Move MEMMODEL_* from coretypes.h to memmodel.h
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 if (memory_address_p (QImode, tem))
452 {
453 double_reg_address_ok = 1;
454 break;
455 }
456 }
457
458 /* Initialize obstack for our rtl allocation. */
459 if (reload_startobj == NULL)
460 {
461 gcc_obstack_init (&reload_obstack);
462 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
463 }
464
465 INIT_REG_SET (&spilled_pseudos);
466 INIT_REG_SET (&changed_allocation_pseudos);
467 INIT_REG_SET (&pseudos_counted);
468 }
469
470 /* List of insn chains that are currently unused. */
471 static struct insn_chain *unused_insn_chains = 0;
472
473 /* Allocate an empty insn_chain structure. */
474 struct insn_chain *
475 new_insn_chain (void)
476 {
477 struct insn_chain *c;
478
479 if (unused_insn_chains == 0)
480 {
481 c = XOBNEW (&reload_obstack, struct insn_chain);
482 INIT_REG_SET (&c->live_throughout);
483 INIT_REG_SET (&c->dead_or_set);
484 }
485 else
486 {
487 c = unused_insn_chains;
488 unused_insn_chains = c->next;
489 }
490 c->is_caller_save_insn = 0;
491 c->need_operand_change = 0;
492 c->need_reload = 0;
493 c->need_elim = 0;
494 return c;
495 }
496
497 /* Small utility function to set all regs in hard reg set TO which are
498 allocated to pseudos in regset FROM. */
499
500 void
501 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 {
503 unsigned int regno;
504 reg_set_iterator rsi;
505
506 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 {
508 int r = reg_renumber[regno];
509
510 if (r < 0)
511 {
512 /* reload_combine uses the information from DF_LIVE_IN,
513 which might still contain registers that have not
514 actually been allocated since they have an
515 equivalence. */
516 gcc_assert (ira_conflicts_p || reload_completed);
517 }
518 else
519 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
520 }
521 }
522
523 /* Replace all pseudos found in LOC with their corresponding
524 equivalences. */
525
526 static void
527 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 {
529 rtx x = *loc;
530 enum rtx_code code;
531 const char *fmt;
532 int i, j;
533
534 if (! x)
535 return;
536
537 code = GET_CODE (x);
538 if (code == REG)
539 {
540 unsigned int regno = REGNO (x);
541
542 if (regno < FIRST_PSEUDO_REGISTER)
543 return;
544
545 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
546 if (x != *loc)
547 {
548 *loc = x;
549 replace_pseudos_in (loc, mem_mode, usage);
550 return;
551 }
552
553 if (reg_equiv_constant (regno))
554 *loc = reg_equiv_constant (regno);
555 else if (reg_equiv_invariant (regno))
556 *loc = reg_equiv_invariant (regno);
557 else if (reg_equiv_mem (regno))
558 *loc = reg_equiv_mem (regno);
559 else if (reg_equiv_address (regno))
560 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
561 else
562 {
563 gcc_assert (!REG_P (regno_reg_rtx[regno])
564 || REGNO (regno_reg_rtx[regno]) != regno);
565 *loc = regno_reg_rtx[regno];
566 }
567
568 return;
569 }
570 else if (code == MEM)
571 {
572 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
573 return;
574 }
575
576 /* Process each of our operands recursively. */
577 fmt = GET_RTX_FORMAT (code);
578 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
579 if (*fmt == 'e')
580 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
581 else if (*fmt == 'E')
582 for (j = 0; j < XVECLEN (x, i); j++)
583 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
584 }
585
586 /* Determine if the current function has an exception receiver block
587 that reaches the exit block via non-exceptional edges */
588
589 static bool
590 has_nonexceptional_receiver (void)
591 {
592 edge e;
593 edge_iterator ei;
594 basic_block *tos, *worklist, bb;
595
596 /* If we're not optimizing, then just err on the safe side. */
597 if (!optimize)
598 return true;
599
600 /* First determine which blocks can reach exit via normal paths. */
601 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602
603 FOR_EACH_BB_FN (bb, cfun)
604 bb->flags &= ~BB_REACHABLE;
605
606 /* Place the exit block on our worklist. */
607 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
608 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609
610 /* Iterate: find everything reachable from what we've already seen. */
611 while (tos != worklist)
612 {
613 bb = *--tos;
614
615 FOR_EACH_EDGE (e, ei, bb->preds)
616 if (!(e->flags & EDGE_ABNORMAL))
617 {
618 basic_block src = e->src;
619
620 if (!(src->flags & BB_REACHABLE))
621 {
622 src->flags |= BB_REACHABLE;
623 *tos++ = src;
624 }
625 }
626 }
627 free (worklist);
628
629 /* Now see if there's a reachable block with an exceptional incoming
630 edge. */
631 FOR_EACH_BB_FN (bb, cfun)
632 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
633 return true;
634
635 /* No exceptional block reached exit unexceptionally. */
636 return false;
637 }
638
639 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
640 zero elements) to MAX_REG_NUM elements.
641
642 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
643 void
644 grow_reg_equivs (void)
645 {
646 int old_size = vec_safe_length (reg_equivs);
647 int max_regno = max_reg_num ();
648 int i;
649 reg_equivs_t ze;
650
651 memset (&ze, 0, sizeof (reg_equivs_t));
652 vec_safe_reserve (reg_equivs, max_regno);
653 for (i = old_size; i < max_regno; i++)
654 reg_equivs->quick_insert (i, ze);
655 }
656
657 \f
658 /* Global variables used by reload and its subroutines. */
659
660 /* The current basic block while in calculate_elim_costs_all_insns. */
661 static basic_block elim_bb;
662
663 /* Set during calculate_needs if an insn needs register elimination. */
664 static int something_needs_elimination;
665 /* Set during calculate_needs if an insn needs an operand changed. */
666 static int something_needs_operands_changed;
667 /* Set by alter_regs if we spilled a register to the stack. */
668 static bool something_was_spilled;
669
670 /* Nonzero means we couldn't get enough spill regs. */
671 static int failure;
672
673 /* Temporary array of pseudo-register number. */
674 static int *temp_pseudo_reg_arr;
675
676 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
677 If that insn didn't set the register (i.e., it copied the register to
678 memory), just delete that insn instead of the equivalencing insn plus
679 anything now dead. If we call delete_dead_insn on that insn, we may
680 delete the insn that actually sets the register if the register dies
681 there and that is incorrect. */
682 static void
683 remove_init_insns ()
684 {
685 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 {
687 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 {
689 rtx list;
690 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 {
692 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693
694 /* If we already deleted the insn or if it may trap, we can't
695 delete it. The latter case shouldn't happen, but can
696 if an insn has a variable address, gets a REG_EH_REGION
697 note added to it, and then gets converted into a load
698 from a constant address. */
699 if (NOTE_P (equiv_insn)
700 || can_throw_internal (equiv_insn))
701 ;
702 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
703 delete_dead_insn (equiv_insn);
704 else
705 SET_INSN_DELETED (equiv_insn);
706 }
707 }
708 }
709 }
710
711 /* Return true if remove_init_insns will delete INSN. */
712 static bool
713 will_delete_init_insn_p (rtx_insn *insn)
714 {
715 rtx set = single_set (insn);
716 if (!set || !REG_P (SET_DEST (set)))
717 return false;
718 unsigned regno = REGNO (SET_DEST (set));
719
720 if (can_throw_internal (insn))
721 return false;
722
723 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
724 return false;
725
726 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 {
728 rtx equiv_insn = XEXP (list, 0);
729 if (equiv_insn == insn)
730 return true;
731 }
732 return false;
733 }
734
735 /* Main entry point for the reload pass.
736
737 FIRST is the first insn of the function being compiled.
738
739 GLOBAL nonzero means we were called from global_alloc
740 and should attempt to reallocate any pseudoregs that we
741 displace from hard regs we will use for reloads.
742 If GLOBAL is zero, we do not have enough information to do that,
743 so any pseudo reg that is spilled must go to the stack.
744
745 Return value is TRUE if reload likely left dead insns in the
746 stream and a DCE pass should be run to elimiante them. Else the
747 return value is FALSE. */
748
749 bool
750 reload (rtx_insn *first, int global)
751 {
752 int i, n;
753 rtx_insn *insn;
754 struct elim_table *ep;
755 basic_block bb;
756 bool inserted;
757
758 /* Make sure even insns with volatile mem refs are recognizable. */
759 init_recog ();
760
761 failure = 0;
762
763 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764
765 /* Make sure that the last insn in the chain
766 is not something that needs reloading. */
767 emit_note (NOTE_INSN_DELETED);
768
769 /* Enable find_equiv_reg to distinguish insns made by reload. */
770 reload_first_uid = get_max_uid ();
771
772 #ifdef SECONDARY_MEMORY_NEEDED
773 /* Initialize the secondary memory table. */
774 clear_secondary_mem ();
775 #endif
776
777 /* We don't have a stack slot for any spill reg yet. */
778 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
779 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
780
781 /* Initialize the save area information for caller-save, in case some
782 are needed. */
783 init_save_areas ();
784
785 /* Compute which hard registers are now in use
786 as homes for pseudo registers.
787 This is done here rather than (eg) in global_alloc
788 because this point is reached even if not optimizing. */
789 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
790 mark_home_live (i);
791
792 /* A function that has a nonlocal label that can reach the exit
793 block via non-exceptional paths must save all call-saved
794 registers. */
795 if (cfun->has_nonlocal_label
796 && has_nonexceptional_receiver ())
797 crtl->saves_all_registers = 1;
798
799 if (crtl->saves_all_registers)
800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
801 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
802 df_set_regs_ever_live (i, true);
803
804 /* Find all the pseudo registers that didn't get hard regs
805 but do have known equivalent constants or memory slots.
806 These include parameters (known equivalent to parameter slots)
807 and cse'd or loop-moved constant memory addresses.
808
809 Record constant equivalents in reg_equiv_constant
810 so they will be substituted by find_reloads.
811 Record memory equivalents in reg_mem_equiv so they can
812 be substituted eventually by altering the REG-rtx's. */
813
814 grow_reg_equivs ();
815 reg_old_renumber = XCNEWVEC (short, max_regno);
816 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
817 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
818 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
819
820 CLEAR_HARD_REG_SET (bad_spill_regs_global);
821
822 init_eliminable_invariants (first, true);
823 init_elim_table ();
824
825 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
826 stack slots to the pseudos that lack hard regs or equivalents.
827 Do not touch virtual registers. */
828
829 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
830 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
831 temp_pseudo_reg_arr[n++] = i;
832
833 if (ira_conflicts_p)
834 /* Ask IRA to order pseudo-registers for better stack slot
835 sharing. */
836 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
837
838 for (i = 0; i < n; i++)
839 alter_reg (temp_pseudo_reg_arr[i], -1, false);
840
841 /* If we have some registers we think can be eliminated, scan all insns to
842 see if there is an insn that sets one of these registers to something
843 other than itself plus a constant. If so, the register cannot be
844 eliminated. Doing this scan here eliminates an extra pass through the
845 main reload loop in the most common case where register elimination
846 cannot be done. */
847 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
848 if (INSN_P (insn))
849 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
850
851 maybe_fix_stack_asms ();
852
853 insns_need_reload = 0;
854 something_needs_elimination = 0;
855
856 /* Initialize to -1, which means take the first spill register. */
857 last_spill_reg = -1;
858
859 /* Spill any hard regs that we know we can't eliminate. */
860 CLEAR_HARD_REG_SET (used_spill_regs);
861 /* There can be multiple ways to eliminate a register;
862 they should be listed adjacently.
863 Elimination for any register fails only if all possible ways fail. */
864 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
865 {
866 int from = ep->from;
867 int can_eliminate = 0;
868 do
869 {
870 can_eliminate |= ep->can_eliminate;
871 ep++;
872 }
873 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
874 if (! can_eliminate)
875 spill_hard_reg (from, 1);
876 }
877
878 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
879 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
880
881 finish_spills (global);
882
883 /* From now on, we may need to generate moves differently. We may also
884 allow modifications of insns which cause them to not be recognized.
885 Any such modifications will be cleaned up during reload itself. */
886 reload_in_progress = 1;
887
888 /* This loop scans the entire function each go-round
889 and repeats until one repetition spills no additional hard regs. */
890 for (;;)
891 {
892 int something_changed;
893 HOST_WIDE_INT starting_frame_size;
894
895 starting_frame_size = get_frame_size ();
896 something_was_spilled = false;
897
898 set_initial_elim_offsets ();
899 set_initial_label_offsets ();
900
901 /* For each pseudo register that has an equivalent location defined,
902 try to eliminate any eliminable registers (such as the frame pointer)
903 assuming initial offsets for the replacement register, which
904 is the normal case.
905
906 If the resulting location is directly addressable, substitute
907 the MEM we just got directly for the old REG.
908
909 If it is not addressable but is a constant or the sum of a hard reg
910 and constant, it is probably not addressable because the constant is
911 out of range, in that case record the address; we will generate
912 hairy code to compute the address in a register each time it is
913 needed. Similarly if it is a hard register, but one that is not
914 valid as an address register.
915
916 If the location is not addressable, but does not have one of the
917 above forms, assign a stack slot. We have to do this to avoid the
918 potential of producing lots of reloads if, e.g., a location involves
919 a pseudo that didn't get a hard register and has an equivalent memory
920 location that also involves a pseudo that didn't get a hard register.
921
922 Perhaps at some point we will improve reload_when_needed handling
923 so this problem goes away. But that's very hairy. */
924
925 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
926 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
927 {
928 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
929 NULL_RTX);
930
931 if (strict_memory_address_addr_space_p
932 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
933 MEM_ADDR_SPACE (x)))
934 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
935 else if (CONSTANT_P (XEXP (x, 0))
936 || (REG_P (XEXP (x, 0))
937 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
938 || (GET_CODE (XEXP (x, 0)) == PLUS
939 && REG_P (XEXP (XEXP (x, 0), 0))
940 && (REGNO (XEXP (XEXP (x, 0), 0))
941 < FIRST_PSEUDO_REGISTER)
942 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
943 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
944 else
945 {
946 /* Make a new stack slot. Then indicate that something
947 changed so we go back and recompute offsets for
948 eliminable registers because the allocation of memory
949 below might change some offset. reg_equiv_{mem,address}
950 will be set up for this pseudo on the next pass around
951 the loop. */
952 reg_equiv_memory_loc (i) = 0;
953 reg_equiv_init (i) = 0;
954 alter_reg (i, -1, true);
955 }
956 }
957
958 if (caller_save_needed)
959 setup_save_areas ();
960
961 if (starting_frame_size && crtl->stack_alignment_needed)
962 {
963 /* If we have a stack frame, we must align it now. The
964 stack size may be a part of the offset computation for
965 register elimination. So if this changes the stack size,
966 then repeat the elimination bookkeeping. We don't
967 realign when there is no stack, as that will cause a
968 stack frame when none is needed should
969 STARTING_FRAME_OFFSET not be already aligned to
970 STACK_BOUNDARY. */
971 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
972 }
973 /* If we allocated another stack slot, redo elimination bookkeeping. */
974 if (something_was_spilled || starting_frame_size != get_frame_size ())
975 {
976 if (update_eliminables_and_spill ())
977 finish_spills (0);
978 continue;
979 }
980
981 if (caller_save_needed)
982 {
983 save_call_clobbered_regs ();
984 /* That might have allocated new insn_chain structures. */
985 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
986 }
987
988 calculate_needs_all_insns (global);
989
990 if (! ira_conflicts_p)
991 /* Don't do it for IRA. We need this info because we don't
992 change live_throughout and dead_or_set for chains when IRA
993 is used. */
994 CLEAR_REG_SET (&spilled_pseudos);
995
996 something_changed = 0;
997
998 /* If we allocated any new memory locations, make another pass
999 since it might have changed elimination offsets. */
1000 if (something_was_spilled || starting_frame_size != get_frame_size ())
1001 something_changed = 1;
1002
1003 /* Even if the frame size remained the same, we might still have
1004 changed elimination offsets, e.g. if find_reloads called
1005 force_const_mem requiring the back end to allocate a constant
1006 pool base register that needs to be saved on the stack. */
1007 else if (!verify_initial_elim_offsets ())
1008 something_changed = 1;
1009
1010 if (update_eliminables_and_spill ())
1011 {
1012 finish_spills (0);
1013 something_changed = 1;
1014 }
1015 else
1016 {
1017 select_reload_regs ();
1018 if (failure)
1019 goto failed;
1020 if (insns_need_reload)
1021 something_changed |= finish_spills (global);
1022 }
1023
1024 if (! something_changed)
1025 break;
1026
1027 if (caller_save_needed)
1028 delete_caller_save_insns ();
1029
1030 obstack_free (&reload_obstack, reload_firstobj);
1031 }
1032
1033 /* If global-alloc was run, notify it of any register eliminations we have
1034 done. */
1035 if (global)
1036 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1037 if (ep->can_eliminate)
1038 mark_elimination (ep->from, ep->to);
1039
1040 remove_init_insns ();
1041
1042 /* Use the reload registers where necessary
1043 by generating move instructions to move the must-be-register
1044 values into or out of the reload registers. */
1045
1046 if (insns_need_reload != 0 || something_needs_elimination
1047 || something_needs_operands_changed)
1048 {
1049 HOST_WIDE_INT old_frame_size = get_frame_size ();
1050
1051 reload_as_needed (global);
1052
1053 gcc_assert (old_frame_size == get_frame_size ());
1054
1055 gcc_assert (verify_initial_elim_offsets ());
1056 }
1057
1058 /* If we were able to eliminate the frame pointer, show that it is no
1059 longer live at the start of any basic block. If it ls live by
1060 virtue of being in a pseudo, that pseudo will be marked live
1061 and hence the frame pointer will be known to be live via that
1062 pseudo. */
1063
1064 if (! frame_pointer_needed)
1065 FOR_EACH_BB_FN (bb, cfun)
1066 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1067
1068 /* Come here (with failure set nonzero) if we can't get enough spill
1069 regs. */
1070 failed:
1071
1072 CLEAR_REG_SET (&changed_allocation_pseudos);
1073 CLEAR_REG_SET (&spilled_pseudos);
1074 reload_in_progress = 0;
1075
1076 /* Now eliminate all pseudo regs by modifying them into
1077 their equivalent memory references.
1078 The REG-rtx's for the pseudos are modified in place,
1079 so all insns that used to refer to them now refer to memory.
1080
1081 For a reg that has a reg_equiv_address, all those insns
1082 were changed by reloading so that no insns refer to it any longer;
1083 but the DECL_RTL of a variable decl may refer to it,
1084 and if so this causes the debugging info to mention the variable. */
1085
1086 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1087 {
1088 rtx addr = 0;
1089
1090 if (reg_equiv_mem (i))
1091 addr = XEXP (reg_equiv_mem (i), 0);
1092
1093 if (reg_equiv_address (i))
1094 addr = reg_equiv_address (i);
1095
1096 if (addr)
1097 {
1098 if (reg_renumber[i] < 0)
1099 {
1100 rtx reg = regno_reg_rtx[i];
1101
1102 REG_USERVAR_P (reg) = 0;
1103 PUT_CODE (reg, MEM);
1104 XEXP (reg, 0) = addr;
1105 if (reg_equiv_memory_loc (i))
1106 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1107 else
1108 MEM_ATTRS (reg) = 0;
1109 MEM_NOTRAP_P (reg) = 1;
1110 }
1111 else if (reg_equiv_mem (i))
1112 XEXP (reg_equiv_mem (i), 0) = addr;
1113 }
1114
1115 /* We don't want complex addressing modes in debug insns
1116 if simpler ones will do, so delegitimize equivalences
1117 in debug insns. */
1118 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1119 {
1120 rtx reg = regno_reg_rtx[i];
1121 rtx equiv = 0;
1122 df_ref use, next;
1123
1124 if (reg_equiv_constant (i))
1125 equiv = reg_equiv_constant (i);
1126 else if (reg_equiv_invariant (i))
1127 equiv = reg_equiv_invariant (i);
1128 else if (reg && MEM_P (reg))
1129 equiv = targetm.delegitimize_address (reg);
1130 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1131 equiv = reg;
1132
1133 if (equiv == reg)
1134 continue;
1135
1136 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1137 {
1138 insn = DF_REF_INSN (use);
1139
1140 /* Make sure the next ref is for a different instruction,
1141 so that we're not affected by the rescan. */
1142 next = DF_REF_NEXT_REG (use);
1143 while (next && DF_REF_INSN (next) == insn)
1144 next = DF_REF_NEXT_REG (next);
1145
1146 if (DEBUG_INSN_P (insn))
1147 {
1148 if (!equiv)
1149 {
1150 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1151 df_insn_rescan_debug_internal (insn);
1152 }
1153 else
1154 INSN_VAR_LOCATION_LOC (insn)
1155 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1156 reg, equiv);
1157 }
1158 }
1159 }
1160 }
1161
1162 /* We must set reload_completed now since the cleanup_subreg_operands call
1163 below will re-recognize each insn and reload may have generated insns
1164 which are only valid during and after reload. */
1165 reload_completed = 1;
1166
1167 /* Make a pass over all the insns and delete all USEs which we inserted
1168 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1169 notes. Delete all CLOBBER insns, except those that refer to the return
1170 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1171 from misarranging variable-array code, and simplify (subreg (reg))
1172 operands. Strip and regenerate REG_INC notes that may have been moved
1173 around. */
1174
1175 for (insn = first; insn; insn = NEXT_INSN (insn))
1176 if (INSN_P (insn))
1177 {
1178 rtx *pnote;
1179
1180 if (CALL_P (insn))
1181 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1182 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1183
1184 if ((GET_CODE (PATTERN (insn)) == USE
1185 /* We mark with QImode USEs introduced by reload itself. */
1186 && (GET_MODE (insn) == QImode
1187 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1188 || (GET_CODE (PATTERN (insn)) == CLOBBER
1189 && (!MEM_P (XEXP (PATTERN (insn), 0))
1190 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1191 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1192 && XEXP (XEXP (PATTERN (insn), 0), 0)
1193 != stack_pointer_rtx))
1194 && (!REG_P (XEXP (PATTERN (insn), 0))
1195 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1196 {
1197 delete_insn (insn);
1198 continue;
1199 }
1200
1201 /* Some CLOBBERs may survive until here and still reference unassigned
1202 pseudos with const equivalent, which may in turn cause ICE in later
1203 passes if the reference remains in place. */
1204 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1205 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1206 VOIDmode, PATTERN (insn));
1207
1208 /* Discard obvious no-ops, even without -O. This optimization
1209 is fast and doesn't interfere with debugging. */
1210 if (NONJUMP_INSN_P (insn)
1211 && GET_CODE (PATTERN (insn)) == SET
1212 && REG_P (SET_SRC (PATTERN (insn)))
1213 && REG_P (SET_DEST (PATTERN (insn)))
1214 && (REGNO (SET_SRC (PATTERN (insn)))
1215 == REGNO (SET_DEST (PATTERN (insn)))))
1216 {
1217 delete_insn (insn);
1218 continue;
1219 }
1220
1221 pnote = &REG_NOTES (insn);
1222 while (*pnote != 0)
1223 {
1224 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1225 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1226 || REG_NOTE_KIND (*pnote) == REG_INC)
1227 *pnote = XEXP (*pnote, 1);
1228 else
1229 pnote = &XEXP (*pnote, 1);
1230 }
1231
1232 if (AUTO_INC_DEC)
1233 add_auto_inc_notes (insn, PATTERN (insn));
1234
1235 /* Simplify (subreg (reg)) if it appears as an operand. */
1236 cleanup_subreg_operands (insn);
1237
1238 /* Clean up invalid ASMs so that they don't confuse later passes.
1239 See PR 21299. */
1240 if (asm_noperands (PATTERN (insn)) >= 0)
1241 {
1242 extract_insn (insn);
1243 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1244 {
1245 error_for_asm (insn,
1246 "%<asm%> operand has impossible constraints");
1247 delete_insn (insn);
1248 continue;
1249 }
1250 }
1251 }
1252
1253 free (temp_pseudo_reg_arr);
1254
1255 /* Indicate that we no longer have known memory locations or constants. */
1256 free_reg_equiv ();
1257
1258 free (reg_max_ref_width);
1259 free (reg_old_renumber);
1260 free (pseudo_previous_regs);
1261 free (pseudo_forbidden_regs);
1262
1263 CLEAR_HARD_REG_SET (used_spill_regs);
1264 for (i = 0; i < n_spills; i++)
1265 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1266
1267 /* Free all the insn_chain structures at once. */
1268 obstack_free (&reload_obstack, reload_startobj);
1269 unused_insn_chains = 0;
1270
1271 inserted = fixup_abnormal_edges ();
1272
1273 /* We've possibly turned single trapping insn into multiple ones. */
1274 if (cfun->can_throw_non_call_exceptions)
1275 {
1276 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1277 bitmap_ones (blocks);
1278 find_many_sub_basic_blocks (blocks);
1279 }
1280
1281 if (inserted)
1282 commit_edge_insertions ();
1283
1284 /* Replacing pseudos with their memory equivalents might have
1285 created shared rtx. Subsequent passes would get confused
1286 by this, so unshare everything here. */
1287 unshare_all_rtl_again (first);
1288
1289 #ifdef STACK_BOUNDARY
1290 /* init_emit has set the alignment of the hard frame pointer
1291 to STACK_BOUNDARY. It is very likely no longer valid if
1292 the hard frame pointer was used for register allocation. */
1293 if (!frame_pointer_needed)
1294 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1295 #endif
1296
1297 substitute_stack.release ();
1298
1299 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1300
1301 reload_completed = !failure;
1302
1303 return need_dce;
1304 }
1305
1306 /* Yet another special case. Unfortunately, reg-stack forces people to
1307 write incorrect clobbers in asm statements. These clobbers must not
1308 cause the register to appear in bad_spill_regs, otherwise we'll call
1309 fatal_insn later. We clear the corresponding regnos in the live
1310 register sets to avoid this.
1311 The whole thing is rather sick, I'm afraid. */
1312
1313 static void
1314 maybe_fix_stack_asms (void)
1315 {
1316 #ifdef STACK_REGS
1317 const char *constraints[MAX_RECOG_OPERANDS];
1318 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1319 struct insn_chain *chain;
1320
1321 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1322 {
1323 int i, noperands;
1324 HARD_REG_SET clobbered, allowed;
1325 rtx pat;
1326
1327 if (! INSN_P (chain->insn)
1328 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1329 continue;
1330 pat = PATTERN (chain->insn);
1331 if (GET_CODE (pat) != PARALLEL)
1332 continue;
1333
1334 CLEAR_HARD_REG_SET (clobbered);
1335 CLEAR_HARD_REG_SET (allowed);
1336
1337 /* First, make a mask of all stack regs that are clobbered. */
1338 for (i = 0; i < XVECLEN (pat, 0); i++)
1339 {
1340 rtx t = XVECEXP (pat, 0, i);
1341 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1342 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1343 }
1344
1345 /* Get the operand values and constraints out of the insn. */
1346 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1347 constraints, operand_mode, NULL);
1348
1349 /* For every operand, see what registers are allowed. */
1350 for (i = 0; i < noperands; i++)
1351 {
1352 const char *p = constraints[i];
1353 /* For every alternative, we compute the class of registers allowed
1354 for reloading in CLS, and merge its contents into the reg set
1355 ALLOWED. */
1356 int cls = (int) NO_REGS;
1357
1358 for (;;)
1359 {
1360 char c = *p;
1361
1362 if (c == '\0' || c == ',' || c == '#')
1363 {
1364 /* End of one alternative - mark the regs in the current
1365 class, and reset the class. */
1366 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1367 cls = NO_REGS;
1368 p++;
1369 if (c == '#')
1370 do {
1371 c = *p++;
1372 } while (c != '\0' && c != ',');
1373 if (c == '\0')
1374 break;
1375 continue;
1376 }
1377
1378 switch (c)
1379 {
1380 case 'g':
1381 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1382 break;
1383
1384 default:
1385 enum constraint_num cn = lookup_constraint (p);
1386 if (insn_extra_address_constraint (cn))
1387 cls = (int) reg_class_subunion[cls]
1388 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1389 ADDRESS, SCRATCH)];
1390 else
1391 cls = (int) reg_class_subunion[cls]
1392 [reg_class_for_constraint (cn)];
1393 break;
1394 }
1395 p += CONSTRAINT_LEN (c, p);
1396 }
1397 }
1398 /* Those of the registers which are clobbered, but allowed by the
1399 constraints, must be usable as reload registers. So clear them
1400 out of the life information. */
1401 AND_HARD_REG_SET (allowed, clobbered);
1402 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1403 if (TEST_HARD_REG_BIT (allowed, i))
1404 {
1405 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1406 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1407 }
1408 }
1409
1410 #endif
1411 }
1412 \f
1413 /* Copy the global variables n_reloads and rld into the corresponding elts
1414 of CHAIN. */
1415 static void
1416 copy_reloads (struct insn_chain *chain)
1417 {
1418 chain->n_reloads = n_reloads;
1419 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1420 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1421 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1422 }
1423
1424 /* Walk the chain of insns, and determine for each whether it needs reloads
1425 and/or eliminations. Build the corresponding insns_need_reload list, and
1426 set something_needs_elimination as appropriate. */
1427 static void
1428 calculate_needs_all_insns (int global)
1429 {
1430 struct insn_chain **pprev_reload = &insns_need_reload;
1431 struct insn_chain *chain, *next = 0;
1432
1433 something_needs_elimination = 0;
1434
1435 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1436 for (chain = reload_insn_chain; chain != 0; chain = next)
1437 {
1438 rtx_insn *insn = chain->insn;
1439
1440 next = chain->next;
1441
1442 /* Clear out the shortcuts. */
1443 chain->n_reloads = 0;
1444 chain->need_elim = 0;
1445 chain->need_reload = 0;
1446 chain->need_operand_change = 0;
1447
1448 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1449 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1450 what effects this has on the known offsets at labels. */
1451
1452 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1453 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1454 set_label_offsets (insn, insn, 0);
1455
1456 if (INSN_P (insn))
1457 {
1458 rtx old_body = PATTERN (insn);
1459 int old_code = INSN_CODE (insn);
1460 rtx old_notes = REG_NOTES (insn);
1461 int did_elimination = 0;
1462 int operands_changed = 0;
1463
1464 /* Skip insns that only set an equivalence. */
1465 if (will_delete_init_insn_p (insn))
1466 continue;
1467
1468 /* If needed, eliminate any eliminable registers. */
1469 if (num_eliminable || num_eliminable_invariants)
1470 did_elimination = eliminate_regs_in_insn (insn, 0);
1471
1472 /* Analyze the instruction. */
1473 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1474 global, spill_reg_order);
1475
1476 /* If a no-op set needs more than one reload, this is likely
1477 to be something that needs input address reloads. We
1478 can't get rid of this cleanly later, and it is of no use
1479 anyway, so discard it now.
1480 We only do this when expensive_optimizations is enabled,
1481 since this complements reload inheritance / output
1482 reload deletion, and it can make debugging harder. */
1483 if (flag_expensive_optimizations && n_reloads > 1)
1484 {
1485 rtx set = single_set (insn);
1486 if (set
1487 &&
1488 ((SET_SRC (set) == SET_DEST (set)
1489 && REG_P (SET_SRC (set))
1490 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1491 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1492 && reg_renumber[REGNO (SET_SRC (set))] < 0
1493 && reg_renumber[REGNO (SET_DEST (set))] < 0
1494 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1495 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1496 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1497 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1498 {
1499 if (ira_conflicts_p)
1500 /* Inform IRA about the insn deletion. */
1501 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1502 REGNO (SET_SRC (set)));
1503 delete_insn (insn);
1504 /* Delete it from the reload chain. */
1505 if (chain->prev)
1506 chain->prev->next = next;
1507 else
1508 reload_insn_chain = next;
1509 if (next)
1510 next->prev = chain->prev;
1511 chain->next = unused_insn_chains;
1512 unused_insn_chains = chain;
1513 continue;
1514 }
1515 }
1516 if (num_eliminable)
1517 update_eliminable_offsets ();
1518
1519 /* Remember for later shortcuts which insns had any reloads or
1520 register eliminations. */
1521 chain->need_elim = did_elimination;
1522 chain->need_reload = n_reloads > 0;
1523 chain->need_operand_change = operands_changed;
1524
1525 /* Discard any register replacements done. */
1526 if (did_elimination)
1527 {
1528 obstack_free (&reload_obstack, reload_insn_firstobj);
1529 PATTERN (insn) = old_body;
1530 INSN_CODE (insn) = old_code;
1531 REG_NOTES (insn) = old_notes;
1532 something_needs_elimination = 1;
1533 }
1534
1535 something_needs_operands_changed |= operands_changed;
1536
1537 if (n_reloads != 0)
1538 {
1539 copy_reloads (chain);
1540 *pprev_reload = chain;
1541 pprev_reload = &chain->next_need_reload;
1542 }
1543 }
1544 }
1545 *pprev_reload = 0;
1546 }
1547 \f
1548 /* This function is called from the register allocator to set up estimates
1549 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1550 an invariant. The structure is similar to calculate_needs_all_insns. */
1551
1552 void
1553 calculate_elim_costs_all_insns (void)
1554 {
1555 int *reg_equiv_init_cost;
1556 basic_block bb;
1557 int i;
1558
1559 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1560 init_elim_table ();
1561 init_eliminable_invariants (get_insns (), false);
1562
1563 set_initial_elim_offsets ();
1564 set_initial_label_offsets ();
1565
1566 FOR_EACH_BB_FN (bb, cfun)
1567 {
1568 rtx_insn *insn;
1569 elim_bb = bb;
1570
1571 FOR_BB_INSNS (bb, insn)
1572 {
1573 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1574 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1575 what effects this has on the known offsets at labels. */
1576
1577 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1578 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1579 set_label_offsets (insn, insn, 0);
1580
1581 if (INSN_P (insn))
1582 {
1583 rtx set = single_set (insn);
1584
1585 /* Skip insns that only set an equivalence. */
1586 if (set && REG_P (SET_DEST (set))
1587 && reg_renumber[REGNO (SET_DEST (set))] < 0
1588 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1589 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1590 {
1591 unsigned regno = REGNO (SET_DEST (set));
1592 rtx_insn_list *init = reg_equiv_init (regno);
1593 if (init)
1594 {
1595 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1596 false, true);
1597 machine_mode mode = GET_MODE (SET_DEST (set));
1598 int cost = set_src_cost (t, mode,
1599 optimize_bb_for_speed_p (bb));
1600 int freq = REG_FREQ_FROM_BB (bb);
1601
1602 reg_equiv_init_cost[regno] = cost * freq;
1603 continue;
1604 }
1605 }
1606 /* If needed, eliminate any eliminable registers. */
1607 if (num_eliminable || num_eliminable_invariants)
1608 elimination_costs_in_insn (insn);
1609
1610 if (num_eliminable)
1611 update_eliminable_offsets ();
1612 }
1613 }
1614 }
1615 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1616 {
1617 if (reg_equiv_invariant (i))
1618 {
1619 if (reg_equiv_init (i))
1620 {
1621 int cost = reg_equiv_init_cost[i];
1622 if (dump_file)
1623 fprintf (dump_file,
1624 "Reg %d has equivalence, initial gains %d\n", i, cost);
1625 if (cost != 0)
1626 ira_adjust_equiv_reg_cost (i, cost);
1627 }
1628 else
1629 {
1630 if (dump_file)
1631 fprintf (dump_file,
1632 "Reg %d had equivalence, but can't be eliminated\n",
1633 i);
1634 ira_adjust_equiv_reg_cost (i, 0);
1635 }
1636 }
1637 }
1638
1639 free (reg_equiv_init_cost);
1640 free (offsets_known_at);
1641 free (offsets_at);
1642 offsets_at = NULL;
1643 offsets_known_at = NULL;
1644 }
1645 \f
1646 /* Comparison function for qsort to decide which of two reloads
1647 should be handled first. *P1 and *P2 are the reload numbers. */
1648
1649 static int
1650 reload_reg_class_lower (const void *r1p, const void *r2p)
1651 {
1652 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1653 int t;
1654
1655 /* Consider required reloads before optional ones. */
1656 t = rld[r1].optional - rld[r2].optional;
1657 if (t != 0)
1658 return t;
1659
1660 /* Count all solitary classes before non-solitary ones. */
1661 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1662 - (reg_class_size[(int) rld[r1].rclass] == 1));
1663 if (t != 0)
1664 return t;
1665
1666 /* Aside from solitaires, consider all multi-reg groups first. */
1667 t = rld[r2].nregs - rld[r1].nregs;
1668 if (t != 0)
1669 return t;
1670
1671 /* Consider reloads in order of increasing reg-class number. */
1672 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1673 if (t != 0)
1674 return t;
1675
1676 /* If reloads are equally urgent, sort by reload number,
1677 so that the results of qsort leave nothing to chance. */
1678 return r1 - r2;
1679 }
1680 \f
1681 /* The cost of spilling each hard reg. */
1682 static int spill_cost[FIRST_PSEUDO_REGISTER];
1683
1684 /* When spilling multiple hard registers, we use SPILL_COST for the first
1685 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1686 only the first hard reg for a multi-reg pseudo. */
1687 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1688
1689 /* Map of hard regno to pseudo regno currently occupying the hard
1690 reg. */
1691 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1692
1693 /* Update the spill cost arrays, considering that pseudo REG is live. */
1694
1695 static void
1696 count_pseudo (int reg)
1697 {
1698 int freq = REG_FREQ (reg);
1699 int r = reg_renumber[reg];
1700 int nregs;
1701
1702 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1703 if (ira_conflicts_p && r < 0)
1704 return;
1705
1706 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1707 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1708 return;
1709
1710 SET_REGNO_REG_SET (&pseudos_counted, reg);
1711
1712 gcc_assert (r >= 0);
1713
1714 spill_add_cost[r] += freq;
1715 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1716 while (nregs-- > 0)
1717 {
1718 hard_regno_to_pseudo_regno[r + nregs] = reg;
1719 spill_cost[r + nregs] += freq;
1720 }
1721 }
1722
1723 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1724 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1725
1726 static void
1727 order_regs_for_reload (struct insn_chain *chain)
1728 {
1729 unsigned i;
1730 HARD_REG_SET used_by_pseudos;
1731 HARD_REG_SET used_by_pseudos2;
1732 reg_set_iterator rsi;
1733
1734 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1735
1736 memset (spill_cost, 0, sizeof spill_cost);
1737 memset (spill_add_cost, 0, sizeof spill_add_cost);
1738 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1739 hard_regno_to_pseudo_regno[i] = -1;
1740
1741 /* Count number of uses of each hard reg by pseudo regs allocated to it
1742 and then order them by decreasing use. First exclude hard registers
1743 that are live in or across this insn. */
1744
1745 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1746 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1747 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1748 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1749
1750 /* Now find out which pseudos are allocated to it, and update
1751 hard_reg_n_uses. */
1752 CLEAR_REG_SET (&pseudos_counted);
1753
1754 EXECUTE_IF_SET_IN_REG_SET
1755 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1756 {
1757 count_pseudo (i);
1758 }
1759 EXECUTE_IF_SET_IN_REG_SET
1760 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1761 {
1762 count_pseudo (i);
1763 }
1764 CLEAR_REG_SET (&pseudos_counted);
1765 }
1766 \f
1767 /* Vector of reload-numbers showing the order in which the reloads should
1768 be processed. */
1769 static short reload_order[MAX_RELOADS];
1770
1771 /* This is used to keep track of the spill regs used in one insn. */
1772 static HARD_REG_SET used_spill_regs_local;
1773
1774 /* We decided to spill hard register SPILLED, which has a size of
1775 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1776 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1777 update SPILL_COST/SPILL_ADD_COST. */
1778
1779 static void
1780 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1781 {
1782 int freq = REG_FREQ (reg);
1783 int r = reg_renumber[reg];
1784 int nregs;
1785
1786 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1787 if (ira_conflicts_p && r < 0)
1788 return;
1789
1790 gcc_assert (r >= 0);
1791
1792 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1793
1794 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1795 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1796 return;
1797
1798 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1799
1800 spill_add_cost[r] -= freq;
1801 while (nregs-- > 0)
1802 {
1803 hard_regno_to_pseudo_regno[r + nregs] = -1;
1804 spill_cost[r + nregs] -= freq;
1805 }
1806 }
1807
1808 /* Find reload register to use for reload number ORDER. */
1809
1810 static int
1811 find_reg (struct insn_chain *chain, int order)
1812 {
1813 int rnum = reload_order[order];
1814 struct reload *rl = rld + rnum;
1815 int best_cost = INT_MAX;
1816 int best_reg = -1;
1817 unsigned int i, j, n;
1818 int k;
1819 HARD_REG_SET not_usable;
1820 HARD_REG_SET used_by_other_reload;
1821 reg_set_iterator rsi;
1822 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1823 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824
1825 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1826 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1827 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1828
1829 CLEAR_HARD_REG_SET (used_by_other_reload);
1830 for (k = 0; k < order; k++)
1831 {
1832 int other = reload_order[k];
1833
1834 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1835 for (j = 0; j < rld[other].nregs; j++)
1836 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1837 }
1838
1839 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1840 {
1841 #ifdef REG_ALLOC_ORDER
1842 unsigned int regno = reg_alloc_order[i];
1843 #else
1844 unsigned int regno = i;
1845 #endif
1846
1847 if (! TEST_HARD_REG_BIT (not_usable, regno)
1848 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1849 && HARD_REGNO_MODE_OK (regno, rl->mode))
1850 {
1851 int this_cost = spill_cost[regno];
1852 int ok = 1;
1853 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1854
1855 for (j = 1; j < this_nregs; j++)
1856 {
1857 this_cost += spill_add_cost[regno + j];
1858 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1859 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1860 ok = 0;
1861 }
1862 if (! ok)
1863 continue;
1864
1865 if (ira_conflicts_p)
1866 {
1867 /* Ask IRA to find a better pseudo-register for
1868 spilling. */
1869 for (n = j = 0; j < this_nregs; j++)
1870 {
1871 int r = hard_regno_to_pseudo_regno[regno + j];
1872
1873 if (r < 0)
1874 continue;
1875 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1876 regno_pseudo_regs[n++] = r;
1877 }
1878 regno_pseudo_regs[n++] = -1;
1879 if (best_reg < 0
1880 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1881 best_regno_pseudo_regs,
1882 rl->in, rl->out,
1883 chain->insn))
1884 {
1885 best_reg = regno;
1886 for (j = 0;; j++)
1887 {
1888 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1889 if (regno_pseudo_regs[j] < 0)
1890 break;
1891 }
1892 }
1893 continue;
1894 }
1895
1896 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1897 this_cost--;
1898 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1899 this_cost--;
1900 if (this_cost < best_cost
1901 /* Among registers with equal cost, prefer caller-saved ones, or
1902 use REG_ALLOC_ORDER if it is defined. */
1903 || (this_cost == best_cost
1904 #ifdef REG_ALLOC_ORDER
1905 && (inv_reg_alloc_order[regno]
1906 < inv_reg_alloc_order[best_reg])
1907 #else
1908 && call_used_regs[regno]
1909 && ! call_used_regs[best_reg]
1910 #endif
1911 ))
1912 {
1913 best_reg = regno;
1914 best_cost = this_cost;
1915 }
1916 }
1917 }
1918 if (best_reg == -1)
1919 return 0;
1920
1921 if (dump_file)
1922 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1923
1924 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1925 rl->regno = best_reg;
1926
1927 EXECUTE_IF_SET_IN_REG_SET
1928 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1929 {
1930 count_spilled_pseudo (best_reg, rl->nregs, j);
1931 }
1932
1933 EXECUTE_IF_SET_IN_REG_SET
1934 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1935 {
1936 count_spilled_pseudo (best_reg, rl->nregs, j);
1937 }
1938
1939 for (i = 0; i < rl->nregs; i++)
1940 {
1941 gcc_assert (spill_cost[best_reg + i] == 0);
1942 gcc_assert (spill_add_cost[best_reg + i] == 0);
1943 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1944 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1945 }
1946 return 1;
1947 }
1948
1949 /* Find more reload regs to satisfy the remaining need of an insn, which
1950 is given by CHAIN.
1951 Do it by ascending class number, since otherwise a reg
1952 might be spilled for a big class and might fail to count
1953 for a smaller class even though it belongs to that class. */
1954
1955 static void
1956 find_reload_regs (struct insn_chain *chain)
1957 {
1958 int i;
1959
1960 /* In order to be certain of getting the registers we need,
1961 we must sort the reloads into order of increasing register class.
1962 Then our grabbing of reload registers will parallel the process
1963 that provided the reload registers. */
1964 for (i = 0; i < chain->n_reloads; i++)
1965 {
1966 /* Show whether this reload already has a hard reg. */
1967 if (chain->rld[i].reg_rtx)
1968 {
1969 int regno = REGNO (chain->rld[i].reg_rtx);
1970 chain->rld[i].regno = regno;
1971 chain->rld[i].nregs
1972 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1973 }
1974 else
1975 chain->rld[i].regno = -1;
1976 reload_order[i] = i;
1977 }
1978
1979 n_reloads = chain->n_reloads;
1980 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1981
1982 CLEAR_HARD_REG_SET (used_spill_regs_local);
1983
1984 if (dump_file)
1985 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1986
1987 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1988
1989 /* Compute the order of preference for hard registers to spill. */
1990
1991 order_regs_for_reload (chain);
1992
1993 for (i = 0; i < n_reloads; i++)
1994 {
1995 int r = reload_order[i];
1996
1997 /* Ignore reloads that got marked inoperative. */
1998 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1999 && ! rld[r].optional
2000 && rld[r].regno == -1)
2001 if (! find_reg (chain, i))
2002 {
2003 if (dump_file)
2004 fprintf (dump_file, "reload failure for reload %d\n", r);
2005 spill_failure (chain->insn, rld[r].rclass);
2006 failure = 1;
2007 return;
2008 }
2009 }
2010
2011 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2012 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2013
2014 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2015 }
2016
2017 static void
2018 select_reload_regs (void)
2019 {
2020 struct insn_chain *chain;
2021
2022 /* Try to satisfy the needs for each insn. */
2023 for (chain = insns_need_reload; chain != 0;
2024 chain = chain->next_need_reload)
2025 find_reload_regs (chain);
2026 }
2027 \f
2028 /* Delete all insns that were inserted by emit_caller_save_insns during
2029 this iteration. */
2030 static void
2031 delete_caller_save_insns (void)
2032 {
2033 struct insn_chain *c = reload_insn_chain;
2034
2035 while (c != 0)
2036 {
2037 while (c != 0 && c->is_caller_save_insn)
2038 {
2039 struct insn_chain *next = c->next;
2040 rtx_insn *insn = c->insn;
2041
2042 if (c == reload_insn_chain)
2043 reload_insn_chain = next;
2044 delete_insn (insn);
2045
2046 if (next)
2047 next->prev = c->prev;
2048 if (c->prev)
2049 c->prev->next = next;
2050 c->next = unused_insn_chains;
2051 unused_insn_chains = c;
2052 c = next;
2053 }
2054 if (c != 0)
2055 c = c->next;
2056 }
2057 }
2058 \f
2059 /* Handle the failure to find a register to spill.
2060 INSN should be one of the insns which needed this particular spill reg. */
2061
2062 static void
2063 spill_failure (rtx_insn *insn, enum reg_class rclass)
2064 {
2065 if (asm_noperands (PATTERN (insn)) >= 0)
2066 error_for_asm (insn, "can%'t find a register in class %qs while "
2067 "reloading %<asm%>",
2068 reg_class_names[rclass]);
2069 else
2070 {
2071 error ("unable to find a register to spill in class %qs",
2072 reg_class_names[rclass]);
2073
2074 if (dump_file)
2075 {
2076 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2077 debug_reload_to_stream (dump_file);
2078 }
2079 fatal_insn ("this is the insn:", insn);
2080 }
2081 }
2082 \f
2083 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2084 data that is dead in INSN. */
2085
2086 static void
2087 delete_dead_insn (rtx_insn *insn)
2088 {
2089 rtx_insn *prev = prev_active_insn (insn);
2090 rtx prev_dest;
2091
2092 /* If the previous insn sets a register that dies in our insn make
2093 a note that we want to run DCE immediately after reload.
2094
2095 We used to delete the previous insn & recurse, but that's wrong for
2096 block local equivalences. Instead of trying to figure out the exact
2097 circumstances where we can delete the potentially dead insns, just
2098 let DCE do the job. */
2099 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2100 && GET_CODE (PATTERN (prev)) == SET
2101 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2102 && reg_mentioned_p (prev_dest, PATTERN (insn))
2103 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2104 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2105 need_dce = 1;
2106
2107 SET_INSN_DELETED (insn);
2108 }
2109
2110 /* Modify the home of pseudo-reg I.
2111 The new home is present in reg_renumber[I].
2112
2113 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2114 or it may be -1, meaning there is none or it is not relevant.
2115 This is used so that all pseudos spilled from a given hard reg
2116 can share one stack slot. */
2117
2118 static void
2119 alter_reg (int i, int from_reg, bool dont_share_p)
2120 {
2121 /* When outputting an inline function, this can happen
2122 for a reg that isn't actually used. */
2123 if (regno_reg_rtx[i] == 0)
2124 return;
2125
2126 /* If the reg got changed to a MEM at rtl-generation time,
2127 ignore it. */
2128 if (!REG_P (regno_reg_rtx[i]))
2129 return;
2130
2131 /* Modify the reg-rtx to contain the new hard reg
2132 number or else to contain its pseudo reg number. */
2133 SET_REGNO (regno_reg_rtx[i],
2134 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2135
2136 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2137 allocate a stack slot for it. */
2138
2139 if (reg_renumber[i] < 0
2140 && REG_N_REFS (i) > 0
2141 && reg_equiv_constant (i) == 0
2142 && (reg_equiv_invariant (i) == 0
2143 || reg_equiv_init (i) == 0)
2144 && reg_equiv_memory_loc (i) == 0)
2145 {
2146 rtx x = NULL_RTX;
2147 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2148 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2149 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2150 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2151 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2152 int adjust = 0;
2153
2154 something_was_spilled = true;
2155
2156 if (ira_conflicts_p)
2157 {
2158 /* Mark the spill for IRA. */
2159 SET_REGNO_REG_SET (&spilled_pseudos, i);
2160 if (!dont_share_p)
2161 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2162 }
2163
2164 if (x)
2165 ;
2166
2167 /* Each pseudo reg has an inherent size which comes from its own mode,
2168 and a total size which provides room for paradoxical subregs
2169 which refer to the pseudo reg in wider modes.
2170
2171 We can use a slot already allocated if it provides both
2172 enough inherent space and enough total space.
2173 Otherwise, we allocate a new slot, making sure that it has no less
2174 inherent space, and no less total space, then the previous slot. */
2175 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 {
2177 rtx stack_slot;
2178
2179 /* No known place to spill from => no slot to reuse. */
2180 x = assign_stack_local (mode, total_size,
2181 min_align > inherent_align
2182 || total_size > inherent_size ? -1 : 0);
2183
2184 stack_slot = x;
2185
2186 /* Cancel the big-endian correction done in assign_stack_local.
2187 Get the address of the beginning of the slot. This is so we
2188 can do a big-endian correction unconditionally below. */
2189 if (BYTES_BIG_ENDIAN)
2190 {
2191 adjust = inherent_size - total_size;
2192 if (adjust)
2193 stack_slot
2194 = adjust_address_nv (x, mode_for_size (total_size
2195 * BITS_PER_UNIT,
2196 MODE_INT, 1),
2197 adjust);
2198 }
2199
2200 if (! dont_share_p && ira_conflicts_p)
2201 /* Inform IRA about allocation a new stack slot. */
2202 ira_mark_new_stack_slot (stack_slot, i, total_size);
2203 }
2204
2205 /* Reuse a stack slot if possible. */
2206 else if (spill_stack_slot[from_reg] != 0
2207 && spill_stack_slot_width[from_reg] >= total_size
2208 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2209 >= inherent_size)
2210 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2211 x = spill_stack_slot[from_reg];
2212
2213 /* Allocate a bigger slot. */
2214 else
2215 {
2216 /* Compute maximum size needed, both for inherent size
2217 and for total size. */
2218 rtx stack_slot;
2219
2220 if (spill_stack_slot[from_reg])
2221 {
2222 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2223 > inherent_size)
2224 mode = GET_MODE (spill_stack_slot[from_reg]);
2225 if (spill_stack_slot_width[from_reg] > total_size)
2226 total_size = spill_stack_slot_width[from_reg];
2227 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2228 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2229 }
2230
2231 /* Make a slot with that size. */
2232 x = assign_stack_local (mode, total_size,
2233 min_align > inherent_align
2234 || total_size > inherent_size ? -1 : 0);
2235 stack_slot = x;
2236
2237 /* Cancel the big-endian correction done in assign_stack_local.
2238 Get the address of the beginning of the slot. This is so we
2239 can do a big-endian correction unconditionally below. */
2240 if (BYTES_BIG_ENDIAN)
2241 {
2242 adjust = GET_MODE_SIZE (mode) - total_size;
2243 if (adjust)
2244 stack_slot
2245 = adjust_address_nv (x, mode_for_size (total_size
2246 * BITS_PER_UNIT,
2247 MODE_INT, 1),
2248 adjust);
2249 }
2250
2251 spill_stack_slot[from_reg] = stack_slot;
2252 spill_stack_slot_width[from_reg] = total_size;
2253 }
2254
2255 /* On a big endian machine, the "address" of the slot
2256 is the address of the low part that fits its inherent mode. */
2257 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2258 adjust += (total_size - inherent_size);
2259
2260 /* If we have any adjustment to make, or if the stack slot is the
2261 wrong mode, make a new stack slot. */
2262 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2263
2264 /* Set all of the memory attributes as appropriate for a spill. */
2265 set_mem_attrs_for_spill (x);
2266
2267 /* Save the stack slot for later. */
2268 reg_equiv_memory_loc (i) = x;
2269 }
2270 }
2271
2272 /* Mark the slots in regs_ever_live for the hard regs used by
2273 pseudo-reg number REGNO, accessed in MODE. */
2274
2275 static void
2276 mark_home_live_1 (int regno, machine_mode mode)
2277 {
2278 int i, lim;
2279
2280 i = reg_renumber[regno];
2281 if (i < 0)
2282 return;
2283 lim = end_hard_regno (mode, i);
2284 while (i < lim)
2285 df_set_regs_ever_live (i++, true);
2286 }
2287
2288 /* Mark the slots in regs_ever_live for the hard regs
2289 used by pseudo-reg number REGNO. */
2290
2291 void
2292 mark_home_live (int regno)
2293 {
2294 if (reg_renumber[regno] >= 0)
2295 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2296 }
2297 \f
2298 /* This function handles the tracking of elimination offsets around branches.
2299
2300 X is a piece of RTL being scanned.
2301
2302 INSN is the insn that it came from, if any.
2303
2304 INITIAL_P is nonzero if we are to set the offset to be the initial
2305 offset and zero if we are setting the offset of the label to be the
2306 current offset. */
2307
2308 static void
2309 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2310 {
2311 enum rtx_code code = GET_CODE (x);
2312 rtx tem;
2313 unsigned int i;
2314 struct elim_table *p;
2315
2316 switch (code)
2317 {
2318 case LABEL_REF:
2319 if (LABEL_REF_NONLOCAL_P (x))
2320 return;
2321
2322 x = LABEL_REF_LABEL (x);
2323
2324 /* fall through */
2325
2326 case CODE_LABEL:
2327 /* If we know nothing about this label, set the desired offsets. Note
2328 that this sets the offset at a label to be the offset before a label
2329 if we don't know anything about the label. This is not correct for
2330 the label after a BARRIER, but is the best guess we can make. If
2331 we guessed wrong, we will suppress an elimination that might have
2332 been possible had we been able to guess correctly. */
2333
2334 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2335 {
2336 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2337 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2338 = (initial_p ? reg_eliminate[i].initial_offset
2339 : reg_eliminate[i].offset);
2340 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2341 }
2342
2343 /* Otherwise, if this is the definition of a label and it is
2344 preceded by a BARRIER, set our offsets to the known offset of
2345 that label. */
2346
2347 else if (x == insn
2348 && (tem = prev_nonnote_insn (insn)) != 0
2349 && BARRIER_P (tem))
2350 set_offsets_for_label (insn);
2351 else
2352 /* If neither of the above cases is true, compare each offset
2353 with those previously recorded and suppress any eliminations
2354 where the offsets disagree. */
2355
2356 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2357 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2358 != (initial_p ? reg_eliminate[i].initial_offset
2359 : reg_eliminate[i].offset))
2360 reg_eliminate[i].can_eliminate = 0;
2361
2362 return;
2363
2364 case JUMP_TABLE_DATA:
2365 set_label_offsets (PATTERN (insn), insn, initial_p);
2366 return;
2367
2368 case JUMP_INSN:
2369 set_label_offsets (PATTERN (insn), insn, initial_p);
2370
2371 /* fall through */
2372
2373 case INSN:
2374 case CALL_INSN:
2375 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2376 to indirectly and hence must have all eliminations at their
2377 initial offsets. */
2378 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2379 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2380 set_label_offsets (XEXP (tem, 0), insn, 1);
2381 return;
2382
2383 case PARALLEL:
2384 case ADDR_VEC:
2385 case ADDR_DIFF_VEC:
2386 /* Each of the labels in the parallel or address vector must be
2387 at their initial offsets. We want the first field for PARALLEL
2388 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2389
2390 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2391 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2392 insn, initial_p);
2393 return;
2394
2395 case SET:
2396 /* We only care about setting PC. If the source is not RETURN,
2397 IF_THEN_ELSE, or a label, disable any eliminations not at
2398 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2399 isn't one of those possibilities. For branches to a label,
2400 call ourselves recursively.
2401
2402 Note that this can disable elimination unnecessarily when we have
2403 a non-local goto since it will look like a non-constant jump to
2404 someplace in the current function. This isn't a significant
2405 problem since such jumps will normally be when all elimination
2406 pairs are back to their initial offsets. */
2407
2408 if (SET_DEST (x) != pc_rtx)
2409 return;
2410
2411 switch (GET_CODE (SET_SRC (x)))
2412 {
2413 case PC:
2414 case RETURN:
2415 return;
2416
2417 case LABEL_REF:
2418 set_label_offsets (SET_SRC (x), insn, initial_p);
2419 return;
2420
2421 case IF_THEN_ELSE:
2422 tem = XEXP (SET_SRC (x), 1);
2423 if (GET_CODE (tem) == LABEL_REF)
2424 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2425 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2426 break;
2427
2428 tem = XEXP (SET_SRC (x), 2);
2429 if (GET_CODE (tem) == LABEL_REF)
2430 set_label_offsets (LABEL_REF_LABEL (tem), insn, initial_p);
2431 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2432 break;
2433 return;
2434
2435 default:
2436 break;
2437 }
2438
2439 /* If we reach here, all eliminations must be at their initial
2440 offset because we are doing a jump to a variable address. */
2441 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2442 if (p->offset != p->initial_offset)
2443 p->can_eliminate = 0;
2444 break;
2445
2446 default:
2447 break;
2448 }
2449 }
2450 \f
2451 /* This function examines every reg that occurs in X and adjusts the
2452 costs for its elimination which are gathered by IRA. INSN is the
2453 insn in which X occurs. We do not recurse into MEM expressions. */
2454
2455 static void
2456 note_reg_elim_costly (const_rtx x, rtx insn)
2457 {
2458 subrtx_iterator::array_type array;
2459 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2460 {
2461 const_rtx x = *iter;
2462 if (MEM_P (x))
2463 iter.skip_subrtxes ();
2464 else if (REG_P (x)
2465 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2466 && reg_equiv_init (REGNO (x))
2467 && reg_equiv_invariant (REGNO (x)))
2468 {
2469 rtx t = reg_equiv_invariant (REGNO (x));
2470 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2471 int cost = set_src_cost (new_rtx, Pmode,
2472 optimize_bb_for_speed_p (elim_bb));
2473 int freq = REG_FREQ_FROM_BB (elim_bb);
2474
2475 if (cost != 0)
2476 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2477 }
2478 }
2479 }
2480
2481 /* Scan X and replace any eliminable registers (such as fp) with a
2482 replacement (such as sp), plus an offset.
2483
2484 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2485 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2486 MEM, we are allowed to replace a sum of a register and the constant zero
2487 with the register, which we cannot do outside a MEM. In addition, we need
2488 to record the fact that a register is referenced outside a MEM.
2489
2490 If INSN is an insn, it is the insn containing X. If we replace a REG
2491 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2492 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2493 the REG is being modified.
2494
2495 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2496 That's used when we eliminate in expressions stored in notes.
2497 This means, do not set ref_outside_mem even if the reference
2498 is outside of MEMs.
2499
2500 If FOR_COSTS is true, we are being called before reload in order to
2501 estimate the costs of keeping registers with an equivalence unallocated.
2502
2503 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2504 replacements done assuming all offsets are at their initial values. If
2505 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2506 encounter, return the actual location so that find_reloads will do
2507 the proper thing. */
2508
2509 static rtx
2510 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2511 bool may_use_invariant, bool for_costs)
2512 {
2513 enum rtx_code code = GET_CODE (x);
2514 struct elim_table *ep;
2515 int regno;
2516 rtx new_rtx;
2517 int i, j;
2518 const char *fmt;
2519 int copied = 0;
2520
2521 if (! current_function_decl)
2522 return x;
2523
2524 switch (code)
2525 {
2526 CASE_CONST_ANY:
2527 case CONST:
2528 case SYMBOL_REF:
2529 case CODE_LABEL:
2530 case PC:
2531 case CC0:
2532 case ASM_INPUT:
2533 case ADDR_VEC:
2534 case ADDR_DIFF_VEC:
2535 case RETURN:
2536 return x;
2537
2538 case REG:
2539 regno = REGNO (x);
2540
2541 /* First handle the case where we encounter a bare register that
2542 is eliminable. Replace it with a PLUS. */
2543 if (regno < FIRST_PSEUDO_REGISTER)
2544 {
2545 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2546 ep++)
2547 if (ep->from_rtx == x && ep->can_eliminate)
2548 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2549
2550 }
2551 else if (reg_renumber && reg_renumber[regno] < 0
2552 && reg_equivs
2553 && reg_equiv_invariant (regno))
2554 {
2555 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2556 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2557 mem_mode, insn, true, for_costs);
2558 /* There exists at least one use of REGNO that cannot be
2559 eliminated. Prevent the defining insn from being deleted. */
2560 reg_equiv_init (regno) = NULL;
2561 if (!for_costs)
2562 alter_reg (regno, -1, true);
2563 }
2564 return x;
2565
2566 /* You might think handling MINUS in a manner similar to PLUS is a
2567 good idea. It is not. It has been tried multiple times and every
2568 time the change has had to have been reverted.
2569
2570 Other parts of reload know a PLUS is special (gen_reload for example)
2571 and require special code to handle code a reloaded PLUS operand.
2572
2573 Also consider backends where the flags register is clobbered by a
2574 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2575 lea instruction comes to mind). If we try to reload a MINUS, we
2576 may kill the flags register that was holding a useful value.
2577
2578 So, please before trying to handle MINUS, consider reload as a
2579 whole instead of this little section as well as the backend issues. */
2580 case PLUS:
2581 /* If this is the sum of an eliminable register and a constant, rework
2582 the sum. */
2583 if (REG_P (XEXP (x, 0))
2584 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2585 && CONSTANT_P (XEXP (x, 1)))
2586 {
2587 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2588 ep++)
2589 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2590 {
2591 /* The only time we want to replace a PLUS with a REG (this
2592 occurs when the constant operand of the PLUS is the negative
2593 of the offset) is when we are inside a MEM. We won't want
2594 to do so at other times because that would change the
2595 structure of the insn in a way that reload can't handle.
2596 We special-case the commonest situation in
2597 eliminate_regs_in_insn, so just replace a PLUS with a
2598 PLUS here, unless inside a MEM. */
2599 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2600 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2601 return ep->to_rtx;
2602 else
2603 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2604 plus_constant (Pmode, XEXP (x, 1),
2605 ep->previous_offset));
2606 }
2607
2608 /* If the register is not eliminable, we are done since the other
2609 operand is a constant. */
2610 return x;
2611 }
2612
2613 /* If this is part of an address, we want to bring any constant to the
2614 outermost PLUS. We will do this by doing register replacement in
2615 our operands and seeing if a constant shows up in one of them.
2616
2617 Note that there is no risk of modifying the structure of the insn,
2618 since we only get called for its operands, thus we are either
2619 modifying the address inside a MEM, or something like an address
2620 operand of a load-address insn. */
2621
2622 {
2623 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2624 for_costs);
2625 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2626 for_costs);
2627
2628 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2629 {
2630 /* If one side is a PLUS and the other side is a pseudo that
2631 didn't get a hard register but has a reg_equiv_constant,
2632 we must replace the constant here since it may no longer
2633 be in the position of any operand. */
2634 if (GET_CODE (new0) == PLUS && REG_P (new1)
2635 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2636 && reg_renumber[REGNO (new1)] < 0
2637 && reg_equivs
2638 && reg_equiv_constant (REGNO (new1)) != 0)
2639 new1 = reg_equiv_constant (REGNO (new1));
2640 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2641 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2642 && reg_renumber[REGNO (new0)] < 0
2643 && reg_equiv_constant (REGNO (new0)) != 0)
2644 new0 = reg_equiv_constant (REGNO (new0));
2645
2646 new_rtx = form_sum (GET_MODE (x), new0, new1);
2647
2648 /* As above, if we are not inside a MEM we do not want to
2649 turn a PLUS into something else. We might try to do so here
2650 for an addition of 0 if we aren't optimizing. */
2651 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2652 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2653 else
2654 return new_rtx;
2655 }
2656 }
2657 return x;
2658
2659 case MULT:
2660 /* If this is the product of an eliminable register and a
2661 constant, apply the distribute law and move the constant out
2662 so that we have (plus (mult ..) ..). This is needed in order
2663 to keep load-address insns valid. This case is pathological.
2664 We ignore the possibility of overflow here. */
2665 if (REG_P (XEXP (x, 0))
2666 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2667 && CONST_INT_P (XEXP (x, 1)))
2668 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2669 ep++)
2670 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2671 {
2672 if (! mem_mode
2673 /* Refs inside notes or in DEBUG_INSNs don't count for
2674 this purpose. */
2675 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2676 || GET_CODE (insn) == INSN_LIST
2677 || DEBUG_INSN_P (insn))))
2678 ep->ref_outside_mem = 1;
2679
2680 return
2681 plus_constant (Pmode,
2682 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2683 ep->previous_offset * INTVAL (XEXP (x, 1)));
2684 }
2685
2686 /* fall through */
2687
2688 case CALL:
2689 case COMPARE:
2690 /* See comments before PLUS about handling MINUS. */
2691 case MINUS:
2692 case DIV: case UDIV:
2693 case MOD: case UMOD:
2694 case AND: case IOR: case XOR:
2695 case ROTATERT: case ROTATE:
2696 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2697 case NE: case EQ:
2698 case GE: case GT: case GEU: case GTU:
2699 case LE: case LT: case LEU: case LTU:
2700 {
2701 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2702 for_costs);
2703 rtx new1 = XEXP (x, 1)
2704 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2705 for_costs) : 0;
2706
2707 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2708 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2709 }
2710 return x;
2711
2712 case EXPR_LIST:
2713 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2714 if (XEXP (x, 0))
2715 {
2716 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2717 for_costs);
2718 if (new_rtx != XEXP (x, 0))
2719 {
2720 /* If this is a REG_DEAD note, it is not valid anymore.
2721 Using the eliminated version could result in creating a
2722 REG_DEAD note for the stack or frame pointer. */
2723 if (REG_NOTE_KIND (x) == REG_DEAD)
2724 return (XEXP (x, 1)
2725 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2726 for_costs)
2727 : NULL_RTX);
2728
2729 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2730 }
2731 }
2732
2733 /* fall through */
2734
2735 case INSN_LIST:
2736 case INT_LIST:
2737 /* Now do eliminations in the rest of the chain. If this was
2738 an EXPR_LIST, this might result in allocating more memory than is
2739 strictly needed, but it simplifies the code. */
2740 if (XEXP (x, 1))
2741 {
2742 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2743 for_costs);
2744 if (new_rtx != XEXP (x, 1))
2745 return
2746 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2747 }
2748 return x;
2749
2750 case PRE_INC:
2751 case POST_INC:
2752 case PRE_DEC:
2753 case POST_DEC:
2754 /* We do not support elimination of a register that is modified.
2755 elimination_effects has already make sure that this does not
2756 happen. */
2757 return x;
2758
2759 case PRE_MODIFY:
2760 case POST_MODIFY:
2761 /* We do not support elimination of a register that is modified.
2762 elimination_effects has already make sure that this does not
2763 happen. The only remaining case we need to consider here is
2764 that the increment value may be an eliminable register. */
2765 if (GET_CODE (XEXP (x, 1)) == PLUS
2766 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2767 {
2768 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2769 insn, true, for_costs);
2770
2771 if (new_rtx != XEXP (XEXP (x, 1), 1))
2772 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2773 gen_rtx_PLUS (GET_MODE (x),
2774 XEXP (x, 0), new_rtx));
2775 }
2776 return x;
2777
2778 case STRICT_LOW_PART:
2779 case NEG: case NOT:
2780 case SIGN_EXTEND: case ZERO_EXTEND:
2781 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2782 case FLOAT: case FIX:
2783 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2784 case ABS:
2785 case SQRT:
2786 case FFS:
2787 case CLZ:
2788 case CTZ:
2789 case POPCOUNT:
2790 case PARITY:
2791 case BSWAP:
2792 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2793 for_costs);
2794 if (new_rtx != XEXP (x, 0))
2795 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2796 return x;
2797
2798 case SUBREG:
2799 /* Similar to above processing, but preserve SUBREG_BYTE.
2800 Convert (subreg (mem)) to (mem) if not paradoxical.
2801 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2802 pseudo didn't get a hard reg, we must replace this with the
2803 eliminated version of the memory location because push_reload
2804 may do the replacement in certain circumstances. */
2805 if (REG_P (SUBREG_REG (x))
2806 && !paradoxical_subreg_p (x)
2807 && reg_equivs
2808 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2809 {
2810 new_rtx = SUBREG_REG (x);
2811 }
2812 else
2813 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2814
2815 if (new_rtx != SUBREG_REG (x))
2816 {
2817 int x_size = GET_MODE_SIZE (GET_MODE (x));
2818 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2819
2820 if (MEM_P (new_rtx)
2821 && ((x_size < new_size
2822 #if WORD_REGISTER_OPERATIONS
2823 /* On these machines, combine can create rtl of the form
2824 (set (subreg:m1 (reg:m2 R) 0) ...)
2825 where m1 < m2, and expects something interesting to
2826 happen to the entire word. Moreover, it will use the
2827 (reg:m2 R) later, expecting all bits to be preserved.
2828 So if the number of words is the same, preserve the
2829 subreg so that push_reload can see it. */
2830 && ! ((x_size - 1) / UNITS_PER_WORD
2831 == (new_size -1 ) / UNITS_PER_WORD)
2832 #endif
2833 )
2834 || x_size == new_size)
2835 )
2836 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2837 else
2838 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2839 }
2840
2841 return x;
2842
2843 case MEM:
2844 /* Our only special processing is to pass the mode of the MEM to our
2845 recursive call and copy the flags. While we are here, handle this
2846 case more efficiently. */
2847
2848 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2849 for_costs);
2850 if (for_costs
2851 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2852 && !memory_address_p (GET_MODE (x), new_rtx))
2853 note_reg_elim_costly (XEXP (x, 0), insn);
2854
2855 return replace_equiv_address_nv (x, new_rtx);
2856
2857 case USE:
2858 /* Handle insn_list USE that a call to a pure function may generate. */
2859 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2860 for_costs);
2861 if (new_rtx != XEXP (x, 0))
2862 return gen_rtx_USE (GET_MODE (x), new_rtx);
2863 return x;
2864
2865 case CLOBBER:
2866 case ASM_OPERANDS:
2867 gcc_assert (insn && DEBUG_INSN_P (insn));
2868 break;
2869
2870 case SET:
2871 gcc_unreachable ();
2872
2873 default:
2874 break;
2875 }
2876
2877 /* Process each of our operands recursively. If any have changed, make a
2878 copy of the rtx. */
2879 fmt = GET_RTX_FORMAT (code);
2880 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2881 {
2882 if (*fmt == 'e')
2883 {
2884 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2885 for_costs);
2886 if (new_rtx != XEXP (x, i) && ! copied)
2887 {
2888 x = shallow_copy_rtx (x);
2889 copied = 1;
2890 }
2891 XEXP (x, i) = new_rtx;
2892 }
2893 else if (*fmt == 'E')
2894 {
2895 int copied_vec = 0;
2896 for (j = 0; j < XVECLEN (x, i); j++)
2897 {
2898 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2899 for_costs);
2900 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2901 {
2902 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2903 XVEC (x, i)->elem);
2904 if (! copied)
2905 {
2906 x = shallow_copy_rtx (x);
2907 copied = 1;
2908 }
2909 XVEC (x, i) = new_v;
2910 copied_vec = 1;
2911 }
2912 XVECEXP (x, i, j) = new_rtx;
2913 }
2914 }
2915 }
2916
2917 return x;
2918 }
2919
2920 rtx
2921 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2922 {
2923 if (reg_eliminate == NULL)
2924 {
2925 gcc_assert (targetm.no_register_allocation);
2926 return x;
2927 }
2928 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2929 }
2930
2931 /* Scan rtx X for modifications of elimination target registers. Update
2932 the table of eliminables to reflect the changed state. MEM_MODE is
2933 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2934
2935 static void
2936 elimination_effects (rtx x, machine_mode mem_mode)
2937 {
2938 enum rtx_code code = GET_CODE (x);
2939 struct elim_table *ep;
2940 int regno;
2941 int i, j;
2942 const char *fmt;
2943
2944 switch (code)
2945 {
2946 CASE_CONST_ANY:
2947 case CONST:
2948 case SYMBOL_REF:
2949 case CODE_LABEL:
2950 case PC:
2951 case CC0:
2952 case ASM_INPUT:
2953 case ADDR_VEC:
2954 case ADDR_DIFF_VEC:
2955 case RETURN:
2956 return;
2957
2958 case REG:
2959 regno = REGNO (x);
2960
2961 /* First handle the case where we encounter a bare register that
2962 is eliminable. Replace it with a PLUS. */
2963 if (regno < FIRST_PSEUDO_REGISTER)
2964 {
2965 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2966 ep++)
2967 if (ep->from_rtx == x && ep->can_eliminate)
2968 {
2969 if (! mem_mode)
2970 ep->ref_outside_mem = 1;
2971 return;
2972 }
2973
2974 }
2975 else if (reg_renumber[regno] < 0
2976 && reg_equivs
2977 && reg_equiv_constant (regno)
2978 && ! function_invariant_p (reg_equiv_constant (regno)))
2979 elimination_effects (reg_equiv_constant (regno), mem_mode);
2980 return;
2981
2982 case PRE_INC:
2983 case POST_INC:
2984 case PRE_DEC:
2985 case POST_DEC:
2986 case POST_MODIFY:
2987 case PRE_MODIFY:
2988 /* If we modify the source of an elimination rule, disable it. */
2989 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2990 if (ep->from_rtx == XEXP (x, 0))
2991 ep->can_eliminate = 0;
2992
2993 /* If we modify the target of an elimination rule by adding a constant,
2994 update its offset. If we modify the target in any other way, we'll
2995 have to disable the rule as well. */
2996 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2997 if (ep->to_rtx == XEXP (x, 0))
2998 {
2999 int size = GET_MODE_SIZE (mem_mode);
3000
3001 /* If more bytes than MEM_MODE are pushed, account for them. */
3002 #ifdef PUSH_ROUNDING
3003 if (ep->to_rtx == stack_pointer_rtx)
3004 size = PUSH_ROUNDING (size);
3005 #endif
3006 if (code == PRE_DEC || code == POST_DEC)
3007 ep->offset += size;
3008 else if (code == PRE_INC || code == POST_INC)
3009 ep->offset -= size;
3010 else if (code == PRE_MODIFY || code == POST_MODIFY)
3011 {
3012 if (GET_CODE (XEXP (x, 1)) == PLUS
3013 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3014 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3015 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3016 else
3017 ep->can_eliminate = 0;
3018 }
3019 }
3020
3021 /* These two aren't unary operators. */
3022 if (code == POST_MODIFY || code == PRE_MODIFY)
3023 break;
3024
3025 /* Fall through to generic unary operation case. */
3026 gcc_fallthrough ();
3027 case STRICT_LOW_PART:
3028 case NEG: case NOT:
3029 case SIGN_EXTEND: case ZERO_EXTEND:
3030 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3031 case FLOAT: case FIX:
3032 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3033 case ABS:
3034 case SQRT:
3035 case FFS:
3036 case CLZ:
3037 case CTZ:
3038 case POPCOUNT:
3039 case PARITY:
3040 case BSWAP:
3041 elimination_effects (XEXP (x, 0), mem_mode);
3042 return;
3043
3044 case SUBREG:
3045 if (REG_P (SUBREG_REG (x))
3046 && (GET_MODE_SIZE (GET_MODE (x))
3047 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3048 && reg_equivs
3049 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3050 return;
3051
3052 elimination_effects (SUBREG_REG (x), mem_mode);
3053 return;
3054
3055 case USE:
3056 /* If using a register that is the source of an eliminate we still
3057 think can be performed, note it cannot be performed since we don't
3058 know how this register is used. */
3059 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3060 if (ep->from_rtx == XEXP (x, 0))
3061 ep->can_eliminate = 0;
3062
3063 elimination_effects (XEXP (x, 0), mem_mode);
3064 return;
3065
3066 case CLOBBER:
3067 /* If clobbering a register that is the replacement register for an
3068 elimination we still think can be performed, note that it cannot
3069 be performed. Otherwise, we need not be concerned about it. */
3070 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3071 if (ep->to_rtx == XEXP (x, 0))
3072 ep->can_eliminate = 0;
3073
3074 elimination_effects (XEXP (x, 0), mem_mode);
3075 return;
3076
3077 case SET:
3078 /* Check for setting a register that we know about. */
3079 if (REG_P (SET_DEST (x)))
3080 {
3081 /* See if this is setting the replacement register for an
3082 elimination.
3083
3084 If DEST is the hard frame pointer, we do nothing because we
3085 assume that all assignments to the frame pointer are for
3086 non-local gotos and are being done at a time when they are valid
3087 and do not disturb anything else. Some machines want to
3088 eliminate a fake argument pointer (or even a fake frame pointer)
3089 with either the real frame or the stack pointer. Assignments to
3090 the hard frame pointer must not prevent this elimination. */
3091
3092 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3093 ep++)
3094 if (ep->to_rtx == SET_DEST (x)
3095 && SET_DEST (x) != hard_frame_pointer_rtx)
3096 {
3097 /* If it is being incremented, adjust the offset. Otherwise,
3098 this elimination can't be done. */
3099 rtx src = SET_SRC (x);
3100
3101 if (GET_CODE (src) == PLUS
3102 && XEXP (src, 0) == SET_DEST (x)
3103 && CONST_INT_P (XEXP (src, 1)))
3104 ep->offset -= INTVAL (XEXP (src, 1));
3105 else
3106 ep->can_eliminate = 0;
3107 }
3108 }
3109
3110 elimination_effects (SET_DEST (x), VOIDmode);
3111 elimination_effects (SET_SRC (x), VOIDmode);
3112 return;
3113
3114 case MEM:
3115 /* Our only special processing is to pass the mode of the MEM to our
3116 recursive call. */
3117 elimination_effects (XEXP (x, 0), GET_MODE (x));
3118 return;
3119
3120 default:
3121 break;
3122 }
3123
3124 fmt = GET_RTX_FORMAT (code);
3125 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3126 {
3127 if (*fmt == 'e')
3128 elimination_effects (XEXP (x, i), mem_mode);
3129 else if (*fmt == 'E')
3130 for (j = 0; j < XVECLEN (x, i); j++)
3131 elimination_effects (XVECEXP (x, i, j), mem_mode);
3132 }
3133 }
3134
3135 /* Descend through rtx X and verify that no references to eliminable registers
3136 remain. If any do remain, mark the involved register as not
3137 eliminable. */
3138
3139 static void
3140 check_eliminable_occurrences (rtx x)
3141 {
3142 const char *fmt;
3143 int i;
3144 enum rtx_code code;
3145
3146 if (x == 0)
3147 return;
3148
3149 code = GET_CODE (x);
3150
3151 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3152 {
3153 struct elim_table *ep;
3154
3155 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3156 if (ep->from_rtx == x)
3157 ep->can_eliminate = 0;
3158 return;
3159 }
3160
3161 fmt = GET_RTX_FORMAT (code);
3162 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3163 {
3164 if (*fmt == 'e')
3165 check_eliminable_occurrences (XEXP (x, i));
3166 else if (*fmt == 'E')
3167 {
3168 int j;
3169 for (j = 0; j < XVECLEN (x, i); j++)
3170 check_eliminable_occurrences (XVECEXP (x, i, j));
3171 }
3172 }
3173 }
3174 \f
3175 /* Scan INSN and eliminate all eliminable registers in it.
3176
3177 If REPLACE is nonzero, do the replacement destructively. Also
3178 delete the insn as dead it if it is setting an eliminable register.
3179
3180 If REPLACE is zero, do all our allocations in reload_obstack.
3181
3182 If no eliminations were done and this insn doesn't require any elimination
3183 processing (these are not identical conditions: it might be updating sp,
3184 but not referencing fp; this needs to be seen during reload_as_needed so
3185 that the offset between fp and sp can be taken into consideration), zero
3186 is returned. Otherwise, 1 is returned. */
3187
3188 static int
3189 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3190 {
3191 int icode = recog_memoized (insn);
3192 rtx old_body = PATTERN (insn);
3193 int insn_is_asm = asm_noperands (old_body) >= 0;
3194 rtx old_set = single_set (insn);
3195 rtx new_body;
3196 int val = 0;
3197 int i;
3198 rtx substed_operand[MAX_RECOG_OPERANDS];
3199 rtx orig_operand[MAX_RECOG_OPERANDS];
3200 struct elim_table *ep;
3201 rtx plus_src, plus_cst_src;
3202
3203 if (! insn_is_asm && icode < 0)
3204 {
3205 gcc_assert (DEBUG_INSN_P (insn)
3206 || GET_CODE (PATTERN (insn)) == USE
3207 || GET_CODE (PATTERN (insn)) == CLOBBER
3208 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3209 if (DEBUG_INSN_P (insn))
3210 INSN_VAR_LOCATION_LOC (insn)
3211 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3212 return 0;
3213 }
3214
3215 if (old_set != 0 && REG_P (SET_DEST (old_set))
3216 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3217 {
3218 /* Check for setting an eliminable register. */
3219 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3220 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3221 {
3222 /* If this is setting the frame pointer register to the
3223 hardware frame pointer register and this is an elimination
3224 that will be done (tested above), this insn is really
3225 adjusting the frame pointer downward to compensate for
3226 the adjustment done before a nonlocal goto. */
3227 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3228 && ep->from == FRAME_POINTER_REGNUM
3229 && ep->to == HARD_FRAME_POINTER_REGNUM)
3230 {
3231 rtx base = SET_SRC (old_set);
3232 rtx_insn *base_insn = insn;
3233 HOST_WIDE_INT offset = 0;
3234
3235 while (base != ep->to_rtx)
3236 {
3237 rtx_insn *prev_insn;
3238 rtx prev_set;
3239
3240 if (GET_CODE (base) == PLUS
3241 && CONST_INT_P (XEXP (base, 1)))
3242 {
3243 offset += INTVAL (XEXP (base, 1));
3244 base = XEXP (base, 0);
3245 }
3246 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3247 && (prev_set = single_set (prev_insn)) != 0
3248 && rtx_equal_p (SET_DEST (prev_set), base))
3249 {
3250 base = SET_SRC (prev_set);
3251 base_insn = prev_insn;
3252 }
3253 else
3254 break;
3255 }
3256
3257 if (base == ep->to_rtx)
3258 {
3259 rtx src = plus_constant (Pmode, ep->to_rtx,
3260 offset - ep->offset);
3261
3262 new_body = old_body;
3263 if (! replace)
3264 {
3265 new_body = copy_insn (old_body);
3266 if (REG_NOTES (insn))
3267 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3268 }
3269 PATTERN (insn) = new_body;
3270 old_set = single_set (insn);
3271
3272 /* First see if this insn remains valid when we
3273 make the change. If not, keep the INSN_CODE
3274 the same and let reload fit it up. */
3275 validate_change (insn, &SET_SRC (old_set), src, 1);
3276 validate_change (insn, &SET_DEST (old_set),
3277 ep->to_rtx, 1);
3278 if (! apply_change_group ())
3279 {
3280 SET_SRC (old_set) = src;
3281 SET_DEST (old_set) = ep->to_rtx;
3282 }
3283
3284 val = 1;
3285 goto done;
3286 }
3287 }
3288
3289 /* In this case this insn isn't serving a useful purpose. We
3290 will delete it in reload_as_needed once we know that this
3291 elimination is, in fact, being done.
3292
3293 If REPLACE isn't set, we can't delete this insn, but needn't
3294 process it since it won't be used unless something changes. */
3295 if (replace)
3296 {
3297 delete_dead_insn (insn);
3298 return 1;
3299 }
3300 val = 1;
3301 goto done;
3302 }
3303 }
3304
3305 /* We allow one special case which happens to work on all machines we
3306 currently support: a single set with the source or a REG_EQUAL
3307 note being a PLUS of an eliminable register and a constant. */
3308 plus_src = plus_cst_src = 0;
3309 if (old_set && REG_P (SET_DEST (old_set)))
3310 {
3311 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3312 plus_src = SET_SRC (old_set);
3313 /* First see if the source is of the form (plus (...) CST). */
3314 if (plus_src
3315 && CONST_INT_P (XEXP (plus_src, 1)))
3316 plus_cst_src = plus_src;
3317 else if (REG_P (SET_SRC (old_set))
3318 || plus_src)
3319 {
3320 /* Otherwise, see if we have a REG_EQUAL note of the form
3321 (plus (...) CST). */
3322 rtx links;
3323 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3324 {
3325 if ((REG_NOTE_KIND (links) == REG_EQUAL
3326 || REG_NOTE_KIND (links) == REG_EQUIV)
3327 && GET_CODE (XEXP (links, 0)) == PLUS
3328 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3329 {
3330 plus_cst_src = XEXP (links, 0);
3331 break;
3332 }
3333 }
3334 }
3335
3336 /* Check that the first operand of the PLUS is a hard reg or
3337 the lowpart subreg of one. */
3338 if (plus_cst_src)
3339 {
3340 rtx reg = XEXP (plus_cst_src, 0);
3341 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3342 reg = SUBREG_REG (reg);
3343
3344 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3345 plus_cst_src = 0;
3346 }
3347 }
3348 if (plus_cst_src)
3349 {
3350 rtx reg = XEXP (plus_cst_src, 0);
3351 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3352
3353 if (GET_CODE (reg) == SUBREG)
3354 reg = SUBREG_REG (reg);
3355
3356 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3357 if (ep->from_rtx == reg && ep->can_eliminate)
3358 {
3359 rtx to_rtx = ep->to_rtx;
3360 offset += ep->offset;
3361 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3362
3363 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3364 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3365 to_rtx);
3366 /* If we have a nonzero offset, and the source is already
3367 a simple REG, the following transformation would
3368 increase the cost of the insn by replacing a simple REG
3369 with (plus (reg sp) CST). So try only when we already
3370 had a PLUS before. */
3371 if (offset == 0 || plus_src)
3372 {
3373 rtx new_src = plus_constant (GET_MODE (to_rtx),
3374 to_rtx, offset);
3375
3376 new_body = old_body;
3377 if (! replace)
3378 {
3379 new_body = copy_insn (old_body);
3380 if (REG_NOTES (insn))
3381 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3382 }
3383 PATTERN (insn) = new_body;
3384 old_set = single_set (insn);
3385
3386 /* First see if this insn remains valid when we make the
3387 change. If not, try to replace the whole pattern with
3388 a simple set (this may help if the original insn was a
3389 PARALLEL that was only recognized as single_set due to
3390 REG_UNUSED notes). If this isn't valid either, keep
3391 the INSN_CODE the same and let reload fix it up. */
3392 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3393 {
3394 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3395
3396 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3397 SET_SRC (old_set) = new_src;
3398 }
3399 }
3400 else
3401 break;
3402
3403 val = 1;
3404 /* This can't have an effect on elimination offsets, so skip right
3405 to the end. */
3406 goto done;
3407 }
3408 }
3409
3410 /* Determine the effects of this insn on elimination offsets. */
3411 elimination_effects (old_body, VOIDmode);
3412
3413 /* Eliminate all eliminable registers occurring in operands that
3414 can be handled by reload. */
3415 extract_insn (insn);
3416 for (i = 0; i < recog_data.n_operands; i++)
3417 {
3418 orig_operand[i] = recog_data.operand[i];
3419 substed_operand[i] = recog_data.operand[i];
3420
3421 /* For an asm statement, every operand is eliminable. */
3422 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3423 {
3424 bool is_set_src, in_plus;
3425
3426 /* Check for setting a register that we know about. */
3427 if (recog_data.operand_type[i] != OP_IN
3428 && REG_P (orig_operand[i]))
3429 {
3430 /* If we are assigning to a register that can be eliminated, it
3431 must be as part of a PARALLEL, since the code above handles
3432 single SETs. We must indicate that we can no longer
3433 eliminate this reg. */
3434 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3435 ep++)
3436 if (ep->from_rtx == orig_operand[i])
3437 ep->can_eliminate = 0;
3438 }
3439
3440 /* Companion to the above plus substitution, we can allow
3441 invariants as the source of a plain move. */
3442 is_set_src = false;
3443 if (old_set
3444 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3445 is_set_src = true;
3446 in_plus = false;
3447 if (plus_src
3448 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3449 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3450 in_plus = true;
3451
3452 substed_operand[i]
3453 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3454 replace ? insn : NULL_RTX,
3455 is_set_src || in_plus, false);
3456 if (substed_operand[i] != orig_operand[i])
3457 val = 1;
3458 /* Terminate the search in check_eliminable_occurrences at
3459 this point. */
3460 *recog_data.operand_loc[i] = 0;
3461
3462 /* If an output operand changed from a REG to a MEM and INSN is an
3463 insn, write a CLOBBER insn. */
3464 if (recog_data.operand_type[i] != OP_IN
3465 && REG_P (orig_operand[i])
3466 && MEM_P (substed_operand[i])
3467 && replace)
3468 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3469 }
3470 }
3471
3472 for (i = 0; i < recog_data.n_dups; i++)
3473 *recog_data.dup_loc[i]
3474 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3475
3476 /* If any eliminable remain, they aren't eliminable anymore. */
3477 check_eliminable_occurrences (old_body);
3478
3479 /* Substitute the operands; the new values are in the substed_operand
3480 array. */
3481 for (i = 0; i < recog_data.n_operands; i++)
3482 *recog_data.operand_loc[i] = substed_operand[i];
3483 for (i = 0; i < recog_data.n_dups; i++)
3484 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3485
3486 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3487 re-recognize the insn. We do this in case we had a simple addition
3488 but now can do this as a load-address. This saves an insn in this
3489 common case.
3490 If re-recognition fails, the old insn code number will still be used,
3491 and some register operands may have changed into PLUS expressions.
3492 These will be handled by find_reloads by loading them into a register
3493 again. */
3494
3495 if (val)
3496 {
3497 /* If we aren't replacing things permanently and we changed something,
3498 make another copy to ensure that all the RTL is new. Otherwise
3499 things can go wrong if find_reload swaps commutative operands
3500 and one is inside RTL that has been copied while the other is not. */
3501 new_body = old_body;
3502 if (! replace)
3503 {
3504 new_body = copy_insn (old_body);
3505 if (REG_NOTES (insn))
3506 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3507 }
3508 PATTERN (insn) = new_body;
3509
3510 /* If we had a move insn but now we don't, rerecognize it. This will
3511 cause spurious re-recognition if the old move had a PARALLEL since
3512 the new one still will, but we can't call single_set without
3513 having put NEW_BODY into the insn and the re-recognition won't
3514 hurt in this rare case. */
3515 /* ??? Why this huge if statement - why don't we just rerecognize the
3516 thing always? */
3517 if (! insn_is_asm
3518 && old_set != 0
3519 && ((REG_P (SET_SRC (old_set))
3520 && (GET_CODE (new_body) != SET
3521 || !REG_P (SET_SRC (new_body))))
3522 /* If this was a load from or store to memory, compare
3523 the MEM in recog_data.operand to the one in the insn.
3524 If they are not equal, then rerecognize the insn. */
3525 || (old_set != 0
3526 && ((MEM_P (SET_SRC (old_set))
3527 && SET_SRC (old_set) != recog_data.operand[1])
3528 || (MEM_P (SET_DEST (old_set))
3529 && SET_DEST (old_set) != recog_data.operand[0])))
3530 /* If this was an add insn before, rerecognize. */
3531 || GET_CODE (SET_SRC (old_set)) == PLUS))
3532 {
3533 int new_icode = recog (PATTERN (insn), insn, 0);
3534 if (new_icode >= 0)
3535 INSN_CODE (insn) = new_icode;
3536 }
3537 }
3538
3539 /* Restore the old body. If there were any changes to it, we made a copy
3540 of it while the changes were still in place, so we'll correctly return
3541 a modified insn below. */
3542 if (! replace)
3543 {
3544 /* Restore the old body. */
3545 for (i = 0; i < recog_data.n_operands; i++)
3546 /* Restoring a top-level match_parallel would clobber the new_body
3547 we installed in the insn. */
3548 if (recog_data.operand_loc[i] != &PATTERN (insn))
3549 *recog_data.operand_loc[i] = orig_operand[i];
3550 for (i = 0; i < recog_data.n_dups; i++)
3551 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3552 }
3553
3554 /* Update all elimination pairs to reflect the status after the current
3555 insn. The changes we make were determined by the earlier call to
3556 elimination_effects.
3557
3558 We also detect cases where register elimination cannot be done,
3559 namely, if a register would be both changed and referenced outside a MEM
3560 in the resulting insn since such an insn is often undefined and, even if
3561 not, we cannot know what meaning will be given to it. Note that it is
3562 valid to have a register used in an address in an insn that changes it
3563 (presumably with a pre- or post-increment or decrement).
3564
3565 If anything changes, return nonzero. */
3566
3567 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3568 {
3569 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3570 ep->can_eliminate = 0;
3571
3572 ep->ref_outside_mem = 0;
3573
3574 if (ep->previous_offset != ep->offset)
3575 val = 1;
3576 }
3577
3578 done:
3579 /* If we changed something, perform elimination in REG_NOTES. This is
3580 needed even when REPLACE is zero because a REG_DEAD note might refer
3581 to a register that we eliminate and could cause a different number
3582 of spill registers to be needed in the final reload pass than in
3583 the pre-passes. */
3584 if (val && REG_NOTES (insn) != 0)
3585 REG_NOTES (insn)
3586 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3587 false);
3588
3589 return val;
3590 }
3591
3592 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3593 register allocator. INSN is the instruction we need to examine, we perform
3594 eliminations in its operands and record cases where eliminating a reg with
3595 an invariant equivalence would add extra cost. */
3596
3597 #pragma GCC diagnostic push
3598 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3599 static void
3600 elimination_costs_in_insn (rtx_insn *insn)
3601 {
3602 int icode = recog_memoized (insn);
3603 rtx old_body = PATTERN (insn);
3604 int insn_is_asm = asm_noperands (old_body) >= 0;
3605 rtx old_set = single_set (insn);
3606 int i;
3607 rtx orig_operand[MAX_RECOG_OPERANDS];
3608 rtx orig_dup[MAX_RECOG_OPERANDS];
3609 struct elim_table *ep;
3610 rtx plus_src, plus_cst_src;
3611 bool sets_reg_p;
3612
3613 if (! insn_is_asm && icode < 0)
3614 {
3615 gcc_assert (DEBUG_INSN_P (insn)
3616 || GET_CODE (PATTERN (insn)) == USE
3617 || GET_CODE (PATTERN (insn)) == CLOBBER
3618 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3619 return;
3620 }
3621
3622 if (old_set != 0 && REG_P (SET_DEST (old_set))
3623 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3624 {
3625 /* Check for setting an eliminable register. */
3626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3627 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3628 return;
3629 }
3630
3631 /* We allow one special case which happens to work on all machines we
3632 currently support: a single set with the source or a REG_EQUAL
3633 note being a PLUS of an eliminable register and a constant. */
3634 plus_src = plus_cst_src = 0;
3635 sets_reg_p = false;
3636 if (old_set && REG_P (SET_DEST (old_set)))
3637 {
3638 sets_reg_p = true;
3639 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3640 plus_src = SET_SRC (old_set);
3641 /* First see if the source is of the form (plus (...) CST). */
3642 if (plus_src
3643 && CONST_INT_P (XEXP (plus_src, 1)))
3644 plus_cst_src = plus_src;
3645 else if (REG_P (SET_SRC (old_set))
3646 || plus_src)
3647 {
3648 /* Otherwise, see if we have a REG_EQUAL note of the form
3649 (plus (...) CST). */
3650 rtx links;
3651 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3652 {
3653 if ((REG_NOTE_KIND (links) == REG_EQUAL
3654 || REG_NOTE_KIND (links) == REG_EQUIV)
3655 && GET_CODE (XEXP (links, 0)) == PLUS
3656 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3657 {
3658 plus_cst_src = XEXP (links, 0);
3659 break;
3660 }
3661 }
3662 }
3663 }
3664
3665 /* Determine the effects of this insn on elimination offsets. */
3666 elimination_effects (old_body, VOIDmode);
3667
3668 /* Eliminate all eliminable registers occurring in operands that
3669 can be handled by reload. */
3670 extract_insn (insn);
3671 int n_dups = recog_data.n_dups;
3672 for (i = 0; i < n_dups; i++)
3673 orig_dup[i] = *recog_data.dup_loc[i];
3674
3675 int n_operands = recog_data.n_operands;
3676 for (i = 0; i < n_operands; i++)
3677 {
3678 orig_operand[i] = recog_data.operand[i];
3679
3680 /* For an asm statement, every operand is eliminable. */
3681 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3682 {
3683 bool is_set_src, in_plus;
3684
3685 /* Check for setting a register that we know about. */
3686 if (recog_data.operand_type[i] != OP_IN
3687 && REG_P (orig_operand[i]))
3688 {
3689 /* If we are assigning to a register that can be eliminated, it
3690 must be as part of a PARALLEL, since the code above handles
3691 single SETs. We must indicate that we can no longer
3692 eliminate this reg. */
3693 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3694 ep++)
3695 if (ep->from_rtx == orig_operand[i])
3696 ep->can_eliminate = 0;
3697 }
3698
3699 /* Companion to the above plus substitution, we can allow
3700 invariants as the source of a plain move. */
3701 is_set_src = false;
3702 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3703 is_set_src = true;
3704 if (is_set_src && !sets_reg_p)
3705 note_reg_elim_costly (SET_SRC (old_set), insn);
3706 in_plus = false;
3707 if (plus_src && sets_reg_p
3708 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3709 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3710 in_plus = true;
3711
3712 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3713 NULL_RTX,
3714 is_set_src || in_plus, true);
3715 /* Terminate the search in check_eliminable_occurrences at
3716 this point. */
3717 *recog_data.operand_loc[i] = 0;
3718 }
3719 }
3720
3721 for (i = 0; i < n_dups; i++)
3722 *recog_data.dup_loc[i]
3723 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3724
3725 /* If any eliminable remain, they aren't eliminable anymore. */
3726 check_eliminable_occurrences (old_body);
3727
3728 /* Restore the old body. */
3729 for (i = 0; i < n_operands; i++)
3730 *recog_data.operand_loc[i] = orig_operand[i];
3731 for (i = 0; i < n_dups; i++)
3732 *recog_data.dup_loc[i] = orig_dup[i];
3733
3734 /* Update all elimination pairs to reflect the status after the current
3735 insn. The changes we make were determined by the earlier call to
3736 elimination_effects. */
3737
3738 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3739 {
3740 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3741 ep->can_eliminate = 0;
3742
3743 ep->ref_outside_mem = 0;
3744 }
3745
3746 return;
3747 }
3748 #pragma GCC diagnostic pop
3749
3750 /* Loop through all elimination pairs.
3751 Recalculate the number not at initial offset.
3752
3753 Compute the maximum offset (minimum offset if the stack does not
3754 grow downward) for each elimination pair. */
3755
3756 static void
3757 update_eliminable_offsets (void)
3758 {
3759 struct elim_table *ep;
3760
3761 num_not_at_initial_offset = 0;
3762 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3763 {
3764 ep->previous_offset = ep->offset;
3765 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3766 num_not_at_initial_offset++;
3767 }
3768 }
3769
3770 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3771 replacement we currently believe is valid, mark it as not eliminable if X
3772 modifies DEST in any way other than by adding a constant integer to it.
3773
3774 If DEST is the frame pointer, we do nothing because we assume that
3775 all assignments to the hard frame pointer are nonlocal gotos and are being
3776 done at a time when they are valid and do not disturb anything else.
3777 Some machines want to eliminate a fake argument pointer with either the
3778 frame or stack pointer. Assignments to the hard frame pointer must not
3779 prevent this elimination.
3780
3781 Called via note_stores from reload before starting its passes to scan
3782 the insns of the function. */
3783
3784 static void
3785 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3786 {
3787 unsigned int i;
3788
3789 /* A SUBREG of a hard register here is just changing its mode. We should
3790 not see a SUBREG of an eliminable hard register, but check just in
3791 case. */
3792 if (GET_CODE (dest) == SUBREG)
3793 dest = SUBREG_REG (dest);
3794
3795 if (dest == hard_frame_pointer_rtx)
3796 return;
3797
3798 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3799 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3800 && (GET_CODE (x) != SET
3801 || GET_CODE (SET_SRC (x)) != PLUS
3802 || XEXP (SET_SRC (x), 0) != dest
3803 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3804 {
3805 reg_eliminate[i].can_eliminate_previous
3806 = reg_eliminate[i].can_eliminate = 0;
3807 num_eliminable--;
3808 }
3809 }
3810
3811 /* Verify that the initial elimination offsets did not change since the
3812 last call to set_initial_elim_offsets. This is used to catch cases
3813 where something illegal happened during reload_as_needed that could
3814 cause incorrect code to be generated if we did not check for it. */
3815
3816 static bool
3817 verify_initial_elim_offsets (void)
3818 {
3819 HOST_WIDE_INT t;
3820 struct elim_table *ep;
3821
3822 if (!num_eliminable)
3823 return true;
3824
3825 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3826 {
3827 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3828 if (t != ep->initial_offset)
3829 return false;
3830 }
3831
3832 return true;
3833 }
3834
3835 /* Reset all offsets on eliminable registers to their initial values. */
3836
3837 static void
3838 set_initial_elim_offsets (void)
3839 {
3840 struct elim_table *ep = reg_eliminate;
3841
3842 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3843 {
3844 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3845 ep->previous_offset = ep->offset = ep->initial_offset;
3846 }
3847
3848 num_not_at_initial_offset = 0;
3849 }
3850
3851 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3852
3853 static void
3854 set_initial_eh_label_offset (rtx label)
3855 {
3856 set_label_offsets (label, NULL, 1);
3857 }
3858
3859 /* Initialize the known label offsets.
3860 Set a known offset for each forced label to be at the initial offset
3861 of each elimination. We do this because we assume that all
3862 computed jumps occur from a location where each elimination is
3863 at its initial offset.
3864 For all other labels, show that we don't know the offsets. */
3865
3866 static void
3867 set_initial_label_offsets (void)
3868 {
3869 memset (offsets_known_at, 0, num_labels);
3870
3871 unsigned int i;
3872 rtx_insn *insn;
3873 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3874 set_label_offsets (insn, NULL, 1);
3875
3876 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3877 if (x->insn ())
3878 set_label_offsets (x->insn (), NULL, 1);
3879
3880 for_each_eh_label (set_initial_eh_label_offset);
3881 }
3882
3883 /* Set all elimination offsets to the known values for the code label given
3884 by INSN. */
3885
3886 static void
3887 set_offsets_for_label (rtx_insn *insn)
3888 {
3889 unsigned int i;
3890 int label_nr = CODE_LABEL_NUMBER (insn);
3891 struct elim_table *ep;
3892
3893 num_not_at_initial_offset = 0;
3894 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3895 {
3896 ep->offset = ep->previous_offset
3897 = offsets_at[label_nr - first_label_num][i];
3898 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3899 num_not_at_initial_offset++;
3900 }
3901 }
3902
3903 /* See if anything that happened changes which eliminations are valid.
3904 For example, on the SPARC, whether or not the frame pointer can
3905 be eliminated can depend on what registers have been used. We need
3906 not check some conditions again (such as flag_omit_frame_pointer)
3907 since they can't have changed. */
3908
3909 static void
3910 update_eliminables (HARD_REG_SET *pset)
3911 {
3912 int previous_frame_pointer_needed = frame_pointer_needed;
3913 struct elim_table *ep;
3914
3915 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3916 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3917 && targetm.frame_pointer_required ())
3918 || ! targetm.can_eliminate (ep->from, ep->to)
3919 )
3920 ep->can_eliminate = 0;
3921
3922 /* Look for the case where we have discovered that we can't replace
3923 register A with register B and that means that we will now be
3924 trying to replace register A with register C. This means we can
3925 no longer replace register C with register B and we need to disable
3926 such an elimination, if it exists. This occurs often with A == ap,
3927 B == sp, and C == fp. */
3928
3929 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3930 {
3931 struct elim_table *op;
3932 int new_to = -1;
3933
3934 if (! ep->can_eliminate && ep->can_eliminate_previous)
3935 {
3936 /* Find the current elimination for ep->from, if there is a
3937 new one. */
3938 for (op = reg_eliminate;
3939 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3940 if (op->from == ep->from && op->can_eliminate)
3941 {
3942 new_to = op->to;
3943 break;
3944 }
3945
3946 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3947 disable it. */
3948 for (op = reg_eliminate;
3949 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3950 if (op->from == new_to && op->to == ep->to)
3951 op->can_eliminate = 0;
3952 }
3953 }
3954
3955 /* See if any registers that we thought we could eliminate the previous
3956 time are no longer eliminable. If so, something has changed and we
3957 must spill the register. Also, recompute the number of eliminable
3958 registers and see if the frame pointer is needed; it is if there is
3959 no elimination of the frame pointer that we can perform. */
3960
3961 frame_pointer_needed = 1;
3962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3963 {
3964 if (ep->can_eliminate
3965 && ep->from == FRAME_POINTER_REGNUM
3966 && ep->to != HARD_FRAME_POINTER_REGNUM
3967 && (! SUPPORTS_STACK_ALIGNMENT
3968 || ! crtl->stack_realign_needed))
3969 frame_pointer_needed = 0;
3970
3971 if (! ep->can_eliminate && ep->can_eliminate_previous)
3972 {
3973 ep->can_eliminate_previous = 0;
3974 SET_HARD_REG_BIT (*pset, ep->from);
3975 num_eliminable--;
3976 }
3977 }
3978
3979 /* If we didn't need a frame pointer last time, but we do now, spill
3980 the hard frame pointer. */
3981 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3982 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3983 }
3984
3985 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3986 Return true iff a register was spilled. */
3987
3988 static bool
3989 update_eliminables_and_spill (void)
3990 {
3991 int i;
3992 bool did_spill = false;
3993 HARD_REG_SET to_spill;
3994 CLEAR_HARD_REG_SET (to_spill);
3995 update_eliminables (&to_spill);
3996 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3997
3998 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3999 if (TEST_HARD_REG_BIT (to_spill, i))
4000 {
4001 spill_hard_reg (i, 1);
4002 did_spill = true;
4003
4004 /* Regardless of the state of spills, if we previously had
4005 a register that we thought we could eliminate, but now can
4006 not eliminate, we must run another pass.
4007
4008 Consider pseudos which have an entry in reg_equiv_* which
4009 reference an eliminable register. We must make another pass
4010 to update reg_equiv_* so that we do not substitute in the
4011 old value from when we thought the elimination could be
4012 performed. */
4013 }
4014 return did_spill;
4015 }
4016
4017 /* Return true if X is used as the target register of an elimination. */
4018
4019 bool
4020 elimination_target_reg_p (rtx x)
4021 {
4022 struct elim_table *ep;
4023
4024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4025 if (ep->to_rtx == x && ep->can_eliminate)
4026 return true;
4027
4028 return false;
4029 }
4030
4031 /* Initialize the table of registers to eliminate.
4032 Pre-condition: global flag frame_pointer_needed has been set before
4033 calling this function. */
4034
4035 static void
4036 init_elim_table (void)
4037 {
4038 struct elim_table *ep;
4039 const struct elim_table_1 *ep1;
4040
4041 if (!reg_eliminate)
4042 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4043
4044 num_eliminable = 0;
4045
4046 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4047 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4048 {
4049 ep->from = ep1->from;
4050 ep->to = ep1->to;
4051 ep->can_eliminate = ep->can_eliminate_previous
4052 = (targetm.can_eliminate (ep->from, ep->to)
4053 && ! (ep->to == STACK_POINTER_REGNUM
4054 && frame_pointer_needed
4055 && (! SUPPORTS_STACK_ALIGNMENT
4056 || ! stack_realign_fp)));
4057 }
4058
4059 /* Count the number of eliminable registers and build the FROM and TO
4060 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4061 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4062 We depend on this. */
4063 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4064 {
4065 num_eliminable += ep->can_eliminate;
4066 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4067 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4068 }
4069 }
4070
4071 /* Find all the pseudo registers that didn't get hard regs
4072 but do have known equivalent constants or memory slots.
4073 These include parameters (known equivalent to parameter slots)
4074 and cse'd or loop-moved constant memory addresses.
4075
4076 Record constant equivalents in reg_equiv_constant
4077 so they will be substituted by find_reloads.
4078 Record memory equivalents in reg_mem_equiv so they can
4079 be substituted eventually by altering the REG-rtx's. */
4080
4081 static void
4082 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4083 {
4084 int i;
4085 rtx_insn *insn;
4086
4087 grow_reg_equivs ();
4088 if (do_subregs)
4089 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4090 else
4091 reg_max_ref_width = NULL;
4092
4093 num_eliminable_invariants = 0;
4094
4095 first_label_num = get_first_label_num ();
4096 num_labels = max_label_num () - first_label_num;
4097
4098 /* Allocate the tables used to store offset information at labels. */
4099 offsets_known_at = XNEWVEC (char, num_labels);
4100 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4101
4102 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4103 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4104 find largest such for each pseudo. FIRST is the head of the insn
4105 list. */
4106
4107 for (insn = first; insn; insn = NEXT_INSN (insn))
4108 {
4109 rtx set = single_set (insn);
4110
4111 /* We may introduce USEs that we want to remove at the end, so
4112 we'll mark them with QImode. Make sure there are no
4113 previously-marked insns left by say regmove. */
4114 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4115 && GET_MODE (insn) != VOIDmode)
4116 PUT_MODE (insn, VOIDmode);
4117
4118 if (do_subregs && NONDEBUG_INSN_P (insn))
4119 scan_paradoxical_subregs (PATTERN (insn));
4120
4121 if (set != 0 && REG_P (SET_DEST (set)))
4122 {
4123 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4124 rtx x;
4125
4126 if (! note)
4127 continue;
4128
4129 i = REGNO (SET_DEST (set));
4130 x = XEXP (note, 0);
4131
4132 if (i <= LAST_VIRTUAL_REGISTER)
4133 continue;
4134
4135 /* If flag_pic and we have constant, verify it's legitimate. */
4136 if (!CONSTANT_P (x)
4137 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4138 {
4139 /* It can happen that a REG_EQUIV note contains a MEM
4140 that is not a legitimate memory operand. As later
4141 stages of reload assume that all addresses found
4142 in the reg_equiv_* arrays were originally legitimate,
4143 we ignore such REG_EQUIV notes. */
4144 if (memory_operand (x, VOIDmode))
4145 {
4146 /* Always unshare the equivalence, so we can
4147 substitute into this insn without touching the
4148 equivalence. */
4149 reg_equiv_memory_loc (i) = copy_rtx (x);
4150 }
4151 else if (function_invariant_p (x))
4152 {
4153 machine_mode mode;
4154
4155 mode = GET_MODE (SET_DEST (set));
4156 if (GET_CODE (x) == PLUS)
4157 {
4158 /* This is PLUS of frame pointer and a constant,
4159 and might be shared. Unshare it. */
4160 reg_equiv_invariant (i) = copy_rtx (x);
4161 num_eliminable_invariants++;
4162 }
4163 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4164 {
4165 reg_equiv_invariant (i) = x;
4166 num_eliminable_invariants++;
4167 }
4168 else if (targetm.legitimate_constant_p (mode, x))
4169 reg_equiv_constant (i) = x;
4170 else
4171 {
4172 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4173 if (! reg_equiv_memory_loc (i))
4174 reg_equiv_init (i) = NULL;
4175 }
4176 }
4177 else
4178 {
4179 reg_equiv_init (i) = NULL;
4180 continue;
4181 }
4182 }
4183 else
4184 reg_equiv_init (i) = NULL;
4185 }
4186 }
4187
4188 if (dump_file)
4189 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4190 if (reg_equiv_init (i))
4191 {
4192 fprintf (dump_file, "init_insns for %u: ", i);
4193 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4194 fprintf (dump_file, "\n");
4195 }
4196 }
4197
4198 /* Indicate that we no longer have known memory locations or constants.
4199 Free all data involved in tracking these. */
4200
4201 static void
4202 free_reg_equiv (void)
4203 {
4204 int i;
4205
4206 free (offsets_known_at);
4207 free (offsets_at);
4208 offsets_at = 0;
4209 offsets_known_at = 0;
4210
4211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4212 if (reg_equiv_alt_mem_list (i))
4213 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4214 vec_free (reg_equivs);
4215 }
4216 \f
4217 /* Kick all pseudos out of hard register REGNO.
4218
4219 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4220 because we found we can't eliminate some register. In the case, no pseudos
4221 are allowed to be in the register, even if they are only in a block that
4222 doesn't require spill registers, unlike the case when we are spilling this
4223 hard reg to produce another spill register.
4224
4225 Return nonzero if any pseudos needed to be kicked out. */
4226
4227 static void
4228 spill_hard_reg (unsigned int regno, int cant_eliminate)
4229 {
4230 int i;
4231
4232 if (cant_eliminate)
4233 {
4234 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4235 df_set_regs_ever_live (regno, true);
4236 }
4237
4238 /* Spill every pseudo reg that was allocated to this reg
4239 or to something that overlaps this reg. */
4240
4241 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4242 if (reg_renumber[i] >= 0
4243 && (unsigned int) reg_renumber[i] <= regno
4244 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4245 SET_REGNO_REG_SET (&spilled_pseudos, i);
4246 }
4247
4248 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4249 insns that need reloads, this function is used to actually spill pseudo
4250 registers and try to reallocate them. It also sets up the spill_regs
4251 array for use by choose_reload_regs.
4252
4253 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4254 that we displace from hard registers. */
4255
4256 static int
4257 finish_spills (int global)
4258 {
4259 struct insn_chain *chain;
4260 int something_changed = 0;
4261 unsigned i;
4262 reg_set_iterator rsi;
4263
4264 /* Build the spill_regs array for the function. */
4265 /* If there are some registers still to eliminate and one of the spill regs
4266 wasn't ever used before, additional stack space may have to be
4267 allocated to store this register. Thus, we may have changed the offset
4268 between the stack and frame pointers, so mark that something has changed.
4269
4270 One might think that we need only set VAL to 1 if this is a call-used
4271 register. However, the set of registers that must be saved by the
4272 prologue is not identical to the call-used set. For example, the
4273 register used by the call insn for the return PC is a call-used register,
4274 but must be saved by the prologue. */
4275
4276 n_spills = 0;
4277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4278 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4279 {
4280 spill_reg_order[i] = n_spills;
4281 spill_regs[n_spills++] = i;
4282 if (num_eliminable && ! df_regs_ever_live_p (i))
4283 something_changed = 1;
4284 df_set_regs_ever_live (i, true);
4285 }
4286 else
4287 spill_reg_order[i] = -1;
4288
4289 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4290 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4291 {
4292 /* Record the current hard register the pseudo is allocated to
4293 in pseudo_previous_regs so we avoid reallocating it to the
4294 same hard reg in a later pass. */
4295 gcc_assert (reg_renumber[i] >= 0);
4296
4297 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4298 /* Mark it as no longer having a hard register home. */
4299 reg_renumber[i] = -1;
4300 if (ira_conflicts_p)
4301 /* Inform IRA about the change. */
4302 ira_mark_allocation_change (i);
4303 /* We will need to scan everything again. */
4304 something_changed = 1;
4305 }
4306
4307 /* Retry global register allocation if possible. */
4308 if (global && ira_conflicts_p)
4309 {
4310 unsigned int n;
4311
4312 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4313 /* For every insn that needs reloads, set the registers used as spill
4314 regs in pseudo_forbidden_regs for every pseudo live across the
4315 insn. */
4316 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4317 {
4318 EXECUTE_IF_SET_IN_REG_SET
4319 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4320 {
4321 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4322 chain->used_spill_regs);
4323 }
4324 EXECUTE_IF_SET_IN_REG_SET
4325 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4326 {
4327 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4328 chain->used_spill_regs);
4329 }
4330 }
4331
4332 /* Retry allocating the pseudos spilled in IRA and the
4333 reload. For each reg, merge the various reg sets that
4334 indicate which hard regs can't be used, and call
4335 ira_reassign_pseudos. */
4336 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4337 if (reg_old_renumber[i] != reg_renumber[i])
4338 {
4339 if (reg_renumber[i] < 0)
4340 temp_pseudo_reg_arr[n++] = i;
4341 else
4342 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4343 }
4344 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4345 bad_spill_regs_global,
4346 pseudo_forbidden_regs, pseudo_previous_regs,
4347 &spilled_pseudos))
4348 something_changed = 1;
4349 }
4350 /* Fix up the register information in the insn chain.
4351 This involves deleting those of the spilled pseudos which did not get
4352 a new hard register home from the live_{before,after} sets. */
4353 for (chain = reload_insn_chain; chain; chain = chain->next)
4354 {
4355 HARD_REG_SET used_by_pseudos;
4356 HARD_REG_SET used_by_pseudos2;
4357
4358 if (! ira_conflicts_p)
4359 {
4360 /* Don't do it for IRA because IRA and the reload still can
4361 assign hard registers to the spilled pseudos on next
4362 reload iterations. */
4363 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4364 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4365 }
4366 /* Mark any unallocated hard regs as available for spills. That
4367 makes inheritance work somewhat better. */
4368 if (chain->need_reload)
4369 {
4370 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4371 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4372 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4373
4374 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4375 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4376 /* Value of chain->used_spill_regs from previous iteration
4377 may be not included in the value calculated here because
4378 of possible removing caller-saves insns (see function
4379 delete_caller_save_insns. */
4380 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4381 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4382 }
4383 }
4384
4385 CLEAR_REG_SET (&changed_allocation_pseudos);
4386 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4387 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4388 {
4389 int regno = reg_renumber[i];
4390 if (reg_old_renumber[i] == regno)
4391 continue;
4392
4393 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4394
4395 alter_reg (i, reg_old_renumber[i], false);
4396 reg_old_renumber[i] = regno;
4397 if (dump_file)
4398 {
4399 if (regno == -1)
4400 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4401 else
4402 fprintf (dump_file, " Register %d now in %d.\n\n",
4403 i, reg_renumber[i]);
4404 }
4405 }
4406
4407 return something_changed;
4408 }
4409 \f
4410 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4411
4412 static void
4413 scan_paradoxical_subregs (rtx x)
4414 {
4415 int i;
4416 const char *fmt;
4417 enum rtx_code code = GET_CODE (x);
4418
4419 switch (code)
4420 {
4421 case REG:
4422 case CONST:
4423 case SYMBOL_REF:
4424 case LABEL_REF:
4425 CASE_CONST_ANY:
4426 case CC0:
4427 case PC:
4428 case USE:
4429 case CLOBBER:
4430 return;
4431
4432 case SUBREG:
4433 if (REG_P (SUBREG_REG (x))
4434 && (GET_MODE_SIZE (GET_MODE (x))
4435 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4436 {
4437 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4438 = GET_MODE_SIZE (GET_MODE (x));
4439 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4440 }
4441 return;
4442
4443 default:
4444 break;
4445 }
4446
4447 fmt = GET_RTX_FORMAT (code);
4448 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4449 {
4450 if (fmt[i] == 'e')
4451 scan_paradoxical_subregs (XEXP (x, i));
4452 else if (fmt[i] == 'E')
4453 {
4454 int j;
4455 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4456 scan_paradoxical_subregs (XVECEXP (x, i, j));
4457 }
4458 }
4459 }
4460
4461 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4462 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4463 and apply the corresponding narrowing subreg to *OTHER_PTR.
4464 Return true if the operands were changed, false otherwise. */
4465
4466 static bool
4467 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4468 {
4469 rtx op, inner, other, tem;
4470
4471 op = *op_ptr;
4472 if (!paradoxical_subreg_p (op))
4473 return false;
4474 inner = SUBREG_REG (op);
4475
4476 other = *other_ptr;
4477 tem = gen_lowpart_common (GET_MODE (inner), other);
4478 if (!tem)
4479 return false;
4480
4481 /* If the lowpart operation turned a hard register into a subreg,
4482 rather than simplifying it to another hard register, then the
4483 mode change cannot be properly represented. For example, OTHER
4484 might be valid in its current mode, but not in the new one. */
4485 if (GET_CODE (tem) == SUBREG
4486 && REG_P (other)
4487 && HARD_REGISTER_P (other))
4488 return false;
4489
4490 *op_ptr = inner;
4491 *other_ptr = tem;
4492 return true;
4493 }
4494 \f
4495 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4496 examine all of the reload insns between PREV and NEXT exclusive, and
4497 annotate all that may trap. */
4498
4499 static void
4500 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4501 {
4502 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4503 if (note == NULL)
4504 return;
4505 if (!insn_could_throw_p (insn))
4506 remove_note (insn, note);
4507 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4508 }
4509
4510 /* Reload pseudo-registers into hard regs around each insn as needed.
4511 Additional register load insns are output before the insn that needs it
4512 and perhaps store insns after insns that modify the reloaded pseudo reg.
4513
4514 reg_last_reload_reg and reg_reloaded_contents keep track of
4515 which registers are already available in reload registers.
4516 We update these for the reloads that we perform,
4517 as the insns are scanned. */
4518
4519 static void
4520 reload_as_needed (int live_known)
4521 {
4522 struct insn_chain *chain;
4523 #if AUTO_INC_DEC
4524 int i;
4525 #endif
4526 rtx_note *marker;
4527
4528 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4529 memset (spill_reg_store, 0, sizeof spill_reg_store);
4530 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4531 INIT_REG_SET (&reg_has_output_reload);
4532 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4533 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4534
4535 set_initial_elim_offsets ();
4536
4537 /* Generate a marker insn that we will move around. */
4538 marker = emit_note (NOTE_INSN_DELETED);
4539 unlink_insn_chain (marker, marker);
4540
4541 for (chain = reload_insn_chain; chain; chain = chain->next)
4542 {
4543 rtx_insn *prev = 0;
4544 rtx_insn *insn = chain->insn;
4545 rtx_insn *old_next = NEXT_INSN (insn);
4546 #if AUTO_INC_DEC
4547 rtx_insn *old_prev = PREV_INSN (insn);
4548 #endif
4549
4550 if (will_delete_init_insn_p (insn))
4551 continue;
4552
4553 /* If we pass a label, copy the offsets from the label information
4554 into the current offsets of each elimination. */
4555 if (LABEL_P (insn))
4556 set_offsets_for_label (insn);
4557
4558 else if (INSN_P (insn))
4559 {
4560 regset_head regs_to_forget;
4561 INIT_REG_SET (&regs_to_forget);
4562 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4563
4564 /* If this is a USE and CLOBBER of a MEM, ensure that any
4565 references to eliminable registers have been removed. */
4566
4567 if ((GET_CODE (PATTERN (insn)) == USE
4568 || GET_CODE (PATTERN (insn)) == CLOBBER)
4569 && MEM_P (XEXP (PATTERN (insn), 0)))
4570 XEXP (XEXP (PATTERN (insn), 0), 0)
4571 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4572 GET_MODE (XEXP (PATTERN (insn), 0)),
4573 NULL_RTX);
4574
4575 /* If we need to do register elimination processing, do so.
4576 This might delete the insn, in which case we are done. */
4577 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4578 {
4579 eliminate_regs_in_insn (insn, 1);
4580 if (NOTE_P (insn))
4581 {
4582 update_eliminable_offsets ();
4583 CLEAR_REG_SET (&regs_to_forget);
4584 continue;
4585 }
4586 }
4587
4588 /* If need_elim is nonzero but need_reload is zero, one might think
4589 that we could simply set n_reloads to 0. However, find_reloads
4590 could have done some manipulation of the insn (such as swapping
4591 commutative operands), and these manipulations are lost during
4592 the first pass for every insn that needs register elimination.
4593 So the actions of find_reloads must be redone here. */
4594
4595 if (! chain->need_elim && ! chain->need_reload
4596 && ! chain->need_operand_change)
4597 n_reloads = 0;
4598 /* First find the pseudo regs that must be reloaded for this insn.
4599 This info is returned in the tables reload_... (see reload.h).
4600 Also modify the body of INSN by substituting RELOAD
4601 rtx's for those pseudo regs. */
4602 else
4603 {
4604 CLEAR_REG_SET (&reg_has_output_reload);
4605 CLEAR_HARD_REG_SET (reg_is_output_reload);
4606
4607 find_reloads (insn, 1, spill_indirect_levels, live_known,
4608 spill_reg_order);
4609 }
4610
4611 if (n_reloads > 0)
4612 {
4613 rtx_insn *next = NEXT_INSN (insn);
4614
4615 /* ??? PREV can get deleted by reload inheritance.
4616 Work around this by emitting a marker note. */
4617 prev = PREV_INSN (insn);
4618 reorder_insns_nobb (marker, marker, prev);
4619
4620 /* Now compute which reload regs to reload them into. Perhaps
4621 reusing reload regs from previous insns, or else output
4622 load insns to reload them. Maybe output store insns too.
4623 Record the choices of reload reg in reload_reg_rtx. */
4624 choose_reload_regs (chain);
4625
4626 /* Generate the insns to reload operands into or out of
4627 their reload regs. */
4628 emit_reload_insns (chain);
4629
4630 /* Substitute the chosen reload regs from reload_reg_rtx
4631 into the insn's body (or perhaps into the bodies of other
4632 load and store insn that we just made for reloading
4633 and that we moved the structure into). */
4634 subst_reloads (insn);
4635
4636 prev = PREV_INSN (marker);
4637 unlink_insn_chain (marker, marker);
4638
4639 /* Adjust the exception region notes for loads and stores. */
4640 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4641 fixup_eh_region_note (insn, prev, next);
4642
4643 /* Adjust the location of REG_ARGS_SIZE. */
4644 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4645 if (p)
4646 {
4647 remove_note (insn, p);
4648 fixup_args_size_notes (prev, PREV_INSN (next),
4649 INTVAL (XEXP (p, 0)));
4650 }
4651
4652 /* If this was an ASM, make sure that all the reload insns
4653 we have generated are valid. If not, give an error
4654 and delete them. */
4655 if (asm_noperands (PATTERN (insn)) >= 0)
4656 for (rtx_insn *p = NEXT_INSN (prev);
4657 p != next;
4658 p = NEXT_INSN (p))
4659 if (p != insn && INSN_P (p)
4660 && GET_CODE (PATTERN (p)) != USE
4661 && (recog_memoized (p) < 0
4662 || (extract_insn (p),
4663 !(constrain_operands (1,
4664 get_enabled_alternatives (p))))))
4665 {
4666 error_for_asm (insn,
4667 "%<asm%> operand requires "
4668 "impossible reload");
4669 delete_insn (p);
4670 }
4671 }
4672
4673 if (num_eliminable && chain->need_elim)
4674 update_eliminable_offsets ();
4675
4676 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4677 is no longer validly lying around to save a future reload.
4678 Note that this does not detect pseudos that were reloaded
4679 for this insn in order to be stored in
4680 (obeying register constraints). That is correct; such reload
4681 registers ARE still valid. */
4682 forget_marked_reloads (&regs_to_forget);
4683 CLEAR_REG_SET (&regs_to_forget);
4684
4685 /* There may have been CLOBBER insns placed after INSN. So scan
4686 between INSN and NEXT and use them to forget old reloads. */
4687 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4688 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4689 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4690
4691 #if AUTO_INC_DEC
4692 /* Likewise for regs altered by auto-increment in this insn.
4693 REG_INC notes have been changed by reloading:
4694 find_reloads_address_1 records substitutions for them,
4695 which have been performed by subst_reloads above. */
4696 for (i = n_reloads - 1; i >= 0; i--)
4697 {
4698 rtx in_reg = rld[i].in_reg;
4699 if (in_reg)
4700 {
4701 enum rtx_code code = GET_CODE (in_reg);
4702 /* PRE_INC / PRE_DEC will have the reload register ending up
4703 with the same value as the stack slot, but that doesn't
4704 hold true for POST_INC / POST_DEC. Either we have to
4705 convert the memory access to a true POST_INC / POST_DEC,
4706 or we can't use the reload register for inheritance. */
4707 if ((code == POST_INC || code == POST_DEC)
4708 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4709 REGNO (rld[i].reg_rtx))
4710 /* Make sure it is the inc/dec pseudo, and not
4711 some other (e.g. output operand) pseudo. */
4712 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4713 == REGNO (XEXP (in_reg, 0))))
4714
4715 {
4716 rtx reload_reg = rld[i].reg_rtx;
4717 machine_mode mode = GET_MODE (reload_reg);
4718 int n = 0;
4719 rtx_insn *p;
4720
4721 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4722 {
4723 /* We really want to ignore REG_INC notes here, so
4724 use PATTERN (p) as argument to reg_set_p . */
4725 if (reg_set_p (reload_reg, PATTERN (p)))
4726 break;
4727 n = count_occurrences (PATTERN (p), reload_reg, 0);
4728 if (! n)
4729 continue;
4730 if (n == 1)
4731 {
4732 rtx replace_reg
4733 = gen_rtx_fmt_e (code, mode, reload_reg);
4734
4735 validate_replace_rtx_group (reload_reg,
4736 replace_reg, p);
4737 n = verify_changes (0);
4738
4739 /* We must also verify that the constraints
4740 are met after the replacement. Make sure
4741 extract_insn is only called for an insn
4742 where the replacements were found to be
4743 valid so far. */
4744 if (n)
4745 {
4746 extract_insn (p);
4747 n = constrain_operands (1,
4748 get_enabled_alternatives (p));
4749 }
4750
4751 /* If the constraints were not met, then
4752 undo the replacement, else confirm it. */
4753 if (!n)
4754 cancel_changes (0);
4755 else
4756 confirm_change_group ();
4757 }
4758 break;
4759 }
4760 if (n == 1)
4761 {
4762 add_reg_note (p, REG_INC, reload_reg);
4763 /* Mark this as having an output reload so that the
4764 REG_INC processing code below won't invalidate
4765 the reload for inheritance. */
4766 SET_HARD_REG_BIT (reg_is_output_reload,
4767 REGNO (reload_reg));
4768 SET_REGNO_REG_SET (&reg_has_output_reload,
4769 REGNO (XEXP (in_reg, 0)));
4770 }
4771 else
4772 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4773 NULL);
4774 }
4775 else if ((code == PRE_INC || code == PRE_DEC)
4776 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4777 REGNO (rld[i].reg_rtx))
4778 /* Make sure it is the inc/dec pseudo, and not
4779 some other (e.g. output operand) pseudo. */
4780 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4781 == REGNO (XEXP (in_reg, 0))))
4782 {
4783 SET_HARD_REG_BIT (reg_is_output_reload,
4784 REGNO (rld[i].reg_rtx));
4785 SET_REGNO_REG_SET (&reg_has_output_reload,
4786 REGNO (XEXP (in_reg, 0)));
4787 }
4788 else if (code == PRE_INC || code == PRE_DEC
4789 || code == POST_INC || code == POST_DEC)
4790 {
4791 int in_regno = REGNO (XEXP (in_reg, 0));
4792
4793 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4794 {
4795 int in_hard_regno;
4796 bool forget_p = true;
4797
4798 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4799 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4800 in_hard_regno))
4801 {
4802 for (rtx_insn *x = (old_prev ?
4803 NEXT_INSN (old_prev) : insn);
4804 x != old_next;
4805 x = NEXT_INSN (x))
4806 if (x == reg_reloaded_insn[in_hard_regno])
4807 {
4808 forget_p = false;
4809 break;
4810 }
4811 }
4812 /* If for some reasons, we didn't set up
4813 reg_last_reload_reg in this insn,
4814 invalidate inheritance from previous
4815 insns for the incremented/decremented
4816 register. Such registers will be not in
4817 reg_has_output_reload. Invalidate it
4818 also if the corresponding element in
4819 reg_reloaded_insn is also
4820 invalidated. */
4821 if (forget_p)
4822 forget_old_reloads_1 (XEXP (in_reg, 0),
4823 NULL_RTX, NULL);
4824 }
4825 }
4826 }
4827 }
4828 /* If a pseudo that got a hard register is auto-incremented,
4829 we must purge records of copying it into pseudos without
4830 hard registers. */
4831 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4832 if (REG_NOTE_KIND (x) == REG_INC)
4833 {
4834 /* See if this pseudo reg was reloaded in this insn.
4835 If so, its last-reload info is still valid
4836 because it is based on this insn's reload. */
4837 for (i = 0; i < n_reloads; i++)
4838 if (rld[i].out == XEXP (x, 0))
4839 break;
4840
4841 if (i == n_reloads)
4842 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4843 }
4844 #endif
4845 }
4846 /* A reload reg's contents are unknown after a label. */
4847 if (LABEL_P (insn))
4848 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4849
4850 /* Don't assume a reload reg is still good after a call insn
4851 if it is a call-used reg, or if it contains a value that will
4852 be partially clobbered by the call. */
4853 else if (CALL_P (insn))
4854 {
4855 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4856 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4857
4858 /* If this is a call to a setjmp-type function, we must not
4859 reuse any reload reg contents across the call; that will
4860 just be clobbered by other uses of the register in later
4861 code, before the longjmp. */
4862 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4863 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4864 }
4865 }
4866
4867 /* Clean up. */
4868 free (reg_last_reload_reg);
4869 CLEAR_REG_SET (&reg_has_output_reload);
4870 }
4871
4872 /* Discard all record of any value reloaded from X,
4873 or reloaded in X from someplace else;
4874 unless X is an output reload reg of the current insn.
4875
4876 X may be a hard reg (the reload reg)
4877 or it may be a pseudo reg that was reloaded from.
4878
4879 When DATA is non-NULL just mark the registers in regset
4880 to be forgotten later. */
4881
4882 static void
4883 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4884 void *data)
4885 {
4886 unsigned int regno;
4887 unsigned int nr;
4888 regset regs = (regset) data;
4889
4890 /* note_stores does give us subregs of hard regs,
4891 subreg_regno_offset requires a hard reg. */
4892 while (GET_CODE (x) == SUBREG)
4893 {
4894 /* We ignore the subreg offset when calculating the regno,
4895 because we are using the entire underlying hard register
4896 below. */
4897 x = SUBREG_REG (x);
4898 }
4899
4900 if (!REG_P (x))
4901 return;
4902
4903 regno = REGNO (x);
4904
4905 if (regno >= FIRST_PSEUDO_REGISTER)
4906 nr = 1;
4907 else
4908 {
4909 unsigned int i;
4910
4911 nr = hard_regno_nregs[regno][GET_MODE (x)];
4912 /* Storing into a spilled-reg invalidates its contents.
4913 This can happen if a block-local pseudo is allocated to that reg
4914 and it wasn't spilled because this block's total need is 0.
4915 Then some insn might have an optional reload and use this reg. */
4916 if (!regs)
4917 for (i = 0; i < nr; i++)
4918 /* But don't do this if the reg actually serves as an output
4919 reload reg in the current instruction. */
4920 if (n_reloads == 0
4921 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4922 {
4923 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4924 spill_reg_store[regno + i] = 0;
4925 }
4926 }
4927
4928 if (regs)
4929 while (nr-- > 0)
4930 SET_REGNO_REG_SET (regs, regno + nr);
4931 else
4932 {
4933 /* Since value of X has changed,
4934 forget any value previously copied from it. */
4935
4936 while (nr-- > 0)
4937 /* But don't forget a copy if this is the output reload
4938 that establishes the copy's validity. */
4939 if (n_reloads == 0
4940 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4941 reg_last_reload_reg[regno + nr] = 0;
4942 }
4943 }
4944
4945 /* Forget the reloads marked in regset by previous function. */
4946 static void
4947 forget_marked_reloads (regset regs)
4948 {
4949 unsigned int reg;
4950 reg_set_iterator rsi;
4951 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4952 {
4953 if (reg < FIRST_PSEUDO_REGISTER
4954 /* But don't do this if the reg actually serves as an output
4955 reload reg in the current instruction. */
4956 && (n_reloads == 0
4957 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4958 {
4959 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4960 spill_reg_store[reg] = 0;
4961 }
4962 if (n_reloads == 0
4963 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4964 reg_last_reload_reg[reg] = 0;
4965 }
4966 }
4967 \f
4968 /* The following HARD_REG_SETs indicate when each hard register is
4969 used for a reload of various parts of the current insn. */
4970
4971 /* If reg is unavailable for all reloads. */
4972 static HARD_REG_SET reload_reg_unavailable;
4973 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4974 static HARD_REG_SET reload_reg_used;
4975 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4976 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4977 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4986 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4987 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4988 static HARD_REG_SET reload_reg_used_in_op_addr;
4989 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4990 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4991 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4992 static HARD_REG_SET reload_reg_used_in_insn;
4993 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4994 static HARD_REG_SET reload_reg_used_in_other_addr;
4995
4996 /* If reg is in use as a reload reg for any sort of reload. */
4997 static HARD_REG_SET reload_reg_used_at_all;
4998
4999 /* If reg is use as an inherited reload. We just mark the first register
5000 in the group. */
5001 static HARD_REG_SET reload_reg_used_for_inherit;
5002
5003 /* Records which hard regs are used in any way, either as explicit use or
5004 by being allocated to a pseudo during any point of the current insn. */
5005 static HARD_REG_SET reg_used_in_insn;
5006
5007 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5008 TYPE. MODE is used to indicate how many consecutive regs are
5009 actually used. */
5010
5011 static void
5012 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5013 machine_mode mode)
5014 {
5015 switch (type)
5016 {
5017 case RELOAD_OTHER:
5018 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5019 break;
5020
5021 case RELOAD_FOR_INPUT_ADDRESS:
5022 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5023 break;
5024
5025 case RELOAD_FOR_INPADDR_ADDRESS:
5026 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5027 break;
5028
5029 case RELOAD_FOR_OUTPUT_ADDRESS:
5030 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5031 break;
5032
5033 case RELOAD_FOR_OUTADDR_ADDRESS:
5034 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5035 break;
5036
5037 case RELOAD_FOR_OPERAND_ADDRESS:
5038 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5039 break;
5040
5041 case RELOAD_FOR_OPADDR_ADDR:
5042 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5043 break;
5044
5045 case RELOAD_FOR_OTHER_ADDRESS:
5046 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5047 break;
5048
5049 case RELOAD_FOR_INPUT:
5050 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5051 break;
5052
5053 case RELOAD_FOR_OUTPUT:
5054 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5055 break;
5056
5057 case RELOAD_FOR_INSN:
5058 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5059 break;
5060 }
5061
5062 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5063 }
5064
5065 /* Similarly, but show REGNO is no longer in use for a reload. */
5066
5067 static void
5068 clear_reload_reg_in_use (unsigned int regno, int opnum,
5069 enum reload_type type, machine_mode mode)
5070 {
5071 unsigned int nregs = hard_regno_nregs[regno][mode];
5072 unsigned int start_regno, end_regno, r;
5073 int i;
5074 /* A complication is that for some reload types, inheritance might
5075 allow multiple reloads of the same types to share a reload register.
5076 We set check_opnum if we have to check only reloads with the same
5077 operand number, and check_any if we have to check all reloads. */
5078 int check_opnum = 0;
5079 int check_any = 0;
5080 HARD_REG_SET *used_in_set;
5081
5082 switch (type)
5083 {
5084 case RELOAD_OTHER:
5085 used_in_set = &reload_reg_used;
5086 break;
5087
5088 case RELOAD_FOR_INPUT_ADDRESS:
5089 used_in_set = &reload_reg_used_in_input_addr[opnum];
5090 break;
5091
5092 case RELOAD_FOR_INPADDR_ADDRESS:
5093 check_opnum = 1;
5094 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5095 break;
5096
5097 case RELOAD_FOR_OUTPUT_ADDRESS:
5098 used_in_set = &reload_reg_used_in_output_addr[opnum];
5099 break;
5100
5101 case RELOAD_FOR_OUTADDR_ADDRESS:
5102 check_opnum = 1;
5103 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5104 break;
5105
5106 case RELOAD_FOR_OPERAND_ADDRESS:
5107 used_in_set = &reload_reg_used_in_op_addr;
5108 break;
5109
5110 case RELOAD_FOR_OPADDR_ADDR:
5111 check_any = 1;
5112 used_in_set = &reload_reg_used_in_op_addr_reload;
5113 break;
5114
5115 case RELOAD_FOR_OTHER_ADDRESS:
5116 used_in_set = &reload_reg_used_in_other_addr;
5117 check_any = 1;
5118 break;
5119
5120 case RELOAD_FOR_INPUT:
5121 used_in_set = &reload_reg_used_in_input[opnum];
5122 break;
5123
5124 case RELOAD_FOR_OUTPUT:
5125 used_in_set = &reload_reg_used_in_output[opnum];
5126 break;
5127
5128 case RELOAD_FOR_INSN:
5129 used_in_set = &reload_reg_used_in_insn;
5130 break;
5131 default:
5132 gcc_unreachable ();
5133 }
5134 /* We resolve conflicts with remaining reloads of the same type by
5135 excluding the intervals of reload registers by them from the
5136 interval of freed reload registers. Since we only keep track of
5137 one set of interval bounds, we might have to exclude somewhat
5138 more than what would be necessary if we used a HARD_REG_SET here.
5139 But this should only happen very infrequently, so there should
5140 be no reason to worry about it. */
5141
5142 start_regno = regno;
5143 end_regno = regno + nregs;
5144 if (check_opnum || check_any)
5145 {
5146 for (i = n_reloads - 1; i >= 0; i--)
5147 {
5148 if (rld[i].when_needed == type
5149 && (check_any || rld[i].opnum == opnum)
5150 && rld[i].reg_rtx)
5151 {
5152 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5153 unsigned int conflict_end
5154 = end_hard_regno (rld[i].mode, conflict_start);
5155
5156 /* If there is an overlap with the first to-be-freed register,
5157 adjust the interval start. */
5158 if (conflict_start <= start_regno && conflict_end > start_regno)
5159 start_regno = conflict_end;
5160 /* Otherwise, if there is a conflict with one of the other
5161 to-be-freed registers, adjust the interval end. */
5162 if (conflict_start > start_regno && conflict_start < end_regno)
5163 end_regno = conflict_start;
5164 }
5165 }
5166 }
5167
5168 for (r = start_regno; r < end_regno; r++)
5169 CLEAR_HARD_REG_BIT (*used_in_set, r);
5170 }
5171
5172 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5173 specified by OPNUM and TYPE. */
5174
5175 static int
5176 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5177 {
5178 int i;
5179
5180 /* In use for a RELOAD_OTHER means it's not available for anything. */
5181 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5182 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5183 return 0;
5184
5185 switch (type)
5186 {
5187 case RELOAD_OTHER:
5188 /* In use for anything means we can't use it for RELOAD_OTHER. */
5189 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5191 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5192 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5193 return 0;
5194
5195 for (i = 0; i < reload_n_operands; i++)
5196 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5201 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5202 return 0;
5203
5204 return 1;
5205
5206 case RELOAD_FOR_INPUT:
5207 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5208 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5209 return 0;
5210
5211 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5212 return 0;
5213
5214 /* If it is used for some other input, can't use it. */
5215 for (i = 0; i < reload_n_operands; i++)
5216 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5217 return 0;
5218
5219 /* If it is used in a later operand's address, can't use it. */
5220 for (i = opnum + 1; i < reload_n_operands; i++)
5221 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5223 return 0;
5224
5225 return 1;
5226
5227 case RELOAD_FOR_INPUT_ADDRESS:
5228 /* Can't use a register if it is used for an input address for this
5229 operand or used as an input in an earlier one. */
5230 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5231 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5232 return 0;
5233
5234 for (i = 0; i < opnum; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5236 return 0;
5237
5238 return 1;
5239
5240 case RELOAD_FOR_INPADDR_ADDRESS:
5241 /* Can't use a register if it is used for an input address
5242 for this operand or used as an input in an earlier
5243 one. */
5244 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5245 return 0;
5246
5247 for (i = 0; i < opnum; i++)
5248 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5249 return 0;
5250
5251 return 1;
5252
5253 case RELOAD_FOR_OUTPUT_ADDRESS:
5254 /* Can't use a register if it is used for an output address for this
5255 operand or used as an output in this or a later operand. Note
5256 that multiple output operands are emitted in reverse order, so
5257 the conflicting ones are those with lower indices. */
5258 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5259 return 0;
5260
5261 for (i = 0; i <= opnum; i++)
5262 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5263 return 0;
5264
5265 return 1;
5266
5267 case RELOAD_FOR_OUTADDR_ADDRESS:
5268 /* Can't use a register if it is used for an output address
5269 for this operand or used as an output in this or a
5270 later operand. Note that multiple output operands are
5271 emitted in reverse order, so the conflicting ones are
5272 those with lower indices. */
5273 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5274 return 0;
5275
5276 for (i = 0; i <= opnum; i++)
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5278 return 0;
5279
5280 return 1;
5281
5282 case RELOAD_FOR_OPERAND_ADDRESS:
5283 for (i = 0; i < reload_n_operands; i++)
5284 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5285 return 0;
5286
5287 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5288 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5289
5290 case RELOAD_FOR_OPADDR_ADDR:
5291 for (i = 0; i < reload_n_operands; i++)
5292 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5293 return 0;
5294
5295 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5296
5297 case RELOAD_FOR_OUTPUT:
5298 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5299 outputs, or an operand address for this or an earlier output.
5300 Note that multiple output operands are emitted in reverse order,
5301 so the conflicting ones are those with higher indices. */
5302 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5303 return 0;
5304
5305 for (i = 0; i < reload_n_operands; i++)
5306 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5307 return 0;
5308
5309 for (i = opnum; i < reload_n_operands; i++)
5310 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5311 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5312 return 0;
5313
5314 return 1;
5315
5316 case RELOAD_FOR_INSN:
5317 for (i = 0; i < reload_n_operands; i++)
5318 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5319 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5320 return 0;
5321
5322 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5323 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5324
5325 case RELOAD_FOR_OTHER_ADDRESS:
5326 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5327
5328 default:
5329 gcc_unreachable ();
5330 }
5331 }
5332
5333 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5334 the number RELOADNUM, is still available in REGNO at the end of the insn.
5335
5336 We can assume that the reload reg was already tested for availability
5337 at the time it is needed, and we should not check this again,
5338 in case the reg has already been marked in use. */
5339
5340 static int
5341 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5342 {
5343 int opnum = rld[reloadnum].opnum;
5344 enum reload_type type = rld[reloadnum].when_needed;
5345 int i;
5346
5347 /* See if there is a reload with the same type for this operand, using
5348 the same register. This case is not handled by the code below. */
5349 for (i = reloadnum + 1; i < n_reloads; i++)
5350 {
5351 rtx reg;
5352 int nregs;
5353
5354 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5355 continue;
5356 reg = rld[i].reg_rtx;
5357 if (reg == NULL_RTX)
5358 continue;
5359 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5360 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5361 return 0;
5362 }
5363
5364 switch (type)
5365 {
5366 case RELOAD_OTHER:
5367 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5368 its value must reach the end. */
5369 return 1;
5370
5371 /* If this use is for part of the insn,
5372 its value reaches if no subsequent part uses the same register.
5373 Just like the above function, don't try to do this with lots
5374 of fallthroughs. */
5375
5376 case RELOAD_FOR_OTHER_ADDRESS:
5377 /* Here we check for everything else, since these don't conflict
5378 with anything else and everything comes later. */
5379
5380 for (i = 0; i < reload_n_operands; i++)
5381 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5386 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5387 return 0;
5388
5389 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5390 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5391 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5392 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5393
5394 case RELOAD_FOR_INPUT_ADDRESS:
5395 case RELOAD_FOR_INPADDR_ADDRESS:
5396 /* Similar, except that we check only for this and subsequent inputs
5397 and the address of only subsequent inputs and we do not need
5398 to check for RELOAD_OTHER objects since they are known not to
5399 conflict. */
5400
5401 for (i = opnum; i < reload_n_operands; i++)
5402 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5403 return 0;
5404
5405 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5406 could be killed if the register is also used by reload with type
5407 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5408 if (type == RELOAD_FOR_INPADDR_ADDRESS
5409 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5410 return 0;
5411
5412 for (i = opnum + 1; i < reload_n_operands; i++)
5413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5414 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5415 return 0;
5416
5417 for (i = 0; i < reload_n_operands; i++)
5418 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5419 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5420 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5421 return 0;
5422
5423 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5424 return 0;
5425
5426 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5427 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5428 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5429
5430 case RELOAD_FOR_INPUT:
5431 /* Similar to input address, except we start at the next operand for
5432 both input and input address and we do not check for
5433 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5434 would conflict. */
5435
5436 for (i = opnum + 1; i < reload_n_operands; i++)
5437 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5438 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5439 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5440 return 0;
5441
5442 /* ... fall through ... */
5443
5444 case RELOAD_FOR_OPERAND_ADDRESS:
5445 /* Check outputs and their addresses. */
5446
5447 for (i = 0; i < reload_n_operands; i++)
5448 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5449 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5451 return 0;
5452
5453 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5454
5455 case RELOAD_FOR_OPADDR_ADDR:
5456 for (i = 0; i < reload_n_operands; i++)
5457 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5458 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5459 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5460 return 0;
5461
5462 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5463 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5464 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5465
5466 case RELOAD_FOR_INSN:
5467 /* These conflict with other outputs with RELOAD_OTHER. So
5468 we need only check for output addresses. */
5469
5470 opnum = reload_n_operands;
5471
5472 /* fall through */
5473
5474 case RELOAD_FOR_OUTPUT:
5475 case RELOAD_FOR_OUTPUT_ADDRESS:
5476 case RELOAD_FOR_OUTADDR_ADDRESS:
5477 /* We already know these can't conflict with a later output. So the
5478 only thing to check are later output addresses.
5479 Note that multiple output operands are emitted in reverse order,
5480 so the conflicting ones are those with lower indices. */
5481 for (i = 0; i < opnum; i++)
5482 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5483 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5484 return 0;
5485
5486 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5487 could be killed if the register is also used by reload with type
5488 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5489 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5490 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5491 return 0;
5492
5493 return 1;
5494
5495 default:
5496 gcc_unreachable ();
5497 }
5498 }
5499
5500 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5501 every register in REG. */
5502
5503 static bool
5504 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5505 {
5506 unsigned int i;
5507
5508 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5509 if (!reload_reg_reaches_end_p (i, reloadnum))
5510 return false;
5511 return true;
5512 }
5513 \f
5514
5515 /* Returns whether R1 and R2 are uniquely chained: the value of one
5516 is used by the other, and that value is not used by any other
5517 reload for this insn. This is used to partially undo the decision
5518 made in find_reloads when in the case of multiple
5519 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5520 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5521 reloads. This code tries to avoid the conflict created by that
5522 change. It might be cleaner to explicitly keep track of which
5523 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5524 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5525 this after the fact. */
5526 static bool
5527 reloads_unique_chain_p (int r1, int r2)
5528 {
5529 int i;
5530
5531 /* We only check input reloads. */
5532 if (! rld[r1].in || ! rld[r2].in)
5533 return false;
5534
5535 /* Avoid anything with output reloads. */
5536 if (rld[r1].out || rld[r2].out)
5537 return false;
5538
5539 /* "chained" means one reload is a component of the other reload,
5540 not the same as the other reload. */
5541 if (rld[r1].opnum != rld[r2].opnum
5542 || rtx_equal_p (rld[r1].in, rld[r2].in)
5543 || rld[r1].optional || rld[r2].optional
5544 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5545 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5546 return false;
5547
5548 /* The following loop assumes that r1 is the reload that feeds r2. */
5549 if (r1 > r2)
5550 std::swap (r1, r2);
5551
5552 for (i = 0; i < n_reloads; i ++)
5553 /* Look for input reloads that aren't our two */
5554 if (i != r1 && i != r2 && rld[i].in)
5555 {
5556 /* If our reload is mentioned at all, it isn't a simple chain. */
5557 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5558 return false;
5559 }
5560 return true;
5561 }
5562
5563 /* The recursive function change all occurrences of WHAT in *WHERE
5564 to REPL. */
5565 static void
5566 substitute (rtx *where, const_rtx what, rtx repl)
5567 {
5568 const char *fmt;
5569 int i;
5570 enum rtx_code code;
5571
5572 if (*where == 0)
5573 return;
5574
5575 if (*where == what || rtx_equal_p (*where, what))
5576 {
5577 /* Record the location of the changed rtx. */
5578 substitute_stack.safe_push (where);
5579 *where = repl;
5580 return;
5581 }
5582
5583 code = GET_CODE (*where);
5584 fmt = GET_RTX_FORMAT (code);
5585 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5586 {
5587 if (fmt[i] == 'E')
5588 {
5589 int j;
5590
5591 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5592 substitute (&XVECEXP (*where, i, j), what, repl);
5593 }
5594 else if (fmt[i] == 'e')
5595 substitute (&XEXP (*where, i), what, repl);
5596 }
5597 }
5598
5599 /* The function returns TRUE if chain of reload R1 and R2 (in any
5600 order) can be evaluated without usage of intermediate register for
5601 the reload containing another reload. It is important to see
5602 gen_reload to understand what the function is trying to do. As an
5603 example, let us have reload chain
5604
5605 r2: const
5606 r1: <something> + const
5607
5608 and reload R2 got reload reg HR. The function returns true if
5609 there is a correct insn HR = HR + <something>. Otherwise,
5610 gen_reload will use intermediate register (and this is the reload
5611 reg for R1) to reload <something>.
5612
5613 We need this function to find a conflict for chain reloads. In our
5614 example, if HR = HR + <something> is incorrect insn, then we cannot
5615 use HR as a reload register for R2. If we do use it then we get a
5616 wrong code:
5617
5618 HR = const
5619 HR = <something>
5620 HR = HR + HR
5621
5622 */
5623 static bool
5624 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5625 {
5626 /* Assume other cases in gen_reload are not possible for
5627 chain reloads or do need an intermediate hard registers. */
5628 bool result = true;
5629 int regno, code;
5630 rtx out, in;
5631 rtx_insn *insn;
5632 rtx_insn *last = get_last_insn ();
5633
5634 /* Make r2 a component of r1. */
5635 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5636 std::swap (r1, r2);
5637
5638 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5639 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5640 gcc_assert (regno >= 0);
5641 out = gen_rtx_REG (rld[r1].mode, regno);
5642 in = rld[r1].in;
5643 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5644
5645 /* If IN is a paradoxical SUBREG, remove it and try to put the
5646 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5647 strip_paradoxical_subreg (&in, &out);
5648
5649 if (GET_CODE (in) == PLUS
5650 && (REG_P (XEXP (in, 0))
5651 || GET_CODE (XEXP (in, 0)) == SUBREG
5652 || MEM_P (XEXP (in, 0)))
5653 && (REG_P (XEXP (in, 1))
5654 || GET_CODE (XEXP (in, 1)) == SUBREG
5655 || CONSTANT_P (XEXP (in, 1))
5656 || MEM_P (XEXP (in, 1))))
5657 {
5658 insn = emit_insn (gen_rtx_SET (out, in));
5659 code = recog_memoized (insn);
5660 result = false;
5661
5662 if (code >= 0)
5663 {
5664 extract_insn (insn);
5665 /* We want constrain operands to treat this insn strictly in
5666 its validity determination, i.e., the way it would after
5667 reload has completed. */
5668 result = constrain_operands (1, get_enabled_alternatives (insn));
5669 }
5670
5671 delete_insns_since (last);
5672 }
5673
5674 /* Restore the original value at each changed address within R1. */
5675 while (!substitute_stack.is_empty ())
5676 {
5677 rtx *where = substitute_stack.pop ();
5678 *where = rld[r2].in;
5679 }
5680
5681 return result;
5682 }
5683
5684 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5685 Return 0 otherwise.
5686
5687 This function uses the same algorithm as reload_reg_free_p above. */
5688
5689 static int
5690 reloads_conflict (int r1, int r2)
5691 {
5692 enum reload_type r1_type = rld[r1].when_needed;
5693 enum reload_type r2_type = rld[r2].when_needed;
5694 int r1_opnum = rld[r1].opnum;
5695 int r2_opnum = rld[r2].opnum;
5696
5697 /* RELOAD_OTHER conflicts with everything. */
5698 if (r2_type == RELOAD_OTHER)
5699 return 1;
5700
5701 /* Otherwise, check conflicts differently for each type. */
5702
5703 switch (r1_type)
5704 {
5705 case RELOAD_FOR_INPUT:
5706 return (r2_type == RELOAD_FOR_INSN
5707 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5708 || r2_type == RELOAD_FOR_OPADDR_ADDR
5709 || r2_type == RELOAD_FOR_INPUT
5710 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5711 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5712 && r2_opnum > r1_opnum));
5713
5714 case RELOAD_FOR_INPUT_ADDRESS:
5715 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5716 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5717
5718 case RELOAD_FOR_INPADDR_ADDRESS:
5719 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5720 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5721
5722 case RELOAD_FOR_OUTPUT_ADDRESS:
5723 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5724 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5725
5726 case RELOAD_FOR_OUTADDR_ADDRESS:
5727 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5728 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5729
5730 case RELOAD_FOR_OPERAND_ADDRESS:
5731 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5732 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5733 && (!reloads_unique_chain_p (r1, r2)
5734 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5735
5736 case RELOAD_FOR_OPADDR_ADDR:
5737 return (r2_type == RELOAD_FOR_INPUT
5738 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5739
5740 case RELOAD_FOR_OUTPUT:
5741 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5742 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5743 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5744 && r2_opnum >= r1_opnum));
5745
5746 case RELOAD_FOR_INSN:
5747 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5748 || r2_type == RELOAD_FOR_INSN
5749 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5750
5751 case RELOAD_FOR_OTHER_ADDRESS:
5752 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5753
5754 case RELOAD_OTHER:
5755 return 1;
5756
5757 default:
5758 gcc_unreachable ();
5759 }
5760 }
5761 \f
5762 /* Indexed by reload number, 1 if incoming value
5763 inherited from previous insns. */
5764 static char reload_inherited[MAX_RELOADS];
5765
5766 /* For an inherited reload, this is the insn the reload was inherited from,
5767 if we know it. Otherwise, this is 0. */
5768 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5769
5770 /* If nonzero, this is a place to get the value of the reload,
5771 rather than using reload_in. */
5772 static rtx reload_override_in[MAX_RELOADS];
5773
5774 /* For each reload, the hard register number of the register used,
5775 or -1 if we did not need a register for this reload. */
5776 static int reload_spill_index[MAX_RELOADS];
5777
5778 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5779 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5780
5781 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5782 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5783
5784 /* Subroutine of free_for_value_p, used to check a single register.
5785 START_REGNO is the starting regno of the full reload register
5786 (possibly comprising multiple hard registers) that we are considering. */
5787
5788 static int
5789 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5790 enum reload_type type, rtx value, rtx out,
5791 int reloadnum, int ignore_address_reloads)
5792 {
5793 int time1;
5794 /* Set if we see an input reload that must not share its reload register
5795 with any new earlyclobber, but might otherwise share the reload
5796 register with an output or input-output reload. */
5797 int check_earlyclobber = 0;
5798 int i;
5799 int copy = 0;
5800
5801 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5802 return 0;
5803
5804 if (out == const0_rtx)
5805 {
5806 copy = 1;
5807 out = NULL_RTX;
5808 }
5809
5810 /* We use some pseudo 'time' value to check if the lifetimes of the
5811 new register use would overlap with the one of a previous reload
5812 that is not read-only or uses a different value.
5813 The 'time' used doesn't have to be linear in any shape or form, just
5814 monotonic.
5815 Some reload types use different 'buckets' for each operand.
5816 So there are MAX_RECOG_OPERANDS different time values for each
5817 such reload type.
5818 We compute TIME1 as the time when the register for the prospective
5819 new reload ceases to be live, and TIME2 for each existing
5820 reload as the time when that the reload register of that reload
5821 becomes live.
5822 Where there is little to be gained by exact lifetime calculations,
5823 we just make conservative assumptions, i.e. a longer lifetime;
5824 this is done in the 'default:' cases. */
5825 switch (type)
5826 {
5827 case RELOAD_FOR_OTHER_ADDRESS:
5828 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5829 time1 = copy ? 0 : 1;
5830 break;
5831 case RELOAD_OTHER:
5832 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5833 break;
5834 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5835 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5836 respectively, to the time values for these, we get distinct time
5837 values. To get distinct time values for each operand, we have to
5838 multiply opnum by at least three. We round that up to four because
5839 multiply by four is often cheaper. */
5840 case RELOAD_FOR_INPADDR_ADDRESS:
5841 time1 = opnum * 4 + 2;
5842 break;
5843 case RELOAD_FOR_INPUT_ADDRESS:
5844 time1 = opnum * 4 + 3;
5845 break;
5846 case RELOAD_FOR_INPUT:
5847 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5848 executes (inclusive). */
5849 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5850 break;
5851 case RELOAD_FOR_OPADDR_ADDR:
5852 /* opnum * 4 + 4
5853 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5854 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5855 break;
5856 case RELOAD_FOR_OPERAND_ADDRESS:
5857 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5858 is executed. */
5859 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5860 break;
5861 case RELOAD_FOR_OUTADDR_ADDRESS:
5862 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5863 break;
5864 case RELOAD_FOR_OUTPUT_ADDRESS:
5865 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5866 break;
5867 default:
5868 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5869 }
5870
5871 for (i = 0; i < n_reloads; i++)
5872 {
5873 rtx reg = rld[i].reg_rtx;
5874 if (reg && REG_P (reg)
5875 && ((unsigned) regno - true_regnum (reg)
5876 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5877 && i != reloadnum)
5878 {
5879 rtx other_input = rld[i].in;
5880
5881 /* If the other reload loads the same input value, that
5882 will not cause a conflict only if it's loading it into
5883 the same register. */
5884 if (true_regnum (reg) != start_regno)
5885 other_input = NULL_RTX;
5886 if (! other_input || ! rtx_equal_p (other_input, value)
5887 || rld[i].out || out)
5888 {
5889 int time2;
5890 switch (rld[i].when_needed)
5891 {
5892 case RELOAD_FOR_OTHER_ADDRESS:
5893 time2 = 0;
5894 break;
5895 case RELOAD_FOR_INPADDR_ADDRESS:
5896 /* find_reloads makes sure that a
5897 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5898 by at most one - the first -
5899 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5900 address reload is inherited, the address address reload
5901 goes away, so we can ignore this conflict. */
5902 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5903 && ignore_address_reloads
5904 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5905 Then the address address is still needed to store
5906 back the new address. */
5907 && ! rld[reloadnum].out)
5908 continue;
5909 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5910 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5911 reloads go away. */
5912 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5913 && ignore_address_reloads
5914 /* Unless we are reloading an auto_inc expression. */
5915 && ! rld[reloadnum].out)
5916 continue;
5917 time2 = rld[i].opnum * 4 + 2;
5918 break;
5919 case RELOAD_FOR_INPUT_ADDRESS:
5920 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5921 && ignore_address_reloads
5922 && ! rld[reloadnum].out)
5923 continue;
5924 time2 = rld[i].opnum * 4 + 3;
5925 break;
5926 case RELOAD_FOR_INPUT:
5927 time2 = rld[i].opnum * 4 + 4;
5928 check_earlyclobber = 1;
5929 break;
5930 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5931 == MAX_RECOG_OPERAND * 4 */
5932 case RELOAD_FOR_OPADDR_ADDR:
5933 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5934 && ignore_address_reloads
5935 && ! rld[reloadnum].out)
5936 continue;
5937 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5938 break;
5939 case RELOAD_FOR_OPERAND_ADDRESS:
5940 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5941 check_earlyclobber = 1;
5942 break;
5943 case RELOAD_FOR_INSN:
5944 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5945 break;
5946 case RELOAD_FOR_OUTPUT:
5947 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5948 instruction is executed. */
5949 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5950 break;
5951 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5952 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5953 value. */
5954 case RELOAD_FOR_OUTADDR_ADDRESS:
5955 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5956 && ignore_address_reloads
5957 && ! rld[reloadnum].out)
5958 continue;
5959 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5960 break;
5961 case RELOAD_FOR_OUTPUT_ADDRESS:
5962 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5963 break;
5964 case RELOAD_OTHER:
5965 /* If there is no conflict in the input part, handle this
5966 like an output reload. */
5967 if (! rld[i].in || rtx_equal_p (other_input, value))
5968 {
5969 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5970 /* Earlyclobbered outputs must conflict with inputs. */
5971 if (earlyclobber_operand_p (rld[i].out))
5972 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5973
5974 break;
5975 }
5976 time2 = 1;
5977 /* RELOAD_OTHER might be live beyond instruction execution,
5978 but this is not obvious when we set time2 = 1. So check
5979 here if there might be a problem with the new reload
5980 clobbering the register used by the RELOAD_OTHER. */
5981 if (out)
5982 return 0;
5983 break;
5984 default:
5985 return 0;
5986 }
5987 if ((time1 >= time2
5988 && (! rld[i].in || rld[i].out
5989 || ! rtx_equal_p (other_input, value)))
5990 || (out && rld[reloadnum].out_reg
5991 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5992 return 0;
5993 }
5994 }
5995 }
5996
5997 /* Earlyclobbered outputs must conflict with inputs. */
5998 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5999 return 0;
6000
6001 return 1;
6002 }
6003
6004 /* Return 1 if the value in reload reg REGNO, as used by a reload
6005 needed for the part of the insn specified by OPNUM and TYPE,
6006 may be used to load VALUE into it.
6007
6008 MODE is the mode in which the register is used, this is needed to
6009 determine how many hard regs to test.
6010
6011 Other read-only reloads with the same value do not conflict
6012 unless OUT is nonzero and these other reloads have to live while
6013 output reloads live.
6014 If OUT is CONST0_RTX, this is a special case: it means that the
6015 test should not be for using register REGNO as reload register, but
6016 for copying from register REGNO into the reload register.
6017
6018 RELOADNUM is the number of the reload we want to load this value for;
6019 a reload does not conflict with itself.
6020
6021 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6022 reloads that load an address for the very reload we are considering.
6023
6024 The caller has to make sure that there is no conflict with the return
6025 register. */
6026
6027 static int
6028 free_for_value_p (int regno, machine_mode mode, int opnum,
6029 enum reload_type type, rtx value, rtx out, int reloadnum,
6030 int ignore_address_reloads)
6031 {
6032 int nregs = hard_regno_nregs[regno][mode];
6033 while (nregs-- > 0)
6034 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6035 value, out, reloadnum,
6036 ignore_address_reloads))
6037 return 0;
6038 return 1;
6039 }
6040
6041 /* Return nonzero if the rtx X is invariant over the current function. */
6042 /* ??? Actually, the places where we use this expect exactly what is
6043 tested here, and not everything that is function invariant. In
6044 particular, the frame pointer and arg pointer are special cased;
6045 pic_offset_table_rtx is not, and we must not spill these things to
6046 memory. */
6047
6048 int
6049 function_invariant_p (const_rtx x)
6050 {
6051 if (CONSTANT_P (x))
6052 return 1;
6053 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6054 return 1;
6055 if (GET_CODE (x) == PLUS
6056 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6057 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6058 return 1;
6059 return 0;
6060 }
6061
6062 /* Determine whether the reload reg X overlaps any rtx'es used for
6063 overriding inheritance. Return nonzero if so. */
6064
6065 static int
6066 conflicts_with_override (rtx x)
6067 {
6068 int i;
6069 for (i = 0; i < n_reloads; i++)
6070 if (reload_override_in[i]
6071 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6072 return 1;
6073 return 0;
6074 }
6075 \f
6076 /* Give an error message saying we failed to find a reload for INSN,
6077 and clear out reload R. */
6078 static void
6079 failed_reload (rtx_insn *insn, int r)
6080 {
6081 if (asm_noperands (PATTERN (insn)) < 0)
6082 /* It's the compiler's fault. */
6083 fatal_insn ("could not find a spill register", insn);
6084
6085 /* It's the user's fault; the operand's mode and constraint
6086 don't match. Disable this reload so we don't crash in final. */
6087 error_for_asm (insn,
6088 "%<asm%> operand constraint incompatible with operand size");
6089 rld[r].in = 0;
6090 rld[r].out = 0;
6091 rld[r].reg_rtx = 0;
6092 rld[r].optional = 1;
6093 rld[r].secondary_p = 1;
6094 }
6095
6096 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6097 for reload R. If it's valid, get an rtx for it. Return nonzero if
6098 successful. */
6099 static int
6100 set_reload_reg (int i, int r)
6101 {
6102 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6103 parameter. */
6104 int regno ATTRIBUTE_UNUSED;
6105 rtx reg = spill_reg_rtx[i];
6106
6107 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6108 spill_reg_rtx[i] = reg
6109 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6110
6111 regno = true_regnum (reg);
6112
6113 /* Detect when the reload reg can't hold the reload mode.
6114 This used to be one `if', but Sequent compiler can't handle that. */
6115 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6116 {
6117 machine_mode test_mode = VOIDmode;
6118 if (rld[r].in)
6119 test_mode = GET_MODE (rld[r].in);
6120 /* If rld[r].in has VOIDmode, it means we will load it
6121 in whatever mode the reload reg has: to wit, rld[r].mode.
6122 We have already tested that for validity. */
6123 /* Aside from that, we need to test that the expressions
6124 to reload from or into have modes which are valid for this
6125 reload register. Otherwise the reload insns would be invalid. */
6126 if (! (rld[r].in != 0 && test_mode != VOIDmode
6127 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6128 if (! (rld[r].out != 0
6129 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6130 {
6131 /* The reg is OK. */
6132 last_spill_reg = i;
6133
6134 /* Mark as in use for this insn the reload regs we use
6135 for this. */
6136 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6137 rld[r].when_needed, rld[r].mode);
6138
6139 rld[r].reg_rtx = reg;
6140 reload_spill_index[r] = spill_regs[i];
6141 return 1;
6142 }
6143 }
6144 return 0;
6145 }
6146
6147 /* Find a spill register to use as a reload register for reload R.
6148 LAST_RELOAD is nonzero if this is the last reload for the insn being
6149 processed.
6150
6151 Set rld[R].reg_rtx to the register allocated.
6152
6153 We return 1 if successful, or 0 if we couldn't find a spill reg and
6154 we didn't change anything. */
6155
6156 static int
6157 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6158 int last_reload)
6159 {
6160 int i, pass, count;
6161
6162 /* If we put this reload ahead, thinking it is a group,
6163 then insist on finding a group. Otherwise we can grab a
6164 reg that some other reload needs.
6165 (That can happen when we have a 68000 DATA_OR_FP_REG
6166 which is a group of data regs or one fp reg.)
6167 We need not be so restrictive if there are no more reloads
6168 for this insn.
6169
6170 ??? Really it would be nicer to have smarter handling
6171 for that kind of reg class, where a problem like this is normal.
6172 Perhaps those classes should be avoided for reloading
6173 by use of more alternatives. */
6174
6175 int force_group = rld[r].nregs > 1 && ! last_reload;
6176
6177 /* If we want a single register and haven't yet found one,
6178 take any reg in the right class and not in use.
6179 If we want a consecutive group, here is where we look for it.
6180
6181 We use three passes so we can first look for reload regs to
6182 reuse, which are already in use for other reloads in this insn,
6183 and only then use additional registers which are not "bad", then
6184 finally any register.
6185
6186 I think that maximizing reuse is needed to make sure we don't
6187 run out of reload regs. Suppose we have three reloads, and
6188 reloads A and B can share regs. These need two regs.
6189 Suppose A and B are given different regs.
6190 That leaves none for C. */
6191 for (pass = 0; pass < 3; pass++)
6192 {
6193 /* I is the index in spill_regs.
6194 We advance it round-robin between insns to use all spill regs
6195 equally, so that inherited reloads have a chance
6196 of leapfrogging each other. */
6197
6198 i = last_spill_reg;
6199
6200 for (count = 0; count < n_spills; count++)
6201 {
6202 int rclass = (int) rld[r].rclass;
6203 int regnum;
6204
6205 i++;
6206 if (i >= n_spills)
6207 i -= n_spills;
6208 regnum = spill_regs[i];
6209
6210 if ((reload_reg_free_p (regnum, rld[r].opnum,
6211 rld[r].when_needed)
6212 || (rld[r].in
6213 /* We check reload_reg_used to make sure we
6214 don't clobber the return register. */
6215 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6216 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6217 rld[r].when_needed, rld[r].in,
6218 rld[r].out, r, 1)))
6219 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6220 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6221 /* Look first for regs to share, then for unshared. But
6222 don't share regs used for inherited reloads; they are
6223 the ones we want to preserve. */
6224 && (pass
6225 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6226 regnum)
6227 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6228 regnum))))
6229 {
6230 int nr = hard_regno_nregs[regnum][rld[r].mode];
6231
6232 /* During the second pass we want to avoid reload registers
6233 which are "bad" for this reload. */
6234 if (pass == 1
6235 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6236 continue;
6237
6238 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6239 (on 68000) got us two FP regs. If NR is 1,
6240 we would reject both of them. */
6241 if (force_group)
6242 nr = rld[r].nregs;
6243 /* If we need only one reg, we have already won. */
6244 if (nr == 1)
6245 {
6246 /* But reject a single reg if we demand a group. */
6247 if (force_group)
6248 continue;
6249 break;
6250 }
6251 /* Otherwise check that as many consecutive regs as we need
6252 are available here. */
6253 while (nr > 1)
6254 {
6255 int regno = regnum + nr - 1;
6256 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6257 && spill_reg_order[regno] >= 0
6258 && reload_reg_free_p (regno, rld[r].opnum,
6259 rld[r].when_needed)))
6260 break;
6261 nr--;
6262 }
6263 if (nr == 1)
6264 break;
6265 }
6266 }
6267
6268 /* If we found something on the current pass, omit later passes. */
6269 if (count < n_spills)
6270 break;
6271 }
6272
6273 /* We should have found a spill register by now. */
6274 if (count >= n_spills)
6275 return 0;
6276
6277 /* I is the index in SPILL_REG_RTX of the reload register we are to
6278 allocate. Get an rtx for it and find its register number. */
6279
6280 return set_reload_reg (i, r);
6281 }
6282 \f
6283 /* Initialize all the tables needed to allocate reload registers.
6284 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6285 is the array we use to restore the reg_rtx field for every reload. */
6286
6287 static void
6288 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6289 {
6290 int i;
6291
6292 for (i = 0; i < n_reloads; i++)
6293 rld[i].reg_rtx = save_reload_reg_rtx[i];
6294
6295 memset (reload_inherited, 0, MAX_RELOADS);
6296 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6297 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6298
6299 CLEAR_HARD_REG_SET (reload_reg_used);
6300 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6301 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6302 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6303 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6304 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6305
6306 CLEAR_HARD_REG_SET (reg_used_in_insn);
6307 {
6308 HARD_REG_SET tmp;
6309 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6310 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6311 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6312 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6313 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6314 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6315 }
6316
6317 for (i = 0; i < reload_n_operands; i++)
6318 {
6319 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6320 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6321 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6324 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6325 }
6326
6327 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6328
6329 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6330
6331 for (i = 0; i < n_reloads; i++)
6332 /* If we have already decided to use a certain register,
6333 don't use it in another way. */
6334 if (rld[i].reg_rtx)
6335 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6336 rld[i].when_needed, rld[i].mode);
6337 }
6338
6339 #ifdef SECONDARY_MEMORY_NEEDED
6340 /* If X is not a subreg, return it unmodified. If it is a subreg,
6341 look up whether we made a replacement for the SUBREG_REG. Return
6342 either the replacement or the SUBREG_REG. */
6343
6344 static rtx
6345 replaced_subreg (rtx x)
6346 {
6347 if (GET_CODE (x) == SUBREG)
6348 return find_replacement (&SUBREG_REG (x));
6349 return x;
6350 }
6351 #endif
6352
6353 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6354 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6355 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6356 otherwise it is NULL. */
6357
6358 static int
6359 compute_reload_subreg_offset (machine_mode outermode,
6360 rtx subreg,
6361 machine_mode innermode)
6362 {
6363 int outer_offset;
6364 machine_mode middlemode;
6365
6366 if (!subreg)
6367 return subreg_lowpart_offset (outermode, innermode);
6368
6369 outer_offset = SUBREG_BYTE (subreg);
6370 middlemode = GET_MODE (SUBREG_REG (subreg));
6371
6372 /* If SUBREG is paradoxical then return the normal lowpart offset
6373 for OUTERMODE and INNERMODE. Our caller has already checked
6374 that OUTERMODE fits in INNERMODE. */
6375 if (outer_offset == 0
6376 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6377 return subreg_lowpart_offset (outermode, innermode);
6378
6379 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6380 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6381 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6382 }
6383
6384 /* Assign hard reg targets for the pseudo-registers we must reload
6385 into hard regs for this insn.
6386 Also output the instructions to copy them in and out of the hard regs.
6387
6388 For machines with register classes, we are responsible for
6389 finding a reload reg in the proper class. */
6390
6391 static void
6392 choose_reload_regs (struct insn_chain *chain)
6393 {
6394 rtx_insn *insn = chain->insn;
6395 int i, j;
6396 unsigned int max_group_size = 1;
6397 enum reg_class group_class = NO_REGS;
6398 int pass, win, inheritance;
6399
6400 rtx save_reload_reg_rtx[MAX_RELOADS];
6401
6402 /* In order to be certain of getting the registers we need,
6403 we must sort the reloads into order of increasing register class.
6404 Then our grabbing of reload registers will parallel the process
6405 that provided the reload registers.
6406
6407 Also note whether any of the reloads wants a consecutive group of regs.
6408 If so, record the maximum size of the group desired and what
6409 register class contains all the groups needed by this insn. */
6410
6411 for (j = 0; j < n_reloads; j++)
6412 {
6413 reload_order[j] = j;
6414 if (rld[j].reg_rtx != NULL_RTX)
6415 {
6416 gcc_assert (REG_P (rld[j].reg_rtx)
6417 && HARD_REGISTER_P (rld[j].reg_rtx));
6418 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6419 }
6420 else
6421 reload_spill_index[j] = -1;
6422
6423 if (rld[j].nregs > 1)
6424 {
6425 max_group_size = MAX (rld[j].nregs, max_group_size);
6426 group_class
6427 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6428 }
6429
6430 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6431 }
6432
6433 if (n_reloads > 1)
6434 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6435
6436 /* If -O, try first with inheritance, then turning it off.
6437 If not -O, don't do inheritance.
6438 Using inheritance when not optimizing leads to paradoxes
6439 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6440 because one side of the comparison might be inherited. */
6441 win = 0;
6442 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6443 {
6444 choose_reload_regs_init (chain, save_reload_reg_rtx);
6445
6446 /* Process the reloads in order of preference just found.
6447 Beyond this point, subregs can be found in reload_reg_rtx.
6448
6449 This used to look for an existing reloaded home for all of the
6450 reloads, and only then perform any new reloads. But that could lose
6451 if the reloads were done out of reg-class order because a later
6452 reload with a looser constraint might have an old home in a register
6453 needed by an earlier reload with a tighter constraint.
6454
6455 To solve this, we make two passes over the reloads, in the order
6456 described above. In the first pass we try to inherit a reload
6457 from a previous insn. If there is a later reload that needs a
6458 class that is a proper subset of the class being processed, we must
6459 also allocate a spill register during the first pass.
6460
6461 Then make a second pass over the reloads to allocate any reloads
6462 that haven't been given registers yet. */
6463
6464 for (j = 0; j < n_reloads; j++)
6465 {
6466 int r = reload_order[j];
6467 rtx search_equiv = NULL_RTX;
6468
6469 /* Ignore reloads that got marked inoperative. */
6470 if (rld[r].out == 0 && rld[r].in == 0
6471 && ! rld[r].secondary_p)
6472 continue;
6473
6474 /* If find_reloads chose to use reload_in or reload_out as a reload
6475 register, we don't need to chose one. Otherwise, try even if it
6476 found one since we might save an insn if we find the value lying
6477 around.
6478 Try also when reload_in is a pseudo without a hard reg. */
6479 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6480 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6481 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6482 && !MEM_P (rld[r].in)
6483 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6484 continue;
6485
6486 #if 0 /* No longer needed for correct operation.
6487 It might give better code, or might not; worth an experiment? */
6488 /* If this is an optional reload, we can't inherit from earlier insns
6489 until we are sure that any non-optional reloads have been allocated.
6490 The following code takes advantage of the fact that optional reloads
6491 are at the end of reload_order. */
6492 if (rld[r].optional != 0)
6493 for (i = 0; i < j; i++)
6494 if ((rld[reload_order[i]].out != 0
6495 || rld[reload_order[i]].in != 0
6496 || rld[reload_order[i]].secondary_p)
6497 && ! rld[reload_order[i]].optional
6498 && rld[reload_order[i]].reg_rtx == 0)
6499 allocate_reload_reg (chain, reload_order[i], 0);
6500 #endif
6501
6502 /* First see if this pseudo is already available as reloaded
6503 for a previous insn. We cannot try to inherit for reloads
6504 that are smaller than the maximum number of registers needed
6505 for groups unless the register we would allocate cannot be used
6506 for the groups.
6507
6508 We could check here to see if this is a secondary reload for
6509 an object that is already in a register of the desired class.
6510 This would avoid the need for the secondary reload register.
6511 But this is complex because we can't easily determine what
6512 objects might want to be loaded via this reload. So let a
6513 register be allocated here. In `emit_reload_insns' we suppress
6514 one of the loads in the case described above. */
6515
6516 if (inheritance)
6517 {
6518 int byte = 0;
6519 int regno = -1;
6520 machine_mode mode = VOIDmode;
6521 rtx subreg = NULL_RTX;
6522
6523 if (rld[r].in == 0)
6524 ;
6525 else if (REG_P (rld[r].in))
6526 {
6527 regno = REGNO (rld[r].in);
6528 mode = GET_MODE (rld[r].in);
6529 }
6530 else if (REG_P (rld[r].in_reg))
6531 {
6532 regno = REGNO (rld[r].in_reg);
6533 mode = GET_MODE (rld[r].in_reg);
6534 }
6535 else if (GET_CODE (rld[r].in_reg) == SUBREG
6536 && REG_P (SUBREG_REG (rld[r].in_reg)))
6537 {
6538 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6539 if (regno < FIRST_PSEUDO_REGISTER)
6540 regno = subreg_regno (rld[r].in_reg);
6541 else
6542 {
6543 subreg = rld[r].in_reg;
6544 byte = SUBREG_BYTE (subreg);
6545 }
6546 mode = GET_MODE (rld[r].in_reg);
6547 }
6548 #if AUTO_INC_DEC
6549 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6550 && REG_P (XEXP (rld[r].in_reg, 0)))
6551 {
6552 regno = REGNO (XEXP (rld[r].in_reg, 0));
6553 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6554 rld[r].out = rld[r].in;
6555 }
6556 #endif
6557 #if 0
6558 /* This won't work, since REGNO can be a pseudo reg number.
6559 Also, it takes much more hair to keep track of all the things
6560 that can invalidate an inherited reload of part of a pseudoreg. */
6561 else if (GET_CODE (rld[r].in) == SUBREG
6562 && REG_P (SUBREG_REG (rld[r].in)))
6563 regno = subreg_regno (rld[r].in);
6564 #endif
6565
6566 if (regno >= 0
6567 && reg_last_reload_reg[regno] != 0
6568 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6569 >= GET_MODE_SIZE (mode) + byte)
6570 #ifdef CANNOT_CHANGE_MODE_CLASS
6571 /* Verify that the register it's in can be used in
6572 mode MODE. */
6573 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6574 GET_MODE (reg_last_reload_reg[regno]),
6575 mode)
6576 #endif
6577 )
6578 {
6579 enum reg_class rclass = rld[r].rclass, last_class;
6580 rtx last_reg = reg_last_reload_reg[regno];
6581
6582 i = REGNO (last_reg);
6583 byte = compute_reload_subreg_offset (mode,
6584 subreg,
6585 GET_MODE (last_reg));
6586 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6587 last_class = REGNO_REG_CLASS (i);
6588
6589 if (reg_reloaded_contents[i] == regno
6590 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6591 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6592 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6593 /* Even if we can't use this register as a reload
6594 register, we might use it for reload_override_in,
6595 if copying it to the desired class is cheap
6596 enough. */
6597 || ((register_move_cost (mode, last_class, rclass)
6598 < memory_move_cost (mode, rclass, true))
6599 && (secondary_reload_class (1, rclass, mode,
6600 last_reg)
6601 == NO_REGS)
6602 #ifdef SECONDARY_MEMORY_NEEDED
6603 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6604 mode)
6605 #endif
6606 ))
6607
6608 && (rld[r].nregs == max_group_size
6609 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6610 i))
6611 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6612 rld[r].when_needed, rld[r].in,
6613 const0_rtx, r, 1))
6614 {
6615 /* If a group is needed, verify that all the subsequent
6616 registers still have their values intact. */
6617 int nr = hard_regno_nregs[i][rld[r].mode];
6618 int k;
6619
6620 for (k = 1; k < nr; k++)
6621 if (reg_reloaded_contents[i + k] != regno
6622 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6623 break;
6624
6625 if (k == nr)
6626 {
6627 int i1;
6628 int bad_for_class;
6629
6630 last_reg = (GET_MODE (last_reg) == mode
6631 ? last_reg : gen_rtx_REG (mode, i));
6632
6633 bad_for_class = 0;
6634 for (k = 0; k < nr; k++)
6635 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6636 i+k);
6637
6638 /* We found a register that contains the
6639 value we need. If this register is the
6640 same as an `earlyclobber' operand of the
6641 current insn, just mark it as a place to
6642 reload from since we can't use it as the
6643 reload register itself. */
6644
6645 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6646 if (reg_overlap_mentioned_for_reload_p
6647 (reg_last_reload_reg[regno],
6648 reload_earlyclobbers[i1]))
6649 break;
6650
6651 if (i1 != n_earlyclobbers
6652 || ! (free_for_value_p (i, rld[r].mode,
6653 rld[r].opnum,
6654 rld[r].when_needed, rld[r].in,
6655 rld[r].out, r, 1))
6656 /* Don't use it if we'd clobber a pseudo reg. */
6657 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6658 && rld[r].out
6659 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6660 /* Don't clobber the frame pointer. */
6661 || (i == HARD_FRAME_POINTER_REGNUM
6662 && frame_pointer_needed
6663 && rld[r].out)
6664 /* Don't really use the inherited spill reg
6665 if we need it wider than we've got it. */
6666 || (GET_MODE_SIZE (rld[r].mode)
6667 > GET_MODE_SIZE (mode))
6668 || bad_for_class
6669
6670 /* If find_reloads chose reload_out as reload
6671 register, stay with it - that leaves the
6672 inherited register for subsequent reloads. */
6673 || (rld[r].out && rld[r].reg_rtx
6674 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6675 {
6676 if (! rld[r].optional)
6677 {
6678 reload_override_in[r] = last_reg;
6679 reload_inheritance_insn[r]
6680 = reg_reloaded_insn[i];
6681 }
6682 }
6683 else
6684 {
6685 int k;
6686 /* We can use this as a reload reg. */
6687 /* Mark the register as in use for this part of
6688 the insn. */
6689 mark_reload_reg_in_use (i,
6690 rld[r].opnum,
6691 rld[r].when_needed,
6692 rld[r].mode);
6693 rld[r].reg_rtx = last_reg;
6694 reload_inherited[r] = 1;
6695 reload_inheritance_insn[r]
6696 = reg_reloaded_insn[i];
6697 reload_spill_index[r] = i;
6698 for (k = 0; k < nr; k++)
6699 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6700 i + k);
6701 }
6702 }
6703 }
6704 }
6705 }
6706
6707 /* Here's another way to see if the value is already lying around. */
6708 if (inheritance
6709 && rld[r].in != 0
6710 && ! reload_inherited[r]
6711 && rld[r].out == 0
6712 && (CONSTANT_P (rld[r].in)
6713 || GET_CODE (rld[r].in) == PLUS
6714 || REG_P (rld[r].in)
6715 || MEM_P (rld[r].in))
6716 && (rld[r].nregs == max_group_size
6717 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6718 search_equiv = rld[r].in;
6719
6720 if (search_equiv)
6721 {
6722 rtx equiv
6723 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6724 -1, NULL, 0, rld[r].mode);
6725 int regno = 0;
6726
6727 if (equiv != 0)
6728 {
6729 if (REG_P (equiv))
6730 regno = REGNO (equiv);
6731 else
6732 {
6733 /* This must be a SUBREG of a hard register.
6734 Make a new REG since this might be used in an
6735 address and not all machines support SUBREGs
6736 there. */
6737 gcc_assert (GET_CODE (equiv) == SUBREG);
6738 regno = subreg_regno (equiv);
6739 equiv = gen_rtx_REG (rld[r].mode, regno);
6740 /* If we choose EQUIV as the reload register, but the
6741 loop below decides to cancel the inheritance, we'll
6742 end up reloading EQUIV in rld[r].mode, not the mode
6743 it had originally. That isn't safe when EQUIV isn't
6744 available as a spill register since its value might
6745 still be live at this point. */
6746 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6747 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6748 equiv = 0;
6749 }
6750 }
6751
6752 /* If we found a spill reg, reject it unless it is free
6753 and of the desired class. */
6754 if (equiv != 0)
6755 {
6756 int regs_used = 0;
6757 int bad_for_class = 0;
6758 int max_regno = regno + rld[r].nregs;
6759
6760 for (i = regno; i < max_regno; i++)
6761 {
6762 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6763 i);
6764 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6765 i);
6766 }
6767
6768 if ((regs_used
6769 && ! free_for_value_p (regno, rld[r].mode,
6770 rld[r].opnum, rld[r].when_needed,
6771 rld[r].in, rld[r].out, r, 1))
6772 || bad_for_class)
6773 equiv = 0;
6774 }
6775
6776 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6777 equiv = 0;
6778
6779 /* We found a register that contains the value we need.
6780 If this register is the same as an `earlyclobber' operand
6781 of the current insn, just mark it as a place to reload from
6782 since we can't use it as the reload register itself. */
6783
6784 if (equiv != 0)
6785 for (i = 0; i < n_earlyclobbers; i++)
6786 if (reg_overlap_mentioned_for_reload_p (equiv,
6787 reload_earlyclobbers[i]))
6788 {
6789 if (! rld[r].optional)
6790 reload_override_in[r] = equiv;
6791 equiv = 0;
6792 break;
6793 }
6794
6795 /* If the equiv register we have found is explicitly clobbered
6796 in the current insn, it depends on the reload type if we
6797 can use it, use it for reload_override_in, or not at all.
6798 In particular, we then can't use EQUIV for a
6799 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6800
6801 if (equiv != 0)
6802 {
6803 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6804 switch (rld[r].when_needed)
6805 {
6806 case RELOAD_FOR_OTHER_ADDRESS:
6807 case RELOAD_FOR_INPADDR_ADDRESS:
6808 case RELOAD_FOR_INPUT_ADDRESS:
6809 case RELOAD_FOR_OPADDR_ADDR:
6810 break;
6811 case RELOAD_OTHER:
6812 case RELOAD_FOR_INPUT:
6813 case RELOAD_FOR_OPERAND_ADDRESS:
6814 if (! rld[r].optional)
6815 reload_override_in[r] = equiv;
6816 /* Fall through. */
6817 default:
6818 equiv = 0;
6819 break;
6820 }
6821 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6822 switch (rld[r].when_needed)
6823 {
6824 case RELOAD_FOR_OTHER_ADDRESS:
6825 case RELOAD_FOR_INPADDR_ADDRESS:
6826 case RELOAD_FOR_INPUT_ADDRESS:
6827 case RELOAD_FOR_OPADDR_ADDR:
6828 case RELOAD_FOR_OPERAND_ADDRESS:
6829 case RELOAD_FOR_INPUT:
6830 break;
6831 case RELOAD_OTHER:
6832 if (! rld[r].optional)
6833 reload_override_in[r] = equiv;
6834 /* Fall through. */
6835 default:
6836 equiv = 0;
6837 break;
6838 }
6839 }
6840
6841 /* If we found an equivalent reg, say no code need be generated
6842 to load it, and use it as our reload reg. */
6843 if (equiv != 0
6844 && (regno != HARD_FRAME_POINTER_REGNUM
6845 || !frame_pointer_needed))
6846 {
6847 int nr = hard_regno_nregs[regno][rld[r].mode];
6848 int k;
6849 rld[r].reg_rtx = equiv;
6850 reload_spill_index[r] = regno;
6851 reload_inherited[r] = 1;
6852
6853 /* If reg_reloaded_valid is not set for this register,
6854 there might be a stale spill_reg_store lying around.
6855 We must clear it, since otherwise emit_reload_insns
6856 might delete the store. */
6857 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6858 spill_reg_store[regno] = NULL;
6859 /* If any of the hard registers in EQUIV are spill
6860 registers, mark them as in use for this insn. */
6861 for (k = 0; k < nr; k++)
6862 {
6863 i = spill_reg_order[regno + k];
6864 if (i >= 0)
6865 {
6866 mark_reload_reg_in_use (regno, rld[r].opnum,
6867 rld[r].when_needed,
6868 rld[r].mode);
6869 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6870 regno + k);
6871 }
6872 }
6873 }
6874 }
6875
6876 /* If we found a register to use already, or if this is an optional
6877 reload, we are done. */
6878 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6879 continue;
6880
6881 #if 0
6882 /* No longer needed for correct operation. Might or might
6883 not give better code on the average. Want to experiment? */
6884
6885 /* See if there is a later reload that has a class different from our
6886 class that intersects our class or that requires less register
6887 than our reload. If so, we must allocate a register to this
6888 reload now, since that reload might inherit a previous reload
6889 and take the only available register in our class. Don't do this
6890 for optional reloads since they will force all previous reloads
6891 to be allocated. Also don't do this for reloads that have been
6892 turned off. */
6893
6894 for (i = j + 1; i < n_reloads; i++)
6895 {
6896 int s = reload_order[i];
6897
6898 if ((rld[s].in == 0 && rld[s].out == 0
6899 && ! rld[s].secondary_p)
6900 || rld[s].optional)
6901 continue;
6902
6903 if ((rld[s].rclass != rld[r].rclass
6904 && reg_classes_intersect_p (rld[r].rclass,
6905 rld[s].rclass))
6906 || rld[s].nregs < rld[r].nregs)
6907 break;
6908 }
6909
6910 if (i == n_reloads)
6911 continue;
6912
6913 allocate_reload_reg (chain, r, j == n_reloads - 1);
6914 #endif
6915 }
6916
6917 /* Now allocate reload registers for anything non-optional that
6918 didn't get one yet. */
6919 for (j = 0; j < n_reloads; j++)
6920 {
6921 int r = reload_order[j];
6922
6923 /* Ignore reloads that got marked inoperative. */
6924 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6925 continue;
6926
6927 /* Skip reloads that already have a register allocated or are
6928 optional. */
6929 if (rld[r].reg_rtx != 0 || rld[r].optional)
6930 continue;
6931
6932 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6933 break;
6934 }
6935
6936 /* If that loop got all the way, we have won. */
6937 if (j == n_reloads)
6938 {
6939 win = 1;
6940 break;
6941 }
6942
6943 /* Loop around and try without any inheritance. */
6944 }
6945
6946 if (! win)
6947 {
6948 /* First undo everything done by the failed attempt
6949 to allocate with inheritance. */
6950 choose_reload_regs_init (chain, save_reload_reg_rtx);
6951
6952 /* Some sanity tests to verify that the reloads found in the first
6953 pass are identical to the ones we have now. */
6954 gcc_assert (chain->n_reloads == n_reloads);
6955
6956 for (i = 0; i < n_reloads; i++)
6957 {
6958 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6959 continue;
6960 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6961 for (j = 0; j < n_spills; j++)
6962 if (spill_regs[j] == chain->rld[i].regno)
6963 if (! set_reload_reg (j, i))
6964 failed_reload (chain->insn, i);
6965 }
6966 }
6967
6968 /* If we thought we could inherit a reload, because it seemed that
6969 nothing else wanted the same reload register earlier in the insn,
6970 verify that assumption, now that all reloads have been assigned.
6971 Likewise for reloads where reload_override_in has been set. */
6972
6973 /* If doing expensive optimizations, do one preliminary pass that doesn't
6974 cancel any inheritance, but removes reloads that have been needed only
6975 for reloads that we know can be inherited. */
6976 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6977 {
6978 for (j = 0; j < n_reloads; j++)
6979 {
6980 int r = reload_order[j];
6981 rtx check_reg;
6982 #ifdef SECONDARY_MEMORY_NEEDED
6983 rtx tem;
6984 #endif
6985 if (reload_inherited[r] && rld[r].reg_rtx)
6986 check_reg = rld[r].reg_rtx;
6987 else if (reload_override_in[r]
6988 && (REG_P (reload_override_in[r])
6989 || GET_CODE (reload_override_in[r]) == SUBREG))
6990 check_reg = reload_override_in[r];
6991 else
6992 continue;
6993 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6994 rld[r].opnum, rld[r].when_needed, rld[r].in,
6995 (reload_inherited[r]
6996 ? rld[r].out : const0_rtx),
6997 r, 1))
6998 {
6999 if (pass)
7000 continue;
7001 reload_inherited[r] = 0;
7002 reload_override_in[r] = 0;
7003 }
7004 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7005 reload_override_in, then we do not need its related
7006 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7007 likewise for other reload types.
7008 We handle this by removing a reload when its only replacement
7009 is mentioned in reload_in of the reload we are going to inherit.
7010 A special case are auto_inc expressions; even if the input is
7011 inherited, we still need the address for the output. We can
7012 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7013 If we succeeded removing some reload and we are doing a preliminary
7014 pass just to remove such reloads, make another pass, since the
7015 removal of one reload might allow us to inherit another one. */
7016 else if (rld[r].in
7017 && rld[r].out != rld[r].in
7018 && remove_address_replacements (rld[r].in))
7019 {
7020 if (pass)
7021 pass = 2;
7022 }
7023 #ifdef SECONDARY_MEMORY_NEEDED
7024 /* If we needed a memory location for the reload, we also have to
7025 remove its related reloads. */
7026 else if (rld[r].in
7027 && rld[r].out != rld[r].in
7028 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7029 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7030 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7031 rld[r].rclass, rld[r].inmode)
7032 && remove_address_replacements
7033 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7034 rld[r].when_needed)))
7035 {
7036 if (pass)
7037 pass = 2;
7038 }
7039 #endif
7040 }
7041 }
7042
7043 /* Now that reload_override_in is known valid,
7044 actually override reload_in. */
7045 for (j = 0; j < n_reloads; j++)
7046 if (reload_override_in[j])
7047 rld[j].in = reload_override_in[j];
7048
7049 /* If this reload won't be done because it has been canceled or is
7050 optional and not inherited, clear reload_reg_rtx so other
7051 routines (such as subst_reloads) don't get confused. */
7052 for (j = 0; j < n_reloads; j++)
7053 if (rld[j].reg_rtx != 0
7054 && ((rld[j].optional && ! reload_inherited[j])
7055 || (rld[j].in == 0 && rld[j].out == 0
7056 && ! rld[j].secondary_p)))
7057 {
7058 int regno = true_regnum (rld[j].reg_rtx);
7059
7060 if (spill_reg_order[regno] >= 0)
7061 clear_reload_reg_in_use (regno, rld[j].opnum,
7062 rld[j].when_needed, rld[j].mode);
7063 rld[j].reg_rtx = 0;
7064 reload_spill_index[j] = -1;
7065 }
7066
7067 /* Record which pseudos and which spill regs have output reloads. */
7068 for (j = 0; j < n_reloads; j++)
7069 {
7070 int r = reload_order[j];
7071
7072 i = reload_spill_index[r];
7073
7074 /* I is nonneg if this reload uses a register.
7075 If rld[r].reg_rtx is 0, this is an optional reload
7076 that we opted to ignore. */
7077 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7078 && rld[r].reg_rtx != 0)
7079 {
7080 int nregno = REGNO (rld[r].out_reg);
7081 int nr = 1;
7082
7083 if (nregno < FIRST_PSEUDO_REGISTER)
7084 nr = hard_regno_nregs[nregno][rld[r].mode];
7085
7086 while (--nr >= 0)
7087 SET_REGNO_REG_SET (&reg_has_output_reload,
7088 nregno + nr);
7089
7090 if (i >= 0)
7091 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7092
7093 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7094 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7095 || rld[r].when_needed == RELOAD_FOR_INSN);
7096 }
7097 }
7098 }
7099
7100 /* Deallocate the reload register for reload R. This is called from
7101 remove_address_replacements. */
7102
7103 void
7104 deallocate_reload_reg (int r)
7105 {
7106 int regno;
7107
7108 if (! rld[r].reg_rtx)
7109 return;
7110 regno = true_regnum (rld[r].reg_rtx);
7111 rld[r].reg_rtx = 0;
7112 if (spill_reg_order[regno] >= 0)
7113 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7114 rld[r].mode);
7115 reload_spill_index[r] = -1;
7116 }
7117 \f
7118 /* These arrays are filled by emit_reload_insns and its subroutines. */
7119 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7120 static rtx_insn *other_input_address_reload_insns = 0;
7121 static rtx_insn *other_input_reload_insns = 0;
7122 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7123 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7124 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7125 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7126 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7127 static rtx_insn *operand_reload_insns = 0;
7128 static rtx_insn *other_operand_reload_insns = 0;
7129 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7130
7131 /* Values to be put in spill_reg_store are put here first. Instructions
7132 must only be placed here if the associated reload register reaches
7133 the end of the instruction's reload sequence. */
7134 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7135 static HARD_REG_SET reg_reloaded_died;
7136
7137 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7138 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7139 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7140 adjusted register, and return true. Otherwise, return false. */
7141 static bool
7142 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7143 enum reg_class new_class,
7144 machine_mode new_mode)
7145
7146 {
7147 rtx reg;
7148
7149 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7150 {
7151 unsigned regno = REGNO (reg);
7152
7153 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7154 continue;
7155 if (GET_MODE (reg) != new_mode)
7156 {
7157 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7158 continue;
7159 if (hard_regno_nregs[regno][new_mode]
7160 > hard_regno_nregs[regno][GET_MODE (reg)])
7161 continue;
7162 reg = reload_adjust_reg_for_mode (reg, new_mode);
7163 }
7164 *reload_reg = reg;
7165 return true;
7166 }
7167 return false;
7168 }
7169
7170 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7171 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7172 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7173 adjusted register, and return true. Otherwise, return false. */
7174 static bool
7175 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7176 enum insn_code icode)
7177
7178 {
7179 enum reg_class new_class = scratch_reload_class (icode);
7180 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7181
7182 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7183 new_class, new_mode);
7184 }
7185
7186 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7187 has the number J. OLD contains the value to be used as input. */
7188
7189 static void
7190 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7191 rtx old, int j)
7192 {
7193 rtx_insn *insn = chain->insn;
7194 rtx reloadreg;
7195 rtx oldequiv_reg = 0;
7196 rtx oldequiv = 0;
7197 int special = 0;
7198 machine_mode mode;
7199 rtx_insn **where;
7200
7201 /* delete_output_reload is only invoked properly if old contains
7202 the original pseudo register. Since this is replaced with a
7203 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7204 find the pseudo in RELOAD_IN_REG. This is also used to
7205 determine whether a secondary reload is needed. */
7206 if (reload_override_in[j]
7207 && (REG_P (rl->in_reg)
7208 || (GET_CODE (rl->in_reg) == SUBREG
7209 && REG_P (SUBREG_REG (rl->in_reg)))))
7210 {
7211 oldequiv = old;
7212 old = rl->in_reg;
7213 }
7214 if (oldequiv == 0)
7215 oldequiv = old;
7216 else if (REG_P (oldequiv))
7217 oldequiv_reg = oldequiv;
7218 else if (GET_CODE (oldequiv) == SUBREG)
7219 oldequiv_reg = SUBREG_REG (oldequiv);
7220
7221 reloadreg = reload_reg_rtx_for_input[j];
7222 mode = GET_MODE (reloadreg);
7223
7224 /* If we are reloading from a register that was recently stored in
7225 with an output-reload, see if we can prove there was
7226 actually no need to store the old value in it. */
7227
7228 if (optimize && REG_P (oldequiv)
7229 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7230 && spill_reg_store[REGNO (oldequiv)]
7231 && REG_P (old)
7232 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7233 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7234 rl->out_reg)))
7235 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7236
7237 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7238 OLDEQUIV. */
7239
7240 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7241 oldequiv = SUBREG_REG (oldequiv);
7242 if (GET_MODE (oldequiv) != VOIDmode
7243 && mode != GET_MODE (oldequiv))
7244 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7245
7246 /* Switch to the right place to emit the reload insns. */
7247 switch (rl->when_needed)
7248 {
7249 case RELOAD_OTHER:
7250 where = &other_input_reload_insns;
7251 break;
7252 case RELOAD_FOR_INPUT:
7253 where = &input_reload_insns[rl->opnum];
7254 break;
7255 case RELOAD_FOR_INPUT_ADDRESS:
7256 where = &input_address_reload_insns[rl->opnum];
7257 break;
7258 case RELOAD_FOR_INPADDR_ADDRESS:
7259 where = &inpaddr_address_reload_insns[rl->opnum];
7260 break;
7261 case RELOAD_FOR_OUTPUT_ADDRESS:
7262 where = &output_address_reload_insns[rl->opnum];
7263 break;
7264 case RELOAD_FOR_OUTADDR_ADDRESS:
7265 where = &outaddr_address_reload_insns[rl->opnum];
7266 break;
7267 case RELOAD_FOR_OPERAND_ADDRESS:
7268 where = &operand_reload_insns;
7269 break;
7270 case RELOAD_FOR_OPADDR_ADDR:
7271 where = &other_operand_reload_insns;
7272 break;
7273 case RELOAD_FOR_OTHER_ADDRESS:
7274 where = &other_input_address_reload_insns;
7275 break;
7276 default:
7277 gcc_unreachable ();
7278 }
7279
7280 push_to_sequence (*where);
7281
7282 /* Auto-increment addresses must be reloaded in a special way. */
7283 if (rl->out && ! rl->out_reg)
7284 {
7285 /* We are not going to bother supporting the case where a
7286 incremented register can't be copied directly from
7287 OLDEQUIV since this seems highly unlikely. */
7288 gcc_assert (rl->secondary_in_reload < 0);
7289
7290 if (reload_inherited[j])
7291 oldequiv = reloadreg;
7292
7293 old = XEXP (rl->in_reg, 0);
7294
7295 /* Prevent normal processing of this reload. */
7296 special = 1;
7297 /* Output a special code sequence for this case. */
7298 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7299 }
7300
7301 /* If we are reloading a pseudo-register that was set by the previous
7302 insn, see if we can get rid of that pseudo-register entirely
7303 by redirecting the previous insn into our reload register. */
7304
7305 else if (optimize && REG_P (old)
7306 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7307 && dead_or_set_p (insn, old)
7308 /* This is unsafe if some other reload
7309 uses the same reg first. */
7310 && ! conflicts_with_override (reloadreg)
7311 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7312 rl->when_needed, old, rl->out, j, 0))
7313 {
7314 rtx_insn *temp = PREV_INSN (insn);
7315 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7316 temp = PREV_INSN (temp);
7317 if (temp
7318 && NONJUMP_INSN_P (temp)
7319 && GET_CODE (PATTERN (temp)) == SET
7320 && SET_DEST (PATTERN (temp)) == old
7321 /* Make sure we can access insn_operand_constraint. */
7322 && asm_noperands (PATTERN (temp)) < 0
7323 /* This is unsafe if operand occurs more than once in current
7324 insn. Perhaps some occurrences aren't reloaded. */
7325 && count_occurrences (PATTERN (insn), old, 0) == 1)
7326 {
7327 rtx old = SET_DEST (PATTERN (temp));
7328 /* Store into the reload register instead of the pseudo. */
7329 SET_DEST (PATTERN (temp)) = reloadreg;
7330
7331 /* Verify that resulting insn is valid.
7332
7333 Note that we have replaced the destination of TEMP with
7334 RELOADREG. If TEMP references RELOADREG within an
7335 autoincrement addressing mode, then the resulting insn
7336 is ill-formed and we must reject this optimization. */
7337 extract_insn (temp);
7338 if (constrain_operands (1, get_enabled_alternatives (temp))
7339 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7340 {
7341 /* If the previous insn is an output reload, the source is
7342 a reload register, and its spill_reg_store entry will
7343 contain the previous destination. This is now
7344 invalid. */
7345 if (REG_P (SET_SRC (PATTERN (temp)))
7346 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7347 {
7348 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7349 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7350 }
7351
7352 /* If these are the only uses of the pseudo reg,
7353 pretend for GDB it lives in the reload reg we used. */
7354 if (REG_N_DEATHS (REGNO (old)) == 1
7355 && REG_N_SETS (REGNO (old)) == 1)
7356 {
7357 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7358 if (ira_conflicts_p)
7359 /* Inform IRA about the change. */
7360 ira_mark_allocation_change (REGNO (old));
7361 alter_reg (REGNO (old), -1, false);
7362 }
7363 special = 1;
7364
7365 /* Adjust any debug insns between temp and insn. */
7366 while ((temp = NEXT_INSN (temp)) != insn)
7367 if (DEBUG_INSN_P (temp))
7368 INSN_VAR_LOCATION_LOC (temp)
7369 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7370 old, reloadreg);
7371 else
7372 gcc_assert (NOTE_P (temp));
7373 }
7374 else
7375 {
7376 SET_DEST (PATTERN (temp)) = old;
7377 }
7378 }
7379 }
7380
7381 /* We can't do that, so output an insn to load RELOADREG. */
7382
7383 /* If we have a secondary reload, pick up the secondary register
7384 and icode, if any. If OLDEQUIV and OLD are different or
7385 if this is an in-out reload, recompute whether or not we
7386 still need a secondary register and what the icode should
7387 be. If we still need a secondary register and the class or
7388 icode is different, go back to reloading from OLD if using
7389 OLDEQUIV means that we got the wrong type of register. We
7390 cannot have different class or icode due to an in-out reload
7391 because we don't make such reloads when both the input and
7392 output need secondary reload registers. */
7393
7394 if (! special && rl->secondary_in_reload >= 0)
7395 {
7396 rtx second_reload_reg = 0;
7397 rtx third_reload_reg = 0;
7398 int secondary_reload = rl->secondary_in_reload;
7399 rtx real_oldequiv = oldequiv;
7400 rtx real_old = old;
7401 rtx tmp;
7402 enum insn_code icode;
7403 enum insn_code tertiary_icode = CODE_FOR_nothing;
7404
7405 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7406 and similarly for OLD.
7407 See comments in get_secondary_reload in reload.c. */
7408 /* If it is a pseudo that cannot be replaced with its
7409 equivalent MEM, we must fall back to reload_in, which
7410 will have all the necessary substitutions registered.
7411 Likewise for a pseudo that can't be replaced with its
7412 equivalent constant.
7413
7414 Take extra care for subregs of such pseudos. Note that
7415 we cannot use reg_equiv_mem in this case because it is
7416 not in the right mode. */
7417
7418 tmp = oldequiv;
7419 if (GET_CODE (tmp) == SUBREG)
7420 tmp = SUBREG_REG (tmp);
7421 if (REG_P (tmp)
7422 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7423 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7424 || reg_equiv_constant (REGNO (tmp)) != 0))
7425 {
7426 if (! reg_equiv_mem (REGNO (tmp))
7427 || num_not_at_initial_offset
7428 || GET_CODE (oldequiv) == SUBREG)
7429 real_oldequiv = rl->in;
7430 else
7431 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7432 }
7433
7434 tmp = old;
7435 if (GET_CODE (tmp) == SUBREG)
7436 tmp = SUBREG_REG (tmp);
7437 if (REG_P (tmp)
7438 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7439 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7440 || reg_equiv_constant (REGNO (tmp)) != 0))
7441 {
7442 if (! reg_equiv_mem (REGNO (tmp))
7443 || num_not_at_initial_offset
7444 || GET_CODE (old) == SUBREG)
7445 real_old = rl->in;
7446 else
7447 real_old = reg_equiv_mem (REGNO (tmp));
7448 }
7449
7450 second_reload_reg = rld[secondary_reload].reg_rtx;
7451 if (rld[secondary_reload].secondary_in_reload >= 0)
7452 {
7453 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7454
7455 third_reload_reg = rld[tertiary_reload].reg_rtx;
7456 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7457 /* We'd have to add more code for quartary reloads. */
7458 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7459 }
7460 icode = rl->secondary_in_icode;
7461
7462 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7463 || (rl->in != 0 && rl->out != 0))
7464 {
7465 secondary_reload_info sri, sri2;
7466 enum reg_class new_class, new_t_class;
7467
7468 sri.icode = CODE_FOR_nothing;
7469 sri.prev_sri = NULL;
7470 new_class
7471 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7472 rl->rclass, mode,
7473 &sri);
7474
7475 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7476 second_reload_reg = 0;
7477 else if (new_class == NO_REGS)
7478 {
7479 if (reload_adjust_reg_for_icode (&second_reload_reg,
7480 third_reload_reg,
7481 (enum insn_code) sri.icode))
7482 {
7483 icode = (enum insn_code) sri.icode;
7484 third_reload_reg = 0;
7485 }
7486 else
7487 {
7488 oldequiv = old;
7489 real_oldequiv = real_old;
7490 }
7491 }
7492 else if (sri.icode != CODE_FOR_nothing)
7493 /* We currently lack a way to express this in reloads. */
7494 gcc_unreachable ();
7495 else
7496 {
7497 sri2.icode = CODE_FOR_nothing;
7498 sri2.prev_sri = &sri;
7499 new_t_class
7500 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7501 new_class, mode,
7502 &sri);
7503 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7504 {
7505 if (reload_adjust_reg_for_temp (&second_reload_reg,
7506 third_reload_reg,
7507 new_class, mode))
7508 {
7509 third_reload_reg = 0;
7510 tertiary_icode = (enum insn_code) sri2.icode;
7511 }
7512 else
7513 {
7514 oldequiv = old;
7515 real_oldequiv = real_old;
7516 }
7517 }
7518 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7519 {
7520 rtx intermediate = second_reload_reg;
7521
7522 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7523 new_class, mode)
7524 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7525 ((enum insn_code)
7526 sri2.icode)))
7527 {
7528 second_reload_reg = intermediate;
7529 tertiary_icode = (enum insn_code) sri2.icode;
7530 }
7531 else
7532 {
7533 oldequiv = old;
7534 real_oldequiv = real_old;
7535 }
7536 }
7537 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7538 {
7539 rtx intermediate = second_reload_reg;
7540
7541 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7542 new_class, mode)
7543 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7544 new_t_class, mode))
7545 {
7546 second_reload_reg = intermediate;
7547 tertiary_icode = (enum insn_code) sri2.icode;
7548 }
7549 else
7550 {
7551 oldequiv = old;
7552 real_oldequiv = real_old;
7553 }
7554 }
7555 else
7556 {
7557 /* This could be handled more intelligently too. */
7558 oldequiv = old;
7559 real_oldequiv = real_old;
7560 }
7561 }
7562 }
7563
7564 /* If we still need a secondary reload register, check
7565 to see if it is being used as a scratch or intermediate
7566 register and generate code appropriately. If we need
7567 a scratch register, use REAL_OLDEQUIV since the form of
7568 the insn may depend on the actual address if it is
7569 a MEM. */
7570
7571 if (second_reload_reg)
7572 {
7573 if (icode != CODE_FOR_nothing)
7574 {
7575 /* We'd have to add extra code to handle this case. */
7576 gcc_assert (!third_reload_reg);
7577
7578 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7579 second_reload_reg));
7580 special = 1;
7581 }
7582 else
7583 {
7584 /* See if we need a scratch register to load the
7585 intermediate register (a tertiary reload). */
7586 if (tertiary_icode != CODE_FOR_nothing)
7587 {
7588 emit_insn ((GEN_FCN (tertiary_icode)
7589 (second_reload_reg, real_oldequiv,
7590 third_reload_reg)));
7591 }
7592 else if (third_reload_reg)
7593 {
7594 gen_reload (third_reload_reg, real_oldequiv,
7595 rl->opnum,
7596 rl->when_needed);
7597 gen_reload (second_reload_reg, third_reload_reg,
7598 rl->opnum,
7599 rl->when_needed);
7600 }
7601 else
7602 gen_reload (second_reload_reg, real_oldequiv,
7603 rl->opnum,
7604 rl->when_needed);
7605
7606 oldequiv = second_reload_reg;
7607 }
7608 }
7609 }
7610
7611 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7612 {
7613 rtx real_oldequiv = oldequiv;
7614
7615 if ((REG_P (oldequiv)
7616 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7617 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7618 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7619 || (GET_CODE (oldequiv) == SUBREG
7620 && REG_P (SUBREG_REG (oldequiv))
7621 && (REGNO (SUBREG_REG (oldequiv))
7622 >= FIRST_PSEUDO_REGISTER)
7623 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7624 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7625 || (CONSTANT_P (oldequiv)
7626 && (targetm.preferred_reload_class (oldequiv,
7627 REGNO_REG_CLASS (REGNO (reloadreg)))
7628 == NO_REGS)))
7629 real_oldequiv = rl->in;
7630 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7631 rl->when_needed);
7632 }
7633
7634 if (cfun->can_throw_non_call_exceptions)
7635 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7636
7637 /* End this sequence. */
7638 *where = get_insns ();
7639 end_sequence ();
7640
7641 /* Update reload_override_in so that delete_address_reloads_1
7642 can see the actual register usage. */
7643 if (oldequiv_reg)
7644 reload_override_in[j] = oldequiv;
7645 }
7646
7647 /* Generate insns to for the output reload RL, which is for the insn described
7648 by CHAIN and has the number J. */
7649 static void
7650 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7651 int j)
7652 {
7653 rtx reloadreg;
7654 rtx_insn *insn = chain->insn;
7655 int special = 0;
7656 rtx old = rl->out;
7657 machine_mode mode;
7658 rtx_insn *p;
7659 rtx rl_reg_rtx;
7660
7661 if (rl->when_needed == RELOAD_OTHER)
7662 start_sequence ();
7663 else
7664 push_to_sequence (output_reload_insns[rl->opnum]);
7665
7666 rl_reg_rtx = reload_reg_rtx_for_output[j];
7667 mode = GET_MODE (rl_reg_rtx);
7668
7669 reloadreg = rl_reg_rtx;
7670
7671 /* If we need two reload regs, set RELOADREG to the intermediate
7672 one, since it will be stored into OLD. We might need a secondary
7673 register only for an input reload, so check again here. */
7674
7675 if (rl->secondary_out_reload >= 0)
7676 {
7677 rtx real_old = old;
7678 int secondary_reload = rl->secondary_out_reload;
7679 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7680
7681 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7682 && reg_equiv_mem (REGNO (old)) != 0)
7683 real_old = reg_equiv_mem (REGNO (old));
7684
7685 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7686 {
7687 rtx second_reloadreg = reloadreg;
7688 reloadreg = rld[secondary_reload].reg_rtx;
7689
7690 /* See if RELOADREG is to be used as a scratch register
7691 or as an intermediate register. */
7692 if (rl->secondary_out_icode != CODE_FOR_nothing)
7693 {
7694 /* We'd have to add extra code to handle this case. */
7695 gcc_assert (tertiary_reload < 0);
7696
7697 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7698 (real_old, second_reloadreg, reloadreg)));
7699 special = 1;
7700 }
7701 else
7702 {
7703 /* See if we need both a scratch and intermediate reload
7704 register. */
7705
7706 enum insn_code tertiary_icode
7707 = rld[secondary_reload].secondary_out_icode;
7708
7709 /* We'd have to add more code for quartary reloads. */
7710 gcc_assert (tertiary_reload < 0
7711 || rld[tertiary_reload].secondary_out_reload < 0);
7712
7713 if (GET_MODE (reloadreg) != mode)
7714 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7715
7716 if (tertiary_icode != CODE_FOR_nothing)
7717 {
7718 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7719
7720 /* Copy primary reload reg to secondary reload reg.
7721 (Note that these have been swapped above, then
7722 secondary reload reg to OLD using our insn.) */
7723
7724 /* If REAL_OLD is a paradoxical SUBREG, remove it
7725 and try to put the opposite SUBREG on
7726 RELOADREG. */
7727 strip_paradoxical_subreg (&real_old, &reloadreg);
7728
7729 gen_reload (reloadreg, second_reloadreg,
7730 rl->opnum, rl->when_needed);
7731 emit_insn ((GEN_FCN (tertiary_icode)
7732 (real_old, reloadreg, third_reloadreg)));
7733 special = 1;
7734 }
7735
7736 else
7737 {
7738 /* Copy between the reload regs here and then to
7739 OUT later. */
7740
7741 gen_reload (reloadreg, second_reloadreg,
7742 rl->opnum, rl->when_needed);
7743 if (tertiary_reload >= 0)
7744 {
7745 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7746
7747 gen_reload (third_reloadreg, reloadreg,
7748 rl->opnum, rl->when_needed);
7749 reloadreg = third_reloadreg;
7750 }
7751 }
7752 }
7753 }
7754 }
7755
7756 /* Output the last reload insn. */
7757 if (! special)
7758 {
7759 rtx set;
7760
7761 /* Don't output the last reload if OLD is not the dest of
7762 INSN and is in the src and is clobbered by INSN. */
7763 if (! flag_expensive_optimizations
7764 || !REG_P (old)
7765 || !(set = single_set (insn))
7766 || rtx_equal_p (old, SET_DEST (set))
7767 || !reg_mentioned_p (old, SET_SRC (set))
7768 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7769 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7770 gen_reload (old, reloadreg, rl->opnum,
7771 rl->when_needed);
7772 }
7773
7774 /* Look at all insns we emitted, just to be safe. */
7775 for (p = get_insns (); p; p = NEXT_INSN (p))
7776 if (INSN_P (p))
7777 {
7778 rtx pat = PATTERN (p);
7779
7780 /* If this output reload doesn't come from a spill reg,
7781 clear any memory of reloaded copies of the pseudo reg.
7782 If this output reload comes from a spill reg,
7783 reg_has_output_reload will make this do nothing. */
7784 note_stores (pat, forget_old_reloads_1, NULL);
7785
7786 if (reg_mentioned_p (rl_reg_rtx, pat))
7787 {
7788 rtx set = single_set (insn);
7789 if (reload_spill_index[j] < 0
7790 && set
7791 && SET_SRC (set) == rl_reg_rtx)
7792 {
7793 int src = REGNO (SET_SRC (set));
7794
7795 reload_spill_index[j] = src;
7796 SET_HARD_REG_BIT (reg_is_output_reload, src);
7797 if (find_regno_note (insn, REG_DEAD, src))
7798 SET_HARD_REG_BIT (reg_reloaded_died, src);
7799 }
7800 if (HARD_REGISTER_P (rl_reg_rtx))
7801 {
7802 int s = rl->secondary_out_reload;
7803 set = single_set (p);
7804 /* If this reload copies only to the secondary reload
7805 register, the secondary reload does the actual
7806 store. */
7807 if (s >= 0 && set == NULL_RTX)
7808 /* We can't tell what function the secondary reload
7809 has and where the actual store to the pseudo is
7810 made; leave new_spill_reg_store alone. */
7811 ;
7812 else if (s >= 0
7813 && SET_SRC (set) == rl_reg_rtx
7814 && SET_DEST (set) == rld[s].reg_rtx)
7815 {
7816 /* Usually the next instruction will be the
7817 secondary reload insn; if we can confirm
7818 that it is, setting new_spill_reg_store to
7819 that insn will allow an extra optimization. */
7820 rtx s_reg = rld[s].reg_rtx;
7821 rtx_insn *next = NEXT_INSN (p);
7822 rld[s].out = rl->out;
7823 rld[s].out_reg = rl->out_reg;
7824 set = single_set (next);
7825 if (set && SET_SRC (set) == s_reg
7826 && reload_reg_rtx_reaches_end_p (s_reg, s))
7827 {
7828 SET_HARD_REG_BIT (reg_is_output_reload,
7829 REGNO (s_reg));
7830 new_spill_reg_store[REGNO (s_reg)] = next;
7831 }
7832 }
7833 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7834 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7835 }
7836 }
7837 }
7838
7839 if (rl->when_needed == RELOAD_OTHER)
7840 {
7841 emit_insn (other_output_reload_insns[rl->opnum]);
7842 other_output_reload_insns[rl->opnum] = get_insns ();
7843 }
7844 else
7845 output_reload_insns[rl->opnum] = get_insns ();
7846
7847 if (cfun->can_throw_non_call_exceptions)
7848 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7849
7850 end_sequence ();
7851 }
7852
7853 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7854 and has the number J. */
7855 static void
7856 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7857 {
7858 rtx_insn *insn = chain->insn;
7859 rtx old = (rl->in && MEM_P (rl->in)
7860 ? rl->in_reg : rl->in);
7861 rtx reg_rtx = rl->reg_rtx;
7862
7863 if (old && reg_rtx)
7864 {
7865 machine_mode mode;
7866
7867 /* Determine the mode to reload in.
7868 This is very tricky because we have three to choose from.
7869 There is the mode the insn operand wants (rl->inmode).
7870 There is the mode of the reload register RELOADREG.
7871 There is the intrinsic mode of the operand, which we could find
7872 by stripping some SUBREGs.
7873 It turns out that RELOADREG's mode is irrelevant:
7874 we can change that arbitrarily.
7875
7876 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7877 then the reload reg may not support QImode moves, so use SImode.
7878 If foo is in memory due to spilling a pseudo reg, this is safe,
7879 because the QImode value is in the least significant part of a
7880 slot big enough for a SImode. If foo is some other sort of
7881 memory reference, then it is impossible to reload this case,
7882 so previous passes had better make sure this never happens.
7883
7884 Then consider a one-word union which has SImode and one of its
7885 members is a float, being fetched as (SUBREG:SF union:SI).
7886 We must fetch that as SFmode because we could be loading into
7887 a float-only register. In this case OLD's mode is correct.
7888
7889 Consider an immediate integer: it has VOIDmode. Here we need
7890 to get a mode from something else.
7891
7892 In some cases, there is a fourth mode, the operand's
7893 containing mode. If the insn specifies a containing mode for
7894 this operand, it overrides all others.
7895
7896 I am not sure whether the algorithm here is always right,
7897 but it does the right things in those cases. */
7898
7899 mode = GET_MODE (old);
7900 if (mode == VOIDmode)
7901 mode = rl->inmode;
7902
7903 /* We cannot use gen_lowpart_common since it can do the wrong thing
7904 when REG_RTX has a multi-word mode. Note that REG_RTX must
7905 always be a REG here. */
7906 if (GET_MODE (reg_rtx) != mode)
7907 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7908 }
7909 reload_reg_rtx_for_input[j] = reg_rtx;
7910
7911 if (old != 0
7912 /* AUTO_INC reloads need to be handled even if inherited. We got an
7913 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7914 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7915 && ! rtx_equal_p (reg_rtx, old)
7916 && reg_rtx != 0)
7917 emit_input_reload_insns (chain, rld + j, old, j);
7918
7919 /* When inheriting a wider reload, we have a MEM in rl->in,
7920 e.g. inheriting a SImode output reload for
7921 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7922 if (optimize && reload_inherited[j] && rl->in
7923 && MEM_P (rl->in)
7924 && MEM_P (rl->in_reg)
7925 && reload_spill_index[j] >= 0
7926 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7927 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7928
7929 /* If we are reloading a register that was recently stored in with an
7930 output-reload, see if we can prove there was
7931 actually no need to store the old value in it. */
7932
7933 if (optimize
7934 && (reload_inherited[j] || reload_override_in[j])
7935 && reg_rtx
7936 && REG_P (reg_rtx)
7937 && spill_reg_store[REGNO (reg_rtx)] != 0
7938 #if 0
7939 /* There doesn't seem to be any reason to restrict this to pseudos
7940 and doing so loses in the case where we are copying from a
7941 register of the wrong class. */
7942 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7943 #endif
7944 /* The insn might have already some references to stackslots
7945 replaced by MEMs, while reload_out_reg still names the
7946 original pseudo. */
7947 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7948 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7949 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7950 }
7951
7952 /* Do output reloading for reload RL, which is for the insn described by
7953 CHAIN and has the number J.
7954 ??? At some point we need to support handling output reloads of
7955 JUMP_INSNs or insns that set cc0. */
7956 static void
7957 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7958 {
7959 rtx note, old;
7960 rtx_insn *insn = chain->insn;
7961 /* If this is an output reload that stores something that is
7962 not loaded in this same reload, see if we can eliminate a previous
7963 store. */
7964 rtx pseudo = rl->out_reg;
7965 rtx reg_rtx = rl->reg_rtx;
7966
7967 if (rl->out && reg_rtx)
7968 {
7969 machine_mode mode;
7970
7971 /* Determine the mode to reload in.
7972 See comments above (for input reloading). */
7973 mode = GET_MODE (rl->out);
7974 if (mode == VOIDmode)
7975 {
7976 /* VOIDmode should never happen for an output. */
7977 if (asm_noperands (PATTERN (insn)) < 0)
7978 /* It's the compiler's fault. */
7979 fatal_insn ("VOIDmode on an output", insn);
7980 error_for_asm (insn, "output operand is constant in %<asm%>");
7981 /* Prevent crash--use something we know is valid. */
7982 mode = word_mode;
7983 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7984 }
7985 if (GET_MODE (reg_rtx) != mode)
7986 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7987 }
7988 reload_reg_rtx_for_output[j] = reg_rtx;
7989
7990 if (pseudo
7991 && optimize
7992 && REG_P (pseudo)
7993 && ! rtx_equal_p (rl->in_reg, pseudo)
7994 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7995 && reg_last_reload_reg[REGNO (pseudo)])
7996 {
7997 int pseudo_no = REGNO (pseudo);
7998 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7999
8000 /* We don't need to test full validity of last_regno for
8001 inherit here; we only want to know if the store actually
8002 matches the pseudo. */
8003 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8004 && reg_reloaded_contents[last_regno] == pseudo_no
8005 && spill_reg_store[last_regno]
8006 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8007 delete_output_reload (insn, j, last_regno, reg_rtx);
8008 }
8009
8010 old = rl->out_reg;
8011 if (old == 0
8012 || reg_rtx == 0
8013 || rtx_equal_p (old, reg_rtx))
8014 return;
8015
8016 /* An output operand that dies right away does need a reload,
8017 but need not be copied from it. Show the new location in the
8018 REG_UNUSED note. */
8019 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8020 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8021 {
8022 XEXP (note, 0) = reg_rtx;
8023 return;
8024 }
8025 /* Likewise for a SUBREG of an operand that dies. */
8026 else if (GET_CODE (old) == SUBREG
8027 && REG_P (SUBREG_REG (old))
8028 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8029 SUBREG_REG (old))))
8030 {
8031 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8032 return;
8033 }
8034 else if (GET_CODE (old) == SCRATCH)
8035 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8036 but we don't want to make an output reload. */
8037 return;
8038
8039 /* If is a JUMP_INSN, we can't support output reloads yet. */
8040 gcc_assert (NONJUMP_INSN_P (insn));
8041
8042 emit_output_reload_insns (chain, rld + j, j);
8043 }
8044
8045 /* A reload copies values of MODE from register SRC to register DEST.
8046 Return true if it can be treated for inheritance purposes like a
8047 group of reloads, each one reloading a single hard register. The
8048 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8049 occupy the same number of hard registers. */
8050
8051 static bool
8052 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8053 int src ATTRIBUTE_UNUSED,
8054 machine_mode mode ATTRIBUTE_UNUSED)
8055 {
8056 #ifdef CANNOT_CHANGE_MODE_CLASS
8057 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8058 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8059 #else
8060 return true;
8061 #endif
8062 }
8063
8064 /* Output insns to reload values in and out of the chosen reload regs. */
8065
8066 static void
8067 emit_reload_insns (struct insn_chain *chain)
8068 {
8069 rtx_insn *insn = chain->insn;
8070
8071 int j;
8072
8073 CLEAR_HARD_REG_SET (reg_reloaded_died);
8074
8075 for (j = 0; j < reload_n_operands; j++)
8076 input_reload_insns[j] = input_address_reload_insns[j]
8077 = inpaddr_address_reload_insns[j]
8078 = output_reload_insns[j] = output_address_reload_insns[j]
8079 = outaddr_address_reload_insns[j]
8080 = other_output_reload_insns[j] = 0;
8081 other_input_address_reload_insns = 0;
8082 other_input_reload_insns = 0;
8083 operand_reload_insns = 0;
8084 other_operand_reload_insns = 0;
8085
8086 /* Dump reloads into the dump file. */
8087 if (dump_file)
8088 {
8089 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8090 debug_reload_to_stream (dump_file);
8091 }
8092
8093 for (j = 0; j < n_reloads; j++)
8094 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8095 {
8096 unsigned int i;
8097
8098 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8099 new_spill_reg_store[i] = 0;
8100 }
8101
8102 /* Now output the instructions to copy the data into and out of the
8103 reload registers. Do these in the order that the reloads were reported,
8104 since reloads of base and index registers precede reloads of operands
8105 and the operands may need the base and index registers reloaded. */
8106
8107 for (j = 0; j < n_reloads; j++)
8108 {
8109 do_input_reload (chain, rld + j, j);
8110 do_output_reload (chain, rld + j, j);
8111 }
8112
8113 /* Now write all the insns we made for reloads in the order expected by
8114 the allocation functions. Prior to the insn being reloaded, we write
8115 the following reloads:
8116
8117 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8118
8119 RELOAD_OTHER reloads.
8120
8121 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8122 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8123 RELOAD_FOR_INPUT reload for the operand.
8124
8125 RELOAD_FOR_OPADDR_ADDRS reloads.
8126
8127 RELOAD_FOR_OPERAND_ADDRESS reloads.
8128
8129 After the insn being reloaded, we write the following:
8130
8131 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8132 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8133 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8134 reloads for the operand. The RELOAD_OTHER output reloads are
8135 output in descending order by reload number. */
8136
8137 emit_insn_before (other_input_address_reload_insns, insn);
8138 emit_insn_before (other_input_reload_insns, insn);
8139
8140 for (j = 0; j < reload_n_operands; j++)
8141 {
8142 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8143 emit_insn_before (input_address_reload_insns[j], insn);
8144 emit_insn_before (input_reload_insns[j], insn);
8145 }
8146
8147 emit_insn_before (other_operand_reload_insns, insn);
8148 emit_insn_before (operand_reload_insns, insn);
8149
8150 for (j = 0; j < reload_n_operands; j++)
8151 {
8152 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8153 x = emit_insn_after (output_address_reload_insns[j], x);
8154 x = emit_insn_after (output_reload_insns[j], x);
8155 emit_insn_after (other_output_reload_insns[j], x);
8156 }
8157
8158 /* For all the spill regs newly reloaded in this instruction,
8159 record what they were reloaded from, so subsequent instructions
8160 can inherit the reloads.
8161
8162 Update spill_reg_store for the reloads of this insn.
8163 Copy the elements that were updated in the loop above. */
8164
8165 for (j = 0; j < n_reloads; j++)
8166 {
8167 int r = reload_order[j];
8168 int i = reload_spill_index[r];
8169
8170 /* If this is a non-inherited input reload from a pseudo, we must
8171 clear any memory of a previous store to the same pseudo. Only do
8172 something if there will not be an output reload for the pseudo
8173 being reloaded. */
8174 if (rld[r].in_reg != 0
8175 && ! (reload_inherited[r] || reload_override_in[r]))
8176 {
8177 rtx reg = rld[r].in_reg;
8178
8179 if (GET_CODE (reg) == SUBREG)
8180 reg = SUBREG_REG (reg);
8181
8182 if (REG_P (reg)
8183 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8184 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8185 {
8186 int nregno = REGNO (reg);
8187
8188 if (reg_last_reload_reg[nregno])
8189 {
8190 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8191
8192 if (reg_reloaded_contents[last_regno] == nregno)
8193 spill_reg_store[last_regno] = 0;
8194 }
8195 }
8196 }
8197
8198 /* I is nonneg if this reload used a register.
8199 If rld[r].reg_rtx is 0, this is an optional reload
8200 that we opted to ignore. */
8201
8202 if (i >= 0 && rld[r].reg_rtx != 0)
8203 {
8204 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8205 int k;
8206
8207 /* For a multi register reload, we need to check if all or part
8208 of the value lives to the end. */
8209 for (k = 0; k < nr; k++)
8210 if (reload_reg_reaches_end_p (i + k, r))
8211 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8212
8213 /* Maybe the spill reg contains a copy of reload_out. */
8214 if (rld[r].out != 0
8215 && (REG_P (rld[r].out)
8216 || (rld[r].out_reg
8217 ? REG_P (rld[r].out_reg)
8218 /* The reload value is an auto-modification of
8219 some kind. For PRE_INC, POST_INC, PRE_DEC
8220 and POST_DEC, we record an equivalence
8221 between the reload register and the operand
8222 on the optimistic assumption that we can make
8223 the equivalence hold. reload_as_needed must
8224 then either make it hold or invalidate the
8225 equivalence.
8226
8227 PRE_MODIFY and POST_MODIFY addresses are reloaded
8228 somewhat differently, and allowing them here leads
8229 to problems. */
8230 : (GET_CODE (rld[r].out) != POST_MODIFY
8231 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8232 {
8233 rtx reg;
8234
8235 reg = reload_reg_rtx_for_output[r];
8236 if (reload_reg_rtx_reaches_end_p (reg, r))
8237 {
8238 machine_mode mode = GET_MODE (reg);
8239 int regno = REGNO (reg);
8240 int nregs = hard_regno_nregs[regno][mode];
8241 rtx out = (REG_P (rld[r].out)
8242 ? rld[r].out
8243 : rld[r].out_reg
8244 ? rld[r].out_reg
8245 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8246 int out_regno = REGNO (out);
8247 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8248 : hard_regno_nregs[out_regno][mode]);
8249 bool piecemeal;
8250
8251 spill_reg_store[regno] = new_spill_reg_store[regno];
8252 spill_reg_stored_to[regno] = out;
8253 reg_last_reload_reg[out_regno] = reg;
8254
8255 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8256 && nregs == out_nregs
8257 && inherit_piecemeal_p (out_regno, regno, mode));
8258
8259 /* If OUT_REGNO is a hard register, it may occupy more than
8260 one register. If it does, say what is in the
8261 rest of the registers assuming that both registers
8262 agree on how many words the object takes. If not,
8263 invalidate the subsequent registers. */
8264
8265 if (HARD_REGISTER_NUM_P (out_regno))
8266 for (k = 1; k < out_nregs; k++)
8267 reg_last_reload_reg[out_regno + k]
8268 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8269
8270 /* Now do the inverse operation. */
8271 for (k = 0; k < nregs; k++)
8272 {
8273 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8274 reg_reloaded_contents[regno + k]
8275 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8276 ? out_regno
8277 : out_regno + k);
8278 reg_reloaded_insn[regno + k] = insn;
8279 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8280 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8281 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8282 regno + k);
8283 else
8284 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8285 regno + k);
8286 }
8287 }
8288 }
8289 /* Maybe the spill reg contains a copy of reload_in. Only do
8290 something if there will not be an output reload for
8291 the register being reloaded. */
8292 else if (rld[r].out_reg == 0
8293 && rld[r].in != 0
8294 && ((REG_P (rld[r].in)
8295 && !HARD_REGISTER_P (rld[r].in)
8296 && !REGNO_REG_SET_P (&reg_has_output_reload,
8297 REGNO (rld[r].in)))
8298 || (REG_P (rld[r].in_reg)
8299 && !REGNO_REG_SET_P (&reg_has_output_reload,
8300 REGNO (rld[r].in_reg))))
8301 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8302 {
8303 rtx reg;
8304
8305 reg = reload_reg_rtx_for_input[r];
8306 if (reload_reg_rtx_reaches_end_p (reg, r))
8307 {
8308 machine_mode mode;
8309 int regno;
8310 int nregs;
8311 int in_regno;
8312 int in_nregs;
8313 rtx in;
8314 bool piecemeal;
8315
8316 mode = GET_MODE (reg);
8317 regno = REGNO (reg);
8318 nregs = hard_regno_nregs[regno][mode];
8319 if (REG_P (rld[r].in)
8320 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8321 in = rld[r].in;
8322 else if (REG_P (rld[r].in_reg))
8323 in = rld[r].in_reg;
8324 else
8325 in = XEXP (rld[r].in_reg, 0);
8326 in_regno = REGNO (in);
8327
8328 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8329 : hard_regno_nregs[in_regno][mode]);
8330
8331 reg_last_reload_reg[in_regno] = reg;
8332
8333 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8334 && nregs == in_nregs
8335 && inherit_piecemeal_p (regno, in_regno, mode));
8336
8337 if (HARD_REGISTER_NUM_P (in_regno))
8338 for (k = 1; k < in_nregs; k++)
8339 reg_last_reload_reg[in_regno + k]
8340 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8341
8342 /* Unless we inherited this reload, show we haven't
8343 recently done a store.
8344 Previous stores of inherited auto_inc expressions
8345 also have to be discarded. */
8346 if (! reload_inherited[r]
8347 || (rld[r].out && ! rld[r].out_reg))
8348 spill_reg_store[regno] = 0;
8349
8350 for (k = 0; k < nregs; k++)
8351 {
8352 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8353 reg_reloaded_contents[regno + k]
8354 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8355 ? in_regno
8356 : in_regno + k);
8357 reg_reloaded_insn[regno + k] = insn;
8358 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8359 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8360 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8361 regno + k);
8362 else
8363 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8364 regno + k);
8365 }
8366 }
8367 }
8368 }
8369
8370 /* The following if-statement was #if 0'd in 1.34 (or before...).
8371 It's reenabled in 1.35 because supposedly nothing else
8372 deals with this problem. */
8373
8374 /* If a register gets output-reloaded from a non-spill register,
8375 that invalidates any previous reloaded copy of it.
8376 But forget_old_reloads_1 won't get to see it, because
8377 it thinks only about the original insn. So invalidate it here.
8378 Also do the same thing for RELOAD_OTHER constraints where the
8379 output is discarded. */
8380 if (i < 0
8381 && ((rld[r].out != 0
8382 && (REG_P (rld[r].out)
8383 || (MEM_P (rld[r].out)
8384 && REG_P (rld[r].out_reg))))
8385 || (rld[r].out == 0 && rld[r].out_reg
8386 && REG_P (rld[r].out_reg))))
8387 {
8388 rtx out = ((rld[r].out && REG_P (rld[r].out))
8389 ? rld[r].out : rld[r].out_reg);
8390 int out_regno = REGNO (out);
8391 machine_mode mode = GET_MODE (out);
8392
8393 /* REG_RTX is now set or clobbered by the main instruction.
8394 As the comment above explains, forget_old_reloads_1 only
8395 sees the original instruction, and there is no guarantee
8396 that the original instruction also clobbered REG_RTX.
8397 For example, if find_reloads sees that the input side of
8398 a matched operand pair dies in this instruction, it may
8399 use the input register as the reload register.
8400
8401 Calling forget_old_reloads_1 is a waste of effort if
8402 REG_RTX is also the output register.
8403
8404 If we know that REG_RTX holds the value of a pseudo
8405 register, the code after the call will record that fact. */
8406 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8407 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8408
8409 if (!HARD_REGISTER_NUM_P (out_regno))
8410 {
8411 rtx src_reg;
8412 rtx_insn *store_insn = NULL;
8413
8414 reg_last_reload_reg[out_regno] = 0;
8415
8416 /* If we can find a hard register that is stored, record
8417 the storing insn so that we may delete this insn with
8418 delete_output_reload. */
8419 src_reg = reload_reg_rtx_for_output[r];
8420
8421 if (src_reg)
8422 {
8423 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8424 store_insn = new_spill_reg_store[REGNO (src_reg)];
8425 else
8426 src_reg = NULL_RTX;
8427 }
8428 else
8429 {
8430 /* If this is an optional reload, try to find the
8431 source reg from an input reload. */
8432 rtx set = single_set (insn);
8433 if (set && SET_DEST (set) == rld[r].out)
8434 {
8435 int k;
8436
8437 src_reg = SET_SRC (set);
8438 store_insn = insn;
8439 for (k = 0; k < n_reloads; k++)
8440 {
8441 if (rld[k].in == src_reg)
8442 {
8443 src_reg = reload_reg_rtx_for_input[k];
8444 break;
8445 }
8446 }
8447 }
8448 }
8449 if (src_reg && REG_P (src_reg)
8450 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8451 {
8452 int src_regno, src_nregs, k;
8453 rtx note;
8454
8455 gcc_assert (GET_MODE (src_reg) == mode);
8456 src_regno = REGNO (src_reg);
8457 src_nregs = hard_regno_nregs[src_regno][mode];
8458 /* The place where to find a death note varies with
8459 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8460 necessarily checked exactly in the code that moves
8461 notes, so just check both locations. */
8462 note = find_regno_note (insn, REG_DEAD, src_regno);
8463 if (! note && store_insn)
8464 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8465 for (k = 0; k < src_nregs; k++)
8466 {
8467 spill_reg_store[src_regno + k] = store_insn;
8468 spill_reg_stored_to[src_regno + k] = out;
8469 reg_reloaded_contents[src_regno + k] = out_regno;
8470 reg_reloaded_insn[src_regno + k] = store_insn;
8471 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8472 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8473 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8474 mode))
8475 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8476 src_regno + k);
8477 else
8478 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8479 src_regno + k);
8480 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8481 if (note)
8482 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8483 else
8484 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8485 }
8486 reg_last_reload_reg[out_regno] = src_reg;
8487 /* We have to set reg_has_output_reload here, or else
8488 forget_old_reloads_1 will clear reg_last_reload_reg
8489 right away. */
8490 SET_REGNO_REG_SET (&reg_has_output_reload,
8491 out_regno);
8492 }
8493 }
8494 else
8495 {
8496 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8497
8498 for (k = 0; k < out_nregs; k++)
8499 reg_last_reload_reg[out_regno + k] = 0;
8500 }
8501 }
8502 }
8503 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8504 }
8505 \f
8506 /* Go through the motions to emit INSN and test if it is strictly valid.
8507 Return the emitted insn if valid, else return NULL. */
8508
8509 static rtx_insn *
8510 emit_insn_if_valid_for_reload (rtx pat)
8511 {
8512 rtx_insn *last = get_last_insn ();
8513 int code;
8514
8515 rtx_insn *insn = emit_insn (pat);
8516 code = recog_memoized (insn);
8517
8518 if (code >= 0)
8519 {
8520 extract_insn (insn);
8521 /* We want constrain operands to treat this insn strictly in its
8522 validity determination, i.e., the way it would after reload has
8523 completed. */
8524 if (constrain_operands (1, get_enabled_alternatives (insn)))
8525 return insn;
8526 }
8527
8528 delete_insns_since (last);
8529 return NULL;
8530 }
8531
8532 /* Emit code to perform a reload from IN (which may be a reload register) to
8533 OUT (which may also be a reload register). IN or OUT is from operand
8534 OPNUM with reload type TYPE.
8535
8536 Returns first insn emitted. */
8537
8538 static rtx_insn *
8539 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8540 {
8541 rtx_insn *last = get_last_insn ();
8542 rtx_insn *tem;
8543 #ifdef SECONDARY_MEMORY_NEEDED
8544 rtx tem1, tem2;
8545 #endif
8546
8547 /* If IN is a paradoxical SUBREG, remove it and try to put the
8548 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8549 if (!strip_paradoxical_subreg (&in, &out))
8550 strip_paradoxical_subreg (&out, &in);
8551
8552 /* How to do this reload can get quite tricky. Normally, we are being
8553 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8554 register that didn't get a hard register. In that case we can just
8555 call emit_move_insn.
8556
8557 We can also be asked to reload a PLUS that adds a register or a MEM to
8558 another register, constant or MEM. This can occur during frame pointer
8559 elimination and while reloading addresses. This case is handled by
8560 trying to emit a single insn to perform the add. If it is not valid,
8561 we use a two insn sequence.
8562
8563 Or we can be asked to reload an unary operand that was a fragment of
8564 an addressing mode, into a register. If it isn't recognized as-is,
8565 we try making the unop operand and the reload-register the same:
8566 (set reg:X (unop:X expr:Y))
8567 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8568
8569 Finally, we could be called to handle an 'o' constraint by putting
8570 an address into a register. In that case, we first try to do this
8571 with a named pattern of "reload_load_address". If no such pattern
8572 exists, we just emit a SET insn and hope for the best (it will normally
8573 be valid on machines that use 'o').
8574
8575 This entire process is made complex because reload will never
8576 process the insns we generate here and so we must ensure that
8577 they will fit their constraints and also by the fact that parts of
8578 IN might be being reloaded separately and replaced with spill registers.
8579 Because of this, we are, in some sense, just guessing the right approach
8580 here. The one listed above seems to work.
8581
8582 ??? At some point, this whole thing needs to be rethought. */
8583
8584 if (GET_CODE (in) == PLUS
8585 && (REG_P (XEXP (in, 0))
8586 || GET_CODE (XEXP (in, 0)) == SUBREG
8587 || MEM_P (XEXP (in, 0)))
8588 && (REG_P (XEXP (in, 1))
8589 || GET_CODE (XEXP (in, 1)) == SUBREG
8590 || CONSTANT_P (XEXP (in, 1))
8591 || MEM_P (XEXP (in, 1))))
8592 {
8593 /* We need to compute the sum of a register or a MEM and another
8594 register, constant, or MEM, and put it into the reload
8595 register. The best possible way of doing this is if the machine
8596 has a three-operand ADD insn that accepts the required operands.
8597
8598 The simplest approach is to try to generate such an insn and see if it
8599 is recognized and matches its constraints. If so, it can be used.
8600
8601 It might be better not to actually emit the insn unless it is valid,
8602 but we need to pass the insn as an operand to `recog' and
8603 `extract_insn' and it is simpler to emit and then delete the insn if
8604 not valid than to dummy things up. */
8605
8606 rtx op0, op1, tem;
8607 rtx_insn *insn;
8608 enum insn_code code;
8609
8610 op0 = find_replacement (&XEXP (in, 0));
8611 op1 = find_replacement (&XEXP (in, 1));
8612
8613 /* Since constraint checking is strict, commutativity won't be
8614 checked, so we need to do that here to avoid spurious failure
8615 if the add instruction is two-address and the second operand
8616 of the add is the same as the reload reg, which is frequently
8617 the case. If the insn would be A = B + A, rearrange it so
8618 it will be A = A + B as constrain_operands expects. */
8619
8620 if (REG_P (XEXP (in, 1))
8621 && REGNO (out) == REGNO (XEXP (in, 1)))
8622 tem = op0, op0 = op1, op1 = tem;
8623
8624 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8625 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8626
8627 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8628 if (insn)
8629 return insn;
8630
8631 /* If that failed, we must use a conservative two-insn sequence.
8632
8633 Use a move to copy one operand into the reload register. Prefer
8634 to reload a constant, MEM or pseudo since the move patterns can
8635 handle an arbitrary operand. If OP1 is not a constant, MEM or
8636 pseudo and OP1 is not a valid operand for an add instruction, then
8637 reload OP1.
8638
8639 After reloading one of the operands into the reload register, add
8640 the reload register to the output register.
8641
8642 If there is another way to do this for a specific machine, a
8643 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8644 we emit below. */
8645
8646 code = optab_handler (add_optab, GET_MODE (out));
8647
8648 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8649 || (REG_P (op1)
8650 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8651 || (code != CODE_FOR_nothing
8652 && !insn_operand_matches (code, 2, op1)))
8653 tem = op0, op0 = op1, op1 = tem;
8654
8655 gen_reload (out, op0, opnum, type);
8656
8657 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8658 This fixes a problem on the 32K where the stack pointer cannot
8659 be used as an operand of an add insn. */
8660
8661 if (rtx_equal_p (op0, op1))
8662 op1 = out;
8663
8664 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8665 if (insn)
8666 {
8667 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8668 set_dst_reg_note (insn, REG_EQUIV, in, out);
8669 return insn;
8670 }
8671
8672 /* If that failed, copy the address register to the reload register.
8673 Then add the constant to the reload register. */
8674
8675 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8676 gen_reload (out, op1, opnum, type);
8677 insn = emit_insn (gen_add2_insn (out, op0));
8678 set_dst_reg_note (insn, REG_EQUIV, in, out);
8679 }
8680
8681 #ifdef SECONDARY_MEMORY_NEEDED
8682 /* If we need a memory location to do the move, do it that way. */
8683 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8684 (REG_P (tem1) && REG_P (tem2)))
8685 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8686 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8687 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8688 REGNO_REG_CLASS (REGNO (tem2)),
8689 GET_MODE (out)))
8690 {
8691 /* Get the memory to use and rewrite both registers to its mode. */
8692 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8693
8694 if (GET_MODE (loc) != GET_MODE (out))
8695 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8696
8697 if (GET_MODE (loc) != GET_MODE (in))
8698 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8699
8700 gen_reload (loc, in, opnum, type);
8701 gen_reload (out, loc, opnum, type);
8702 }
8703 #endif
8704 else if (REG_P (out) && UNARY_P (in))
8705 {
8706 rtx insn;
8707 rtx op1;
8708 rtx out_moded;
8709 rtx_insn *set;
8710
8711 op1 = find_replacement (&XEXP (in, 0));
8712 if (op1 != XEXP (in, 0))
8713 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8714
8715 /* First, try a plain SET. */
8716 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8717 if (set)
8718 return set;
8719
8720 /* If that failed, move the inner operand to the reload
8721 register, and try the same unop with the inner expression
8722 replaced with the reload register. */
8723
8724 if (GET_MODE (op1) != GET_MODE (out))
8725 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8726 else
8727 out_moded = out;
8728
8729 gen_reload (out_moded, op1, opnum, type);
8730
8731 insn = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8732 out_moded));
8733 insn = emit_insn_if_valid_for_reload (insn);
8734 if (insn)
8735 {
8736 set_unique_reg_note (insn, REG_EQUIV, in);
8737 return as_a <rtx_insn *> (insn);
8738 }
8739
8740 fatal_insn ("failure trying to reload:", set);
8741 }
8742 /* If IN is a simple operand, use gen_move_insn. */
8743 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8744 {
8745 tem = emit_insn (gen_move_insn (out, in));
8746 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8747 mark_jump_label (in, tem, 0);
8748 }
8749
8750 else if (targetm.have_reload_load_address ())
8751 emit_insn (targetm.gen_reload_load_address (out, in));
8752
8753 /* Otherwise, just write (set OUT IN) and hope for the best. */
8754 else
8755 emit_insn (gen_rtx_SET (out, in));
8756
8757 /* Return the first insn emitted.
8758 We can not just return get_last_insn, because there may have
8759 been multiple instructions emitted. Also note that gen_move_insn may
8760 emit more than one insn itself, so we can not assume that there is one
8761 insn emitted per emit_insn_before call. */
8762
8763 return last ? NEXT_INSN (last) : get_insns ();
8764 }
8765 \f
8766 /* Delete a previously made output-reload whose result we now believe
8767 is not needed. First we double-check.
8768
8769 INSN is the insn now being processed.
8770 LAST_RELOAD_REG is the hard register number for which we want to delete
8771 the last output reload.
8772 J is the reload-number that originally used REG. The caller has made
8773 certain that reload J doesn't use REG any longer for input.
8774 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8775
8776 static void
8777 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8778 rtx new_reload_reg)
8779 {
8780 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8781 rtx reg = spill_reg_stored_to[last_reload_reg];
8782 int k;
8783 int n_occurrences;
8784 int n_inherited = 0;
8785 rtx substed;
8786 unsigned regno;
8787 int nregs;
8788
8789 /* It is possible that this reload has been only used to set another reload
8790 we eliminated earlier and thus deleted this instruction too. */
8791 if (output_reload_insn->deleted ())
8792 return;
8793
8794 /* Get the raw pseudo-register referred to. */
8795
8796 while (GET_CODE (reg) == SUBREG)
8797 reg = SUBREG_REG (reg);
8798 substed = reg_equiv_memory_loc (REGNO (reg));
8799
8800 /* This is unsafe if the operand occurs more often in the current
8801 insn than it is inherited. */
8802 for (k = n_reloads - 1; k >= 0; k--)
8803 {
8804 rtx reg2 = rld[k].in;
8805 if (! reg2)
8806 continue;
8807 if (MEM_P (reg2) || reload_override_in[k])
8808 reg2 = rld[k].in_reg;
8809
8810 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8811 reg2 = XEXP (rld[k].in_reg, 0);
8812
8813 while (GET_CODE (reg2) == SUBREG)
8814 reg2 = SUBREG_REG (reg2);
8815 if (rtx_equal_p (reg2, reg))
8816 {
8817 if (reload_inherited[k] || reload_override_in[k] || k == j)
8818 n_inherited++;
8819 else
8820 return;
8821 }
8822 }
8823 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8824 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8825 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8826 reg, 0);
8827 if (substed)
8828 n_occurrences += count_occurrences (PATTERN (insn),
8829 eliminate_regs (substed, VOIDmode,
8830 NULL_RTX), 0);
8831 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8832 {
8833 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8834 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8835 }
8836 if (n_occurrences > n_inherited)
8837 return;
8838
8839 regno = REGNO (reg);
8840 if (regno >= FIRST_PSEUDO_REGISTER)
8841 nregs = 1;
8842 else
8843 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8844
8845 /* If the pseudo-reg we are reloading is no longer referenced
8846 anywhere between the store into it and here,
8847 and we're within the same basic block, then the value can only
8848 pass through the reload reg and end up here.
8849 Otherwise, give up--return. */
8850 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8851 i1 != insn; i1 = NEXT_INSN (i1))
8852 {
8853 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8854 return;
8855 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8856 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8857 {
8858 /* If this is USE in front of INSN, we only have to check that
8859 there are no more references than accounted for by inheritance. */
8860 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8861 {
8862 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8863 i1 = NEXT_INSN (i1);
8864 }
8865 if (n_occurrences <= n_inherited && i1 == insn)
8866 break;
8867 return;
8868 }
8869 }
8870
8871 /* We will be deleting the insn. Remove the spill reg information. */
8872 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8873 {
8874 spill_reg_store[last_reload_reg + k] = 0;
8875 spill_reg_stored_to[last_reload_reg + k] = 0;
8876 }
8877
8878 /* The caller has already checked that REG dies or is set in INSN.
8879 It has also checked that we are optimizing, and thus some
8880 inaccuracies in the debugging information are acceptable.
8881 So we could just delete output_reload_insn. But in some cases
8882 we can improve the debugging information without sacrificing
8883 optimization - maybe even improving the code: See if the pseudo
8884 reg has been completely replaced with reload regs. If so, delete
8885 the store insn and forget we had a stack slot for the pseudo. */
8886 if (rld[j].out != rld[j].in
8887 && REG_N_DEATHS (REGNO (reg)) == 1
8888 && REG_N_SETS (REGNO (reg)) == 1
8889 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8890 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8891 {
8892 rtx_insn *i2;
8893
8894 /* We know that it was used only between here and the beginning of
8895 the current basic block. (We also know that the last use before
8896 INSN was the output reload we are thinking of deleting, but never
8897 mind that.) Search that range; see if any ref remains. */
8898 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8899 {
8900 rtx set = single_set (i2);
8901
8902 /* Uses which just store in the pseudo don't count,
8903 since if they are the only uses, they are dead. */
8904 if (set != 0 && SET_DEST (set) == reg)
8905 continue;
8906 if (LABEL_P (i2) || JUMP_P (i2))
8907 break;
8908 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8909 && reg_mentioned_p (reg, PATTERN (i2)))
8910 {
8911 /* Some other ref remains; just delete the output reload we
8912 know to be dead. */
8913 delete_address_reloads (output_reload_insn, insn);
8914 delete_insn (output_reload_insn);
8915 return;
8916 }
8917 }
8918
8919 /* Delete the now-dead stores into this pseudo. Note that this
8920 loop also takes care of deleting output_reload_insn. */
8921 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8922 {
8923 rtx set = single_set (i2);
8924
8925 if (set != 0 && SET_DEST (set) == reg)
8926 {
8927 delete_address_reloads (i2, insn);
8928 delete_insn (i2);
8929 }
8930 if (LABEL_P (i2) || JUMP_P (i2))
8931 break;
8932 }
8933
8934 /* For the debugging info, say the pseudo lives in this reload reg. */
8935 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8936 if (ira_conflicts_p)
8937 /* Inform IRA about the change. */
8938 ira_mark_allocation_change (REGNO (reg));
8939 alter_reg (REGNO (reg), -1, false);
8940 }
8941 else
8942 {
8943 delete_address_reloads (output_reload_insn, insn);
8944 delete_insn (output_reload_insn);
8945 }
8946 }
8947
8948 /* We are going to delete DEAD_INSN. Recursively delete loads of
8949 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8950 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8951 static void
8952 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8953 {
8954 rtx set = single_set (dead_insn);
8955 rtx set2, dst;
8956 rtx_insn *prev, *next;
8957 if (set)
8958 {
8959 rtx dst = SET_DEST (set);
8960 if (MEM_P (dst))
8961 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8962 }
8963 /* If we deleted the store from a reloaded post_{in,de}c expression,
8964 we can delete the matching adds. */
8965 prev = PREV_INSN (dead_insn);
8966 next = NEXT_INSN (dead_insn);
8967 if (! prev || ! next)
8968 return;
8969 set = single_set (next);
8970 set2 = single_set (prev);
8971 if (! set || ! set2
8972 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8973 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8974 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8975 return;
8976 dst = SET_DEST (set);
8977 if (! rtx_equal_p (dst, SET_DEST (set2))
8978 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8979 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8980 || (INTVAL (XEXP (SET_SRC (set), 1))
8981 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8982 return;
8983 delete_related_insns (prev);
8984 delete_related_insns (next);
8985 }
8986
8987 /* Subfunction of delete_address_reloads: process registers found in X. */
8988 static void
8989 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8990 {
8991 rtx_insn *prev, *i2;
8992 rtx set, dst;
8993 int i, j;
8994 enum rtx_code code = GET_CODE (x);
8995
8996 if (code != REG)
8997 {
8998 const char *fmt = GET_RTX_FORMAT (code);
8999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9000 {
9001 if (fmt[i] == 'e')
9002 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9003 else if (fmt[i] == 'E')
9004 {
9005 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9006 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9007 current_insn);
9008 }
9009 }
9010 return;
9011 }
9012
9013 if (spill_reg_order[REGNO (x)] < 0)
9014 return;
9015
9016 /* Scan backwards for the insn that sets x. This might be a way back due
9017 to inheritance. */
9018 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9019 {
9020 code = GET_CODE (prev);
9021 if (code == CODE_LABEL || code == JUMP_INSN)
9022 return;
9023 if (!INSN_P (prev))
9024 continue;
9025 if (reg_set_p (x, PATTERN (prev)))
9026 break;
9027 if (reg_referenced_p (x, PATTERN (prev)))
9028 return;
9029 }
9030 if (! prev || INSN_UID (prev) < reload_first_uid)
9031 return;
9032 /* Check that PREV only sets the reload register. */
9033 set = single_set (prev);
9034 if (! set)
9035 return;
9036 dst = SET_DEST (set);
9037 if (!REG_P (dst)
9038 || ! rtx_equal_p (dst, x))
9039 return;
9040 if (! reg_set_p (dst, PATTERN (dead_insn)))
9041 {
9042 /* Check if DST was used in a later insn -
9043 it might have been inherited. */
9044 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9045 {
9046 if (LABEL_P (i2))
9047 break;
9048 if (! INSN_P (i2))
9049 continue;
9050 if (reg_referenced_p (dst, PATTERN (i2)))
9051 {
9052 /* If there is a reference to the register in the current insn,
9053 it might be loaded in a non-inherited reload. If no other
9054 reload uses it, that means the register is set before
9055 referenced. */
9056 if (i2 == current_insn)
9057 {
9058 for (j = n_reloads - 1; j >= 0; j--)
9059 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9060 || reload_override_in[j] == dst)
9061 return;
9062 for (j = n_reloads - 1; j >= 0; j--)
9063 if (rld[j].in && rld[j].reg_rtx == dst)
9064 break;
9065 if (j >= 0)
9066 break;
9067 }
9068 return;
9069 }
9070 if (JUMP_P (i2))
9071 break;
9072 /* If DST is still live at CURRENT_INSN, check if it is used for
9073 any reload. Note that even if CURRENT_INSN sets DST, we still
9074 have to check the reloads. */
9075 if (i2 == current_insn)
9076 {
9077 for (j = n_reloads - 1; j >= 0; j--)
9078 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9079 || reload_override_in[j] == dst)
9080 return;
9081 /* ??? We can't finish the loop here, because dst might be
9082 allocated to a pseudo in this block if no reload in this
9083 block needs any of the classes containing DST - see
9084 spill_hard_reg. There is no easy way to tell this, so we
9085 have to scan till the end of the basic block. */
9086 }
9087 if (reg_set_p (dst, PATTERN (i2)))
9088 break;
9089 }
9090 }
9091 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9092 reg_reloaded_contents[REGNO (dst)] = -1;
9093 delete_insn (prev);
9094 }
9095 \f
9096 /* Output reload-insns to reload VALUE into RELOADREG.
9097 VALUE is an autoincrement or autodecrement RTX whose operand
9098 is a register or memory location;
9099 so reloading involves incrementing that location.
9100 IN is either identical to VALUE, or some cheaper place to reload from.
9101
9102 INC_AMOUNT is the number to increment or decrement by (always positive).
9103 This cannot be deduced from VALUE. */
9104
9105 static void
9106 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9107 {
9108 /* REG or MEM to be copied and incremented. */
9109 rtx incloc = find_replacement (&XEXP (value, 0));
9110 /* Nonzero if increment after copying. */
9111 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9112 || GET_CODE (value) == POST_MODIFY);
9113 rtx_insn *last;
9114 rtx inc;
9115 rtx_insn *add_insn;
9116 int code;
9117 rtx real_in = in == value ? incloc : in;
9118
9119 /* No hard register is equivalent to this register after
9120 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9121 we could inc/dec that register as well (maybe even using it for
9122 the source), but I'm not sure it's worth worrying about. */
9123 if (REG_P (incloc))
9124 reg_last_reload_reg[REGNO (incloc)] = 0;
9125
9126 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9127 {
9128 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9129 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9130 }
9131 else
9132 {
9133 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9134 inc_amount = -inc_amount;
9135
9136 inc = GEN_INT (inc_amount);
9137 }
9138
9139 /* If this is post-increment, first copy the location to the reload reg. */
9140 if (post && real_in != reloadreg)
9141 emit_insn (gen_move_insn (reloadreg, real_in));
9142
9143 if (in == value)
9144 {
9145 /* See if we can directly increment INCLOC. Use a method similar to
9146 that in gen_reload. */
9147
9148 last = get_last_insn ();
9149 add_insn = emit_insn (gen_rtx_SET (incloc,
9150 gen_rtx_PLUS (GET_MODE (incloc),
9151 incloc, inc)));
9152
9153 code = recog_memoized (add_insn);
9154 if (code >= 0)
9155 {
9156 extract_insn (add_insn);
9157 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9158 {
9159 /* If this is a pre-increment and we have incremented the value
9160 where it lives, copy the incremented value to RELOADREG to
9161 be used as an address. */
9162
9163 if (! post)
9164 emit_insn (gen_move_insn (reloadreg, incloc));
9165 return;
9166 }
9167 }
9168 delete_insns_since (last);
9169 }
9170
9171 /* If couldn't do the increment directly, must increment in RELOADREG.
9172 The way we do this depends on whether this is pre- or post-increment.
9173 For pre-increment, copy INCLOC to the reload register, increment it
9174 there, then save back. */
9175
9176 if (! post)
9177 {
9178 if (in != reloadreg)
9179 emit_insn (gen_move_insn (reloadreg, real_in));
9180 emit_insn (gen_add2_insn (reloadreg, inc));
9181 emit_insn (gen_move_insn (incloc, reloadreg));
9182 }
9183 else
9184 {
9185 /* Postincrement.
9186 Because this might be a jump insn or a compare, and because RELOADREG
9187 may not be available after the insn in an input reload, we must do
9188 the incrementation before the insn being reloaded for.
9189
9190 We have already copied IN to RELOADREG. Increment the copy in
9191 RELOADREG, save that back, then decrement RELOADREG so it has
9192 the original value. */
9193
9194 emit_insn (gen_add2_insn (reloadreg, inc));
9195 emit_insn (gen_move_insn (incloc, reloadreg));
9196 if (CONST_INT_P (inc))
9197 emit_insn (gen_add2_insn (reloadreg,
9198 gen_int_mode (-INTVAL (inc),
9199 GET_MODE (reloadreg))));
9200 else
9201 emit_insn (gen_sub2_insn (reloadreg, inc));
9202 }
9203 }
9204 \f
9205 static void
9206 add_auto_inc_notes (rtx_insn *insn, rtx x)
9207 {
9208 enum rtx_code code = GET_CODE (x);
9209 const char *fmt;
9210 int i, j;
9211
9212 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9213 {
9214 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9215 return;
9216 }
9217
9218 /* Scan all the operand sub-expressions. */
9219 fmt = GET_RTX_FORMAT (code);
9220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9221 {
9222 if (fmt[i] == 'e')
9223 add_auto_inc_notes (insn, XEXP (x, i));
9224 else if (fmt[i] == 'E')
9225 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9226 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9227 }
9228 }