and the second table is an array of arrays,
323 one entry in the latter array for each elimination. */
324
325 static int first_label_num;
326 static char *offsets_known_at;
327 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
328
329 vec<reg_equivs_t, va_gc> *reg_equivs;
330
331 /* Stack of addresses where an rtx has been changed. We can undo the
332 changes by popping items off the stack and restoring the original
333 value at each location.
334
335 We use this simplistic undo capability rather than copy_rtx as copy_rtx
336 will not make a deep copy of a normally sharable rtx, such as
337 (const (plus (symbol_ref) (const_int))). If such an expression appears
338 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
339 rtx expression would be changed. See PR 42431. */
340
341 typedef rtx *rtx_p;
342 static vec<rtx_p> substitute_stack;
343
344 /* Number of labels in the current function. */
345
346 static int num_labels;
347 \f
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
356
357 static void spill_failure (rtx, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx);
372 static void init_eliminable_invariants (rtx, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static void elimination_costs_in_insn (rtx);
377 static void spill_hard_reg (unsigned int, int);
378 static int finish_spills (int);
379 static void scan_paradoxical_subregs (rtx);
380 static void count_pseudo (int);
381 static void order_regs_for_reload (struct insn_chain *);
382 static void reload_as_needed (int);
383 static void forget_old_reloads_1 (rtx, const_rtx, void *);
384 static void forget_marked_reloads (regset);
385 static int reload_reg_class_lower (const void *, const void *);
386 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
387 enum machine_mode);
388 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static int reload_reg_free_p (unsigned int, int, enum reload_type);
391 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
392 rtx, rtx, int, int);
393 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int allocate_reload_reg (struct insn_chain *, int, int);
396 static int conflicts_with_override (rtx);
397 static void failed_reload (rtx, int);
398 static int set_reload_reg (int, int);
399 static void choose_reload_regs_init (struct insn_chain *, rtx *);
400 static void choose_reload_regs (struct insn_chain *);
401 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
402 rtx, int);
403 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
404 int);
405 static void do_input_reload (struct insn_chain *, struct reload *, int);
406 static void do_output_reload (struct insn_chain *, struct reload *, int);
407 static void emit_reload_insns (struct insn_chain *);
408 static void delete_output_reload (rtx, int, int, rtx);
409 static void delete_address_reloads (rtx, rtx);
410 static void delete_address_reloads_1 (rtx, rtx, rtx);
411 static void inc_for_reload (rtx, rtx, rtx, int);
412 #ifdef AUTO_INC_DEC
413 static void add_auto_inc_notes (rtx, rtx);
414 #endif
415 static void substitute (rtx *, const_rtx, rtx);
416 static bool gen_reload_chain_without_interm_reg_p (int, int);
417 static int reloads_conflict (int, int);
418 static rtx gen_reload (rtx, rtx, int, enum reload_type);
419 static rtx emit_insn_if_valid_for_reload (rtx);
420 \f
421 /* Initialize the reload pass. This is called at the beginning of compilation
422 and may be called again if the target is reinitialized. */
423
424 void
425 init_reload (void)
426 {
427 int i;
428
429 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
430 Set spill_indirect_levels to the number of levels such addressing is
431 permitted, zero if it is not permitted at all. */
432
433 rtx tem
434 = gen_rtx_MEM (Pmode,
435 gen_rtx_PLUS (Pmode,
436 gen_rtx_REG (Pmode,
437 LAST_VIRTUAL_REGISTER + 1),
438 GEN_INT (4)));
439 spill_indirect_levels = 0;
440
441 while (memory_address_p (QImode, tem))
442 {
443 spill_indirect_levels++;
444 tem = gen_rtx_MEM (Pmode, tem);
445 }
446
447 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
448
449 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
450 indirect_symref_ok = memory_address_p (QImode, tem);
451
452 /* See if reg+reg is a valid (and offsettable) address. */
453
454 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
455 {
456 tem = gen_rtx_PLUS (Pmode,
457 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
458 gen_rtx_REG (Pmode, i));
459
460 /* This way, we make sure that reg+reg is an offsettable address. */
461 tem = plus_constant (Pmode, tem, 4);
462
463 if (memory_address_p (QImode, tem))
464 {
465 double_reg_address_ok = 1;
466 break;
467 }
468 }
469
470 /* Initialize obstack for our rtl allocation. */
471 if (reload_startobj == NULL)
472 {
473 gcc_obstack_init (&reload_obstack);
474 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
475 }
476
477 INIT_REG_SET (&spilled_pseudos);
478 INIT_REG_SET (&changed_allocation_pseudos);
479 INIT_REG_SET (&pseudos_counted);
480 }
481
482 /* List of insn chains that are currently unused. */
483 static struct insn_chain *unused_insn_chains = 0;
484
485 /* Allocate an empty insn_chain structure. */
486 struct insn_chain *
487 new_insn_chain (void)
488 {
489 struct insn_chain *c;
490
491 if (unused_insn_chains == 0)
492 {
493 c = XOBNEW (&reload_obstack, struct insn_chain);
494 INIT_REG_SET (&c->live_throughout);
495 INIT_REG_SET (&c->dead_or_set);
496 }
497 else
498 {
499 c = unused_insn_chains;
500 unused_insn_chains = c->next;
501 }
502 c->is_caller_save_insn = 0;
503 c->need_operand_change = 0;
504 c->need_reload = 0;
505 c->need_elim = 0;
506 return c;
507 }
508
509 /* Small utility function to set all regs in hard reg set TO which are
510 allocated to pseudos in regset FROM. */
511
512 void
513 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
514 {
515 unsigned int regno;
516 reg_set_iterator rsi;
517
518 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
519 {
520 int r = reg_renumber[regno];
521
522 if (r < 0)
523 {
524 /* reload_combine uses the information from DF_LIVE_IN,
525 which might still contain registers that have not
526 actually been allocated since they have an
527 equivalence. */
528 gcc_assert (ira_conflicts_p || reload_completed);
529 }
530 else
531 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
532 }
533 }
534
535 /* Replace all pseudos found in LOC with their corresponding
536 equivalences. */
537
538 static void
539 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
540 {
541 rtx x = *loc;
542 enum rtx_code code;
543 const char *fmt;
544 int i, j;
545
546 if (! x)
547 return;
548
549 code = GET_CODE (x);
550 if (code == REG)
551 {
552 unsigned int regno = REGNO (x);
553
554 if (regno < FIRST_PSEUDO_REGISTER)
555 return;
556
557 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
558 if (x != *loc)
559 {
560 *loc = x;
561 replace_pseudos_in (loc, mem_mode, usage);
562 return;
563 }
564
565 if (reg_equiv_constant (regno))
566 *loc = reg_equiv_constant (regno);
567 else if (reg_equiv_invariant (regno))
568 *loc = reg_equiv_invariant (regno);
569 else if (reg_equiv_mem (regno))
570 *loc = reg_equiv_mem (regno);
571 else if (reg_equiv_address (regno))
572 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
573 else
574 {
575 gcc_assert (!REG_P (regno_reg_rtx[regno])
576 || REGNO (regno_reg_rtx[regno]) != regno);
577 *loc = regno_reg_rtx[regno];
578 }
579
580 return;
581 }
582 else if (code == MEM)
583 {
584 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
585 return;
586 }
587
588 /* Process each of our operands recursively. */
589 fmt = GET_RTX_FORMAT (code);
590 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
591 if (*fmt == 'e')
592 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
593 else if (*fmt == 'E')
594 for (j = 0; j < XVECLEN (x, i); j++)
595 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
596 }
597
598 /* Determine if the current function has an exception receiver block
599 that reaches the exit block via non-exceptional edges */
600
601 static bool
602 has_nonexceptional_receiver (void)
603 {
604 edge e;
605 edge_iterator ei;
606 basic_block *tos, *worklist, bb;
607
608 /* If we're not optimizing, then just err on the safe side. */
609 if (!optimize)
610 return true;
611
612 /* First determine which blocks can reach exit via normal paths. */
613 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
614
615 FOR_EACH_BB (bb)
616 bb->flags &= ~BB_REACHABLE;
617
618 /* Place the exit block on our worklist. */
619 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
620 *tos++ = EXIT_BLOCK_PTR;
621
622 /* Iterate: find everything reachable from what we've already seen. */
623 while (tos != worklist)
624 {
625 bb = *--tos;
626
627 FOR_EACH_EDGE (e, ei, bb->preds)
628 if (!(e->flags & EDGE_ABNORMAL))
629 {
630 basic_block src = e->src;
631
632 if (!(src->flags & BB_REACHABLE))
633 {
634 src->flags |= BB_REACHABLE;
635 *tos++ = src;
636 }
637 }
638 }
639 free (worklist);
640
641 /* Now see if there's a reachable block with an exceptional incoming
642 edge. */
643 FOR_EACH_BB (bb)
644 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
645 return true;
646
647 /* No exceptional block reached exit unexceptionally. */
648 return false;
649 }
650
651 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
652 zero elements) to MAX_REG_NUM elements.
653
654 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
655 void
656 grow_reg_equivs (void)
657 {
658 int old_size = vec_safe_length (reg_equivs);
659 int max_regno = max_reg_num ();
660 int i;
661 reg_equivs_t ze;
662
663 memset (&ze, 0, sizeof (reg_equivs_t));
664 vec_safe_reserve (reg_equivs, max_regno);
665 for (i = old_size; i < max_regno; i++)
666 reg_equivs->quick_insert (i, ze);
667 }
668
669 \f
670 /* Global variables used by reload and its subroutines. */
671
672 /* The current basic block while in calculate_elim_costs_all_insns. */
673 static basic_block elim_bb;
674
675 /* Set during calculate_needs if an insn needs register elimination. */
676 static int something_needs_elimination;
677 /* Set during calculate_needs if an insn needs an operand changed. */
678 static int something_needs_operands_changed;
679 /* Set by alter_regs if we spilled a register to the stack. */
680 static bool something_was_spilled;
681
682 /* Nonzero means we couldn't get enough spill regs. */
683 static int failure;
684
685 /* Temporary array of pseudo-register number. */
686 static int *temp_pseudo_reg_arr;
687
688 /* Main entry point for the reload pass.
689
690 FIRST is the first insn of the function being compiled.
691
692 GLOBAL nonzero means we were called from global_alloc
693 and should attempt to reallocate any pseudoregs that we
694 displace from hard regs we will use for reloads.
695 If GLOBAL is zero, we do not have enough information to do that,
696 so any pseudo reg that is spilled must go to the stack.
697
698 Return value is TRUE if reload likely left dead insns in the
699 stream and a DCE pass should be run to elimiante them. Else the
700 return value is FALSE. */
701
702 bool
703 reload (rtx first, int global)
704 {
705 int i, n;
706 rtx insn;
707 struct elim_table *ep;
708 basic_block bb;
709 bool inserted;
710
711 /* Make sure even insns with volatile mem refs are recognizable. */
712 init_recog ();
713
714 failure = 0;
715
716 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
717
718 /* Make sure that the last insn in the chain
719 is not something that needs reloading. */
720 emit_note (NOTE_INSN_DELETED);
721
722 /* Enable find_equiv_reg to distinguish insns made by reload. */
723 reload_first_uid = get_max_uid ();
724
725 #ifdef SECONDARY_MEMORY_NEEDED
726 /* Initialize the secondary memory table. */
727 clear_secondary_mem ();
728 #endif
729
730 /* We don't have a stack slot for any spill reg yet. */
731 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
732 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
733
734 /* Initialize the save area information for caller-save, in case some
735 are needed. */
736 init_save_areas ();
737
738 /* Compute which hard registers are now in use
739 as homes for pseudo registers.
740 This is done here rather than (eg) in global_alloc
741 because this point is reached even if not optimizing. */
742 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
743 mark_home_live (i);
744
745 /* A function that has a nonlocal label that can reach the exit
746 block via non-exceptional paths must save all call-saved
747 registers. */
748 if (cfun->has_nonlocal_label
749 && has_nonexceptional_receiver ())
750 crtl->saves_all_registers = 1;
751
752 if (crtl->saves_all_registers)
753 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
754 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
755 df_set_regs_ever_live (i, true);
756
757 /* Find all the pseudo registers that didn't get hard regs
758 but do have known equivalent constants or memory slots.
759 These include parameters (known equivalent to parameter slots)
760 and cse'd or loop-moved constant memory addresses.
761
762 Record constant equivalents in reg_equiv_constant
763 so they will be substituted by find_reloads.
764 Record memory equivalents in reg_mem_equiv so they can
765 be substituted eventually by altering the REG-rtx's. */
766
767 grow_reg_equivs ();
768 reg_old_renumber = XCNEWVEC (short, max_regno);
769 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
770 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
771 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
772
773 CLEAR_HARD_REG_SET (bad_spill_regs_global);
774
775 init_eliminable_invariants (first, true);
776 init_elim_table ();
777
778 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
779 stack slots to the pseudos that lack hard regs or equivalents.
780 Do not touch virtual registers. */
781
782 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
783 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
784 temp_pseudo_reg_arr[n++] = i;
785
786 if (ira_conflicts_p)
787 /* Ask IRA to order pseudo-registers for better stack slot
788 sharing. */
789 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
790
791 for (i = 0; i < n; i++)
792 alter_reg (temp_pseudo_reg_arr[i], -1, false);
793
794 /* If we have some registers we think can be eliminated, scan all insns to
795 see if there is an insn that sets one of these registers to something
796 other than itself plus a constant. If so, the register cannot be
797 eliminated. Doing this scan here eliminates an extra pass through the
798 main reload loop in the most common case where register elimination
799 cannot be done. */
800 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
801 if (INSN_P (insn))
802 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
803
804 maybe_fix_stack_asms ();
805
806 insns_need_reload = 0;
807 something_needs_elimination = 0;
808
809 /* Initialize to -1, which means take the first spill register. */
810 last_spill_reg = -1;
811
812 /* Spill any hard regs that we know we can't eliminate. */
813 CLEAR_HARD_REG_SET (used_spill_regs);
814 /* There can be multiple ways to eliminate a register;
815 they should be listed adjacently.
816 Elimination for any register fails only if all possible ways fail. */
817 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
818 {
819 int from = ep->from;
820 int can_eliminate = 0;
821 do
822 {
823 can_eliminate |= ep->can_eliminate;
824 ep++;
825 }
826 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
827 if (! can_eliminate)
828 spill_hard_reg (from, 1);
829 }
830
831 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
832 if (frame_pointer_needed)
833 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
834 #endif
835 finish_spills (global);
836
837 /* From now on, we may need to generate moves differently. We may also
838 allow modifications of insns which cause them to not be recognized.
839 Any such modifications will be cleaned up during reload itself. */
840 reload_in_progress = 1;
841
842 /* This loop scans the entire function each go-round
843 and repeats until one repetition spills no additional hard regs. */
844 for (;;)
845 {
846 int something_changed;
847 int did_spill;
848 HOST_WIDE_INT starting_frame_size;
849
850 starting_frame_size = get_frame_size ();
851 something_was_spilled = false;
852
853 set_initial_elim_offsets ();
854 set_initial_label_offsets ();
855
856 /* For each pseudo register that has an equivalent location defined,
857 try to eliminate any eliminable registers (such as the frame pointer)
858 assuming initial offsets for the replacement register, which
859 is the normal case.
860
861 If the resulting location is directly addressable, substitute
862 the MEM we just got directly for the old REG.
863
864 If it is not addressable but is a constant or the sum of a hard reg
865 and constant, it is probably not addressable because the constant is
866 out of range, in that case record the address; we will generate
867 hairy code to compute the address in a register each time it is
868 needed. Similarly if it is a hard register, but one that is not
869 valid as an address register.
870
871 If the location is not addressable, but does not have one of the
872 above forms, assign a stack slot. We have to do this to avoid the
873 potential of producing lots of reloads if, e.g., a location involves
874 a pseudo that didn't get a hard register and has an equivalent memory
875 location that also involves a pseudo that didn't get a hard register.
876
877 Perhaps at some point we will improve reload_when_needed handling
878 so this problem goes away. But that's very hairy. */
879
880 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
881 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
882 {
883 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
884 NULL_RTX);
885
886 if (strict_memory_address_addr_space_p
887 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
888 MEM_ADDR_SPACE (x)))
889 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
890 else if (CONSTANT_P (XEXP (x, 0))
891 || (REG_P (XEXP (x, 0))
892 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
893 || (GET_CODE (XEXP (x, 0)) == PLUS
894 && REG_P (XEXP (XEXP (x, 0), 0))
895 && (REGNO (XEXP (XEXP (x, 0), 0))
896 < FIRST_PSEUDO_REGISTER)
897 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
898 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
899 else
900 {
901 /* Make a new stack slot. Then indicate that something
902 changed so we go back and recompute offsets for
903 eliminable registers because the allocation of memory
904 below might change some offset. reg_equiv_{mem,address}
905 will be set up for this pseudo on the next pass around
906 the loop. */
907 reg_equiv_memory_loc (i) = 0;
908 reg_equiv_init (i) = 0;
909 alter_reg (i, -1, true);
910 }
911 }
912
913 if (caller_save_needed)
914 setup_save_areas ();
915
916 /* If we allocated another stack slot, redo elimination bookkeeping. */
917 if (something_was_spilled || starting_frame_size != get_frame_size ())
918 continue;
919 if (starting_frame_size && crtl->stack_alignment_needed)
920 {
921 /* If we have a stack frame, we must align it now. The
922 stack size may be a part of the offset computation for
923 register elimination. So if this changes the stack size,
924 then repeat the elimination bookkeeping. We don't
925 realign when there is no stack, as that will cause a
926 stack frame when none is needed should
927 STARTING_FRAME_OFFSET not be already aligned to
928 STACK_BOUNDARY. */
929 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
930 if (starting_frame_size != get_frame_size ())
931 continue;
932 }
933
934 if (caller_save_needed)
935 {
936 save_call_clobbered_regs ();
937 /* That might have allocated new insn_chain structures. */
938 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
939 }
940
941 calculate_needs_all_insns (global);
942
943 if (! ira_conflicts_p)
944 /* Don't do it for IRA. We need this info because we don't
945 change live_throughout and dead_or_set for chains when IRA
946 is used. */
947 CLEAR_REG_SET (&spilled_pseudos);
948
949 did_spill = 0;
950
951 something_changed = 0;
952
953 /* If we allocated any new memory locations, make another pass
954 since it might have changed elimination offsets. */
955 if (something_was_spilled || starting_frame_size != get_frame_size ())
956 something_changed = 1;
957
958 /* Even if the frame size remained the same, we might still have
959 changed elimination offsets, e.g. if find_reloads called
960 force_const_mem requiring the back end to allocate a constant
961 pool base register that needs to be saved on the stack. */
962 else if (!verify_initial_elim_offsets ())
963 something_changed = 1;
964
965 {
966 HARD_REG_SET to_spill;
967 CLEAR_HARD_REG_SET (to_spill);
968 update_eliminables (&to_spill);
969 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
970
971 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
972 if (TEST_HARD_REG_BIT (to_spill, i))
973 {
974 spill_hard_reg (i, 1);
975 did_spill = 1;
976
977 /* Regardless of the state of spills, if we previously had
978 a register that we thought we could eliminate, but now can
979 not eliminate, we must run another pass.
980
981 Consider pseudos which have an entry in reg_equiv_* which
982 reference an eliminable register. We must make another pass
983 to update reg_equiv_* so that we do not substitute in the
984 old value from when we thought the elimination could be
985 performed. */
986 something_changed = 1;
987 }
988 }
989
990 select_reload_regs ();
991 if (failure)
992 goto failed;
993
994 if (insns_need_reload != 0 || did_spill)
995 something_changed |= finish_spills (global);
996
997 if (! something_changed)
998 break;
999
1000 if (caller_save_needed)
1001 delete_caller_save_insns ();
1002
1003 obstack_free (&reload_obstack, reload_firstobj);
1004 }
1005
1006 /* If global-alloc was run, notify it of any register eliminations we have
1007 done. */
1008 if (global)
1009 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1010 if (ep->can_eliminate)
1011 mark_elimination (ep->from, ep->to);
1012
1013 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1014 If that insn didn't set the register (i.e., it copied the register to
1015 memory), just delete that insn instead of the equivalencing insn plus
1016 anything now dead. If we call delete_dead_insn on that insn, we may
1017 delete the insn that actually sets the register if the register dies
1018 there and that is incorrect. */
1019
1020 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1021 {
1022 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1023 {
1024 rtx list;
1025 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1026 {
1027 rtx equiv_insn = XEXP (list, 0);
1028
1029 /* If we already deleted the insn or if it may trap, we can't
1030 delete it. The latter case shouldn't happen, but can
1031 if an insn has a variable address, gets a REG_EH_REGION
1032 note added to it, and then gets converted into a load
1033 from a constant address. */
1034 if (NOTE_P (equiv_insn)
1035 || can_throw_internal (equiv_insn))
1036 ;
1037 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1038 delete_dead_insn (equiv_insn);
1039 else
1040 SET_INSN_DELETED (equiv_insn);
1041 }
1042 }
1043 }
1044
1045 /* Use the reload registers where necessary
1046 by generating move instructions to move the must-be-register
1047 values into or out of the reload registers. */
1048
1049 if (insns_need_reload != 0 || something_needs_elimination
1050 || something_needs_operands_changed)
1051 {
1052 HOST_WIDE_INT old_frame_size = get_frame_size ();
1053
1054 reload_as_needed (global);
1055
1056 gcc_assert (old_frame_size == get_frame_size ());
1057
1058 gcc_assert (verify_initial_elim_offsets ());
1059 }
1060
1061 /* If we were able to eliminate the frame pointer, show that it is no
1062 longer live at the start of any basic block. If it ls live by
1063 virtue of being in a pseudo, that pseudo will be marked live
1064 and hence the frame pointer will be known to be live via that
1065 pseudo. */
1066
1067 if (! frame_pointer_needed)
1068 FOR_EACH_BB (bb)
1069 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1070
1071 /* Come here (with failure set nonzero) if we can't get enough spill
1072 regs. */
1073 failed:
1074
1075 CLEAR_REG_SET (&changed_allocation_pseudos);
1076 CLEAR_REG_SET (&spilled_pseudos);
1077 reload_in_progress = 0;
1078
1079 /* Now eliminate all pseudo regs by modifying them into
1080 their equivalent memory references.
1081 The REG-rtx's for the pseudos are modified in place,
1082 so all insns that used to refer to them now refer to memory.
1083
1084 For a reg that has a reg_equiv_address, all those insns
1085 were changed by reloading so that no insns refer to it any longer;
1086 but the DECL_RTL of a variable decl may refer to it,
1087 and if so this causes the debugging info to mention the variable. */
1088
1089 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1090 {
1091 rtx addr = 0;
1092
1093 if (reg_equiv_mem (i))
1094 addr = XEXP (reg_equiv_mem (i), 0);
1095
1096 if (reg_equiv_address (i))
1097 addr = reg_equiv_address (i);
1098
1099 if (addr)
1100 {
1101 if (reg_renumber[i] < 0)
1102 {
1103 rtx reg = regno_reg_rtx[i];
1104
1105 REG_USERVAR_P (reg) = 0;
1106 PUT_CODE (reg, MEM);
1107 XEXP (reg, 0) = addr;
1108 if (reg_equiv_memory_loc (i))
1109 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1110 else
1111 MEM_ATTRS (reg) = 0;
1112 MEM_NOTRAP_P (reg) = 1;
1113 }
1114 else if (reg_equiv_mem (i))
1115 XEXP (reg_equiv_mem (i), 0) = addr;
1116 }
1117
1118 /* We don't want complex addressing modes in debug insns
1119 if simpler ones will do, so delegitimize equivalences
1120 in debug insns. */
1121 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1122 {
1123 rtx reg = regno_reg_rtx[i];
1124 rtx equiv = 0;
1125 df_ref use, next;
1126
1127 if (reg_equiv_constant (i))
1128 equiv = reg_equiv_constant (i);
1129 else if (reg_equiv_invariant (i))
1130 equiv = reg_equiv_invariant (i);
1131 else if (reg && MEM_P (reg))
1132 equiv = targetm.delegitimize_address (reg);
1133 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1134 equiv = reg;
1135
1136 if (equiv == reg)
1137 continue;
1138
1139 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1140 {
1141 insn = DF_REF_INSN (use);
1142
1143 /* Make sure the next ref is for a different instruction,
1144 so that we're not affected by the rescan. */
1145 next = DF_REF_NEXT_REG (use);
1146 while (next && DF_REF_INSN (next) == insn)
1147 next = DF_REF_NEXT_REG (next);
1148
1149 if (DEBUG_INSN_P (insn))
1150 {
1151 if (!equiv)
1152 {
1153 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1154 df_insn_rescan_debug_internal (insn);
1155 }
1156 else
1157 INSN_VAR_LOCATION_LOC (insn)
1158 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1159 reg, equiv);
1160 }
1161 }
1162 }
1163 }
1164
1165 /* We must set reload_completed now since the cleanup_subreg_operands call
1166 below will re-recognize each insn and reload may have generated insns
1167 which are only valid during and after reload. */
1168 reload_completed = 1;
1169
1170 /* Make a pass over all the insns and delete all USEs which we inserted
1171 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1172 notes. Delete all CLOBBER insns, except those that refer to the return
1173 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1174 from misarranging variable-array code, and simplify (subreg (reg))
1175 operands. Strip and regenerate REG_INC notes that may have been moved
1176 around. */
1177
1178 for (insn = first; insn; insn = NEXT_INSN (insn))
1179 if (INSN_P (insn))
1180 {
1181 rtx *pnote;
1182
1183 if (CALL_P (insn))
1184 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1185 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1186
1187 if ((GET_CODE (PATTERN (insn)) == USE
1188 /* We mark with QImode USEs introduced by reload itself. */
1189 && (GET_MODE (insn) == QImode
1190 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1191 || (GET_CODE (PATTERN (insn)) == CLOBBER
1192 && (!MEM_P (XEXP (PATTERN (insn), 0))
1193 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1194 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1195 && XEXP (XEXP (PATTERN (insn), 0), 0)
1196 != stack_pointer_rtx))
1197 && (!REG_P (XEXP (PATTERN (insn), 0))
1198 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1199 {
1200 delete_insn (insn);
1201 continue;
1202 }
1203
1204 /* Some CLOBBERs may survive until here and still reference unassigned
1205 pseudos with const equivalent, which may in turn cause ICE in later
1206 passes if the reference remains in place. */
1207 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1208 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1209 VOIDmode, PATTERN (insn));
1210
1211 /* Discard obvious no-ops, even without -O. This optimization
1212 is fast and doesn't interfere with debugging. */
1213 if (NONJUMP_INSN_P (insn)
1214 && GET_CODE (PATTERN (insn)) == SET
1215 && REG_P (SET_SRC (PATTERN (insn)))
1216 && REG_P (SET_DEST (PATTERN (insn)))
1217 && (REGNO (SET_SRC (PATTERN (insn)))
1218 == REGNO (SET_DEST (PATTERN (insn)))))
1219 {
1220 delete_insn (insn);
1221 continue;
1222 }
1223
1224 pnote = &REG_NOTES (insn);
1225 while (*pnote != 0)
1226 {
1227 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1228 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1229 || REG_NOTE_KIND (*pnote) == REG_INC)
1230 *pnote = XEXP (*pnote, 1);
1231 else
1232 pnote = &XEXP (*pnote, 1);
1233 }
1234
1235 #ifdef AUTO_INC_DEC
1236 add_auto_inc_notes (insn, PATTERN (insn));
1237 #endif
1238
1239 /* Simplify (subreg (reg)) if it appears as an operand. */
1240 cleanup_subreg_operands (insn);
1241
1242 /* Clean up invalid ASMs so that they don't confuse later passes.
1243 See PR 21299. */
1244 if (asm_noperands (PATTERN (insn)) >= 0)
1245 {
1246 extract_insn (insn);
1247 if (!constrain_operands (1))
1248 {
1249 error_for_asm (insn,
1250 "%<asm%> operand has impossible constraints");
1251 delete_insn (insn);
1252 continue;
1253 }
1254 }
1255 }
1256
1257 /* If we are doing generic stack checking, give a warning if this
1258 function's frame size is larger than we expect. */
1259 if (flag_stack_check == GENERIC_STACK_CHECK)
1260 {
1261 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1262 static int verbose_warned = 0;
1263
1264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1265 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1266 size += UNITS_PER_WORD;
1267
1268 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1269 {
1270 warning (0, "frame size too large for reliable stack checking");
1271 if (! verbose_warned)
1272 {
1273 warning (0, "try reducing the number of local variables");
1274 verbose_warned = 1;
1275 }
1276 }
1277 }
1278
1279 free (temp_pseudo_reg_arr);
1280
1281 /* Indicate that we no longer have known memory locations or constants. */
1282 free_reg_equiv ();
1283
1284 free (reg_max_ref_width);
1285 free (reg_old_renumber);
1286 free (pseudo_previous_regs);
1287 free (pseudo_forbidden_regs);
1288
1289 CLEAR_HARD_REG_SET (used_spill_regs);
1290 for (i = 0; i < n_spills; i++)
1291 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1292
1293 /* Free all the insn_chain structures at once. */
1294 obstack_free (&reload_obstack, reload_startobj);
1295 unused_insn_chains = 0;
1296
1297 inserted = fixup_abnormal_edges ();
1298
1299 /* We've possibly turned single trapping insn into multiple ones. */
1300 if (cfun->can_throw_non_call_exceptions)
1301 {
1302 sbitmap blocks;
1303 blocks = sbitmap_alloc (last_basic_block);
1304 bitmap_ones (blocks);
1305 find_many_sub_basic_blocks (blocks);
1306 sbitmap_free (blocks);
1307 }
1308
1309 if (inserted)
1310 commit_edge_insertions ();
1311
1312 /* Replacing pseudos with their memory equivalents might have
1313 created shared rtx. Subsequent passes would get confused
1314 by this, so unshare everything here. */
1315 unshare_all_rtl_again (first);
1316
1317 #ifdef STACK_BOUNDARY
1318 /* init_emit has set the alignment of the hard frame pointer
1319 to STACK_BOUNDARY. It is very likely no longer valid if
1320 the hard frame pointer was used for register allocation. */
1321 if (!frame_pointer_needed)
1322 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1323 #endif
1324
1325 substitute_stack.release ();
1326
1327 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1328
1329 reload_completed = !failure;
1330
1331 return need_dce;
1332 }
1333
1334 /* Yet another special case. Unfortunately, reg-stack forces people to
1335 write incorrect clobbers in asm statements. These clobbers must not
1336 cause the register to appear in bad_spill_regs, otherwise we'll call
1337 fatal_insn later. We clear the corresponding regnos in the live
1338 register sets to avoid this.
1339 The whole thing is rather sick, I'm afraid. */
1340
1341 static void
1342 maybe_fix_stack_asms (void)
1343 {
1344 #ifdef STACK_REGS
1345 const char *constraints[MAX_RECOG_OPERANDS];
1346 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1347 struct insn_chain *chain;
1348
1349 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1350 {
1351 int i, noperands;
1352 HARD_REG_SET clobbered, allowed;
1353 rtx pat;
1354
1355 if (! INSN_P (chain->insn)
1356 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1357 continue;
1358 pat = PATTERN (chain->insn);
1359 if (GET_CODE (pat) != PARALLEL)
1360 continue;
1361
1362 CLEAR_HARD_REG_SET (clobbered);
1363 CLEAR_HARD_REG_SET (allowed);
1364
1365 /* First, make a mask of all stack regs that are clobbered. */
1366 for (i = 0; i < XVECLEN (pat, 0); i++)
1367 {
1368 rtx t = XVECEXP (pat, 0, i);
1369 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1370 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1371 }
1372
1373 /* Get the operand values and constraints out of the insn. */
1374 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1375 constraints, operand_mode, NULL);
1376
1377 /* For every operand, see what registers are allowed. */
1378 for (i = 0; i < noperands; i++)
1379 {
1380 const char *p = constraints[i];
1381 /* For every alternative, we compute the class of registers allowed
1382 for reloading in CLS, and merge its contents into the reg set
1383 ALLOWED. */
1384 int cls = (int) NO_REGS;
1385
1386 for (;;)
1387 {
1388 char c = *p;
1389
1390 if (c == '\0' || c == ',' || c == '#')
1391 {
1392 /* End of one alternative - mark the regs in the current
1393 class, and reset the class. */
1394 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1395 cls = NO_REGS;
1396 p++;
1397 if (c == '#')
1398 do {
1399 c = *p++;
1400 } while (c != '\0' && c != ',');
1401 if (c == '\0')
1402 break;
1403 continue;
1404 }
1405
1406 switch (c)
1407 {
1408 case '=': case '+': case '*': case '%': case '?': case '!':
1409 case '0': case '1': case '2': case '3': case '4': case '<':
1410 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1411 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1412 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1413 case TARGET_MEM_CONSTRAINT:
1414 break;
1415
1416 case 'p':
1417 cls = (int) reg_class_subunion[cls]
1418 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1419 ADDRESS, SCRATCH)];
1420 break;
1421
1422 case 'g':
1423 case 'r':
1424 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1425 break;
1426
1427 default:
1428 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1429 cls = (int) reg_class_subunion[cls]
1430 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1431 ADDRESS, SCRATCH)];
1432 else
1433 cls = (int) reg_class_subunion[cls]
1434 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1435 }
1436 p += CONSTRAINT_LEN (c, p);
1437 }
1438 }
1439 /* Those of the registers which are clobbered, but allowed by the
1440 constraints, must be usable as reload registers. So clear them
1441 out of the life information. */
1442 AND_HARD_REG_SET (allowed, clobbered);
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 if (TEST_HARD_REG_BIT (allowed, i))
1445 {
1446 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1447 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1448 }
1449 }
1450
1451 #endif
1452 }
1453 \f
1454 /* Copy the global variables n_reloads and rld into the corresponding elts
1455 of CHAIN. */
1456 static void
1457 copy_reloads (struct insn_chain *chain)
1458 {
1459 chain->n_reloads = n_reloads;
1460 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1461 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1462 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1463 }
1464
1465 /* Walk the chain of insns, and determine for each whether it needs reloads
1466 and/or eliminations. Build the corresponding insns_need_reload list, and
1467 set something_needs_elimination as appropriate. */
1468 static void
1469 calculate_needs_all_insns (int global)
1470 {
1471 struct insn_chain **pprev_reload = &insns_need_reload;
1472 struct insn_chain *chain, *next = 0;
1473
1474 something_needs_elimination = 0;
1475
1476 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1477 for (chain = reload_insn_chain; chain != 0; chain = next)
1478 {
1479 rtx insn = chain->insn;
1480
1481 next = chain->next;
1482
1483 /* Clear out the shortcuts. */
1484 chain->n_reloads = 0;
1485 chain->need_elim = 0;
1486 chain->need_reload = 0;
1487 chain->need_operand_change = 0;
1488
1489 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1490 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1491 what effects this has on the known offsets at labels. */
1492
1493 if (LABEL_P (insn) || JUMP_P (insn)
1494 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1495 set_label_offsets (insn, insn, 0);
1496
1497 if (INSN_P (insn))
1498 {
1499 rtx old_body = PATTERN (insn);
1500 int old_code = INSN_CODE (insn);
1501 rtx old_notes = REG_NOTES (insn);
1502 int did_elimination = 0;
1503 int operands_changed = 0;
1504 rtx set = single_set (insn);
1505
1506 /* Skip insns that only set an equivalence. */
1507 if (set && REG_P (SET_DEST (set))
1508 && reg_renumber[REGNO (SET_DEST (set))] < 0
1509 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1510 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1511 && reg_equiv_init (REGNO (SET_DEST (set))))
1512 continue;
1513
1514 /* If needed, eliminate any eliminable registers. */
1515 if (num_eliminable || num_eliminable_invariants)
1516 did_elimination = eliminate_regs_in_insn (insn, 0);
1517
1518 /* Analyze the instruction. */
1519 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1520 global, spill_reg_order);
1521
1522 /* If a no-op set needs more than one reload, this is likely
1523 to be something that needs input address reloads. We
1524 can't get rid of this cleanly later, and it is of no use
1525 anyway, so discard it now.
1526 We only do this when expensive_optimizations is enabled,
1527 since this complements reload inheritance / output
1528 reload deletion, and it can make debugging harder. */
1529 if (flag_expensive_optimizations && n_reloads > 1)
1530 {
1531 rtx set = single_set (insn);
1532 if (set
1533 &&
1534 ((SET_SRC (set) == SET_DEST (set)
1535 && REG_P (SET_SRC (set))
1536 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1537 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1538 && reg_renumber[REGNO (SET_SRC (set))] < 0
1539 && reg_renumber[REGNO (SET_DEST (set))] < 0
1540 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1541 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1542 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1543 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 {
1545 if (ira_conflicts_p)
1546 /* Inform IRA about the insn deletion. */
1547 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1548 REGNO (SET_SRC (set)));
1549 delete_insn (insn);
1550 /* Delete it from the reload chain. */
1551 if (chain->prev)
1552 chain->prev->next = next;
1553 else
1554 reload_insn_chain = next;
1555 if (next)
1556 next->prev = chain->prev;
1557 chain->next = unused_insn_chains;
1558 unused_insn_chains = chain;
1559 continue;
1560 }
1561 }
1562 if (num_eliminable)
1563 update_eliminable_offsets ();
1564
1565 /* Remember for later shortcuts which insns had any reloads or
1566 register eliminations. */
1567 chain->need_elim = did_elimination;
1568 chain->need_reload = n_reloads > 0;
1569 chain->need_operand_change = operands_changed;
1570
1571 /* Discard any register replacements done. */
1572 if (did_elimination)
1573 {
1574 obstack_free (&reload_obstack, reload_insn_firstobj);
1575 PATTERN (insn) = old_body;
1576 INSN_CODE (insn) = old_code;
1577 REG_NOTES (insn) = old_notes;
1578 something_needs_elimination = 1;
1579 }
1580
1581 something_needs_operands_changed |= operands_changed;
1582
1583 if (n_reloads != 0)
1584 {
1585 copy_reloads (chain);
1586 *pprev_reload = chain;
1587 pprev_reload = &chain->next_need_reload;
1588 }
1589 }
1590 }
1591 *pprev_reload = 0;
1592 }
1593 \f
1594 /* This function is called from the register allocator to set up estimates
1595 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1596 an invariant. The structure is similar to calculate_needs_all_insns. */
1597
1598 void
1599 calculate_elim_costs_all_insns (void)
1600 {
1601 int *reg_equiv_init_cost;
1602 basic_block bb;
1603 int i;
1604
1605 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1606 init_elim_table ();
1607 init_eliminable_invariants (get_insns (), false);
1608
1609 set_initial_elim_offsets ();
1610 set_initial_label_offsets ();
1611
1612 FOR_EACH_BB (bb)
1613 {
1614 rtx insn;
1615 elim_bb = bb;
1616
1617 FOR_BB_INSNS (bb, insn)
1618 {
1619 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1620 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1621 what effects this has on the known offsets at labels. */
1622
1623 if (LABEL_P (insn) || JUMP_P (insn)
1624 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1625 set_label_offsets (insn, insn, 0);
1626
1627 if (INSN_P (insn))
1628 {
1629 rtx set = single_set (insn);
1630
1631 /* Skip insns that only set an equivalence. */
1632 if (set && REG_P (SET_DEST (set))
1633 && reg_renumber[REGNO (SET_DEST (set))] < 0
1634 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1635 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 {
1637 unsigned regno = REGNO (SET_DEST (set));
1638 rtx init = reg_equiv_init (regno);
1639 if (init)
1640 {
1641 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1642 false, true);
1643 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1644 int freq = REG_FREQ_FROM_BB (bb);
1645
1646 reg_equiv_init_cost[regno] = cost * freq;
1647 continue;
1648 }
1649 }
1650 /* If needed, eliminate any eliminable registers. */
1651 if (num_eliminable || num_eliminable_invariants)
1652 elimination_costs_in_insn (insn);
1653
1654 if (num_eliminable)
1655 update_eliminable_offsets ();
1656 }
1657 }
1658 }
1659 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 {
1661 if (reg_equiv_invariant (i))
1662 {
1663 if (reg_equiv_init (i))
1664 {
1665 int cost = reg_equiv_init_cost[i];
1666 if (dump_file)
1667 fprintf (dump_file,
1668 "Reg %d has equivalence, initial gains %d\n", i, cost);
1669 if (cost != 0)
1670 ira_adjust_equiv_reg_cost (i, cost);
1671 }
1672 else
1673 {
1674 if (dump_file)
1675 fprintf (dump_file,
1676 "Reg %d had equivalence, but can't be eliminated\n",
1677 i);
1678 ira_adjust_equiv_reg_cost (i, 0);
1679 }
1680 }
1681 }
1682
1683 free (reg_equiv_init_cost);
1684 free (offsets_known_at);
1685 free (offsets_at);
1686 offsets_at = NULL;
1687 offsets_known_at = NULL;
1688 }
1689 \f
1690 /* Comparison function for qsort to decide which of two reloads
1691 should be handled first. *P1 and *P2 are the reload numbers. */
1692
1693 static int
1694 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 {
1696 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1697 int t;
1698
1699 /* Consider required reloads before optional ones. */
1700 t = rld[r1].optional - rld[r2].optional;
1701 if (t != 0)
1702 return t;
1703
1704 /* Count all solitary classes before non-solitary ones. */
1705 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1706 - (reg_class_size[(int) rld[r1].rclass] == 1));
1707 if (t != 0)
1708 return t;
1709
1710 /* Aside from solitaires, consider all multi-reg groups first. */
1711 t = rld[r2].nregs - rld[r1].nregs;
1712 if (t != 0)
1713 return t;
1714
1715 /* Consider reloads in order of increasing reg-class number. */
1716 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1717 if (t != 0)
1718 return t;
1719
1720 /* If reloads are equally urgent, sort by reload number,
1721 so that the results of qsort leave nothing to chance. */
1722 return r1 - r2;
1723 }
1724 \f
1725 /* The cost of spilling each hard reg. */
1726 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727
1728 /* When spilling multiple hard registers, we use SPILL_COST for the first
1729 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1730 only the first hard reg for a multi-reg pseudo. */
1731 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732
1733 /* Map of hard regno to pseudo regno currently occupying the hard
1734 reg. */
1735 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736
1737 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738
1739 static void
1740 count_pseudo (int reg)
1741 {
1742 int freq = REG_FREQ (reg);
1743 int r = reg_renumber[reg];
1744 int nregs;
1745
1746 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1747 if (ira_conflicts_p && r < 0)
1748 return;
1749
1750 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1751 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1752 return;
1753
1754 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755
1756 gcc_assert (r >= 0);
1757
1758 spill_add_cost[r] += freq;
1759 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1760 while (nregs-- > 0)
1761 {
1762 hard_regno_to_pseudo_regno[r + nregs] = reg;
1763 spill_cost[r + nregs] += freq;
1764 }
1765 }
1766
1767 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1768 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769
1770 static void
1771 order_regs_for_reload (struct insn_chain *chain)
1772 {
1773 unsigned i;
1774 HARD_REG_SET used_by_pseudos;
1775 HARD_REG_SET used_by_pseudos2;
1776 reg_set_iterator rsi;
1777
1778 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779
1780 memset (spill_cost, 0, sizeof spill_cost);
1781 memset (spill_add_cost, 0, sizeof spill_add_cost);
1782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783 hard_regno_to_pseudo_regno[i] = -1;
1784
1785 /* Count number of uses of each hard reg by pseudo regs allocated to it
1786 and then order them by decreasing use. First exclude hard registers
1787 that are live in or across this insn. */
1788
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1790 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1792 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793
1794 /* Now find out which pseudos are allocated to it, and update
1795 hard_reg_n_uses. */
1796 CLEAR_REG_SET (&pseudos_counted);
1797
1798 EXECUTE_IF_SET_IN_REG_SET
1799 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 {
1801 count_pseudo (i);
1802 }
1803 EXECUTE_IF_SET_IN_REG_SET
1804 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 {
1806 count_pseudo (i);
1807 }
1808 CLEAR_REG_SET (&pseudos_counted);
1809 }
1810 \f
1811 /* Vector of reload-numbers showing the order in which the reloads should
1812 be processed. */
1813 static short reload_order[MAX_RELOADS];
1814
1815 /* This is used to keep track of the spill regs used in one insn. */
1816 static HARD_REG_SET used_spill_regs_local;
1817
1818 /* We decided to spill hard register SPILLED, which has a size of
1819 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1820 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1821 update SPILL_COST/SPILL_ADD_COST. */
1822
1823 static void
1824 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 {
1826 int freq = REG_FREQ (reg);
1827 int r = reg_renumber[reg];
1828 int nregs;
1829
1830 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1831 if (ira_conflicts_p && r < 0)
1832 return;
1833
1834 gcc_assert (r >= 0);
1835
1836 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837
1838 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1839 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1840 return;
1841
1842 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843
1844 spill_add_cost[r] -= freq;
1845 while (nregs-- > 0)
1846 {
1847 hard_regno_to_pseudo_regno[r + nregs] = -1;
1848 spill_cost[r + nregs] -= freq;
1849 }
1850 }
1851
1852 /* Find reload register to use for reload number ORDER. */
1853
1854 static int
1855 find_reg (struct insn_chain *chain, int order)
1856 {
1857 int rnum = reload_order[order];
1858 struct reload *rl = rld + rnum;
1859 int best_cost = INT_MAX;
1860 int best_reg = -1;
1861 unsigned int i, j, n;
1862 int k;
1863 HARD_REG_SET not_usable;
1864 HARD_REG_SET used_by_other_reload;
1865 reg_set_iterator rsi;
1866 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1867 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868
1869 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1870 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1871 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872
1873 CLEAR_HARD_REG_SET (used_by_other_reload);
1874 for (k = 0; k < order; k++)
1875 {
1876 int other = reload_order[k];
1877
1878 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1879 for (j = 0; j < rld[other].nregs; j++)
1880 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1881 }
1882
1883 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 {
1885 #ifdef REG_ALLOC_ORDER
1886 unsigned int regno = reg_alloc_order[i];
1887 #else
1888 unsigned int regno = i;
1889 #endif
1890
1891 if (! TEST_HARD_REG_BIT (not_usable, regno)
1892 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1893 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 {
1895 int this_cost = spill_cost[regno];
1896 int ok = 1;
1897 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898
1899 for (j = 1; j < this_nregs; j++)
1900 {
1901 this_cost += spill_add_cost[regno + j];
1902 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1903 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1904 ok = 0;
1905 }
1906 if (! ok)
1907 continue;
1908
1909 if (ira_conflicts_p)
1910 {
1911 /* Ask IRA to find a better pseudo-register for
1912 spilling. */
1913 for (n = j = 0; j < this_nregs; j++)
1914 {
1915 int r = hard_regno_to_pseudo_regno[regno + j];
1916
1917 if (r < 0)
1918 continue;
1919 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1920 regno_pseudo_regs[n++] = r;
1921 }
1922 regno_pseudo_regs[n++] = -1;
1923 if (best_reg < 0
1924 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1925 best_regno_pseudo_regs,
1926 rl->in, rl->out,
1927 chain->insn))
1928 {
1929 best_reg = regno;
1930 for (j = 0;; j++)
1931 {
1932 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1933 if (regno_pseudo_regs[j] < 0)
1934 break;
1935 }
1936 }
1937 continue;
1938 }
1939
1940 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1941 this_cost--;
1942 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1943 this_cost--;
1944 if (this_cost < best_cost
1945 /* Among registers with equal cost, prefer caller-saved ones, or
1946 use REG_ALLOC_ORDER if it is defined. */
1947 || (this_cost == best_cost
1948 #ifdef REG_ALLOC_ORDER
1949 && (inv_reg_alloc_order[regno]
1950 < inv_reg_alloc_order[best_reg])
1951 #else
1952 && call_used_regs[regno]
1953 && ! call_used_regs[best_reg]
1954 #endif
1955 ))
1956 {
1957 best_reg = regno;
1958 best_cost = this_cost;
1959 }
1960 }
1961 }
1962 if (best_reg == -1)
1963 return 0;
1964
1965 if (dump_file)
1966 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967
1968 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1969 rl->regno = best_reg;
1970
1971 EXECUTE_IF_SET_IN_REG_SET
1972 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 {
1974 count_spilled_pseudo (best_reg, rl->nregs, j);
1975 }
1976
1977 EXECUTE_IF_SET_IN_REG_SET
1978 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 {
1980 count_spilled_pseudo (best_reg, rl->nregs, j);
1981 }
1982
1983 for (i = 0; i < rl->nregs; i++)
1984 {
1985 gcc_assert (spill_cost[best_reg + i] == 0);
1986 gcc_assert (spill_add_cost[best_reg + i] == 0);
1987 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1988 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 }
1990 return 1;
1991 }
1992
1993 /* Find more reload regs to satisfy the remaining need of an insn, which
1994 is given by CHAIN.
1995 Do it by ascending class number, since otherwise a reg
1996 might be spilled for a big class and might fail to count
1997 for a smaller class even though it belongs to that class. */
1998
1999 static void
2000 find_reload_regs (struct insn_chain *chain)
2001 {
2002 int i;
2003
2004 /* In order to be certain of getting the registers we need,
2005 we must sort the reloads into order of increasing register class.
2006 Then our grabbing of reload registers will parallel the process
2007 that provided the reload registers. */
2008 for (i = 0; i < chain->n_reloads; i++)
2009 {
2010 /* Show whether this reload already has a hard reg. */
2011 if (chain->rld[i].reg_rtx)
2012 {
2013 int regno = REGNO (chain->rld[i].reg_rtx);
2014 chain->rld[i].regno = regno;
2015 chain->rld[i].nregs
2016 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 }
2018 else
2019 chain->rld[i].regno = -1;
2020 reload_order[i] = i;
2021 }
2022
2023 n_reloads = chain->n_reloads;
2024 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025
2026 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027
2028 if (dump_file)
2029 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030
2031 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032
2033 /* Compute the order of preference for hard registers to spill. */
2034
2035 order_regs_for_reload (chain);
2036
2037 for (i = 0; i < n_reloads; i++)
2038 {
2039 int r = reload_order[i];
2040
2041 /* Ignore reloads that got marked inoperative. */
2042 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2043 && ! rld[r].optional
2044 && rld[r].regno == -1)
2045 if (! find_reg (chain, i))
2046 {
2047 if (dump_file)
2048 fprintf (dump_file, "reload failure for reload %d\n", r);
2049 spill_failure (chain->insn, rld[r].rclass);
2050 failure = 1;
2051 return;
2052 }
2053 }
2054
2055 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2056 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057
2058 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2059 }
2060
2061 static void
2062 select_reload_regs (void)
2063 {
2064 struct insn_chain *chain;
2065
2066 /* Try to satisfy the needs for each insn. */
2067 for (chain = insns_need_reload; chain != 0;
2068 chain = chain->next_need_reload)
2069 find_reload_regs (chain);
2070 }
2071 \f
2072 /* Delete all insns that were inserted by emit_caller_save_insns during
2073 this iteration. */
2074 static void
2075 delete_caller_save_insns (void)
2076 {
2077 struct insn_chain *c = reload_insn_chain;
2078
2079 while (c != 0)
2080 {
2081 while (c != 0 && c->is_caller_save_insn)
2082 {
2083 struct insn_chain *next = c->next;
2084 rtx insn = c->insn;
2085
2086 if (c == reload_insn_chain)
2087 reload_insn_chain = next;
2088 delete_insn (insn);
2089
2090 if (next)
2091 next->prev = c->prev;
2092 if (c->prev)
2093 c->prev->next = next;
2094 c->next = unused_insn_chains;
2095 unused_insn_chains = c;
2096 c = next;
2097 }
2098 if (c != 0)
2099 c = c->next;
2100 }
2101 }
2102 \f
2103 /* Handle the failure to find a register to spill.
2104 INSN should be one of the insns which needed this particular spill reg. */
2105
2106 static void
2107 spill_failure (rtx insn, enum reg_class rclass)
2108 {
2109 if (asm_noperands (PATTERN (insn)) >= 0)
2110 error_for_asm (insn, "can%'t find a register in class %qs while "
2111 "reloading %<asm%>",
2112 reg_class_names[rclass]);
2113 else
2114 {
2115 error ("unable to find a register to spill in class %qs",
2116 reg_class_names[rclass]);
2117
2118 if (dump_file)
2119 {
2120 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2121 debug_reload_to_stream (dump_file);
2122 }
2123 fatal_insn ("this is the insn:", insn);
2124 }
2125 }
2126 \f
2127 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2128 data that is dead in INSN. */
2129
2130 static void
2131 delete_dead_insn (rtx insn)
2132 {
2133 rtx prev = prev_active_insn (insn);
2134 rtx prev_dest;
2135
2136 /* If the previous insn sets a register that dies in our insn make
2137 a note that we want to run DCE immediately after reload.
2138
2139 We used to delete the previous insn & recurse, but that's wrong for
2140 block local equivalences. Instead of trying to figure out the exact
2141 circumstances where we can delete the potentially dead insns, just
2142 let DCE do the job. */
2143 if (prev && GET_CODE (PATTERN (prev)) == SET
2144 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2145 && reg_mentioned_p (prev_dest, PATTERN (insn))
2146 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2147 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2148 need_dce = 1;
2149
2150 SET_INSN_DELETED (insn);
2151 }
2152
2153 /* Modify the home of pseudo-reg I.
2154 The new home is present in reg_renumber[I].
2155
2156 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2157 or it may be -1, meaning there is none or it is not relevant.
2158 This is used so that all pseudos spilled from a given hard reg
2159 can share one stack slot. */
2160
2161 static void
2162 alter_reg (int i, int from_reg, bool dont_share_p)
2163 {
2164 /* When outputting an inline function, this can happen
2165 for a reg that isn't actually used. */
2166 if (regno_reg_rtx[i] == 0)
2167 return;
2168
2169 /* If the reg got changed to a MEM at rtl-generation time,
2170 ignore it. */
2171 if (!REG_P (regno_reg_rtx[i]))
2172 return;
2173
2174 /* Modify the reg-rtx to contain the new hard reg
2175 number or else to contain its pseudo reg number. */
2176 SET_REGNO (regno_reg_rtx[i],
2177 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2178
2179 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2180 allocate a stack slot for it. */
2181
2182 if (reg_renumber[i] < 0
2183 && REG_N_REFS (i) > 0
2184 && reg_equiv_constant (i) == 0
2185 && (reg_equiv_invariant (i) == 0
2186 || reg_equiv_init (i) == 0)
2187 && reg_equiv_memory_loc (i) == 0)
2188 {
2189 rtx x = NULL_RTX;
2190 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2191 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2192 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2193 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2194 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2195 int adjust = 0;
2196
2197 something_was_spilled = true;
2198
2199 if (ira_conflicts_p)
2200 {
2201 /* Mark the spill for IRA. */
2202 SET_REGNO_REG_SET (&spilled_pseudos, i);
2203 if (!dont_share_p)
2204 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2205 }
2206
2207 if (x)
2208 ;
2209
2210 /* Each pseudo reg has an inherent size which comes from its own mode,
2211 and a total size which provides room for paradoxical subregs
2212 which refer to the pseudo reg in wider modes.
2213
2214 We can use a slot already allocated if it provides both
2215 enough inherent space and enough total space.
2216 Otherwise, we allocate a new slot, making sure that it has no less
2217 inherent space, and no less total space, then the previous slot. */
2218 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2219 {
2220 rtx stack_slot;
2221
2222 /* No known place to spill from => no slot to reuse. */
2223 x = assign_stack_local (mode, total_size,
2224 min_align > inherent_align
2225 || total_size > inherent_size ? -1 : 0);
2226
2227 stack_slot = x;
2228
2229 /* Cancel the big-endian correction done in assign_stack_local.
2230 Get the address of the beginning of the slot. This is so we
2231 can do a big-endian correction unconditionally below. */
2232 if (BYTES_BIG_ENDIAN)
2233 {
2234 adjust = inherent_size - total_size;
2235 if (adjust)
2236 stack_slot
2237 = adjust_address_nv (x, mode_for_size (total_size
2238 * BITS_PER_UNIT,
2239 MODE_INT, 1),
2240 adjust);
2241 }
2242
2243 if (! dont_share_p && ira_conflicts_p)
2244 /* Inform IRA about allocation a new stack slot. */
2245 ira_mark_new_stack_slot (stack_slot, i, total_size);
2246 }
2247
2248 /* Reuse a stack slot if possible. */
2249 else if (spill_stack_slot[from_reg] != 0
2250 && spill_stack_slot_width[from_reg] >= total_size
2251 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2252 >= inherent_size)
2253 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2254 x = spill_stack_slot[from_reg];
2255
2256 /* Allocate a bigger slot. */
2257 else
2258 {
2259 /* Compute maximum size needed, both for inherent size
2260 and for total size. */
2261 rtx stack_slot;
2262
2263 if (spill_stack_slot[from_reg])
2264 {
2265 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2266 > inherent_size)
2267 mode = GET_MODE (spill_stack_slot[from_reg]);
2268 if (spill_stack_slot_width[from_reg] > total_size)
2269 total_size = spill_stack_slot_width[from_reg];
2270 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2271 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2272 }
2273
2274 /* Make a slot with that size. */
2275 x = assign_stack_local (mode, total_size,
2276 min_align > inherent_align
2277 || total_size > inherent_size ? -1 : 0);
2278 stack_slot = x;
2279
2280 /* Cancel the big-endian correction done in assign_stack_local.
2281 Get the address of the beginning of the slot. This is so we
2282 can do a big-endian correction unconditionally below. */
2283 if (BYTES_BIG_ENDIAN)
2284 {
2285 adjust = GET_MODE_SIZE (mode) - total_size;
2286 if (adjust)
2287 stack_slot
2288 = adjust_address_nv (x, mode_for_size (total_size
2289 * BITS_PER_UNIT,
2290 MODE_INT, 1),
2291 adjust);
2292 }
2293
2294 spill_stack_slot[from_reg] = stack_slot;
2295 spill_stack_slot_width[from_reg] = total_size;
2296 }
2297
2298 /* On a big endian machine, the "address" of the slot
2299 is the address of the low part that fits its inherent mode. */
2300 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2301 adjust += (total_size - inherent_size);
2302
2303 /* If we have any adjustment to make, or if the stack slot is the
2304 wrong mode, make a new stack slot. */
2305 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2306
2307 /* Set all of the memory attributes as appropriate for a spill. */
2308 set_mem_attrs_for_spill (x);
2309
2310 /* Save the stack slot for later. */
2311 reg_equiv_memory_loc (i) = x;
2312 }
2313 }
2314
2315 /* Mark the slots in regs_ever_live for the hard regs used by
2316 pseudo-reg number REGNO, accessed in MODE. */
2317
2318 static void
2319 mark_home_live_1 (int regno, enum machine_mode mode)
2320 {
2321 int i, lim;
2322
2323 i = reg_renumber[regno];
2324 if (i < 0)
2325 return;
2326 lim = end_hard_regno (mode, i);
2327 while (i < lim)
2328 df_set_regs_ever_live(i++, true);
2329 }
2330
2331 /* Mark the slots in regs_ever_live for the hard regs
2332 used by pseudo-reg number REGNO. */
2333
2334 void
2335 mark_home_live (int regno)
2336 {
2337 if (reg_renumber[regno] >= 0)
2338 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2339 }
2340 \f
2341 /* This function handles the tracking of elimination offsets around branches.
2342
2343 X is a piece of RTL being scanned.
2344
2345 INSN is the insn that it came from, if any.
2346
2347 INITIAL_P is nonzero if we are to set the offset to be the initial
2348 offset and zero if we are setting the offset of the label to be the
2349 current offset. */
2350
2351 static void
2352 set_label_offsets (rtx x, rtx insn, int initial_p)
2353 {
2354 enum rtx_code code = GET_CODE (x);
2355 rtx tem;
2356 unsigned int i;
2357 struct elim_table *p;
2358
2359 switch (code)
2360 {
2361 case LABEL_REF:
2362 if (LABEL_REF_NONLOCAL_P (x))
2363 return;
2364
2365 x = XEXP (x, 0);
2366
2367 /* ... fall through ... */
2368
2369 case CODE_LABEL:
2370 /* If we know nothing about this label, set the desired offsets. Note
2371 that this sets the offset at a label to be the offset before a label
2372 if we don't know anything about the label. This is not correct for
2373 the label after a BARRIER, but is the best guess we can make. If
2374 we guessed wrong, we will suppress an elimination that might have
2375 been possible had we been able to guess correctly. */
2376
2377 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2378 {
2379 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2380 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2381 = (initial_p ? reg_eliminate[i].initial_offset
2382 : reg_eliminate[i].offset);
2383 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2384 }
2385
2386 /* Otherwise, if this is the definition of a label and it is
2387 preceded by a BARRIER, set our offsets to the known offset of
2388 that label. */
2389
2390 else if (x == insn
2391 && (tem = prev_nonnote_insn (insn)) != 0
2392 && BARRIER_P (tem))
2393 set_offsets_for_label (insn);
2394 else
2395 /* If neither of the above cases is true, compare each offset
2396 with those previously recorded and suppress any eliminations
2397 where the offsets disagree. */
2398
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 != (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset))
2403 reg_eliminate[i].can_eliminate = 0;
2404
2405 return;
2406
2407 case JUMP_INSN:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2409
2410 /* ... fall through ... */
2411
2412 case INSN:
2413 case CALL_INSN:
2414 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2415 to indirectly and hence must have all eliminations at their
2416 initial offsets. */
2417 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2418 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2419 set_label_offsets (XEXP (tem, 0), insn, 1);
2420 return;
2421
2422 case PARALLEL:
2423 case ADDR_VEC:
2424 case ADDR_DIFF_VEC:
2425 /* Each of the labels in the parallel or address vector must be
2426 at their initial offsets. We want the first field for PARALLEL
2427 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2428
2429 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2430 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2431 insn, initial_p);
2432 return;
2433
2434 case SET:
2435 /* We only care about setting PC. If the source is not RETURN,
2436 IF_THEN_ELSE, or a label, disable any eliminations not at
2437 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2438 isn't one of those possibilities. For branches to a label,
2439 call ourselves recursively.
2440
2441 Note that this can disable elimination unnecessarily when we have
2442 a non-local goto since it will look like a non-constant jump to
2443 someplace in the current function. This isn't a significant
2444 problem since such jumps will normally be when all elimination
2445 pairs are back to their initial offsets. */
2446
2447 if (SET_DEST (x) != pc_rtx)
2448 return;
2449
2450 switch (GET_CODE (SET_SRC (x)))
2451 {
2452 case PC:
2453 case RETURN:
2454 return;
2455
2456 case LABEL_REF:
2457 set_label_offsets (SET_SRC (x), insn, initial_p);
2458 return;
2459
2460 case IF_THEN_ELSE:
2461 tem = XEXP (SET_SRC (x), 1);
2462 if (GET_CODE (tem) == LABEL_REF)
2463 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2464 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2465 break;
2466
2467 tem = XEXP (SET_SRC (x), 2);
2468 if (GET_CODE (tem) == LABEL_REF)
2469 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2470 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2471 break;
2472 return;
2473
2474 default:
2475 break;
2476 }
2477
2478 /* If we reach here, all eliminations must be at their initial
2479 offset because we are doing a jump to a variable address. */
2480 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2481 if (p->offset != p->initial_offset)
2482 p->can_eliminate = 0;
2483 break;
2484
2485 default:
2486 break;
2487 }
2488 }
2489 \f
2490 /* Called through for_each_rtx, this function examines every reg that occurs
2491 in PX and adjusts the costs for its elimination which are gathered by IRA.
2492 DATA is the insn in which PX occurs. We do not recurse into MEM
2493 expressions. */
2494
2495 static int
2496 note_reg_elim_costly (rtx *px, void *data)
2497 {
2498 rtx insn = (rtx)data;
2499 rtx x = *px;
2500
2501 if (MEM_P (x))
2502 return -1;
2503
2504 if (REG_P (x)
2505 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2506 && reg_equiv_init (REGNO (x))
2507 && reg_equiv_invariant (REGNO (x)))
2508 {
2509 rtx t = reg_equiv_invariant (REGNO (x));
2510 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2511 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2512 int freq = REG_FREQ_FROM_BB (elim_bb);
2513
2514 if (cost != 0)
2515 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2516 }
2517 return 0;
2518 }
2519
2520 /* Scan X and replace any eliminable registers (such as fp) with a
2521 replacement (such as sp), plus an offset.
2522
2523 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2524 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2525 MEM, we are allowed to replace a sum of a register and the constant zero
2526 with the register, which we cannot do outside a MEM. In addition, we need
2527 to record the fact that a register is referenced outside a MEM.
2528
2529 If INSN is an insn, it is the insn containing X. If we replace a REG
2530 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2531 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2532 the REG is being modified.
2533
2534 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2535 That's used when we eliminate in expressions stored in notes.
2536 This means, do not set ref_outside_mem even if the reference
2537 is outside of MEMs.
2538
2539 If FOR_COSTS is true, we are being called before reload in order to
2540 estimate the costs of keeping registers with an equivalence unallocated.
2541
2542 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2543 replacements done assuming all offsets are at their initial values. If
2544 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2545 encounter, return the actual location so that find_reloads will do
2546 the proper thing. */
2547
2548 static rtx
2549 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2550 bool may_use_invariant, bool for_costs)
2551 {
2552 enum rtx_code code = GET_CODE (x);
2553 struct elim_table *ep;
2554 int regno;
2555 rtx new_rtx;
2556 int i, j;
2557 const char *fmt;
2558 int copied = 0;
2559
2560 if (! current_function_decl)
2561 return x;
2562
2563 switch (code)
2564 {
2565 CASE_CONST_ANY:
2566 case CONST:
2567 case SYMBOL_REF:
2568 case CODE_LABEL:
2569 case PC:
2570 case CC0:
2571 case ASM_INPUT:
2572 case ADDR_VEC:
2573 case ADDR_DIFF_VEC:
2574 case RETURN:
2575 return x;
2576
2577 case REG:
2578 regno = REGNO (x);
2579
2580 /* First handle the case where we encounter a bare register that
2581 is eliminable. Replace it with a PLUS. */
2582 if (regno < FIRST_PSEUDO_REGISTER)
2583 {
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == x && ep->can_eliminate)
2587 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2588
2589 }
2590 else if (reg_renumber && reg_renumber[regno] < 0
2591 && reg_equivs
2592 && reg_equiv_invariant (regno))
2593 {
2594 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 mem_mode, insn, true, for_costs);
2597 /* There exists at least one use of REGNO that cannot be
2598 eliminated. Prevent the defining insn from being deleted. */
2599 reg_equiv_init (regno) = NULL_RTX;
2600 if (!for_costs)
2601 alter_reg (regno, -1, true);
2602 }
2603 return x;
2604
2605 /* You might think handling MINUS in a manner similar to PLUS is a
2606 good idea. It is not. It has been tried multiple times and every
2607 time the change has had to have been reverted.
2608
2609 Other parts of reload know a PLUS is special (gen_reload for example)
2610 and require special code to handle code a reloaded PLUS operand.
2611
2612 Also consider backends where the flags register is clobbered by a
2613 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614 lea instruction comes to mind). If we try to reload a MINUS, we
2615 may kill the flags register that was holding a useful value.
2616
2617 So, please before trying to handle MINUS, consider reload as a
2618 whole instead of this little section as well as the backend issues. */
2619 case PLUS:
2620 /* If this is the sum of an eliminable register and a constant, rework
2621 the sum. */
2622 if (REG_P (XEXP (x, 0))
2623 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && CONSTANT_P (XEXP (x, 1)))
2625 {
2626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 ep++)
2628 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 {
2630 /* The only time we want to replace a PLUS with a REG (this
2631 occurs when the constant operand of the PLUS is the negative
2632 of the offset) is when we are inside a MEM. We won't want
2633 to do so at other times because that would change the
2634 structure of the insn in a way that reload can't handle.
2635 We special-case the commonest situation in
2636 eliminate_regs_in_insn, so just replace a PLUS with a
2637 PLUS here, unless inside a MEM. */
2638 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 return ep->to_rtx;
2641 else
2642 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 plus_constant (Pmode, XEXP (x, 1),
2644 ep->previous_offset));
2645 }
2646
2647 /* If the register is not eliminable, we are done since the other
2648 operand is a constant. */
2649 return x;
2650 }
2651
2652 /* If this is part of an address, we want to bring any constant to the
2653 outermost PLUS. We will do this by doing register replacement in
2654 our operands and seeing if a constant shows up in one of them.
2655
2656 Note that there is no risk of modifying the structure of the insn,
2657 since we only get called for its operands, thus we are either
2658 modifying the address inside a MEM, or something like an address
2659 operand of a load-address insn. */
2660
2661 {
2662 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 for_costs);
2664 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 for_costs);
2666
2667 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 {
2669 /* If one side is a PLUS and the other side is a pseudo that
2670 didn't get a hard register but has a reg_equiv_constant,
2671 we must replace the constant here since it may no longer
2672 be in the position of any operand. */
2673 if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 && reg_renumber[REGNO (new1)] < 0
2676 && reg_equivs
2677 && reg_equiv_constant (REGNO (new1)) != 0)
2678 new1 = reg_equiv_constant (REGNO (new1));
2679 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (new0)] < 0
2682 && reg_equiv_constant (REGNO (new0)) != 0)
2683 new0 = reg_equiv_constant (REGNO (new0));
2684
2685 new_rtx = form_sum (GET_MODE (x), new0, new1);
2686
2687 /* As above, if we are not inside a MEM we do not want to
2688 turn a PLUS into something else. We might try to do so here
2689 for an addition of 0 if we aren't optimizing. */
2690 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 else
2693 return new_rtx;
2694 }
2695 }
2696 return x;
2697
2698 case MULT:
2699 /* If this is the product of an eliminable register and a
2700 constant, apply the distribute law and move the constant out
2701 so that we have (plus (mult ..) ..). This is needed in order
2702 to keep load-address insns valid. This case is pathological.
2703 We ignore the possibility of overflow here. */
2704 if (REG_P (XEXP (x, 0))
2705 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && CONST_INT_P (XEXP (x, 1)))
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 {
2711 if (! mem_mode
2712 /* Refs inside notes or in DEBUG_INSNs don't count for
2713 this purpose. */
2714 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 || GET_CODE (insn) == INSN_LIST
2716 || DEBUG_INSN_P (insn))))
2717 ep->ref_outside_mem = 1;
2718
2719 return
2720 plus_constant (Pmode,
2721 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2722 ep->previous_offset * INTVAL (XEXP (x, 1)));
2723 }
2724
2725 /* ... fall through ... */
2726
2727 case CALL:
2728 case COMPARE:
2729 /* See comments before PLUS about handling MINUS. */
2730 case MINUS:
2731 case DIV: case UDIV:
2732 case MOD: case UMOD:
2733 case AND: case IOR: case XOR:
2734 case ROTATERT: case ROTATE:
2735 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2736 case NE: case EQ:
2737 case GE: case GT: case GEU: case GTU:
2738 case LE: case LT: case LEU: case LTU:
2739 {
2740 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2741 for_costs);
2742 rtx new1 = XEXP (x, 1)
2743 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2744 for_costs) : 0;
2745
2746 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2747 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2748 }
2749 return x;
2750
2751 case EXPR_LIST:
2752 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2753 if (XEXP (x, 0))
2754 {
2755 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2756 for_costs);
2757 if (new_rtx != XEXP (x, 0))
2758 {
2759 /* If this is a REG_DEAD note, it is not valid anymore.
2760 Using the eliminated version could result in creating a
2761 REG_DEAD note for the stack or frame pointer. */
2762 if (REG_NOTE_KIND (x) == REG_DEAD)
2763 return (XEXP (x, 1)
2764 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2765 for_costs)
2766 : NULL_RTX);
2767
2768 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2769 }
2770 }
2771
2772 /* ... fall through ... */
2773
2774 case INSN_LIST:
2775 /* Now do eliminations in the rest of the chain. If this was
2776 an EXPR_LIST, this might result in allocating more memory than is
2777 strictly needed, but it simplifies the code. */
2778 if (XEXP (x, 1))
2779 {
2780 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2781 for_costs);
2782 if (new_rtx != XEXP (x, 1))
2783 return
2784 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 }
2786 return x;
2787
2788 case PRE_INC:
2789 case POST_INC:
2790 case PRE_DEC:
2791 case POST_DEC:
2792 /* We do not support elimination of a register that is modified.
2793 elimination_effects has already make sure that this does not
2794 happen. */
2795 return x;
2796
2797 case PRE_MODIFY:
2798 case POST_MODIFY:
2799 /* We do not support elimination of a register that is modified.
2800 elimination_effects has already make sure that this does not
2801 happen. The only remaining case we need to consider here is
2802 that the increment value may be an eliminable register. */
2803 if (GET_CODE (XEXP (x, 1)) == PLUS
2804 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 {
2806 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2807 insn, true, for_costs);
2808
2809 if (new_rtx != XEXP (XEXP (x, 1), 1))
2810 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2811 gen_rtx_PLUS (GET_MODE (x),
2812 XEXP (x, 0), new_rtx));
2813 }
2814 return x;
2815
2816 case STRICT_LOW_PART:
2817 case NEG: case NOT:
2818 case SIGN_EXTEND: case ZERO_EXTEND:
2819 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2820 case FLOAT: case FIX:
2821 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2822 case ABS:
2823 case SQRT:
2824 case FFS:
2825 case CLZ:
2826 case CTZ:
2827 case POPCOUNT:
2828 case PARITY:
2829 case BSWAP:
2830 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2831 for_costs);
2832 if (new_rtx != XEXP (x, 0))
2833 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2834 return x;
2835
2836 case SUBREG:
2837 /* Similar to above processing, but preserve SUBREG_BYTE.
2838 Convert (subreg (mem)) to (mem) if not paradoxical.
2839 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2840 pseudo didn't get a hard reg, we must replace this with the
2841 eliminated version of the memory location because push_reload
2842 may do the replacement in certain circumstances. */
2843 if (REG_P (SUBREG_REG (x))
2844 && !paradoxical_subreg_p (x)
2845 && reg_equivs
2846 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 {
2848 new_rtx = SUBREG_REG (x);
2849 }
2850 else
2851 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852
2853 if (new_rtx != SUBREG_REG (x))
2854 {
2855 int x_size = GET_MODE_SIZE (GET_MODE (x));
2856 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857
2858 if (MEM_P (new_rtx)
2859 && ((x_size < new_size
2860 #ifdef WORD_REGISTER_OPERATIONS
2861 /* On these machines, combine can create rtl of the form
2862 (set (subreg:m1 (reg:m2 R) 0) ...)
2863 where m1 < m2, and expects something interesting to
2864 happen to the entire word. Moreover, it will use the
2865 (reg:m2 R) later, expecting all bits to be preserved.
2866 So if the number of words is the same, preserve the
2867 subreg so that push_reload can see it. */
2868 && ! ((x_size - 1) / UNITS_PER_WORD
2869 == (new_size -1 ) / UNITS_PER_WORD)
2870 #endif
2871 )
2872 || x_size == new_size)
2873 )
2874 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2875 else
2876 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2877 }
2878
2879 return x;
2880
2881 case MEM:
2882 /* Our only special processing is to pass the mode of the MEM to our
2883 recursive call and copy the flags. While we are here, handle this
2884 case more efficiently. */
2885
2886 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2887 for_costs);
2888 if (for_costs
2889 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2890 && !memory_address_p (GET_MODE (x), new_rtx))
2891 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892
2893 return replace_equiv_address_nv (x, new_rtx);
2894
2895 case USE:
2896 /* Handle insn_list USE that a call to a pure function may generate. */
2897 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2898 for_costs);
2899 if (new_rtx != XEXP (x, 0))
2900 return gen_rtx_USE (GET_MODE (x), new_rtx);
2901 return x;
2902
2903 case CLOBBER:
2904 case ASM_OPERANDS:
2905 gcc_assert (insn && DEBUG_INSN_P (insn));
2906 break;
2907
2908 case SET:
2909 gcc_unreachable ();
2910
2911 default:
2912 break;
2913 }
2914
2915 /* Process each of our operands recursively. If any have changed, make a
2916 copy of the rtx. */
2917 fmt = GET_RTX_FORMAT (code);
2918 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 {
2920 if (*fmt == 'e')
2921 {
2922 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2923 for_costs);
2924 if (new_rtx != XEXP (x, i) && ! copied)
2925 {
2926 x = shallow_copy_rtx (x);
2927 copied = 1;
2928 }
2929 XEXP (x, i) = new_rtx;
2930 }
2931 else if (*fmt == 'E')
2932 {
2933 int copied_vec = 0;
2934 for (j = 0; j < XVECLEN (x, i); j++)
2935 {
2936 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2937 for_costs);
2938 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 {
2940 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2941 XVEC (x, i)->elem);
2942 if (! copied)
2943 {
2944 x = shallow_copy_rtx (x);
2945 copied = 1;
2946 }
2947 XVEC (x, i) = new_v;
2948 copied_vec = 1;
2949 }
2950 XVECEXP (x, i, j) = new_rtx;
2951 }
2952 }
2953 }
2954
2955 return x;
2956 }
2957
2958 rtx
2959 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 {
2961 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2962 }
2963
2964 /* Scan rtx X for modifications of elimination target registers. Update
2965 the table of eliminables to reflect the changed state. MEM_MODE is
2966 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967
2968 static void
2969 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 {
2971 enum rtx_code code = GET_CODE (x);
2972 struct elim_table *ep;
2973 int regno;
2974 int i, j;
2975 const char *fmt;
2976
2977 switch (code)
2978 {
2979 CASE_CONST_ANY:
2980 case CONST:
2981 case SYMBOL_REF:
2982 case CODE_LABEL:
2983 case PC:
2984 case CC0:
2985 case ASM_INPUT:
2986 case ADDR_VEC:
2987 case ADDR_DIFF_VEC:
2988 case RETURN:
2989 return;
2990
2991 case REG:
2992 regno = REGNO (x);
2993
2994 /* First handle the case where we encounter a bare register that
2995 is eliminable. Replace it with a PLUS. */
2996 if (regno < FIRST_PSEUDO_REGISTER)
2997 {
2998 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2999 ep++)
3000 if (ep->from_rtx == x && ep->can_eliminate)
3001 {
3002 if (! mem_mode)
3003 ep->ref_outside_mem = 1;
3004 return;
3005 }
3006
3007 }
3008 else if (reg_renumber[regno] < 0
3009 && reg_equivs
3010 && reg_equiv_constant (regno)
3011 && ! function_invariant_p (reg_equiv_constant (regno)))
3012 elimination_effects (reg_equiv_constant (regno), mem_mode);
3013 return;
3014
3015 case PRE_INC:
3016 case POST_INC:
3017 case PRE_DEC:
3018 case POST_DEC:
3019 case POST_MODIFY:
3020 case PRE_MODIFY:
3021 /* If we modify the source of an elimination rule, disable it. */
3022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3023 if (ep->from_rtx == XEXP (x, 0))
3024 ep->can_eliminate = 0;
3025
3026 /* If we modify the target of an elimination rule by adding a constant,
3027 update its offset. If we modify the target in any other way, we'll
3028 have to disable the rule as well. */
3029 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3030 if (ep->to_rtx == XEXP (x, 0))
3031 {
3032 int size = GET_MODE_SIZE (mem_mode);
3033
3034 /* If more bytes than MEM_MODE are pushed, account for them. */
3035 #ifdef PUSH_ROUNDING
3036 if (ep->to_rtx == stack_pointer_rtx)
3037 size = PUSH_ROUNDING (size);
3038 #endif
3039 if (code == PRE_DEC || code == POST_DEC)
3040 ep->offset += size;
3041 else if (code == PRE_INC || code == POST_INC)
3042 ep->offset -= size;
3043 else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 {
3045 if (GET_CODE (XEXP (x, 1)) == PLUS
3046 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3047 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3048 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3049 else
3050 ep->can_eliminate = 0;
3051 }
3052 }
3053
3054 /* These two aren't unary operators. */
3055 if (code == POST_MODIFY || code == PRE_MODIFY)
3056 break;
3057
3058 /* Fall through to generic unary operation case. */
3059 case STRICT_LOW_PART:
3060 case NEG: case NOT:
3061 case SIGN_EXTEND: case ZERO_EXTEND:
3062 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3063 case FLOAT: case FIX:
3064 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3065 case ABS:
3066 case SQRT:
3067 case FFS:
3068 case CLZ:
3069 case CTZ:
3070 case POPCOUNT:
3071 case PARITY:
3072 case BSWAP:
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3075
3076 case SUBREG:
3077 if (REG_P (SUBREG_REG (x))
3078 && (GET_MODE_SIZE (GET_MODE (x))
3079 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3080 && reg_equivs
3081 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3082 return;
3083
3084 elimination_effects (SUBREG_REG (x), mem_mode);
3085 return;
3086
3087 case USE:
3088 /* If using a register that is the source of an eliminate we still
3089 think can be performed, note it cannot be performed since we don't
3090 know how this register is used. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3092 if (ep->from_rtx == XEXP (x, 0))
3093 ep->can_eliminate = 0;
3094
3095 elimination_effects (XEXP (x, 0), mem_mode);
3096 return;
3097
3098 case CLOBBER:
3099 /* If clobbering a register that is the replacement register for an
3100 elimination we still think can be performed, note that it cannot
3101 be performed. Otherwise, we need not be concerned about it. */
3102 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3103 if (ep->to_rtx == XEXP (x, 0))
3104 ep->can_eliminate = 0;
3105
3106 elimination_effects (XEXP (x, 0), mem_mode);
3107 return;
3108
3109 case SET:
3110 /* Check for setting a register that we know about. */
3111 if (REG_P (SET_DEST (x)))
3112 {
3113 /* See if this is setting the replacement register for an
3114 elimination.
3115
3116 If DEST is the hard frame pointer, we do nothing because we
3117 assume that all assignments to the frame pointer are for
3118 non-local gotos and are being done at a time when they are valid
3119 and do not disturb anything else. Some machines want to
3120 eliminate a fake argument pointer (or even a fake frame pointer)
3121 with either the real frame or the stack pointer. Assignments to
3122 the hard frame pointer must not prevent this elimination. */
3123
3124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 ep++)
3126 if (ep->to_rtx == SET_DEST (x)
3127 && SET_DEST (x) != hard_frame_pointer_rtx)
3128 {
3129 /* If it is being incremented, adjust the offset. Otherwise,
3130 this elimination can't be done. */
3131 rtx src = SET_SRC (x);
3132
3133 if (GET_CODE (src) == PLUS
3134 && XEXP (src, 0) == SET_DEST (x)
3135 && CONST_INT_P (XEXP (src, 1)))
3136 ep->offset -= INTVAL (XEXP (src, 1));
3137 else
3138 ep->can_eliminate = 0;
3139 }
3140 }
3141
3142 elimination_effects (SET_DEST (x), VOIDmode);
3143 elimination_effects (SET_SRC (x), VOIDmode);
3144 return;
3145
3146 case MEM:
3147 /* Our only special processing is to pass the mode of the MEM to our
3148 recursive call. */
3149 elimination_effects (XEXP (x, 0), GET_MODE (x));
3150 return;
3151
3152 default:
3153 break;
3154 }
3155
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3158 {
3159 if (*fmt == 'e')
3160 elimination_effects (XEXP (x, i), mem_mode);
3161 else if (*fmt == 'E')
3162 for (j = 0; j < XVECLEN (x, i); j++)
3163 elimination_effects (XVECEXP (x, i, j), mem_mode);
3164 }
3165 }
3166
3167 /* Descend through rtx X and verify that no references to eliminable registers
3168 remain. If any do remain, mark the involved register as not
3169 eliminable. */
3170
3171 static void
3172 check_eliminable_occurrences (rtx x)
3173 {
3174 const char *fmt;
3175 int i;
3176 enum rtx_code code;
3177
3178 if (x == 0)
3179 return;
3180
3181 code = GET_CODE (x);
3182
3183 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3184 {
3185 struct elim_table *ep;
3186
3187 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 if (ep->from_rtx == x)
3189 ep->can_eliminate = 0;
3190 return;
3191 }
3192
3193 fmt = GET_RTX_FORMAT (code);
3194 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3195 {
3196 if (*fmt == 'e')
3197 check_eliminable_occurrences (XEXP (x, i));
3198 else if (*fmt == 'E')
3199 {
3200 int j;
3201 for (j = 0; j < XVECLEN (x, i); j++)
3202 check_eliminable_occurrences (XVECEXP (x, i, j));
3203 }
3204 }
3205 }
3206 \f
3207 /* Scan INSN and eliminate all eliminable registers in it.
3208
3209 If REPLACE is nonzero, do the replacement destructively. Also
3210 delete the insn as dead it if it is setting an eliminable register.
3211
3212 If REPLACE is zero, do all our allocations in reload_obstack.
3213
3214 If no eliminations were done and this insn doesn't require any elimination
3215 processing (these are not identical conditions: it might be updating sp,
3216 but not referencing fp; this needs to be seen during reload_as_needed so
3217 that the offset between fp and sp can be taken into consideration), zero
3218 is returned. Otherwise, 1 is returned. */
3219
3220 static int
3221 eliminate_regs_in_insn (rtx insn, int replace)
3222 {
3223 int icode = recog_memoized (insn);
3224 rtx old_body = PATTERN (insn);
3225 int insn_is_asm = asm_noperands (old_body) >= 0;
3226 rtx old_set = single_set (insn);
3227 rtx new_body;
3228 int val = 0;
3229 int i;
3230 rtx substed_operand[MAX_RECOG_OPERANDS];
3231 rtx orig_operand[MAX_RECOG_OPERANDS];
3232 struct elim_table *ep;
3233 rtx plus_src, plus_cst_src;
3234
3235 if (! insn_is_asm && icode < 0)
3236 {
3237 gcc_assert (JUMP_TABLE_DATA_P (insn)
3238 || GET_CODE (PATTERN (insn)) == USE
3239 || GET_CODE (PATTERN (insn)) == CLOBBER
3240 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3241 || DEBUG_INSN_P (insn));
3242 if (DEBUG_INSN_P (insn))
3243 INSN_VAR_LOCATION_LOC (insn)
3244 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3245 return 0;
3246 }
3247
3248 if (old_set != 0 && REG_P (SET_DEST (old_set))
3249 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3250 {
3251 /* Check for setting an eliminable register. */
3252 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3253 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3254 {
3255 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3256 /* If this is setting the frame pointer register to the
3257 hardware frame pointer register and this is an elimination
3258 that will be done (tested above), this insn is really
3259 adjusting the frame pointer downward to compensate for
3260 the adjustment done before a nonlocal goto. */
3261 if (ep->from == FRAME_POINTER_REGNUM
3262 && ep->to == HARD_FRAME_POINTER_REGNUM)
3263 {
3264 rtx base = SET_SRC (old_set);
3265 rtx base_insn = insn;
3266 HOST_WIDE_INT offset = 0;
3267
3268 while (base != ep->to_rtx)
3269 {
3270 rtx prev_insn, prev_set;
3271
3272 if (GET_CODE (base) == PLUS
3273 && CONST_INT_P (XEXP (base, 1)))
3274 {
3275 offset += INTVAL (XEXP (base, 1));
3276 base = XEXP (base, 0);
3277 }
3278 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3279 && (prev_set = single_set (prev_insn)) != 0
3280 && rtx_equal_p (SET_DEST (prev_set), base))
3281 {
3282 base = SET_SRC (prev_set);
3283 base_insn = prev_insn;
3284 }
3285 else
3286 break;
3287 }
3288
3289 if (base == ep->to_rtx)
3290 {
3291 rtx src = plus_constant (Pmode, ep->to_rtx,
3292 offset - ep->offset);
3293
3294 new_body = old_body;
3295 if (! replace)
3296 {
3297 new_body = copy_insn (old_body);
3298 if (REG_NOTES (insn))
3299 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3300 }
3301 PATTERN (insn) = new_body;
3302 old_set = single_set (insn);
3303
3304 /* First see if this insn remains valid when we
3305 make the change. If not, keep the INSN_CODE
3306 the same and let reload fit it up. */
3307 validate_change (insn, &SET_SRC (old_set), src, 1);
3308 validate_change (insn, &SET_DEST (old_set),
3309 ep->to_rtx, 1);
3310 if (! apply_change_group ())
3311 {
3312 SET_SRC (old_set) = src;
3313 SET_DEST (old_set) = ep->to_rtx;
3314 }
3315
3316 val = 1;
3317 goto done;
3318 }
3319 }
3320 #endif
3321
3322 /* In this case this insn isn't serving a useful purpose. We
3323 will delete it in reload_as_needed once we know that this
3324 elimination is, in fact, being done.
3325
3326 If REPLACE isn't set, we can't delete this insn, but needn't
3327 process it since it won't be used unless something changes. */
3328 if (replace)
3329 {
3330 delete_dead_insn (insn);
3331 return 1;
3332 }
3333 val = 1;
3334 goto done;
3335 }
3336 }
3337
3338 /* We allow one special case which happens to work on all machines we
3339 currently support: a single set with the source or a REG_EQUAL
3340 note being a PLUS of an eliminable register and a constant. */
3341 plus_src = plus_cst_src = 0;
3342 if (old_set && REG_P (SET_DEST (old_set)))
3343 {
3344 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3345 plus_src = SET_SRC (old_set);
3346 /* First see if the source is of the form (plus (...) CST). */
3347 if (plus_src
3348 && CONST_INT_P (XEXP (plus_src, 1)))
3349 plus_cst_src = plus_src;
3350 else if (REG_P (SET_SRC (old_set))
3351 || plus_src)
3352 {
3353 /* Otherwise, see if we have a REG_EQUAL note of the form
3354 (plus (...) CST). */
3355 rtx links;
3356 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3357 {
3358 if ((REG_NOTE_KIND (links) == REG_EQUAL
3359 || REG_NOTE_KIND (links) == REG_EQUIV)
3360 && GET_CODE (XEXP (links, 0)) == PLUS
3361 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3362 {
3363 plus_cst_src = XEXP (links, 0);
3364 break;
3365 }
3366 }
3367 }
3368
3369 /* Check that the first operand of the PLUS is a hard reg or
3370 the lowpart subreg of one. */
3371 if (plus_cst_src)
3372 {
3373 rtx reg = XEXP (plus_cst_src, 0);
3374 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3375 reg = SUBREG_REG (reg);
3376
3377 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3378 plus_cst_src = 0;
3379 }
3380 }
3381 if (plus_cst_src)
3382 {
3383 rtx reg = XEXP (plus_cst_src, 0);
3384 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3385
3386 if (GET_CODE (reg) == SUBREG)
3387 reg = SUBREG_REG (reg);
3388
3389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3390 if (ep->from_rtx == reg && ep->can_eliminate)
3391 {
3392 rtx to_rtx = ep->to_rtx;
3393 offset += ep->offset;
3394 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3395
3396 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3397 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3398 to_rtx);
3399 /* If we have a nonzero offset, and the source is already
3400 a simple REG, the following transformation would
3401 increase the cost of the insn by replacing a simple REG
3402 with (plus (reg sp) CST). So try only when we already
3403 had a PLUS before. */
3404 if (offset == 0 || plus_src)
3405 {
3406 rtx new_src = plus_constant (GET_MODE (to_rtx),
3407 to_rtx, offset);
3408
3409 new_body = old_body;
3410 if (! replace)
3411 {
3412 new_body = copy_insn (old_body);
3413 if (REG_NOTES (insn))
3414 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3415 }
3416 PATTERN (insn) = new_body;
3417 old_set = single_set (insn);
3418
3419 /* First see if this insn remains valid when we make the
3420 change. If not, try to replace the whole pattern with
3421 a simple set (this may help if the original insn was a
3422 PARALLEL that was only recognized as single_set due to
3423 REG_UNUSED notes). If this isn't valid either, keep
3424 the INSN_CODE the same and let reload fix it up. */
3425 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3426 {
3427 rtx new_pat = gen_rtx_SET (VOIDmode,
3428 SET_DEST (old_set), new_src);
3429
3430 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3431 SET_SRC (old_set) = new_src;
3432 }
3433 }
3434 else
3435 break;
3436
3437 val = 1;
3438 /* This can't have an effect on elimination offsets, so skip right
3439 to the end. */
3440 goto done;
3441 }
3442 }
3443
3444 /* Determine the effects of this insn on elimination offsets. */
3445 elimination_effects (old_body, VOIDmode);
3446
3447 /* Eliminate all eliminable registers occurring in operands that
3448 can be handled by reload. */
3449 extract_insn (insn);
3450 for (i = 0; i < recog_data.n_operands; i++)
3451 {
3452 orig_operand[i] = recog_data.operand[i];
3453 substed_operand[i] = recog_data.operand[i];
3454
3455 /* For an asm statement, every operand is eliminable. */
3456 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3457 {
3458 bool is_set_src, in_plus;
3459
3460 /* Check for setting a register that we know about. */
3461 if (recog_data.operand_type[i] != OP_IN
3462 && REG_P (orig_operand[i]))
3463 {
3464 /* If we are assigning to a register that can be eliminated, it
3465 must be as part of a PARALLEL, since the code above handles
3466 single SETs. We must indicate that we can no longer
3467 eliminate this reg. */
3468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3469 ep++)
3470 if (ep->from_rtx == orig_operand[i])
3471 ep->can_eliminate = 0;
3472 }
3473
3474 /* Companion to the above plus substitution, we can allow
3475 invariants as the source of a plain move. */
3476 is_set_src = false;
3477 if (old_set
3478 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3479 is_set_src = true;
3480 in_plus = false;
3481 if (plus_src
3482 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3483 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3484 in_plus = true;
3485
3486 substed_operand[i]
3487 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3488 replace ? insn : NULL_RTX,
3489 is_set_src || in_plus, false);
3490 if (substed_operand[i] != orig_operand[i])
3491 val = 1;
3492 /* Terminate the search in check_eliminable_occurrences at
3493 this point. */
3494 *recog_data.operand_loc[i] = 0;
3495
3496 /* If an output operand changed from a REG to a MEM and INSN is an
3497 insn, write a CLOBBER insn. */
3498 if (recog_data.operand_type[i] != OP_IN
3499 && REG_P (orig_operand[i])
3500 && MEM_P (substed_operand[i])
3501 && replace)
3502 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3503 }
3504 }
3505
3506 for (i = 0; i < recog_data.n_dups; i++)
3507 *recog_data.dup_loc[i]
3508 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3509
3510 /* If any eliminable remain, they aren't eliminable anymore. */
3511 check_eliminable_occurrences (old_body);
3512
3513 /* Substitute the operands; the new values are in the substed_operand
3514 array. */
3515 for (i = 0; i < recog_data.n_operands; i++)
3516 *recog_data.operand_loc[i] = substed_operand[i];
3517 for (i = 0; i < recog_data.n_dups; i++)
3518 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3519
3520 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3521 re-recognize the insn. We do this in case we had a simple addition
3522 but now can do this as a load-address. This saves an insn in this
3523 common case.
3524 If re-recognition fails, the old insn code number will still be used,
3525 and some register operands may have changed into PLUS expressions.
3526 These will be handled by find_reloads by loading them into a register
3527 again. */
3528
3529 if (val)
3530 {
3531 /* If we aren't replacing things permanently and we changed something,
3532 make another copy to ensure that all the RTL is new. Otherwise
3533 things can go wrong if find_reload swaps commutative operands
3534 and one is inside RTL that has been copied while the other is not. */
3535 new_body = old_body;
3536 if (! replace)
3537 {
3538 new_body = copy_insn (old_body);
3539 if (REG_NOTES (insn))
3540 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3541 }
3542 PATTERN (insn) = new_body;
3543
3544 /* If we had a move insn but now we don't, rerecognize it. This will
3545 cause spurious re-recognition if the old move had a PARALLEL since
3546 the new one still will, but we can't call single_set without
3547 having put NEW_BODY into the insn and the re-recognition won't
3548 hurt in this rare case. */
3549 /* ??? Why this huge if statement - why don't we just rerecognize the
3550 thing always? */
3551 if (! insn_is_asm
3552 && old_set != 0
3553 && ((REG_P (SET_SRC (old_set))
3554 && (GET_CODE (new_body) != SET
3555 || !REG_P (SET_SRC (new_body))))
3556 /* If this was a load from or store to memory, compare
3557 the MEM in recog_data.operand to the one in the insn.
3558 If they are not equal, then rerecognize the insn. */
3559 || (old_set != 0
3560 && ((MEM_P (SET_SRC (old_set))
3561 && SET_SRC (old_set) != recog_data.operand[1])
3562 || (MEM_P (SET_DEST (old_set))
3563 && SET_DEST (old_set) != recog_data.operand[0])))
3564 /* If this was an add insn before, rerecognize. */
3565 || GET_CODE (SET_SRC (old_set)) == PLUS))
3566 {
3567 int new_icode = recog (PATTERN (insn), insn, 0);
3568 if (new_icode >= 0)
3569 INSN_CODE (insn) = new_icode;
3570 }
3571 }
3572
3573 /* Restore the old body. If there were any changes to it, we made a copy
3574 of it while the changes were still in place, so we'll correctly return
3575 a modified insn below. */
3576 if (! replace)
3577 {
3578 /* Restore the old body. */
3579 for (i = 0; i < recog_data.n_operands; i++)
3580 /* Restoring a top-level match_parallel would clobber the new_body
3581 we installed in the insn. */
3582 if (recog_data.operand_loc[i] != &PATTERN (insn))
3583 *recog_data.operand_loc[i] = orig_operand[i];
3584 for (i = 0; i < recog_data.n_dups; i++)
3585 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3586 }
3587
3588 /* Update all elimination pairs to reflect the status after the current
3589 insn. The changes we make were determined by the earlier call to
3590 elimination_effects.
3591
3592 We also detect cases where register elimination cannot be done,
3593 namely, if a register would be both changed and referenced outside a MEM
3594 in the resulting insn since such an insn is often undefined and, even if
3595 not, we cannot know what meaning will be given to it. Note that it is
3596 valid to have a register used in an address in an insn that changes it
3597 (presumably with a pre- or post-increment or decrement).
3598
3599 If anything changes, return nonzero. */
3600
3601 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3602 {
3603 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3604 ep->can_eliminate = 0;
3605
3606 ep->ref_outside_mem = 0;
3607
3608 if (ep->previous_offset != ep->offset)
3609 val = 1;
3610 }
3611
3612 done:
3613 /* If we changed something, perform elimination in REG_NOTES. This is
3614 needed even when REPLACE is zero because a REG_DEAD note might refer
3615 to a register that we eliminate and could cause a different number
3616 of spill registers to be needed in the final reload pass than in
3617 the pre-passes. */
3618 if (val && REG_NOTES (insn) != 0)
3619 REG_NOTES (insn)
3620 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3621 false);
3622
3623 return val;
3624 }
3625
3626 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3627 register allocator. INSN is the instruction we need to examine, we perform
3628 eliminations in its operands and record cases where eliminating a reg with
3629 an invariant equivalence would add extra cost. */
3630
3631 static void
3632 elimination_costs_in_insn (rtx insn)
3633 {
3634 int icode = recog_memoized (insn);
3635 rtx old_body = PATTERN (insn);
3636 int insn_is_asm = asm_noperands (old_body) >= 0;
3637 rtx old_set = single_set (insn);
3638 int i;
3639 rtx orig_operand[MAX_RECOG_OPERANDS];
3640 rtx orig_dup[MAX_RECOG_OPERANDS];
3641 struct elim_table *ep;
3642 rtx plus_src, plus_cst_src;
3643 bool sets_reg_p;
3644
3645 if (! insn_is_asm && icode < 0)
3646 {
3647 gcc_assert (JUMP_TABLE_DATA_P (insn)
3648 || GET_CODE (PATTERN (insn)) == USE
3649 || GET_CODE (PATTERN (insn)) == CLOBBER
3650 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3651 || DEBUG_INSN_P (insn));
3652 return;
3653 }
3654
3655 if (old_set != 0 && REG_P (SET_DEST (old_set))
3656 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3657 {
3658 /* Check for setting an eliminable register. */
3659 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3660 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3661 return;
3662 }
3663
3664 /* We allow one special case which happens to work on all machines we
3665 currently support: a single set with the source or a REG_EQUAL
3666 note being a PLUS of an eliminable register and a constant. */
3667 plus_src = plus_cst_src = 0;
3668 sets_reg_p = false;
3669 if (old_set && REG_P (SET_DEST (old_set)))
3670 {
3671 sets_reg_p = true;
3672 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3673 plus_src = SET_SRC (old_set);
3674 /* First see if the source is of the form (plus (...) CST). */
3675 if (plus_src
3676 && CONST_INT_P (XEXP (plus_src, 1)))
3677 plus_cst_src = plus_src;
3678 else if (REG_P (SET_SRC (old_set))
3679 || plus_src)
3680 {
3681 /* Otherwise, see if we have a REG_EQUAL note of the form
3682 (plus (...) CST). */
3683 rtx links;
3684 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3685 {
3686 if ((REG_NOTE_KIND (links) == REG_EQUAL
3687 || REG_NOTE_KIND (links) == REG_EQUIV)
3688 && GET_CODE (XEXP (links, 0)) == PLUS
3689 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3690 {
3691 plus_cst_src = XEXP (links, 0);
3692 break;
3693 }
3694 }
3695 }
3696 }
3697
3698 /* Determine the effects of this insn on elimination offsets. */
3699 elimination_effects (old_body, VOIDmode);
3700
3701 /* Eliminate all eliminable registers occurring in operands that
3702 can be handled by reload. */
3703 extract_insn (insn);
3704 for (i = 0; i < recog_data.n_dups; i++)
3705 orig_dup[i] = *recog_data.dup_loc[i];
3706
3707 for (i = 0; i < recog_data.n_operands; i++)
3708 {
3709 orig_operand[i] = recog_data.operand[i];
3710
3711 /* For an asm statement, every operand is eliminable. */
3712 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3713 {
3714 bool is_set_src, in_plus;
3715
3716 /* Check for setting a register that we know about. */
3717 if (recog_data.operand_type[i] != OP_IN
3718 && REG_P (orig_operand[i]))
3719 {
3720 /* If we are assigning to a register that can be eliminated, it
3721 must be as part of a PARALLEL, since the code above handles
3722 single SETs. We must indicate that we can no longer
3723 eliminate this reg. */
3724 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3725 ep++)
3726 if (ep->from_rtx == orig_operand[i])
3727 ep->can_eliminate = 0;
3728 }
3729
3730 /* Companion to the above plus substitution, we can allow
3731 invariants as the source of a plain move. */
3732 is_set_src = false;
3733 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3734 is_set_src = true;
3735 if (is_set_src && !sets_reg_p)
3736 note_reg_elim_costly (&SET_SRC (old_set), insn);
3737 in_plus = false;
3738 if (plus_src && sets_reg_p
3739 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3740 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3741 in_plus = true;
3742
3743 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3744 NULL_RTX,
3745 is_set_src || in_plus, true);
3746 /* Terminate the search in check_eliminable_occurrences at
3747 this point. */
3748 *recog_data.operand_loc[i] = 0;
3749 }
3750 }
3751
3752 for (i = 0; i < recog_data.n_dups; i++)
3753 *recog_data.dup_loc[i]
3754 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3755
3756 /* If any eliminable remain, they aren't eliminable anymore. */
3757 check_eliminable_occurrences (old_body);
3758
3759 /* Restore the old body. */
3760 for (i = 0; i < recog_data.n_operands; i++)
3761 *recog_data.operand_loc[i] = orig_operand[i];
3762 for (i = 0; i < recog_data.n_dups; i++)
3763 *recog_data.dup_loc[i] = orig_dup[i];
3764
3765 /* Update all elimination pairs to reflect the status after the current
3766 insn. The changes we make were determined by the earlier call to
3767 elimination_effects. */
3768
3769 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3770 {
3771 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3772 ep->can_eliminate = 0;
3773
3774 ep->ref_outside_mem = 0;
3775 }
3776
3777 return;
3778 }
3779
3780 /* Loop through all elimination pairs.
3781 Recalculate the number not at initial offset.
3782
3783 Compute the maximum offset (minimum offset if the stack does not
3784 grow downward) for each elimination pair. */
3785
3786 static void
3787 update_eliminable_offsets (void)
3788 {
3789 struct elim_table *ep;
3790
3791 num_not_at_initial_offset = 0;
3792 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3793 {
3794 ep->previous_offset = ep->offset;
3795 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3796 num_not_at_initial_offset++;
3797 }
3798 }
3799
3800 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3801 replacement we currently believe is valid, mark it as not eliminable if X
3802 modifies DEST in any way other than by adding a constant integer to it.
3803
3804 If DEST is the frame pointer, we do nothing because we assume that
3805 all assignments to the hard frame pointer are nonlocal gotos and are being
3806 done at a time when they are valid and do not disturb anything else.
3807 Some machines want to eliminate a fake argument pointer with either the
3808 frame or stack pointer. Assignments to the hard frame pointer must not
3809 prevent this elimination.
3810
3811 Called via note_stores from reload before starting its passes to scan
3812 the insns of the function. */
3813
3814 static void
3815 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3816 {
3817 unsigned int i;
3818
3819 /* A SUBREG of a hard register here is just changing its mode. We should
3820 not see a SUBREG of an eliminable hard register, but check just in
3821 case. */
3822 if (GET_CODE (dest) == SUBREG)
3823 dest = SUBREG_REG (dest);
3824
3825 if (dest == hard_frame_pointer_rtx)
3826 return;
3827
3828 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3829 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3830 && (GET_CODE (x) != SET
3831 || GET_CODE (SET_SRC (x)) != PLUS
3832 || XEXP (SET_SRC (x), 0) != dest
3833 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3834 {
3835 reg_eliminate[i].can_eliminate_previous
3836 = reg_eliminate[i].can_eliminate = 0;
3837 num_eliminable--;
3838 }
3839 }
3840
3841 /* Verify that the initial elimination offsets did not change since the
3842 last call to set_initial_elim_offsets. This is used to catch cases
3843 where something illegal happened during reload_as_needed that could
3844 cause incorrect code to be generated if we did not check for it. */
3845
3846 static bool
3847 verify_initial_elim_offsets (void)
3848 {
3849 HOST_WIDE_INT t;
3850
3851 if (!num_eliminable)
3852 return true;
3853
3854 #ifdef ELIMINABLE_REGS
3855 {
3856 struct elim_table *ep;
3857
3858 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3859 {
3860 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3861 if (t != ep->initial_offset)
3862 return false;
3863 }
3864 }
3865 #else
3866 INITIAL_FRAME_POINTER_OFFSET (t);
3867 if (t != reg_eliminate[0].initial_offset)
3868 return false;
3869 #endif
3870
3871 return true;
3872 }
3873
3874 /* Reset all offsets on eliminable registers to their initial values. */
3875
3876 static void
3877 set_initial_elim_offsets (void)
3878 {
3879 struct elim_table *ep = reg_eliminate;
3880
3881 #ifdef ELIMINABLE_REGS
3882 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3883 {
3884 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3885 ep->previous_offset = ep->offset = ep->initial_offset;
3886 }
3887 #else
3888 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3889 ep->previous_offset = ep->offset = ep->initial_offset;
3890 #endif
3891
3892 num_not_at_initial_offset = 0;
3893 }
3894
3895 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3896
3897 static void
3898 set_initial_eh_label_offset (rtx label)
3899 {
3900 set_label_offsets (label, NULL_RTX, 1);
3901 }
3902
3903 /* Initialize the known label offsets.
3904 Set a known offset for each forced label to be at the initial offset
3905 of each elimination. We do this because we assume that all
3906 computed jumps occur from a location where each elimination is
3907 at its initial offset.
3908 For all other labels, show that we don't know the offsets. */
3909
3910 static void
3911 set_initial_label_offsets (void)
3912 {
3913 rtx x;
3914 memset (offsets_known_at, 0, num_labels);
3915
3916 for (x = forced_labels; x; x = XEXP (x, 1))
3917 if (XEXP (x, 0))
3918 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3919
3920 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3921 if (XEXP (x, 0))
3922 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3923
3924 for_each_eh_label (set_initial_eh_label_offset);
3925 }
3926
3927 /* Set all elimination offsets to the known values for the code label given
3928 by INSN. */
3929
3930 static void
3931 set_offsets_for_label (rtx insn)
3932 {
3933 unsigned int i;
3934 int label_nr = CODE_LABEL_NUMBER (insn);
3935 struct elim_table *ep;
3936
3937 num_not_at_initial_offset = 0;
3938 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3939 {
3940 ep->offset = ep->previous_offset
3941 = offsets_at[label_nr - first_label_num][i];
3942 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3943 num_not_at_initial_offset++;
3944 }
3945 }
3946
3947 /* See if anything that happened changes which eliminations are valid.
3948 For example, on the SPARC, whether or not the frame pointer can
3949 be eliminated can depend on what registers have been used. We need
3950 not check some conditions again (such as flag_omit_frame_pointer)
3951 since they can't have changed. */
3952
3953 static void
3954 update_eliminables (HARD_REG_SET *pset)
3955 {
3956 int previous_frame_pointer_needed = frame_pointer_needed;
3957 struct elim_table *ep;
3958
3959 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3960 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3961 && targetm.frame_pointer_required ())
3962 #ifdef ELIMINABLE_REGS
3963 || ! targetm.can_eliminate (ep->from, ep->to)
3964 #endif
3965 )
3966 ep->can_eliminate = 0;
3967
3968 /* Look for the case where we have discovered that we can't replace
3969 register A with register B and that means that we will now be
3970 trying to replace register A with register C. This means we can
3971 no longer replace register C with register B and we need to disable
3972 such an elimination, if it exists. This occurs often with A == ap,
3973 B == sp, and C == fp. */
3974
3975 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3976 {
3977 struct elim_table *op;
3978 int new_to = -1;
3979
3980 if (! ep->can_eliminate && ep->can_eliminate_previous)
3981 {
3982 /* Find the current elimination for ep->from, if there is a
3983 new one. */
3984 for (op = reg_eliminate;
3985 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3986 if (op->from == ep->from && op->can_eliminate)
3987 {
3988 new_to = op->to;
3989 break;
3990 }
3991
3992 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3993 disable it. */
3994 for (op = reg_eliminate;
3995 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3996 if (op->from == new_to && op->to == ep->to)
3997 op->can_eliminate = 0;
3998 }
3999 }
4000
4001 /* See if any registers that we thought we could eliminate the previous
4002 time are no longer eliminable. If so, something has changed and we
4003 must spill the register. Also, recompute the number of eliminable
4004 registers and see if the frame pointer is needed; it is if there is
4005 no elimination of the frame pointer that we can perform. */
4006
4007 frame_pointer_needed = 1;
4008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4009 {
4010 if (ep->can_eliminate
4011 && ep->from == FRAME_POINTER_REGNUM
4012 && ep->to != HARD_FRAME_POINTER_REGNUM
4013 && (! SUPPORTS_STACK_ALIGNMENT
4014 || ! crtl->stack_realign_needed))
4015 frame_pointer_needed = 0;
4016
4017 if (! ep->can_eliminate && ep->can_eliminate_previous)
4018 {
4019 ep->can_eliminate_previous = 0;
4020 SET_HARD_REG_BIT (*pset, ep->from);
4021 num_eliminable--;
4022 }
4023 }
4024
4025 /* If we didn't need a frame pointer last time, but we do now, spill
4026 the hard frame pointer. */
4027 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4028 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4029 }
4030
4031 /* Return true if X is used as the target register of an elimination. */
4032
4033 bool
4034 elimination_target_reg_p (rtx x)
4035 {
4036 struct elim_table *ep;
4037
4038 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4039 if (ep->to_rtx == x && ep->can_eliminate)
4040 return true;
4041
4042 return false;
4043 }
4044
4045 /* Initialize the table of registers to eliminate.
4046 Pre-condition: global flag frame_pointer_needed has been set before
4047 calling this function. */
4048
4049 static void
4050 init_elim_table (void)
4051 {
4052 struct elim_table *ep;
4053 #ifdef ELIMINABLE_REGS
4054 const struct elim_table_1 *ep1;
4055 #endif
4056
4057 if (!reg_eliminate)
4058 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4059
4060 num_eliminable = 0;
4061
4062 #ifdef ELIMINABLE_REGS
4063 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4064 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4065 {
4066 ep->from = ep1->from;
4067 ep->to = ep1->to;
4068 ep->can_eliminate = ep->can_eliminate_previous
4069 = (targetm.can_eliminate (ep->from, ep->to)
4070 && ! (ep->to == STACK_POINTER_REGNUM
4071 && frame_pointer_needed
4072 && (! SUPPORTS_STACK_ALIGNMENT
4073 || ! stack_realign_fp)));
4074 }
4075 #else
4076 reg_eliminate[0].from = reg_eliminate_1[0].from;
4077 reg_eliminate[0].to = reg_eliminate_1[0].to;
4078 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4079 = ! frame_pointer_needed;
4080 #endif
4081
4082 /* Count the number of eliminable registers and build the FROM and TO
4083 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4084 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4085 We depend on this. */
4086 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4087 {
4088 num_eliminable += ep->can_eliminate;
4089 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4090 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4091 }
4092 }
4093
4094 /* Find all the pseudo registers that didn't get hard regs
4095 but do have known equivalent constants or memory slots.
4096 These include parameters (known equivalent to parameter slots)
4097 and cse'd or loop-moved constant memory addresses.
4098
4099 Record constant equivalents in reg_equiv_constant
4100 so they will be substituted by find_reloads.
4101 Record memory equivalents in reg_mem_equiv so they can
4102 be substituted eventually by altering the REG-rtx's. */
4103
4104 static void
4105 init_eliminable_invariants (rtx first, bool do_subregs)
4106 {
4107 int i;
4108 rtx insn;
4109
4110 grow_reg_equivs ();
4111 if (do_subregs)
4112 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4113 else
4114 reg_max_ref_width = NULL;
4115
4116 num_eliminable_invariants = 0;
4117
4118 first_label_num = get_first_label_num ();
4119 num_labels = max_label_num () - first_label_num;
4120
4121 /* Allocate the tables used to store offset information at labels. */
4122 offsets_known_at = XNEWVEC (char, num_labels);
4123 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4124
4125 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4126 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4127 find largest such for each pseudo. FIRST is the head of the insn
4128 list. */
4129
4130 for (insn = first; insn; insn = NEXT_INSN (insn))
4131 {
4132 rtx set = single_set (insn);
4133
4134 /* We may introduce USEs that we want to remove at the end, so
4135 we'll mark them with QImode. Make sure there are no
4136 previously-marked insns left by say regmove. */
4137 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4138 && GET_MODE (insn) != VOIDmode)
4139 PUT_MODE (insn, VOIDmode);
4140
4141 if (do_subregs && NONDEBUG_INSN_P (insn))
4142 scan_paradoxical_subregs (PATTERN (insn));
4143
4144 if (set != 0 && REG_P (SET_DEST (set)))
4145 {
4146 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4147 rtx x;
4148
4149 if (! note)
4150 continue;
4151
4152 i = REGNO (SET_DEST (set));
4153 x = XEXP (note, 0);
4154
4155 if (i <= LAST_VIRTUAL_REGISTER)
4156 continue;
4157
4158 /* If flag_pic and we have constant, verify it's legitimate. */
4159 if (!CONSTANT_P (x)
4160 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4161 {
4162 /* It can happen that a REG_EQUIV note contains a MEM
4163 that is not a legitimate memory operand. As later
4164 stages of reload assume that all addresses found
4165 in the reg_equiv_* arrays were originally legitimate,
4166 we ignore such REG_EQUIV notes. */
4167 if (memory_operand (x, VOIDmode))
4168 {
4169 /* Always unshare the equivalence, so we can
4170 substitute into this insn without touching the
4171 equivalence. */
4172 reg_equiv_memory_loc (i) = copy_rtx (x);
4173 }
4174 else if (function_invariant_p (x))
4175 {
4176 enum machine_mode mode;
4177
4178 mode = GET_MODE (SET_DEST (set));
4179 if (GET_CODE (x) == PLUS)
4180 {
4181 /* This is PLUS of frame pointer and a constant,
4182 and might be shared. Unshare it. */
4183 reg_equiv_invariant (i) = copy_rtx (x);
4184 num_eliminable_invariants++;
4185 }
4186 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4187 {
4188 reg_equiv_invariant (i) = x;
4189 num_eliminable_invariants++;
4190 }
4191 else if (targetm.legitimate_constant_p (mode, x))
4192 reg_equiv_constant (i) = x;
4193 else
4194 {
4195 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4196 if (! reg_equiv_memory_loc (i))
4197 reg_equiv_init (i) = NULL_RTX;
4198 }
4199 }
4200 else
4201 {
4202 reg_equiv_init (i) = NULL_RTX;
4203 continue;
4204 }
4205 }
4206 else
4207 reg_equiv_init (i) = NULL_RTX;
4208 }
4209 }
4210
4211 if (dump_file)
4212 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4213 if (reg_equiv_init (i))
4214 {
4215 fprintf (dump_file, "init_insns for %u: ", i);
4216 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4217 fprintf (dump_file, "\n");
4218 }
4219 }
4220
4221 /* Indicate that we no longer have known memory locations or constants.
4222 Free all data involved in tracking these. */
4223
4224 static void
4225 free_reg_equiv (void)
4226 {
4227 int i;
4228
4229 free (offsets_known_at);
4230 free (offsets_at);
4231 offsets_at = 0;
4232 offsets_known_at = 0;
4233
4234 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4235 if (reg_equiv_alt_mem_list (i))
4236 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4237 vec_free (reg_equivs);
4238 }
4239 \f
4240 /* Kick all pseudos out of hard register REGNO.
4241
4242 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4243 because we found we can't eliminate some register. In the case, no pseudos
4244 are allowed to be in the register, even if they are only in a block that
4245 doesn't require spill registers, unlike the case when we are spilling this
4246 hard reg to produce another spill register.
4247
4248 Return nonzero if any pseudos needed to be kicked out. */
4249
4250 static void
4251 spill_hard_reg (unsigned int regno, int cant_eliminate)
4252 {
4253 int i;
4254
4255 if (cant_eliminate)
4256 {
4257 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4258 df_set_regs_ever_live (regno, true);
4259 }
4260
4261 /* Spill every pseudo reg that was allocated to this reg
4262 or to something that overlaps this reg. */
4263
4264 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4265 if (reg_renumber[i] >= 0
4266 && (unsigned int) reg_renumber[i] <= regno
4267 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4268 SET_REGNO_REG_SET (&spilled_pseudos, i);
4269 }
4270
4271 /* After find_reload_regs has been run for all insn that need reloads,
4272 and/or spill_hard_regs was called, this function is used to actually
4273 spill pseudo registers and try to reallocate them. It also sets up the
4274 spill_regs array for use by choose_reload_regs. */
4275
4276 static int
4277 finish_spills (int global)
4278 {
4279 struct insn_chain *chain;
4280 int something_changed = 0;
4281 unsigned i;
4282 reg_set_iterator rsi;
4283
4284 /* Build the spill_regs array for the function. */
4285 /* If there are some registers still to eliminate and one of the spill regs
4286 wasn't ever used before, additional stack space may have to be
4287 allocated to store this register. Thus, we may have changed the offset
4288 between the stack and frame pointers, so mark that something has changed.
4289
4290 One might think that we need only set VAL to 1 if this is a call-used
4291 register. However, the set of registers that must be saved by the
4292 prologue is not identical to the call-used set. For example, the
4293 register used by the call insn for the return PC is a call-used register,
4294 but must be saved by the prologue. */
4295
4296 n_spills = 0;
4297 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4298 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4299 {
4300 spill_reg_order[i] = n_spills;
4301 spill_regs[n_spills++] = i;
4302 if (num_eliminable && ! df_regs_ever_live_p (i))
4303 something_changed = 1;
4304 df_set_regs_ever_live (i, true);
4305 }
4306 else
4307 spill_reg_order[i] = -1;
4308
4309 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4310 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4311 {
4312 /* Record the current hard register the pseudo is allocated to
4313 in pseudo_previous_regs so we avoid reallocating it to the
4314 same hard reg in a later pass. */
4315 gcc_assert (reg_renumber[i] >= 0);
4316
4317 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4318 /* Mark it as no longer having a hard register home. */
4319 reg_renumber[i] = -1;
4320 if (ira_conflicts_p)
4321 /* Inform IRA about the change. */
4322 ira_mark_allocation_change (i);
4323 /* We will need to scan everything again. */
4324 something_changed = 1;
4325 }
4326
4327 /* Retry global register allocation if possible. */
4328 if (global && ira_conflicts_p)
4329 {
4330 unsigned int n;
4331
4332 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4333 /* For every insn that needs reloads, set the registers used as spill
4334 regs in pseudo_forbidden_regs for every pseudo live across the
4335 insn. */
4336 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4337 {
4338 EXECUTE_IF_SET_IN_REG_SET
4339 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4340 {
4341 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4342 chain->used_spill_regs);
4343 }
4344 EXECUTE_IF_SET_IN_REG_SET
4345 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4346 {
4347 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4348 chain->used_spill_regs);
4349 }
4350 }
4351
4352 /* Retry allocating the pseudos spilled in IRA and the
4353 reload. For each reg, merge the various reg sets that
4354 indicate which hard regs can't be used, and call
4355 ira_reassign_pseudos. */
4356 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4357 if (reg_old_renumber[i] != reg_renumber[i])
4358 {
4359 if (reg_renumber[i] < 0)
4360 temp_pseudo_reg_arr[n++] = i;
4361 else
4362 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4363 }
4364 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4365 bad_spill_regs_global,
4366 pseudo_forbidden_regs, pseudo_previous_regs,
4367 &spilled_pseudos))
4368 something_changed = 1;
4369 }
4370 /* Fix up the register information in the insn chain.
4371 This involves deleting those of the spilled pseudos which did not get
4372 a new hard register home from the live_{before,after} sets. */
4373 for (chain = reload_insn_chain; chain; chain = chain->next)
4374 {
4375 HARD_REG_SET used_by_pseudos;
4376 HARD_REG_SET used_by_pseudos2;
4377
4378 if (! ira_conflicts_p)
4379 {
4380 /* Don't do it for IRA because IRA and the reload still can
4381 assign hard registers to the spilled pseudos on next
4382 reload iterations. */
4383 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4384 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4385 }
4386 /* Mark any unallocated hard regs as available for spills. That
4387 makes inheritance work somewhat better. */
4388 if (chain->need_reload)
4389 {
4390 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4391 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4392 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4393
4394 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4395 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4396 /* Value of chain->used_spill_regs from previous iteration
4397 may be not included in the value calculated here because
4398 of possible removing caller-saves insns (see function
4399 delete_caller_save_insns. */
4400 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4401 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4402 }
4403 }
4404
4405 CLEAR_REG_SET (&changed_allocation_pseudos);
4406 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4407 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4408 {
4409 int regno = reg_renumber[i];
4410 if (reg_old_renumber[i] == regno)
4411 continue;
4412
4413 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4414
4415 alter_reg (i, reg_old_renumber[i], false);
4416 reg_old_renumber[i] = regno;
4417 if (dump_file)
4418 {
4419 if (regno == -1)
4420 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4421 else
4422 fprintf (dump_file, " Register %d now in %d.\n\n",
4423 i, reg_renumber[i]);
4424 }
4425 }
4426
4427 return something_changed;
4428 }
4429 \f
4430 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4431
4432 static void
4433 scan_paradoxical_subregs (rtx x)
4434 {
4435 int i;
4436 const char *fmt;
4437 enum rtx_code code = GET_CODE (x);
4438
4439 switch (code)
4440 {
4441 case REG:
4442 case CONST:
4443 case SYMBOL_REF:
4444 case LABEL_REF:
4445 CASE_CONST_ANY:
4446 case CC0:
4447 case PC:
4448 case USE:
4449 case CLOBBER:
4450 return;
4451
4452 case SUBREG:
4453 if (REG_P (SUBREG_REG (x))
4454 && (GET_MODE_SIZE (GET_MODE (x))
4455 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4456 {
4457 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4458 = GET_MODE_SIZE (GET_MODE (x));
4459 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4460 }
4461 return;
4462
4463 default:
4464 break;
4465 }
4466
4467 fmt = GET_RTX_FORMAT (code);
4468 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4469 {
4470 if (fmt[i] == 'e')
4471 scan_paradoxical_subregs (XEXP (x, i));
4472 else if (fmt[i] == 'E')
4473 {
4474 int j;
4475 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4476 scan_paradoxical_subregs (XVECEXP (x, i, j));
4477 }
4478 }
4479 }
4480
4481 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4482 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4483 and apply the corresponding narrowing subreg to *OTHER_PTR.
4484 Return true if the operands were changed, false otherwise. */
4485
4486 static bool
4487 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4488 {
4489 rtx op, inner, other, tem;
4490
4491 op = *op_ptr;
4492 if (!paradoxical_subreg_p (op))
4493 return false;
4494 inner = SUBREG_REG (op);
4495
4496 other = *other_ptr;
4497 tem = gen_lowpart_common (GET_MODE (inner), other);
4498 if (!tem)
4499 return false;
4500
4501 /* If the lowpart operation turned a hard register into a subreg,
4502 rather than simplifying it to another hard register, then the
4503 mode change cannot be properly represented. For example, OTHER
4504 might be valid in its current mode, but not in the new one. */
4505 if (GET_CODE (tem) == SUBREG
4506 && REG_P (other)
4507 && HARD_REGISTER_P (other))
4508 return false;
4509
4510 *op_ptr = inner;
4511 *other_ptr = tem;
4512 return true;
4513 }
4514 \f
4515 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4516 examine all of the reload insns between PREV and NEXT exclusive, and
4517 annotate all that may trap. */
4518
4519 static void
4520 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4521 {
4522 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4523 if (note == NULL)
4524 return;
4525 if (!insn_could_throw_p (insn))
4526 remove_note (insn, note);
4527 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4528 }
4529
4530 /* Reload pseudo-registers into hard regs around each insn as needed.
4531 Additional register load insns are output before the insn that needs it
4532 and perhaps store insns after insns that modify the reloaded pseudo reg.
4533
4534 reg_last_reload_reg and reg_reloaded_contents keep track of
4535 which registers are already available in reload registers.
4536 We update these for the reloads that we perform,
4537 as the insns are scanned. */
4538
4539 static void
4540 reload_as_needed (int live_known)
4541 {
4542 struct insn_chain *chain;
4543 #if defined (AUTO_INC_DEC)
4544 int i;
4545 #endif
4546 rtx x, marker;
4547
4548 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4549 memset (spill_reg_store, 0, sizeof spill_reg_store);
4550 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4551 INIT_REG_SET (&reg_has_output_reload);
4552 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4553 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4554
4555 set_initial_elim_offsets ();
4556
4557 /* Generate a marker insn that we will move around. */
4558 marker = emit_note (NOTE_INSN_DELETED);
4559 unlink_insn_chain (marker, marker);
4560
4561 for (chain = reload_insn_chain; chain; chain = chain->next)
4562 {
4563 rtx prev = 0;
4564 rtx insn = chain->insn;
4565 rtx old_next = NEXT_INSN (insn);
4566 #ifdef AUTO_INC_DEC
4567 rtx old_prev = PREV_INSN (insn);
4568 #endif
4569
4570 /* If we pass a label, copy the offsets from the label information
4571 into the current offsets of each elimination. */
4572 if (LABEL_P (insn))
4573 set_offsets_for_label (insn);
4574
4575 else if (INSN_P (insn))
4576 {
4577 regset_head regs_to_forget;
4578 INIT_REG_SET (&regs_to_forget);
4579 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4580
4581 /* If this is a USE and CLOBBER of a MEM, ensure that any
4582 references to eliminable registers have been removed. */
4583
4584 if ((GET_CODE (PATTERN (insn)) == USE
4585 || GET_CODE (PATTERN (insn)) == CLOBBER)
4586 && MEM_P (XEXP (PATTERN (insn), 0)))
4587 XEXP (XEXP (PATTERN (insn), 0), 0)
4588 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4589 GET_MODE (XEXP (PATTERN (insn), 0)),
4590 NULL_RTX);
4591
4592 /* If we need to do register elimination processing, do so.
4593 This might delete the insn, in which case we are done. */
4594 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4595 {
4596 eliminate_regs_in_insn (insn, 1);
4597 if (NOTE_P (insn))
4598 {
4599 update_eliminable_offsets ();
4600 CLEAR_REG_SET (&regs_to_forget);
4601 continue;
4602 }
4603 }
4604
4605 /* If need_elim is nonzero but need_reload is zero, one might think
4606 that we could simply set n_reloads to 0. However, find_reloads
4607 could have done some manipulation of the insn (such as swapping
4608 commutative operands), and these manipulations are lost during
4609 the first pass for every insn that needs register elimination.
4610 So the actions of find_reloads must be redone here. */
4611
4612 if (! chain->need_elim && ! chain->need_reload
4613 && ! chain->need_operand_change)
4614 n_reloads = 0;
4615 /* First find the pseudo regs that must be reloaded for this insn.
4616 This info is returned in the tables reload_... (see reload.h).
4617 Also modify the body of INSN by substituting RELOAD
4618 rtx's for those pseudo regs. */
4619 else
4620 {
4621 CLEAR_REG_SET (&reg_has_output_reload);
4622 CLEAR_HARD_REG_SET (reg_is_output_reload);
4623
4624 find_reloads (insn, 1, spill_indirect_levels, live_known,
4625 spill_reg_order);
4626 }
4627
4628 if (n_reloads > 0)
4629 {
4630 rtx next = NEXT_INSN (insn);
4631 rtx p;
4632
4633 /* ??? PREV can get deleted by reload inheritance.
4634 Work around this by emitting a marker note. */
4635 prev = PREV_INSN (insn);
4636 reorder_insns_nobb (marker, marker, prev);
4637
4638 /* Now compute which reload regs to reload them into. Perhaps
4639 reusing reload regs from previous insns, or else output
4640 load insns to reload them. Maybe output store insns too.
4641 Record the choices of reload reg in reload_reg_rtx. */
4642 choose_reload_regs (chain);
4643
4644 /* Generate the insns to reload operands into or out of
4645 their reload regs. */
4646 emit_reload_insns (chain);
4647
4648 /* Substitute the chosen reload regs from reload_reg_rtx
4649 into the insn's body (or perhaps into the bodies of other
4650 load and store insn that we just made for reloading
4651 and that we moved the structure into). */
4652 subst_reloads (insn);
4653
4654 prev = PREV_INSN (marker);
4655 unlink_insn_chain (marker, marker);
4656
4657 /* Adjust the exception region notes for loads and stores. */
4658 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4659 fixup_eh_region_note (insn, prev, next);
4660
4661 /* Adjust the location of REG_ARGS_SIZE. */
4662 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4663 if (p)
4664 {
4665 remove_note (insn, p);
4666 fixup_args_size_notes (prev, PREV_INSN (next),
4667 INTVAL (XEXP (p, 0)));
4668 }
4669
4670 /* If this was an ASM, make sure that all the reload insns
4671 we have generated are valid. If not, give an error
4672 and delete them. */
4673 if (asm_noperands (PATTERN (insn)) >= 0)
4674 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4675 if (p != insn && INSN_P (p)
4676 && GET_CODE (PATTERN (p)) != USE
4677 && (recog_memoized (p) < 0
4678 || (extract_insn (p), ! constrain_operands (1))))
4679 {
4680 error_for_asm (insn,
4681 "%<asm%> operand requires "
4682 "impossible reload");
4683 delete_insn (p);
4684 }
4685 }
4686
4687 if (num_eliminable && chain->need_elim)
4688 update_eliminable_offsets ();
4689
4690 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4691 is no longer validly lying around to save a future reload.
4692 Note that this does not detect pseudos that were reloaded
4693 for this insn in order to be stored in
4694 (obeying register constraints). That is correct; such reload
4695 registers ARE still valid. */
4696 forget_marked_reloads (&regs_to_forget);
4697 CLEAR_REG_SET (&regs_to_forget);
4698
4699 /* There may have been CLOBBER insns placed after INSN. So scan
4700 between INSN and NEXT and use them to forget old reloads. */
4701 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4702 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4703 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4704
4705 #ifdef AUTO_INC_DEC
4706 /* Likewise for regs altered by auto-increment in this insn.
4707 REG_INC notes have been changed by reloading:
4708 find_reloads_address_1 records substitutions for them,
4709 which have been performed by subst_reloads above. */
4710 for (i = n_reloads - 1; i >= 0; i--)
4711 {
4712 rtx in_reg = rld[i].in_reg;
4713 if (in_reg)
4714 {
4715 enum rtx_code code = GET_CODE (in_reg);
4716 /* PRE_INC / PRE_DEC will have the reload register ending up
4717 with the same value as the stack slot, but that doesn't
4718 hold true for POST_INC / POST_DEC. Either we have to
4719 convert the memory access to a true POST_INC / POST_DEC,
4720 or we can't use the reload register for inheritance. */
4721 if ((code == POST_INC || code == POST_DEC)
4722 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4723 REGNO (rld[i].reg_rtx))
4724 /* Make sure it is the inc/dec pseudo, and not
4725 some other (e.g. output operand) pseudo. */
4726 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4727 == REGNO (XEXP (in_reg, 0))))
4728
4729 {
4730 rtx reload_reg = rld[i].reg_rtx;
4731 enum machine_mode mode = GET_MODE (reload_reg);
4732 int n = 0;
4733 rtx p;
4734
4735 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4736 {
4737 /* We really want to ignore REG_INC notes here, so
4738 use PATTERN (p) as argument to reg_set_p . */
4739 if (reg_set_p (reload_reg, PATTERN (p)))
4740 break;
4741 n = count_occurrences (PATTERN (p), reload_reg, 0);
4742 if (! n)
4743 continue;
4744 if (n == 1)
4745 {
4746 rtx replace_reg
4747 = gen_rtx_fmt_e (code, mode, reload_reg);
4748
4749 validate_replace_rtx_group (reload_reg,
4750 replace_reg, p);
4751 n = verify_changes (0);
4752
4753 /* We must also verify that the constraints
4754 are met after the replacement. Make sure
4755 extract_insn is only called for an insn
4756 where the replacements were found to be
4757 valid so far. */
4758 if (n)
4759 {
4760 extract_insn (p);
4761 n = constrain_operands (1);
4762 }
4763
4764 /* If the constraints were not met, then
4765 undo the replacement, else confirm it. */
4766 if (!n)
4767 cancel_changes (0);
4768 else
4769 confirm_change_group ();
4770 }
4771 break;
4772 }
4773 if (n == 1)
4774 {
4775 add_reg_note (p, REG_INC, reload_reg);
4776 /* Mark this as having an output reload so that the
4777 REG_INC processing code below won't invalidate
4778 the reload for inheritance. */
4779 SET_HARD_REG_BIT (reg_is_output_reload,
4780 REGNO (reload_reg));
4781 SET_REGNO_REG_SET (&reg_has_output_reload,
4782 REGNO (XEXP (in_reg, 0)));
4783 }
4784 else
4785 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4786 NULL);
4787 }
4788 else if ((code == PRE_INC || code == PRE_DEC)
4789 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4790 REGNO (rld[i].reg_rtx))
4791 /* Make sure it is the inc/dec pseudo, and not
4792 some other (e.g. output operand) pseudo. */
4793 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4794 == REGNO (XEXP (in_reg, 0))))
4795 {
4796 SET_HARD_REG_BIT (reg_is_output_reload,
4797 REGNO (rld[i].reg_rtx));
4798 SET_REGNO_REG_SET (&reg_has_output_reload,
4799 REGNO (XEXP (in_reg, 0)));
4800 }
4801 else if (code == PRE_INC || code == PRE_DEC
4802 || code == POST_INC || code == POST_DEC)
4803 {
4804 int in_regno = REGNO (XEXP (in_reg, 0));
4805
4806 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4807 {
4808 int in_hard_regno;
4809 bool forget_p = true;
4810
4811 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4812 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4813 in_hard_regno))
4814 {
4815 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4816 x != old_next;
4817 x = NEXT_INSN (x))
4818 if (x == reg_reloaded_insn[in_hard_regno])
4819 {
4820 forget_p = false;
4821 break;
4822 }
4823 }
4824 /* If for some reasons, we didn't set up
4825 reg_last_reload_reg in this insn,
4826 invalidate inheritance from previous
4827 insns for the incremented/decremented
4828 register. Such registers will be not in
4829 reg_has_output_reload. Invalidate it
4830 also if the corresponding element in
4831 reg_reloaded_insn is also
4832 invalidated. */
4833 if (forget_p)
4834 forget_old_reloads_1 (XEXP (in_reg, 0),
4835 NULL_RTX, NULL);
4836 }
4837 }
4838 }
4839 }
4840 /* If a pseudo that got a hard register is auto-incremented,
4841 we must purge records of copying it into pseudos without
4842 hard registers. */
4843 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4844 if (REG_NOTE_KIND (x) == REG_INC)
4845 {
4846 /* See if this pseudo reg was reloaded in this insn.
4847 If so, its last-reload info is still valid
4848 because it is based on this insn's reload. */
4849 for (i = 0; i < n_reloads; i++)
4850 if (rld[i].out == XEXP (x, 0))
4851 break;
4852
4853 if (i == n_reloads)
4854 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4855 }
4856 #endif
4857 }
4858 /* A reload reg's contents are unknown after a label. */
4859 if (LABEL_P (insn))
4860 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4861
4862 /* Don't assume a reload reg is still good after a call insn
4863 if it is a call-used reg, or if it contains a value that will
4864 be partially clobbered by the call. */
4865 else if (CALL_P (insn))
4866 {
4867 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4868 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4869
4870 /* If this is a call to a setjmp-type function, we must not
4871 reuse any reload reg contents across the call; that will
4872 just be clobbered by other uses of the register in later
4873 code, before the longjmp. */
4874 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4875 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4876 }
4877 }
4878
4879 /* Clean up. */
4880 free (reg_last_reload_reg);
4881 CLEAR_REG_SET (&reg_has_output_reload);
4882 }
4883
4884 /* Discard all record of any value reloaded from X,
4885 or reloaded in X from someplace else;
4886 unless X is an output reload reg of the current insn.
4887
4888 X may be a hard reg (the reload reg)
4889 or it may be a pseudo reg that was reloaded from.
4890
4891 When DATA is non-NULL just mark the registers in regset
4892 to be forgotten later. */
4893
4894 static void
4895 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4896 void *data)
4897 {
4898 unsigned int regno;
4899 unsigned int nr;
4900 regset regs = (regset) data;
4901
4902 /* note_stores does give us subregs of hard regs,
4903 subreg_regno_offset requires a hard reg. */
4904 while (GET_CODE (x) == SUBREG)
4905 {
4906 /* We ignore the subreg offset when calculating the regno,
4907 because we are using the entire underlying hard register
4908 below. */
4909 x = SUBREG_REG (x);
4910 }
4911
4912 if (!REG_P (x))
4913 return;
4914
4915 regno = REGNO (x);
4916
4917 if (regno >= FIRST_PSEUDO_REGISTER)
4918 nr = 1;
4919 else
4920 {
4921 unsigned int i;
4922
4923 nr = hard_regno_nregs[regno][GET_MODE (x)];
4924 /* Storing into a spilled-reg invalidates its contents.
4925 This can happen if a block-local pseudo is allocated to that reg
4926 and it wasn't spilled because this block's total need is 0.
4927 Then some insn might have an optional reload and use this reg. */
4928 if (!regs)
4929 for (i = 0; i < nr; i++)
4930 /* But don't do this if the reg actually serves as an output
4931 reload reg in the current instruction. */
4932 if (n_reloads == 0
4933 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4934 {
4935 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4936 spill_reg_store[regno + i] = 0;
4937 }
4938 }
4939
4940 if (regs)
4941 while (nr-- > 0)
4942 SET_REGNO_REG_SET (regs, regno + nr);
4943 else
4944 {
4945 /* Since value of X has changed,
4946 forget any value previously copied from it. */
4947
4948 while (nr-- > 0)
4949 /* But don't forget a copy if this is the output reload
4950 that establishes the copy's validity. */
4951 if (n_reloads == 0
4952 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4953 reg_last_reload_reg[regno + nr] = 0;
4954 }
4955 }
4956
4957 /* Forget the reloads marked in regset by previous function. */
4958 static void
4959 forget_marked_reloads (regset regs)
4960 {
4961 unsigned int reg;
4962 reg_set_iterator rsi;
4963 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4964 {
4965 if (reg < FIRST_PSEUDO_REGISTER
4966 /* But don't do this if the reg actually serves as an output
4967 reload reg in the current instruction. */
4968 && (n_reloads == 0
4969 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4970 {
4971 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4972 spill_reg_store[reg] = 0;
4973 }
4974 if (n_reloads == 0
4975 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4976 reg_last_reload_reg[reg] = 0;
4977 }
4978 }
4979 \f
4980 /* The following HARD_REG_SETs indicate when each hard register is
4981 used for a reload of various parts of the current insn. */
4982
4983 /* If reg is unavailable for all reloads. */
4984 static HARD_REG_SET reload_reg_unavailable;
4985 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4986 static HARD_REG_SET reload_reg_used;
4987 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4988 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4989 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4990 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4991 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4992 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4993 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4994 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4995 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4996 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4997 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4998 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4999 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5000 static HARD_REG_SET reload_reg_used_in_op_addr;
5001 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5002 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5003 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5004 static HARD_REG_SET reload_reg_used_in_insn;
5005 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5006 static HARD_REG_SET reload_reg_used_in_other_addr;
5007
5008 /* If reg is in use as a reload reg for any sort of reload. */
5009 static HARD_REG_SET reload_reg_used_at_all;
5010
5011 /* If reg is use as an inherited reload. We just mark the first register
5012 in the group. */
5013 static HARD_REG_SET reload_reg_used_for_inherit;
5014
5015 /* Records which hard regs are used in any way, either as explicit use or
5016 by being allocated to a pseudo during any point of the current insn. */
5017 static HARD_REG_SET reg_used_in_insn;
5018
5019 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5020 TYPE. MODE is used to indicate how many consecutive regs are
5021 actually used. */
5022
5023 static void
5024 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5025 enum machine_mode mode)
5026 {
5027 switch (type)
5028 {
5029 case RELOAD_OTHER:
5030 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5031 break;
5032
5033 case RELOAD_FOR_INPUT_ADDRESS:
5034 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5035 break;
5036
5037 case RELOAD_FOR_INPADDR_ADDRESS:
5038 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5039 break;
5040
5041 case RELOAD_FOR_OUTPUT_ADDRESS:
5042 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5043 break;
5044
5045 case RELOAD_FOR_OUTADDR_ADDRESS:
5046 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5047 break;
5048
5049 case RELOAD_FOR_OPERAND_ADDRESS:
5050 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5051 break;
5052
5053 case RELOAD_FOR_OPADDR_ADDR:
5054 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5055 break;
5056
5057 case RELOAD_FOR_OTHER_ADDRESS:
5058 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5059 break;
5060
5061 case RELOAD_FOR_INPUT:
5062 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5063 break;
5064
5065 case RELOAD_FOR_OUTPUT:
5066 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5067 break;
5068
5069 case RELOAD_FOR_INSN:
5070 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5071 break;
5072 }
5073
5074 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5075 }
5076
5077 /* Similarly, but show REGNO is no longer in use for a reload. */
5078
5079 static void
5080 clear_reload_reg_in_use (unsigned int regno, int opnum,
5081 enum reload_type type, enum machine_mode mode)
5082 {
5083 unsigned int nregs = hard_regno_nregs[regno][mode];
5084 unsigned int start_regno, end_regno, r;
5085 int i;
5086 /* A complication is that for some reload types, inheritance might
5087 allow multiple reloads of the same types to share a reload register.
5088 We set check_opnum if we have to check only reloads with the same
5089 operand number, and check_any if we have to check all reloads. */
5090 int check_opnum = 0;
5091 int check_any = 0;
5092 HARD_REG_SET *used_in_set;
5093
5094 switch (type)
5095 {
5096 case RELOAD_OTHER:
5097 used_in_set = &reload_reg_used;
5098 break;
5099
5100 case RELOAD_FOR_INPUT_ADDRESS:
5101 used_in_set = &reload_reg_used_in_input_addr[opnum];
5102 break;
5103
5104 case RELOAD_FOR_INPADDR_ADDRESS:
5105 check_opnum = 1;
5106 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5107 break;
5108
5109 case RELOAD_FOR_OUTPUT_ADDRESS:
5110 used_in_set = &reload_reg_used_in_output_addr[opnum];
5111 break;
5112
5113 case RELOAD_FOR_OUTADDR_ADDRESS:
5114 check_opnum = 1;
5115 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5116 break;
5117
5118 case RELOAD_FOR_OPERAND_ADDRESS:
5119 used_in_set = &reload_reg_used_in_op_addr;
5120 break;
5121
5122 case RELOAD_FOR_OPADDR_ADDR:
5123 check_any = 1;
5124 used_in_set = &reload_reg_used_in_op_addr_reload;
5125 break;
5126
5127 case RELOAD_FOR_OTHER_ADDRESS:
5128 used_in_set = &reload_reg_used_in_other_addr;
5129 check_any = 1;
5130 break;
5131
5132 case RELOAD_FOR_INPUT:
5133 used_in_set = &reload_reg_used_in_input[opnum];
5134 break;
5135
5136 case RELOAD_FOR_OUTPUT:
5137 used_in_set = &reload_reg_used_in_output[opnum];
5138 break;
5139
5140 case RELOAD_FOR_INSN:
5141 used_in_set = &reload_reg_used_in_insn;
5142 break;
5143 default:
5144 gcc_unreachable ();
5145 }
5146 /* We resolve conflicts with remaining reloads of the same type by
5147 excluding the intervals of reload registers by them from the
5148 interval of freed reload registers. Since we only keep track of
5149 one set of interval bounds, we might have to exclude somewhat
5150 more than what would be necessary if we used a HARD_REG_SET here.
5151 But this should only happen very infrequently, so there should
5152 be no reason to worry about it. */
5153
5154 start_regno = regno;
5155 end_regno = regno + nregs;
5156 if (check_opnum || check_any)
5157 {
5158 for (i = n_reloads - 1; i >= 0; i--)
5159 {
5160 if (rld[i].when_needed == type
5161 && (check_any || rld[i].opnum == opnum)
5162 && rld[i].reg_rtx)
5163 {
5164 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5165 unsigned int conflict_end
5166 = end_hard_regno (rld[i].mode, conflict_start);
5167
5168 /* If there is an overlap with the first to-be-freed register,
5169 adjust the interval start. */
5170 if (conflict_start <= start_regno && conflict_end > start_regno)
5171 start_regno = conflict_end;
5172 /* Otherwise, if there is a conflict with one of the other
5173 to-be-freed registers, adjust the interval end. */
5174 if (conflict_start > start_regno && conflict_start < end_regno)
5175 end_regno = conflict_start;
5176 }
5177 }
5178 }
5179
5180 for (r = start_regno; r < end_regno; r++)
5181 CLEAR_HARD_REG_BIT (*used_in_set, r);
5182 }
5183
5184 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5185 specified by OPNUM and TYPE. */
5186
5187 static int
5188 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5189 {
5190 int i;
5191
5192 /* In use for a RELOAD_OTHER means it's not available for anything. */
5193 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5194 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5195 return 0;
5196
5197 switch (type)
5198 {
5199 case RELOAD_OTHER:
5200 /* In use for anything means we can't use it for RELOAD_OTHER. */
5201 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5202 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5203 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5204 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5205 return 0;
5206
5207 for (i = 0; i < reload_n_operands; i++)
5208 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5209 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5210 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5214 return 0;
5215
5216 return 1;
5217
5218 case RELOAD_FOR_INPUT:
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5221 return 0;
5222
5223 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5224 return 0;
5225
5226 /* If it is used for some other input, can't use it. */
5227 for (i = 0; i < reload_n_operands; i++)
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5229 return 0;
5230
5231 /* If it is used in a later operand's address, can't use it. */
5232 for (i = opnum + 1; i < reload_n_operands; i++)
5233 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5234 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5235 return 0;
5236
5237 return 1;
5238
5239 case RELOAD_FOR_INPUT_ADDRESS:
5240 /* Can't use a register if it is used for an input address for this
5241 operand or used as an input in an earlier one. */
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5243 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5244 return 0;
5245
5246 for (i = 0; i < opnum; i++)
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5248 return 0;
5249
5250 return 1;
5251
5252 case RELOAD_FOR_INPADDR_ADDRESS:
5253 /* Can't use a register if it is used for an input address
5254 for this operand or used as an input in an earlier
5255 one. */
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5257 return 0;
5258
5259 for (i = 0; i < opnum; i++)
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5261 return 0;
5262
5263 return 1;
5264
5265 case RELOAD_FOR_OUTPUT_ADDRESS:
5266 /* Can't use a register if it is used for an output address for this
5267 operand or used as an output in this or a later operand. Note
5268 that multiple output operands are emitted in reverse order, so
5269 the conflicting ones are those with lower indices. */
5270 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5271 return 0;
5272
5273 for (i = 0; i <= opnum; i++)
5274 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5275 return 0;
5276
5277 return 1;
5278
5279 case RELOAD_FOR_OUTADDR_ADDRESS:
5280 /* Can't use a register if it is used for an output address
5281 for this operand or used as an output in this or a
5282 later operand. Note that multiple output operands are
5283 emitted in reverse order, so the conflicting ones are
5284 those with lower indices. */
5285 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5286 return 0;
5287
5288 for (i = 0; i <= opnum; i++)
5289 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5290 return 0;
5291
5292 return 1;
5293
5294 case RELOAD_FOR_OPERAND_ADDRESS:
5295 for (i = 0; i < reload_n_operands; i++)
5296 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5297 return 0;
5298
5299 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5300 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5301
5302 case RELOAD_FOR_OPADDR_ADDR:
5303 for (i = 0; i < reload_n_operands; i++)
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5305 return 0;
5306
5307 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5308
5309 case RELOAD_FOR_OUTPUT:
5310 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5311 outputs, or an operand address for this or an earlier output.
5312 Note that multiple output operands are emitted in reverse order,
5313 so the conflicting ones are those with higher indices. */
5314 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5315 return 0;
5316
5317 for (i = 0; i < reload_n_operands; i++)
5318 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5319 return 0;
5320
5321 for (i = opnum; i < reload_n_operands; i++)
5322 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5323 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5324 return 0;
5325
5326 return 1;
5327
5328 case RELOAD_FOR_INSN:
5329 for (i = 0; i < reload_n_operands; i++)
5330 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5331 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5332 return 0;
5333
5334 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5335 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5336
5337 case RELOAD_FOR_OTHER_ADDRESS:
5338 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5339
5340 default:
5341 gcc_unreachable ();
5342 }
5343 }
5344
5345 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5346 the number RELOADNUM, is still available in REGNO at the end of the insn.
5347
5348 We can assume that the reload reg was already tested for availability
5349 at the time it is needed, and we should not check this again,
5350 in case the reg has already been marked in use. */
5351
5352 static int
5353 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5354 {
5355 int opnum = rld[reloadnum].opnum;
5356 enum reload_type type = rld[reloadnum].when_needed;
5357 int i;
5358
5359 /* See if there is a reload with the same type for this operand, using
5360 the same register. This case is not handled by the code below. */
5361 for (i = reloadnum + 1; i < n_reloads; i++)
5362 {
5363 rtx reg;
5364 int nregs;
5365
5366 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5367 continue;
5368 reg = rld[i].reg_rtx;
5369 if (reg == NULL_RTX)
5370 continue;
5371 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5372 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5373 return 0;
5374 }
5375
5376 switch (type)
5377 {
5378 case RELOAD_OTHER:
5379 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5380 its value must reach the end. */
5381 return 1;
5382
5383 /* If this use is for part of the insn,
5384 its value reaches if no subsequent part uses the same register.
5385 Just like the above function, don't try to do this with lots
5386 of fallthroughs. */
5387
5388 case RELOAD_FOR_OTHER_ADDRESS:
5389 /* Here we check for everything else, since these don't conflict
5390 with anything else and everything comes later. */
5391
5392 for (i = 0; i < reload_n_operands; i++)
5393 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5394 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5395 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5398 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5399 return 0;
5400
5401 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5402 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5403 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5404 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5405
5406 case RELOAD_FOR_INPUT_ADDRESS:
5407 case RELOAD_FOR_INPADDR_ADDRESS:
5408 /* Similar, except that we check only for this and subsequent inputs
5409 and the address of only subsequent inputs and we do not need
5410 to check for RELOAD_OTHER objects since they are known not to
5411 conflict. */
5412
5413 for (i = opnum; i < reload_n_operands; i++)
5414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5415 return 0;
5416
5417 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5418 could be killed if the register is also used by reload with type
5419 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5420 if (type == RELOAD_FOR_INPADDR_ADDRESS
5421 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5422 return 0;
5423
5424 for (i = opnum + 1; i < reload_n_operands; i++)
5425 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5426 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5427 return 0;
5428
5429 for (i = 0; i < reload_n_operands; i++)
5430 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5433 return 0;
5434
5435 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5436 return 0;
5437
5438 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5439 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5440 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5441
5442 case RELOAD_FOR_INPUT:
5443 /* Similar to input address, except we start at the next operand for
5444 both input and input address and we do not check for
5445 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5446 would conflict. */
5447
5448 for (i = opnum + 1; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5452 return 0;
5453
5454 /* ... fall through ... */
5455
5456 case RELOAD_FOR_OPERAND_ADDRESS:
5457 /* Check outputs and their addresses. */
5458
5459 for (i = 0; i < reload_n_operands; i++)
5460 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5462 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5463 return 0;
5464
5465 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5466
5467 case RELOAD_FOR_OPADDR_ADDR:
5468 for (i = 0; i < reload_n_operands; i++)
5469 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5470 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5471 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5472 return 0;
5473
5474 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5475 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5476 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5477
5478 case RELOAD_FOR_INSN:
5479 /* These conflict with other outputs with RELOAD_OTHER. So
5480 we need only check for output addresses. */
5481
5482 opnum = reload_n_operands;
5483
5484 /* ... fall through ... */
5485
5486 case RELOAD_FOR_OUTPUT:
5487 case RELOAD_FOR_OUTPUT_ADDRESS:
5488 case RELOAD_FOR_OUTADDR_ADDRESS:
5489 /* We already know these can't conflict with a later output. So the
5490 only thing to check are later output addresses.
5491 Note that multiple output operands are emitted in reverse order,
5492 so the conflicting ones are those with lower indices. */
5493 for (i = 0; i < opnum; i++)
5494 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5495 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5496 return 0;
5497
5498 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5499 could be killed if the register is also used by reload with type
5500 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5501 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5502 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5503 return 0;
5504
5505 return 1;
5506
5507 default:
5508 gcc_unreachable ();
5509 }
5510 }
5511
5512 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5513 every register in REG. */
5514
5515 static bool
5516 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5517 {
5518 unsigned int i;
5519
5520 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5521 if (!reload_reg_reaches_end_p (i, reloadnum))
5522 return false;
5523 return true;
5524 }
5525 \f
5526
5527 /* Returns whether R1 and R2 are uniquely chained: the value of one
5528 is used by the other, and that value is not used by any other
5529 reload for this insn. This is used to partially undo the decision
5530 made in find_reloads when in the case of multiple
5531 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5532 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5533 reloads. This code tries to avoid the conflict created by that
5534 change. It might be cleaner to explicitly keep track of which
5535 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5536 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5537 this after the fact. */
5538 static bool
5539 reloads_unique_chain_p (int r1, int r2)
5540 {
5541 int i;
5542
5543 /* We only check input reloads. */
5544 if (! rld[r1].in || ! rld[r2].in)
5545 return false;
5546
5547 /* Avoid anything with output reloads. */
5548 if (rld[r1].out || rld[r2].out)
5549 return false;
5550
5551 /* "chained" means one reload is a component of the other reload,
5552 not the same as the other reload. */
5553 if (rld[r1].opnum != rld[r2].opnum
5554 || rtx_equal_p (rld[r1].in, rld[r2].in)
5555 || rld[r1].optional || rld[r2].optional
5556 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5557 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5558 return false;
5559
5560 for (i = 0; i < n_reloads; i ++)
5561 /* Look for input reloads that aren't our two */
5562 if (i != r1 && i != r2 && rld[i].in)
5563 {
5564 /* If our reload is mentioned at all, it isn't a simple chain. */
5565 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5566 return false;
5567 }
5568 return true;
5569 }
5570
5571 /* The recursive function change all occurrences of WHAT in *WHERE
5572 to REPL. */
5573 static void
5574 substitute (rtx *where, const_rtx what, rtx repl)
5575 {
5576 const char *fmt;
5577 int i;
5578 enum rtx_code code;
5579
5580 if (*where == 0)
5581 return;
5582
5583 if (*where == what || rtx_equal_p (*where, what))
5584 {
5585 /* Record the location of the changed rtx. */
5586 substitute_stack.safe_push (where);
5587 *where = repl;
5588 return;
5589 }
5590
5591 code = GET_CODE (*where);
5592 fmt = GET_RTX_FORMAT (code);
5593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5594 {
5595 if (fmt[i] == 'E')
5596 {
5597 int j;
5598
5599 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5600 substitute (&XVECEXP (*where, i, j), what, repl);
5601 }
5602 else if (fmt[i] == 'e')
5603 substitute (&XEXP (*where, i), what, repl);
5604 }
5605 }
5606
5607 /* The function returns TRUE if chain of reload R1 and R2 (in any
5608 order) can be evaluated without usage of intermediate register for
5609 the reload containing another reload. It is important to see
5610 gen_reload to understand what the function is trying to do. As an
5611 example, let us have reload chain
5612
5613 r2: const
5614 r1: <something> + const
5615
5616 and reload R2 got reload reg HR. The function returns true if
5617 there is a correct insn HR = HR + <something>. Otherwise,
5618 gen_reload will use intermediate register (and this is the reload
5619 reg for R1) to reload <something>.
5620
5621 We need this function to find a conflict for chain reloads. In our
5622 example, if HR = HR + <something> is incorrect insn, then we cannot
5623 use HR as a reload register for R2. If we do use it then we get a
5624 wrong code:
5625
5626 HR = const
5627 HR = <something>
5628 HR = HR + HR
5629
5630 */
5631 static bool
5632 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5633 {
5634 /* Assume other cases in gen_reload are not possible for
5635 chain reloads or do need an intermediate hard registers. */
5636 bool result = true;
5637 int regno, n, code;
5638 rtx out, in, insn;
5639 rtx last = get_last_insn ();
5640
5641 /* Make r2 a component of r1. */
5642 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5643 {
5644 n = r1;
5645 r1 = r2;
5646 r2 = n;
5647 }
5648 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5649 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5650 gcc_assert (regno >= 0);
5651 out = gen_rtx_REG (rld[r1].mode, regno);
5652 in = rld[r1].in;
5653 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5654
5655 /* If IN is a paradoxical SUBREG, remove it and try to put the
5656 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5657 strip_paradoxical_subreg (&in, &out);
5658
5659 if (GET_CODE (in) == PLUS
5660 && (REG_P (XEXP (in, 0))
5661 || GET_CODE (XEXP (in, 0)) == SUBREG
5662 || MEM_P (XEXP (in, 0)))
5663 && (REG_P (XEXP (in, 1))
5664 || GET_CODE (XEXP (in, 1)) == SUBREG
5665 || CONSTANT_P (XEXP (in, 1))
5666 || MEM_P (XEXP (in, 1))))
5667 {
5668 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5669 code = recog_memoized (insn);
5670 result = false;
5671
5672 if (code >= 0)
5673 {
5674 extract_insn (insn);
5675 /* We want constrain operands to treat this insn strictly in
5676 its validity determination, i.e., the way it would after
5677 reload has completed. */
5678 result = constrain_operands (1);
5679 }
5680
5681 delete_insns_since (last);
5682 }
5683
5684 /* Restore the original value at each changed address within R1. */
5685 while (!substitute_stack.is_empty ())
5686 {
5687 rtx *where = substitute_stack.pop ();
5688 *where = rld[r2].in;
5689 }
5690
5691 return result;
5692 }
5693
5694 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5695 Return 0 otherwise.
5696
5697 This function uses the same algorithm as reload_reg_free_p above. */
5698
5699 static int
5700 reloads_conflict (int r1, int r2)
5701 {
5702 enum reload_type r1_type = rld[r1].when_needed;
5703 enum reload_type r2_type = rld[r2].when_needed;
5704 int r1_opnum = rld[r1].opnum;
5705 int r2_opnum = rld[r2].opnum;
5706
5707 /* RELOAD_OTHER conflicts with everything. */
5708 if (r2_type == RELOAD_OTHER)
5709 return 1;
5710
5711 /* Otherwise, check conflicts differently for each type. */
5712
5713 switch (r1_type)
5714 {
5715 case RELOAD_FOR_INPUT:
5716 return (r2_type == RELOAD_FOR_INSN
5717 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5718 || r2_type == RELOAD_FOR_OPADDR_ADDR
5719 || r2_type == RELOAD_FOR_INPUT
5720 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5721 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5722 && r2_opnum > r1_opnum));
5723
5724 case RELOAD_FOR_INPUT_ADDRESS:
5725 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5726 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5727
5728 case RELOAD_FOR_INPADDR_ADDRESS:
5729 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5730 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5731
5732 case RELOAD_FOR_OUTPUT_ADDRESS:
5733 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5734 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5735
5736 case RELOAD_FOR_OUTADDR_ADDRESS:
5737 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5738 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5739
5740 case RELOAD_FOR_OPERAND_ADDRESS:
5741 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5742 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5743 && (!reloads_unique_chain_p (r1, r2)
5744 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5745
5746 case RELOAD_FOR_OPADDR_ADDR:
5747 return (r2_type == RELOAD_FOR_INPUT
5748 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5749
5750 case RELOAD_FOR_OUTPUT:
5751 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5752 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5753 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5754 && r2_opnum >= r1_opnum));
5755
5756 case RELOAD_FOR_INSN:
5757 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5758 || r2_type == RELOAD_FOR_INSN
5759 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5760
5761 case RELOAD_FOR_OTHER_ADDRESS:
5762 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5763
5764 case RELOAD_OTHER:
5765 return 1;
5766
5767 default:
5768 gcc_unreachable ();
5769 }
5770 }
5771 \f
5772 /* Indexed by reload number, 1 if incoming value
5773 inherited from previous insns. */
5774 static char reload_inherited[MAX_RELOADS];
5775
5776 /* For an inherited reload, this is the insn the reload was inherited from,
5777 if we know it. Otherwise, this is 0. */
5778 static rtx reload_inheritance_insn[MAX_RELOADS];
5779
5780 /* If nonzero, this is a place to get the value of the reload,
5781 rather than using reload_in. */
5782 static rtx reload_override_in[MAX_RELOADS];
5783
5784 /* For each reload, the hard register number of the register used,
5785 or -1 if we did not need a register for this reload. */
5786 static int reload_spill_index[MAX_RELOADS];
5787
5788 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5789 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5790
5791 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5792 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5793
5794 /* Subroutine of free_for_value_p, used to check a single register.
5795 START_REGNO is the starting regno of the full reload register
5796 (possibly comprising multiple hard registers) that we are considering. */
5797
5798 static int
5799 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5800 enum reload_type type, rtx value, rtx out,
5801 int reloadnum, int ignore_address_reloads)
5802 {
5803 int time1;
5804 /* Set if we see an input reload that must not share its reload register
5805 with any new earlyclobber, but might otherwise share the reload
5806 register with an output or input-output reload. */
5807 int check_earlyclobber = 0;
5808 int i;
5809 int copy = 0;
5810
5811 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5812 return 0;
5813
5814 if (out == const0_rtx)
5815 {
5816 copy = 1;
5817 out = NULL_RTX;
5818 }
5819
5820 /* We use some pseudo 'time' value to check if the lifetimes of the
5821 new register use would overlap with the one of a previous reload
5822 that is not read-only or uses a different value.
5823 The 'time' used doesn't have to be linear in any shape or form, just
5824 monotonic.
5825 Some reload types use different 'buckets' for each operand.
5826 So there are MAX_RECOG_OPERANDS different time values for each
5827 such reload type.
5828 We compute TIME1 as the time when the register for the prospective
5829 new reload ceases to be live, and TIME2 for each existing
5830 reload as the time when that the reload register of that reload
5831 becomes live.
5832 Where there is little to be gained by exact lifetime calculations,
5833 we just make conservative assumptions, i.e. a longer lifetime;
5834 this is done in the 'default:' cases. */
5835 switch (type)
5836 {
5837 case RELOAD_FOR_OTHER_ADDRESS:
5838 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5839 time1 = copy ? 0 : 1;
5840 break;
5841 case RELOAD_OTHER:
5842 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5843 break;
5844 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5845 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5846 respectively, to the time values for these, we get distinct time
5847 values. To get distinct time values for each operand, we have to
5848 multiply opnum by at least three. We round that up to four because
5849 multiply by four is often cheaper. */
5850 case RELOAD_FOR_INPADDR_ADDRESS:
5851 time1 = opnum * 4 + 2;
5852 break;
5853 case RELOAD_FOR_INPUT_ADDRESS:
5854 time1 = opnum * 4 + 3;
5855 break;
5856 case RELOAD_FOR_INPUT:
5857 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5858 executes (inclusive). */
5859 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5860 break;
5861 case RELOAD_FOR_OPADDR_ADDR:
5862 /* opnum * 4 + 4
5863 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5864 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5865 break;
5866 case RELOAD_FOR_OPERAND_ADDRESS:
5867 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5868 is executed. */
5869 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5870 break;
5871 case RELOAD_FOR_OUTADDR_ADDRESS:
5872 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5873 break;
5874 case RELOAD_FOR_OUTPUT_ADDRESS:
5875 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5876 break;
5877 default:
5878 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5879 }
5880
5881 for (i = 0; i < n_reloads; i++)
5882 {
5883 rtx reg = rld[i].reg_rtx;
5884 if (reg && REG_P (reg)
5885 && ((unsigned) regno - true_regnum (reg)
5886 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5887 && i != reloadnum)
5888 {
5889 rtx other_input = rld[i].in;
5890
5891 /* If the other reload loads the same input value, that
5892 will not cause a conflict only if it's loading it into
5893 the same register. */
5894 if (true_regnum (reg) != start_regno)
5895 other_input = NULL_RTX;
5896 if (! other_input || ! rtx_equal_p (other_input, value)
5897 || rld[i].out || out)
5898 {
5899 int time2;
5900 switch (rld[i].when_needed)
5901 {
5902 case RELOAD_FOR_OTHER_ADDRESS:
5903 time2 = 0;
5904 break;
5905 case RELOAD_FOR_INPADDR_ADDRESS:
5906 /* find_reloads makes sure that a
5907 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5908 by at most one - the first -
5909 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5910 address reload is inherited, the address address reload
5911 goes away, so we can ignore this conflict. */
5912 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5913 && ignore_address_reloads
5914 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5915 Then the address address is still needed to store
5916 back the new address. */
5917 && ! rld[reloadnum].out)
5918 continue;
5919 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5920 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5921 reloads go away. */
5922 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5923 && ignore_address_reloads
5924 /* Unless we are reloading an auto_inc expression. */
5925 && ! rld[reloadnum].out)
5926 continue;
5927 time2 = rld[i].opnum * 4 + 2;
5928 break;
5929 case RELOAD_FOR_INPUT_ADDRESS:
5930 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5931 && ignore_address_reloads
5932 && ! rld[reloadnum].out)
5933 continue;
5934 time2 = rld[i].opnum * 4 + 3;
5935 break;
5936 case RELOAD_FOR_INPUT:
5937 time2 = rld[i].opnum * 4 + 4;
5938 check_earlyclobber = 1;
5939 break;
5940 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5941 == MAX_RECOG_OPERAND * 4 */
5942 case RELOAD_FOR_OPADDR_ADDR:
5943 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5944 && ignore_address_reloads
5945 && ! rld[reloadnum].out)
5946 continue;
5947 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5948 break;
5949 case RELOAD_FOR_OPERAND_ADDRESS:
5950 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5951 check_earlyclobber = 1;
5952 break;
5953 case RELOAD_FOR_INSN:
5954 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5955 break;
5956 case RELOAD_FOR_OUTPUT:
5957 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5958 instruction is executed. */
5959 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5960 break;
5961 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5962 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5963 value. */
5964 case RELOAD_FOR_OUTADDR_ADDRESS:
5965 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5966 && ignore_address_reloads
5967 && ! rld[reloadnum].out)
5968 continue;
5969 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5970 break;
5971 case RELOAD_FOR_OUTPUT_ADDRESS:
5972 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5973 break;
5974 case RELOAD_OTHER:
5975 /* If there is no conflict in the input part, handle this
5976 like an output reload. */
5977 if (! rld[i].in || rtx_equal_p (other_input, value))
5978 {
5979 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5980 /* Earlyclobbered outputs must conflict with inputs. */
5981 if (earlyclobber_operand_p (rld[i].out))
5982 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5983
5984 break;
5985 }
5986 time2 = 1;
5987 /* RELOAD_OTHER might be live beyond instruction execution,
5988 but this is not obvious when we set time2 = 1. So check
5989 here if there might be a problem with the new reload
5990 clobbering the register used by the RELOAD_OTHER. */
5991 if (out)
5992 return 0;
5993 break;
5994 default:
5995 return 0;
5996 }
5997 if ((time1 >= time2
5998 && (! rld[i].in || rld[i].out
5999 || ! rtx_equal_p (other_input, value)))
6000 || (out && rld[reloadnum].out_reg
6001 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6002 return 0;
6003 }
6004 }
6005 }
6006
6007 /* Earlyclobbered outputs must conflict with inputs. */
6008 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6009 return 0;
6010
6011 return 1;
6012 }
6013
6014 /* Return 1 if the value in reload reg REGNO, as used by a reload
6015 needed for the part of the insn specified by OPNUM and TYPE,
6016 may be used to load VALUE into it.
6017
6018 MODE is the mode in which the register is used, this is needed to
6019 determine how many hard regs to test.
6020
6021 Other read-only reloads with the same value do not conflict
6022 unless OUT is nonzero and these other reloads have to live while
6023 output reloads live.
6024 If OUT is CONST0_RTX, this is a special case: it means that the
6025 test should not be for using register REGNO as reload register, but
6026 for copying from register REGNO into the reload register.
6027
6028 RELOADNUM is the number of the reload we want to load this value for;
6029 a reload does not conflict with itself.
6030
6031 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6032 reloads that load an address for the very reload we are considering.
6033
6034 The caller has to make sure that there is no conflict with the return
6035 register. */
6036
6037 static int
6038 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6039 enum reload_type type, rtx value, rtx out, int reloadnum,
6040 int ignore_address_reloads)
6041 {
6042 int nregs = hard_regno_nregs[regno][mode];
6043 while (nregs-- > 0)
6044 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6045 value, out, reloadnum,
6046 ignore_address_reloads))
6047 return 0;
6048 return 1;
6049 }
6050
6051 /* Return nonzero if the rtx X is invariant over the current function. */
6052 /* ??? Actually, the places where we use this expect exactly what is
6053 tested here, and not everything that is function invariant. In
6054 particular, the frame pointer and arg pointer are special cased;
6055 pic_offset_table_rtx is not, and we must not spill these things to
6056 memory. */
6057
6058 int
6059 function_invariant_p (const_rtx x)
6060 {
6061 if (CONSTANT_P (x))
6062 return 1;
6063 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6064 return 1;
6065 if (GET_CODE (x) == PLUS
6066 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6067 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6068 return 1;
6069 return 0;
6070 }
6071
6072 /* Determine whether the reload reg X overlaps any rtx'es used for
6073 overriding inheritance. Return nonzero if so. */
6074
6075 static int
6076 conflicts_with_override (rtx x)
6077 {
6078 int i;
6079 for (i = 0; i < n_reloads; i++)
6080 if (reload_override_in[i]
6081 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6082 return 1;
6083 return 0;
6084 }
6085 \f
6086 /* Give an error message saying we failed to find a reload for INSN,
6087 and clear out reload R. */
6088 static void
6089 failed_reload (rtx insn, int r)
6090 {
6091 if (asm_noperands (PATTERN (insn)) < 0)
6092 /* It's the compiler's fault. */
6093 fatal_insn ("could not find a spill register", insn);
6094
6095 /* It's the user's fault; the operand's mode and constraint
6096 don't match. Disable this reload so we don't crash in final. */
6097 error_for_asm (insn,
6098 "%<asm%> operand constraint incompatible with operand size");
6099 rld[r].in = 0;
6100 rld[r].out = 0;
6101 rld[r].reg_rtx = 0;
6102 rld[r].optional = 1;
6103 rld[r].secondary_p = 1;
6104 }
6105
6106 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6107 for reload R. If it's valid, get an rtx for it. Return nonzero if
6108 successful. */
6109 static int
6110 set_reload_reg (int i, int r)
6111 {
6112 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6113 parameter. */
6114 int regno ATTRIBUTE_UNUSED;
6115 rtx reg = spill_reg_rtx[i];
6116
6117 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6118 spill_reg_rtx[i] = reg
6119 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6120
6121 regno = true_regnum (reg);
6122
6123 /* Detect when the reload reg can't hold the reload mode.
6124 This used to be one `if', but Sequent compiler can't handle that. */
6125 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6126 {
6127 enum machine_mode test_mode = VOIDmode;
6128 if (rld[r].in)
6129 test_mode = GET_MODE (rld[r].in);
6130 /* If rld[r].in has VOIDmode, it means we will load it
6131 in whatever mode the reload reg has: to wit, rld[r].mode.
6132 We have already tested that for validity. */
6133 /* Aside from that, we need to test that the expressions
6134 to reload from or into have modes which are valid for this
6135 reload register. Otherwise the reload insns would be invalid. */
6136 if (! (rld[r].in != 0 && test_mode != VOIDmode
6137 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6138 if (! (rld[r].out != 0
6139 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6140 {
6141 /* The reg is OK. */
6142 last_spill_reg = i;
6143
6144 /* Mark as in use for this insn the reload regs we use
6145 for this. */
6146 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6147 rld[r].when_needed, rld[r].mode);
6148
6149 rld[r].reg_rtx = reg;
6150 reload_spill_index[r] = spill_regs[i];
6151 return 1;
6152 }
6153 }
6154 return 0;
6155 }
6156
6157 /* Find a spill register to use as a reload register for reload R.
6158 LAST_RELOAD is nonzero if this is the last reload for the insn being
6159 processed.
6160
6161 Set rld[R].reg_rtx to the register allocated.
6162
6163 We return 1 if successful, or 0 if we couldn't find a spill reg and
6164 we didn't change anything. */
6165
6166 static int
6167 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6168 int last_reload)
6169 {
6170 int i, pass, count;
6171
6172 /* If we put this reload ahead, thinking it is a group,
6173 then insist on finding a group. Otherwise we can grab a
6174 reg that some other reload needs.
6175 (That can happen when we have a 68000 DATA_OR_FP_REG
6176 which is a group of data regs or one fp reg.)
6177 We need not be so restrictive if there are no more reloads
6178 for this insn.
6179
6180 ??? Really it would be nicer to have smarter handling
6181 for that kind of reg class, where a problem like this is normal.
6182 Perhaps those classes should be avoided for reloading
6183 by use of more alternatives. */
6184
6185 int force_group = rld[r].nregs > 1 && ! last_reload;
6186
6187 /* If we want a single register and haven't yet found one,
6188 take any reg in the right class and not in use.
6189 If we want a consecutive group, here is where we look for it.
6190
6191 We use three passes so we can first look for reload regs to
6192 reuse, which are already in use for other reloads in this insn,
6193 and only then use additional registers which are not "bad", then
6194 finally any register.
6195
6196 I think that maximizing reuse is needed to make sure we don't
6197 run out of reload regs. Suppose we have three reloads, and
6198 reloads A and B can share regs. These need two regs.
6199 Suppose A and B are given different regs.
6200 That leaves none for C. */
6201 for (pass = 0; pass < 3; pass++)
6202 {
6203 /* I is the index in spill_regs.
6204 We advance it round-robin between insns to use all spill regs
6205 equally, so that inherited reloads have a chance
6206 of leapfrogging each other. */
6207
6208 i = last_spill_reg;
6209
6210 for (count = 0; count < n_spills; count++)
6211 {
6212 int rclass = (int) rld[r].rclass;
6213 int regnum;
6214
6215 i++;
6216 if (i >= n_spills)
6217 i -= n_spills;
6218 regnum = spill_regs[i];
6219
6220 if ((reload_reg_free_p (regnum, rld[r].opnum,
6221 rld[r].when_needed)
6222 || (rld[r].in
6223 /* We check reload_reg_used to make sure we
6224 don't clobber the return register. */
6225 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6226 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6227 rld[r].when_needed, rld[r].in,
6228 rld[r].out, r, 1)))
6229 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6230 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6231 /* Look first for regs to share, then for unshared. But
6232 don't share regs used for inherited reloads; they are
6233 the ones we want to preserve. */
6234 && (pass
6235 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6236 regnum)
6237 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6238 regnum))))
6239 {
6240 int nr = hard_regno_nregs[regnum][rld[r].mode];
6241
6242 /* During the second pass we want to avoid reload registers
6243 which are "bad" for this reload. */
6244 if (pass == 1
6245 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6246 continue;
6247
6248 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6249 (on 68000) got us two FP regs. If NR is 1,
6250 we would reject both of them. */
6251 if (force_group)
6252 nr = rld[r].nregs;
6253 /* If we need only one reg, we have already won. */
6254 if (nr == 1)
6255 {
6256 /* But reject a single reg if we demand a group. */
6257 if (force_group)
6258 continue;
6259 break;
6260 }
6261 /* Otherwise check that as many consecutive regs as we need
6262 are available here. */
6263 while (nr > 1)
6264 {
6265 int regno = regnum + nr - 1;
6266 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6267 && spill_reg_order[regno] >= 0
6268 && reload_reg_free_p (regno, rld[r].opnum,
6269 rld[r].when_needed)))
6270 break;
6271 nr--;
6272 }
6273 if (nr == 1)
6274 break;
6275 }
6276 }
6277
6278 /* If we found something on the current pass, omit later passes. */
6279 if (count < n_spills)
6280 break;
6281 }
6282
6283 /* We should have found a spill register by now. */
6284 if (count >= n_spills)
6285 return 0;
6286
6287 /* I is the index in SPILL_REG_RTX of the reload register we are to
6288 allocate. Get an rtx for it and find its register number. */
6289
6290 return set_reload_reg (i, r);
6291 }
6292 \f
6293 /* Initialize all the tables needed to allocate reload registers.
6294 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6295 is the array we use to restore the reg_rtx field for every reload. */
6296
6297 static void
6298 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6299 {
6300 int i;
6301
6302 for (i = 0; i < n_reloads; i++)
6303 rld[i].reg_rtx = save_reload_reg_rtx[i];
6304
6305 memset (reload_inherited, 0, MAX_RELOADS);
6306 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6307 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6308
6309 CLEAR_HARD_REG_SET (reload_reg_used);
6310 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6311 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6312 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6314 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6315
6316 CLEAR_HARD_REG_SET (reg_used_in_insn);
6317 {
6318 HARD_REG_SET tmp;
6319 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6320 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6321 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6322 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6323 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6324 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6325 }
6326
6327 for (i = 0; i < reload_n_operands; i++)
6328 {
6329 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6330 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6331 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6332 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6333 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6334 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6335 }
6336
6337 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6338
6339 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6340
6341 for (i = 0; i < n_reloads; i++)
6342 /* If we have already decided to use a certain register,
6343 don't use it in another way. */
6344 if (rld[i].reg_rtx)
6345 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6346 rld[i].when_needed, rld[i].mode);
6347 }
6348
6349 #ifdef SECONDARY_MEMORY_NEEDED
6350 /* If X is not a subreg, return it unmodified. If it is a subreg,
6351 look up whether we made a replacement for the SUBREG_REG. Return
6352 either the replacement or the SUBREG_REG. */
6353
6354 static rtx
6355 replaced_subreg (rtx x)
6356 {
6357 if (GET_CODE (x) == SUBREG)
6358 return find_replacement (&SUBREG_REG (x));
6359 return x;
6360 }
6361 #endif
6362
6363 /* Assign hard reg targets for the pseudo-registers we must reload
6364 into hard regs for this insn.
6365 Also output the instructions to copy them in and out of the hard regs.
6366
6367 For machines with register classes, we are responsible for
6368 finding a reload reg in the proper class. */
6369
6370 static void
6371 choose_reload_regs (struct insn_chain *chain)
6372 {
6373 rtx insn = chain->insn;
6374 int i, j;
6375 unsigned int max_group_size = 1;
6376 enum reg_class group_class = NO_REGS;
6377 int pass, win, inheritance;
6378
6379 rtx save_reload_reg_rtx[MAX_RELOADS];
6380
6381 /* In order to be certain of getting the registers we need,
6382 we must sort the reloads into order of increasing register class.
6383 Then our grabbing of reload registers will parallel the process
6384 that provided the reload registers.
6385
6386 Also note whether any of the reloads wants a consecutive group of regs.
6387 If so, record the maximum size of the group desired and what
6388 register class contains all the groups needed by this insn. */
6389
6390 for (j = 0; j < n_reloads; j++)
6391 {
6392 reload_order[j] = j;
6393 if (rld[j].reg_rtx != NULL_RTX)
6394 {
6395 gcc_assert (REG_P (rld[j].reg_rtx)
6396 && HARD_REGISTER_P (rld[j].reg_rtx));
6397 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6398 }
6399 else
6400 reload_spill_index[j] = -1;
6401
6402 if (rld[j].nregs > 1)
6403 {
6404 max_group_size = MAX (rld[j].nregs, max_group_size);
6405 group_class
6406 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6407 }
6408
6409 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6410 }
6411
6412 if (n_reloads > 1)
6413 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6414
6415 /* If -O, try first with inheritance, then turning it off.
6416 If not -O, don't do inheritance.
6417 Using inheritance when not optimizing leads to paradoxes
6418 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6419 because one side of the comparison might be inherited. */
6420 win = 0;
6421 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6422 {
6423 choose_reload_regs_init (chain, save_reload_reg_rtx);
6424
6425 /* Process the reloads in order of preference just found.
6426 Beyond this point, subregs can be found in reload_reg_rtx.
6427
6428 This used to look for an existing reloaded home for all of the
6429 reloads, and only then perform any new reloads. But that could lose
6430 if the reloads were done out of reg-class order because a later
6431 reload with a looser constraint might have an old home in a register
6432 needed by an earlier reload with a tighter constraint.
6433
6434 To solve this, we make two passes over the reloads, in the order
6435 described above. In the first pass we try to inherit a reload
6436 from a previous insn. If there is a later reload that needs a
6437 class that is a proper subset of the class being processed, we must
6438 also allocate a spill register during the first pass.
6439
6440 Then make a second pass over the reloads to allocate any reloads
6441 that haven't been given registers yet. */
6442
6443 for (j = 0; j < n_reloads; j++)
6444 {
6445 int r = reload_order[j];
6446 rtx search_equiv = NULL_RTX;
6447
6448 /* Ignore reloads that got marked inoperative. */
6449 if (rld[r].out == 0 && rld[r].in == 0
6450 && ! rld[r].secondary_p)
6451 continue;
6452
6453 /* If find_reloads chose to use reload_in or reload_out as a reload
6454 register, we don't need to chose one. Otherwise, try even if it
6455 found one since we might save an insn if we find the value lying
6456 around.
6457 Try also when reload_in is a pseudo without a hard reg. */
6458 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6459 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6460 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6461 && !MEM_P (rld[r].in)
6462 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6463 continue;
6464
6465 #if 0 /* No longer needed for correct operation.
6466 It might give better code, or might not; worth an experiment? */
6467 /* If this is an optional reload, we can't inherit from earlier insns
6468 until we are sure that any non-optional reloads have been allocated.
6469 The following code takes advantage of the fact that optional reloads
6470 are at the end of reload_order. */
6471 if (rld[r].optional != 0)
6472 for (i = 0; i < j; i++)
6473 if ((rld[reload_order[i]].out != 0
6474 || rld[reload_order[i]].in != 0
6475 || rld[reload_order[i]].secondary_p)
6476 && ! rld[reload_order[i]].optional
6477 && rld[reload_order[i]].reg_rtx == 0)
6478 allocate_reload_reg (chain, reload_order[i], 0);
6479 #endif
6480
6481 /* First see if this pseudo is already available as reloaded
6482 for a previous insn. We cannot try to inherit for reloads
6483 that are smaller than the maximum number of registers needed
6484 for groups unless the register we would allocate cannot be used
6485 for the groups.
6486
6487 We could check here to see if this is a secondary reload for
6488 an object that is already in a register of the desired class.
6489 This would avoid the need for the secondary reload register.
6490 But this is complex because we can't easily determine what
6491 objects might want to be loaded via this reload. So let a
6492 register be allocated here. In `emit_reload_insns' we suppress
6493 one of the loads in the case described above. */
6494
6495 if (inheritance)
6496 {
6497 int byte = 0;
6498 int regno = -1;
6499 enum machine_mode mode = VOIDmode;
6500
6501 if (rld[r].in == 0)
6502 ;
6503 else if (REG_P (rld[r].in))
6504 {
6505 regno = REGNO (rld[r].in);
6506 mode = GET_MODE (rld[r].in);
6507 }
6508 else if (REG_P (rld[r].in_reg))
6509 {
6510 regno = REGNO (rld[r].in_reg);
6511 mode = GET_MODE (rld[r].in_reg);
6512 }
6513 else if (GET_CODE (rld[r].in_reg) == SUBREG
6514 && REG_P (SUBREG_REG (rld[r].in_reg)))
6515 {
6516 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6517 if (regno < FIRST_PSEUDO_REGISTER)
6518 regno = subreg_regno (rld[r].in_reg);
6519 else
6520 byte = SUBREG_BYTE (rld[r].in_reg);
6521 mode = GET_MODE (rld[r].in_reg);
6522 }
6523 #ifdef AUTO_INC_DEC
6524 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6525 && REG_P (XEXP (rld[r].in_reg, 0)))
6526 {
6527 regno = REGNO (XEXP (rld[r].in_reg, 0));
6528 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6529 rld[r].out = rld[r].in;
6530 }
6531 #endif
6532 #if 0
6533 /* This won't work, since REGNO can be a pseudo reg number.
6534 Also, it takes much more hair to keep track of all the things
6535 that can invalidate an inherited reload of part of a pseudoreg. */
6536 else if (GET_CODE (rld[r].in) == SUBREG
6537 && REG_P (SUBREG_REG (rld[r].in)))
6538 regno = subreg_regno (rld[r].in);
6539 #endif
6540
6541 if (regno >= 0
6542 && reg_last_reload_reg[regno] != 0
6543 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6544 >= GET_MODE_SIZE (mode) + byte)
6545 #ifdef CANNOT_CHANGE_MODE_CLASS
6546 /* Verify that the register it's in can be used in
6547 mode MODE. */
6548 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6549 GET_MODE (reg_last_reload_reg[regno]),
6550 mode)
6551 #endif
6552 )
6553 {
6554 enum reg_class rclass = rld[r].rclass, last_class;
6555 rtx last_reg = reg_last_reload_reg[regno];
6556
6557 i = REGNO (last_reg);
6558 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6559 last_class = REGNO_REG_CLASS (i);
6560
6561 if (reg_reloaded_contents[i] == regno
6562 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6563 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6564 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6565 /* Even if we can't use this register as a reload
6566 register, we might use it for reload_override_in,
6567 if copying it to the desired class is cheap
6568 enough. */
6569 || ((register_move_cost (mode, last_class, rclass)
6570 < memory_move_cost (mode, rclass, true))
6571 && (secondary_reload_class (1, rclass, mode,
6572 last_reg)
6573 == NO_REGS)
6574 #ifdef SECONDARY_MEMORY_NEEDED
6575 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6576 mode)
6577 #endif
6578 ))
6579
6580 && (rld[r].nregs == max_group_size
6581 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6582 i))
6583 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6584 rld[r].when_needed, rld[r].in,
6585 const0_rtx, r, 1))
6586 {
6587 /* If a group is needed, verify that all the subsequent
6588 registers still have their values intact. */
6589 int nr = hard_regno_nregs[i][rld[r].mode];
6590 int k;
6591
6592 for (k = 1; k < nr; k++)
6593 if (reg_reloaded_contents[i + k] != regno
6594 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6595 break;
6596
6597 if (k == nr)
6598 {
6599 int i1;
6600 int bad_for_class;
6601
6602 last_reg = (GET_MODE (last_reg) == mode
6603 ? last_reg : gen_rtx_REG (mode, i));
6604
6605 bad_for_class = 0;
6606 for (k = 0; k < nr; k++)
6607 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6608 i+k);
6609
6610 /* We found a register that contains the
6611 value we need. If this register is the
6612 same as an `earlyclobber' operand of the
6613 current insn, just mark it as a place to
6614 reload from since we can't use it as the
6615 reload register itself. */
6616
6617 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6618 if (reg_overlap_mentioned_for_reload_p
6619 (reg_last_reload_reg[regno],
6620 reload_earlyclobbers[i1]))
6621 break;
6622
6623 if (i1 != n_earlyclobbers
6624 || ! (free_for_value_p (i, rld[r].mode,
6625 rld[r].opnum,
6626 rld[r].when_needed, rld[r].in,
6627 rld[r].out, r, 1))
6628 /* Don't use it if we'd clobber a pseudo reg. */
6629 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6630 && rld[r].out
6631 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6632 /* Don't clobber the frame pointer. */
6633 || (i == HARD_FRAME_POINTER_REGNUM
6634 && frame_pointer_needed
6635 && rld[r].out)
6636 /* Don't really use the inherited spill reg
6637 if we need it wider than we've got it. */
6638 || (GET_MODE_SIZE (rld[r].mode)
6639 > GET_MODE_SIZE (mode))
6640 || bad_for_class
6641
6642 /* If find_reloads chose reload_out as reload
6643 register, stay with it - that leaves the
6644 inherited register for subsequent reloads. */
6645 || (rld[r].out && rld[r].reg_rtx
6646 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6647 {
6648 if (! rld[r].optional)
6649 {
6650 reload_override_in[r] = last_reg;
6651 reload_inheritance_insn[r]
6652 = reg_reloaded_insn[i];
6653 }
6654 }
6655 else
6656 {
6657 int k;
6658 /* We can use this as a reload reg. */
6659 /* Mark the register as in use for this part of
6660 the insn. */
6661 mark_reload_reg_in_use (i,
6662 rld[r].opnum,
6663 rld[r].when_needed,
6664 rld[r].mode);
6665 rld[r].reg_rtx = last_reg;
6666 reload_inherited[r] = 1;
6667 reload_inheritance_insn[r]
6668 = reg_reloaded_insn[i];
6669 reload_spill_index[r] = i;
6670 for (k = 0; k < nr; k++)
6671 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6672 i + k);
6673 }
6674 }
6675 }
6676 }
6677 }
6678
6679 /* Here's another way to see if the value is already lying around. */
6680 if (inheritance
6681 && rld[r].in != 0
6682 && ! reload_inherited[r]
6683 && rld[r].out == 0
6684 && (CONSTANT_P (rld[r].in)
6685 || GET_CODE (rld[r].in) == PLUS
6686 || REG_P (rld[r].in)
6687 || MEM_P (rld[r].in))
6688 && (rld[r].nregs == max_group_size
6689 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6690 search_equiv = rld[r].in;
6691
6692 if (search_equiv)
6693 {
6694 rtx equiv
6695 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6696 -1, NULL, 0, rld[r].mode);
6697 int regno = 0;
6698
6699 if (equiv != 0)
6700 {
6701 if (REG_P (equiv))
6702 regno = REGNO (equiv);
6703 else
6704 {
6705 /* This must be a SUBREG of a hard register.
6706 Make a new REG since this might be used in an
6707 address and not all machines support SUBREGs
6708 there. */
6709 gcc_assert (GET_CODE (equiv) == SUBREG);
6710 regno = subreg_regno (equiv);
6711 equiv = gen_rtx_REG (rld[r].mode, regno);
6712 /* If we choose EQUIV as the reload register, but the
6713 loop below decides to cancel the inheritance, we'll
6714 end up reloading EQUIV in rld[r].mode, not the mode
6715 it had originally. That isn't safe when EQUIV isn't
6716 available as a spill register since its value might
6717 still be live at this point. */
6718 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6719 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6720 equiv = 0;
6721 }
6722 }
6723
6724 /* If we found a spill reg, reject it unless it is free
6725 and of the desired class. */
6726 if (equiv != 0)
6727 {
6728 int regs_used = 0;
6729 int bad_for_class = 0;
6730 int max_regno = regno + rld[r].nregs;
6731
6732 for (i = regno; i < max_regno; i++)
6733 {
6734 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6735 i);
6736 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6737 i);
6738 }
6739
6740 if ((regs_used
6741 && ! free_for_value_p (regno, rld[r].mode,
6742 rld[r].opnum, rld[r].when_needed,
6743 rld[r].in, rld[r].out, r, 1))
6744 || bad_for_class)
6745 equiv = 0;
6746 }
6747
6748 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6749 equiv = 0;
6750
6751 /* We found a register that contains the value we need.
6752 If this register is the same as an `earlyclobber' operand
6753 of the current insn, just mark it as a place to reload from
6754 since we can't use it as the reload register itself. */
6755
6756 if (equiv != 0)
6757 for (i = 0; i < n_earlyclobbers; i++)
6758 if (reg_overlap_mentioned_for_reload_p (equiv,
6759 reload_earlyclobbers[i]))
6760 {
6761 if (! rld[r].optional)
6762 reload_override_in[r] = equiv;
6763 equiv = 0;
6764 break;
6765 }
6766
6767 /* If the equiv register we have found is explicitly clobbered
6768 in the current insn, it depends on the reload type if we
6769 can use it, use it for reload_override_in, or not at all.
6770 In particular, we then can't use EQUIV for a
6771 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6772
6773 if (equiv != 0)
6774 {
6775 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6776 switch (rld[r].when_needed)
6777 {
6778 case RELOAD_FOR_OTHER_ADDRESS:
6779 case RELOAD_FOR_INPADDR_ADDRESS:
6780 case RELOAD_FOR_INPUT_ADDRESS:
6781 case RELOAD_FOR_OPADDR_ADDR:
6782 break;
6783 case RELOAD_OTHER:
6784 case RELOAD_FOR_INPUT:
6785 case RELOAD_FOR_OPERAND_ADDRESS:
6786 if (! rld[r].optional)
6787 reload_override_in[r] = equiv;
6788 /* Fall through. */
6789 default:
6790 equiv = 0;
6791 break;
6792 }
6793 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6794 switch (rld[r].when_needed)
6795 {
6796 case RELOAD_FOR_OTHER_ADDRESS:
6797 case RELOAD_FOR_INPADDR_ADDRESS:
6798 case RELOAD_FOR_INPUT_ADDRESS:
6799 case RELOAD_FOR_OPADDR_ADDR:
6800 case RELOAD_FOR_OPERAND_ADDRESS:
6801 case RELOAD_FOR_INPUT:
6802 break;
6803 case RELOAD_OTHER:
6804 if (! rld[r].optional)
6805 reload_override_in[r] = equiv;
6806 /* Fall through. */
6807 default:
6808 equiv = 0;
6809 break;
6810 }
6811 }
6812
6813 /* If we found an equivalent reg, say no code need be generated
6814 to load it, and use it as our reload reg. */
6815 if (equiv != 0
6816 && (regno != HARD_FRAME_POINTER_REGNUM
6817 || !frame_pointer_needed))
6818 {
6819 int nr = hard_regno_nregs[regno][rld[r].mode];
6820 int k;
6821 rld[r].reg_rtx = equiv;
6822 reload_spill_index[r] = regno;
6823 reload_inherited[r] = 1;
6824
6825 /* If reg_reloaded_valid is not set for this register,
6826 there might be a stale spill_reg_store lying around.
6827 We must clear it, since otherwise emit_reload_insns
6828 might delete the store. */
6829 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6830 spill_reg_store[regno] = NULL_RTX;
6831 /* If any of the hard registers in EQUIV are spill
6832 registers, mark them as in use for this insn. */
6833 for (k = 0; k < nr; k++)
6834 {
6835 i = spill_reg_order[regno + k];
6836 if (i >= 0)
6837 {
6838 mark_reload_reg_in_use (regno, rld[r].opnum,
6839 rld[r].when_needed,
6840 rld[r].mode);
6841 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6842 regno + k);
6843 }
6844 }
6845 }
6846 }
6847
6848 /* If we found a register to use already, or if this is an optional
6849 reload, we are done. */
6850 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6851 continue;
6852
6853 #if 0
6854 /* No longer needed for correct operation. Might or might
6855 not give better code on the average. Want to experiment? */
6856
6857 /* See if there is a later reload that has a class different from our
6858 class that intersects our class or that requires less register
6859 than our reload. If so, we must allocate a register to this
6860 reload now, since that reload might inherit a previous reload
6861 and take the only available register in our class. Don't do this
6862 for optional reloads since they will force all previous reloads
6863 to be allocated. Also don't do this for reloads that have been
6864 turned off. */
6865
6866 for (i = j + 1; i < n_reloads; i++)
6867 {
6868 int s = reload_order[i];
6869
6870 if ((rld[s].in == 0 && rld[s].out == 0
6871 && ! rld[s].secondary_p)
6872 || rld[s].optional)
6873 continue;
6874
6875 if ((rld[s].rclass != rld[r].rclass
6876 && reg_classes_intersect_p (rld[r].rclass,
6877 rld[s].rclass))
6878 || rld[s].nregs < rld[r].nregs)
6879 break;
6880 }
6881
6882 if (i == n_reloads)
6883 continue;
6884
6885 allocate_reload_reg (chain, r, j == n_reloads - 1);
6886 #endif
6887 }
6888
6889 /* Now allocate reload registers for anything non-optional that
6890 didn't get one yet. */
6891 for (j = 0; j < n_reloads; j++)
6892 {
6893 int r = reload_order[j];
6894
6895 /* Ignore reloads that got marked inoperative. */
6896 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6897 continue;
6898
6899 /* Skip reloads that already have a register allocated or are
6900 optional. */
6901 if (rld[r].reg_rtx != 0 || rld[r].optional)
6902 continue;
6903
6904 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6905 break;
6906 }
6907
6908 /* If that loop got all the way, we have won. */
6909 if (j == n_reloads)
6910 {
6911 win = 1;
6912 break;
6913 }
6914
6915 /* Loop around and try without any inheritance. */
6916 }
6917
6918 if (! win)
6919 {
6920 /* First undo everything done by the failed attempt
6921 to allocate with inheritance. */
6922 choose_reload_regs_init (chain, save_reload_reg_rtx);
6923
6924 /* Some sanity tests to verify that the reloads found in the first
6925 pass are identical to the ones we have now. */
6926 gcc_assert (chain->n_reloads == n_reloads);
6927
6928 for (i = 0; i < n_reloads; i++)
6929 {
6930 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6931 continue;
6932 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6933 for (j = 0; j < n_spills; j++)
6934 if (spill_regs[j] == chain->rld[i].regno)
6935 if (! set_reload_reg (j, i))
6936 failed_reload (chain->insn, i);
6937 }
6938 }
6939
6940 /* If we thought we could inherit a reload, because it seemed that
6941 nothing else wanted the same reload register earlier in the insn,
6942 verify that assumption, now that all reloads have been assigned.
6943 Likewise for reloads where reload_override_in has been set. */
6944
6945 /* If doing expensive optimizations, do one preliminary pass that doesn't
6946 cancel any inheritance, but removes reloads that have been needed only
6947 for reloads that we know can be inherited. */
6948 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6949 {
6950 for (j = 0; j < n_reloads; j++)
6951 {
6952 int r = reload_order[j];
6953 rtx check_reg;
6954 #ifdef SECONDARY_MEMORY_NEEDED
6955 rtx tem;
6956 #endif
6957 if (reload_inherited[r] && rld[r].reg_rtx)
6958 check_reg = rld[r].reg_rtx;
6959 else if (reload_override_in[r]
6960 && (REG_P (reload_override_in[r])
6961 || GET_CODE (reload_override_in[r]) == SUBREG))
6962 check_reg = reload_override_in[r];
6963 else
6964 continue;
6965 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6966 rld[r].opnum, rld[r].when_needed, rld[r].in,
6967 (reload_inherited[r]
6968 ? rld[r].out : const0_rtx),
6969 r, 1))
6970 {
6971 if (pass)
6972 continue;
6973 reload_inherited[r] = 0;
6974 reload_override_in[r] = 0;
6975 }
6976 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6977 reload_override_in, then we do not need its related
6978 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6979 likewise for other reload types.
6980 We handle this by removing a reload when its only replacement
6981 is mentioned in reload_in of the reload we are going to inherit.
6982 A special case are auto_inc expressions; even if the input is
6983 inherited, we still need the address for the output. We can
6984 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6985 If we succeeded removing some reload and we are doing a preliminary
6986 pass just to remove such reloads, make another pass, since the
6987 removal of one reload might allow us to inherit another one. */
6988 else if (rld[r].in
6989 && rld[r].out != rld[r].in
6990 && remove_address_replacements (rld[r].in))
6991 {
6992 if (pass)
6993 pass = 2;
6994 }
6995 #ifdef SECONDARY_MEMORY_NEEDED
6996 /* If we needed a memory location for the reload, we also have to
6997 remove its related reloads. */
6998 else if (rld[r].in
6999 && rld[r].out != rld[r].in
7000 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7001 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7002 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7003 rld[r].rclass, rld[r].inmode)
7004 && remove_address_replacements
7005 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7006 rld[r].when_needed)))
7007 {
7008 if (pass)
7009 pass = 2;
7010 }
7011 #endif
7012 }
7013 }
7014
7015 /* Now that reload_override_in is known valid,
7016 actually override reload_in. */
7017 for (j = 0; j < n_reloads; j++)
7018 if (reload_override_in[j])
7019 rld[j].in = reload_override_in[j];
7020
7021 /* If this reload won't be done because it has been canceled or is
7022 optional and not inherited, clear reload_reg_rtx so other
7023 routines (such as subst_reloads) don't get confused. */
7024 for (j = 0; j < n_reloads; j++)
7025 if (rld[j].reg_rtx != 0
7026 && ((rld[j].optional && ! reload_inherited[j])
7027 || (rld[j].in == 0 && rld[j].out == 0
7028 && ! rld[j].secondary_p)))
7029 {
7030 int regno = true_regnum (rld[j].reg_rtx);
7031
7032 if (spill_reg_order[regno] >= 0)
7033 clear_reload_reg_in_use (regno, rld[j].opnum,
7034 rld[j].when_needed, rld[j].mode);
7035 rld[j].reg_rtx = 0;
7036 reload_spill_index[j] = -1;
7037 }
7038
7039 /* Record which pseudos and which spill regs have output reloads. */
7040 for (j = 0; j < n_reloads; j++)
7041 {
7042 int r = reload_order[j];
7043
7044 i = reload_spill_index[r];
7045
7046 /* I is nonneg if this reload uses a register.
7047 If rld[r].reg_rtx is 0, this is an optional reload
7048 that we opted to ignore. */
7049 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7050 && rld[r].reg_rtx != 0)
7051 {
7052 int nregno = REGNO (rld[r].out_reg);
7053 int nr = 1;
7054
7055 if (nregno < FIRST_PSEUDO_REGISTER)
7056 nr = hard_regno_nregs[nregno][rld[r].mode];
7057
7058 while (--nr >= 0)
7059 SET_REGNO_REG_SET (&reg_has_output_reload,
7060 nregno + nr);
7061
7062 if (i >= 0)
7063 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7064
7065 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7066 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7067 || rld[r].when_needed == RELOAD_FOR_INSN);
7068 }
7069 }
7070 }
7071
7072 /* Deallocate the reload register for reload R. This is called from
7073 remove_address_replacements. */
7074
7075 void
7076 deallocate_reload_reg (int r)
7077 {
7078 int regno;
7079
7080 if (! rld[r].reg_rtx)
7081 return;
7082 regno = true_regnum (rld[r].reg_rtx);
7083 rld[r].reg_rtx = 0;
7084 if (spill_reg_order[regno] >= 0)
7085 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7086 rld[r].mode);
7087 reload_spill_index[r] = -1;
7088 }
7089 \f
7090 /* These arrays are filled by emit_reload_insns and its subroutines. */
7091 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7092 static rtx other_input_address_reload_insns = 0;
7093 static rtx other_input_reload_insns = 0;
7094 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7095 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7096 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7097 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7098 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7099 static rtx operand_reload_insns = 0;
7100 static rtx other_operand_reload_insns = 0;
7101 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7102
7103 /* Values to be put in spill_reg_store are put here first. Instructions
7104 must only be placed here if the associated reload register reaches
7105 the end of the instruction's reload sequence. */
7106 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7107 static HARD_REG_SET reg_reloaded_died;
7108
7109 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7110 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7111 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7112 adjusted register, and return true. Otherwise, return false. */
7113 static bool
7114 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7115 enum reg_class new_class,
7116 enum machine_mode new_mode)
7117
7118 {
7119 rtx reg;
7120
7121 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7122 {
7123 unsigned regno = REGNO (reg);
7124
7125 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7126 continue;
7127 if (GET_MODE (reg) != new_mode)
7128 {
7129 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7130 continue;
7131 if (hard_regno_nregs[regno][new_mode]
7132 > hard_regno_nregs[regno][GET_MODE (reg)])
7133 continue;
7134 reg = reload_adjust_reg_for_mode (reg, new_mode);
7135 }
7136 *reload_reg = reg;
7137 return true;
7138 }
7139 return false;
7140 }
7141
7142 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7143 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7144 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7145 adjusted register, and return true. Otherwise, return false. */
7146 static bool
7147 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7148 enum insn_code icode)
7149
7150 {
7151 enum reg_class new_class = scratch_reload_class (icode);
7152 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7153
7154 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7155 new_class, new_mode);
7156 }
7157
7158 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7159 has the number J. OLD contains the value to be used as input. */
7160
7161 static void
7162 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7163 rtx old, int j)
7164 {
7165 rtx insn = chain->insn;
7166 rtx reloadreg;
7167 rtx oldequiv_reg = 0;
7168 rtx oldequiv = 0;
7169 int special = 0;
7170 enum machine_mode mode;
7171 rtx *where;
7172
7173 /* delete_output_reload is only invoked properly if old contains
7174 the original pseudo register. Since this is replaced with a
7175 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7176 find the pseudo in RELOAD_IN_REG. */
7177 if (reload_override_in[j]
7178 && REG_P (rl->in_reg))
7179 {
7180 oldequiv = old;
7181 old = rl->in_reg;
7182 }
7183 if (oldequiv == 0)
7184 oldequiv = old;
7185 else if (REG_P (oldequiv))
7186 oldequiv_reg = oldequiv;
7187 else if (GET_CODE (oldequiv) == SUBREG)
7188 oldequiv_reg = SUBREG_REG (oldequiv);
7189
7190 reloadreg = reload_reg_rtx_for_input[j];
7191 mode = GET_MODE (reloadreg);
7192
7193 /* If we are reloading from a register that was recently stored in
7194 with an output-reload, see if we can prove there was
7195 actually no need to store the old value in it. */
7196
7197 if (optimize && REG_P (oldequiv)
7198 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7199 && spill_reg_store[REGNO (oldequiv)]
7200 && REG_P (old)
7201 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7202 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7203 rl->out_reg)))
7204 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7205
7206 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7207 OLDEQUIV. */
7208
7209 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7210 oldequiv = SUBREG_REG (oldequiv);
7211 if (GET_MODE (oldequiv) != VOIDmode
7212 && mode != GET_MODE (oldequiv))
7213 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7214
7215 /* Switch to the right place to emit the reload insns. */
7216 switch (rl->when_needed)
7217 {
7218 case RELOAD_OTHER:
7219 where = &other_input_reload_insns;
7220 break;
7221 case RELOAD_FOR_INPUT:
7222 where = &input_reload_insns[rl->opnum];
7223 break;
7224 case RELOAD_FOR_INPUT_ADDRESS:
7225 where = &input_address_reload_insns[rl->opnum];
7226 break;
7227 case RELOAD_FOR_INPADDR_ADDRESS:
7228 where = &inpaddr_address_reload_insns[rl->opnum];
7229 break;
7230 case RELOAD_FOR_OUTPUT_ADDRESS:
7231 where = &output_address_reload_insns[rl->opnum];
7232 break;
7233 case RELOAD_FOR_OUTADDR_ADDRESS:
7234 where = &outaddr_address_reload_insns[rl->opnum];
7235 break;
7236 case RELOAD_FOR_OPERAND_ADDRESS:
7237 where = &operand_reload_insns;
7238 break;
7239 case RELOAD_FOR_OPADDR_ADDR:
7240 where = &other_operand_reload_insns;
7241 break;
7242 case RELOAD_FOR_OTHER_ADDRESS:
7243 where = &other_input_address_reload_insns;
7244 break;
7245 default:
7246 gcc_unreachable ();
7247 }
7248
7249 push_to_sequence (*where);
7250
7251 /* Auto-increment addresses must be reloaded in a special way. */
7252 if (rl->out && ! rl->out_reg)
7253 {
7254 /* We are not going to bother supporting the case where a
7255 incremented register can't be copied directly from
7256 OLDEQUIV since this seems highly unlikely. */
7257 gcc_assert (rl->secondary_in_reload < 0);
7258
7259 if (reload_inherited[j])
7260 oldequiv = reloadreg;
7261
7262 old = XEXP (rl->in_reg, 0);
7263
7264 /* Prevent normal processing of this reload. */
7265 special = 1;
7266 /* Output a special code sequence for this case. */
7267 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7268 }
7269
7270 /* If we are reloading a pseudo-register that was set by the previous
7271 insn, see if we can get rid of that pseudo-register entirely
7272 by redirecting the previous insn into our reload register. */
7273
7274 else if (optimize && REG_P (old)
7275 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7276 && dead_or_set_p (insn, old)
7277 /* This is unsafe if some other reload
7278 uses the same reg first. */
7279 && ! conflicts_with_override (reloadreg)
7280 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7281 rl->when_needed, old, rl->out, j, 0))
7282 {
7283 rtx temp = PREV_INSN (insn);
7284 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7285 temp = PREV_INSN (temp);
7286 if (temp
7287 && NONJUMP_INSN_P (temp)
7288 && GET_CODE (PATTERN (temp)) == SET
7289 && SET_DEST (PATTERN (temp)) == old
7290 /* Make sure we can access insn_operand_constraint. */
7291 && asm_noperands (PATTERN (temp)) < 0
7292 /* This is unsafe if operand occurs more than once in current
7293 insn. Perhaps some occurrences aren't reloaded. */
7294 && count_occurrences (PATTERN (insn), old, 0) == 1)
7295 {
7296 rtx old = SET_DEST (PATTERN (temp));
7297 /* Store into the reload register instead of the pseudo. */
7298 SET_DEST (PATTERN (temp)) = reloadreg;
7299
7300 /* Verify that resulting insn is valid. */
7301 extract_insn (temp);
7302 if (constrain_operands (1))
7303 {
7304 /* If the previous insn is an output reload, the source is
7305 a reload register, and its spill_reg_store entry will
7306 contain the previous destination. This is now
7307 invalid. */
7308 if (REG_P (SET_SRC (PATTERN (temp)))
7309 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7310 {
7311 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7312 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7313 }
7314
7315 /* If these are the only uses of the pseudo reg,
7316 pretend for GDB it lives in the reload reg we used. */
7317 if (REG_N_DEATHS (REGNO (old)) == 1
7318 && REG_N_SETS (REGNO (old)) == 1)
7319 {
7320 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7321 if (ira_conflicts_p)
7322 /* Inform IRA about the change. */
7323 ira_mark_allocation_change (REGNO (old));
7324 alter_reg (REGNO (old), -1, false);
7325 }
7326 special = 1;
7327
7328 /* Adjust any debug insns between temp and insn. */
7329 while ((temp = NEXT_INSN (temp)) != insn)
7330 if (DEBUG_INSN_P (temp))
7331 replace_rtx (PATTERN (temp), old, reloadreg);
7332 else
7333 gcc_assert (NOTE_P (temp));
7334 }
7335 else
7336 {
7337 SET_DEST (PATTERN (temp)) = old;
7338 }
7339 }
7340 }
7341
7342 /* We can't do that, so output an insn to load RELOADREG. */
7343
7344 /* If we have a secondary reload, pick up the secondary register
7345 and icode, if any. If OLDEQUIV and OLD are different or
7346 if this is an in-out reload, recompute whether or not we
7347 still need a secondary register and what the icode should
7348 be. If we still need a secondary register and the class or
7349 icode is different, go back to reloading from OLD if using
7350 OLDEQUIV means that we got the wrong type of register. We
7351 cannot have different class or icode due to an in-out reload
7352 because we don't make such reloads when both the input and
7353 output need secondary reload registers. */
7354
7355 if (! special && rl->secondary_in_reload >= 0)
7356 {
7357 rtx second_reload_reg = 0;
7358 rtx third_reload_reg = 0;
7359 int secondary_reload = rl->secondary_in_reload;
7360 rtx real_oldequiv = oldequiv;
7361 rtx real_old = old;
7362 rtx tmp;
7363 enum insn_code icode;
7364 enum insn_code tertiary_icode = CODE_FOR_nothing;
7365
7366 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7367 and similarly for OLD.
7368 See comments in get_secondary_reload in reload.c. */
7369 /* If it is a pseudo that cannot be replaced with its
7370 equivalent MEM, we must fall back to reload_in, which
7371 will have all the necessary substitutions registered.
7372 Likewise for a pseudo that can't be replaced with its
7373 equivalent constant.
7374
7375 Take extra care for subregs of such pseudos. Note that
7376 we cannot use reg_equiv_mem in this case because it is
7377 not in the right mode. */
7378
7379 tmp = oldequiv;
7380 if (GET_CODE (tmp) == SUBREG)
7381 tmp = SUBREG_REG (tmp);
7382 if (REG_P (tmp)
7383 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7384 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7385 || reg_equiv_constant (REGNO (tmp)) != 0))
7386 {
7387 if (! reg_equiv_mem (REGNO (tmp))
7388 || num_not_at_initial_offset
7389 || GET_CODE (oldequiv) == SUBREG)
7390 real_oldequiv = rl->in;
7391 else
7392 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7393 }
7394
7395 tmp = old;
7396 if (GET_CODE (tmp) == SUBREG)
7397 tmp = SUBREG_REG (tmp);
7398 if (REG_P (tmp)
7399 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7400 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7401 || reg_equiv_constant (REGNO (tmp)) != 0))
7402 {
7403 if (! reg_equiv_mem (REGNO (tmp))
7404 || num_not_at_initial_offset
7405 || GET_CODE (old) == SUBREG)
7406 real_old = rl->in;
7407 else
7408 real_old = reg_equiv_mem (REGNO (tmp));
7409 }
7410
7411 second_reload_reg = rld[secondary_reload].reg_rtx;
7412 if (rld[secondary_reload].secondary_in_reload >= 0)
7413 {
7414 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7415
7416 third_reload_reg = rld[tertiary_reload].reg_rtx;
7417 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7418 /* We'd have to add more code for quartary reloads. */
7419 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7420 }
7421 icode = rl->secondary_in_icode;
7422
7423 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7424 || (rl->in != 0 && rl->out != 0))
7425 {
7426 secondary_reload_info sri, sri2;
7427 enum reg_class new_class, new_t_class;
7428
7429 sri.icode = CODE_FOR_nothing;
7430 sri.prev_sri = NULL;
7431 new_class
7432 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7433 rl->rclass, mode,
7434 &sri);
7435
7436 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7437 second_reload_reg = 0;
7438 else if (new_class == NO_REGS)
7439 {
7440 if (reload_adjust_reg_for_icode (&second_reload_reg,
7441 third_reload_reg,
7442 (enum insn_code) sri.icode))
7443 {
7444 icode = (enum insn_code) sri.icode;
7445 third_reload_reg = 0;
7446 }
7447 else
7448 {
7449 oldequiv = old;
7450 real_oldequiv = real_old;
7451 }
7452 }
7453 else if (sri.icode != CODE_FOR_nothing)
7454 /* We currently lack a way to express this in reloads. */
7455 gcc_unreachable ();
7456 else
7457 {
7458 sri2.icode = CODE_FOR_nothing;
7459 sri2.prev_sri = &sri;
7460 new_t_class
7461 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7462 new_class, mode,
7463 &sri);
7464 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7465 {
7466 if (reload_adjust_reg_for_temp (&second_reload_reg,
7467 third_reload_reg,
7468 new_class, mode))
7469 {
7470 third_reload_reg = 0;
7471 tertiary_icode = (enum insn_code) sri2.icode;
7472 }
7473 else
7474 {
7475 oldequiv = old;
7476 real_oldequiv = real_old;
7477 }
7478 }
7479 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7480 {
7481 rtx intermediate = second_reload_reg;
7482
7483 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7484 new_class, mode)
7485 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7486 ((enum insn_code)
7487 sri2.icode)))
7488 {
7489 second_reload_reg = intermediate;
7490 tertiary_icode = (enum insn_code) sri2.icode;
7491 }
7492 else
7493 {
7494 oldequiv = old;
7495 real_oldequiv = real_old;
7496 }
7497 }
7498 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7499 {
7500 rtx intermediate = second_reload_reg;
7501
7502 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7503 new_class, mode)
7504 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7505 new_t_class, mode))
7506 {
7507 second_reload_reg = intermediate;
7508 tertiary_icode = (enum insn_code) sri2.icode;
7509 }
7510 else
7511 {
7512 oldequiv = old;
7513 real_oldequiv = real_old;
7514 }
7515 }
7516 else
7517 {
7518 /* This could be handled more intelligently too. */
7519 oldequiv = old;
7520 real_oldequiv = real_old;
7521 }
7522 }
7523 }
7524
7525 /* If we still need a secondary reload register, check
7526 to see if it is being used as a scratch or intermediate
7527 register and generate code appropriately. If we need
7528 a scratch register, use REAL_OLDEQUIV since the form of
7529 the insn may depend on the actual address if it is
7530 a MEM. */
7531
7532 if (second_reload_reg)
7533 {
7534 if (icode != CODE_FOR_nothing)
7535 {
7536 /* We'd have to add extra code to handle this case. */
7537 gcc_assert (!third_reload_reg);
7538
7539 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7540 second_reload_reg));
7541 special = 1;
7542 }
7543 else
7544 {
7545 /* See if we need a scratch register to load the
7546 intermediate register (a tertiary reload). */
7547 if (tertiary_icode != CODE_FOR_nothing)
7548 {
7549 emit_insn ((GEN_FCN (tertiary_icode)
7550 (second_reload_reg, real_oldequiv,
7551 third_reload_reg)));
7552 }
7553 else if (third_reload_reg)
7554 {
7555 gen_reload (third_reload_reg, real_oldequiv,
7556 rl->opnum,
7557 rl->when_needed);
7558 gen_reload (second_reload_reg, third_reload_reg,
7559 rl->opnum,
7560 rl->when_needed);
7561 }
7562 else
7563 gen_reload (second_reload_reg, real_oldequiv,
7564 rl->opnum,
7565 rl->when_needed);
7566
7567 oldequiv = second_reload_reg;
7568 }
7569 }
7570 }
7571
7572 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7573 {
7574 rtx real_oldequiv = oldequiv;
7575
7576 if ((REG_P (oldequiv)
7577 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7578 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7579 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7580 || (GET_CODE (oldequiv) == SUBREG
7581 && REG_P (SUBREG_REG (oldequiv))
7582 && (REGNO (SUBREG_REG (oldequiv))
7583 >= FIRST_PSEUDO_REGISTER)
7584 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7585 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7586 || (CONSTANT_P (oldequiv)
7587 && (targetm.preferred_reload_class (oldequiv,
7588 REGNO_REG_CLASS (REGNO (reloadreg)))
7589 == NO_REGS)))
7590 real_oldequiv = rl->in;
7591 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7592 rl->when_needed);
7593 }
7594
7595 if (cfun->can_throw_non_call_exceptions)
7596 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7597
7598 /* End this sequence. */
7599 *where = get_insns ();
7600 end_sequence ();
7601
7602 /* Update reload_override_in so that delete_address_reloads_1
7603 can see the actual register usage. */
7604 if (oldequiv_reg)
7605 reload_override_in[j] = oldequiv;
7606 }
7607
7608 /* Generate insns to for the output reload RL, which is for the insn described
7609 by CHAIN and has the number J. */
7610 static void
7611 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7612 int j)
7613 {
7614 rtx reloadreg;
7615 rtx insn = chain->insn;
7616 int special = 0;
7617 rtx old = rl->out;
7618 enum machine_mode mode;
7619 rtx p;
7620 rtx rl_reg_rtx;
7621
7622 if (rl->when_needed == RELOAD_OTHER)
7623 start_sequence ();
7624 else
7625 push_to_sequence (output_reload_insns[rl->opnum]);
7626
7627 rl_reg_rtx = reload_reg_rtx_for_output[j];
7628 mode = GET_MODE (rl_reg_rtx);
7629
7630 reloadreg = rl_reg_rtx;
7631
7632 /* If we need two reload regs, set RELOADREG to the intermediate
7633 one, since it will be stored into OLD. We might need a secondary
7634 register only for an input reload, so check again here. */
7635
7636 if (rl->secondary_out_reload >= 0)
7637 {
7638 rtx real_old = old;
7639 int secondary_reload = rl->secondary_out_reload;
7640 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7641
7642 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7643 && reg_equiv_mem (REGNO (old)) != 0)
7644 real_old = reg_equiv_mem (REGNO (old));
7645
7646 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7647 {
7648 rtx second_reloadreg = reloadreg;
7649 reloadreg = rld[secondary_reload].reg_rtx;
7650
7651 /* See if RELOADREG is to be used as a scratch register
7652 or as an intermediate register. */
7653 if (rl->secondary_out_icode != CODE_FOR_nothing)
7654 {
7655 /* We'd have to add extra code to handle this case. */
7656 gcc_assert (tertiary_reload < 0);
7657
7658 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7659 (real_old, second_reloadreg, reloadreg)));
7660 special = 1;
7661 }
7662 else
7663 {
7664 /* See if we need both a scratch and intermediate reload
7665 register. */
7666
7667 enum insn_code tertiary_icode
7668 = rld[secondary_reload].secondary_out_icode;
7669
7670 /* We'd have to add more code for quartary reloads. */
7671 gcc_assert (tertiary_reload < 0
7672 || rld[tertiary_reload].secondary_out_reload < 0);
7673
7674 if (GET_MODE (reloadreg) != mode)
7675 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7676
7677 if (tertiary_icode != CODE_FOR_nothing)
7678 {
7679 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7680
7681 /* Copy primary reload reg to secondary reload reg.
7682 (Note that these have been swapped above, then
7683 secondary reload reg to OLD using our insn.) */
7684
7685 /* If REAL_OLD is a paradoxical SUBREG, remove it
7686 and try to put the opposite SUBREG on
7687 RELOADREG. */
7688 strip_paradoxical_subreg (&real_old, &reloadreg);
7689
7690 gen_reload (reloadreg, second_reloadreg,
7691 rl->opnum, rl->when_needed);
7692 emit_insn ((GEN_FCN (tertiary_icode)
7693 (real_old, reloadreg, third_reloadreg)));
7694 special = 1;
7695 }
7696
7697 else
7698 {
7699 /* Copy between the reload regs here and then to
7700 OUT later. */
7701
7702 gen_reload (reloadreg, second_reloadreg,
7703 rl->opnum, rl->when_needed);
7704 if (tertiary_reload >= 0)
7705 {
7706 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7707
7708 gen_reload (third_reloadreg, reloadreg,
7709 rl->opnum, rl->when_needed);
7710 reloadreg = third_reloadreg;
7711 }
7712 }
7713 }
7714 }
7715 }
7716
7717 /* Output the last reload insn. */
7718 if (! special)
7719 {
7720 rtx set;
7721
7722 /* Don't output the last reload if OLD is not the dest of
7723 INSN and is in the src and is clobbered by INSN. */
7724 if (! flag_expensive_optimizations
7725 || !REG_P (old)
7726 || !(set = single_set (insn))
7727 || rtx_equal_p (old, SET_DEST (set))
7728 || !reg_mentioned_p (old, SET_SRC (set))
7729 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7730 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7731 gen_reload (old, reloadreg, rl->opnum,
7732 rl->when_needed);
7733 }
7734
7735 /* Look at all insns we emitted, just to be safe. */
7736 for (p = get_insns (); p; p = NEXT_INSN (p))
7737 if (INSN_P (p))
7738 {
7739 rtx pat = PATTERN (p);
7740
7741 /* If this output reload doesn't come from a spill reg,
7742 clear any memory of reloaded copies of the pseudo reg.
7743 If this output reload comes from a spill reg,
7744 reg_has_output_reload will make this do nothing. */
7745 note_stores (pat, forget_old_reloads_1, NULL);
7746
7747 if (reg_mentioned_p (rl_reg_rtx, pat))
7748 {
7749 rtx set = single_set (insn);
7750 if (reload_spill_index[j] < 0
7751 && set
7752 && SET_SRC (set) == rl_reg_rtx)
7753 {
7754 int src = REGNO (SET_SRC (set));
7755
7756 reload_spill_index[j] = src;
7757 SET_HARD_REG_BIT (reg_is_output_reload, src);
7758 if (find_regno_note (insn, REG_DEAD, src))
7759 SET_HARD_REG_BIT (reg_reloaded_died, src);
7760 }
7761 if (HARD_REGISTER_P (rl_reg_rtx))
7762 {
7763 int s = rl->secondary_out_reload;
7764 set = single_set (p);
7765 /* If this reload copies only to the secondary reload
7766 register, the secondary reload does the actual
7767 store. */
7768 if (s >= 0 && set == NULL_RTX)
7769 /* We can't tell what function the secondary reload
7770 has and where the actual store to the pseudo is
7771 made; leave new_spill_reg_store alone. */
7772 ;
7773 else if (s >= 0
7774 && SET_SRC (set) == rl_reg_rtx
7775 && SET_DEST (set) == rld[s].reg_rtx)
7776 {
7777 /* Usually the next instruction will be the
7778 secondary reload insn; if we can confirm
7779 that it is, setting new_spill_reg_store to
7780 that insn will allow an extra optimization. */
7781 rtx s_reg = rld[s].reg_rtx;
7782 rtx next = NEXT_INSN (p);
7783 rld[s].out = rl->out;
7784 rld[s].out_reg = rl->out_reg;
7785 set = single_set (next);
7786 if (set && SET_SRC (set) == s_reg
7787 && reload_reg_rtx_reaches_end_p (s_reg, s))
7788 {
7789 SET_HARD_REG_BIT (reg_is_output_reload,
7790 REGNO (s_reg));
7791 new_spill_reg_store[REGNO (s_reg)] = next;
7792 }
7793 }
7794 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7795 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7796 }
7797 }
7798 }
7799
7800 if (rl->when_needed == RELOAD_OTHER)
7801 {
7802 emit_insn (other_output_reload_insns[rl->opnum]);
7803 other_output_reload_insns[rl->opnum] = get_insns ();
7804 }
7805 else
7806 output_reload_insns[rl->opnum] = get_insns ();
7807
7808 if (cfun->can_throw_non_call_exceptions)
7809 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7810
7811 end_sequence ();
7812 }
7813
7814 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7815 and has the number J. */
7816 static void
7817 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7818 {
7819 rtx insn = chain->insn;
7820 rtx old = (rl->in && MEM_P (rl->in)
7821 ? rl->in_reg : rl->in);
7822 rtx reg_rtx = rl->reg_rtx;
7823
7824 if (old && reg_rtx)
7825 {
7826 enum machine_mode mode;
7827
7828 /* Determine the mode to reload in.
7829 This is very tricky because we have three to choose from.
7830 There is the mode the insn operand wants (rl->inmode).
7831 There is the mode of the reload register RELOADREG.
7832 There is the intrinsic mode of the operand, which we could find
7833 by stripping some SUBREGs.
7834 It turns out that RELOADREG's mode is irrelevant:
7835 we can change that arbitrarily.
7836
7837 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7838 then the reload reg may not support QImode moves, so use SImode.
7839 If foo is in memory due to spilling a pseudo reg, this is safe,
7840 because the QImode value is in the least significant part of a
7841 slot big enough for a SImode. If foo is some other sort of
7842 memory reference, then it is impossible to reload this case,
7843 so previous passes had better make sure this never happens.
7844
7845 Then consider a one-word union which has SImode and one of its
7846 members is a float, being fetched as (SUBREG:SF union:SI).
7847 We must fetch that as SFmode because we could be loading into
7848 a float-only register. In this case OLD's mode is correct.
7849
7850 Consider an immediate integer: it has VOIDmode. Here we need
7851 to get a mode from something else.
7852
7853 In some cases, there is a fourth mode, the operand's
7854 containing mode. If the insn specifies a containing mode for
7855 this operand, it overrides all others.
7856
7857 I am not sure whether the algorithm here is always right,
7858 but it does the right things in those cases. */
7859
7860 mode = GET_MODE (old);
7861 if (mode == VOIDmode)
7862 mode = rl->inmode;
7863
7864 /* We cannot use gen_lowpart_common since it can do the wrong thing
7865 when REG_RTX has a multi-word mode. Note that REG_RTX must
7866 always be a REG here. */
7867 if (GET_MODE (reg_rtx) != mode)
7868 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7869 }
7870 reload_reg_rtx_for_input[j] = reg_rtx;
7871
7872 if (old != 0
7873 /* AUTO_INC reloads need to be handled even if inherited. We got an
7874 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7875 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7876 && ! rtx_equal_p (reg_rtx, old)
7877 && reg_rtx != 0)
7878 emit_input_reload_insns (chain, rld + j, old, j);
7879
7880 /* When inheriting a wider reload, we have a MEM in rl->in,
7881 e.g. inheriting a SImode output reload for
7882 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7883 if (optimize && reload_inherited[j] && rl->in
7884 && MEM_P (rl->in)
7885 && MEM_P (rl->in_reg)
7886 && reload_spill_index[j] >= 0
7887 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7888 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7889
7890 /* If we are reloading a register that was recently stored in with an
7891 output-reload, see if we can prove there was
7892 actually no need to store the old value in it. */
7893
7894 if (optimize
7895 && (reload_inherited[j] || reload_override_in[j])
7896 && reg_rtx
7897 && REG_P (reg_rtx)
7898 && spill_reg_store[REGNO (reg_rtx)] != 0
7899 #if 0
7900 /* There doesn't seem to be any reason to restrict this to pseudos
7901 and doing so loses in the case where we are copying from a
7902 register of the wrong class. */
7903 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7904 #endif
7905 /* The insn might have already some references to stackslots
7906 replaced by MEMs, while reload_out_reg still names the
7907 original pseudo. */
7908 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7909 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7910 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7911 }
7912
7913 /* Do output reloading for reload RL, which is for the insn described by
7914 CHAIN and has the number J.
7915 ??? At some point we need to support handling output reloads of
7916 JUMP_INSNs or insns that set cc0. */
7917 static void
7918 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7919 {
7920 rtx note, old;
7921 rtx insn = chain->insn;
7922 /* If this is an output reload that stores something that is
7923 not loaded in this same reload, see if we can eliminate a previous
7924 store. */
7925 rtx pseudo = rl->out_reg;
7926 rtx reg_rtx = rl->reg_rtx;
7927
7928 if (rl->out && reg_rtx)
7929 {
7930 enum machine_mode mode;
7931
7932 /* Determine the mode to reload in.
7933 See comments above (for input reloading). */
7934 mode = GET_MODE (rl->out);
7935 if (mode == VOIDmode)
7936 {
7937 /* VOIDmode should never happen for an output. */
7938 if (asm_noperands (PATTERN (insn)) < 0)
7939 /* It's the compiler's fault. */
7940 fatal_insn ("VOIDmode on an output", insn);
7941 error_for_asm (insn, "output operand is constant in %<asm%>");
7942 /* Prevent crash--use something we know is valid. */
7943 mode = word_mode;
7944 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7945 }
7946 if (GET_MODE (reg_rtx) != mode)
7947 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7948 }
7949 reload_reg_rtx_for_output[j] = reg_rtx;
7950
7951 if (pseudo
7952 && optimize
7953 && REG_P (pseudo)
7954 && ! rtx_equal_p (rl->in_reg, pseudo)
7955 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7956 && reg_last_reload_reg[REGNO (pseudo)])
7957 {
7958 int pseudo_no = REGNO (pseudo);
7959 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7960
7961 /* We don't need to test full validity of last_regno for
7962 inherit here; we only want to know if the store actually
7963 matches the pseudo. */
7964 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7965 && reg_reloaded_contents[last_regno] == pseudo_no
7966 && spill_reg_store[last_regno]
7967 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7968 delete_output_reload (insn, j, last_regno, reg_rtx);
7969 }
7970
7971 old = rl->out_reg;
7972 if (old == 0
7973 || reg_rtx == 0
7974 || rtx_equal_p (old, reg_rtx))
7975 return;
7976
7977 /* An output operand that dies right away does need a reload,
7978 but need not be copied from it. Show the new location in the
7979 REG_UNUSED note. */
7980 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7981 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7982 {
7983 XEXP (note, 0) = reg_rtx;
7984 return;
7985 }
7986 /* Likewise for a SUBREG of an operand that dies. */
7987 else if (GET_CODE (old) == SUBREG
7988 && REG_P (SUBREG_REG (old))
7989 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7990 SUBREG_REG (old))))
7991 {
7992 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7993 return;
7994 }
7995 else if (GET_CODE (old) == SCRATCH)
7996 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7997 but we don't want to make an output reload. */
7998 return;
7999
8000 /* If is a JUMP_INSN, we can't support output reloads yet. */
8001 gcc_assert (NONJUMP_INSN_P (insn));
8002
8003 emit_output_reload_insns (chain, rld + j, j);
8004 }
8005
8006 /* A reload copies values of MODE from register SRC to register DEST.
8007 Return true if it can be treated for inheritance purposes like a
8008 group of reloads, each one reloading a single hard register. The
8009 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8010 occupy the same number of hard registers. */
8011
8012 static bool
8013 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8014 int src ATTRIBUTE_UNUSED,
8015 enum machine_mode mode ATTRIBUTE_UNUSED)
8016 {
8017 #ifdef CANNOT_CHANGE_MODE_CLASS
8018 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8019 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8020 #else
8021 return true;
8022 #endif
8023 }
8024
8025 /* Output insns to reload values in and out of the chosen reload regs. */
8026
8027 static void
8028 emit_reload_insns (struct insn_chain *chain)
8029 {
8030 rtx insn = chain->insn;
8031
8032 int j;
8033
8034 CLEAR_HARD_REG_SET (reg_reloaded_died);
8035
8036 for (j = 0; j < reload_n_operands; j++)
8037 input_reload_insns[j] = input_address_reload_insns[j]
8038 = inpaddr_address_reload_insns[j]
8039 = output_reload_insns[j] = output_address_reload_insns[j]
8040 = outaddr_address_reload_insns[j]
8041 = other_output_reload_insns[j] = 0;
8042 other_input_address_reload_insns = 0;
8043 other_input_reload_insns = 0;
8044 operand_reload_insns = 0;
8045 other_operand_reload_insns = 0;
8046
8047 /* Dump reloads into the dump file. */
8048 if (dump_file)
8049 {
8050 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8051 debug_reload_to_stream (dump_file);
8052 }
8053
8054 for (j = 0; j < n_reloads; j++)
8055 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8056 {
8057 unsigned int i;
8058
8059 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8060 new_spill_reg_store[i] = 0;
8061 }
8062
8063 /* Now output the instructions to copy the data into and out of the
8064 reload registers. Do these in the order that the reloads were reported,
8065 since reloads of base and index registers precede reloads of operands
8066 and the operands may need the base and index registers reloaded. */
8067
8068 for (j = 0; j < n_reloads; j++)
8069 {
8070 do_input_reload (chain, rld + j, j);
8071 do_output_reload (chain, rld + j, j);
8072 }
8073
8074 /* Now write all the insns we made for reloads in the order expected by
8075 the allocation functions. Prior to the insn being reloaded, we write
8076 the following reloads:
8077
8078 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8079
8080 RELOAD_OTHER reloads.
8081
8082 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8083 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8084 RELOAD_FOR_INPUT reload for the operand.
8085
8086 RELOAD_FOR_OPADDR_ADDRS reloads.
8087
8088 RELOAD_FOR_OPERAND_ADDRESS reloads.
8089
8090 After the insn being reloaded, we write the following:
8091
8092 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8093 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8094 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8095 reloads for the operand. The RELOAD_OTHER output reloads are
8096 output in descending order by reload number. */
8097
8098 emit_insn_before (other_input_address_reload_insns, insn);
8099 emit_insn_before (other_input_reload_insns, insn);
8100
8101 for (j = 0; j < reload_n_operands; j++)
8102 {
8103 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8104 emit_insn_before (input_address_reload_insns[j], insn);
8105 emit_insn_before (input_reload_insns[j], insn);
8106 }
8107
8108 emit_insn_before (other_operand_reload_insns, insn);
8109 emit_insn_before (operand_reload_insns, insn);
8110
8111 for (j = 0; j < reload_n_operands; j++)
8112 {
8113 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8114 x = emit_insn_after (output_address_reload_insns[j], x);
8115 x = emit_insn_after (output_reload_insns[j], x);
8116 emit_insn_after (other_output_reload_insns[j], x);
8117 }
8118
8119 /* For all the spill regs newly reloaded in this instruction,
8120 record what they were reloaded from, so subsequent instructions
8121 can inherit the reloads.
8122
8123 Update spill_reg_store for the reloads of this insn.
8124 Copy the elements that were updated in the loop above. */
8125
8126 for (j = 0; j < n_reloads; j++)
8127 {
8128 int r = reload_order[j];
8129 int i = reload_spill_index[r];
8130
8131 /* If this is a non-inherited input reload from a pseudo, we must
8132 clear any memory of a previous store to the same pseudo. Only do
8133 something if there will not be an output reload for the pseudo
8134 being reloaded. */
8135 if (rld[r].in_reg != 0
8136 && ! (reload_inherited[r] || reload_override_in[r]))
8137 {
8138 rtx reg = rld[r].in_reg;
8139
8140 if (GET_CODE (reg) == SUBREG)
8141 reg = SUBREG_REG (reg);
8142
8143 if (REG_P (reg)
8144 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8145 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8146 {
8147 int nregno = REGNO (reg);
8148
8149 if (reg_last_reload_reg[nregno])
8150 {
8151 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8152
8153 if (reg_reloaded_contents[last_regno] == nregno)
8154 spill_reg_store[last_regno] = 0;
8155 }
8156 }
8157 }
8158
8159 /* I is nonneg if this reload used a register.
8160 If rld[r].reg_rtx is 0, this is an optional reload
8161 that we opted to ignore. */
8162
8163 if (i >= 0 && rld[r].reg_rtx != 0)
8164 {
8165 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8166 int k;
8167
8168 /* For a multi register reload, we need to check if all or part
8169 of the value lives to the end. */
8170 for (k = 0; k < nr; k++)
8171 if (reload_reg_reaches_end_p (i + k, r))
8172 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8173
8174 /* Maybe the spill reg contains a copy of reload_out. */
8175 if (rld[r].out != 0
8176 && (REG_P (rld[r].out)
8177 || (rld[r].out_reg
8178 ? REG_P (rld[r].out_reg)
8179 /* The reload value is an auto-modification of
8180 some kind. For PRE_INC, POST_INC, PRE_DEC
8181 and POST_DEC, we record an equivalence
8182 between the reload register and the operand
8183 on the optimistic assumption that we can make
8184 the equivalence hold. reload_as_needed must
8185 then either make it hold or invalidate the
8186 equivalence.
8187
8188 PRE_MODIFY and POST_MODIFY addresses are reloaded
8189 somewhat differently, and allowing them here leads
8190 to problems. */
8191 : (GET_CODE (rld[r].out) != POST_MODIFY
8192 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8193 {
8194 rtx reg;
8195
8196 reg = reload_reg_rtx_for_output[r];
8197 if (reload_reg_rtx_reaches_end_p (reg, r))
8198 {
8199 enum machine_mode mode = GET_MODE (reg);
8200 int regno = REGNO (reg);
8201 int nregs = hard_regno_nregs[regno][mode];
8202 rtx out = (REG_P (rld[r].out)
8203 ? rld[r].out
8204 : rld[r].out_reg
8205 ? rld[r].out_reg
8206 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8207 int out_regno = REGNO (out);
8208 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8209 : hard_regno_nregs[out_regno][mode]);
8210 bool piecemeal;
8211
8212 spill_reg_store[regno] = new_spill_reg_store[regno];
8213 spill_reg_stored_to[regno] = out;
8214 reg_last_reload_reg[out_regno] = reg;
8215
8216 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8217 && nregs == out_nregs
8218 && inherit_piecemeal_p (out_regno, regno, mode));
8219
8220 /* If OUT_REGNO is a hard register, it may occupy more than
8221 one register. If it does, say what is in the
8222 rest of the registers assuming that both registers
8223 agree on how many words the object takes. If not,
8224 invalidate the subsequent registers. */
8225
8226 if (HARD_REGISTER_NUM_P (out_regno))
8227 for (k = 1; k < out_nregs; k++)
8228 reg_last_reload_reg[out_regno + k]
8229 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8230
8231 /* Now do the inverse operation. */
8232 for (k = 0; k < nregs; k++)
8233 {
8234 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8235 reg_reloaded_contents[regno + k]
8236 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8237 ? out_regno
8238 : out_regno + k);
8239 reg_reloaded_insn[regno + k] = insn;
8240 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8241 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8242 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8243 regno + k);
8244 else
8245 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8246 regno + k);
8247 }
8248 }
8249 }
8250 /* Maybe the spill reg contains a copy of reload_in. Only do
8251 something if there will not be an output reload for
8252 the register being reloaded. */
8253 else if (rld[r].out_reg == 0
8254 && rld[r].in != 0
8255 && ((REG_P (rld[r].in)
8256 && !HARD_REGISTER_P (rld[r].in)
8257 && !REGNO_REG_SET_P (&reg_has_output_reload,
8258 REGNO (rld[r].in)))
8259 || (REG_P (rld[r].in_reg)
8260 && !REGNO_REG_SET_P (&reg_has_output_reload,
8261 REGNO (rld[r].in_reg))))
8262 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8263 {
8264 rtx reg;
8265
8266 reg = reload_reg_rtx_for_input[r];
8267 if (reload_reg_rtx_reaches_end_p (reg, r))
8268 {
8269 enum machine_mode mode;
8270 int regno;
8271 int nregs;
8272 int in_regno;
8273 int in_nregs;
8274 rtx in;
8275 bool piecemeal;
8276
8277 mode = GET_MODE (reg);
8278 regno = REGNO (reg);
8279 nregs = hard_regno_nregs[regno][mode];
8280 if (REG_P (rld[r].in)
8281 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8282 in = rld[r].in;
8283 else if (REG_P (rld[r].in_reg))
8284 in = rld[r].in_reg;
8285 else
8286 in = XEXP (rld[r].in_reg, 0);
8287 in_regno = REGNO (in);
8288
8289 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8290 : hard_regno_nregs[in_regno][mode]);
8291
8292 reg_last_reload_reg[in_regno] = reg;
8293
8294 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8295 && nregs == in_nregs
8296 && inherit_piecemeal_p (regno, in_regno, mode));
8297
8298 if (HARD_REGISTER_NUM_P (in_regno))
8299 for (k = 1; k < in_nregs; k++)
8300 reg_last_reload_reg[in_regno + k]
8301 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8302
8303 /* Unless we inherited this reload, show we haven't
8304 recently done a store.
8305 Previous stores of inherited auto_inc expressions
8306 also have to be discarded. */
8307 if (! reload_inherited[r]
8308 || (rld[r].out && ! rld[r].out_reg))
8309 spill_reg_store[regno] = 0;
8310
8311 for (k = 0; k < nregs; k++)
8312 {
8313 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8314 reg_reloaded_contents[regno + k]
8315 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8316 ? in_regno
8317 : in_regno + k);
8318 reg_reloaded_insn[regno + k] = insn;
8319 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8320 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8321 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8322 regno + k);
8323 else
8324 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8325 regno + k);
8326 }
8327 }
8328 }
8329 }
8330
8331 /* The following if-statement was #if 0'd in 1.34 (or before...).
8332 It's reenabled in 1.35 because supposedly nothing else
8333 deals with this problem. */
8334
8335 /* If a register gets output-reloaded from a non-spill register,
8336 that invalidates any previous reloaded copy of it.
8337 But forget_old_reloads_1 won't get to see it, because
8338 it thinks only about the original insn. So invalidate it here.
8339 Also do the same thing for RELOAD_OTHER constraints where the
8340 output is discarded. */
8341 if (i < 0
8342 && ((rld[r].out != 0
8343 && (REG_P (rld[r].out)
8344 || (MEM_P (rld[r].out)
8345 && REG_P (rld[r].out_reg))))
8346 || (rld[r].out == 0 && rld[r].out_reg
8347 && REG_P (rld[r].out_reg))))
8348 {
8349 rtx out = ((rld[r].out && REG_P (rld[r].out))
8350 ? rld[r].out : rld[r].out_reg);
8351 int out_regno = REGNO (out);
8352 enum machine_mode mode = GET_MODE (out);
8353
8354 /* REG_RTX is now set or clobbered by the main instruction.
8355 As the comment above explains, forget_old_reloads_1 only
8356 sees the original instruction, and there is no guarantee
8357 that the original instruction also clobbered REG_RTX.
8358 For example, if find_reloads sees that the input side of
8359 a matched operand pair dies in this instruction, it may
8360 use the input register as the reload register.
8361
8362 Calling forget_old_reloads_1 is a waste of effort if
8363 REG_RTX is also the output register.
8364
8365 If we know that REG_RTX holds the value of a pseudo
8366 register, the code after the call will record that fact. */
8367 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8368 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8369
8370 if (!HARD_REGISTER_NUM_P (out_regno))
8371 {
8372 rtx src_reg, store_insn = NULL_RTX;
8373
8374 reg_last_reload_reg[out_regno] = 0;
8375
8376 /* If we can find a hard register that is stored, record
8377 the storing insn so that we may delete this insn with
8378 delete_output_reload. */
8379 src_reg = reload_reg_rtx_for_output[r];
8380
8381 if (src_reg)
8382 {
8383 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8384 store_insn = new_spill_reg_store[REGNO (src_reg)];
8385 else
8386 src_reg = NULL_RTX;
8387 }
8388 else
8389 {
8390 /* If this is an optional reload, try to find the
8391 source reg from an input reload. */
8392 rtx set = single_set (insn);
8393 if (set && SET_DEST (set) == rld[r].out)
8394 {
8395 int k;
8396
8397 src_reg = SET_SRC (set);
8398 store_insn = insn;
8399 for (k = 0; k < n_reloads; k++)
8400 {
8401 if (rld[k].in == src_reg)
8402 {
8403 src_reg = reload_reg_rtx_for_input[k];
8404 break;
8405 }
8406 }
8407 }
8408 }
8409 if (src_reg && REG_P (src_reg)
8410 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8411 {
8412 int src_regno, src_nregs, k;
8413 rtx note;
8414
8415 gcc_assert (GET_MODE (src_reg) == mode);
8416 src_regno = REGNO (src_reg);
8417 src_nregs = hard_regno_nregs[src_regno][mode];
8418 /* The place where to find a death note varies with
8419 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8420 necessarily checked exactly in the code that moves
8421 notes, so just check both locations. */
8422 note = find_regno_note (insn, REG_DEAD, src_regno);
8423 if (! note && store_insn)
8424 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8425 for (k = 0; k < src_nregs; k++)
8426 {
8427 spill_reg_store[src_regno + k] = store_insn;
8428 spill_reg_stored_to[src_regno + k] = out;
8429 reg_reloaded_contents[src_regno + k] = out_regno;
8430 reg_reloaded_insn[src_regno + k] = store_insn;
8431 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8432 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8433 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8434 mode))
8435 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8436 src_regno + k);
8437 else
8438 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8439 src_regno + k);
8440 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8441 if (note)
8442 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8443 else
8444 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8445 }
8446 reg_last_reload_reg[out_regno] = src_reg;
8447 /* We have to set reg_has_output_reload here, or else
8448 forget_old_reloads_1 will clear reg_last_reload_reg
8449 right away. */
8450 SET_REGNO_REG_SET (&reg_has_output_reload,
8451 out_regno);
8452 }
8453 }
8454 else
8455 {
8456 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8457
8458 for (k = 0; k < out_nregs; k++)
8459 reg_last_reload_reg[out_regno + k] = 0;
8460 }
8461 }
8462 }
8463 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8464 }
8465 \f
8466 /* Go through the motions to emit INSN and test if it is strictly valid.
8467 Return the emitted insn if valid, else return NULL. */
8468
8469 static rtx
8470 emit_insn_if_valid_for_reload (rtx insn)
8471 {
8472 rtx last = get_last_insn ();
8473 int code;
8474
8475 insn = emit_insn (insn);
8476 code = recog_memoized (insn);
8477
8478 if (code >= 0)
8479 {
8480 extract_insn (insn);
8481 /* We want constrain operands to treat this insn strictly in its
8482 validity determination, i.e., the way it would after reload has
8483 completed. */
8484 if (constrain_operands (1))
8485 return insn;
8486 }
8487
8488 delete_insns_since (last);
8489 return NULL;
8490 }
8491
8492 /* Emit code to perform a reload from IN (which may be a reload register) to
8493 OUT (which may also be a reload register). IN or OUT is from operand
8494 OPNUM with reload type TYPE.
8495
8496 Returns first insn emitted. */
8497
8498 static rtx
8499 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8500 {
8501 rtx last = get_last_insn ();
8502 rtx tem;
8503 #ifdef SECONDARY_MEMORY_NEEDED
8504 rtx tem1, tem2;
8505 #endif
8506
8507 /* If IN is a paradoxical SUBREG, remove it and try to put the
8508 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8509 if (!strip_paradoxical_subreg (&in, &out))
8510 strip_paradoxical_subreg (&out, &in);
8511
8512 /* How to do this reload can get quite tricky. Normally, we are being
8513 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8514 register that didn't get a hard register. In that case we can just
8515 call emit_move_insn.
8516
8517 We can also be asked to reload a PLUS that adds a register or a MEM to
8518 another register, constant or MEM. This can occur during frame pointer
8519 elimination and while reloading addresses. This case is handled by
8520 trying to emit a single insn to perform the add. If it is not valid,
8521 we use a two insn sequence.
8522
8523 Or we can be asked to reload an unary operand that was a fragment of
8524 an addressing mode, into a register. If it isn't recognized as-is,
8525 we try making the unop operand and the reload-register the same:
8526 (set reg:X (unop:X expr:Y))
8527 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8528
8529 Finally, we could be called to handle an 'o' constraint by putting
8530 an address into a register. In that case, we first try to do this
8531 with a named pattern of "reload_load_address". If no such pattern
8532 exists, we just emit a SET insn and hope for the best (it will normally
8533 be valid on machines that use 'o').
8534
8535 This entire process is made complex because reload will never
8536 process the insns we generate here and so we must ensure that
8537 they will fit their constraints and also by the fact that parts of
8538 IN might be being reloaded separately and replaced with spill registers.
8539 Because of this, we are, in some sense, just guessing the right approach
8540 here. The one listed above seems to work.
8541
8542 ??? At some point, this whole thing needs to be rethought. */
8543
8544 if (GET_CODE (in) == PLUS
8545 && (REG_P (XEXP (in, 0))
8546 || GET_CODE (XEXP (in, 0)) == SUBREG
8547 || MEM_P (XEXP (in, 0)))
8548 && (REG_P (XEXP (in, 1))
8549 || GET_CODE (XEXP (in, 1)) == SUBREG
8550 || CONSTANT_P (XEXP (in, 1))
8551 || MEM_P (XEXP (in, 1))))
8552 {
8553 /* We need to compute the sum of a register or a MEM and another
8554 register, constant, or MEM, and put it into the reload
8555 register. The best possible way of doing this is if the machine
8556 has a three-operand ADD insn that accepts the required operands.
8557
8558 The simplest approach is to try to generate such an insn and see if it
8559 is recognized and matches its constraints. If so, it can be used.
8560
8561 It might be better not to actually emit the insn unless it is valid,
8562 but we need to pass the insn as an operand to `recog' and
8563 `extract_insn' and it is simpler to emit and then delete the insn if
8564 not valid than to dummy things up. */
8565
8566 rtx op0, op1, tem, insn;
8567 enum insn_code code;
8568
8569 op0 = find_replacement (&XEXP (in, 0));
8570 op1 = find_replacement (&XEXP (in, 1));
8571
8572 /* Since constraint checking is strict, commutativity won't be
8573 checked, so we need to do that here to avoid spurious failure
8574 if the add instruction is two-address and the second operand
8575 of the add is the same as the reload reg, which is frequently
8576 the case. If the insn would be A = B + A, rearrange it so
8577 it will be A = A + B as constrain_operands expects. */
8578
8579 if (REG_P (XEXP (in, 1))
8580 && REGNO (out) == REGNO (XEXP (in, 1)))
8581 tem = op0, op0 = op1, op1 = tem;
8582
8583 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8584 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8585
8586 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8587 if (insn)
8588 return insn;
8589
8590 /* If that failed, we must use a conservative two-insn sequence.
8591
8592 Use a move to copy one operand into the reload register. Prefer
8593 to reload a constant, MEM or pseudo since the move patterns can
8594 handle an arbitrary operand. If OP1 is not a constant, MEM or
8595 pseudo and OP1 is not a valid operand for an add instruction, then
8596 reload OP1.
8597
8598 After reloading one of the operands into the reload register, add
8599 the reload register to the output register.
8600
8601 If there is another way to do this for a specific machine, a
8602 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8603 we emit below. */
8604
8605 code = optab_handler (add_optab, GET_MODE (out));
8606
8607 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8608 || (REG_P (op1)
8609 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8610 || (code != CODE_FOR_nothing
8611 && !insn_operand_matches (code, 2, op1)))
8612 tem = op0, op0 = op1, op1 = tem;
8613
8614 gen_reload (out, op0, opnum, type);
8615
8616 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8617 This fixes a problem on the 32K where the stack pointer cannot
8618 be used as an operand of an add insn. */
8619
8620 if (rtx_equal_p (op0, op1))
8621 op1 = out;
8622
8623 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8624 if (insn)
8625 {
8626 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8627 set_dst_reg_note (insn, REG_EQUIV, in, out);
8628 return insn;
8629 }
8630
8631 /* If that failed, copy the address register to the reload register.
8632 Then add the constant to the reload register. */
8633
8634 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8635 gen_reload (out, op1, opnum, type);
8636 insn = emit_insn (gen_add2_insn (out, op0));
8637 set_dst_reg_note (insn, REG_EQUIV, in, out);
8638 }
8639
8640 #ifdef SECONDARY_MEMORY_NEEDED
8641 /* If we need a memory location to do the move, do it that way. */
8642 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8643 (REG_P (tem1) && REG_P (tem2)))
8644 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8645 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8646 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8647 REGNO_REG_CLASS (REGNO (tem2)),
8648 GET_MODE (out)))
8649 {
8650 /* Get the memory to use and rewrite both registers to its mode. */
8651 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8652
8653 if (GET_MODE (loc) != GET_MODE (out))
8654 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8655
8656 if (GET_MODE (loc) != GET_MODE (in))
8657 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8658
8659 gen_reload (loc, in, opnum, type);
8660 gen_reload (out, loc, opnum, type);
8661 }
8662 #endif
8663 else if (REG_P (out) && UNARY_P (in))
8664 {
8665 rtx insn;
8666 rtx op1;
8667 rtx out_moded;
8668 rtx set;
8669
8670 op1 = find_replacement (&XEXP (in, 0));
8671 if (op1 != XEXP (in, 0))
8672 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8673
8674 /* First, try a plain SET. */
8675 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8676 if (set)
8677 return set;
8678
8679 /* If that failed, move the inner operand to the reload
8680 register, and try the same unop with the inner expression
8681 replaced with the reload register. */
8682
8683 if (GET_MODE (op1) != GET_MODE (out))
8684 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8685 else
8686 out_moded = out;
8687
8688 gen_reload (out_moded, op1, opnum, type);
8689
8690 insn
8691 = gen_rtx_SET (VOIDmode, out,
8692 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8693 out_moded));
8694 insn = emit_insn_if_valid_for_reload (insn);
8695 if (insn)
8696 {
8697 set_unique_reg_note (insn, REG_EQUIV, in);
8698 return insn;
8699 }
8700
8701 fatal_insn ("failure trying to reload:", set);
8702 }
8703 /* If IN is a simple operand, use gen_move_insn. */
8704 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8705 {
8706 tem = emit_insn (gen_move_insn (out, in));
8707 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8708 mark_jump_label (in, tem, 0);
8709 }
8710
8711 #ifdef HAVE_reload_load_address
8712 else if (HAVE_reload_load_address)
8713 emit_insn (gen_reload_load_address (out, in));
8714 #endif
8715
8716 /* Otherwise, just write (set OUT IN) and hope for the best. */
8717 else
8718 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8719
8720 /* Return the first insn emitted.
8721 We can not just return get_last_insn, because there may have
8722 been multiple instructions emitted. Also note that gen_move_insn may
8723 emit more than one insn itself, so we can not assume that there is one
8724 insn emitted per emit_insn_before call. */
8725
8726 return last ? NEXT_INSN (last) : get_insns ();
8727 }
8728 \f
8729 /* Delete a previously made output-reload whose result we now believe
8730 is not needed. First we double-check.
8731
8732 INSN is the insn now being processed.
8733 LAST_RELOAD_REG is the hard register number for which we want to delete
8734 the last output reload.
8735 J is the reload-number that originally used REG. The caller has made
8736 certain that reload J doesn't use REG any longer for input.
8737 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8738
8739 static void
8740 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8741 {
8742 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8743 rtx reg = spill_reg_stored_to[last_reload_reg];
8744 int k;
8745 int n_occurrences;
8746 int n_inherited = 0;
8747 rtx i1;
8748 rtx substed;
8749 unsigned regno;
8750 int nregs;
8751
8752 /* It is possible that this reload has been only used to set another reload
8753 we eliminated earlier and thus deleted this instruction too. */
8754 if (INSN_DELETED_P (output_reload_insn))
8755 return;
8756
8757 /* Get the raw pseudo-register referred to. */
8758
8759 while (GET_CODE (reg) == SUBREG)
8760 reg = SUBREG_REG (reg);
8761 substed = reg_equiv_memory_loc (REGNO (reg));
8762
8763 /* This is unsafe if the operand occurs more often in the current
8764 insn than it is inherited. */
8765 for (k = n_reloads - 1; k >= 0; k--)
8766 {
8767 rtx reg2 = rld[k].in;
8768 if (! reg2)
8769 continue;
8770 if (MEM_P (reg2) || reload_override_in[k])
8771 reg2 = rld[k].in_reg;
8772 #ifdef AUTO_INC_DEC
8773 if (rld[k].out && ! rld[k].out_reg)
8774 reg2 = XEXP (rld[k].in_reg, 0);
8775 #endif
8776 while (GET_CODE (reg2) == SUBREG)
8777 reg2 = SUBREG_REG (reg2);
8778 if (rtx_equal_p (reg2, reg))
8779 {
8780 if (reload_inherited[k] || reload_override_in[k] || k == j)
8781 n_inherited++;
8782 else
8783 return;
8784 }
8785 }
8786 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8787 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8788 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8789 reg, 0);
8790 if (substed)
8791 n_occurrences += count_occurrences (PATTERN (insn),
8792 eliminate_regs (substed, VOIDmode,
8793 NULL_RTX), 0);
8794 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8795 {
8796 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8797 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8798 }
8799 if (n_occurrences > n_inherited)
8800 return;
8801
8802 regno = REGNO (reg);
8803 if (regno >= FIRST_PSEUDO_REGISTER)
8804 nregs = 1;
8805 else
8806 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8807
8808 /* If the pseudo-reg we are reloading is no longer referenced
8809 anywhere between the store into it and here,
8810 and we're within the same basic block, then the value can only
8811 pass through the reload reg and end up here.
8812 Otherwise, give up--return. */
8813 for (i1 = NEXT_INSN (output_reload_insn);
8814 i1 != insn; i1 = NEXT_INSN (i1))
8815 {
8816 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8817 return;
8818 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8819 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8820 {
8821 /* If this is USE in front of INSN, we only have to check that
8822 there are no more references than accounted for by inheritance. */
8823 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8824 {
8825 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8826 i1 = NEXT_INSN (i1);
8827 }
8828 if (n_occurrences <= n_inherited && i1 == insn)
8829 break;
8830 return;
8831 }
8832 }
8833
8834 /* We will be deleting the insn. Remove the spill reg information. */
8835 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8836 {
8837 spill_reg_store[last_reload_reg + k] = 0;
8838 spill_reg_stored_to[last_reload_reg + k] = 0;
8839 }
8840
8841 /* The caller has already checked that REG dies or is set in INSN.
8842 It has also checked that we are optimizing, and thus some
8843 inaccuracies in the debugging information are acceptable.
8844 So we could just delete output_reload_insn. But in some cases
8845 we can improve the debugging information without sacrificing
8846 optimization - maybe even improving the code: See if the pseudo
8847 reg has been completely replaced with reload regs. If so, delete
8848 the store insn and forget we had a stack slot for the pseudo. */
8849 if (rld[j].out != rld[j].in
8850 && REG_N_DEATHS (REGNO (reg)) == 1
8851 && REG_N_SETS (REGNO (reg)) == 1
8852 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8853 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8854 {
8855 rtx i2;
8856
8857 /* We know that it was used only between here and the beginning of
8858 the current basic block. (We also know that the last use before
8859 INSN was the output reload we are thinking of deleting, but never
8860 mind that.) Search that range; see if any ref remains. */
8861 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8862 {
8863 rtx set = single_set (i2);
8864
8865 /* Uses which just store in the pseudo don't count,
8866 since if they are the only uses, they are dead. */
8867 if (set != 0 && SET_DEST (set) == reg)
8868 continue;
8869 if (LABEL_P (i2)
8870 || JUMP_P (i2))
8871 break;
8872 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8873 && reg_mentioned_p (reg, PATTERN (i2)))
8874 {
8875 /* Some other ref remains; just delete the output reload we
8876 know to be dead. */
8877 delete_address_reloads (output_reload_insn, insn);
8878 delete_insn (output_reload_insn);
8879 return;
8880 }
8881 }
8882
8883 /* Delete the now-dead stores into this pseudo. Note that this
8884 loop also takes care of deleting output_reload_insn. */
8885 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8886 {
8887 rtx set = single_set (i2);
8888
8889 if (set != 0 && SET_DEST (set) == reg)
8890 {
8891 delete_address_reloads (i2, insn);
8892 delete_insn (i2);
8893 }
8894 if (LABEL_P (i2)
8895 || JUMP_P (i2))
8896 break;
8897 }
8898
8899 /* For the debugging info, say the pseudo lives in this reload reg. */
8900 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8901 if (ira_conflicts_p)
8902 /* Inform IRA about the change. */
8903 ira_mark_allocation_change (REGNO (reg));
8904 alter_reg (REGNO (reg), -1, false);
8905 }
8906 else
8907 {
8908 delete_address_reloads (output_reload_insn, insn);
8909 delete_insn (output_reload_insn);
8910 }
8911 }
8912
8913 /* We are going to delete DEAD_INSN. Recursively delete loads of
8914 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8915 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8916 static void
8917 delete_address_reloads (rtx dead_insn, rtx current_insn)
8918 {
8919 rtx set = single_set (dead_insn);
8920 rtx set2, dst, prev, next;
8921 if (set)
8922 {
8923 rtx dst = SET_DEST (set);
8924 if (MEM_P (dst))
8925 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8926 }
8927 /* If we deleted the store from a reloaded post_{in,de}c expression,
8928 we can delete the matching adds. */
8929 prev = PREV_INSN (dead_insn);
8930 next = NEXT_INSN (dead_insn);
8931 if (! prev || ! next)
8932 return;
8933 set = single_set (next);
8934 set2 = single_set (prev);
8935 if (! set || ! set2
8936 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8937 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8938 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8939 return;
8940 dst = SET_DEST (set);
8941 if (! rtx_equal_p (dst, SET_DEST (set2))
8942 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8943 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8944 || (INTVAL (XEXP (SET_SRC (set), 1))
8945 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8946 return;
8947 delete_related_insns (prev);
8948 delete_related_insns (next);
8949 }
8950
8951 /* Subfunction of delete_address_reloads: process registers found in X. */
8952 static void
8953 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8954 {
8955 rtx prev, set, dst, i2;
8956 int i, j;
8957 enum rtx_code code = GET_CODE (x);
8958
8959 if (code != REG)
8960 {
8961 const char *fmt = GET_RTX_FORMAT (code);
8962 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8963 {
8964 if (fmt[i] == 'e')
8965 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8966 else if (fmt[i] == 'E')
8967 {
8968 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8969 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8970 current_insn);
8971 }
8972 }
8973 return;
8974 }
8975
8976 if (spill_reg_order[REGNO (x)] < 0)
8977 return;
8978
8979 /* Scan backwards for the insn that sets x. This might be a way back due
8980 to inheritance. */
8981 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8982 {
8983 code = GET_CODE (prev);
8984 if (code == CODE_LABEL || code == JUMP_INSN)
8985 return;
8986 if (!INSN_P (prev))
8987 continue;
8988 if (reg_set_p (x, PATTERN (prev)))
8989 break;
8990 if (reg_referenced_p (x, PATTERN (prev)))
8991 return;
8992 }
8993 if (! prev || INSN_UID (prev) < reload_first_uid)
8994 return;
8995 /* Check that PREV only sets the reload register. */
8996 set = single_set (prev);
8997 if (! set)
8998 return;
8999 dst = SET_DEST (set);
9000 if (!REG_P (dst)
9001 || ! rtx_equal_p (dst, x))
9002 return;
9003 if (! reg_set_p (dst, PATTERN (dead_insn)))
9004 {
9005 /* Check if DST was used in a later insn -
9006 it might have been inherited. */
9007 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9008 {
9009 if (LABEL_P (i2))
9010 break;
9011 if (! INSN_P (i2))
9012 continue;
9013 if (reg_referenced_p (dst, PATTERN (i2)))
9014 {
9015 /* If there is a reference to the register in the current insn,
9016 it might be loaded in a non-inherited reload. If no other
9017 reload uses it, that means the register is set before
9018 referenced. */
9019 if (i2 == current_insn)
9020 {
9021 for (j = n_reloads - 1; j >= 0; j--)
9022 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9023 || reload_override_in[j] == dst)
9024 return;
9025 for (j = n_reloads - 1; j >= 0; j--)
9026 if (rld[j].in && rld[j].reg_rtx == dst)
9027 break;
9028 if (j >= 0)
9029 break;
9030 }
9031 return;
9032 }
9033 if (JUMP_P (i2))
9034 break;
9035 /* If DST is still live at CURRENT_INSN, check if it is used for
9036 any reload. Note that even if CURRENT_INSN sets DST, we still
9037 have to check the reloads. */
9038 if (i2 == current_insn)
9039 {
9040 for (j = n_reloads - 1; j >= 0; j--)
9041 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9042 || reload_override_in[j] == dst)
9043 return;
9044 /* ??? We can't finish the loop here, because dst might be
9045 allocated to a pseudo in this block if no reload in this
9046 block needs any of the classes containing DST - see
9047 spill_hard_reg. There is no easy way to tell this, so we
9048 have to scan till the end of the basic block. */
9049 }
9050 if (reg_set_p (dst, PATTERN (i2)))
9051 break;
9052 }
9053 }
9054 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9055 reg_reloaded_contents[REGNO (dst)] = -1;
9056 delete_insn (prev);
9057 }
9058 \f
9059 /* Output reload-insns to reload VALUE into RELOADREG.
9060 VALUE is an autoincrement or autodecrement RTX whose operand
9061 is a register or memory location;
9062 so reloading involves incrementing that location.
9063 IN is either identical to VALUE, or some cheaper place to reload from.
9064
9065 INC_AMOUNT is the number to increment or decrement by (always positive).
9066 This cannot be deduced from VALUE. */
9067
9068 static void
9069 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9070 {
9071 /* REG or MEM to be copied and incremented. */
9072 rtx incloc = find_replacement (&XEXP (value, 0));
9073 /* Nonzero if increment after copying. */
9074 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9075 || GET_CODE (value) == POST_MODIFY);
9076 rtx last;
9077 rtx inc;
9078 rtx add_insn;
9079 int code;
9080 rtx real_in = in == value ? incloc : in;
9081
9082 /* No hard register is equivalent to this register after
9083 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9084 we could inc/dec that register as well (maybe even using it for
9085 the source), but I'm not sure it's worth worrying about. */
9086 if (REG_P (incloc))
9087 reg_last_reload_reg[REGNO (incloc)] = 0;
9088
9089 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9090 {
9091 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9092 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9093 }
9094 else
9095 {
9096 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9097 inc_amount = -inc_amount;
9098
9099 inc = GEN_INT (inc_amount);
9100 }
9101
9102 /* If this is post-increment, first copy the location to the reload reg. */
9103 if (post && real_in != reloadreg)
9104 emit_insn (gen_move_insn (reloadreg, real_in));
9105
9106 if (in == value)
9107 {
9108 /* See if we can directly increment INCLOC. Use a method similar to
9109 that in gen_reload. */
9110
9111 last = get_last_insn ();
9112 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9113 gen_rtx_PLUS (GET_MODE (incloc),
9114 incloc, inc)));
9115
9116 code = recog_memoized (add_insn);
9117 if (code >= 0)
9118 {
9119 extract_insn (add_insn);
9120 if (constrain_operands (1))
9121 {
9122 /* If this is a pre-increment and we have incremented the value
9123 where it lives, copy the incremented value to RELOADREG to
9124 be used as an address. */
9125
9126 if (! post)
9127 emit_insn (gen_move_insn (reloadreg, incloc));
9128 return;
9129 }
9130 }
9131 delete_insns_since (last);
9132 }
9133
9134 /* If couldn't do the increment directly, must increment in RELOADREG.
9135 The way we do this depends on whether this is pre- or post-increment.
9136 For pre-increment, copy INCLOC to the reload register, increment it
9137 there, then save back. */
9138
9139 if (! post)
9140 {
9141 if (in != reloadreg)
9142 emit_insn (gen_move_insn (reloadreg, real_in));
9143 emit_insn (gen_add2_insn (reloadreg, inc));
9144 emit_insn (gen_move_insn (incloc, reloadreg));
9145 }
9146 else
9147 {
9148 /* Postincrement.
9149 Because this might be a jump insn or a compare, and because RELOADREG
9150 may not be available after the insn in an input reload, we must do
9151 the incrementation before the insn being reloaded for.
9152
9153 We have already copied IN to RELOADREG. Increment the copy in
9154 RELOADREG, save that back, then decrement RELOADREG so it has
9155 the original value. */
9156
9157 emit_insn (gen_add2_insn (reloadreg, inc));
9158 emit_insn (gen_move_insn (incloc, reloadreg));
9159 if (CONST_INT_P (inc))
9160 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9161 else
9162 emit_insn (gen_sub2_insn (reloadreg, inc));
9163 }
9164 }
9165 \f
9166 #ifdef AUTO_INC_DEC
9167 static void
9168 add_auto_inc_notes (rtx insn, rtx x)
9169 {
9170 enum rtx_code code = GET_CODE (x);
9171 const char *fmt;
9172 int i, j;
9173
9174 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9175 {
9176 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9177 return;
9178 }
9179
9180 /* Scan all the operand sub-expressions. */
9181 fmt = GET_RTX_FORMAT (code);
9182 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9183 {
9184 if (fmt[i] == 'e')
9185 add_auto_inc_notes (insn, XEXP (x, i));
9186 else if (fmt[i] == 'E')
9187 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9188 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9189 }
9190 }
9191 #endif