reload: Use rtx_insn (also touches caller-save.c and config/arc/arc)
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
55
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
59
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
63
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
71
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
75
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
82 \f
83 struct target_reload default_target_reload;
84 #if SWITCHABLE_TARGET
85 struct target_reload *this_target_reload = &default_target_reload;
86 #endif
87
88 #define spill_indirect_levels \
89 (this_target_reload->x_spill_indirect_levels)
90
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
94
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static regset_head reg_has_output_reload;
98
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
102
103 /* Widest width in which each pseudo reg is referred to (via subreg). */
104 static unsigned int *reg_max_ref_width;
105
106 /* Vector to remember old contents of reg_renumber before spilling. */
107 static short *reg_old_renumber;
108
109 /* During reload_as_needed, element N contains the last pseudo regno reloaded
110 into hard register N. If that pseudo reg occupied more than one register,
111 reg_reloaded_contents points to that pseudo for each spill register in
112 use; all of these must remain set for an inheritance to occur. */
113 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
114
115 /* During reload_as_needed, element N contains the insn for which
116 hard register N was last used. Its contents are significant only
117 when reg_reloaded_valid is set for this register. */
118 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
119
120 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
121 static HARD_REG_SET reg_reloaded_valid;
122 /* Indicate if the register was dead at the end of the reload.
123 This is only valid if reg_reloaded_contents is set and valid. */
124 static HARD_REG_SET reg_reloaded_dead;
125
126 /* Indicate whether the register's current value is one that is not
127 safe to retain across a call, even for registers that are normally
128 call-saved. This is only meaningful for members of reg_reloaded_valid. */
129 static HARD_REG_SET reg_reloaded_call_part_clobbered;
130
131 /* Number of spill-regs so far; number of valid elements of spill_regs. */
132 static int n_spills;
133
134 /* In parallel with spill_regs, contains REG rtx's for those regs.
135 Holds the last rtx used for any given reg, or 0 if it has never
136 been used for spilling yet. This rtx is reused, provided it has
137 the proper mode. */
138 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
139
140 /* In parallel with spill_regs, contains nonzero for a spill reg
141 that was stored after the last time it was used.
142 The precise value is the insn generated to do the store. */
143 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
144
145 /* This is the register that was stored with spill_reg_store. This is a
146 copy of reload_out / reload_out_reg when the value was stored; if
147 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
148 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
149
150 /* This table is the inverse mapping of spill_regs:
151 indexed by hard reg number,
152 it contains the position of that reg in spill_regs,
153 or -1 for something that is not in spill_regs.
154
155 ?!? This is no longer accurate. */
156 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
157
158 /* This reg set indicates registers that can't be used as spill registers for
159 the currently processed insn. These are the hard registers which are live
160 during the insn, but not allocated to pseudos, as well as fixed
161 registers. */
162 static HARD_REG_SET bad_spill_regs;
163
164 /* These are the hard registers that can't be used as spill register for any
165 insn. This includes registers used for user variables and registers that
166 we can't eliminate. A register that appears in this set also can't be used
167 to retry register allocation. */
168 static HARD_REG_SET bad_spill_regs_global;
169
170 /* Describes order of use of registers for reloading
171 of spilled pseudo-registers. `n_spills' is the number of
172 elements that are actually valid; new ones are added at the end.
173
174 Both spill_regs and spill_reg_order are used on two occasions:
175 once during find_reload_regs, where they keep track of the spill registers
176 for a single insn, but also during reload_as_needed where they show all
177 the registers ever used by reload. For the latter case, the information
178 is calculated during finish_spills. */
179 static short spill_regs[FIRST_PSEUDO_REGISTER];
180
181 /* This vector of reg sets indicates, for each pseudo, which hard registers
182 may not be used for retrying global allocation because the register was
183 formerly spilled from one of them. If we allowed reallocating a pseudo to
184 a register that it was already allocated to, reload might not
185 terminate. */
186 static HARD_REG_SET *pseudo_previous_regs;
187
188 /* This vector of reg sets indicates, for each pseudo, which hard
189 registers may not be used for retrying global allocation because they
190 are used as spill registers during one of the insns in which the
191 pseudo is live. */
192 static HARD_REG_SET *pseudo_forbidden_regs;
193
194 /* All hard regs that have been used as spill registers for any insn are
195 marked in this set. */
196 static HARD_REG_SET used_spill_regs;
197
198 /* Index of last register assigned as a spill register. We allocate in
199 a round-robin fashion. */
200 static int last_spill_reg;
201
202 /* Record the stack slot for each spilled hard register. */
203 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
204
205 /* Width allocated so far for that stack slot. */
206 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
207
208 /* Record which pseudos needed to be spilled. */
209 static regset_head spilled_pseudos;
210
211 /* Record which pseudos changed their allocation in finish_spills. */
212 static regset_head changed_allocation_pseudos;
213
214 /* Used for communication between order_regs_for_reload and count_pseudo.
215 Used to avoid counting one pseudo twice. */
216 static regset_head pseudos_counted;
217
218 /* First uid used by insns created by reload in this function.
219 Used in find_equiv_reg. */
220 int reload_first_uid;
221
222 /* Flag set by local-alloc or global-alloc if anything is live in
223 a call-clobbered reg across calls. */
224 int caller_save_needed;
225
226 /* Set to 1 while reload_as_needed is operating.
227 Required by some machines to handle any generated moves differently. */
228 int reload_in_progress = 0;
229
230 /* This obstack is used for allocation of rtl during register elimination.
231 The allocated storage can be freed once find_reloads has processed the
232 insn. */
233 static struct obstack reload_obstack;
234
235 /* Points to the beginning of the reload_obstack. All insn_chain structures
236 are allocated first. */
237 static char *reload_startobj;
238
239 /* The point after all insn_chain structures. Used to quickly deallocate
240 memory allocated in copy_reloads during calculate_needs_all_insns. */
241 static char *reload_firstobj;
242
243 /* This points before all local rtl generated by register elimination.
244 Used to quickly free all memory after processing one insn. */
245 static char *reload_insn_firstobj;
246
247 /* List of insn_chain instructions, one for every insn that reload needs to
248 examine. */
249 struct insn_chain *reload_insn_chain;
250
251 /* TRUE if we potentially left dead insns in the insn stream and want to
252 run DCE immediately after reload, FALSE otherwise. */
253 static bool need_dce;
254
255 /* List of all insns needing reloads. */
256 static struct insn_chain *insns_need_reload;
257 \f
258 /* This structure is used to record information about register eliminations.
259 Each array entry describes one possible way of eliminating a register
260 in favor of another. If there is more than one way of eliminating a
261 particular register, the most preferred should be specified first. */
262
263 struct elim_table
264 {
265 int from; /* Register number to be eliminated. */
266 int to; /* Register number used as replacement. */
267 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
268 int can_eliminate; /* Nonzero if this elimination can be done. */
269 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
270 target hook in previous scan over insns
271 made by reload. */
272 HOST_WIDE_INT offset; /* Current offset between the two regs. */
273 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
274 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
275 rtx from_rtx; /* REG rtx for the register to be eliminated.
276 We cannot simply compare the number since
277 we might then spuriously replace a hard
278 register corresponding to a pseudo
279 assigned to the reg to be eliminated. */
280 rtx to_rtx; /* REG rtx for the replacement. */
281 };
282
283 static struct elim_table *reg_eliminate = 0;
284
285 /* This is an intermediate structure to initialize the table. It has
286 exactly the members provided by ELIMINABLE_REGS. */
287 static const struct elim_table_1
288 {
289 const int from;
290 const int to;
291 } reg_eliminate_1[] =
292
293 /* If a set of eliminable registers was specified, define the table from it.
294 Otherwise, default to the normal case of the frame pointer being
295 replaced by the stack pointer. */
296
297 #ifdef ELIMINABLE_REGS
298 ELIMINABLE_REGS;
299 #else
300 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
301 #endif
302
303 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
304
305 /* Record the number of pending eliminations that have an offset not equal
306 to their initial offset. If nonzero, we use a new copy of each
307 replacement result in any insns encountered. */
308 int num_not_at_initial_offset;
309
310 /* Count the number of registers that we may be able to eliminate. */
311 static int num_eliminable;
312 /* And the number of registers that are equivalent to a constant that
313 can be eliminated to frame_pointer / arg_pointer + constant. */
314 static int num_eliminable_invariants;
315
316 /* For each label, we record the offset of each elimination. If we reach
317 a label by more than one path and an offset differs, we cannot do the
318 elimination. This information is indexed by the difference of the
319 number of the label and the first label number. We can't offset the
320 pointer itself as this can cause problems on machines with segmented
321 memory. The first table is an array of flags that records whether we
322 have yet encountered a label and the second table is an array of arrays,
323 one entry in the latter array for each elimination. */
324
325 static int first_label_num;
326 static char *offsets_known_at;
327 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
328
329 vec<reg_equivs_t, va_gc> *reg_equivs;
330
331 /* Stack of addresses where an rtx has been changed. We can undo the
332 changes by popping items off the stack and restoring the original
333 value at each location.
334
335 We use this simplistic undo capability rather than copy_rtx as copy_rtx
336 will not make a deep copy of a normally sharable rtx, such as
337 (const (plus (symbol_ref) (const_int))). If such an expression appears
338 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
339 rtx expression would be changed. See PR 42431. */
340
341 typedef rtx *rtx_p;
342 static vec<rtx_p> substitute_stack;
343
344 /* Number of labels in the current function. */
345
346 static int num_labels;
347 \f
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
356
357 static void spill_failure (rtx_insn *, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx_insn *);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx_insn *, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx_insn *, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx_insn *);
372 static void init_eliminable_invariants (rtx_insn *, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static bool update_eliminables_and_spill (void);
377 static void elimination_costs_in_insn (rtx_insn *);
378 static void spill_hard_reg (unsigned int, int);
379 static int finish_spills (int);
380 static void scan_paradoxical_subregs (rtx);
381 static void count_pseudo (int);
382 static void order_regs_for_reload (struct insn_chain *);
383 static void reload_as_needed (int);
384 static void forget_old_reloads_1 (rtx, const_rtx, void *);
385 static void forget_marked_reloads (regset);
386 static int reload_reg_class_lower (const void *, const void *);
387 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
388 enum machine_mode);
389 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
390 enum machine_mode);
391 static int reload_reg_free_p (unsigned int, int, enum reload_type);
392 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
393 rtx, rtx, int, int);
394 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
395 rtx, rtx, int, int);
396 static int allocate_reload_reg (struct insn_chain *, int, int);
397 static int conflicts_with_override (rtx);
398 static void failed_reload (rtx_insn *, int);
399 static int set_reload_reg (int, int);
400 static void choose_reload_regs_init (struct insn_chain *, rtx *);
401 static void choose_reload_regs (struct insn_chain *);
402 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
403 rtx, int);
404 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
405 int);
406 static void do_input_reload (struct insn_chain *, struct reload *, int);
407 static void do_output_reload (struct insn_chain *, struct reload *, int);
408 static void emit_reload_insns (struct insn_chain *);
409 static void delete_output_reload (rtx_insn *, int, int, rtx);
410 static void delete_address_reloads (rtx_insn *, rtx_insn *);
411 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
412 static void inc_for_reload (rtx, rtx, rtx, int);
413 #ifdef AUTO_INC_DEC
414 static void add_auto_inc_notes (rtx_insn *, rtx);
415 #endif
416 static void substitute (rtx *, const_rtx, rtx);
417 static bool gen_reload_chain_without_interm_reg_p (int, int);
418 static int reloads_conflict (int, int);
419 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
420 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
421 \f
422 /* Initialize the reload pass. This is called at the beginning of compilation
423 and may be called again if the target is reinitialized. */
424
425 void
426 init_reload (void)
427 {
428 int i;
429
430 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
431 Set spill_indirect_levels to the number of levels such addressing is
432 permitted, zero if it is not permitted at all. */
433
434 rtx tem
435 = gen_rtx_MEM (Pmode,
436 gen_rtx_PLUS (Pmode,
437 gen_rtx_REG (Pmode,
438 LAST_VIRTUAL_REGISTER + 1),
439 gen_int_mode (4, Pmode)));
440 spill_indirect_levels = 0;
441
442 while (memory_address_p (QImode, tem))
443 {
444 spill_indirect_levels++;
445 tem = gen_rtx_MEM (Pmode, tem);
446 }
447
448 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
449
450 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
451 indirect_symref_ok = memory_address_p (QImode, tem);
452
453 /* See if reg+reg is a valid (and offsettable) address. */
454
455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
456 {
457 tem = gen_rtx_PLUS (Pmode,
458 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
459 gen_rtx_REG (Pmode, i));
460
461 /* This way, we make sure that reg+reg is an offsettable address. */
462 tem = plus_constant (Pmode, tem, 4);
463
464 if (memory_address_p (QImode, tem))
465 {
466 double_reg_address_ok = 1;
467 break;
468 }
469 }
470
471 /* Initialize obstack for our rtl allocation. */
472 if (reload_startobj == NULL)
473 {
474 gcc_obstack_init (&reload_obstack);
475 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
476 }
477
478 INIT_REG_SET (&spilled_pseudos);
479 INIT_REG_SET (&changed_allocation_pseudos);
480 INIT_REG_SET (&pseudos_counted);
481 }
482
483 /* List of insn chains that are currently unused. */
484 static struct insn_chain *unused_insn_chains = 0;
485
486 /* Allocate an empty insn_chain structure. */
487 struct insn_chain *
488 new_insn_chain (void)
489 {
490 struct insn_chain *c;
491
492 if (unused_insn_chains == 0)
493 {
494 c = XOBNEW (&reload_obstack, struct insn_chain);
495 INIT_REG_SET (&c->live_throughout);
496 INIT_REG_SET (&c->dead_or_set);
497 }
498 else
499 {
500 c = unused_insn_chains;
501 unused_insn_chains = c->next;
502 }
503 c->is_caller_save_insn = 0;
504 c->need_operand_change = 0;
505 c->need_reload = 0;
506 c->need_elim = 0;
507 return c;
508 }
509
510 /* Small utility function to set all regs in hard reg set TO which are
511 allocated to pseudos in regset FROM. */
512
513 void
514 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
515 {
516 unsigned int regno;
517 reg_set_iterator rsi;
518
519 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
520 {
521 int r = reg_renumber[regno];
522
523 if (r < 0)
524 {
525 /* reload_combine uses the information from DF_LIVE_IN,
526 which might still contain registers that have not
527 actually been allocated since they have an
528 equivalence. */
529 gcc_assert (ira_conflicts_p || reload_completed);
530 }
531 else
532 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
533 }
534 }
535
536 /* Replace all pseudos found in LOC with their corresponding
537 equivalences. */
538
539 static void
540 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
541 {
542 rtx x = *loc;
543 enum rtx_code code;
544 const char *fmt;
545 int i, j;
546
547 if (! x)
548 return;
549
550 code = GET_CODE (x);
551 if (code == REG)
552 {
553 unsigned int regno = REGNO (x);
554
555 if (regno < FIRST_PSEUDO_REGISTER)
556 return;
557
558 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
559 if (x != *loc)
560 {
561 *loc = x;
562 replace_pseudos_in (loc, mem_mode, usage);
563 return;
564 }
565
566 if (reg_equiv_constant (regno))
567 *loc = reg_equiv_constant (regno);
568 else if (reg_equiv_invariant (regno))
569 *loc = reg_equiv_invariant (regno);
570 else if (reg_equiv_mem (regno))
571 *loc = reg_equiv_mem (regno);
572 else if (reg_equiv_address (regno))
573 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
574 else
575 {
576 gcc_assert (!REG_P (regno_reg_rtx[regno])
577 || REGNO (regno_reg_rtx[regno]) != regno);
578 *loc = regno_reg_rtx[regno];
579 }
580
581 return;
582 }
583 else if (code == MEM)
584 {
585 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
586 return;
587 }
588
589 /* Process each of our operands recursively. */
590 fmt = GET_RTX_FORMAT (code);
591 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
592 if (*fmt == 'e')
593 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
594 else if (*fmt == 'E')
595 for (j = 0; j < XVECLEN (x, i); j++)
596 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
597 }
598
599 /* Determine if the current function has an exception receiver block
600 that reaches the exit block via non-exceptional edges */
601
602 static bool
603 has_nonexceptional_receiver (void)
604 {
605 edge e;
606 edge_iterator ei;
607 basic_block *tos, *worklist, bb;
608
609 /* If we're not optimizing, then just err on the safe side. */
610 if (!optimize)
611 return true;
612
613 /* First determine which blocks can reach exit via normal paths. */
614 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
615
616 FOR_EACH_BB_FN (bb, cfun)
617 bb->flags &= ~BB_REACHABLE;
618
619 /* Place the exit block on our worklist. */
620 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
621 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
622
623 /* Iterate: find everything reachable from what we've already seen. */
624 while (tos != worklist)
625 {
626 bb = *--tos;
627
628 FOR_EACH_EDGE (e, ei, bb->preds)
629 if (!(e->flags & EDGE_ABNORMAL))
630 {
631 basic_block src = e->src;
632
633 if (!(src->flags & BB_REACHABLE))
634 {
635 src->flags |= BB_REACHABLE;
636 *tos++ = src;
637 }
638 }
639 }
640 free (worklist);
641
642 /* Now see if there's a reachable block with an exceptional incoming
643 edge. */
644 FOR_EACH_BB_FN (bb, cfun)
645 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
646 return true;
647
648 /* No exceptional block reached exit unexceptionally. */
649 return false;
650 }
651
652 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
653 zero elements) to MAX_REG_NUM elements.
654
655 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
656 void
657 grow_reg_equivs (void)
658 {
659 int old_size = vec_safe_length (reg_equivs);
660 int max_regno = max_reg_num ();
661 int i;
662 reg_equivs_t ze;
663
664 memset (&ze, 0, sizeof (reg_equivs_t));
665 vec_safe_reserve (reg_equivs, max_regno);
666 for (i = old_size; i < max_regno; i++)
667 reg_equivs->quick_insert (i, ze);
668 }
669
670 \f
671 /* Global variables used by reload and its subroutines. */
672
673 /* The current basic block while in calculate_elim_costs_all_insns. */
674 static basic_block elim_bb;
675
676 /* Set during calculate_needs if an insn needs register elimination. */
677 static int something_needs_elimination;
678 /* Set during calculate_needs if an insn needs an operand changed. */
679 static int something_needs_operands_changed;
680 /* Set by alter_regs if we spilled a register to the stack. */
681 static bool something_was_spilled;
682
683 /* Nonzero means we couldn't get enough spill regs. */
684 static int failure;
685
686 /* Temporary array of pseudo-register number. */
687 static int *temp_pseudo_reg_arr;
688
689 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
690 If that insn didn't set the register (i.e., it copied the register to
691 memory), just delete that insn instead of the equivalencing insn plus
692 anything now dead. If we call delete_dead_insn on that insn, we may
693 delete the insn that actually sets the register if the register dies
694 there and that is incorrect. */
695 static void
696 remove_init_insns ()
697 {
698 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
699 {
700 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
701 {
702 rtx list;
703 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
704 {
705 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
706
707 /* If we already deleted the insn or if it may trap, we can't
708 delete it. The latter case shouldn't happen, but can
709 if an insn has a variable address, gets a REG_EH_REGION
710 note added to it, and then gets converted into a load
711 from a constant address. */
712 if (NOTE_P (equiv_insn)
713 || can_throw_internal (equiv_insn))
714 ;
715 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
716 delete_dead_insn (equiv_insn);
717 else
718 SET_INSN_DELETED (equiv_insn);
719 }
720 }
721 }
722 }
723
724 /* Return true if remove_init_insns will delete INSN. */
725 static bool
726 will_delete_init_insn_p (rtx_insn *insn)
727 {
728 rtx set = single_set (insn);
729 if (!set || !REG_P (SET_DEST (set)))
730 return false;
731 unsigned regno = REGNO (SET_DEST (set));
732
733 if (can_throw_internal (insn))
734 return false;
735
736 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
737 return false;
738
739 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
740 {
741 rtx equiv_insn = XEXP (list, 0);
742 if (equiv_insn == insn)
743 return true;
744 }
745 return false;
746 }
747
748 /* Main entry point for the reload pass.
749
750 FIRST is the first insn of the function being compiled.
751
752 GLOBAL nonzero means we were called from global_alloc
753 and should attempt to reallocate any pseudoregs that we
754 displace from hard regs we will use for reloads.
755 If GLOBAL is zero, we do not have enough information to do that,
756 so any pseudo reg that is spilled must go to the stack.
757
758 Return value is TRUE if reload likely left dead insns in the
759 stream and a DCE pass should be run to elimiante them. Else the
760 return value is FALSE. */
761
762 bool
763 reload (rtx_insn *first, int global)
764 {
765 int i, n;
766 rtx_insn *insn;
767 struct elim_table *ep;
768 basic_block bb;
769 bool inserted;
770
771 /* Make sure even insns with volatile mem refs are recognizable. */
772 init_recog ();
773
774 failure = 0;
775
776 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
777
778 /* Make sure that the last insn in the chain
779 is not something that needs reloading. */
780 emit_note (NOTE_INSN_DELETED);
781
782 /* Enable find_equiv_reg to distinguish insns made by reload. */
783 reload_first_uid = get_max_uid ();
784
785 #ifdef SECONDARY_MEMORY_NEEDED
786 /* Initialize the secondary memory table. */
787 clear_secondary_mem ();
788 #endif
789
790 /* We don't have a stack slot for any spill reg yet. */
791 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
792 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
793
794 /* Initialize the save area information for caller-save, in case some
795 are needed. */
796 init_save_areas ();
797
798 /* Compute which hard registers are now in use
799 as homes for pseudo registers.
800 This is done here rather than (eg) in global_alloc
801 because this point is reached even if not optimizing. */
802 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
803 mark_home_live (i);
804
805 /* A function that has a nonlocal label that can reach the exit
806 block via non-exceptional paths must save all call-saved
807 registers. */
808 if (cfun->has_nonlocal_label
809 && has_nonexceptional_receiver ())
810 crtl->saves_all_registers = 1;
811
812 if (crtl->saves_all_registers)
813 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
814 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
815 df_set_regs_ever_live (i, true);
816
817 /* Find all the pseudo registers that didn't get hard regs
818 but do have known equivalent constants or memory slots.
819 These include parameters (known equivalent to parameter slots)
820 and cse'd or loop-moved constant memory addresses.
821
822 Record constant equivalents in reg_equiv_constant
823 so they will be substituted by find_reloads.
824 Record memory equivalents in reg_mem_equiv so they can
825 be substituted eventually by altering the REG-rtx's. */
826
827 grow_reg_equivs ();
828 reg_old_renumber = XCNEWVEC (short, max_regno);
829 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
830 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
831 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
832
833 CLEAR_HARD_REG_SET (bad_spill_regs_global);
834
835 init_eliminable_invariants (first, true);
836 init_elim_table ();
837
838 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
839 stack slots to the pseudos that lack hard regs or equivalents.
840 Do not touch virtual registers. */
841
842 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
843 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
844 temp_pseudo_reg_arr[n++] = i;
845
846 if (ira_conflicts_p)
847 /* Ask IRA to order pseudo-registers for better stack slot
848 sharing. */
849 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
850
851 for (i = 0; i < n; i++)
852 alter_reg (temp_pseudo_reg_arr[i], -1, false);
853
854 /* If we have some registers we think can be eliminated, scan all insns to
855 see if there is an insn that sets one of these registers to something
856 other than itself plus a constant. If so, the register cannot be
857 eliminated. Doing this scan here eliminates an extra pass through the
858 main reload loop in the most common case where register elimination
859 cannot be done. */
860 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
861 if (INSN_P (insn))
862 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
863
864 maybe_fix_stack_asms ();
865
866 insns_need_reload = 0;
867 something_needs_elimination = 0;
868
869 /* Initialize to -1, which means take the first spill register. */
870 last_spill_reg = -1;
871
872 /* Spill any hard regs that we know we can't eliminate. */
873 CLEAR_HARD_REG_SET (used_spill_regs);
874 /* There can be multiple ways to eliminate a register;
875 they should be listed adjacently.
876 Elimination for any register fails only if all possible ways fail. */
877 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
878 {
879 int from = ep->from;
880 int can_eliminate = 0;
881 do
882 {
883 can_eliminate |= ep->can_eliminate;
884 ep++;
885 }
886 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
887 if (! can_eliminate)
888 spill_hard_reg (from, 1);
889 }
890
891 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
892 if (frame_pointer_needed)
893 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
894 #endif
895 finish_spills (global);
896
897 /* From now on, we may need to generate moves differently. We may also
898 allow modifications of insns which cause them to not be recognized.
899 Any such modifications will be cleaned up during reload itself. */
900 reload_in_progress = 1;
901
902 /* This loop scans the entire function each go-round
903 and repeats until one repetition spills no additional hard regs. */
904 for (;;)
905 {
906 int something_changed;
907 int did_spill;
908 HOST_WIDE_INT starting_frame_size;
909
910 starting_frame_size = get_frame_size ();
911 something_was_spilled = false;
912
913 set_initial_elim_offsets ();
914 set_initial_label_offsets ();
915
916 /* For each pseudo register that has an equivalent location defined,
917 try to eliminate any eliminable registers (such as the frame pointer)
918 assuming initial offsets for the replacement register, which
919 is the normal case.
920
921 If the resulting location is directly addressable, substitute
922 the MEM we just got directly for the old REG.
923
924 If it is not addressable but is a constant or the sum of a hard reg
925 and constant, it is probably not addressable because the constant is
926 out of range, in that case record the address; we will generate
927 hairy code to compute the address in a register each time it is
928 needed. Similarly if it is a hard register, but one that is not
929 valid as an address register.
930
931 If the location is not addressable, but does not have one of the
932 above forms, assign a stack slot. We have to do this to avoid the
933 potential of producing lots of reloads if, e.g., a location involves
934 a pseudo that didn't get a hard register and has an equivalent memory
935 location that also involves a pseudo that didn't get a hard register.
936
937 Perhaps at some point we will improve reload_when_needed handling
938 so this problem goes away. But that's very hairy. */
939
940 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
941 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
942 {
943 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
944 NULL_RTX);
945
946 if (strict_memory_address_addr_space_p
947 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
948 MEM_ADDR_SPACE (x)))
949 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
950 else if (CONSTANT_P (XEXP (x, 0))
951 || (REG_P (XEXP (x, 0))
952 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
953 || (GET_CODE (XEXP (x, 0)) == PLUS
954 && REG_P (XEXP (XEXP (x, 0), 0))
955 && (REGNO (XEXP (XEXP (x, 0), 0))
956 < FIRST_PSEUDO_REGISTER)
957 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
958 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
959 else
960 {
961 /* Make a new stack slot. Then indicate that something
962 changed so we go back and recompute offsets for
963 eliminable registers because the allocation of memory
964 below might change some offset. reg_equiv_{mem,address}
965 will be set up for this pseudo on the next pass around
966 the loop. */
967 reg_equiv_memory_loc (i) = 0;
968 reg_equiv_init (i) = 0;
969 alter_reg (i, -1, true);
970 }
971 }
972
973 if (caller_save_needed)
974 setup_save_areas ();
975
976 if (starting_frame_size && crtl->stack_alignment_needed)
977 {
978 /* If we have a stack frame, we must align it now. The
979 stack size may be a part of the offset computation for
980 register elimination. So if this changes the stack size,
981 then repeat the elimination bookkeeping. We don't
982 realign when there is no stack, as that will cause a
983 stack frame when none is needed should
984 STARTING_FRAME_OFFSET not be already aligned to
985 STACK_BOUNDARY. */
986 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
987 }
988 /* If we allocated another stack slot, redo elimination bookkeeping. */
989 if (something_was_spilled || starting_frame_size != get_frame_size ())
990 {
991 update_eliminables_and_spill ();
992 continue;
993 }
994
995 if (caller_save_needed)
996 {
997 save_call_clobbered_regs ();
998 /* That might have allocated new insn_chain structures. */
999 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1000 }
1001
1002 calculate_needs_all_insns (global);
1003
1004 if (! ira_conflicts_p)
1005 /* Don't do it for IRA. We need this info because we don't
1006 change live_throughout and dead_or_set for chains when IRA
1007 is used. */
1008 CLEAR_REG_SET (&spilled_pseudos);
1009
1010 did_spill = 0;
1011
1012 something_changed = 0;
1013
1014 /* If we allocated any new memory locations, make another pass
1015 since it might have changed elimination offsets. */
1016 if (something_was_spilled || starting_frame_size != get_frame_size ())
1017 something_changed = 1;
1018
1019 /* Even if the frame size remained the same, we might still have
1020 changed elimination offsets, e.g. if find_reloads called
1021 force_const_mem requiring the back end to allocate a constant
1022 pool base register that needs to be saved on the stack. */
1023 else if (!verify_initial_elim_offsets ())
1024 something_changed = 1;
1025
1026 if (update_eliminables_and_spill ())
1027 {
1028 did_spill = 1;
1029 something_changed = 1;
1030 }
1031
1032 select_reload_regs ();
1033 if (failure)
1034 goto failed;
1035
1036 if (insns_need_reload != 0 || did_spill)
1037 something_changed |= finish_spills (global);
1038
1039 if (! something_changed)
1040 break;
1041
1042 if (caller_save_needed)
1043 delete_caller_save_insns ();
1044
1045 obstack_free (&reload_obstack, reload_firstobj);
1046 }
1047
1048 /* If global-alloc was run, notify it of any register eliminations we have
1049 done. */
1050 if (global)
1051 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1052 if (ep->can_eliminate)
1053 mark_elimination (ep->from, ep->to);
1054
1055 remove_init_insns ();
1056
1057 /* Use the reload registers where necessary
1058 by generating move instructions to move the must-be-register
1059 values into or out of the reload registers. */
1060
1061 if (insns_need_reload != 0 || something_needs_elimination
1062 || something_needs_operands_changed)
1063 {
1064 HOST_WIDE_INT old_frame_size = get_frame_size ();
1065
1066 reload_as_needed (global);
1067
1068 gcc_assert (old_frame_size == get_frame_size ());
1069
1070 gcc_assert (verify_initial_elim_offsets ());
1071 }
1072
1073 /* If we were able to eliminate the frame pointer, show that it is no
1074 longer live at the start of any basic block. If it ls live by
1075 virtue of being in a pseudo, that pseudo will be marked live
1076 and hence the frame pointer will be known to be live via that
1077 pseudo. */
1078
1079 if (! frame_pointer_needed)
1080 FOR_EACH_BB_FN (bb, cfun)
1081 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1082
1083 /* Come here (with failure set nonzero) if we can't get enough spill
1084 regs. */
1085 failed:
1086
1087 CLEAR_REG_SET (&changed_allocation_pseudos);
1088 CLEAR_REG_SET (&spilled_pseudos);
1089 reload_in_progress = 0;
1090
1091 /* Now eliminate all pseudo regs by modifying them into
1092 their equivalent memory references.
1093 The REG-rtx's for the pseudos are modified in place,
1094 so all insns that used to refer to them now refer to memory.
1095
1096 For a reg that has a reg_equiv_address, all those insns
1097 were changed by reloading so that no insns refer to it any longer;
1098 but the DECL_RTL of a variable decl may refer to it,
1099 and if so this causes the debugging info to mention the variable. */
1100
1101 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1102 {
1103 rtx addr = 0;
1104
1105 if (reg_equiv_mem (i))
1106 addr = XEXP (reg_equiv_mem (i), 0);
1107
1108 if (reg_equiv_address (i))
1109 addr = reg_equiv_address (i);
1110
1111 if (addr)
1112 {
1113 if (reg_renumber[i] < 0)
1114 {
1115 rtx reg = regno_reg_rtx[i];
1116
1117 REG_USERVAR_P (reg) = 0;
1118 PUT_CODE (reg, MEM);
1119 XEXP (reg, 0) = addr;
1120 if (reg_equiv_memory_loc (i))
1121 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1122 else
1123 MEM_ATTRS (reg) = 0;
1124 MEM_NOTRAP_P (reg) = 1;
1125 }
1126 else if (reg_equiv_mem (i))
1127 XEXP (reg_equiv_mem (i), 0) = addr;
1128 }
1129
1130 /* We don't want complex addressing modes in debug insns
1131 if simpler ones will do, so delegitimize equivalences
1132 in debug insns. */
1133 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1134 {
1135 rtx reg = regno_reg_rtx[i];
1136 rtx equiv = 0;
1137 df_ref use, next;
1138
1139 if (reg_equiv_constant (i))
1140 equiv = reg_equiv_constant (i);
1141 else if (reg_equiv_invariant (i))
1142 equiv = reg_equiv_invariant (i);
1143 else if (reg && MEM_P (reg))
1144 equiv = targetm.delegitimize_address (reg);
1145 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1146 equiv = reg;
1147
1148 if (equiv == reg)
1149 continue;
1150
1151 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1152 {
1153 insn = DF_REF_INSN (use);
1154
1155 /* Make sure the next ref is for a different instruction,
1156 so that we're not affected by the rescan. */
1157 next = DF_REF_NEXT_REG (use);
1158 while (next && DF_REF_INSN (next) == insn)
1159 next = DF_REF_NEXT_REG (next);
1160
1161 if (DEBUG_INSN_P (insn))
1162 {
1163 if (!equiv)
1164 {
1165 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1166 df_insn_rescan_debug_internal (insn);
1167 }
1168 else
1169 INSN_VAR_LOCATION_LOC (insn)
1170 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1171 reg, equiv);
1172 }
1173 }
1174 }
1175 }
1176
1177 /* We must set reload_completed now since the cleanup_subreg_operands call
1178 below will re-recognize each insn and reload may have generated insns
1179 which are only valid during and after reload. */
1180 reload_completed = 1;
1181
1182 /* Make a pass over all the insns and delete all USEs which we inserted
1183 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1184 notes. Delete all CLOBBER insns, except those that refer to the return
1185 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1186 from misarranging variable-array code, and simplify (subreg (reg))
1187 operands. Strip and regenerate REG_INC notes that may have been moved
1188 around. */
1189
1190 for (insn = first; insn; insn = NEXT_INSN (insn))
1191 if (INSN_P (insn))
1192 {
1193 rtx *pnote;
1194
1195 if (CALL_P (insn))
1196 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1197 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1198
1199 if ((GET_CODE (PATTERN (insn)) == USE
1200 /* We mark with QImode USEs introduced by reload itself. */
1201 && (GET_MODE (insn) == QImode
1202 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1203 || (GET_CODE (PATTERN (insn)) == CLOBBER
1204 && (!MEM_P (XEXP (PATTERN (insn), 0))
1205 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1206 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1207 && XEXP (XEXP (PATTERN (insn), 0), 0)
1208 != stack_pointer_rtx))
1209 && (!REG_P (XEXP (PATTERN (insn), 0))
1210 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1211 {
1212 delete_insn (insn);
1213 continue;
1214 }
1215
1216 /* Some CLOBBERs may survive until here and still reference unassigned
1217 pseudos with const equivalent, which may in turn cause ICE in later
1218 passes if the reference remains in place. */
1219 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1220 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1221 VOIDmode, PATTERN (insn));
1222
1223 /* Discard obvious no-ops, even without -O. This optimization
1224 is fast and doesn't interfere with debugging. */
1225 if (NONJUMP_INSN_P (insn)
1226 && GET_CODE (PATTERN (insn)) == SET
1227 && REG_P (SET_SRC (PATTERN (insn)))
1228 && REG_P (SET_DEST (PATTERN (insn)))
1229 && (REGNO (SET_SRC (PATTERN (insn)))
1230 == REGNO (SET_DEST (PATTERN (insn)))))
1231 {
1232 delete_insn (insn);
1233 continue;
1234 }
1235
1236 pnote = &REG_NOTES (insn);
1237 while (*pnote != 0)
1238 {
1239 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1240 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1241 || REG_NOTE_KIND (*pnote) == REG_INC)
1242 *pnote = XEXP (*pnote, 1);
1243 else
1244 pnote = &XEXP (*pnote, 1);
1245 }
1246
1247 #ifdef AUTO_INC_DEC
1248 add_auto_inc_notes (insn, PATTERN (insn));
1249 #endif
1250
1251 /* Simplify (subreg (reg)) if it appears as an operand. */
1252 cleanup_subreg_operands (insn);
1253
1254 /* Clean up invalid ASMs so that they don't confuse later passes.
1255 See PR 21299. */
1256 if (asm_noperands (PATTERN (insn)) >= 0)
1257 {
1258 extract_insn (insn);
1259 if (!constrain_operands (1))
1260 {
1261 error_for_asm (insn,
1262 "%<asm%> operand has impossible constraints");
1263 delete_insn (insn);
1264 continue;
1265 }
1266 }
1267 }
1268
1269 /* If we are doing generic stack checking, give a warning if this
1270 function's frame size is larger than we expect. */
1271 if (flag_stack_check == GENERIC_STACK_CHECK)
1272 {
1273 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1274 static int verbose_warned = 0;
1275
1276 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1277 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1278 size += UNITS_PER_WORD;
1279
1280 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1281 {
1282 warning (0, "frame size too large for reliable stack checking");
1283 if (! verbose_warned)
1284 {
1285 warning (0, "try reducing the number of local variables");
1286 verbose_warned = 1;
1287 }
1288 }
1289 }
1290
1291 free (temp_pseudo_reg_arr);
1292
1293 /* Indicate that we no longer have known memory locations or constants. */
1294 free_reg_equiv ();
1295
1296 free (reg_max_ref_width);
1297 free (reg_old_renumber);
1298 free (pseudo_previous_regs);
1299 free (pseudo_forbidden_regs);
1300
1301 CLEAR_HARD_REG_SET (used_spill_regs);
1302 for (i = 0; i < n_spills; i++)
1303 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1304
1305 /* Free all the insn_chain structures at once. */
1306 obstack_free (&reload_obstack, reload_startobj);
1307 unused_insn_chains = 0;
1308
1309 inserted = fixup_abnormal_edges ();
1310
1311 /* We've possibly turned single trapping insn into multiple ones. */
1312 if (cfun->can_throw_non_call_exceptions)
1313 {
1314 sbitmap blocks;
1315 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1316 bitmap_ones (blocks);
1317 find_many_sub_basic_blocks (blocks);
1318 sbitmap_free (blocks);
1319 }
1320
1321 if (inserted)
1322 commit_edge_insertions ();
1323
1324 /* Replacing pseudos with their memory equivalents might have
1325 created shared rtx. Subsequent passes would get confused
1326 by this, so unshare everything here. */
1327 unshare_all_rtl_again (first);
1328
1329 #ifdef STACK_BOUNDARY
1330 /* init_emit has set the alignment of the hard frame pointer
1331 to STACK_BOUNDARY. It is very likely no longer valid if
1332 the hard frame pointer was used for register allocation. */
1333 if (!frame_pointer_needed)
1334 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1335 #endif
1336
1337 substitute_stack.release ();
1338
1339 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1340
1341 reload_completed = !failure;
1342
1343 return need_dce;
1344 }
1345
1346 /* Yet another special case. Unfortunately, reg-stack forces people to
1347 write incorrect clobbers in asm statements. These clobbers must not
1348 cause the register to appear in bad_spill_regs, otherwise we'll call
1349 fatal_insn later. We clear the corresponding regnos in the live
1350 register sets to avoid this.
1351 The whole thing is rather sick, I'm afraid. */
1352
1353 static void
1354 maybe_fix_stack_asms (void)
1355 {
1356 #ifdef STACK_REGS
1357 const char *constraints[MAX_RECOG_OPERANDS];
1358 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1359 struct insn_chain *chain;
1360
1361 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1362 {
1363 int i, noperands;
1364 HARD_REG_SET clobbered, allowed;
1365 rtx pat;
1366
1367 if (! INSN_P (chain->insn)
1368 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1369 continue;
1370 pat = PATTERN (chain->insn);
1371 if (GET_CODE (pat) != PARALLEL)
1372 continue;
1373
1374 CLEAR_HARD_REG_SET (clobbered);
1375 CLEAR_HARD_REG_SET (allowed);
1376
1377 /* First, make a mask of all stack regs that are clobbered. */
1378 for (i = 0; i < XVECLEN (pat, 0); i++)
1379 {
1380 rtx t = XVECEXP (pat, 0, i);
1381 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1382 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1383 }
1384
1385 /* Get the operand values and constraints out of the insn. */
1386 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1387 constraints, operand_mode, NULL);
1388
1389 /* For every operand, see what registers are allowed. */
1390 for (i = 0; i < noperands; i++)
1391 {
1392 const char *p = constraints[i];
1393 /* For every alternative, we compute the class of registers allowed
1394 for reloading in CLS, and merge its contents into the reg set
1395 ALLOWED. */
1396 int cls = (int) NO_REGS;
1397
1398 for (;;)
1399 {
1400 char c = *p;
1401
1402 if (c == '\0' || c == ',' || c == '#')
1403 {
1404 /* End of one alternative - mark the regs in the current
1405 class, and reset the class. */
1406 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1407 cls = NO_REGS;
1408 p++;
1409 if (c == '#')
1410 do {
1411 c = *p++;
1412 } while (c != '\0' && c != ',');
1413 if (c == '\0')
1414 break;
1415 continue;
1416 }
1417
1418 switch (c)
1419 {
1420 case 'g':
1421 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1422 break;
1423
1424 default:
1425 enum constraint_num cn = lookup_constraint (p);
1426 if (insn_extra_address_constraint (cn))
1427 cls = (int) reg_class_subunion[cls]
1428 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1429 ADDRESS, SCRATCH)];
1430 else
1431 cls = (int) reg_class_subunion[cls]
1432 [reg_class_for_constraint (cn)];
1433 break;
1434 }
1435 p += CONSTRAINT_LEN (c, p);
1436 }
1437 }
1438 /* Those of the registers which are clobbered, but allowed by the
1439 constraints, must be usable as reload registers. So clear them
1440 out of the life information. */
1441 AND_HARD_REG_SET (allowed, clobbered);
1442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1443 if (TEST_HARD_REG_BIT (allowed, i))
1444 {
1445 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1446 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1447 }
1448 }
1449
1450 #endif
1451 }
1452 \f
1453 /* Copy the global variables n_reloads and rld into the corresponding elts
1454 of CHAIN. */
1455 static void
1456 copy_reloads (struct insn_chain *chain)
1457 {
1458 chain->n_reloads = n_reloads;
1459 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1460 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1461 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1462 }
1463
1464 /* Walk the chain of insns, and determine for each whether it needs reloads
1465 and/or eliminations. Build the corresponding insns_need_reload list, and
1466 set something_needs_elimination as appropriate. */
1467 static void
1468 calculate_needs_all_insns (int global)
1469 {
1470 struct insn_chain **pprev_reload = &insns_need_reload;
1471 struct insn_chain *chain, *next = 0;
1472
1473 something_needs_elimination = 0;
1474
1475 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1476 for (chain = reload_insn_chain; chain != 0; chain = next)
1477 {
1478 rtx_insn *insn = chain->insn;
1479
1480 next = chain->next;
1481
1482 /* Clear out the shortcuts. */
1483 chain->n_reloads = 0;
1484 chain->need_elim = 0;
1485 chain->need_reload = 0;
1486 chain->need_operand_change = 0;
1487
1488 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1489 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1490 what effects this has on the known offsets at labels. */
1491
1492 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1493 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1494 set_label_offsets (insn, insn, 0);
1495
1496 if (INSN_P (insn))
1497 {
1498 rtx old_body = PATTERN (insn);
1499 int old_code = INSN_CODE (insn);
1500 rtx old_notes = REG_NOTES (insn);
1501 int did_elimination = 0;
1502 int operands_changed = 0;
1503
1504 /* Skip insns that only set an equivalence. */
1505 if (will_delete_init_insn_p (insn))
1506 continue;
1507
1508 /* If needed, eliminate any eliminable registers. */
1509 if (num_eliminable || num_eliminable_invariants)
1510 did_elimination = eliminate_regs_in_insn (insn, 0);
1511
1512 /* Analyze the instruction. */
1513 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1514 global, spill_reg_order);
1515
1516 /* If a no-op set needs more than one reload, this is likely
1517 to be something that needs input address reloads. We
1518 can't get rid of this cleanly later, and it is of no use
1519 anyway, so discard it now.
1520 We only do this when expensive_optimizations is enabled,
1521 since this complements reload inheritance / output
1522 reload deletion, and it can make debugging harder. */
1523 if (flag_expensive_optimizations && n_reloads > 1)
1524 {
1525 rtx set = single_set (insn);
1526 if (set
1527 &&
1528 ((SET_SRC (set) == SET_DEST (set)
1529 && REG_P (SET_SRC (set))
1530 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1531 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1532 && reg_renumber[REGNO (SET_SRC (set))] < 0
1533 && reg_renumber[REGNO (SET_DEST (set))] < 0
1534 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1535 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1536 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1537 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1538 {
1539 if (ira_conflicts_p)
1540 /* Inform IRA about the insn deletion. */
1541 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1542 REGNO (SET_SRC (set)));
1543 delete_insn (insn);
1544 /* Delete it from the reload chain. */
1545 if (chain->prev)
1546 chain->prev->next = next;
1547 else
1548 reload_insn_chain = next;
1549 if (next)
1550 next->prev = chain->prev;
1551 chain->next = unused_insn_chains;
1552 unused_insn_chains = chain;
1553 continue;
1554 }
1555 }
1556 if (num_eliminable)
1557 update_eliminable_offsets ();
1558
1559 /* Remember for later shortcuts which insns had any reloads or
1560 register eliminations. */
1561 chain->need_elim = did_elimination;
1562 chain->need_reload = n_reloads > 0;
1563 chain->need_operand_change = operands_changed;
1564
1565 /* Discard any register replacements done. */
1566 if (did_elimination)
1567 {
1568 obstack_free (&reload_obstack, reload_insn_firstobj);
1569 PATTERN (insn) = old_body;
1570 INSN_CODE (insn) = old_code;
1571 REG_NOTES (insn) = old_notes;
1572 something_needs_elimination = 1;
1573 }
1574
1575 something_needs_operands_changed |= operands_changed;
1576
1577 if (n_reloads != 0)
1578 {
1579 copy_reloads (chain);
1580 *pprev_reload = chain;
1581 pprev_reload = &chain->next_need_reload;
1582 }
1583 }
1584 }
1585 *pprev_reload = 0;
1586 }
1587 \f
1588 /* This function is called from the register allocator to set up estimates
1589 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1590 an invariant. The structure is similar to calculate_needs_all_insns. */
1591
1592 void
1593 calculate_elim_costs_all_insns (void)
1594 {
1595 int *reg_equiv_init_cost;
1596 basic_block bb;
1597 int i;
1598
1599 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1600 init_elim_table ();
1601 init_eliminable_invariants (get_insns (), false);
1602
1603 set_initial_elim_offsets ();
1604 set_initial_label_offsets ();
1605
1606 FOR_EACH_BB_FN (bb, cfun)
1607 {
1608 rtx_insn *insn;
1609 elim_bb = bb;
1610
1611 FOR_BB_INSNS (bb, insn)
1612 {
1613 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1614 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1615 what effects this has on the known offsets at labels. */
1616
1617 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1618 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1619 set_label_offsets (insn, insn, 0);
1620
1621 if (INSN_P (insn))
1622 {
1623 rtx set = single_set (insn);
1624
1625 /* Skip insns that only set an equivalence. */
1626 if (set && REG_P (SET_DEST (set))
1627 && reg_renumber[REGNO (SET_DEST (set))] < 0
1628 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1629 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1630 {
1631 unsigned regno = REGNO (SET_DEST (set));
1632 rtx init = reg_equiv_init (regno);
1633 if (init)
1634 {
1635 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1636 false, true);
1637 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1638 int freq = REG_FREQ_FROM_BB (bb);
1639
1640 reg_equiv_init_cost[regno] = cost * freq;
1641 continue;
1642 }
1643 }
1644 /* If needed, eliminate any eliminable registers. */
1645 if (num_eliminable || num_eliminable_invariants)
1646 elimination_costs_in_insn (insn);
1647
1648 if (num_eliminable)
1649 update_eliminable_offsets ();
1650 }
1651 }
1652 }
1653 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1654 {
1655 if (reg_equiv_invariant (i))
1656 {
1657 if (reg_equiv_init (i))
1658 {
1659 int cost = reg_equiv_init_cost[i];
1660 if (dump_file)
1661 fprintf (dump_file,
1662 "Reg %d has equivalence, initial gains %d\n", i, cost);
1663 if (cost != 0)
1664 ira_adjust_equiv_reg_cost (i, cost);
1665 }
1666 else
1667 {
1668 if (dump_file)
1669 fprintf (dump_file,
1670 "Reg %d had equivalence, but can't be eliminated\n",
1671 i);
1672 ira_adjust_equiv_reg_cost (i, 0);
1673 }
1674 }
1675 }
1676
1677 free (reg_equiv_init_cost);
1678 free (offsets_known_at);
1679 free (offsets_at);
1680 offsets_at = NULL;
1681 offsets_known_at = NULL;
1682 }
1683 \f
1684 /* Comparison function for qsort to decide which of two reloads
1685 should be handled first. *P1 and *P2 are the reload numbers. */
1686
1687 static int
1688 reload_reg_class_lower (const void *r1p, const void *r2p)
1689 {
1690 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1691 int t;
1692
1693 /* Consider required reloads before optional ones. */
1694 t = rld[r1].optional - rld[r2].optional;
1695 if (t != 0)
1696 return t;
1697
1698 /* Count all solitary classes before non-solitary ones. */
1699 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1700 - (reg_class_size[(int) rld[r1].rclass] == 1));
1701 if (t != 0)
1702 return t;
1703
1704 /* Aside from solitaires, consider all multi-reg groups first. */
1705 t = rld[r2].nregs - rld[r1].nregs;
1706 if (t != 0)
1707 return t;
1708
1709 /* Consider reloads in order of increasing reg-class number. */
1710 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1711 if (t != 0)
1712 return t;
1713
1714 /* If reloads are equally urgent, sort by reload number,
1715 so that the results of qsort leave nothing to chance. */
1716 return r1 - r2;
1717 }
1718 \f
1719 /* The cost of spilling each hard reg. */
1720 static int spill_cost[FIRST_PSEUDO_REGISTER];
1721
1722 /* When spilling multiple hard registers, we use SPILL_COST for the first
1723 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1724 only the first hard reg for a multi-reg pseudo. */
1725 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1726
1727 /* Map of hard regno to pseudo regno currently occupying the hard
1728 reg. */
1729 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1730
1731 /* Update the spill cost arrays, considering that pseudo REG is live. */
1732
1733 static void
1734 count_pseudo (int reg)
1735 {
1736 int freq = REG_FREQ (reg);
1737 int r = reg_renumber[reg];
1738 int nregs;
1739
1740 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1741 if (ira_conflicts_p && r < 0)
1742 return;
1743
1744 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1745 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1746 return;
1747
1748 SET_REGNO_REG_SET (&pseudos_counted, reg);
1749
1750 gcc_assert (r >= 0);
1751
1752 spill_add_cost[r] += freq;
1753 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1754 while (nregs-- > 0)
1755 {
1756 hard_regno_to_pseudo_regno[r + nregs] = reg;
1757 spill_cost[r + nregs] += freq;
1758 }
1759 }
1760
1761 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1762 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1763
1764 static void
1765 order_regs_for_reload (struct insn_chain *chain)
1766 {
1767 unsigned i;
1768 HARD_REG_SET used_by_pseudos;
1769 HARD_REG_SET used_by_pseudos2;
1770 reg_set_iterator rsi;
1771
1772 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1773
1774 memset (spill_cost, 0, sizeof spill_cost);
1775 memset (spill_add_cost, 0, sizeof spill_add_cost);
1776 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1777 hard_regno_to_pseudo_regno[i] = -1;
1778
1779 /* Count number of uses of each hard reg by pseudo regs allocated to it
1780 and then order them by decreasing use. First exclude hard registers
1781 that are live in or across this insn. */
1782
1783 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1784 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1785 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1786 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1787
1788 /* Now find out which pseudos are allocated to it, and update
1789 hard_reg_n_uses. */
1790 CLEAR_REG_SET (&pseudos_counted);
1791
1792 EXECUTE_IF_SET_IN_REG_SET
1793 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1794 {
1795 count_pseudo (i);
1796 }
1797 EXECUTE_IF_SET_IN_REG_SET
1798 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1799 {
1800 count_pseudo (i);
1801 }
1802 CLEAR_REG_SET (&pseudos_counted);
1803 }
1804 \f
1805 /* Vector of reload-numbers showing the order in which the reloads should
1806 be processed. */
1807 static short reload_order[MAX_RELOADS];
1808
1809 /* This is used to keep track of the spill regs used in one insn. */
1810 static HARD_REG_SET used_spill_regs_local;
1811
1812 /* We decided to spill hard register SPILLED, which has a size of
1813 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1814 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1815 update SPILL_COST/SPILL_ADD_COST. */
1816
1817 static void
1818 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1819 {
1820 int freq = REG_FREQ (reg);
1821 int r = reg_renumber[reg];
1822 int nregs;
1823
1824 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1825 if (ira_conflicts_p && r < 0)
1826 return;
1827
1828 gcc_assert (r >= 0);
1829
1830 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1831
1832 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1833 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1834 return;
1835
1836 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1837
1838 spill_add_cost[r] -= freq;
1839 while (nregs-- > 0)
1840 {
1841 hard_regno_to_pseudo_regno[r + nregs] = -1;
1842 spill_cost[r + nregs] -= freq;
1843 }
1844 }
1845
1846 /* Find reload register to use for reload number ORDER. */
1847
1848 static int
1849 find_reg (struct insn_chain *chain, int order)
1850 {
1851 int rnum = reload_order[order];
1852 struct reload *rl = rld + rnum;
1853 int best_cost = INT_MAX;
1854 int best_reg = -1;
1855 unsigned int i, j, n;
1856 int k;
1857 HARD_REG_SET not_usable;
1858 HARD_REG_SET used_by_other_reload;
1859 reg_set_iterator rsi;
1860 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1861 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1862
1863 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1864 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1865 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1866
1867 CLEAR_HARD_REG_SET (used_by_other_reload);
1868 for (k = 0; k < order; k++)
1869 {
1870 int other = reload_order[k];
1871
1872 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1873 for (j = 0; j < rld[other].nregs; j++)
1874 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1875 }
1876
1877 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1878 {
1879 #ifdef REG_ALLOC_ORDER
1880 unsigned int regno = reg_alloc_order[i];
1881 #else
1882 unsigned int regno = i;
1883 #endif
1884
1885 if (! TEST_HARD_REG_BIT (not_usable, regno)
1886 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1887 && HARD_REGNO_MODE_OK (regno, rl->mode))
1888 {
1889 int this_cost = spill_cost[regno];
1890 int ok = 1;
1891 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1892
1893 for (j = 1; j < this_nregs; j++)
1894 {
1895 this_cost += spill_add_cost[regno + j];
1896 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1897 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1898 ok = 0;
1899 }
1900 if (! ok)
1901 continue;
1902
1903 if (ira_conflicts_p)
1904 {
1905 /* Ask IRA to find a better pseudo-register for
1906 spilling. */
1907 for (n = j = 0; j < this_nregs; j++)
1908 {
1909 int r = hard_regno_to_pseudo_regno[regno + j];
1910
1911 if (r < 0)
1912 continue;
1913 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1914 regno_pseudo_regs[n++] = r;
1915 }
1916 regno_pseudo_regs[n++] = -1;
1917 if (best_reg < 0
1918 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1919 best_regno_pseudo_regs,
1920 rl->in, rl->out,
1921 chain->insn))
1922 {
1923 best_reg = regno;
1924 for (j = 0;; j++)
1925 {
1926 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1927 if (regno_pseudo_regs[j] < 0)
1928 break;
1929 }
1930 }
1931 continue;
1932 }
1933
1934 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1935 this_cost--;
1936 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1937 this_cost--;
1938 if (this_cost < best_cost
1939 /* Among registers with equal cost, prefer caller-saved ones, or
1940 use REG_ALLOC_ORDER if it is defined. */
1941 || (this_cost == best_cost
1942 #ifdef REG_ALLOC_ORDER
1943 && (inv_reg_alloc_order[regno]
1944 < inv_reg_alloc_order[best_reg])
1945 #else
1946 && call_used_regs[regno]
1947 && ! call_used_regs[best_reg]
1948 #endif
1949 ))
1950 {
1951 best_reg = regno;
1952 best_cost = this_cost;
1953 }
1954 }
1955 }
1956 if (best_reg == -1)
1957 return 0;
1958
1959 if (dump_file)
1960 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1961
1962 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1963 rl->regno = best_reg;
1964
1965 EXECUTE_IF_SET_IN_REG_SET
1966 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1967 {
1968 count_spilled_pseudo (best_reg, rl->nregs, j);
1969 }
1970
1971 EXECUTE_IF_SET_IN_REG_SET
1972 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1973 {
1974 count_spilled_pseudo (best_reg, rl->nregs, j);
1975 }
1976
1977 for (i = 0; i < rl->nregs; i++)
1978 {
1979 gcc_assert (spill_cost[best_reg + i] == 0);
1980 gcc_assert (spill_add_cost[best_reg + i] == 0);
1981 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1982 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1983 }
1984 return 1;
1985 }
1986
1987 /* Find more reload regs to satisfy the remaining need of an insn, which
1988 is given by CHAIN.
1989 Do it by ascending class number, since otherwise a reg
1990 might be spilled for a big class and might fail to count
1991 for a smaller class even though it belongs to that class. */
1992
1993 static void
1994 find_reload_regs (struct insn_chain *chain)
1995 {
1996 int i;
1997
1998 /* In order to be certain of getting the registers we need,
1999 we must sort the reloads into order of increasing register class.
2000 Then our grabbing of reload registers will parallel the process
2001 that provided the reload registers. */
2002 for (i = 0; i < chain->n_reloads; i++)
2003 {
2004 /* Show whether this reload already has a hard reg. */
2005 if (chain->rld[i].reg_rtx)
2006 {
2007 int regno = REGNO (chain->rld[i].reg_rtx);
2008 chain->rld[i].regno = regno;
2009 chain->rld[i].nregs
2010 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2011 }
2012 else
2013 chain->rld[i].regno = -1;
2014 reload_order[i] = i;
2015 }
2016
2017 n_reloads = chain->n_reloads;
2018 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2019
2020 CLEAR_HARD_REG_SET (used_spill_regs_local);
2021
2022 if (dump_file)
2023 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2024
2025 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2026
2027 /* Compute the order of preference for hard registers to spill. */
2028
2029 order_regs_for_reload (chain);
2030
2031 for (i = 0; i < n_reloads; i++)
2032 {
2033 int r = reload_order[i];
2034
2035 /* Ignore reloads that got marked inoperative. */
2036 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2037 && ! rld[r].optional
2038 && rld[r].regno == -1)
2039 if (! find_reg (chain, i))
2040 {
2041 if (dump_file)
2042 fprintf (dump_file, "reload failure for reload %d\n", r);
2043 spill_failure (chain->insn, rld[r].rclass);
2044 failure = 1;
2045 return;
2046 }
2047 }
2048
2049 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2050 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2051
2052 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2053 }
2054
2055 static void
2056 select_reload_regs (void)
2057 {
2058 struct insn_chain *chain;
2059
2060 /* Try to satisfy the needs for each insn. */
2061 for (chain = insns_need_reload; chain != 0;
2062 chain = chain->next_need_reload)
2063 find_reload_regs (chain);
2064 }
2065 \f
2066 /* Delete all insns that were inserted by emit_caller_save_insns during
2067 this iteration. */
2068 static void
2069 delete_caller_save_insns (void)
2070 {
2071 struct insn_chain *c = reload_insn_chain;
2072
2073 while (c != 0)
2074 {
2075 while (c != 0 && c->is_caller_save_insn)
2076 {
2077 struct insn_chain *next = c->next;
2078 rtx_insn *insn = c->insn;
2079
2080 if (c == reload_insn_chain)
2081 reload_insn_chain = next;
2082 delete_insn (insn);
2083
2084 if (next)
2085 next->prev = c->prev;
2086 if (c->prev)
2087 c->prev->next = next;
2088 c->next = unused_insn_chains;
2089 unused_insn_chains = c;
2090 c = next;
2091 }
2092 if (c != 0)
2093 c = c->next;
2094 }
2095 }
2096 \f
2097 /* Handle the failure to find a register to spill.
2098 INSN should be one of the insns which needed this particular spill reg. */
2099
2100 static void
2101 spill_failure (rtx_insn *insn, enum reg_class rclass)
2102 {
2103 if (asm_noperands (PATTERN (insn)) >= 0)
2104 error_for_asm (insn, "can%'t find a register in class %qs while "
2105 "reloading %<asm%>",
2106 reg_class_names[rclass]);
2107 else
2108 {
2109 error ("unable to find a register to spill in class %qs",
2110 reg_class_names[rclass]);
2111
2112 if (dump_file)
2113 {
2114 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2115 debug_reload_to_stream (dump_file);
2116 }
2117 fatal_insn ("this is the insn:", insn);
2118 }
2119 }
2120 \f
2121 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2122 data that is dead in INSN. */
2123
2124 static void
2125 delete_dead_insn (rtx_insn *insn)
2126 {
2127 rtx_insn *prev = prev_active_insn (insn);
2128 rtx prev_dest;
2129
2130 /* If the previous insn sets a register that dies in our insn make
2131 a note that we want to run DCE immediately after reload.
2132
2133 We used to delete the previous insn & recurse, but that's wrong for
2134 block local equivalences. Instead of trying to figure out the exact
2135 circumstances where we can delete the potentially dead insns, just
2136 let DCE do the job. */
2137 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2138 && GET_CODE (PATTERN (prev)) == SET
2139 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2140 && reg_mentioned_p (prev_dest, PATTERN (insn))
2141 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2142 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2143 need_dce = 1;
2144
2145 SET_INSN_DELETED (insn);
2146 }
2147
2148 /* Modify the home of pseudo-reg I.
2149 The new home is present in reg_renumber[I].
2150
2151 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2152 or it may be -1, meaning there is none or it is not relevant.
2153 This is used so that all pseudos spilled from a given hard reg
2154 can share one stack slot. */
2155
2156 static void
2157 alter_reg (int i, int from_reg, bool dont_share_p)
2158 {
2159 /* When outputting an inline function, this can happen
2160 for a reg that isn't actually used. */
2161 if (regno_reg_rtx[i] == 0)
2162 return;
2163
2164 /* If the reg got changed to a MEM at rtl-generation time,
2165 ignore it. */
2166 if (!REG_P (regno_reg_rtx[i]))
2167 return;
2168
2169 /* Modify the reg-rtx to contain the new hard reg
2170 number or else to contain its pseudo reg number. */
2171 SET_REGNO (regno_reg_rtx[i],
2172 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2173
2174 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2175 allocate a stack slot for it. */
2176
2177 if (reg_renumber[i] < 0
2178 && REG_N_REFS (i) > 0
2179 && reg_equiv_constant (i) == 0
2180 && (reg_equiv_invariant (i) == 0
2181 || reg_equiv_init (i) == 0)
2182 && reg_equiv_memory_loc (i) == 0)
2183 {
2184 rtx x = NULL_RTX;
2185 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2186 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2187 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2188 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2189 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2190 int adjust = 0;
2191
2192 something_was_spilled = true;
2193
2194 if (ira_conflicts_p)
2195 {
2196 /* Mark the spill for IRA. */
2197 SET_REGNO_REG_SET (&spilled_pseudos, i);
2198 if (!dont_share_p)
2199 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2200 }
2201
2202 if (x)
2203 ;
2204
2205 /* Each pseudo reg has an inherent size which comes from its own mode,
2206 and a total size which provides room for paradoxical subregs
2207 which refer to the pseudo reg in wider modes.
2208
2209 We can use a slot already allocated if it provides both
2210 enough inherent space and enough total space.
2211 Otherwise, we allocate a new slot, making sure that it has no less
2212 inherent space, and no less total space, then the previous slot. */
2213 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2214 {
2215 rtx stack_slot;
2216
2217 /* No known place to spill from => no slot to reuse. */
2218 x = assign_stack_local (mode, total_size,
2219 min_align > inherent_align
2220 || total_size > inherent_size ? -1 : 0);
2221
2222 stack_slot = x;
2223
2224 /* Cancel the big-endian correction done in assign_stack_local.
2225 Get the address of the beginning of the slot. This is so we
2226 can do a big-endian correction unconditionally below. */
2227 if (BYTES_BIG_ENDIAN)
2228 {
2229 adjust = inherent_size - total_size;
2230 if (adjust)
2231 stack_slot
2232 = adjust_address_nv (x, mode_for_size (total_size
2233 * BITS_PER_UNIT,
2234 MODE_INT, 1),
2235 adjust);
2236 }
2237
2238 if (! dont_share_p && ira_conflicts_p)
2239 /* Inform IRA about allocation a new stack slot. */
2240 ira_mark_new_stack_slot (stack_slot, i, total_size);
2241 }
2242
2243 /* Reuse a stack slot if possible. */
2244 else if (spill_stack_slot[from_reg] != 0
2245 && spill_stack_slot_width[from_reg] >= total_size
2246 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2247 >= inherent_size)
2248 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2249 x = spill_stack_slot[from_reg];
2250
2251 /* Allocate a bigger slot. */
2252 else
2253 {
2254 /* Compute maximum size needed, both for inherent size
2255 and for total size. */
2256 rtx stack_slot;
2257
2258 if (spill_stack_slot[from_reg])
2259 {
2260 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2261 > inherent_size)
2262 mode = GET_MODE (spill_stack_slot[from_reg]);
2263 if (spill_stack_slot_width[from_reg] > total_size)
2264 total_size = spill_stack_slot_width[from_reg];
2265 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2266 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2267 }
2268
2269 /* Make a slot with that size. */
2270 x = assign_stack_local (mode, total_size,
2271 min_align > inherent_align
2272 || total_size > inherent_size ? -1 : 0);
2273 stack_slot = x;
2274
2275 /* Cancel the big-endian correction done in assign_stack_local.
2276 Get the address of the beginning of the slot. This is so we
2277 can do a big-endian correction unconditionally below. */
2278 if (BYTES_BIG_ENDIAN)
2279 {
2280 adjust = GET_MODE_SIZE (mode) - total_size;
2281 if (adjust)
2282 stack_slot
2283 = adjust_address_nv (x, mode_for_size (total_size
2284 * BITS_PER_UNIT,
2285 MODE_INT, 1),
2286 adjust);
2287 }
2288
2289 spill_stack_slot[from_reg] = stack_slot;
2290 spill_stack_slot_width[from_reg] = total_size;
2291 }
2292
2293 /* On a big endian machine, the "address" of the slot
2294 is the address of the low part that fits its inherent mode. */
2295 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2296 adjust += (total_size - inherent_size);
2297
2298 /* If we have any adjustment to make, or if the stack slot is the
2299 wrong mode, make a new stack slot. */
2300 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2301
2302 /* Set all of the memory attributes as appropriate for a spill. */
2303 set_mem_attrs_for_spill (x);
2304
2305 /* Save the stack slot for later. */
2306 reg_equiv_memory_loc (i) = x;
2307 }
2308 }
2309
2310 /* Mark the slots in regs_ever_live for the hard regs used by
2311 pseudo-reg number REGNO, accessed in MODE. */
2312
2313 static void
2314 mark_home_live_1 (int regno, enum machine_mode mode)
2315 {
2316 int i, lim;
2317
2318 i = reg_renumber[regno];
2319 if (i < 0)
2320 return;
2321 lim = end_hard_regno (mode, i);
2322 while (i < lim)
2323 df_set_regs_ever_live (i++, true);
2324 }
2325
2326 /* Mark the slots in regs_ever_live for the hard regs
2327 used by pseudo-reg number REGNO. */
2328
2329 void
2330 mark_home_live (int regno)
2331 {
2332 if (reg_renumber[regno] >= 0)
2333 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2334 }
2335 \f
2336 /* This function handles the tracking of elimination offsets around branches.
2337
2338 X is a piece of RTL being scanned.
2339
2340 INSN is the insn that it came from, if any.
2341
2342 INITIAL_P is nonzero if we are to set the offset to be the initial
2343 offset and zero if we are setting the offset of the label to be the
2344 current offset. */
2345
2346 static void
2347 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2348 {
2349 enum rtx_code code = GET_CODE (x);
2350 rtx tem;
2351 unsigned int i;
2352 struct elim_table *p;
2353
2354 switch (code)
2355 {
2356 case LABEL_REF:
2357 if (LABEL_REF_NONLOCAL_P (x))
2358 return;
2359
2360 x = XEXP (x, 0);
2361
2362 /* ... fall through ... */
2363
2364 case CODE_LABEL:
2365 /* If we know nothing about this label, set the desired offsets. Note
2366 that this sets the offset at a label to be the offset before a label
2367 if we don't know anything about the label. This is not correct for
2368 the label after a BARRIER, but is the best guess we can make. If
2369 we guessed wrong, we will suppress an elimination that might have
2370 been possible had we been able to guess correctly. */
2371
2372 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2373 {
2374 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2375 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2376 = (initial_p ? reg_eliminate[i].initial_offset
2377 : reg_eliminate[i].offset);
2378 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2379 }
2380
2381 /* Otherwise, if this is the definition of a label and it is
2382 preceded by a BARRIER, set our offsets to the known offset of
2383 that label. */
2384
2385 else if (x == insn
2386 && (tem = prev_nonnote_insn (insn)) != 0
2387 && BARRIER_P (tem))
2388 set_offsets_for_label (insn);
2389 else
2390 /* If neither of the above cases is true, compare each offset
2391 with those previously recorded and suppress any eliminations
2392 where the offsets disagree. */
2393
2394 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2395 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2396 != (initial_p ? reg_eliminate[i].initial_offset
2397 : reg_eliminate[i].offset))
2398 reg_eliminate[i].can_eliminate = 0;
2399
2400 return;
2401
2402 case JUMP_TABLE_DATA:
2403 set_label_offsets (PATTERN (insn), insn, initial_p);
2404 return;
2405
2406 case JUMP_INSN:
2407 set_label_offsets (PATTERN (insn), insn, initial_p);
2408
2409 /* ... fall through ... */
2410
2411 case INSN:
2412 case CALL_INSN:
2413 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2414 to indirectly and hence must have all eliminations at their
2415 initial offsets. */
2416 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2417 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2418 set_label_offsets (XEXP (tem, 0), insn, 1);
2419 return;
2420
2421 case PARALLEL:
2422 case ADDR_VEC:
2423 case ADDR_DIFF_VEC:
2424 /* Each of the labels in the parallel or address vector must be
2425 at their initial offsets. We want the first field for PARALLEL
2426 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2427
2428 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2429 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2430 insn, initial_p);
2431 return;
2432
2433 case SET:
2434 /* We only care about setting PC. If the source is not RETURN,
2435 IF_THEN_ELSE, or a label, disable any eliminations not at
2436 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2437 isn't one of those possibilities. For branches to a label,
2438 call ourselves recursively.
2439
2440 Note that this can disable elimination unnecessarily when we have
2441 a non-local goto since it will look like a non-constant jump to
2442 someplace in the current function. This isn't a significant
2443 problem since such jumps will normally be when all elimination
2444 pairs are back to their initial offsets. */
2445
2446 if (SET_DEST (x) != pc_rtx)
2447 return;
2448
2449 switch (GET_CODE (SET_SRC (x)))
2450 {
2451 case PC:
2452 case RETURN:
2453 return;
2454
2455 case LABEL_REF:
2456 set_label_offsets (SET_SRC (x), insn, initial_p);
2457 return;
2458
2459 case IF_THEN_ELSE:
2460 tem = XEXP (SET_SRC (x), 1);
2461 if (GET_CODE (tem) == LABEL_REF)
2462 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2463 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2464 break;
2465
2466 tem = XEXP (SET_SRC (x), 2);
2467 if (GET_CODE (tem) == LABEL_REF)
2468 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2469 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2470 break;
2471 return;
2472
2473 default:
2474 break;
2475 }
2476
2477 /* If we reach here, all eliminations must be at their initial
2478 offset because we are doing a jump to a variable address. */
2479 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2480 if (p->offset != p->initial_offset)
2481 p->can_eliminate = 0;
2482 break;
2483
2484 default:
2485 break;
2486 }
2487 }
2488 \f
2489 /* Called through for_each_rtx, this function examines every reg that occurs
2490 in PX and adjusts the costs for its elimination which are gathered by IRA.
2491 DATA is the insn in which PX occurs. We do not recurse into MEM
2492 expressions. */
2493
2494 static int
2495 note_reg_elim_costly (rtx *px, void *data)
2496 {
2497 rtx insn = (rtx)data;
2498 rtx x = *px;
2499
2500 if (MEM_P (x))
2501 return -1;
2502
2503 if (REG_P (x)
2504 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2505 && reg_equiv_init (REGNO (x))
2506 && reg_equiv_invariant (REGNO (x)))
2507 {
2508 rtx t = reg_equiv_invariant (REGNO (x));
2509 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2510 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2511 int freq = REG_FREQ_FROM_BB (elim_bb);
2512
2513 if (cost != 0)
2514 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2515 }
2516 return 0;
2517 }
2518
2519 /* Scan X and replace any eliminable registers (such as fp) with a
2520 replacement (such as sp), plus an offset.
2521
2522 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2523 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2524 MEM, we are allowed to replace a sum of a register and the constant zero
2525 with the register, which we cannot do outside a MEM. In addition, we need
2526 to record the fact that a register is referenced outside a MEM.
2527
2528 If INSN is an insn, it is the insn containing X. If we replace a REG
2529 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2530 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2531 the REG is being modified.
2532
2533 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2534 That's used when we eliminate in expressions stored in notes.
2535 This means, do not set ref_outside_mem even if the reference
2536 is outside of MEMs.
2537
2538 If FOR_COSTS is true, we are being called before reload in order to
2539 estimate the costs of keeping registers with an equivalence unallocated.
2540
2541 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2542 replacements done assuming all offsets are at their initial values. If
2543 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2544 encounter, return the actual location so that find_reloads will do
2545 the proper thing. */
2546
2547 static rtx
2548 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2549 bool may_use_invariant, bool for_costs)
2550 {
2551 enum rtx_code code = GET_CODE (x);
2552 struct elim_table *ep;
2553 int regno;
2554 rtx new_rtx;
2555 int i, j;
2556 const char *fmt;
2557 int copied = 0;
2558
2559 if (! current_function_decl)
2560 return x;
2561
2562 switch (code)
2563 {
2564 CASE_CONST_ANY:
2565 case CONST:
2566 case SYMBOL_REF:
2567 case CODE_LABEL:
2568 case PC:
2569 case CC0:
2570 case ASM_INPUT:
2571 case ADDR_VEC:
2572 case ADDR_DIFF_VEC:
2573 case RETURN:
2574 return x;
2575
2576 case REG:
2577 regno = REGNO (x);
2578
2579 /* First handle the case where we encounter a bare register that
2580 is eliminable. Replace it with a PLUS. */
2581 if (regno < FIRST_PSEUDO_REGISTER)
2582 {
2583 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2584 ep++)
2585 if (ep->from_rtx == x && ep->can_eliminate)
2586 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2587
2588 }
2589 else if (reg_renumber && reg_renumber[regno] < 0
2590 && reg_equivs
2591 && reg_equiv_invariant (regno))
2592 {
2593 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2594 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2595 mem_mode, insn, true, for_costs);
2596 /* There exists at least one use of REGNO that cannot be
2597 eliminated. Prevent the defining insn from being deleted. */
2598 reg_equiv_init (regno) = NULL_RTX;
2599 if (!for_costs)
2600 alter_reg (regno, -1, true);
2601 }
2602 return x;
2603
2604 /* You might think handling MINUS in a manner similar to PLUS is a
2605 good idea. It is not. It has been tried multiple times and every
2606 time the change has had to have been reverted.
2607
2608 Other parts of reload know a PLUS is special (gen_reload for example)
2609 and require special code to handle code a reloaded PLUS operand.
2610
2611 Also consider backends where the flags register is clobbered by a
2612 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2613 lea instruction comes to mind). If we try to reload a MINUS, we
2614 may kill the flags register that was holding a useful value.
2615
2616 So, please before trying to handle MINUS, consider reload as a
2617 whole instead of this little section as well as the backend issues. */
2618 case PLUS:
2619 /* If this is the sum of an eliminable register and a constant, rework
2620 the sum. */
2621 if (REG_P (XEXP (x, 0))
2622 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2623 && CONSTANT_P (XEXP (x, 1)))
2624 {
2625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2626 ep++)
2627 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2628 {
2629 /* The only time we want to replace a PLUS with a REG (this
2630 occurs when the constant operand of the PLUS is the negative
2631 of the offset) is when we are inside a MEM. We won't want
2632 to do so at other times because that would change the
2633 structure of the insn in a way that reload can't handle.
2634 We special-case the commonest situation in
2635 eliminate_regs_in_insn, so just replace a PLUS with a
2636 PLUS here, unless inside a MEM. */
2637 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2638 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2639 return ep->to_rtx;
2640 else
2641 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2642 plus_constant (Pmode, XEXP (x, 1),
2643 ep->previous_offset));
2644 }
2645
2646 /* If the register is not eliminable, we are done since the other
2647 operand is a constant. */
2648 return x;
2649 }
2650
2651 /* If this is part of an address, we want to bring any constant to the
2652 outermost PLUS. We will do this by doing register replacement in
2653 our operands and seeing if a constant shows up in one of them.
2654
2655 Note that there is no risk of modifying the structure of the insn,
2656 since we only get called for its operands, thus we are either
2657 modifying the address inside a MEM, or something like an address
2658 operand of a load-address insn. */
2659
2660 {
2661 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2662 for_costs);
2663 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2664 for_costs);
2665
2666 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2667 {
2668 /* If one side is a PLUS and the other side is a pseudo that
2669 didn't get a hard register but has a reg_equiv_constant,
2670 we must replace the constant here since it may no longer
2671 be in the position of any operand. */
2672 if (GET_CODE (new0) == PLUS && REG_P (new1)
2673 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2674 && reg_renumber[REGNO (new1)] < 0
2675 && reg_equivs
2676 && reg_equiv_constant (REGNO (new1)) != 0)
2677 new1 = reg_equiv_constant (REGNO (new1));
2678 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2679 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2680 && reg_renumber[REGNO (new0)] < 0
2681 && reg_equiv_constant (REGNO (new0)) != 0)
2682 new0 = reg_equiv_constant (REGNO (new0));
2683
2684 new_rtx = form_sum (GET_MODE (x), new0, new1);
2685
2686 /* As above, if we are not inside a MEM we do not want to
2687 turn a PLUS into something else. We might try to do so here
2688 for an addition of 0 if we aren't optimizing. */
2689 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2690 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2691 else
2692 return new_rtx;
2693 }
2694 }
2695 return x;
2696
2697 case MULT:
2698 /* If this is the product of an eliminable register and a
2699 constant, apply the distribute law and move the constant out
2700 so that we have (plus (mult ..) ..). This is needed in order
2701 to keep load-address insns valid. This case is pathological.
2702 We ignore the possibility of overflow here. */
2703 if (REG_P (XEXP (x, 0))
2704 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2705 && CONST_INT_P (XEXP (x, 1)))
2706 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2707 ep++)
2708 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2709 {
2710 if (! mem_mode
2711 /* Refs inside notes or in DEBUG_INSNs don't count for
2712 this purpose. */
2713 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2714 || GET_CODE (insn) == INSN_LIST
2715 || DEBUG_INSN_P (insn))))
2716 ep->ref_outside_mem = 1;
2717
2718 return
2719 plus_constant (Pmode,
2720 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2722 }
2723
2724 /* ... fall through ... */
2725
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2738 {
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2744
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2747 }
2748 return x;
2749
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2753 {
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2757 {
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2766
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2768 }
2769 }
2770
2771 /* ... fall through ... */
2772
2773 case INSN_LIST:
2774 case INT_LIST:
2775 /* Now do eliminations in the rest of the chain. If this was
2776 an EXPR_LIST, this might result in allocating more memory than is
2777 strictly needed, but it simplifies the code. */
2778 if (XEXP (x, 1))
2779 {
2780 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2781 for_costs);
2782 if (new_rtx != XEXP (x, 1))
2783 return
2784 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 }
2786 return x;
2787
2788 case PRE_INC:
2789 case POST_INC:
2790 case PRE_DEC:
2791 case POST_DEC:
2792 /* We do not support elimination of a register that is modified.
2793 elimination_effects has already make sure that this does not
2794 happen. */
2795 return x;
2796
2797 case PRE_MODIFY:
2798 case POST_MODIFY:
2799 /* We do not support elimination of a register that is modified.
2800 elimination_effects has already make sure that this does not
2801 happen. The only remaining case we need to consider here is
2802 that the increment value may be an eliminable register. */
2803 if (GET_CODE (XEXP (x, 1)) == PLUS
2804 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 {
2806 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2807 insn, true, for_costs);
2808
2809 if (new_rtx != XEXP (XEXP (x, 1), 1))
2810 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2811 gen_rtx_PLUS (GET_MODE (x),
2812 XEXP (x, 0), new_rtx));
2813 }
2814 return x;
2815
2816 case STRICT_LOW_PART:
2817 case NEG: case NOT:
2818 case SIGN_EXTEND: case ZERO_EXTEND:
2819 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2820 case FLOAT: case FIX:
2821 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2822 case ABS:
2823 case SQRT:
2824 case FFS:
2825 case CLZ:
2826 case CTZ:
2827 case POPCOUNT:
2828 case PARITY:
2829 case BSWAP:
2830 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2831 for_costs);
2832 if (new_rtx != XEXP (x, 0))
2833 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2834 return x;
2835
2836 case SUBREG:
2837 /* Similar to above processing, but preserve SUBREG_BYTE.
2838 Convert (subreg (mem)) to (mem) if not paradoxical.
2839 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2840 pseudo didn't get a hard reg, we must replace this with the
2841 eliminated version of the memory location because push_reload
2842 may do the replacement in certain circumstances. */
2843 if (REG_P (SUBREG_REG (x))
2844 && !paradoxical_subreg_p (x)
2845 && reg_equivs
2846 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 {
2848 new_rtx = SUBREG_REG (x);
2849 }
2850 else
2851 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852
2853 if (new_rtx != SUBREG_REG (x))
2854 {
2855 int x_size = GET_MODE_SIZE (GET_MODE (x));
2856 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857
2858 if (MEM_P (new_rtx)
2859 && ((x_size < new_size
2860 #ifdef WORD_REGISTER_OPERATIONS
2861 /* On these machines, combine can create rtl of the form
2862 (set (subreg:m1 (reg:m2 R) 0) ...)
2863 where m1 < m2, and expects something interesting to
2864 happen to the entire word. Moreover, it will use the
2865 (reg:m2 R) later, expecting all bits to be preserved.
2866 So if the number of words is the same, preserve the
2867 subreg so that push_reload can see it. */
2868 && ! ((x_size - 1) / UNITS_PER_WORD
2869 == (new_size -1 ) / UNITS_PER_WORD)
2870 #endif
2871 )
2872 || x_size == new_size)
2873 )
2874 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2875 else
2876 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2877 }
2878
2879 return x;
2880
2881 case MEM:
2882 /* Our only special processing is to pass the mode of the MEM to our
2883 recursive call and copy the flags. While we are here, handle this
2884 case more efficiently. */
2885
2886 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2887 for_costs);
2888 if (for_costs
2889 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2890 && !memory_address_p (GET_MODE (x), new_rtx))
2891 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892
2893 return replace_equiv_address_nv (x, new_rtx);
2894
2895 case USE:
2896 /* Handle insn_list USE that a call to a pure function may generate. */
2897 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2898 for_costs);
2899 if (new_rtx != XEXP (x, 0))
2900 return gen_rtx_USE (GET_MODE (x), new_rtx);
2901 return x;
2902
2903 case CLOBBER:
2904 case ASM_OPERANDS:
2905 gcc_assert (insn && DEBUG_INSN_P (insn));
2906 break;
2907
2908 case SET:
2909 gcc_unreachable ();
2910
2911 default:
2912 break;
2913 }
2914
2915 /* Process each of our operands recursively. If any have changed, make a
2916 copy of the rtx. */
2917 fmt = GET_RTX_FORMAT (code);
2918 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 {
2920 if (*fmt == 'e')
2921 {
2922 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2923 for_costs);
2924 if (new_rtx != XEXP (x, i) && ! copied)
2925 {
2926 x = shallow_copy_rtx (x);
2927 copied = 1;
2928 }
2929 XEXP (x, i) = new_rtx;
2930 }
2931 else if (*fmt == 'E')
2932 {
2933 int copied_vec = 0;
2934 for (j = 0; j < XVECLEN (x, i); j++)
2935 {
2936 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2937 for_costs);
2938 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 {
2940 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2941 XVEC (x, i)->elem);
2942 if (! copied)
2943 {
2944 x = shallow_copy_rtx (x);
2945 copied = 1;
2946 }
2947 XVEC (x, i) = new_v;
2948 copied_vec = 1;
2949 }
2950 XVECEXP (x, i, j) = new_rtx;
2951 }
2952 }
2953 }
2954
2955 return x;
2956 }
2957
2958 rtx
2959 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 {
2961 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2962 }
2963
2964 /* Scan rtx X for modifications of elimination target registers. Update
2965 the table of eliminables to reflect the changed state. MEM_MODE is
2966 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967
2968 static void
2969 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 {
2971 enum rtx_code code = GET_CODE (x);
2972 struct elim_table *ep;
2973 int regno;
2974 int i, j;
2975 const char *fmt;
2976
2977 switch (code)
2978 {
2979 CASE_CONST_ANY:
2980 case CONST:
2981 case SYMBOL_REF:
2982 case CODE_LABEL:
2983 case PC:
2984 case CC0:
2985 case ASM_INPUT:
2986 case ADDR_VEC:
2987 case ADDR_DIFF_VEC:
2988 case RETURN:
2989 return;
2990
2991 case REG:
2992 regno = REGNO (x);
2993
2994 /* First handle the case where we encounter a bare register that
2995 is eliminable. Replace it with a PLUS. */
2996 if (regno < FIRST_PSEUDO_REGISTER)
2997 {
2998 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2999 ep++)
3000 if (ep->from_rtx == x && ep->can_eliminate)
3001 {
3002 if (! mem_mode)
3003 ep->ref_outside_mem = 1;
3004 return;
3005 }
3006
3007 }
3008 else if (reg_renumber[regno] < 0
3009 && reg_equivs
3010 && reg_equiv_constant (regno)
3011 && ! function_invariant_p (reg_equiv_constant (regno)))
3012 elimination_effects (reg_equiv_constant (regno), mem_mode);
3013 return;
3014
3015 case PRE_INC:
3016 case POST_INC:
3017 case PRE_DEC:
3018 case POST_DEC:
3019 case POST_MODIFY:
3020 case PRE_MODIFY:
3021 /* If we modify the source of an elimination rule, disable it. */
3022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3023 if (ep->from_rtx == XEXP (x, 0))
3024 ep->can_eliminate = 0;
3025
3026 /* If we modify the target of an elimination rule by adding a constant,
3027 update its offset. If we modify the target in any other way, we'll
3028 have to disable the rule as well. */
3029 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3030 if (ep->to_rtx == XEXP (x, 0))
3031 {
3032 int size = GET_MODE_SIZE (mem_mode);
3033
3034 /* If more bytes than MEM_MODE are pushed, account for them. */
3035 #ifdef PUSH_ROUNDING
3036 if (ep->to_rtx == stack_pointer_rtx)
3037 size = PUSH_ROUNDING (size);
3038 #endif
3039 if (code == PRE_DEC || code == POST_DEC)
3040 ep->offset += size;
3041 else if (code == PRE_INC || code == POST_INC)
3042 ep->offset -= size;
3043 else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 {
3045 if (GET_CODE (XEXP (x, 1)) == PLUS
3046 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3047 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3048 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3049 else
3050 ep->can_eliminate = 0;
3051 }
3052 }
3053
3054 /* These two aren't unary operators. */
3055 if (code == POST_MODIFY || code == PRE_MODIFY)
3056 break;
3057
3058 /* Fall through to generic unary operation case. */
3059 case STRICT_LOW_PART:
3060 case NEG: case NOT:
3061 case SIGN_EXTEND: case ZERO_EXTEND:
3062 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3063 case FLOAT: case FIX:
3064 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3065 case ABS:
3066 case SQRT:
3067 case FFS:
3068 case CLZ:
3069 case CTZ:
3070 case POPCOUNT:
3071 case PARITY:
3072 case BSWAP:
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3075
3076 case SUBREG:
3077 if (REG_P (SUBREG_REG (x))
3078 && (GET_MODE_SIZE (GET_MODE (x))
3079 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3080 && reg_equivs
3081 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3082 return;
3083
3084 elimination_effects (SUBREG_REG (x), mem_mode);
3085 return;
3086
3087 case USE:
3088 /* If using a register that is the source of an eliminate we still
3089 think can be performed, note it cannot be performed since we don't
3090 know how this register is used. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3092 if (ep->from_rtx == XEXP (x, 0))
3093 ep->can_eliminate = 0;
3094
3095 elimination_effects (XEXP (x, 0), mem_mode);
3096 return;
3097
3098 case CLOBBER:
3099 /* If clobbering a register that is the replacement register for an
3100 elimination we still think can be performed, note that it cannot
3101 be performed. Otherwise, we need not be concerned about it. */
3102 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3103 if (ep->to_rtx == XEXP (x, 0))
3104 ep->can_eliminate = 0;
3105
3106 elimination_effects (XEXP (x, 0), mem_mode);
3107 return;
3108
3109 case SET:
3110 /* Check for setting a register that we know about. */
3111 if (REG_P (SET_DEST (x)))
3112 {
3113 /* See if this is setting the replacement register for an
3114 elimination.
3115
3116 If DEST is the hard frame pointer, we do nothing because we
3117 assume that all assignments to the frame pointer are for
3118 non-local gotos and are being done at a time when they are valid
3119 and do not disturb anything else. Some machines want to
3120 eliminate a fake argument pointer (or even a fake frame pointer)
3121 with either the real frame or the stack pointer. Assignments to
3122 the hard frame pointer must not prevent this elimination. */
3123
3124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 ep++)
3126 if (ep->to_rtx == SET_DEST (x)
3127 && SET_DEST (x) != hard_frame_pointer_rtx)
3128 {
3129 /* If it is being incremented, adjust the offset. Otherwise,
3130 this elimination can't be done. */
3131 rtx src = SET_SRC (x);
3132
3133 if (GET_CODE (src) == PLUS
3134 && XEXP (src, 0) == SET_DEST (x)
3135 && CONST_INT_P (XEXP (src, 1)))
3136 ep->offset -= INTVAL (XEXP (src, 1));
3137 else
3138 ep->can_eliminate = 0;
3139 }
3140 }
3141
3142 elimination_effects (SET_DEST (x), VOIDmode);
3143 elimination_effects (SET_SRC (x), VOIDmode);
3144 return;
3145
3146 case MEM:
3147 /* Our only special processing is to pass the mode of the MEM to our
3148 recursive call. */
3149 elimination_effects (XEXP (x, 0), GET_MODE (x));
3150 return;
3151
3152 default:
3153 break;
3154 }
3155
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3158 {
3159 if (*fmt == 'e')
3160 elimination_effects (XEXP (x, i), mem_mode);
3161 else if (*fmt == 'E')
3162 for (j = 0; j < XVECLEN (x, i); j++)
3163 elimination_effects (XVECEXP (x, i, j), mem_mode);
3164 }
3165 }
3166
3167 /* Descend through rtx X and verify that no references to eliminable registers
3168 remain. If any do remain, mark the involved register as not
3169 eliminable. */
3170
3171 static void
3172 check_eliminable_occurrences (rtx x)
3173 {
3174 const char *fmt;
3175 int i;
3176 enum rtx_code code;
3177
3178 if (x == 0)
3179 return;
3180
3181 code = GET_CODE (x);
3182
3183 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3184 {
3185 struct elim_table *ep;
3186
3187 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 if (ep->from_rtx == x)
3189 ep->can_eliminate = 0;
3190 return;
3191 }
3192
3193 fmt = GET_RTX_FORMAT (code);
3194 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3195 {
3196 if (*fmt == 'e')
3197 check_eliminable_occurrences (XEXP (x, i));
3198 else if (*fmt == 'E')
3199 {
3200 int j;
3201 for (j = 0; j < XVECLEN (x, i); j++)
3202 check_eliminable_occurrences (XVECEXP (x, i, j));
3203 }
3204 }
3205 }
3206 \f
3207 /* Scan INSN and eliminate all eliminable registers in it.
3208
3209 If REPLACE is nonzero, do the replacement destructively. Also
3210 delete the insn as dead it if it is setting an eliminable register.
3211
3212 If REPLACE is zero, do all our allocations in reload_obstack.
3213
3214 If no eliminations were done and this insn doesn't require any elimination
3215 processing (these are not identical conditions: it might be updating sp,
3216 but not referencing fp; this needs to be seen during reload_as_needed so
3217 that the offset between fp and sp can be taken into consideration), zero
3218 is returned. Otherwise, 1 is returned. */
3219
3220 static int
3221 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3222 {
3223 int icode = recog_memoized (insn);
3224 rtx old_body = PATTERN (insn);
3225 int insn_is_asm = asm_noperands (old_body) >= 0;
3226 rtx old_set = single_set (insn);
3227 rtx new_body;
3228 int val = 0;
3229 int i;
3230 rtx substed_operand[MAX_RECOG_OPERANDS];
3231 rtx orig_operand[MAX_RECOG_OPERANDS];
3232 struct elim_table *ep;
3233 rtx plus_src, plus_cst_src;
3234
3235 if (! insn_is_asm && icode < 0)
3236 {
3237 gcc_assert (DEBUG_INSN_P (insn)
3238 || GET_CODE (PATTERN (insn)) == USE
3239 || GET_CODE (PATTERN (insn)) == CLOBBER
3240 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3241 if (DEBUG_INSN_P (insn))
3242 INSN_VAR_LOCATION_LOC (insn)
3243 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3244 return 0;
3245 }
3246
3247 if (old_set != 0 && REG_P (SET_DEST (old_set))
3248 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3249 {
3250 /* Check for setting an eliminable register. */
3251 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3252 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3253 {
3254 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3255 /* If this is setting the frame pointer register to the
3256 hardware frame pointer register and this is an elimination
3257 that will be done (tested above), this insn is really
3258 adjusting the frame pointer downward to compensate for
3259 the adjustment done before a nonlocal goto. */
3260 if (ep->from == FRAME_POINTER_REGNUM
3261 && ep->to == HARD_FRAME_POINTER_REGNUM)
3262 {
3263 rtx base = SET_SRC (old_set);
3264 rtx_insn *base_insn = insn;
3265 HOST_WIDE_INT offset = 0;
3266
3267 while (base != ep->to_rtx)
3268 {
3269 rtx_insn *prev_insn;
3270 rtx prev_set;
3271
3272 if (GET_CODE (base) == PLUS
3273 && CONST_INT_P (XEXP (base, 1)))
3274 {
3275 offset += INTVAL (XEXP (base, 1));
3276 base = XEXP (base, 0);
3277 }
3278 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3279 && (prev_set = single_set (prev_insn)) != 0
3280 && rtx_equal_p (SET_DEST (prev_set), base))
3281 {
3282 base = SET_SRC (prev_set);
3283 base_insn = prev_insn;
3284 }
3285 else
3286 break;
3287 }
3288
3289 if (base == ep->to_rtx)
3290 {
3291 rtx src = plus_constant (Pmode, ep->to_rtx,
3292 offset - ep->offset);
3293
3294 new_body = old_body;
3295 if (! replace)
3296 {
3297 new_body = copy_insn (old_body);
3298 if (REG_NOTES (insn))
3299 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3300 }
3301 PATTERN (insn) = new_body;
3302 old_set = single_set (insn);
3303
3304 /* First see if this insn remains valid when we
3305 make the change. If not, keep the INSN_CODE
3306 the same and let reload fit it up. */
3307 validate_change (insn, &SET_SRC (old_set), src, 1);
3308 validate_change (insn, &SET_DEST (old_set),
3309 ep->to_rtx, 1);
3310 if (! apply_change_group ())
3311 {
3312 SET_SRC (old_set) = src;
3313 SET_DEST (old_set) = ep->to_rtx;
3314 }
3315
3316 val = 1;
3317 goto done;
3318 }
3319 }
3320 #endif
3321
3322 /* In this case this insn isn't serving a useful purpose. We
3323 will delete it in reload_as_needed once we know that this
3324 elimination is, in fact, being done.
3325
3326 If REPLACE isn't set, we can't delete this insn, but needn't
3327 process it since it won't be used unless something changes. */
3328 if (replace)
3329 {
3330 delete_dead_insn (insn);
3331 return 1;
3332 }
3333 val = 1;
3334 goto done;
3335 }
3336 }
3337
3338 /* We allow one special case which happens to work on all machines we
3339 currently support: a single set with the source or a REG_EQUAL
3340 note being a PLUS of an eliminable register and a constant. */
3341 plus_src = plus_cst_src = 0;
3342 if (old_set && REG_P (SET_DEST (old_set)))
3343 {
3344 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3345 plus_src = SET_SRC (old_set);
3346 /* First see if the source is of the form (plus (...) CST). */
3347 if (plus_src
3348 && CONST_INT_P (XEXP (plus_src, 1)))
3349 plus_cst_src = plus_src;
3350 else if (REG_P (SET_SRC (old_set))
3351 || plus_src)
3352 {
3353 /* Otherwise, see if we have a REG_EQUAL note of the form
3354 (plus (...) CST). */
3355 rtx links;
3356 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3357 {
3358 if ((REG_NOTE_KIND (links) == REG_EQUAL
3359 || REG_NOTE_KIND (links) == REG_EQUIV)
3360 && GET_CODE (XEXP (links, 0)) == PLUS
3361 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3362 {
3363 plus_cst_src = XEXP (links, 0);
3364 break;
3365 }
3366 }
3367 }
3368
3369 /* Check that the first operand of the PLUS is a hard reg or
3370 the lowpart subreg of one. */
3371 if (plus_cst_src)
3372 {
3373 rtx reg = XEXP (plus_cst_src, 0);
3374 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3375 reg = SUBREG_REG (reg);
3376
3377 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3378 plus_cst_src = 0;
3379 }
3380 }
3381 if (plus_cst_src)
3382 {
3383 rtx reg = XEXP (plus_cst_src, 0);
3384 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3385
3386 if (GET_CODE (reg) == SUBREG)
3387 reg = SUBREG_REG (reg);
3388
3389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3390 if (ep->from_rtx == reg && ep->can_eliminate)
3391 {
3392 rtx to_rtx = ep->to_rtx;
3393 offset += ep->offset;
3394 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3395
3396 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3397 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3398 to_rtx);
3399 /* If we have a nonzero offset, and the source is already
3400 a simple REG, the following transformation would
3401 increase the cost of the insn by replacing a simple REG
3402 with (plus (reg sp) CST). So try only when we already
3403 had a PLUS before. */
3404 if (offset == 0 || plus_src)
3405 {
3406 rtx new_src = plus_constant (GET_MODE (to_rtx),
3407 to_rtx, offset);
3408
3409 new_body = old_body;
3410 if (! replace)
3411 {
3412 new_body = copy_insn (old_body);
3413 if (REG_NOTES (insn))
3414 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3415 }
3416 PATTERN (insn) = new_body;
3417 old_set = single_set (insn);
3418
3419 /* First see if this insn remains valid when we make the
3420 change. If not, try to replace the whole pattern with
3421 a simple set (this may help if the original insn was a
3422 PARALLEL that was only recognized as single_set due to
3423 REG_UNUSED notes). If this isn't valid either, keep
3424 the INSN_CODE the same and let reload fix it up. */
3425 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3426 {
3427 rtx new_pat = gen_rtx_SET (VOIDmode,
3428 SET_DEST (old_set), new_src);
3429
3430 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3431 SET_SRC (old_set) = new_src;
3432 }
3433 }
3434 else
3435 break;
3436
3437 val = 1;
3438 /* This can't have an effect on elimination offsets, so skip right
3439 to the end. */
3440 goto done;
3441 }
3442 }
3443
3444 /* Determine the effects of this insn on elimination offsets. */
3445 elimination_effects (old_body, VOIDmode);
3446
3447 /* Eliminate all eliminable registers occurring in operands that
3448 can be handled by reload. */
3449 extract_insn (insn);
3450 for (i = 0; i < recog_data.n_operands; i++)
3451 {
3452 orig_operand[i] = recog_data.operand[i];
3453 substed_operand[i] = recog_data.operand[i];
3454
3455 /* For an asm statement, every operand is eliminable. */
3456 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3457 {
3458 bool is_set_src, in_plus;
3459
3460 /* Check for setting a register that we know about. */
3461 if (recog_data.operand_type[i] != OP_IN
3462 && REG_P (orig_operand[i]))
3463 {
3464 /* If we are assigning to a register that can be eliminated, it
3465 must be as part of a PARALLEL, since the code above handles
3466 single SETs. We must indicate that we can no longer
3467 eliminate this reg. */
3468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3469 ep++)
3470 if (ep->from_rtx == orig_operand[i])
3471 ep->can_eliminate = 0;
3472 }
3473
3474 /* Companion to the above plus substitution, we can allow
3475 invariants as the source of a plain move. */
3476 is_set_src = false;
3477 if (old_set
3478 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3479 is_set_src = true;
3480 in_plus = false;
3481 if (plus_src
3482 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3483 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3484 in_plus = true;
3485
3486 substed_operand[i]
3487 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3488 replace ? insn : NULL_RTX,
3489 is_set_src || in_plus, false);
3490 if (substed_operand[i] != orig_operand[i])
3491 val = 1;
3492 /* Terminate the search in check_eliminable_occurrences at
3493 this point. */
3494 *recog_data.operand_loc[i] = 0;
3495
3496 /* If an output operand changed from a REG to a MEM and INSN is an
3497 insn, write a CLOBBER insn. */
3498 if (recog_data.operand_type[i] != OP_IN
3499 && REG_P (orig_operand[i])
3500 && MEM_P (substed_operand[i])
3501 && replace)
3502 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3503 }
3504 }
3505
3506 for (i = 0; i < recog_data.n_dups; i++)
3507 *recog_data.dup_loc[i]
3508 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3509
3510 /* If any eliminable remain, they aren't eliminable anymore. */
3511 check_eliminable_occurrences (old_body);
3512
3513 /* Substitute the operands; the new values are in the substed_operand
3514 array. */
3515 for (i = 0; i < recog_data.n_operands; i++)
3516 *recog_data.operand_loc[i] = substed_operand[i];
3517 for (i = 0; i < recog_data.n_dups; i++)
3518 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3519
3520 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3521 re-recognize the insn. We do this in case we had a simple addition
3522 but now can do this as a load-address. This saves an insn in this
3523 common case.
3524 If re-recognition fails, the old insn code number will still be used,
3525 and some register operands may have changed into PLUS expressions.
3526 These will be handled by find_reloads by loading them into a register
3527 again. */
3528
3529 if (val)
3530 {
3531 /* If we aren't replacing things permanently and we changed something,
3532 make another copy to ensure that all the RTL is new. Otherwise
3533 things can go wrong if find_reload swaps commutative operands
3534 and one is inside RTL that has been copied while the other is not. */
3535 new_body = old_body;
3536 if (! replace)
3537 {
3538 new_body = copy_insn (old_body);
3539 if (REG_NOTES (insn))
3540 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3541 }
3542 PATTERN (insn) = new_body;
3543
3544 /* If we had a move insn but now we don't, rerecognize it. This will
3545 cause spurious re-recognition if the old move had a PARALLEL since
3546 the new one still will, but we can't call single_set without
3547 having put NEW_BODY into the insn and the re-recognition won't
3548 hurt in this rare case. */
3549 /* ??? Why this huge if statement - why don't we just rerecognize the
3550 thing always? */
3551 if (! insn_is_asm
3552 && old_set != 0
3553 && ((REG_P (SET_SRC (old_set))
3554 && (GET_CODE (new_body) != SET
3555 || !REG_P (SET_SRC (new_body))))
3556 /* If this was a load from or store to memory, compare
3557 the MEM in recog_data.operand to the one in the insn.
3558 If they are not equal, then rerecognize the insn. */
3559 || (old_set != 0
3560 && ((MEM_P (SET_SRC (old_set))
3561 && SET_SRC (old_set) != recog_data.operand[1])
3562 || (MEM_P (SET_DEST (old_set))
3563 && SET_DEST (old_set) != recog_data.operand[0])))
3564 /* If this was an add insn before, rerecognize. */
3565 || GET_CODE (SET_SRC (old_set)) == PLUS))
3566 {
3567 int new_icode = recog (PATTERN (insn), insn, 0);
3568 if (new_icode >= 0)
3569 INSN_CODE (insn) = new_icode;
3570 }
3571 }
3572
3573 /* Restore the old body. If there were any changes to it, we made a copy
3574 of it while the changes were still in place, so we'll correctly return
3575 a modified insn below. */
3576 if (! replace)
3577 {
3578 /* Restore the old body. */
3579 for (i = 0; i < recog_data.n_operands; i++)
3580 /* Restoring a top-level match_parallel would clobber the new_body
3581 we installed in the insn. */
3582 if (recog_data.operand_loc[i] != &PATTERN (insn))
3583 *recog_data.operand_loc[i] = orig_operand[i];
3584 for (i = 0; i < recog_data.n_dups; i++)
3585 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3586 }
3587
3588 /* Update all elimination pairs to reflect the status after the current
3589 insn. The changes we make were determined by the earlier call to
3590 elimination_effects.
3591
3592 We also detect cases where register elimination cannot be done,
3593 namely, if a register would be both changed and referenced outside a MEM
3594 in the resulting insn since such an insn is often undefined and, even if
3595 not, we cannot know what meaning will be given to it. Note that it is
3596 valid to have a register used in an address in an insn that changes it
3597 (presumably with a pre- or post-increment or decrement).
3598
3599 If anything changes, return nonzero. */
3600
3601 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3602 {
3603 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3604 ep->can_eliminate = 0;
3605
3606 ep->ref_outside_mem = 0;
3607
3608 if (ep->previous_offset != ep->offset)
3609 val = 1;
3610 }
3611
3612 done:
3613 /* If we changed something, perform elimination in REG_NOTES. This is
3614 needed even when REPLACE is zero because a REG_DEAD note might refer
3615 to a register that we eliminate and could cause a different number
3616 of spill registers to be needed in the final reload pass than in
3617 the pre-passes. */
3618 if (val && REG_NOTES (insn) != 0)
3619 REG_NOTES (insn)
3620 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3621 false);
3622
3623 return val;
3624 }
3625
3626 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3627 register allocator. INSN is the instruction we need to examine, we perform
3628 eliminations in its operands and record cases where eliminating a reg with
3629 an invariant equivalence would add extra cost. */
3630
3631 static void
3632 elimination_costs_in_insn (rtx_insn *insn)
3633 {
3634 int icode = recog_memoized (insn);
3635 rtx old_body = PATTERN (insn);
3636 int insn_is_asm = asm_noperands (old_body) >= 0;
3637 rtx old_set = single_set (insn);
3638 int i;
3639 rtx orig_operand[MAX_RECOG_OPERANDS];
3640 rtx orig_dup[MAX_RECOG_OPERANDS];
3641 struct elim_table *ep;
3642 rtx plus_src, plus_cst_src;
3643 bool sets_reg_p;
3644
3645 if (! insn_is_asm && icode < 0)
3646 {
3647 gcc_assert (DEBUG_INSN_P (insn)
3648 || GET_CODE (PATTERN (insn)) == USE
3649 || GET_CODE (PATTERN (insn)) == CLOBBER
3650 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3651 return;
3652 }
3653
3654 if (old_set != 0 && REG_P (SET_DEST (old_set))
3655 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3656 {
3657 /* Check for setting an eliminable register. */
3658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3659 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3660 return;
3661 }
3662
3663 /* We allow one special case which happens to work on all machines we
3664 currently support: a single set with the source or a REG_EQUAL
3665 note being a PLUS of an eliminable register and a constant. */
3666 plus_src = plus_cst_src = 0;
3667 sets_reg_p = false;
3668 if (old_set && REG_P (SET_DEST (old_set)))
3669 {
3670 sets_reg_p = true;
3671 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3672 plus_src = SET_SRC (old_set);
3673 /* First see if the source is of the form (plus (...) CST). */
3674 if (plus_src
3675 && CONST_INT_P (XEXP (plus_src, 1)))
3676 plus_cst_src = plus_src;
3677 else if (REG_P (SET_SRC (old_set))
3678 || plus_src)
3679 {
3680 /* Otherwise, see if we have a REG_EQUAL note of the form
3681 (plus (...) CST). */
3682 rtx links;
3683 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3684 {
3685 if ((REG_NOTE_KIND (links) == REG_EQUAL
3686 || REG_NOTE_KIND (links) == REG_EQUIV)
3687 && GET_CODE (XEXP (links, 0)) == PLUS
3688 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3689 {
3690 plus_cst_src = XEXP (links, 0);
3691 break;
3692 }
3693 }
3694 }
3695 }
3696
3697 /* Determine the effects of this insn on elimination offsets. */
3698 elimination_effects (old_body, VOIDmode);
3699
3700 /* Eliminate all eliminable registers occurring in operands that
3701 can be handled by reload. */
3702 extract_insn (insn);
3703 for (i = 0; i < recog_data.n_dups; i++)
3704 orig_dup[i] = *recog_data.dup_loc[i];
3705
3706 for (i = 0; i < recog_data.n_operands; i++)
3707 {
3708 orig_operand[i] = recog_data.operand[i];
3709
3710 /* For an asm statement, every operand is eliminable. */
3711 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3712 {
3713 bool is_set_src, in_plus;
3714
3715 /* Check for setting a register that we know about. */
3716 if (recog_data.operand_type[i] != OP_IN
3717 && REG_P (orig_operand[i]))
3718 {
3719 /* If we are assigning to a register that can be eliminated, it
3720 must be as part of a PARALLEL, since the code above handles
3721 single SETs. We must indicate that we can no longer
3722 eliminate this reg. */
3723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3724 ep++)
3725 if (ep->from_rtx == orig_operand[i])
3726 ep->can_eliminate = 0;
3727 }
3728
3729 /* Companion to the above plus substitution, we can allow
3730 invariants as the source of a plain move. */
3731 is_set_src = false;
3732 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3733 is_set_src = true;
3734 if (is_set_src && !sets_reg_p)
3735 note_reg_elim_costly (&SET_SRC (old_set), insn);
3736 in_plus = false;
3737 if (plus_src && sets_reg_p
3738 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3739 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3740 in_plus = true;
3741
3742 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3743 NULL_RTX,
3744 is_set_src || in_plus, true);
3745 /* Terminate the search in check_eliminable_occurrences at
3746 this point. */
3747 *recog_data.operand_loc[i] = 0;
3748 }
3749 }
3750
3751 for (i = 0; i < recog_data.n_dups; i++)
3752 *recog_data.dup_loc[i]
3753 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3754
3755 /* If any eliminable remain, they aren't eliminable anymore. */
3756 check_eliminable_occurrences (old_body);
3757
3758 /* Restore the old body. */
3759 for (i = 0; i < recog_data.n_operands; i++)
3760 *recog_data.operand_loc[i] = orig_operand[i];
3761 for (i = 0; i < recog_data.n_dups; i++)
3762 *recog_data.dup_loc[i] = orig_dup[i];
3763
3764 /* Update all elimination pairs to reflect the status after the current
3765 insn. The changes we make were determined by the earlier call to
3766 elimination_effects. */
3767
3768 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3769 {
3770 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3771 ep->can_eliminate = 0;
3772
3773 ep->ref_outside_mem = 0;
3774 }
3775
3776 return;
3777 }
3778
3779 /* Loop through all elimination pairs.
3780 Recalculate the number not at initial offset.
3781
3782 Compute the maximum offset (minimum offset if the stack does not
3783 grow downward) for each elimination pair. */
3784
3785 static void
3786 update_eliminable_offsets (void)
3787 {
3788 struct elim_table *ep;
3789
3790 num_not_at_initial_offset = 0;
3791 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3792 {
3793 ep->previous_offset = ep->offset;
3794 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3795 num_not_at_initial_offset++;
3796 }
3797 }
3798
3799 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3800 replacement we currently believe is valid, mark it as not eliminable if X
3801 modifies DEST in any way other than by adding a constant integer to it.
3802
3803 If DEST is the frame pointer, we do nothing because we assume that
3804 all assignments to the hard frame pointer are nonlocal gotos and are being
3805 done at a time when they are valid and do not disturb anything else.
3806 Some machines want to eliminate a fake argument pointer with either the
3807 frame or stack pointer. Assignments to the hard frame pointer must not
3808 prevent this elimination.
3809
3810 Called via note_stores from reload before starting its passes to scan
3811 the insns of the function. */
3812
3813 static void
3814 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3815 {
3816 unsigned int i;
3817
3818 /* A SUBREG of a hard register here is just changing its mode. We should
3819 not see a SUBREG of an eliminable hard register, but check just in
3820 case. */
3821 if (GET_CODE (dest) == SUBREG)
3822 dest = SUBREG_REG (dest);
3823
3824 if (dest == hard_frame_pointer_rtx)
3825 return;
3826
3827 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3828 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3829 && (GET_CODE (x) != SET
3830 || GET_CODE (SET_SRC (x)) != PLUS
3831 || XEXP (SET_SRC (x), 0) != dest
3832 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3833 {
3834 reg_eliminate[i].can_eliminate_previous
3835 = reg_eliminate[i].can_eliminate = 0;
3836 num_eliminable--;
3837 }
3838 }
3839
3840 /* Verify that the initial elimination offsets did not change since the
3841 last call to set_initial_elim_offsets. This is used to catch cases
3842 where something illegal happened during reload_as_needed that could
3843 cause incorrect code to be generated if we did not check for it. */
3844
3845 static bool
3846 verify_initial_elim_offsets (void)
3847 {
3848 HOST_WIDE_INT t;
3849
3850 if (!num_eliminable)
3851 return true;
3852
3853 #ifdef ELIMINABLE_REGS
3854 {
3855 struct elim_table *ep;
3856
3857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3858 {
3859 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3860 if (t != ep->initial_offset)
3861 return false;
3862 }
3863 }
3864 #else
3865 INITIAL_FRAME_POINTER_OFFSET (t);
3866 if (t != reg_eliminate[0].initial_offset)
3867 return false;
3868 #endif
3869
3870 return true;
3871 }
3872
3873 /* Reset all offsets on eliminable registers to their initial values. */
3874
3875 static void
3876 set_initial_elim_offsets (void)
3877 {
3878 struct elim_table *ep = reg_eliminate;
3879
3880 #ifdef ELIMINABLE_REGS
3881 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3882 {
3883 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3884 ep->previous_offset = ep->offset = ep->initial_offset;
3885 }
3886 #else
3887 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 #endif
3890
3891 num_not_at_initial_offset = 0;
3892 }
3893
3894 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3895
3896 static void
3897 set_initial_eh_label_offset (rtx label)
3898 {
3899 set_label_offsets (label, NULL, 1);
3900 }
3901
3902 /* Initialize the known label offsets.
3903 Set a known offset for each forced label to be at the initial offset
3904 of each elimination. We do this because we assume that all
3905 computed jumps occur from a location where each elimination is
3906 at its initial offset.
3907 For all other labels, show that we don't know the offsets. */
3908
3909 static void
3910 set_initial_label_offsets (void)
3911 {
3912 rtx x;
3913 memset (offsets_known_at, 0, num_labels);
3914
3915 for (x = forced_labels; x; x = XEXP (x, 1))
3916 if (XEXP (x, 0))
3917 set_label_offsets (XEXP (x, 0), NULL, 1);
3918
3919 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL, 1);
3922
3923 for_each_eh_label (set_initial_eh_label_offset);
3924 }
3925
3926 /* Set all elimination offsets to the known values for the code label given
3927 by INSN. */
3928
3929 static void
3930 set_offsets_for_label (rtx_insn *insn)
3931 {
3932 unsigned int i;
3933 int label_nr = CODE_LABEL_NUMBER (insn);
3934 struct elim_table *ep;
3935
3936 num_not_at_initial_offset = 0;
3937 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3938 {
3939 ep->offset = ep->previous_offset
3940 = offsets_at[label_nr - first_label_num][i];
3941 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3942 num_not_at_initial_offset++;
3943 }
3944 }
3945
3946 /* See if anything that happened changes which eliminations are valid.
3947 For example, on the SPARC, whether or not the frame pointer can
3948 be eliminated can depend on what registers have been used. We need
3949 not check some conditions again (such as flag_omit_frame_pointer)
3950 since they can't have changed. */
3951
3952 static void
3953 update_eliminables (HARD_REG_SET *pset)
3954 {
3955 int previous_frame_pointer_needed = frame_pointer_needed;
3956 struct elim_table *ep;
3957
3958 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3959 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3960 && targetm.frame_pointer_required ())
3961 #ifdef ELIMINABLE_REGS
3962 || ! targetm.can_eliminate (ep->from, ep->to)
3963 #endif
3964 )
3965 ep->can_eliminate = 0;
3966
3967 /* Look for the case where we have discovered that we can't replace
3968 register A with register B and that means that we will now be
3969 trying to replace register A with register C. This means we can
3970 no longer replace register C with register B and we need to disable
3971 such an elimination, if it exists. This occurs often with A == ap,
3972 B == sp, and C == fp. */
3973
3974 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3975 {
3976 struct elim_table *op;
3977 int new_to = -1;
3978
3979 if (! ep->can_eliminate && ep->can_eliminate_previous)
3980 {
3981 /* Find the current elimination for ep->from, if there is a
3982 new one. */
3983 for (op = reg_eliminate;
3984 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3985 if (op->from == ep->from && op->can_eliminate)
3986 {
3987 new_to = op->to;
3988 break;
3989 }
3990
3991 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3992 disable it. */
3993 for (op = reg_eliminate;
3994 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3995 if (op->from == new_to && op->to == ep->to)
3996 op->can_eliminate = 0;
3997 }
3998 }
3999
4000 /* See if any registers that we thought we could eliminate the previous
4001 time are no longer eliminable. If so, something has changed and we
4002 must spill the register. Also, recompute the number of eliminable
4003 registers and see if the frame pointer is needed; it is if there is
4004 no elimination of the frame pointer that we can perform. */
4005
4006 frame_pointer_needed = 1;
4007 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4008 {
4009 if (ep->can_eliminate
4010 && ep->from == FRAME_POINTER_REGNUM
4011 && ep->to != HARD_FRAME_POINTER_REGNUM
4012 && (! SUPPORTS_STACK_ALIGNMENT
4013 || ! crtl->stack_realign_needed))
4014 frame_pointer_needed = 0;
4015
4016 if (! ep->can_eliminate && ep->can_eliminate_previous)
4017 {
4018 ep->can_eliminate_previous = 0;
4019 SET_HARD_REG_BIT (*pset, ep->from);
4020 num_eliminable--;
4021 }
4022 }
4023
4024 /* If we didn't need a frame pointer last time, but we do now, spill
4025 the hard frame pointer. */
4026 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4027 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4028 }
4029
4030 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4031 Return true iff a register was spilled. */
4032
4033 static bool
4034 update_eliminables_and_spill (void)
4035 {
4036 int i;
4037 bool did_spill = false;
4038 HARD_REG_SET to_spill;
4039 CLEAR_HARD_REG_SET (to_spill);
4040 update_eliminables (&to_spill);
4041 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4042
4043 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4044 if (TEST_HARD_REG_BIT (to_spill, i))
4045 {
4046 spill_hard_reg (i, 1);
4047 did_spill = true;
4048
4049 /* Regardless of the state of spills, if we previously had
4050 a register that we thought we could eliminate, but now can
4051 not eliminate, we must run another pass.
4052
4053 Consider pseudos which have an entry in reg_equiv_* which
4054 reference an eliminable register. We must make another pass
4055 to update reg_equiv_* so that we do not substitute in the
4056 old value from when we thought the elimination could be
4057 performed. */
4058 }
4059 return did_spill;
4060 }
4061
4062 /* Return true if X is used as the target register of an elimination. */
4063
4064 bool
4065 elimination_target_reg_p (rtx x)
4066 {
4067 struct elim_table *ep;
4068
4069 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4070 if (ep->to_rtx == x && ep->can_eliminate)
4071 return true;
4072
4073 return false;
4074 }
4075
4076 /* Initialize the table of registers to eliminate.
4077 Pre-condition: global flag frame_pointer_needed has been set before
4078 calling this function. */
4079
4080 static void
4081 init_elim_table (void)
4082 {
4083 struct elim_table *ep;
4084 #ifdef ELIMINABLE_REGS
4085 const struct elim_table_1 *ep1;
4086 #endif
4087
4088 if (!reg_eliminate)
4089 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4090
4091 num_eliminable = 0;
4092
4093 #ifdef ELIMINABLE_REGS
4094 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4095 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4096 {
4097 ep->from = ep1->from;
4098 ep->to = ep1->to;
4099 ep->can_eliminate = ep->can_eliminate_previous
4100 = (targetm.can_eliminate (ep->from, ep->to)
4101 && ! (ep->to == STACK_POINTER_REGNUM
4102 && frame_pointer_needed
4103 && (! SUPPORTS_STACK_ALIGNMENT
4104 || ! stack_realign_fp)));
4105 }
4106 #else
4107 reg_eliminate[0].from = reg_eliminate_1[0].from;
4108 reg_eliminate[0].to = reg_eliminate_1[0].to;
4109 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4110 = ! frame_pointer_needed;
4111 #endif
4112
4113 /* Count the number of eliminable registers and build the FROM and TO
4114 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4115 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4116 We depend on this. */
4117 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4118 {
4119 num_eliminable += ep->can_eliminate;
4120 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4121 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4122 }
4123 }
4124
4125 /* Find all the pseudo registers that didn't get hard regs
4126 but do have known equivalent constants or memory slots.
4127 These include parameters (known equivalent to parameter slots)
4128 and cse'd or loop-moved constant memory addresses.
4129
4130 Record constant equivalents in reg_equiv_constant
4131 so they will be substituted by find_reloads.
4132 Record memory equivalents in reg_mem_equiv so they can
4133 be substituted eventually by altering the REG-rtx's. */
4134
4135 static void
4136 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4137 {
4138 int i;
4139 rtx_insn *insn;
4140
4141 grow_reg_equivs ();
4142 if (do_subregs)
4143 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4144 else
4145 reg_max_ref_width = NULL;
4146
4147 num_eliminable_invariants = 0;
4148
4149 first_label_num = get_first_label_num ();
4150 num_labels = max_label_num () - first_label_num;
4151
4152 /* Allocate the tables used to store offset information at labels. */
4153 offsets_known_at = XNEWVEC (char, num_labels);
4154 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4155
4156 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4157 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4158 find largest such for each pseudo. FIRST is the head of the insn
4159 list. */
4160
4161 for (insn = first; insn; insn = NEXT_INSN (insn))
4162 {
4163 rtx set = single_set (insn);
4164
4165 /* We may introduce USEs that we want to remove at the end, so
4166 we'll mark them with QImode. Make sure there are no
4167 previously-marked insns left by say regmove. */
4168 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4169 && GET_MODE (insn) != VOIDmode)
4170 PUT_MODE (insn, VOIDmode);
4171
4172 if (do_subregs && NONDEBUG_INSN_P (insn))
4173 scan_paradoxical_subregs (PATTERN (insn));
4174
4175 if (set != 0 && REG_P (SET_DEST (set)))
4176 {
4177 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4178 rtx x;
4179
4180 if (! note)
4181 continue;
4182
4183 i = REGNO (SET_DEST (set));
4184 x = XEXP (note, 0);
4185
4186 if (i <= LAST_VIRTUAL_REGISTER)
4187 continue;
4188
4189 /* If flag_pic and we have constant, verify it's legitimate. */
4190 if (!CONSTANT_P (x)
4191 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4192 {
4193 /* It can happen that a REG_EQUIV note contains a MEM
4194 that is not a legitimate memory operand. As later
4195 stages of reload assume that all addresses found
4196 in the reg_equiv_* arrays were originally legitimate,
4197 we ignore such REG_EQUIV notes. */
4198 if (memory_operand (x, VOIDmode))
4199 {
4200 /* Always unshare the equivalence, so we can
4201 substitute into this insn without touching the
4202 equivalence. */
4203 reg_equiv_memory_loc (i) = copy_rtx (x);
4204 }
4205 else if (function_invariant_p (x))
4206 {
4207 enum machine_mode mode;
4208
4209 mode = GET_MODE (SET_DEST (set));
4210 if (GET_CODE (x) == PLUS)
4211 {
4212 /* This is PLUS of frame pointer and a constant,
4213 and might be shared. Unshare it. */
4214 reg_equiv_invariant (i) = copy_rtx (x);
4215 num_eliminable_invariants++;
4216 }
4217 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4218 {
4219 reg_equiv_invariant (i) = x;
4220 num_eliminable_invariants++;
4221 }
4222 else if (targetm.legitimate_constant_p (mode, x))
4223 reg_equiv_constant (i) = x;
4224 else
4225 {
4226 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4227 if (! reg_equiv_memory_loc (i))
4228 reg_equiv_init (i) = NULL_RTX;
4229 }
4230 }
4231 else
4232 {
4233 reg_equiv_init (i) = NULL_RTX;
4234 continue;
4235 }
4236 }
4237 else
4238 reg_equiv_init (i) = NULL_RTX;
4239 }
4240 }
4241
4242 if (dump_file)
4243 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4244 if (reg_equiv_init (i))
4245 {
4246 fprintf (dump_file, "init_insns for %u: ", i);
4247 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4248 fprintf (dump_file, "\n");
4249 }
4250 }
4251
4252 /* Indicate that we no longer have known memory locations or constants.
4253 Free all data involved in tracking these. */
4254
4255 static void
4256 free_reg_equiv (void)
4257 {
4258 int i;
4259
4260 free (offsets_known_at);
4261 free (offsets_at);
4262 offsets_at = 0;
4263 offsets_known_at = 0;
4264
4265 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4266 if (reg_equiv_alt_mem_list (i))
4267 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4268 vec_free (reg_equivs);
4269 }
4270 \f
4271 /* Kick all pseudos out of hard register REGNO.
4272
4273 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4274 because we found we can't eliminate some register. In the case, no pseudos
4275 are allowed to be in the register, even if they are only in a block that
4276 doesn't require spill registers, unlike the case when we are spilling this
4277 hard reg to produce another spill register.
4278
4279 Return nonzero if any pseudos needed to be kicked out. */
4280
4281 static void
4282 spill_hard_reg (unsigned int regno, int cant_eliminate)
4283 {
4284 int i;
4285
4286 if (cant_eliminate)
4287 {
4288 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4289 df_set_regs_ever_live (regno, true);
4290 }
4291
4292 /* Spill every pseudo reg that was allocated to this reg
4293 or to something that overlaps this reg. */
4294
4295 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4296 if (reg_renumber[i] >= 0
4297 && (unsigned int) reg_renumber[i] <= regno
4298 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4299 SET_REGNO_REG_SET (&spilled_pseudos, i);
4300 }
4301
4302 /* After find_reload_regs has been run for all insn that need reloads,
4303 and/or spill_hard_regs was called, this function is used to actually
4304 spill pseudo registers and try to reallocate them. It also sets up the
4305 spill_regs array for use by choose_reload_regs. */
4306
4307 static int
4308 finish_spills (int global)
4309 {
4310 struct insn_chain *chain;
4311 int something_changed = 0;
4312 unsigned i;
4313 reg_set_iterator rsi;
4314
4315 /* Build the spill_regs array for the function. */
4316 /* If there are some registers still to eliminate and one of the spill regs
4317 wasn't ever used before, additional stack space may have to be
4318 allocated to store this register. Thus, we may have changed the offset
4319 between the stack and frame pointers, so mark that something has changed.
4320
4321 One might think that we need only set VAL to 1 if this is a call-used
4322 register. However, the set of registers that must be saved by the
4323 prologue is not identical to the call-used set. For example, the
4324 register used by the call insn for the return PC is a call-used register,
4325 but must be saved by the prologue. */
4326
4327 n_spills = 0;
4328 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4329 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4330 {
4331 spill_reg_order[i] = n_spills;
4332 spill_regs[n_spills++] = i;
4333 if (num_eliminable && ! df_regs_ever_live_p (i))
4334 something_changed = 1;
4335 df_set_regs_ever_live (i, true);
4336 }
4337 else
4338 spill_reg_order[i] = -1;
4339
4340 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4341 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4342 {
4343 /* Record the current hard register the pseudo is allocated to
4344 in pseudo_previous_regs so we avoid reallocating it to the
4345 same hard reg in a later pass. */
4346 gcc_assert (reg_renumber[i] >= 0);
4347
4348 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4349 /* Mark it as no longer having a hard register home. */
4350 reg_renumber[i] = -1;
4351 if (ira_conflicts_p)
4352 /* Inform IRA about the change. */
4353 ira_mark_allocation_change (i);
4354 /* We will need to scan everything again. */
4355 something_changed = 1;
4356 }
4357
4358 /* Retry global register allocation if possible. */
4359 if (global && ira_conflicts_p)
4360 {
4361 unsigned int n;
4362
4363 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4364 /* For every insn that needs reloads, set the registers used as spill
4365 regs in pseudo_forbidden_regs for every pseudo live across the
4366 insn. */
4367 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4368 {
4369 EXECUTE_IF_SET_IN_REG_SET
4370 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4371 {
4372 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4373 chain->used_spill_regs);
4374 }
4375 EXECUTE_IF_SET_IN_REG_SET
4376 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4377 {
4378 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4379 chain->used_spill_regs);
4380 }
4381 }
4382
4383 /* Retry allocating the pseudos spilled in IRA and the
4384 reload. For each reg, merge the various reg sets that
4385 indicate which hard regs can't be used, and call
4386 ira_reassign_pseudos. */
4387 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4388 if (reg_old_renumber[i] != reg_renumber[i])
4389 {
4390 if (reg_renumber[i] < 0)
4391 temp_pseudo_reg_arr[n++] = i;
4392 else
4393 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4394 }
4395 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4396 bad_spill_regs_global,
4397 pseudo_forbidden_regs, pseudo_previous_regs,
4398 &spilled_pseudos))
4399 something_changed = 1;
4400 }
4401 /* Fix up the register information in the insn chain.
4402 This involves deleting those of the spilled pseudos which did not get
4403 a new hard register home from the live_{before,after} sets. */
4404 for (chain = reload_insn_chain; chain; chain = chain->next)
4405 {
4406 HARD_REG_SET used_by_pseudos;
4407 HARD_REG_SET used_by_pseudos2;
4408
4409 if (! ira_conflicts_p)
4410 {
4411 /* Don't do it for IRA because IRA and the reload still can
4412 assign hard registers to the spilled pseudos on next
4413 reload iterations. */
4414 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4415 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4416 }
4417 /* Mark any unallocated hard regs as available for spills. That
4418 makes inheritance work somewhat better. */
4419 if (chain->need_reload)
4420 {
4421 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4422 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4423 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4424
4425 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4426 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4427 /* Value of chain->used_spill_regs from previous iteration
4428 may be not included in the value calculated here because
4429 of possible removing caller-saves insns (see function
4430 delete_caller_save_insns. */
4431 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4432 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4433 }
4434 }
4435
4436 CLEAR_REG_SET (&changed_allocation_pseudos);
4437 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4438 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4439 {
4440 int regno = reg_renumber[i];
4441 if (reg_old_renumber[i] == regno)
4442 continue;
4443
4444 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4445
4446 alter_reg (i, reg_old_renumber[i], false);
4447 reg_old_renumber[i] = regno;
4448 if (dump_file)
4449 {
4450 if (regno == -1)
4451 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4452 else
4453 fprintf (dump_file, " Register %d now in %d.\n\n",
4454 i, reg_renumber[i]);
4455 }
4456 }
4457
4458 return something_changed;
4459 }
4460 \f
4461 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4462
4463 static void
4464 scan_paradoxical_subregs (rtx x)
4465 {
4466 int i;
4467 const char *fmt;
4468 enum rtx_code code = GET_CODE (x);
4469
4470 switch (code)
4471 {
4472 case REG:
4473 case CONST:
4474 case SYMBOL_REF:
4475 case LABEL_REF:
4476 CASE_CONST_ANY:
4477 case CC0:
4478 case PC:
4479 case USE:
4480 case CLOBBER:
4481 return;
4482
4483 case SUBREG:
4484 if (REG_P (SUBREG_REG (x))
4485 && (GET_MODE_SIZE (GET_MODE (x))
4486 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4487 {
4488 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4489 = GET_MODE_SIZE (GET_MODE (x));
4490 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4491 }
4492 return;
4493
4494 default:
4495 break;
4496 }
4497
4498 fmt = GET_RTX_FORMAT (code);
4499 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4500 {
4501 if (fmt[i] == 'e')
4502 scan_paradoxical_subregs (XEXP (x, i));
4503 else if (fmt[i] == 'E')
4504 {
4505 int j;
4506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4507 scan_paradoxical_subregs (XVECEXP (x, i, j));
4508 }
4509 }
4510 }
4511
4512 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4513 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4514 and apply the corresponding narrowing subreg to *OTHER_PTR.
4515 Return true if the operands were changed, false otherwise. */
4516
4517 static bool
4518 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4519 {
4520 rtx op, inner, other, tem;
4521
4522 op = *op_ptr;
4523 if (!paradoxical_subreg_p (op))
4524 return false;
4525 inner = SUBREG_REG (op);
4526
4527 other = *other_ptr;
4528 tem = gen_lowpart_common (GET_MODE (inner), other);
4529 if (!tem)
4530 return false;
4531
4532 /* If the lowpart operation turned a hard register into a subreg,
4533 rather than simplifying it to another hard register, then the
4534 mode change cannot be properly represented. For example, OTHER
4535 might be valid in its current mode, but not in the new one. */
4536 if (GET_CODE (tem) == SUBREG
4537 && REG_P (other)
4538 && HARD_REGISTER_P (other))
4539 return false;
4540
4541 *op_ptr = inner;
4542 *other_ptr = tem;
4543 return true;
4544 }
4545 \f
4546 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4547 examine all of the reload insns between PREV and NEXT exclusive, and
4548 annotate all that may trap. */
4549
4550 static void
4551 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4552 {
4553 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4554 if (note == NULL)
4555 return;
4556 if (!insn_could_throw_p (insn))
4557 remove_note (insn, note);
4558 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4559 }
4560
4561 /* Reload pseudo-registers into hard regs around each insn as needed.
4562 Additional register load insns are output before the insn that needs it
4563 and perhaps store insns after insns that modify the reloaded pseudo reg.
4564
4565 reg_last_reload_reg and reg_reloaded_contents keep track of
4566 which registers are already available in reload registers.
4567 We update these for the reloads that we perform,
4568 as the insns are scanned. */
4569
4570 static void
4571 reload_as_needed (int live_known)
4572 {
4573 struct insn_chain *chain;
4574 #if defined (AUTO_INC_DEC)
4575 int i;
4576 #endif
4577 rtx x;
4578 rtx_note *marker;
4579
4580 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4581 memset (spill_reg_store, 0, sizeof spill_reg_store);
4582 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4583 INIT_REG_SET (&reg_has_output_reload);
4584 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4585 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4586
4587 set_initial_elim_offsets ();
4588
4589 /* Generate a marker insn that we will move around. */
4590 marker = emit_note (NOTE_INSN_DELETED);
4591 unlink_insn_chain (marker, marker);
4592
4593 for (chain = reload_insn_chain; chain; chain = chain->next)
4594 {
4595 rtx_insn *prev = 0;
4596 rtx_insn *insn = chain->insn;
4597 rtx_insn *old_next = NEXT_INSN (insn);
4598 #ifdef AUTO_INC_DEC
4599 rtx_insn *old_prev = PREV_INSN (insn);
4600 #endif
4601
4602 if (will_delete_init_insn_p (insn))
4603 continue;
4604
4605 /* If we pass a label, copy the offsets from the label information
4606 into the current offsets of each elimination. */
4607 if (LABEL_P (insn))
4608 set_offsets_for_label (insn);
4609
4610 else if (INSN_P (insn))
4611 {
4612 regset_head regs_to_forget;
4613 INIT_REG_SET (&regs_to_forget);
4614 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4615
4616 /* If this is a USE and CLOBBER of a MEM, ensure that any
4617 references to eliminable registers have been removed. */
4618
4619 if ((GET_CODE (PATTERN (insn)) == USE
4620 || GET_CODE (PATTERN (insn)) == CLOBBER)
4621 && MEM_P (XEXP (PATTERN (insn), 0)))
4622 XEXP (XEXP (PATTERN (insn), 0), 0)
4623 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4624 GET_MODE (XEXP (PATTERN (insn), 0)),
4625 NULL_RTX);
4626
4627 /* If we need to do register elimination processing, do so.
4628 This might delete the insn, in which case we are done. */
4629 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4630 {
4631 eliminate_regs_in_insn (insn, 1);
4632 if (NOTE_P (insn))
4633 {
4634 update_eliminable_offsets ();
4635 CLEAR_REG_SET (&regs_to_forget);
4636 continue;
4637 }
4638 }
4639
4640 /* If need_elim is nonzero but need_reload is zero, one might think
4641 that we could simply set n_reloads to 0. However, find_reloads
4642 could have done some manipulation of the insn (such as swapping
4643 commutative operands), and these manipulations are lost during
4644 the first pass for every insn that needs register elimination.
4645 So the actions of find_reloads must be redone here. */
4646
4647 if (! chain->need_elim && ! chain->need_reload
4648 && ! chain->need_operand_change)
4649 n_reloads = 0;
4650 /* First find the pseudo regs that must be reloaded for this insn.
4651 This info is returned in the tables reload_... (see reload.h).
4652 Also modify the body of INSN by substituting RELOAD
4653 rtx's for those pseudo regs. */
4654 else
4655 {
4656 CLEAR_REG_SET (&reg_has_output_reload);
4657 CLEAR_HARD_REG_SET (reg_is_output_reload);
4658
4659 find_reloads (insn, 1, spill_indirect_levels, live_known,
4660 spill_reg_order);
4661 }
4662
4663 if (n_reloads > 0)
4664 {
4665 rtx_insn *next = NEXT_INSN (insn);
4666 rtx p;
4667
4668 /* ??? PREV can get deleted by reload inheritance.
4669 Work around this by emitting a marker note. */
4670 prev = PREV_INSN (insn);
4671 reorder_insns_nobb (marker, marker, prev);
4672
4673 /* Now compute which reload regs to reload them into. Perhaps
4674 reusing reload regs from previous insns, or else output
4675 load insns to reload them. Maybe output store insns too.
4676 Record the choices of reload reg in reload_reg_rtx. */
4677 choose_reload_regs (chain);
4678
4679 /* Generate the insns to reload operands into or out of
4680 their reload regs. */
4681 emit_reload_insns (chain);
4682
4683 /* Substitute the chosen reload regs from reload_reg_rtx
4684 into the insn's body (or perhaps into the bodies of other
4685 load and store insn that we just made for reloading
4686 and that we moved the structure into). */
4687 subst_reloads (insn);
4688
4689 prev = PREV_INSN (marker);
4690 unlink_insn_chain (marker, marker);
4691
4692 /* Adjust the exception region notes for loads and stores. */
4693 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4694 fixup_eh_region_note (insn, prev, next);
4695
4696 /* Adjust the location of REG_ARGS_SIZE. */
4697 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4698 if (p)
4699 {
4700 remove_note (insn, p);
4701 fixup_args_size_notes (prev, PREV_INSN (next),
4702 INTVAL (XEXP (p, 0)));
4703 }
4704
4705 /* If this was an ASM, make sure that all the reload insns
4706 we have generated are valid. If not, give an error
4707 and delete them. */
4708 if (asm_noperands (PATTERN (insn)) >= 0)
4709 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4710 if (p != insn && INSN_P (p)
4711 && GET_CODE (PATTERN (p)) != USE
4712 && (recog_memoized (p) < 0
4713 || (extract_insn (p), ! constrain_operands (1))))
4714 {
4715 error_for_asm (insn,
4716 "%<asm%> operand requires "
4717 "impossible reload");
4718 delete_insn (p);
4719 }
4720 }
4721
4722 if (num_eliminable && chain->need_elim)
4723 update_eliminable_offsets ();
4724
4725 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4726 is no longer validly lying around to save a future reload.
4727 Note that this does not detect pseudos that were reloaded
4728 for this insn in order to be stored in
4729 (obeying register constraints). That is correct; such reload
4730 registers ARE still valid. */
4731 forget_marked_reloads (&regs_to_forget);
4732 CLEAR_REG_SET (&regs_to_forget);
4733
4734 /* There may have been CLOBBER insns placed after INSN. So scan
4735 between INSN and NEXT and use them to forget old reloads. */
4736 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4737 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4738 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4739
4740 #ifdef AUTO_INC_DEC
4741 /* Likewise for regs altered by auto-increment in this insn.
4742 REG_INC notes have been changed by reloading:
4743 find_reloads_address_1 records substitutions for them,
4744 which have been performed by subst_reloads above. */
4745 for (i = n_reloads - 1; i >= 0; i--)
4746 {
4747 rtx in_reg = rld[i].in_reg;
4748 if (in_reg)
4749 {
4750 enum rtx_code code = GET_CODE (in_reg);
4751 /* PRE_INC / PRE_DEC will have the reload register ending up
4752 with the same value as the stack slot, but that doesn't
4753 hold true for POST_INC / POST_DEC. Either we have to
4754 convert the memory access to a true POST_INC / POST_DEC,
4755 or we can't use the reload register for inheritance. */
4756 if ((code == POST_INC || code == POST_DEC)
4757 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4758 REGNO (rld[i].reg_rtx))
4759 /* Make sure it is the inc/dec pseudo, and not
4760 some other (e.g. output operand) pseudo. */
4761 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4762 == REGNO (XEXP (in_reg, 0))))
4763
4764 {
4765 rtx reload_reg = rld[i].reg_rtx;
4766 enum machine_mode mode = GET_MODE (reload_reg);
4767 int n = 0;
4768 rtx p;
4769
4770 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4771 {
4772 /* We really want to ignore REG_INC notes here, so
4773 use PATTERN (p) as argument to reg_set_p . */
4774 if (reg_set_p (reload_reg, PATTERN (p)))
4775 break;
4776 n = count_occurrences (PATTERN (p), reload_reg, 0);
4777 if (! n)
4778 continue;
4779 if (n == 1)
4780 {
4781 rtx replace_reg
4782 = gen_rtx_fmt_e (code, mode, reload_reg);
4783
4784 validate_replace_rtx_group (reload_reg,
4785 replace_reg, p);
4786 n = verify_changes (0);
4787
4788 /* We must also verify that the constraints
4789 are met after the replacement. Make sure
4790 extract_insn is only called for an insn
4791 where the replacements were found to be
4792 valid so far. */
4793 if (n)
4794 {
4795 extract_insn (p);
4796 n = constrain_operands (1);
4797 }
4798
4799 /* If the constraints were not met, then
4800 undo the replacement, else confirm it. */
4801 if (!n)
4802 cancel_changes (0);
4803 else
4804 confirm_change_group ();
4805 }
4806 break;
4807 }
4808 if (n == 1)
4809 {
4810 add_reg_note (p, REG_INC, reload_reg);
4811 /* Mark this as having an output reload so that the
4812 REG_INC processing code below won't invalidate
4813 the reload for inheritance. */
4814 SET_HARD_REG_BIT (reg_is_output_reload,
4815 REGNO (reload_reg));
4816 SET_REGNO_REG_SET (&reg_has_output_reload,
4817 REGNO (XEXP (in_reg, 0)));
4818 }
4819 else
4820 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4821 NULL);
4822 }
4823 else if ((code == PRE_INC || code == PRE_DEC)
4824 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4825 REGNO (rld[i].reg_rtx))
4826 /* Make sure it is the inc/dec pseudo, and not
4827 some other (e.g. output operand) pseudo. */
4828 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4829 == REGNO (XEXP (in_reg, 0))))
4830 {
4831 SET_HARD_REG_BIT (reg_is_output_reload,
4832 REGNO (rld[i].reg_rtx));
4833 SET_REGNO_REG_SET (&reg_has_output_reload,
4834 REGNO (XEXP (in_reg, 0)));
4835 }
4836 else if (code == PRE_INC || code == PRE_DEC
4837 || code == POST_INC || code == POST_DEC)
4838 {
4839 int in_regno = REGNO (XEXP (in_reg, 0));
4840
4841 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4842 {
4843 int in_hard_regno;
4844 bool forget_p = true;
4845
4846 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4847 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4848 in_hard_regno))
4849 {
4850 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4851 x != old_next;
4852 x = NEXT_INSN (x))
4853 if (x == reg_reloaded_insn[in_hard_regno])
4854 {
4855 forget_p = false;
4856 break;
4857 }
4858 }
4859 /* If for some reasons, we didn't set up
4860 reg_last_reload_reg in this insn,
4861 invalidate inheritance from previous
4862 insns for the incremented/decremented
4863 register. Such registers will be not in
4864 reg_has_output_reload. Invalidate it
4865 also if the corresponding element in
4866 reg_reloaded_insn is also
4867 invalidated. */
4868 if (forget_p)
4869 forget_old_reloads_1 (XEXP (in_reg, 0),
4870 NULL_RTX, NULL);
4871 }
4872 }
4873 }
4874 }
4875 /* If a pseudo that got a hard register is auto-incremented,
4876 we must purge records of copying it into pseudos without
4877 hard registers. */
4878 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4879 if (REG_NOTE_KIND (x) == REG_INC)
4880 {
4881 /* See if this pseudo reg was reloaded in this insn.
4882 If so, its last-reload info is still valid
4883 because it is based on this insn's reload. */
4884 for (i = 0; i < n_reloads; i++)
4885 if (rld[i].out == XEXP (x, 0))
4886 break;
4887
4888 if (i == n_reloads)
4889 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4890 }
4891 #endif
4892 }
4893 /* A reload reg's contents are unknown after a label. */
4894 if (LABEL_P (insn))
4895 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4896
4897 /* Don't assume a reload reg is still good after a call insn
4898 if it is a call-used reg, or if it contains a value that will
4899 be partially clobbered by the call. */
4900 else if (CALL_P (insn))
4901 {
4902 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4903 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4904
4905 /* If this is a call to a setjmp-type function, we must not
4906 reuse any reload reg contents across the call; that will
4907 just be clobbered by other uses of the register in later
4908 code, before the longjmp. */
4909 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4910 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4911 }
4912 }
4913
4914 /* Clean up. */
4915 free (reg_last_reload_reg);
4916 CLEAR_REG_SET (&reg_has_output_reload);
4917 }
4918
4919 /* Discard all record of any value reloaded from X,
4920 or reloaded in X from someplace else;
4921 unless X is an output reload reg of the current insn.
4922
4923 X may be a hard reg (the reload reg)
4924 or it may be a pseudo reg that was reloaded from.
4925
4926 When DATA is non-NULL just mark the registers in regset
4927 to be forgotten later. */
4928
4929 static void
4930 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4931 void *data)
4932 {
4933 unsigned int regno;
4934 unsigned int nr;
4935 regset regs = (regset) data;
4936
4937 /* note_stores does give us subregs of hard regs,
4938 subreg_regno_offset requires a hard reg. */
4939 while (GET_CODE (x) == SUBREG)
4940 {
4941 /* We ignore the subreg offset when calculating the regno,
4942 because we are using the entire underlying hard register
4943 below. */
4944 x = SUBREG_REG (x);
4945 }
4946
4947 if (!REG_P (x))
4948 return;
4949
4950 regno = REGNO (x);
4951
4952 if (regno >= FIRST_PSEUDO_REGISTER)
4953 nr = 1;
4954 else
4955 {
4956 unsigned int i;
4957
4958 nr = hard_regno_nregs[regno][GET_MODE (x)];
4959 /* Storing into a spilled-reg invalidates its contents.
4960 This can happen if a block-local pseudo is allocated to that reg
4961 and it wasn't spilled because this block's total need is 0.
4962 Then some insn might have an optional reload and use this reg. */
4963 if (!regs)
4964 for (i = 0; i < nr; i++)
4965 /* But don't do this if the reg actually serves as an output
4966 reload reg in the current instruction. */
4967 if (n_reloads == 0
4968 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4969 {
4970 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4971 spill_reg_store[regno + i] = 0;
4972 }
4973 }
4974
4975 if (regs)
4976 while (nr-- > 0)
4977 SET_REGNO_REG_SET (regs, regno + nr);
4978 else
4979 {
4980 /* Since value of X has changed,
4981 forget any value previously copied from it. */
4982
4983 while (nr-- > 0)
4984 /* But don't forget a copy if this is the output reload
4985 that establishes the copy's validity. */
4986 if (n_reloads == 0
4987 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4988 reg_last_reload_reg[regno + nr] = 0;
4989 }
4990 }
4991
4992 /* Forget the reloads marked in regset by previous function. */
4993 static void
4994 forget_marked_reloads (regset regs)
4995 {
4996 unsigned int reg;
4997 reg_set_iterator rsi;
4998 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4999 {
5000 if (reg < FIRST_PSEUDO_REGISTER
5001 /* But don't do this if the reg actually serves as an output
5002 reload reg in the current instruction. */
5003 && (n_reloads == 0
5004 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5005 {
5006 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5007 spill_reg_store[reg] = 0;
5008 }
5009 if (n_reloads == 0
5010 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5011 reg_last_reload_reg[reg] = 0;
5012 }
5013 }
5014 \f
5015 /* The following HARD_REG_SETs indicate when each hard register is
5016 used for a reload of various parts of the current insn. */
5017
5018 /* If reg is unavailable for all reloads. */
5019 static HARD_REG_SET reload_reg_unavailable;
5020 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5021 static HARD_REG_SET reload_reg_used;
5022 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5023 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5024 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5025 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5026 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5027 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5028 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5029 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5030 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5031 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5032 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5033 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5034 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5035 static HARD_REG_SET reload_reg_used_in_op_addr;
5036 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5037 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5038 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5039 static HARD_REG_SET reload_reg_used_in_insn;
5040 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5041 static HARD_REG_SET reload_reg_used_in_other_addr;
5042
5043 /* If reg is in use as a reload reg for any sort of reload. */
5044 static HARD_REG_SET reload_reg_used_at_all;
5045
5046 /* If reg is use as an inherited reload. We just mark the first register
5047 in the group. */
5048 static HARD_REG_SET reload_reg_used_for_inherit;
5049
5050 /* Records which hard regs are used in any way, either as explicit use or
5051 by being allocated to a pseudo during any point of the current insn. */
5052 static HARD_REG_SET reg_used_in_insn;
5053
5054 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5055 TYPE. MODE is used to indicate how many consecutive regs are
5056 actually used. */
5057
5058 static void
5059 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5060 enum machine_mode mode)
5061 {
5062 switch (type)
5063 {
5064 case RELOAD_OTHER:
5065 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5066 break;
5067
5068 case RELOAD_FOR_INPUT_ADDRESS:
5069 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5070 break;
5071
5072 case RELOAD_FOR_INPADDR_ADDRESS:
5073 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5074 break;
5075
5076 case RELOAD_FOR_OUTPUT_ADDRESS:
5077 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5078 break;
5079
5080 case RELOAD_FOR_OUTADDR_ADDRESS:
5081 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5082 break;
5083
5084 case RELOAD_FOR_OPERAND_ADDRESS:
5085 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5086 break;
5087
5088 case RELOAD_FOR_OPADDR_ADDR:
5089 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5090 break;
5091
5092 case RELOAD_FOR_OTHER_ADDRESS:
5093 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5094 break;
5095
5096 case RELOAD_FOR_INPUT:
5097 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5098 break;
5099
5100 case RELOAD_FOR_OUTPUT:
5101 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5102 break;
5103
5104 case RELOAD_FOR_INSN:
5105 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5106 break;
5107 }
5108
5109 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5110 }
5111
5112 /* Similarly, but show REGNO is no longer in use for a reload. */
5113
5114 static void
5115 clear_reload_reg_in_use (unsigned int regno, int opnum,
5116 enum reload_type type, enum machine_mode mode)
5117 {
5118 unsigned int nregs = hard_regno_nregs[regno][mode];
5119 unsigned int start_regno, end_regno, r;
5120 int i;
5121 /* A complication is that for some reload types, inheritance might
5122 allow multiple reloads of the same types to share a reload register.
5123 We set check_opnum if we have to check only reloads with the same
5124 operand number, and check_any if we have to check all reloads. */
5125 int check_opnum = 0;
5126 int check_any = 0;
5127 HARD_REG_SET *used_in_set;
5128
5129 switch (type)
5130 {
5131 case RELOAD_OTHER:
5132 used_in_set = &reload_reg_used;
5133 break;
5134
5135 case RELOAD_FOR_INPUT_ADDRESS:
5136 used_in_set = &reload_reg_used_in_input_addr[opnum];
5137 break;
5138
5139 case RELOAD_FOR_INPADDR_ADDRESS:
5140 check_opnum = 1;
5141 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5142 break;
5143
5144 case RELOAD_FOR_OUTPUT_ADDRESS:
5145 used_in_set = &reload_reg_used_in_output_addr[opnum];
5146 break;
5147
5148 case RELOAD_FOR_OUTADDR_ADDRESS:
5149 check_opnum = 1;
5150 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5151 break;
5152
5153 case RELOAD_FOR_OPERAND_ADDRESS:
5154 used_in_set = &reload_reg_used_in_op_addr;
5155 break;
5156
5157 case RELOAD_FOR_OPADDR_ADDR:
5158 check_any = 1;
5159 used_in_set = &reload_reg_used_in_op_addr_reload;
5160 break;
5161
5162 case RELOAD_FOR_OTHER_ADDRESS:
5163 used_in_set = &reload_reg_used_in_other_addr;
5164 check_any = 1;
5165 break;
5166
5167 case RELOAD_FOR_INPUT:
5168 used_in_set = &reload_reg_used_in_input[opnum];
5169 break;
5170
5171 case RELOAD_FOR_OUTPUT:
5172 used_in_set = &reload_reg_used_in_output[opnum];
5173 break;
5174
5175 case RELOAD_FOR_INSN:
5176 used_in_set = &reload_reg_used_in_insn;
5177 break;
5178 default:
5179 gcc_unreachable ();
5180 }
5181 /* We resolve conflicts with remaining reloads of the same type by
5182 excluding the intervals of reload registers by them from the
5183 interval of freed reload registers. Since we only keep track of
5184 one set of interval bounds, we might have to exclude somewhat
5185 more than what would be necessary if we used a HARD_REG_SET here.
5186 But this should only happen very infrequently, so there should
5187 be no reason to worry about it. */
5188
5189 start_regno = regno;
5190 end_regno = regno + nregs;
5191 if (check_opnum || check_any)
5192 {
5193 for (i = n_reloads - 1; i >= 0; i--)
5194 {
5195 if (rld[i].when_needed == type
5196 && (check_any || rld[i].opnum == opnum)
5197 && rld[i].reg_rtx)
5198 {
5199 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5200 unsigned int conflict_end
5201 = end_hard_regno (rld[i].mode, conflict_start);
5202
5203 /* If there is an overlap with the first to-be-freed register,
5204 adjust the interval start. */
5205 if (conflict_start <= start_regno && conflict_end > start_regno)
5206 start_regno = conflict_end;
5207 /* Otherwise, if there is a conflict with one of the other
5208 to-be-freed registers, adjust the interval end. */
5209 if (conflict_start > start_regno && conflict_start < end_regno)
5210 end_regno = conflict_start;
5211 }
5212 }
5213 }
5214
5215 for (r = start_regno; r < end_regno; r++)
5216 CLEAR_HARD_REG_BIT (*used_in_set, r);
5217 }
5218
5219 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5220 specified by OPNUM and TYPE. */
5221
5222 static int
5223 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5224 {
5225 int i;
5226
5227 /* In use for a RELOAD_OTHER means it's not available for anything. */
5228 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5229 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5230 return 0;
5231
5232 switch (type)
5233 {
5234 case RELOAD_OTHER:
5235 /* In use for anything means we can't use it for RELOAD_OTHER. */
5236 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5237 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5238 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5239 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5240 return 0;
5241
5242 for (i = 0; i < reload_n_operands; i++)
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5244 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5245 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5246 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5247 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5248 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5249 return 0;
5250
5251 return 1;
5252
5253 case RELOAD_FOR_INPUT:
5254 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5255 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5256 return 0;
5257
5258 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5259 return 0;
5260
5261 /* If it is used for some other input, can't use it. */
5262 for (i = 0; i < reload_n_operands; i++)
5263 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5264 return 0;
5265
5266 /* If it is used in a later operand's address, can't use it. */
5267 for (i = opnum + 1; i < reload_n_operands; i++)
5268 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5269 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5270 return 0;
5271
5272 return 1;
5273
5274 case RELOAD_FOR_INPUT_ADDRESS:
5275 /* Can't use a register if it is used for an input address for this
5276 operand or used as an input in an earlier one. */
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5278 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5279 return 0;
5280
5281 for (i = 0; i < opnum; i++)
5282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5283 return 0;
5284
5285 return 1;
5286
5287 case RELOAD_FOR_INPADDR_ADDRESS:
5288 /* Can't use a register if it is used for an input address
5289 for this operand or used as an input in an earlier
5290 one. */
5291 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5292 return 0;
5293
5294 for (i = 0; i < opnum; i++)
5295 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5296 return 0;
5297
5298 return 1;
5299
5300 case RELOAD_FOR_OUTPUT_ADDRESS:
5301 /* Can't use a register if it is used for an output address for this
5302 operand or used as an output in this or a later operand. Note
5303 that multiple output operands are emitted in reverse order, so
5304 the conflicting ones are those with lower indices. */
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5306 return 0;
5307
5308 for (i = 0; i <= opnum; i++)
5309 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5310 return 0;
5311
5312 return 1;
5313
5314 case RELOAD_FOR_OUTADDR_ADDRESS:
5315 /* Can't use a register if it is used for an output address
5316 for this operand or used as an output in this or a
5317 later operand. Note that multiple output operands are
5318 emitted in reverse order, so the conflicting ones are
5319 those with lower indices. */
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5321 return 0;
5322
5323 for (i = 0; i <= opnum; i++)
5324 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5325 return 0;
5326
5327 return 1;
5328
5329 case RELOAD_FOR_OPERAND_ADDRESS:
5330 for (i = 0; i < reload_n_operands; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5332 return 0;
5333
5334 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5335 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5336
5337 case RELOAD_FOR_OPADDR_ADDR:
5338 for (i = 0; i < reload_n_operands; i++)
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5340 return 0;
5341
5342 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5343
5344 case RELOAD_FOR_OUTPUT:
5345 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5346 outputs, or an operand address for this or an earlier output.
5347 Note that multiple output operands are emitted in reverse order,
5348 so the conflicting ones are those with higher indices. */
5349 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5350 return 0;
5351
5352 for (i = 0; i < reload_n_operands; i++)
5353 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5354 return 0;
5355
5356 for (i = opnum; i < reload_n_operands; i++)
5357 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5358 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5359 return 0;
5360
5361 return 1;
5362
5363 case RELOAD_FOR_INSN:
5364 for (i = 0; i < reload_n_operands; i++)
5365 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5366 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5367 return 0;
5368
5369 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5370 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5371
5372 case RELOAD_FOR_OTHER_ADDRESS:
5373 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5374
5375 default:
5376 gcc_unreachable ();
5377 }
5378 }
5379
5380 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5381 the number RELOADNUM, is still available in REGNO at the end of the insn.
5382
5383 We can assume that the reload reg was already tested for availability
5384 at the time it is needed, and we should not check this again,
5385 in case the reg has already been marked in use. */
5386
5387 static int
5388 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5389 {
5390 int opnum = rld[reloadnum].opnum;
5391 enum reload_type type = rld[reloadnum].when_needed;
5392 int i;
5393
5394 /* See if there is a reload with the same type for this operand, using
5395 the same register. This case is not handled by the code below. */
5396 for (i = reloadnum + 1; i < n_reloads; i++)
5397 {
5398 rtx reg;
5399 int nregs;
5400
5401 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5402 continue;
5403 reg = rld[i].reg_rtx;
5404 if (reg == NULL_RTX)
5405 continue;
5406 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5407 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5408 return 0;
5409 }
5410
5411 switch (type)
5412 {
5413 case RELOAD_OTHER:
5414 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5415 its value must reach the end. */
5416 return 1;
5417
5418 /* If this use is for part of the insn,
5419 its value reaches if no subsequent part uses the same register.
5420 Just like the above function, don't try to do this with lots
5421 of fallthroughs. */
5422
5423 case RELOAD_FOR_OTHER_ADDRESS:
5424 /* Here we check for everything else, since these don't conflict
5425 with anything else and everything comes later. */
5426
5427 for (i = 0; i < reload_n_operands; i++)
5428 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5429 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5430 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5433 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5434 return 0;
5435
5436 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5437 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5438 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5439 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5440
5441 case RELOAD_FOR_INPUT_ADDRESS:
5442 case RELOAD_FOR_INPADDR_ADDRESS:
5443 /* Similar, except that we check only for this and subsequent inputs
5444 and the address of only subsequent inputs and we do not need
5445 to check for RELOAD_OTHER objects since they are known not to
5446 conflict. */
5447
5448 for (i = opnum; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5450 return 0;
5451
5452 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5453 could be killed if the register is also used by reload with type
5454 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5455 if (type == RELOAD_FOR_INPADDR_ADDRESS
5456 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5457 return 0;
5458
5459 for (i = opnum + 1; i < reload_n_operands; i++)
5460 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5461 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5462 return 0;
5463
5464 for (i = 0; i < reload_n_operands; i++)
5465 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5466 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5467 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5468 return 0;
5469
5470 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5471 return 0;
5472
5473 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5474 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5475 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5476
5477 case RELOAD_FOR_INPUT:
5478 /* Similar to input address, except we start at the next operand for
5479 both input and input address and we do not check for
5480 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5481 would conflict. */
5482
5483 for (i = opnum + 1; i < reload_n_operands; i++)
5484 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5485 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5486 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5487 return 0;
5488
5489 /* ... fall through ... */
5490
5491 case RELOAD_FOR_OPERAND_ADDRESS:
5492 /* Check outputs and their addresses. */
5493
5494 for (i = 0; i < reload_n_operands; i++)
5495 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5498 return 0;
5499
5500 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5501
5502 case RELOAD_FOR_OPADDR_ADDR:
5503 for (i = 0; i < reload_n_operands; i++)
5504 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5505 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5506 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5507 return 0;
5508
5509 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5510 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5511 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5512
5513 case RELOAD_FOR_INSN:
5514 /* These conflict with other outputs with RELOAD_OTHER. So
5515 we need only check for output addresses. */
5516
5517 opnum = reload_n_operands;
5518
5519 /* ... fall through ... */
5520
5521 case RELOAD_FOR_OUTPUT:
5522 case RELOAD_FOR_OUTPUT_ADDRESS:
5523 case RELOAD_FOR_OUTADDR_ADDRESS:
5524 /* We already know these can't conflict with a later output. So the
5525 only thing to check are later output addresses.
5526 Note that multiple output operands are emitted in reverse order,
5527 so the conflicting ones are those with lower indices. */
5528 for (i = 0; i < opnum; i++)
5529 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5530 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5531 return 0;
5532
5533 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5534 could be killed if the register is also used by reload with type
5535 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5536 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5537 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5538 return 0;
5539
5540 return 1;
5541
5542 default:
5543 gcc_unreachable ();
5544 }
5545 }
5546
5547 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5548 every register in REG. */
5549
5550 static bool
5551 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5552 {
5553 unsigned int i;
5554
5555 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5556 if (!reload_reg_reaches_end_p (i, reloadnum))
5557 return false;
5558 return true;
5559 }
5560 \f
5561
5562 /* Returns whether R1 and R2 are uniquely chained: the value of one
5563 is used by the other, and that value is not used by any other
5564 reload for this insn. This is used to partially undo the decision
5565 made in find_reloads when in the case of multiple
5566 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5567 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5568 reloads. This code tries to avoid the conflict created by that
5569 change. It might be cleaner to explicitly keep track of which
5570 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5571 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5572 this after the fact. */
5573 static bool
5574 reloads_unique_chain_p (int r1, int r2)
5575 {
5576 int i;
5577
5578 /* We only check input reloads. */
5579 if (! rld[r1].in || ! rld[r2].in)
5580 return false;
5581
5582 /* Avoid anything with output reloads. */
5583 if (rld[r1].out || rld[r2].out)
5584 return false;
5585
5586 /* "chained" means one reload is a component of the other reload,
5587 not the same as the other reload. */
5588 if (rld[r1].opnum != rld[r2].opnum
5589 || rtx_equal_p (rld[r1].in, rld[r2].in)
5590 || rld[r1].optional || rld[r2].optional
5591 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5592 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5593 return false;
5594
5595 /* The following loop assumes that r1 is the reload that feeds r2. */
5596 if (r1 > r2)
5597 {
5598 int tmp = r2;
5599 r2 = r1;
5600 r1 = tmp;
5601 }
5602
5603 for (i = 0; i < n_reloads; i ++)
5604 /* Look for input reloads that aren't our two */
5605 if (i != r1 && i != r2 && rld[i].in)
5606 {
5607 /* If our reload is mentioned at all, it isn't a simple chain. */
5608 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5609 return false;
5610 }
5611 return true;
5612 }
5613
5614 /* The recursive function change all occurrences of WHAT in *WHERE
5615 to REPL. */
5616 static void
5617 substitute (rtx *where, const_rtx what, rtx repl)
5618 {
5619 const char *fmt;
5620 int i;
5621 enum rtx_code code;
5622
5623 if (*where == 0)
5624 return;
5625
5626 if (*where == what || rtx_equal_p (*where, what))
5627 {
5628 /* Record the location of the changed rtx. */
5629 substitute_stack.safe_push (where);
5630 *where = repl;
5631 return;
5632 }
5633
5634 code = GET_CODE (*where);
5635 fmt = GET_RTX_FORMAT (code);
5636 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5637 {
5638 if (fmt[i] == 'E')
5639 {
5640 int j;
5641
5642 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5643 substitute (&XVECEXP (*where, i, j), what, repl);
5644 }
5645 else if (fmt[i] == 'e')
5646 substitute (&XEXP (*where, i), what, repl);
5647 }
5648 }
5649
5650 /* The function returns TRUE if chain of reload R1 and R2 (in any
5651 order) can be evaluated without usage of intermediate register for
5652 the reload containing another reload. It is important to see
5653 gen_reload to understand what the function is trying to do. As an
5654 example, let us have reload chain
5655
5656 r2: const
5657 r1: <something> + const
5658
5659 and reload R2 got reload reg HR. The function returns true if
5660 there is a correct insn HR = HR + <something>. Otherwise,
5661 gen_reload will use intermediate register (and this is the reload
5662 reg for R1) to reload <something>.
5663
5664 We need this function to find a conflict for chain reloads. In our
5665 example, if HR = HR + <something> is incorrect insn, then we cannot
5666 use HR as a reload register for R2. If we do use it then we get a
5667 wrong code:
5668
5669 HR = const
5670 HR = <something>
5671 HR = HR + HR
5672
5673 */
5674 static bool
5675 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5676 {
5677 /* Assume other cases in gen_reload are not possible for
5678 chain reloads or do need an intermediate hard registers. */
5679 bool result = true;
5680 int regno, n, code;
5681 rtx out, in;
5682 rtx_insn *insn;
5683 rtx_insn *last = get_last_insn ();
5684
5685 /* Make r2 a component of r1. */
5686 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5687 {
5688 n = r1;
5689 r1 = r2;
5690 r2 = n;
5691 }
5692 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5693 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5694 gcc_assert (regno >= 0);
5695 out = gen_rtx_REG (rld[r1].mode, regno);
5696 in = rld[r1].in;
5697 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5698
5699 /* If IN is a paradoxical SUBREG, remove it and try to put the
5700 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5701 strip_paradoxical_subreg (&in, &out);
5702
5703 if (GET_CODE (in) == PLUS
5704 && (REG_P (XEXP (in, 0))
5705 || GET_CODE (XEXP (in, 0)) == SUBREG
5706 || MEM_P (XEXP (in, 0)))
5707 && (REG_P (XEXP (in, 1))
5708 || GET_CODE (XEXP (in, 1)) == SUBREG
5709 || CONSTANT_P (XEXP (in, 1))
5710 || MEM_P (XEXP (in, 1))))
5711 {
5712 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5713 code = recog_memoized (insn);
5714 result = false;
5715
5716 if (code >= 0)
5717 {
5718 extract_insn (insn);
5719 /* We want constrain operands to treat this insn strictly in
5720 its validity determination, i.e., the way it would after
5721 reload has completed. */
5722 result = constrain_operands (1);
5723 }
5724
5725 delete_insns_since (last);
5726 }
5727
5728 /* Restore the original value at each changed address within R1. */
5729 while (!substitute_stack.is_empty ())
5730 {
5731 rtx *where = substitute_stack.pop ();
5732 *where = rld[r2].in;
5733 }
5734
5735 return result;
5736 }
5737
5738 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5739 Return 0 otherwise.
5740
5741 This function uses the same algorithm as reload_reg_free_p above. */
5742
5743 static int
5744 reloads_conflict (int r1, int r2)
5745 {
5746 enum reload_type r1_type = rld[r1].when_needed;
5747 enum reload_type r2_type = rld[r2].when_needed;
5748 int r1_opnum = rld[r1].opnum;
5749 int r2_opnum = rld[r2].opnum;
5750
5751 /* RELOAD_OTHER conflicts with everything. */
5752 if (r2_type == RELOAD_OTHER)
5753 return 1;
5754
5755 /* Otherwise, check conflicts differently for each type. */
5756
5757 switch (r1_type)
5758 {
5759 case RELOAD_FOR_INPUT:
5760 return (r2_type == RELOAD_FOR_INSN
5761 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5762 || r2_type == RELOAD_FOR_OPADDR_ADDR
5763 || r2_type == RELOAD_FOR_INPUT
5764 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5765 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5766 && r2_opnum > r1_opnum));
5767
5768 case RELOAD_FOR_INPUT_ADDRESS:
5769 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5770 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5771
5772 case RELOAD_FOR_INPADDR_ADDRESS:
5773 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5774 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5775
5776 case RELOAD_FOR_OUTPUT_ADDRESS:
5777 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5778 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5779
5780 case RELOAD_FOR_OUTADDR_ADDRESS:
5781 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5782 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5783
5784 case RELOAD_FOR_OPERAND_ADDRESS:
5785 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5786 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5787 && (!reloads_unique_chain_p (r1, r2)
5788 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5789
5790 case RELOAD_FOR_OPADDR_ADDR:
5791 return (r2_type == RELOAD_FOR_INPUT
5792 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5793
5794 case RELOAD_FOR_OUTPUT:
5795 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5796 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5797 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5798 && r2_opnum >= r1_opnum));
5799
5800 case RELOAD_FOR_INSN:
5801 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5802 || r2_type == RELOAD_FOR_INSN
5803 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5804
5805 case RELOAD_FOR_OTHER_ADDRESS:
5806 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5807
5808 case RELOAD_OTHER:
5809 return 1;
5810
5811 default:
5812 gcc_unreachable ();
5813 }
5814 }
5815 \f
5816 /* Indexed by reload number, 1 if incoming value
5817 inherited from previous insns. */
5818 static char reload_inherited[MAX_RELOADS];
5819
5820 /* For an inherited reload, this is the insn the reload was inherited from,
5821 if we know it. Otherwise, this is 0. */
5822 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5823
5824 /* If nonzero, this is a place to get the value of the reload,
5825 rather than using reload_in. */
5826 static rtx reload_override_in[MAX_RELOADS];
5827
5828 /* For each reload, the hard register number of the register used,
5829 or -1 if we did not need a register for this reload. */
5830 static int reload_spill_index[MAX_RELOADS];
5831
5832 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5833 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5834
5835 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5836 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5837
5838 /* Subroutine of free_for_value_p, used to check a single register.
5839 START_REGNO is the starting regno of the full reload register
5840 (possibly comprising multiple hard registers) that we are considering. */
5841
5842 static int
5843 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5844 enum reload_type type, rtx value, rtx out,
5845 int reloadnum, int ignore_address_reloads)
5846 {
5847 int time1;
5848 /* Set if we see an input reload that must not share its reload register
5849 with any new earlyclobber, but might otherwise share the reload
5850 register with an output or input-output reload. */
5851 int check_earlyclobber = 0;
5852 int i;
5853 int copy = 0;
5854
5855 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5856 return 0;
5857
5858 if (out == const0_rtx)
5859 {
5860 copy = 1;
5861 out = NULL_RTX;
5862 }
5863
5864 /* We use some pseudo 'time' value to check if the lifetimes of the
5865 new register use would overlap with the one of a previous reload
5866 that is not read-only or uses a different value.
5867 The 'time' used doesn't have to be linear in any shape or form, just
5868 monotonic.
5869 Some reload types use different 'buckets' for each operand.
5870 So there are MAX_RECOG_OPERANDS different time values for each
5871 such reload type.
5872 We compute TIME1 as the time when the register for the prospective
5873 new reload ceases to be live, and TIME2 for each existing
5874 reload as the time when that the reload register of that reload
5875 becomes live.
5876 Where there is little to be gained by exact lifetime calculations,
5877 we just make conservative assumptions, i.e. a longer lifetime;
5878 this is done in the 'default:' cases. */
5879 switch (type)
5880 {
5881 case RELOAD_FOR_OTHER_ADDRESS:
5882 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5883 time1 = copy ? 0 : 1;
5884 break;
5885 case RELOAD_OTHER:
5886 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5887 break;
5888 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5889 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5890 respectively, to the time values for these, we get distinct time
5891 values. To get distinct time values for each operand, we have to
5892 multiply opnum by at least three. We round that up to four because
5893 multiply by four is often cheaper. */
5894 case RELOAD_FOR_INPADDR_ADDRESS:
5895 time1 = opnum * 4 + 2;
5896 break;
5897 case RELOAD_FOR_INPUT_ADDRESS:
5898 time1 = opnum * 4 + 3;
5899 break;
5900 case RELOAD_FOR_INPUT:
5901 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5902 executes (inclusive). */
5903 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5904 break;
5905 case RELOAD_FOR_OPADDR_ADDR:
5906 /* opnum * 4 + 4
5907 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5908 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5909 break;
5910 case RELOAD_FOR_OPERAND_ADDRESS:
5911 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5912 is executed. */
5913 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5914 break;
5915 case RELOAD_FOR_OUTADDR_ADDRESS:
5916 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5917 break;
5918 case RELOAD_FOR_OUTPUT_ADDRESS:
5919 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5920 break;
5921 default:
5922 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5923 }
5924
5925 for (i = 0; i < n_reloads; i++)
5926 {
5927 rtx reg = rld[i].reg_rtx;
5928 if (reg && REG_P (reg)
5929 && ((unsigned) regno - true_regnum (reg)
5930 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5931 && i != reloadnum)
5932 {
5933 rtx other_input = rld[i].in;
5934
5935 /* If the other reload loads the same input value, that
5936 will not cause a conflict only if it's loading it into
5937 the same register. */
5938 if (true_regnum (reg) != start_regno)
5939 other_input = NULL_RTX;
5940 if (! other_input || ! rtx_equal_p (other_input, value)
5941 || rld[i].out || out)
5942 {
5943 int time2;
5944 switch (rld[i].when_needed)
5945 {
5946 case RELOAD_FOR_OTHER_ADDRESS:
5947 time2 = 0;
5948 break;
5949 case RELOAD_FOR_INPADDR_ADDRESS:
5950 /* find_reloads makes sure that a
5951 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5952 by at most one - the first -
5953 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5954 address reload is inherited, the address address reload
5955 goes away, so we can ignore this conflict. */
5956 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5957 && ignore_address_reloads
5958 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5959 Then the address address is still needed to store
5960 back the new address. */
5961 && ! rld[reloadnum].out)
5962 continue;
5963 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5964 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5965 reloads go away. */
5966 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5967 && ignore_address_reloads
5968 /* Unless we are reloading an auto_inc expression. */
5969 && ! rld[reloadnum].out)
5970 continue;
5971 time2 = rld[i].opnum * 4 + 2;
5972 break;
5973 case RELOAD_FOR_INPUT_ADDRESS:
5974 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5975 && ignore_address_reloads
5976 && ! rld[reloadnum].out)
5977 continue;
5978 time2 = rld[i].opnum * 4 + 3;
5979 break;
5980 case RELOAD_FOR_INPUT:
5981 time2 = rld[i].opnum * 4 + 4;
5982 check_earlyclobber = 1;
5983 break;
5984 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5985 == MAX_RECOG_OPERAND * 4 */
5986 case RELOAD_FOR_OPADDR_ADDR:
5987 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5988 && ignore_address_reloads
5989 && ! rld[reloadnum].out)
5990 continue;
5991 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5992 break;
5993 case RELOAD_FOR_OPERAND_ADDRESS:
5994 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5995 check_earlyclobber = 1;
5996 break;
5997 case RELOAD_FOR_INSN:
5998 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5999 break;
6000 case RELOAD_FOR_OUTPUT:
6001 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6002 instruction is executed. */
6003 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6004 break;
6005 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6006 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6007 value. */
6008 case RELOAD_FOR_OUTADDR_ADDRESS:
6009 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6010 && ignore_address_reloads
6011 && ! rld[reloadnum].out)
6012 continue;
6013 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6014 break;
6015 case RELOAD_FOR_OUTPUT_ADDRESS:
6016 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6017 break;
6018 case RELOAD_OTHER:
6019 /* If there is no conflict in the input part, handle this
6020 like an output reload. */
6021 if (! rld[i].in || rtx_equal_p (other_input, value))
6022 {
6023 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6024 /* Earlyclobbered outputs must conflict with inputs. */
6025 if (earlyclobber_operand_p (rld[i].out))
6026 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6027
6028 break;
6029 }
6030 time2 = 1;
6031 /* RELOAD_OTHER might be live beyond instruction execution,
6032 but this is not obvious when we set time2 = 1. So check
6033 here if there might be a problem with the new reload
6034 clobbering the register used by the RELOAD_OTHER. */
6035 if (out)
6036 return 0;
6037 break;
6038 default:
6039 return 0;
6040 }
6041 if ((time1 >= time2
6042 && (! rld[i].in || rld[i].out
6043 || ! rtx_equal_p (other_input, value)))
6044 || (out && rld[reloadnum].out_reg
6045 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6046 return 0;
6047 }
6048 }
6049 }
6050
6051 /* Earlyclobbered outputs must conflict with inputs. */
6052 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6053 return 0;
6054
6055 return 1;
6056 }
6057
6058 /* Return 1 if the value in reload reg REGNO, as used by a reload
6059 needed for the part of the insn specified by OPNUM and TYPE,
6060 may be used to load VALUE into it.
6061
6062 MODE is the mode in which the register is used, this is needed to
6063 determine how many hard regs to test.
6064
6065 Other read-only reloads with the same value do not conflict
6066 unless OUT is nonzero and these other reloads have to live while
6067 output reloads live.
6068 If OUT is CONST0_RTX, this is a special case: it means that the
6069 test should not be for using register REGNO as reload register, but
6070 for copying from register REGNO into the reload register.
6071
6072 RELOADNUM is the number of the reload we want to load this value for;
6073 a reload does not conflict with itself.
6074
6075 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6076 reloads that load an address for the very reload we are considering.
6077
6078 The caller has to make sure that there is no conflict with the return
6079 register. */
6080
6081 static int
6082 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6083 enum reload_type type, rtx value, rtx out, int reloadnum,
6084 int ignore_address_reloads)
6085 {
6086 int nregs = hard_regno_nregs[regno][mode];
6087 while (nregs-- > 0)
6088 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6089 value, out, reloadnum,
6090 ignore_address_reloads))
6091 return 0;
6092 return 1;
6093 }
6094
6095 /* Return nonzero if the rtx X is invariant over the current function. */
6096 /* ??? Actually, the places where we use this expect exactly what is
6097 tested here, and not everything that is function invariant. In
6098 particular, the frame pointer and arg pointer are special cased;
6099 pic_offset_table_rtx is not, and we must not spill these things to
6100 memory. */
6101
6102 int
6103 function_invariant_p (const_rtx x)
6104 {
6105 if (CONSTANT_P (x))
6106 return 1;
6107 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6108 return 1;
6109 if (GET_CODE (x) == PLUS
6110 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6111 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6112 return 1;
6113 return 0;
6114 }
6115
6116 /* Determine whether the reload reg X overlaps any rtx'es used for
6117 overriding inheritance. Return nonzero if so. */
6118
6119 static int
6120 conflicts_with_override (rtx x)
6121 {
6122 int i;
6123 for (i = 0; i < n_reloads; i++)
6124 if (reload_override_in[i]
6125 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6126 return 1;
6127 return 0;
6128 }
6129 \f
6130 /* Give an error message saying we failed to find a reload for INSN,
6131 and clear out reload R. */
6132 static void
6133 failed_reload (rtx_insn *insn, int r)
6134 {
6135 if (asm_noperands (PATTERN (insn)) < 0)
6136 /* It's the compiler's fault. */
6137 fatal_insn ("could not find a spill register", insn);
6138
6139 /* It's the user's fault; the operand's mode and constraint
6140 don't match. Disable this reload so we don't crash in final. */
6141 error_for_asm (insn,
6142 "%<asm%> operand constraint incompatible with operand size");
6143 rld[r].in = 0;
6144 rld[r].out = 0;
6145 rld[r].reg_rtx = 0;
6146 rld[r].optional = 1;
6147 rld[r].secondary_p = 1;
6148 }
6149
6150 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6151 for reload R. If it's valid, get an rtx for it. Return nonzero if
6152 successful. */
6153 static int
6154 set_reload_reg (int i, int r)
6155 {
6156 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6157 parameter. */
6158 int regno ATTRIBUTE_UNUSED;
6159 rtx reg = spill_reg_rtx[i];
6160
6161 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6162 spill_reg_rtx[i] = reg
6163 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6164
6165 regno = true_regnum (reg);
6166
6167 /* Detect when the reload reg can't hold the reload mode.
6168 This used to be one `if', but Sequent compiler can't handle that. */
6169 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6170 {
6171 enum machine_mode test_mode = VOIDmode;
6172 if (rld[r].in)
6173 test_mode = GET_MODE (rld[r].in);
6174 /* If rld[r].in has VOIDmode, it means we will load it
6175 in whatever mode the reload reg has: to wit, rld[r].mode.
6176 We have already tested that for validity. */
6177 /* Aside from that, we need to test that the expressions
6178 to reload from or into have modes which are valid for this
6179 reload register. Otherwise the reload insns would be invalid. */
6180 if (! (rld[r].in != 0 && test_mode != VOIDmode
6181 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6182 if (! (rld[r].out != 0
6183 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6184 {
6185 /* The reg is OK. */
6186 last_spill_reg = i;
6187
6188 /* Mark as in use for this insn the reload regs we use
6189 for this. */
6190 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6191 rld[r].when_needed, rld[r].mode);
6192
6193 rld[r].reg_rtx = reg;
6194 reload_spill_index[r] = spill_regs[i];
6195 return 1;
6196 }
6197 }
6198 return 0;
6199 }
6200
6201 /* Find a spill register to use as a reload register for reload R.
6202 LAST_RELOAD is nonzero if this is the last reload for the insn being
6203 processed.
6204
6205 Set rld[R].reg_rtx to the register allocated.
6206
6207 We return 1 if successful, or 0 if we couldn't find a spill reg and
6208 we didn't change anything. */
6209
6210 static int
6211 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6212 int last_reload)
6213 {
6214 int i, pass, count;
6215
6216 /* If we put this reload ahead, thinking it is a group,
6217 then insist on finding a group. Otherwise we can grab a
6218 reg that some other reload needs.
6219 (That can happen when we have a 68000 DATA_OR_FP_REG
6220 which is a group of data regs or one fp reg.)
6221 We need not be so restrictive if there are no more reloads
6222 for this insn.
6223
6224 ??? Really it would be nicer to have smarter handling
6225 for that kind of reg class, where a problem like this is normal.
6226 Perhaps those classes should be avoided for reloading
6227 by use of more alternatives. */
6228
6229 int force_group = rld[r].nregs > 1 && ! last_reload;
6230
6231 /* If we want a single register and haven't yet found one,
6232 take any reg in the right class and not in use.
6233 If we want a consecutive group, here is where we look for it.
6234
6235 We use three passes so we can first look for reload regs to
6236 reuse, which are already in use for other reloads in this insn,
6237 and only then use additional registers which are not "bad", then
6238 finally any register.
6239
6240 I think that maximizing reuse is needed to make sure we don't
6241 run out of reload regs. Suppose we have three reloads, and
6242 reloads A and B can share regs. These need two regs.
6243 Suppose A and B are given different regs.
6244 That leaves none for C. */
6245 for (pass = 0; pass < 3; pass++)
6246 {
6247 /* I is the index in spill_regs.
6248 We advance it round-robin between insns to use all spill regs
6249 equally, so that inherited reloads have a chance
6250 of leapfrogging each other. */
6251
6252 i = last_spill_reg;
6253
6254 for (count = 0; count < n_spills; count++)
6255 {
6256 int rclass = (int) rld[r].rclass;
6257 int regnum;
6258
6259 i++;
6260 if (i >= n_spills)
6261 i -= n_spills;
6262 regnum = spill_regs[i];
6263
6264 if ((reload_reg_free_p (regnum, rld[r].opnum,
6265 rld[r].when_needed)
6266 || (rld[r].in
6267 /* We check reload_reg_used to make sure we
6268 don't clobber the return register. */
6269 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6270 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6271 rld[r].when_needed, rld[r].in,
6272 rld[r].out, r, 1)))
6273 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6274 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6275 /* Look first for regs to share, then for unshared. But
6276 don't share regs used for inherited reloads; they are
6277 the ones we want to preserve. */
6278 && (pass
6279 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6280 regnum)
6281 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6282 regnum))))
6283 {
6284 int nr = hard_regno_nregs[regnum][rld[r].mode];
6285
6286 /* During the second pass we want to avoid reload registers
6287 which are "bad" for this reload. */
6288 if (pass == 1
6289 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6290 continue;
6291
6292 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6293 (on 68000) got us two FP regs. If NR is 1,
6294 we would reject both of them. */
6295 if (force_group)
6296 nr = rld[r].nregs;
6297 /* If we need only one reg, we have already won. */
6298 if (nr == 1)
6299 {
6300 /* But reject a single reg if we demand a group. */
6301 if (force_group)
6302 continue;
6303 break;
6304 }
6305 /* Otherwise check that as many consecutive regs as we need
6306 are available here. */
6307 while (nr > 1)
6308 {
6309 int regno = regnum + nr - 1;
6310 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6311 && spill_reg_order[regno] >= 0
6312 && reload_reg_free_p (regno, rld[r].opnum,
6313 rld[r].when_needed)))
6314 break;
6315 nr--;
6316 }
6317 if (nr == 1)
6318 break;
6319 }
6320 }
6321
6322 /* If we found something on the current pass, omit later passes. */
6323 if (count < n_spills)
6324 break;
6325 }
6326
6327 /* We should have found a spill register by now. */
6328 if (count >= n_spills)
6329 return 0;
6330
6331 /* I is the index in SPILL_REG_RTX of the reload register we are to
6332 allocate. Get an rtx for it and find its register number. */
6333
6334 return set_reload_reg (i, r);
6335 }
6336 \f
6337 /* Initialize all the tables needed to allocate reload registers.
6338 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6339 is the array we use to restore the reg_rtx field for every reload. */
6340
6341 static void
6342 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6343 {
6344 int i;
6345
6346 for (i = 0; i < n_reloads; i++)
6347 rld[i].reg_rtx = save_reload_reg_rtx[i];
6348
6349 memset (reload_inherited, 0, MAX_RELOADS);
6350 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6351 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6352
6353 CLEAR_HARD_REG_SET (reload_reg_used);
6354 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6355 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6356 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6357 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6358 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6359
6360 CLEAR_HARD_REG_SET (reg_used_in_insn);
6361 {
6362 HARD_REG_SET tmp;
6363 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6364 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6365 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6366 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6367 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6368 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6369 }
6370
6371 for (i = 0; i < reload_n_operands; i++)
6372 {
6373 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6374 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6375 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6376 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6377 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6378 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6379 }
6380
6381 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6382
6383 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6384
6385 for (i = 0; i < n_reloads; i++)
6386 /* If we have already decided to use a certain register,
6387 don't use it in another way. */
6388 if (rld[i].reg_rtx)
6389 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6390 rld[i].when_needed, rld[i].mode);
6391 }
6392
6393 #ifdef SECONDARY_MEMORY_NEEDED
6394 /* If X is not a subreg, return it unmodified. If it is a subreg,
6395 look up whether we made a replacement for the SUBREG_REG. Return
6396 either the replacement or the SUBREG_REG. */
6397
6398 static rtx
6399 replaced_subreg (rtx x)
6400 {
6401 if (GET_CODE (x) == SUBREG)
6402 return find_replacement (&SUBREG_REG (x));
6403 return x;
6404 }
6405 #endif
6406
6407 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6408 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6409 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6410 otherwise it is NULL. */
6411
6412 static int
6413 compute_reload_subreg_offset (enum machine_mode outermode,
6414 rtx subreg,
6415 enum machine_mode innermode)
6416 {
6417 int outer_offset;
6418 enum machine_mode middlemode;
6419
6420 if (!subreg)
6421 return subreg_lowpart_offset (outermode, innermode);
6422
6423 outer_offset = SUBREG_BYTE (subreg);
6424 middlemode = GET_MODE (SUBREG_REG (subreg));
6425
6426 /* If SUBREG is paradoxical then return the normal lowpart offset
6427 for OUTERMODE and INNERMODE. Our caller has already checked
6428 that OUTERMODE fits in INNERMODE. */
6429 if (outer_offset == 0
6430 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6431 return subreg_lowpart_offset (outermode, innermode);
6432
6433 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6434 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6435 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6436 }
6437
6438 /* Assign hard reg targets for the pseudo-registers we must reload
6439 into hard regs for this insn.
6440 Also output the instructions to copy them in and out of the hard regs.
6441
6442 For machines with register classes, we are responsible for
6443 finding a reload reg in the proper class. */
6444
6445 static void
6446 choose_reload_regs (struct insn_chain *chain)
6447 {
6448 rtx_insn *insn = chain->insn;
6449 int i, j;
6450 unsigned int max_group_size = 1;
6451 enum reg_class group_class = NO_REGS;
6452 int pass, win, inheritance;
6453
6454 rtx save_reload_reg_rtx[MAX_RELOADS];
6455
6456 /* In order to be certain of getting the registers we need,
6457 we must sort the reloads into order of increasing register class.
6458 Then our grabbing of reload registers will parallel the process
6459 that provided the reload registers.
6460
6461 Also note whether any of the reloads wants a consecutive group of regs.
6462 If so, record the maximum size of the group desired and what
6463 register class contains all the groups needed by this insn. */
6464
6465 for (j = 0; j < n_reloads; j++)
6466 {
6467 reload_order[j] = j;
6468 if (rld[j].reg_rtx != NULL_RTX)
6469 {
6470 gcc_assert (REG_P (rld[j].reg_rtx)
6471 && HARD_REGISTER_P (rld[j].reg_rtx));
6472 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6473 }
6474 else
6475 reload_spill_index[j] = -1;
6476
6477 if (rld[j].nregs > 1)
6478 {
6479 max_group_size = MAX (rld[j].nregs, max_group_size);
6480 group_class
6481 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6482 }
6483
6484 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6485 }
6486
6487 if (n_reloads > 1)
6488 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6489
6490 /* If -O, try first with inheritance, then turning it off.
6491 If not -O, don't do inheritance.
6492 Using inheritance when not optimizing leads to paradoxes
6493 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6494 because one side of the comparison might be inherited. */
6495 win = 0;
6496 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6497 {
6498 choose_reload_regs_init (chain, save_reload_reg_rtx);
6499
6500 /* Process the reloads in order of preference just found.
6501 Beyond this point, subregs can be found in reload_reg_rtx.
6502
6503 This used to look for an existing reloaded home for all of the
6504 reloads, and only then perform any new reloads. But that could lose
6505 if the reloads were done out of reg-class order because a later
6506 reload with a looser constraint might have an old home in a register
6507 needed by an earlier reload with a tighter constraint.
6508
6509 To solve this, we make two passes over the reloads, in the order
6510 described above. In the first pass we try to inherit a reload
6511 from a previous insn. If there is a later reload that needs a
6512 class that is a proper subset of the class being processed, we must
6513 also allocate a spill register during the first pass.
6514
6515 Then make a second pass over the reloads to allocate any reloads
6516 that haven't been given registers yet. */
6517
6518 for (j = 0; j < n_reloads; j++)
6519 {
6520 int r = reload_order[j];
6521 rtx search_equiv = NULL_RTX;
6522
6523 /* Ignore reloads that got marked inoperative. */
6524 if (rld[r].out == 0 && rld[r].in == 0
6525 && ! rld[r].secondary_p)
6526 continue;
6527
6528 /* If find_reloads chose to use reload_in or reload_out as a reload
6529 register, we don't need to chose one. Otherwise, try even if it
6530 found one since we might save an insn if we find the value lying
6531 around.
6532 Try also when reload_in is a pseudo without a hard reg. */
6533 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6534 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6535 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6536 && !MEM_P (rld[r].in)
6537 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6538 continue;
6539
6540 #if 0 /* No longer needed for correct operation.
6541 It might give better code, or might not; worth an experiment? */
6542 /* If this is an optional reload, we can't inherit from earlier insns
6543 until we are sure that any non-optional reloads have been allocated.
6544 The following code takes advantage of the fact that optional reloads
6545 are at the end of reload_order. */
6546 if (rld[r].optional != 0)
6547 for (i = 0; i < j; i++)
6548 if ((rld[reload_order[i]].out != 0
6549 || rld[reload_order[i]].in != 0
6550 || rld[reload_order[i]].secondary_p)
6551 && ! rld[reload_order[i]].optional
6552 && rld[reload_order[i]].reg_rtx == 0)
6553 allocate_reload_reg (chain, reload_order[i], 0);
6554 #endif
6555
6556 /* First see if this pseudo is already available as reloaded
6557 for a previous insn. We cannot try to inherit for reloads
6558 that are smaller than the maximum number of registers needed
6559 for groups unless the register we would allocate cannot be used
6560 for the groups.
6561
6562 We could check here to see if this is a secondary reload for
6563 an object that is already in a register of the desired class.
6564 This would avoid the need for the secondary reload register.
6565 But this is complex because we can't easily determine what
6566 objects might want to be loaded via this reload. So let a
6567 register be allocated here. In `emit_reload_insns' we suppress
6568 one of the loads in the case described above. */
6569
6570 if (inheritance)
6571 {
6572 int byte = 0;
6573 int regno = -1;
6574 enum machine_mode mode = VOIDmode;
6575 rtx subreg = NULL_RTX;
6576
6577 if (rld[r].in == 0)
6578 ;
6579 else if (REG_P (rld[r].in))
6580 {
6581 regno = REGNO (rld[r].in);
6582 mode = GET_MODE (rld[r].in);
6583 }
6584 else if (REG_P (rld[r].in_reg))
6585 {
6586 regno = REGNO (rld[r].in_reg);
6587 mode = GET_MODE (rld[r].in_reg);
6588 }
6589 else if (GET_CODE (rld[r].in_reg) == SUBREG
6590 && REG_P (SUBREG_REG (rld[r].in_reg)))
6591 {
6592 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6593 if (regno < FIRST_PSEUDO_REGISTER)
6594 regno = subreg_regno (rld[r].in_reg);
6595 else
6596 {
6597 subreg = rld[r].in_reg;
6598 byte = SUBREG_BYTE (subreg);
6599 }
6600 mode = GET_MODE (rld[r].in_reg);
6601 }
6602 #ifdef AUTO_INC_DEC
6603 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6604 && REG_P (XEXP (rld[r].in_reg, 0)))
6605 {
6606 regno = REGNO (XEXP (rld[r].in_reg, 0));
6607 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6608 rld[r].out = rld[r].in;
6609 }
6610 #endif
6611 #if 0
6612 /* This won't work, since REGNO can be a pseudo reg number.
6613 Also, it takes much more hair to keep track of all the things
6614 that can invalidate an inherited reload of part of a pseudoreg. */
6615 else if (GET_CODE (rld[r].in) == SUBREG
6616 && REG_P (SUBREG_REG (rld[r].in)))
6617 regno = subreg_regno (rld[r].in);
6618 #endif
6619
6620 if (regno >= 0
6621 && reg_last_reload_reg[regno] != 0
6622 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6623 >= GET_MODE_SIZE (mode) + byte)
6624 #ifdef CANNOT_CHANGE_MODE_CLASS
6625 /* Verify that the register it's in can be used in
6626 mode MODE. */
6627 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6628 GET_MODE (reg_last_reload_reg[regno]),
6629 mode)
6630 #endif
6631 )
6632 {
6633 enum reg_class rclass = rld[r].rclass, last_class;
6634 rtx last_reg = reg_last_reload_reg[regno];
6635
6636 i = REGNO (last_reg);
6637 byte = compute_reload_subreg_offset (mode,
6638 subreg,
6639 GET_MODE (last_reg));
6640 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6641 last_class = REGNO_REG_CLASS (i);
6642
6643 if (reg_reloaded_contents[i] == regno
6644 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6645 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6646 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6647 /* Even if we can't use this register as a reload
6648 register, we might use it for reload_override_in,
6649 if copying it to the desired class is cheap
6650 enough. */
6651 || ((register_move_cost (mode, last_class, rclass)
6652 < memory_move_cost (mode, rclass, true))
6653 && (secondary_reload_class (1, rclass, mode,
6654 last_reg)
6655 == NO_REGS)
6656 #ifdef SECONDARY_MEMORY_NEEDED
6657 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6658 mode)
6659 #endif
6660 ))
6661
6662 && (rld[r].nregs == max_group_size
6663 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6664 i))
6665 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6666 rld[r].when_needed, rld[r].in,
6667 const0_rtx, r, 1))
6668 {
6669 /* If a group is needed, verify that all the subsequent
6670 registers still have their values intact. */
6671 int nr = hard_regno_nregs[i][rld[r].mode];
6672 int k;
6673
6674 for (k = 1; k < nr; k++)
6675 if (reg_reloaded_contents[i + k] != regno
6676 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6677 break;
6678
6679 if (k == nr)
6680 {
6681 int i1;
6682 int bad_for_class;
6683
6684 last_reg = (GET_MODE (last_reg) == mode
6685 ? last_reg : gen_rtx_REG (mode, i));
6686
6687 bad_for_class = 0;
6688 for (k = 0; k < nr; k++)
6689 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6690 i+k);
6691
6692 /* We found a register that contains the
6693 value we need. If this register is the
6694 same as an `earlyclobber' operand of the
6695 current insn, just mark it as a place to
6696 reload from since we can't use it as the
6697 reload register itself. */
6698
6699 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6700 if (reg_overlap_mentioned_for_reload_p
6701 (reg_last_reload_reg[regno],
6702 reload_earlyclobbers[i1]))
6703 break;
6704
6705 if (i1 != n_earlyclobbers
6706 || ! (free_for_value_p (i, rld[r].mode,
6707 rld[r].opnum,
6708 rld[r].when_needed, rld[r].in,
6709 rld[r].out, r, 1))
6710 /* Don't use it if we'd clobber a pseudo reg. */
6711 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6712 && rld[r].out
6713 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6714 /* Don't clobber the frame pointer. */
6715 || (i == HARD_FRAME_POINTER_REGNUM
6716 && frame_pointer_needed
6717 && rld[r].out)
6718 /* Don't really use the inherited spill reg
6719 if we need it wider than we've got it. */
6720 || (GET_MODE_SIZE (rld[r].mode)
6721 > GET_MODE_SIZE (mode))
6722 || bad_for_class
6723
6724 /* If find_reloads chose reload_out as reload
6725 register, stay with it - that leaves the
6726 inherited register for subsequent reloads. */
6727 || (rld[r].out && rld[r].reg_rtx
6728 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6729 {
6730 if (! rld[r].optional)
6731 {
6732 reload_override_in[r] = last_reg;
6733 reload_inheritance_insn[r]
6734 = reg_reloaded_insn[i];
6735 }
6736 }
6737 else
6738 {
6739 int k;
6740 /* We can use this as a reload reg. */
6741 /* Mark the register as in use for this part of
6742 the insn. */
6743 mark_reload_reg_in_use (i,
6744 rld[r].opnum,
6745 rld[r].when_needed,
6746 rld[r].mode);
6747 rld[r].reg_rtx = last_reg;
6748 reload_inherited[r] = 1;
6749 reload_inheritance_insn[r]
6750 = reg_reloaded_insn[i];
6751 reload_spill_index[r] = i;
6752 for (k = 0; k < nr; k++)
6753 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6754 i + k);
6755 }
6756 }
6757 }
6758 }
6759 }
6760
6761 /* Here's another way to see if the value is already lying around. */
6762 if (inheritance
6763 && rld[r].in != 0
6764 && ! reload_inherited[r]
6765 && rld[r].out == 0
6766 && (CONSTANT_P (rld[r].in)
6767 || GET_CODE (rld[r].in) == PLUS
6768 || REG_P (rld[r].in)
6769 || MEM_P (rld[r].in))
6770 && (rld[r].nregs == max_group_size
6771 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6772 search_equiv = rld[r].in;
6773
6774 if (search_equiv)
6775 {
6776 rtx equiv
6777 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6778 -1, NULL, 0, rld[r].mode);
6779 int regno = 0;
6780
6781 if (equiv != 0)
6782 {
6783 if (REG_P (equiv))
6784 regno = REGNO (equiv);
6785 else
6786 {
6787 /* This must be a SUBREG of a hard register.
6788 Make a new REG since this might be used in an
6789 address and not all machines support SUBREGs
6790 there. */
6791 gcc_assert (GET_CODE (equiv) == SUBREG);
6792 regno = subreg_regno (equiv);
6793 equiv = gen_rtx_REG (rld[r].mode, regno);
6794 /* If we choose EQUIV as the reload register, but the
6795 loop below decides to cancel the inheritance, we'll
6796 end up reloading EQUIV in rld[r].mode, not the mode
6797 it had originally. That isn't safe when EQUIV isn't
6798 available as a spill register since its value might
6799 still be live at this point. */
6800 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6801 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6802 equiv = 0;
6803 }
6804 }
6805
6806 /* If we found a spill reg, reject it unless it is free
6807 and of the desired class. */
6808 if (equiv != 0)
6809 {
6810 int regs_used = 0;
6811 int bad_for_class = 0;
6812 int max_regno = regno + rld[r].nregs;
6813
6814 for (i = regno; i < max_regno; i++)
6815 {
6816 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6817 i);
6818 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6819 i);
6820 }
6821
6822 if ((regs_used
6823 && ! free_for_value_p (regno, rld[r].mode,
6824 rld[r].opnum, rld[r].when_needed,
6825 rld[r].in, rld[r].out, r, 1))
6826 || bad_for_class)
6827 equiv = 0;
6828 }
6829
6830 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6831 equiv = 0;
6832
6833 /* We found a register that contains the value we need.
6834 If this register is the same as an `earlyclobber' operand
6835 of the current insn, just mark it as a place to reload from
6836 since we can't use it as the reload register itself. */
6837
6838 if (equiv != 0)
6839 for (i = 0; i < n_earlyclobbers; i++)
6840 if (reg_overlap_mentioned_for_reload_p (equiv,
6841 reload_earlyclobbers[i]))
6842 {
6843 if (! rld[r].optional)
6844 reload_override_in[r] = equiv;
6845 equiv = 0;
6846 break;
6847 }
6848
6849 /* If the equiv register we have found is explicitly clobbered
6850 in the current insn, it depends on the reload type if we
6851 can use it, use it for reload_override_in, or not at all.
6852 In particular, we then can't use EQUIV for a
6853 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6854
6855 if (equiv != 0)
6856 {
6857 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6858 switch (rld[r].when_needed)
6859 {
6860 case RELOAD_FOR_OTHER_ADDRESS:
6861 case RELOAD_FOR_INPADDR_ADDRESS:
6862 case RELOAD_FOR_INPUT_ADDRESS:
6863 case RELOAD_FOR_OPADDR_ADDR:
6864 break;
6865 case RELOAD_OTHER:
6866 case RELOAD_FOR_INPUT:
6867 case RELOAD_FOR_OPERAND_ADDRESS:
6868 if (! rld[r].optional)
6869 reload_override_in[r] = equiv;
6870 /* Fall through. */
6871 default:
6872 equiv = 0;
6873 break;
6874 }
6875 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6876 switch (rld[r].when_needed)
6877 {
6878 case RELOAD_FOR_OTHER_ADDRESS:
6879 case RELOAD_FOR_INPADDR_ADDRESS:
6880 case RELOAD_FOR_INPUT_ADDRESS:
6881 case RELOAD_FOR_OPADDR_ADDR:
6882 case RELOAD_FOR_OPERAND_ADDRESS:
6883 case RELOAD_FOR_INPUT:
6884 break;
6885 case RELOAD_OTHER:
6886 if (! rld[r].optional)
6887 reload_override_in[r] = equiv;
6888 /* Fall through. */
6889 default:
6890 equiv = 0;
6891 break;
6892 }
6893 }
6894
6895 /* If we found an equivalent reg, say no code need be generated
6896 to load it, and use it as our reload reg. */
6897 if (equiv != 0
6898 && (regno != HARD_FRAME_POINTER_REGNUM
6899 || !frame_pointer_needed))
6900 {
6901 int nr = hard_regno_nregs[regno][rld[r].mode];
6902 int k;
6903 rld[r].reg_rtx = equiv;
6904 reload_spill_index[r] = regno;
6905 reload_inherited[r] = 1;
6906
6907 /* If reg_reloaded_valid is not set for this register,
6908 there might be a stale spill_reg_store lying around.
6909 We must clear it, since otherwise emit_reload_insns
6910 might delete the store. */
6911 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6912 spill_reg_store[regno] = NULL;
6913 /* If any of the hard registers in EQUIV are spill
6914 registers, mark them as in use for this insn. */
6915 for (k = 0; k < nr; k++)
6916 {
6917 i = spill_reg_order[regno + k];
6918 if (i >= 0)
6919 {
6920 mark_reload_reg_in_use (regno, rld[r].opnum,
6921 rld[r].when_needed,
6922 rld[r].mode);
6923 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6924 regno + k);
6925 }
6926 }
6927 }
6928 }
6929
6930 /* If we found a register to use already, or if this is an optional
6931 reload, we are done. */
6932 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6933 continue;
6934
6935 #if 0
6936 /* No longer needed for correct operation. Might or might
6937 not give better code on the average. Want to experiment? */
6938
6939 /* See if there is a later reload that has a class different from our
6940 class that intersects our class or that requires less register
6941 than our reload. If so, we must allocate a register to this
6942 reload now, since that reload might inherit a previous reload
6943 and take the only available register in our class. Don't do this
6944 for optional reloads since they will force all previous reloads
6945 to be allocated. Also don't do this for reloads that have been
6946 turned off. */
6947
6948 for (i = j + 1; i < n_reloads; i++)
6949 {
6950 int s = reload_order[i];
6951
6952 if ((rld[s].in == 0 && rld[s].out == 0
6953 && ! rld[s].secondary_p)
6954 || rld[s].optional)
6955 continue;
6956
6957 if ((rld[s].rclass != rld[r].rclass
6958 && reg_classes_intersect_p (rld[r].rclass,
6959 rld[s].rclass))
6960 || rld[s].nregs < rld[r].nregs)
6961 break;
6962 }
6963
6964 if (i == n_reloads)
6965 continue;
6966
6967 allocate_reload_reg (chain, r, j == n_reloads - 1);
6968 #endif
6969 }
6970
6971 /* Now allocate reload registers for anything non-optional that
6972 didn't get one yet. */
6973 for (j = 0; j < n_reloads; j++)
6974 {
6975 int r = reload_order[j];
6976
6977 /* Ignore reloads that got marked inoperative. */
6978 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6979 continue;
6980
6981 /* Skip reloads that already have a register allocated or are
6982 optional. */
6983 if (rld[r].reg_rtx != 0 || rld[r].optional)
6984 continue;
6985
6986 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6987 break;
6988 }
6989
6990 /* If that loop got all the way, we have won. */
6991 if (j == n_reloads)
6992 {
6993 win = 1;
6994 break;
6995 }
6996
6997 /* Loop around and try without any inheritance. */
6998 }
6999
7000 if (! win)
7001 {
7002 /* First undo everything done by the failed attempt
7003 to allocate with inheritance. */
7004 choose_reload_regs_init (chain, save_reload_reg_rtx);
7005
7006 /* Some sanity tests to verify that the reloads found in the first
7007 pass are identical to the ones we have now. */
7008 gcc_assert (chain->n_reloads == n_reloads);
7009
7010 for (i = 0; i < n_reloads; i++)
7011 {
7012 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7013 continue;
7014 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7015 for (j = 0; j < n_spills; j++)
7016 if (spill_regs[j] == chain->rld[i].regno)
7017 if (! set_reload_reg (j, i))
7018 failed_reload (chain->insn, i);
7019 }
7020 }
7021
7022 /* If we thought we could inherit a reload, because it seemed that
7023 nothing else wanted the same reload register earlier in the insn,
7024 verify that assumption, now that all reloads have been assigned.
7025 Likewise for reloads where reload_override_in has been set. */
7026
7027 /* If doing expensive optimizations, do one preliminary pass that doesn't
7028 cancel any inheritance, but removes reloads that have been needed only
7029 for reloads that we know can be inherited. */
7030 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7031 {
7032 for (j = 0; j < n_reloads; j++)
7033 {
7034 int r = reload_order[j];
7035 rtx check_reg;
7036 #ifdef SECONDARY_MEMORY_NEEDED
7037 rtx tem;
7038 #endif
7039 if (reload_inherited[r] && rld[r].reg_rtx)
7040 check_reg = rld[r].reg_rtx;
7041 else if (reload_override_in[r]
7042 && (REG_P (reload_override_in[r])
7043 || GET_CODE (reload_override_in[r]) == SUBREG))
7044 check_reg = reload_override_in[r];
7045 else
7046 continue;
7047 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7048 rld[r].opnum, rld[r].when_needed, rld[r].in,
7049 (reload_inherited[r]
7050 ? rld[r].out : const0_rtx),
7051 r, 1))
7052 {
7053 if (pass)
7054 continue;
7055 reload_inherited[r] = 0;
7056 reload_override_in[r] = 0;
7057 }
7058 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7059 reload_override_in, then we do not need its related
7060 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7061 likewise for other reload types.
7062 We handle this by removing a reload when its only replacement
7063 is mentioned in reload_in of the reload we are going to inherit.
7064 A special case are auto_inc expressions; even if the input is
7065 inherited, we still need the address for the output. We can
7066 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7067 If we succeeded removing some reload and we are doing a preliminary
7068 pass just to remove such reloads, make another pass, since the
7069 removal of one reload might allow us to inherit another one. */
7070 else if (rld[r].in
7071 && rld[r].out != rld[r].in
7072 && remove_address_replacements (rld[r].in))
7073 {
7074 if (pass)
7075 pass = 2;
7076 }
7077 #ifdef SECONDARY_MEMORY_NEEDED
7078 /* If we needed a memory location for the reload, we also have to
7079 remove its related reloads. */
7080 else if (rld[r].in
7081 && rld[r].out != rld[r].in
7082 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7083 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7084 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7085 rld[r].rclass, rld[r].inmode)
7086 && remove_address_replacements
7087 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7088 rld[r].when_needed)))
7089 {
7090 if (pass)
7091 pass = 2;
7092 }
7093 #endif
7094 }
7095 }
7096
7097 /* Now that reload_override_in is known valid,
7098 actually override reload_in. */
7099 for (j = 0; j < n_reloads; j++)
7100 if (reload_override_in[j])
7101 rld[j].in = reload_override_in[j];
7102
7103 /* If this reload won't be done because it has been canceled or is
7104 optional and not inherited, clear reload_reg_rtx so other
7105 routines (such as subst_reloads) don't get confused. */
7106 for (j = 0; j < n_reloads; j++)
7107 if (rld[j].reg_rtx != 0
7108 && ((rld[j].optional && ! reload_inherited[j])
7109 || (rld[j].in == 0 && rld[j].out == 0
7110 && ! rld[j].secondary_p)))
7111 {
7112 int regno = true_regnum (rld[j].reg_rtx);
7113
7114 if (spill_reg_order[regno] >= 0)
7115 clear_reload_reg_in_use (regno, rld[j].opnum,
7116 rld[j].when_needed, rld[j].mode);
7117 rld[j].reg_rtx = 0;
7118 reload_spill_index[j] = -1;
7119 }
7120
7121 /* Record which pseudos and which spill regs have output reloads. */
7122 for (j = 0; j < n_reloads; j++)
7123 {
7124 int r = reload_order[j];
7125
7126 i = reload_spill_index[r];
7127
7128 /* I is nonneg if this reload uses a register.
7129 If rld[r].reg_rtx is 0, this is an optional reload
7130 that we opted to ignore. */
7131 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7132 && rld[r].reg_rtx != 0)
7133 {
7134 int nregno = REGNO (rld[r].out_reg);
7135 int nr = 1;
7136
7137 if (nregno < FIRST_PSEUDO_REGISTER)
7138 nr = hard_regno_nregs[nregno][rld[r].mode];
7139
7140 while (--nr >= 0)
7141 SET_REGNO_REG_SET (&reg_has_output_reload,
7142 nregno + nr);
7143
7144 if (i >= 0)
7145 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7146
7147 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7148 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7149 || rld[r].when_needed == RELOAD_FOR_INSN);
7150 }
7151 }
7152 }
7153
7154 /* Deallocate the reload register for reload R. This is called from
7155 remove_address_replacements. */
7156
7157 void
7158 deallocate_reload_reg (int r)
7159 {
7160 int regno;
7161
7162 if (! rld[r].reg_rtx)
7163 return;
7164 regno = true_regnum (rld[r].reg_rtx);
7165 rld[r].reg_rtx = 0;
7166 if (spill_reg_order[regno] >= 0)
7167 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7168 rld[r].mode);
7169 reload_spill_index[r] = -1;
7170 }
7171 \f
7172 /* These arrays are filled by emit_reload_insns and its subroutines. */
7173 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7174 static rtx_insn *other_input_address_reload_insns = 0;
7175 static rtx_insn *other_input_reload_insns = 0;
7176 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7177 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7178 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7179 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7180 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7181 static rtx_insn *operand_reload_insns = 0;
7182 static rtx_insn *other_operand_reload_insns = 0;
7183 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7184
7185 /* Values to be put in spill_reg_store are put here first. Instructions
7186 must only be placed here if the associated reload register reaches
7187 the end of the instruction's reload sequence. */
7188 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7189 static HARD_REG_SET reg_reloaded_died;
7190
7191 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7192 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7193 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7194 adjusted register, and return true. Otherwise, return false. */
7195 static bool
7196 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7197 enum reg_class new_class,
7198 enum machine_mode new_mode)
7199
7200 {
7201 rtx reg;
7202
7203 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7204 {
7205 unsigned regno = REGNO (reg);
7206
7207 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7208 continue;
7209 if (GET_MODE (reg) != new_mode)
7210 {
7211 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7212 continue;
7213 if (hard_regno_nregs[regno][new_mode]
7214 > hard_regno_nregs[regno][GET_MODE (reg)])
7215 continue;
7216 reg = reload_adjust_reg_for_mode (reg, new_mode);
7217 }
7218 *reload_reg = reg;
7219 return true;
7220 }
7221 return false;
7222 }
7223
7224 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7225 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7226 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7227 adjusted register, and return true. Otherwise, return false. */
7228 static bool
7229 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7230 enum insn_code icode)
7231
7232 {
7233 enum reg_class new_class = scratch_reload_class (icode);
7234 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7235
7236 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7237 new_class, new_mode);
7238 }
7239
7240 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7241 has the number J. OLD contains the value to be used as input. */
7242
7243 static void
7244 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7245 rtx old, int j)
7246 {
7247 rtx_insn *insn = chain->insn;
7248 rtx reloadreg;
7249 rtx oldequiv_reg = 0;
7250 rtx oldequiv = 0;
7251 int special = 0;
7252 enum machine_mode mode;
7253 rtx_insn **where;
7254
7255 /* delete_output_reload is only invoked properly if old contains
7256 the original pseudo register. Since this is replaced with a
7257 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7258 find the pseudo in RELOAD_IN_REG. This is also used to
7259 determine whether a secondary reload is needed. */
7260 if (reload_override_in[j]
7261 && (REG_P (rl->in_reg)
7262 || (GET_CODE (rl->in_reg) == SUBREG
7263 && REG_P (SUBREG_REG (rl->in_reg)))))
7264 {
7265 oldequiv = old;
7266 old = rl->in_reg;
7267 }
7268 if (oldequiv == 0)
7269 oldequiv = old;
7270 else if (REG_P (oldequiv))
7271 oldequiv_reg = oldequiv;
7272 else if (GET_CODE (oldequiv) == SUBREG)
7273 oldequiv_reg = SUBREG_REG (oldequiv);
7274
7275 reloadreg = reload_reg_rtx_for_input[j];
7276 mode = GET_MODE (reloadreg);
7277
7278 /* If we are reloading from a register that was recently stored in
7279 with an output-reload, see if we can prove there was
7280 actually no need to store the old value in it. */
7281
7282 if (optimize && REG_P (oldequiv)
7283 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7284 && spill_reg_store[REGNO (oldequiv)]
7285 && REG_P (old)
7286 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7287 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7288 rl->out_reg)))
7289 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7290
7291 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7292 OLDEQUIV. */
7293
7294 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7295 oldequiv = SUBREG_REG (oldequiv);
7296 if (GET_MODE (oldequiv) != VOIDmode
7297 && mode != GET_MODE (oldequiv))
7298 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7299
7300 /* Switch to the right place to emit the reload insns. */
7301 switch (rl->when_needed)
7302 {
7303 case RELOAD_OTHER:
7304 where = &other_input_reload_insns;
7305 break;
7306 case RELOAD_FOR_INPUT:
7307 where = &input_reload_insns[rl->opnum];
7308 break;
7309 case RELOAD_FOR_INPUT_ADDRESS:
7310 where = &input_address_reload_insns[rl->opnum];
7311 break;
7312 case RELOAD_FOR_INPADDR_ADDRESS:
7313 where = &inpaddr_address_reload_insns[rl->opnum];
7314 break;
7315 case RELOAD_FOR_OUTPUT_ADDRESS:
7316 where = &output_address_reload_insns[rl->opnum];
7317 break;
7318 case RELOAD_FOR_OUTADDR_ADDRESS:
7319 where = &outaddr_address_reload_insns[rl->opnum];
7320 break;
7321 case RELOAD_FOR_OPERAND_ADDRESS:
7322 where = &operand_reload_insns;
7323 break;
7324 case RELOAD_FOR_OPADDR_ADDR:
7325 where = &other_operand_reload_insns;
7326 break;
7327 case RELOAD_FOR_OTHER_ADDRESS:
7328 where = &other_input_address_reload_insns;
7329 break;
7330 default:
7331 gcc_unreachable ();
7332 }
7333
7334 push_to_sequence (*where);
7335
7336 /* Auto-increment addresses must be reloaded in a special way. */
7337 if (rl->out && ! rl->out_reg)
7338 {
7339 /* We are not going to bother supporting the case where a
7340 incremented register can't be copied directly from
7341 OLDEQUIV since this seems highly unlikely. */
7342 gcc_assert (rl->secondary_in_reload < 0);
7343
7344 if (reload_inherited[j])
7345 oldequiv = reloadreg;
7346
7347 old = XEXP (rl->in_reg, 0);
7348
7349 /* Prevent normal processing of this reload. */
7350 special = 1;
7351 /* Output a special code sequence for this case. */
7352 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7353 }
7354
7355 /* If we are reloading a pseudo-register that was set by the previous
7356 insn, see if we can get rid of that pseudo-register entirely
7357 by redirecting the previous insn into our reload register. */
7358
7359 else if (optimize && REG_P (old)
7360 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7361 && dead_or_set_p (insn, old)
7362 /* This is unsafe if some other reload
7363 uses the same reg first. */
7364 && ! conflicts_with_override (reloadreg)
7365 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7366 rl->when_needed, old, rl->out, j, 0))
7367 {
7368 rtx_insn *temp = PREV_INSN (insn);
7369 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7370 temp = PREV_INSN (temp);
7371 if (temp
7372 && NONJUMP_INSN_P (temp)
7373 && GET_CODE (PATTERN (temp)) == SET
7374 && SET_DEST (PATTERN (temp)) == old
7375 /* Make sure we can access insn_operand_constraint. */
7376 && asm_noperands (PATTERN (temp)) < 0
7377 /* This is unsafe if operand occurs more than once in current
7378 insn. Perhaps some occurrences aren't reloaded. */
7379 && count_occurrences (PATTERN (insn), old, 0) == 1)
7380 {
7381 rtx old = SET_DEST (PATTERN (temp));
7382 /* Store into the reload register instead of the pseudo. */
7383 SET_DEST (PATTERN (temp)) = reloadreg;
7384
7385 /* Verify that resulting insn is valid.
7386
7387 Note that we have replaced the destination of TEMP with
7388 RELOADREG. If TEMP references RELOADREG within an
7389 autoincrement addressing mode, then the resulting insn
7390 is ill-formed and we must reject this optimization. */
7391 extract_insn (temp);
7392 if (constrain_operands (1)
7393 #ifdef AUTO_INC_DEC
7394 && ! find_reg_note (temp, REG_INC, reloadreg)
7395 #endif
7396 )
7397 {
7398 /* If the previous insn is an output reload, the source is
7399 a reload register, and its spill_reg_store entry will
7400 contain the previous destination. This is now
7401 invalid. */
7402 if (REG_P (SET_SRC (PATTERN (temp)))
7403 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7404 {
7405 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7406 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7407 }
7408
7409 /* If these are the only uses of the pseudo reg,
7410 pretend for GDB it lives in the reload reg we used. */
7411 if (REG_N_DEATHS (REGNO (old)) == 1
7412 && REG_N_SETS (REGNO (old)) == 1)
7413 {
7414 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7415 if (ira_conflicts_p)
7416 /* Inform IRA about the change. */
7417 ira_mark_allocation_change (REGNO (old));
7418 alter_reg (REGNO (old), -1, false);
7419 }
7420 special = 1;
7421
7422 /* Adjust any debug insns between temp and insn. */
7423 while ((temp = NEXT_INSN (temp)) != insn)
7424 if (DEBUG_INSN_P (temp))
7425 replace_rtx (PATTERN (temp), old, reloadreg);
7426 else
7427 gcc_assert (NOTE_P (temp));
7428 }
7429 else
7430 {
7431 SET_DEST (PATTERN (temp)) = old;
7432 }
7433 }
7434 }
7435
7436 /* We can't do that, so output an insn to load RELOADREG. */
7437
7438 /* If we have a secondary reload, pick up the secondary register
7439 and icode, if any. If OLDEQUIV and OLD are different or
7440 if this is an in-out reload, recompute whether or not we
7441 still need a secondary register and what the icode should
7442 be. If we still need a secondary register and the class or
7443 icode is different, go back to reloading from OLD if using
7444 OLDEQUIV means that we got the wrong type of register. We
7445 cannot have different class or icode due to an in-out reload
7446 because we don't make such reloads when both the input and
7447 output need secondary reload registers. */
7448
7449 if (! special && rl->secondary_in_reload >= 0)
7450 {
7451 rtx second_reload_reg = 0;
7452 rtx third_reload_reg = 0;
7453 int secondary_reload = rl->secondary_in_reload;
7454 rtx real_oldequiv = oldequiv;
7455 rtx real_old = old;
7456 rtx tmp;
7457 enum insn_code icode;
7458 enum insn_code tertiary_icode = CODE_FOR_nothing;
7459
7460 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7461 and similarly for OLD.
7462 See comments in get_secondary_reload in reload.c. */
7463 /* If it is a pseudo that cannot be replaced with its
7464 equivalent MEM, we must fall back to reload_in, which
7465 will have all the necessary substitutions registered.
7466 Likewise for a pseudo that can't be replaced with its
7467 equivalent constant.
7468
7469 Take extra care for subregs of such pseudos. Note that
7470 we cannot use reg_equiv_mem in this case because it is
7471 not in the right mode. */
7472
7473 tmp = oldequiv;
7474 if (GET_CODE (tmp) == SUBREG)
7475 tmp = SUBREG_REG (tmp);
7476 if (REG_P (tmp)
7477 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7478 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7479 || reg_equiv_constant (REGNO (tmp)) != 0))
7480 {
7481 if (! reg_equiv_mem (REGNO (tmp))
7482 || num_not_at_initial_offset
7483 || GET_CODE (oldequiv) == SUBREG)
7484 real_oldequiv = rl->in;
7485 else
7486 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7487 }
7488
7489 tmp = old;
7490 if (GET_CODE (tmp) == SUBREG)
7491 tmp = SUBREG_REG (tmp);
7492 if (REG_P (tmp)
7493 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7494 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7495 || reg_equiv_constant (REGNO (tmp)) != 0))
7496 {
7497 if (! reg_equiv_mem (REGNO (tmp))
7498 || num_not_at_initial_offset
7499 || GET_CODE (old) == SUBREG)
7500 real_old = rl->in;
7501 else
7502 real_old = reg_equiv_mem (REGNO (tmp));
7503 }
7504
7505 second_reload_reg = rld[secondary_reload].reg_rtx;
7506 if (rld[secondary_reload].secondary_in_reload >= 0)
7507 {
7508 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7509
7510 third_reload_reg = rld[tertiary_reload].reg_rtx;
7511 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7512 /* We'd have to add more code for quartary reloads. */
7513 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7514 }
7515 icode = rl->secondary_in_icode;
7516
7517 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7518 || (rl->in != 0 && rl->out != 0))
7519 {
7520 secondary_reload_info sri, sri2;
7521 enum reg_class new_class, new_t_class;
7522
7523 sri.icode = CODE_FOR_nothing;
7524 sri.prev_sri = NULL;
7525 new_class
7526 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7527 rl->rclass, mode,
7528 &sri);
7529
7530 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7531 second_reload_reg = 0;
7532 else if (new_class == NO_REGS)
7533 {
7534 if (reload_adjust_reg_for_icode (&second_reload_reg,
7535 third_reload_reg,
7536 (enum insn_code) sri.icode))
7537 {
7538 icode = (enum insn_code) sri.icode;
7539 third_reload_reg = 0;
7540 }
7541 else
7542 {
7543 oldequiv = old;
7544 real_oldequiv = real_old;
7545 }
7546 }
7547 else if (sri.icode != CODE_FOR_nothing)
7548 /* We currently lack a way to express this in reloads. */
7549 gcc_unreachable ();
7550 else
7551 {
7552 sri2.icode = CODE_FOR_nothing;
7553 sri2.prev_sri = &sri;
7554 new_t_class
7555 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7556 new_class, mode,
7557 &sri);
7558 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7559 {
7560 if (reload_adjust_reg_for_temp (&second_reload_reg,
7561 third_reload_reg,
7562 new_class, mode))
7563 {
7564 third_reload_reg = 0;
7565 tertiary_icode = (enum insn_code) sri2.icode;
7566 }
7567 else
7568 {
7569 oldequiv = old;
7570 real_oldequiv = real_old;
7571 }
7572 }
7573 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7574 {
7575 rtx intermediate = second_reload_reg;
7576
7577 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7578 new_class, mode)
7579 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7580 ((enum insn_code)
7581 sri2.icode)))
7582 {
7583 second_reload_reg = intermediate;
7584 tertiary_icode = (enum insn_code) sri2.icode;
7585 }
7586 else
7587 {
7588 oldequiv = old;
7589 real_oldequiv = real_old;
7590 }
7591 }
7592 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7593 {
7594 rtx intermediate = second_reload_reg;
7595
7596 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7597 new_class, mode)
7598 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7599 new_t_class, mode))
7600 {
7601 second_reload_reg = intermediate;
7602 tertiary_icode = (enum insn_code) sri2.icode;
7603 }
7604 else
7605 {
7606 oldequiv = old;
7607 real_oldequiv = real_old;
7608 }
7609 }
7610 else
7611 {
7612 /* This could be handled more intelligently too. */
7613 oldequiv = old;
7614 real_oldequiv = real_old;
7615 }
7616 }
7617 }
7618
7619 /* If we still need a secondary reload register, check
7620 to see if it is being used as a scratch or intermediate
7621 register and generate code appropriately. If we need
7622 a scratch register, use REAL_OLDEQUIV since the form of
7623 the insn may depend on the actual address if it is
7624 a MEM. */
7625
7626 if (second_reload_reg)
7627 {
7628 if (icode != CODE_FOR_nothing)
7629 {
7630 /* We'd have to add extra code to handle this case. */
7631 gcc_assert (!third_reload_reg);
7632
7633 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7634 second_reload_reg));
7635 special = 1;
7636 }
7637 else
7638 {
7639 /* See if we need a scratch register to load the
7640 intermediate register (a tertiary reload). */
7641 if (tertiary_icode != CODE_FOR_nothing)
7642 {
7643 emit_insn ((GEN_FCN (tertiary_icode)
7644 (second_reload_reg, real_oldequiv,
7645 third_reload_reg)));
7646 }
7647 else if (third_reload_reg)
7648 {
7649 gen_reload (third_reload_reg, real_oldequiv,
7650 rl->opnum,
7651 rl->when_needed);
7652 gen_reload (second_reload_reg, third_reload_reg,
7653 rl->opnum,
7654 rl->when_needed);
7655 }
7656 else
7657 gen_reload (second_reload_reg, real_oldequiv,
7658 rl->opnum,
7659 rl->when_needed);
7660
7661 oldequiv = second_reload_reg;
7662 }
7663 }
7664 }
7665
7666 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7667 {
7668 rtx real_oldequiv = oldequiv;
7669
7670 if ((REG_P (oldequiv)
7671 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7672 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7673 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7674 || (GET_CODE (oldequiv) == SUBREG
7675 && REG_P (SUBREG_REG (oldequiv))
7676 && (REGNO (SUBREG_REG (oldequiv))
7677 >= FIRST_PSEUDO_REGISTER)
7678 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7679 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7680 || (CONSTANT_P (oldequiv)
7681 && (targetm.preferred_reload_class (oldequiv,
7682 REGNO_REG_CLASS (REGNO (reloadreg)))
7683 == NO_REGS)))
7684 real_oldequiv = rl->in;
7685 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7686 rl->when_needed);
7687 }
7688
7689 if (cfun->can_throw_non_call_exceptions)
7690 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7691
7692 /* End this sequence. */
7693 *where = get_insns ();
7694 end_sequence ();
7695
7696 /* Update reload_override_in so that delete_address_reloads_1
7697 can see the actual register usage. */
7698 if (oldequiv_reg)
7699 reload_override_in[j] = oldequiv;
7700 }
7701
7702 /* Generate insns to for the output reload RL, which is for the insn described
7703 by CHAIN and has the number J. */
7704 static void
7705 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7706 int j)
7707 {
7708 rtx reloadreg;
7709 rtx_insn *insn = chain->insn;
7710 int special = 0;
7711 rtx old = rl->out;
7712 enum machine_mode mode;
7713 rtx_insn *p;
7714 rtx rl_reg_rtx;
7715
7716 if (rl->when_needed == RELOAD_OTHER)
7717 start_sequence ();
7718 else
7719 push_to_sequence (output_reload_insns[rl->opnum]);
7720
7721 rl_reg_rtx = reload_reg_rtx_for_output[j];
7722 mode = GET_MODE (rl_reg_rtx);
7723
7724 reloadreg = rl_reg_rtx;
7725
7726 /* If we need two reload regs, set RELOADREG to the intermediate
7727 one, since it will be stored into OLD. We might need a secondary
7728 register only for an input reload, so check again here. */
7729
7730 if (rl->secondary_out_reload >= 0)
7731 {
7732 rtx real_old = old;
7733 int secondary_reload = rl->secondary_out_reload;
7734 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7735
7736 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7737 && reg_equiv_mem (REGNO (old)) != 0)
7738 real_old = reg_equiv_mem (REGNO (old));
7739
7740 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7741 {
7742 rtx second_reloadreg = reloadreg;
7743 reloadreg = rld[secondary_reload].reg_rtx;
7744
7745 /* See if RELOADREG is to be used as a scratch register
7746 or as an intermediate register. */
7747 if (rl->secondary_out_icode != CODE_FOR_nothing)
7748 {
7749 /* We'd have to add extra code to handle this case. */
7750 gcc_assert (tertiary_reload < 0);
7751
7752 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7753 (real_old, second_reloadreg, reloadreg)));
7754 special = 1;
7755 }
7756 else
7757 {
7758 /* See if we need both a scratch and intermediate reload
7759 register. */
7760
7761 enum insn_code tertiary_icode
7762 = rld[secondary_reload].secondary_out_icode;
7763
7764 /* We'd have to add more code for quartary reloads. */
7765 gcc_assert (tertiary_reload < 0
7766 || rld[tertiary_reload].secondary_out_reload < 0);
7767
7768 if (GET_MODE (reloadreg) != mode)
7769 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7770
7771 if (tertiary_icode != CODE_FOR_nothing)
7772 {
7773 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7774
7775 /* Copy primary reload reg to secondary reload reg.
7776 (Note that these have been swapped above, then
7777 secondary reload reg to OLD using our insn.) */
7778
7779 /* If REAL_OLD is a paradoxical SUBREG, remove it
7780 and try to put the opposite SUBREG on
7781 RELOADREG. */
7782 strip_paradoxical_subreg (&real_old, &reloadreg);
7783
7784 gen_reload (reloadreg, second_reloadreg,
7785 rl->opnum, rl->when_needed);
7786 emit_insn ((GEN_FCN (tertiary_icode)
7787 (real_old, reloadreg, third_reloadreg)));
7788 special = 1;
7789 }
7790
7791 else
7792 {
7793 /* Copy between the reload regs here and then to
7794 OUT later. */
7795
7796 gen_reload (reloadreg, second_reloadreg,
7797 rl->opnum, rl->when_needed);
7798 if (tertiary_reload >= 0)
7799 {
7800 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7801
7802 gen_reload (third_reloadreg, reloadreg,
7803 rl->opnum, rl->when_needed);
7804 reloadreg = third_reloadreg;
7805 }
7806 }
7807 }
7808 }
7809 }
7810
7811 /* Output the last reload insn. */
7812 if (! special)
7813 {
7814 rtx set;
7815
7816 /* Don't output the last reload if OLD is not the dest of
7817 INSN and is in the src and is clobbered by INSN. */
7818 if (! flag_expensive_optimizations
7819 || !REG_P (old)
7820 || !(set = single_set (insn))
7821 || rtx_equal_p (old, SET_DEST (set))
7822 || !reg_mentioned_p (old, SET_SRC (set))
7823 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7824 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7825 gen_reload (old, reloadreg, rl->opnum,
7826 rl->when_needed);
7827 }
7828
7829 /* Look at all insns we emitted, just to be safe. */
7830 for (p = get_insns (); p; p = NEXT_INSN (p))
7831 if (INSN_P (p))
7832 {
7833 rtx pat = PATTERN (p);
7834
7835 /* If this output reload doesn't come from a spill reg,
7836 clear any memory of reloaded copies of the pseudo reg.
7837 If this output reload comes from a spill reg,
7838 reg_has_output_reload will make this do nothing. */
7839 note_stores (pat, forget_old_reloads_1, NULL);
7840
7841 if (reg_mentioned_p (rl_reg_rtx, pat))
7842 {
7843 rtx set = single_set (insn);
7844 if (reload_spill_index[j] < 0
7845 && set
7846 && SET_SRC (set) == rl_reg_rtx)
7847 {
7848 int src = REGNO (SET_SRC (set));
7849
7850 reload_spill_index[j] = src;
7851 SET_HARD_REG_BIT (reg_is_output_reload, src);
7852 if (find_regno_note (insn, REG_DEAD, src))
7853 SET_HARD_REG_BIT (reg_reloaded_died, src);
7854 }
7855 if (HARD_REGISTER_P (rl_reg_rtx))
7856 {
7857 int s = rl->secondary_out_reload;
7858 set = single_set (p);
7859 /* If this reload copies only to the secondary reload
7860 register, the secondary reload does the actual
7861 store. */
7862 if (s >= 0 && set == NULL_RTX)
7863 /* We can't tell what function the secondary reload
7864 has and where the actual store to the pseudo is
7865 made; leave new_spill_reg_store alone. */
7866 ;
7867 else if (s >= 0
7868 && SET_SRC (set) == rl_reg_rtx
7869 && SET_DEST (set) == rld[s].reg_rtx)
7870 {
7871 /* Usually the next instruction will be the
7872 secondary reload insn; if we can confirm
7873 that it is, setting new_spill_reg_store to
7874 that insn will allow an extra optimization. */
7875 rtx s_reg = rld[s].reg_rtx;
7876 rtx_insn *next = NEXT_INSN (p);
7877 rld[s].out = rl->out;
7878 rld[s].out_reg = rl->out_reg;
7879 set = single_set (next);
7880 if (set && SET_SRC (set) == s_reg
7881 && reload_reg_rtx_reaches_end_p (s_reg, s))
7882 {
7883 SET_HARD_REG_BIT (reg_is_output_reload,
7884 REGNO (s_reg));
7885 new_spill_reg_store[REGNO (s_reg)] = next;
7886 }
7887 }
7888 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7889 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7890 }
7891 }
7892 }
7893
7894 if (rl->when_needed == RELOAD_OTHER)
7895 {
7896 emit_insn (other_output_reload_insns[rl->opnum]);
7897 other_output_reload_insns[rl->opnum] = get_insns ();
7898 }
7899 else
7900 output_reload_insns[rl->opnum] = get_insns ();
7901
7902 if (cfun->can_throw_non_call_exceptions)
7903 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7904
7905 end_sequence ();
7906 }
7907
7908 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7909 and has the number J. */
7910 static void
7911 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7912 {
7913 rtx_insn *insn = chain->insn;
7914 rtx old = (rl->in && MEM_P (rl->in)
7915 ? rl->in_reg : rl->in);
7916 rtx reg_rtx = rl->reg_rtx;
7917
7918 if (old && reg_rtx)
7919 {
7920 enum machine_mode mode;
7921
7922 /* Determine the mode to reload in.
7923 This is very tricky because we have three to choose from.
7924 There is the mode the insn operand wants (rl->inmode).
7925 There is the mode of the reload register RELOADREG.
7926 There is the intrinsic mode of the operand, which we could find
7927 by stripping some SUBREGs.
7928 It turns out that RELOADREG's mode is irrelevant:
7929 we can change that arbitrarily.
7930
7931 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7932 then the reload reg may not support QImode moves, so use SImode.
7933 If foo is in memory due to spilling a pseudo reg, this is safe,
7934 because the QImode value is in the least significant part of a
7935 slot big enough for a SImode. If foo is some other sort of
7936 memory reference, then it is impossible to reload this case,
7937 so previous passes had better make sure this never happens.
7938
7939 Then consider a one-word union which has SImode and one of its
7940 members is a float, being fetched as (SUBREG:SF union:SI).
7941 We must fetch that as SFmode because we could be loading into
7942 a float-only register. In this case OLD's mode is correct.
7943
7944 Consider an immediate integer: it has VOIDmode. Here we need
7945 to get a mode from something else.
7946
7947 In some cases, there is a fourth mode, the operand's
7948 containing mode. If the insn specifies a containing mode for
7949 this operand, it overrides all others.
7950
7951 I am not sure whether the algorithm here is always right,
7952 but it does the right things in those cases. */
7953
7954 mode = GET_MODE (old);
7955 if (mode == VOIDmode)
7956 mode = rl->inmode;
7957
7958 /* We cannot use gen_lowpart_common since it can do the wrong thing
7959 when REG_RTX has a multi-word mode. Note that REG_RTX must
7960 always be a REG here. */
7961 if (GET_MODE (reg_rtx) != mode)
7962 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7963 }
7964 reload_reg_rtx_for_input[j] = reg_rtx;
7965
7966 if (old != 0
7967 /* AUTO_INC reloads need to be handled even if inherited. We got an
7968 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7969 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7970 && ! rtx_equal_p (reg_rtx, old)
7971 && reg_rtx != 0)
7972 emit_input_reload_insns (chain, rld + j, old, j);
7973
7974 /* When inheriting a wider reload, we have a MEM in rl->in,
7975 e.g. inheriting a SImode output reload for
7976 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7977 if (optimize && reload_inherited[j] && rl->in
7978 && MEM_P (rl->in)
7979 && MEM_P (rl->in_reg)
7980 && reload_spill_index[j] >= 0
7981 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7982 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7983
7984 /* If we are reloading a register that was recently stored in with an
7985 output-reload, see if we can prove there was
7986 actually no need to store the old value in it. */
7987
7988 if (optimize
7989 && (reload_inherited[j] || reload_override_in[j])
7990 && reg_rtx
7991 && REG_P (reg_rtx)
7992 && spill_reg_store[REGNO (reg_rtx)] != 0
7993 #if 0
7994 /* There doesn't seem to be any reason to restrict this to pseudos
7995 and doing so loses in the case where we are copying from a
7996 register of the wrong class. */
7997 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7998 #endif
7999 /* The insn might have already some references to stackslots
8000 replaced by MEMs, while reload_out_reg still names the
8001 original pseudo. */
8002 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8003 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8004 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8005 }
8006
8007 /* Do output reloading for reload RL, which is for the insn described by
8008 CHAIN and has the number J.
8009 ??? At some point we need to support handling output reloads of
8010 JUMP_INSNs or insns that set cc0. */
8011 static void
8012 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8013 {
8014 rtx note, old;
8015 rtx_insn *insn = chain->insn;
8016 /* If this is an output reload that stores something that is
8017 not loaded in this same reload, see if we can eliminate a previous
8018 store. */
8019 rtx pseudo = rl->out_reg;
8020 rtx reg_rtx = rl->reg_rtx;
8021
8022 if (rl->out && reg_rtx)
8023 {
8024 enum machine_mode mode;
8025
8026 /* Determine the mode to reload in.
8027 See comments above (for input reloading). */
8028 mode = GET_MODE (rl->out);
8029 if (mode == VOIDmode)
8030 {
8031 /* VOIDmode should never happen for an output. */
8032 if (asm_noperands (PATTERN (insn)) < 0)
8033 /* It's the compiler's fault. */
8034 fatal_insn ("VOIDmode on an output", insn);
8035 error_for_asm (insn, "output operand is constant in %<asm%>");
8036 /* Prevent crash--use something we know is valid. */
8037 mode = word_mode;
8038 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8039 }
8040 if (GET_MODE (reg_rtx) != mode)
8041 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8042 }
8043 reload_reg_rtx_for_output[j] = reg_rtx;
8044
8045 if (pseudo
8046 && optimize
8047 && REG_P (pseudo)
8048 && ! rtx_equal_p (rl->in_reg, pseudo)
8049 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8050 && reg_last_reload_reg[REGNO (pseudo)])
8051 {
8052 int pseudo_no = REGNO (pseudo);
8053 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8054
8055 /* We don't need to test full validity of last_regno for
8056 inherit here; we only want to know if the store actually
8057 matches the pseudo. */
8058 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8059 && reg_reloaded_contents[last_regno] == pseudo_no
8060 && spill_reg_store[last_regno]
8061 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8062 delete_output_reload (insn, j, last_regno, reg_rtx);
8063 }
8064
8065 old = rl->out_reg;
8066 if (old == 0
8067 || reg_rtx == 0
8068 || rtx_equal_p (old, reg_rtx))
8069 return;
8070
8071 /* An output operand that dies right away does need a reload,
8072 but need not be copied from it. Show the new location in the
8073 REG_UNUSED note. */
8074 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8075 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8076 {
8077 XEXP (note, 0) = reg_rtx;
8078 return;
8079 }
8080 /* Likewise for a SUBREG of an operand that dies. */
8081 else if (GET_CODE (old) == SUBREG
8082 && REG_P (SUBREG_REG (old))
8083 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8084 SUBREG_REG (old))))
8085 {
8086 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8087 return;
8088 }
8089 else if (GET_CODE (old) == SCRATCH)
8090 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8091 but we don't want to make an output reload. */
8092 return;
8093
8094 /* If is a JUMP_INSN, we can't support output reloads yet. */
8095 gcc_assert (NONJUMP_INSN_P (insn));
8096
8097 emit_output_reload_insns (chain, rld + j, j);
8098 }
8099
8100 /* A reload copies values of MODE from register SRC to register DEST.
8101 Return true if it can be treated for inheritance purposes like a
8102 group of reloads, each one reloading a single hard register. The
8103 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8104 occupy the same number of hard registers. */
8105
8106 static bool
8107 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8108 int src ATTRIBUTE_UNUSED,
8109 enum machine_mode mode ATTRIBUTE_UNUSED)
8110 {
8111 #ifdef CANNOT_CHANGE_MODE_CLASS
8112 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8113 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8114 #else
8115 return true;
8116 #endif
8117 }
8118
8119 /* Output insns to reload values in and out of the chosen reload regs. */
8120
8121 static void
8122 emit_reload_insns (struct insn_chain *chain)
8123 {
8124 rtx_insn *insn = chain->insn;
8125
8126 int j;
8127
8128 CLEAR_HARD_REG_SET (reg_reloaded_died);
8129
8130 for (j = 0; j < reload_n_operands; j++)
8131 input_reload_insns[j] = input_address_reload_insns[j]
8132 = inpaddr_address_reload_insns[j]
8133 = output_reload_insns[j] = output_address_reload_insns[j]
8134 = outaddr_address_reload_insns[j]
8135 = other_output_reload_insns[j] = 0;
8136 other_input_address_reload_insns = 0;
8137 other_input_reload_insns = 0;
8138 operand_reload_insns = 0;
8139 other_operand_reload_insns = 0;
8140
8141 /* Dump reloads into the dump file. */
8142 if (dump_file)
8143 {
8144 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8145 debug_reload_to_stream (dump_file);
8146 }
8147
8148 for (j = 0; j < n_reloads; j++)
8149 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8150 {
8151 unsigned int i;
8152
8153 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8154 new_spill_reg_store[i] = 0;
8155 }
8156
8157 /* Now output the instructions to copy the data into and out of the
8158 reload registers. Do these in the order that the reloads were reported,
8159 since reloads of base and index registers precede reloads of operands
8160 and the operands may need the base and index registers reloaded. */
8161
8162 for (j = 0; j < n_reloads; j++)
8163 {
8164 do_input_reload (chain, rld + j, j);
8165 do_output_reload (chain, rld + j, j);
8166 }
8167
8168 /* Now write all the insns we made for reloads in the order expected by
8169 the allocation functions. Prior to the insn being reloaded, we write
8170 the following reloads:
8171
8172 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8173
8174 RELOAD_OTHER reloads.
8175
8176 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8177 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8178 RELOAD_FOR_INPUT reload for the operand.
8179
8180 RELOAD_FOR_OPADDR_ADDRS reloads.
8181
8182 RELOAD_FOR_OPERAND_ADDRESS reloads.
8183
8184 After the insn being reloaded, we write the following:
8185
8186 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8187 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8188 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8189 reloads for the operand. The RELOAD_OTHER output reloads are
8190 output in descending order by reload number. */
8191
8192 emit_insn_before (other_input_address_reload_insns, insn);
8193 emit_insn_before (other_input_reload_insns, insn);
8194
8195 for (j = 0; j < reload_n_operands; j++)
8196 {
8197 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8198 emit_insn_before (input_address_reload_insns[j], insn);
8199 emit_insn_before (input_reload_insns[j], insn);
8200 }
8201
8202 emit_insn_before (other_operand_reload_insns, insn);
8203 emit_insn_before (operand_reload_insns, insn);
8204
8205 for (j = 0; j < reload_n_operands; j++)
8206 {
8207 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8208 x = emit_insn_after (output_address_reload_insns[j], x);
8209 x = emit_insn_after (output_reload_insns[j], x);
8210 emit_insn_after (other_output_reload_insns[j], x);
8211 }
8212
8213 /* For all the spill regs newly reloaded in this instruction,
8214 record what they were reloaded from, so subsequent instructions
8215 can inherit the reloads.
8216
8217 Update spill_reg_store for the reloads of this insn.
8218 Copy the elements that were updated in the loop above. */
8219
8220 for (j = 0; j < n_reloads; j++)
8221 {
8222 int r = reload_order[j];
8223 int i = reload_spill_index[r];
8224
8225 /* If this is a non-inherited input reload from a pseudo, we must
8226 clear any memory of a previous store to the same pseudo. Only do
8227 something if there will not be an output reload for the pseudo
8228 being reloaded. */
8229 if (rld[r].in_reg != 0
8230 && ! (reload_inherited[r] || reload_override_in[r]))
8231 {
8232 rtx reg = rld[r].in_reg;
8233
8234 if (GET_CODE (reg) == SUBREG)
8235 reg = SUBREG_REG (reg);
8236
8237 if (REG_P (reg)
8238 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8239 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8240 {
8241 int nregno = REGNO (reg);
8242
8243 if (reg_last_reload_reg[nregno])
8244 {
8245 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8246
8247 if (reg_reloaded_contents[last_regno] == nregno)
8248 spill_reg_store[last_regno] = 0;
8249 }
8250 }
8251 }
8252
8253 /* I is nonneg if this reload used a register.
8254 If rld[r].reg_rtx is 0, this is an optional reload
8255 that we opted to ignore. */
8256
8257 if (i >= 0 && rld[r].reg_rtx != 0)
8258 {
8259 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8260 int k;
8261
8262 /* For a multi register reload, we need to check if all or part
8263 of the value lives to the end. */
8264 for (k = 0; k < nr; k++)
8265 if (reload_reg_reaches_end_p (i + k, r))
8266 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8267
8268 /* Maybe the spill reg contains a copy of reload_out. */
8269 if (rld[r].out != 0
8270 && (REG_P (rld[r].out)
8271 || (rld[r].out_reg
8272 ? REG_P (rld[r].out_reg)
8273 /* The reload value is an auto-modification of
8274 some kind. For PRE_INC, POST_INC, PRE_DEC
8275 and POST_DEC, we record an equivalence
8276 between the reload register and the operand
8277 on the optimistic assumption that we can make
8278 the equivalence hold. reload_as_needed must
8279 then either make it hold or invalidate the
8280 equivalence.
8281
8282 PRE_MODIFY and POST_MODIFY addresses are reloaded
8283 somewhat differently, and allowing them here leads
8284 to problems. */
8285 : (GET_CODE (rld[r].out) != POST_MODIFY
8286 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8287 {
8288 rtx reg;
8289
8290 reg = reload_reg_rtx_for_output[r];
8291 if (reload_reg_rtx_reaches_end_p (reg, r))
8292 {
8293 enum machine_mode mode = GET_MODE (reg);
8294 int regno = REGNO (reg);
8295 int nregs = hard_regno_nregs[regno][mode];
8296 rtx out = (REG_P (rld[r].out)
8297 ? rld[r].out
8298 : rld[r].out_reg
8299 ? rld[r].out_reg
8300 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8301 int out_regno = REGNO (out);
8302 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8303 : hard_regno_nregs[out_regno][mode]);
8304 bool piecemeal;
8305
8306 spill_reg_store[regno] = new_spill_reg_store[regno];
8307 spill_reg_stored_to[regno] = out;
8308 reg_last_reload_reg[out_regno] = reg;
8309
8310 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8311 && nregs == out_nregs
8312 && inherit_piecemeal_p (out_regno, regno, mode));
8313
8314 /* If OUT_REGNO is a hard register, it may occupy more than
8315 one register. If it does, say what is in the
8316 rest of the registers assuming that both registers
8317 agree on how many words the object takes. If not,
8318 invalidate the subsequent registers. */
8319
8320 if (HARD_REGISTER_NUM_P (out_regno))
8321 for (k = 1; k < out_nregs; k++)
8322 reg_last_reload_reg[out_regno + k]
8323 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8324
8325 /* Now do the inverse operation. */
8326 for (k = 0; k < nregs; k++)
8327 {
8328 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8329 reg_reloaded_contents[regno + k]
8330 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8331 ? out_regno
8332 : out_regno + k);
8333 reg_reloaded_insn[regno + k] = insn;
8334 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8335 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8336 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8337 regno + k);
8338 else
8339 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8340 regno + k);
8341 }
8342 }
8343 }
8344 /* Maybe the spill reg contains a copy of reload_in. Only do
8345 something if there will not be an output reload for
8346 the register being reloaded. */
8347 else if (rld[r].out_reg == 0
8348 && rld[r].in != 0
8349 && ((REG_P (rld[r].in)
8350 && !HARD_REGISTER_P (rld[r].in)
8351 && !REGNO_REG_SET_P (&reg_has_output_reload,
8352 REGNO (rld[r].in)))
8353 || (REG_P (rld[r].in_reg)
8354 && !REGNO_REG_SET_P (&reg_has_output_reload,
8355 REGNO (rld[r].in_reg))))
8356 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8357 {
8358 rtx reg;
8359
8360 reg = reload_reg_rtx_for_input[r];
8361 if (reload_reg_rtx_reaches_end_p (reg, r))
8362 {
8363 enum machine_mode mode;
8364 int regno;
8365 int nregs;
8366 int in_regno;
8367 int in_nregs;
8368 rtx in;
8369 bool piecemeal;
8370
8371 mode = GET_MODE (reg);
8372 regno = REGNO (reg);
8373 nregs = hard_regno_nregs[regno][mode];
8374 if (REG_P (rld[r].in)
8375 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8376 in = rld[r].in;
8377 else if (REG_P (rld[r].in_reg))
8378 in = rld[r].in_reg;
8379 else
8380 in = XEXP (rld[r].in_reg, 0);
8381 in_regno = REGNO (in);
8382
8383 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8384 : hard_regno_nregs[in_regno][mode]);
8385
8386 reg_last_reload_reg[in_regno] = reg;
8387
8388 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8389 && nregs == in_nregs
8390 && inherit_piecemeal_p (regno, in_regno, mode));
8391
8392 if (HARD_REGISTER_NUM_P (in_regno))
8393 for (k = 1; k < in_nregs; k++)
8394 reg_last_reload_reg[in_regno + k]
8395 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8396
8397 /* Unless we inherited this reload, show we haven't
8398 recently done a store.
8399 Previous stores of inherited auto_inc expressions
8400 also have to be discarded. */
8401 if (! reload_inherited[r]
8402 || (rld[r].out && ! rld[r].out_reg))
8403 spill_reg_store[regno] = 0;
8404
8405 for (k = 0; k < nregs; k++)
8406 {
8407 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8408 reg_reloaded_contents[regno + k]
8409 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8410 ? in_regno
8411 : in_regno + k);
8412 reg_reloaded_insn[regno + k] = insn;
8413 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8414 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8415 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8416 regno + k);
8417 else
8418 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8419 regno + k);
8420 }
8421 }
8422 }
8423 }
8424
8425 /* The following if-statement was #if 0'd in 1.34 (or before...).
8426 It's reenabled in 1.35 because supposedly nothing else
8427 deals with this problem. */
8428
8429 /* If a register gets output-reloaded from a non-spill register,
8430 that invalidates any previous reloaded copy of it.
8431 But forget_old_reloads_1 won't get to see it, because
8432 it thinks only about the original insn. So invalidate it here.
8433 Also do the same thing for RELOAD_OTHER constraints where the
8434 output is discarded. */
8435 if (i < 0
8436 && ((rld[r].out != 0
8437 && (REG_P (rld[r].out)
8438 || (MEM_P (rld[r].out)
8439 && REG_P (rld[r].out_reg))))
8440 || (rld[r].out == 0 && rld[r].out_reg
8441 && REG_P (rld[r].out_reg))))
8442 {
8443 rtx out = ((rld[r].out && REG_P (rld[r].out))
8444 ? rld[r].out : rld[r].out_reg);
8445 int out_regno = REGNO (out);
8446 enum machine_mode mode = GET_MODE (out);
8447
8448 /* REG_RTX is now set or clobbered by the main instruction.
8449 As the comment above explains, forget_old_reloads_1 only
8450 sees the original instruction, and there is no guarantee
8451 that the original instruction also clobbered REG_RTX.
8452 For example, if find_reloads sees that the input side of
8453 a matched operand pair dies in this instruction, it may
8454 use the input register as the reload register.
8455
8456 Calling forget_old_reloads_1 is a waste of effort if
8457 REG_RTX is also the output register.
8458
8459 If we know that REG_RTX holds the value of a pseudo
8460 register, the code after the call will record that fact. */
8461 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8462 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8463
8464 if (!HARD_REGISTER_NUM_P (out_regno))
8465 {
8466 rtx src_reg;
8467 rtx_insn *store_insn = NULL;
8468
8469 reg_last_reload_reg[out_regno] = 0;
8470
8471 /* If we can find a hard register that is stored, record
8472 the storing insn so that we may delete this insn with
8473 delete_output_reload. */
8474 src_reg = reload_reg_rtx_for_output[r];
8475
8476 if (src_reg)
8477 {
8478 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8479 store_insn = new_spill_reg_store[REGNO (src_reg)];
8480 else
8481 src_reg = NULL_RTX;
8482 }
8483 else
8484 {
8485 /* If this is an optional reload, try to find the
8486 source reg from an input reload. */
8487 rtx set = single_set (insn);
8488 if (set && SET_DEST (set) == rld[r].out)
8489 {
8490 int k;
8491
8492 src_reg = SET_SRC (set);
8493 store_insn = insn;
8494 for (k = 0; k < n_reloads; k++)
8495 {
8496 if (rld[k].in == src_reg)
8497 {
8498 src_reg = reload_reg_rtx_for_input[k];
8499 break;
8500 }
8501 }
8502 }
8503 }
8504 if (src_reg && REG_P (src_reg)
8505 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8506 {
8507 int src_regno, src_nregs, k;
8508 rtx note;
8509
8510 gcc_assert (GET_MODE (src_reg) == mode);
8511 src_regno = REGNO (src_reg);
8512 src_nregs = hard_regno_nregs[src_regno][mode];
8513 /* The place where to find a death note varies with
8514 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8515 necessarily checked exactly in the code that moves
8516 notes, so just check both locations. */
8517 note = find_regno_note (insn, REG_DEAD, src_regno);
8518 if (! note && store_insn)
8519 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8520 for (k = 0; k < src_nregs; k++)
8521 {
8522 spill_reg_store[src_regno + k] = store_insn;
8523 spill_reg_stored_to[src_regno + k] = out;
8524 reg_reloaded_contents[src_regno + k] = out_regno;
8525 reg_reloaded_insn[src_regno + k] = store_insn;
8526 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8527 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8528 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8529 mode))
8530 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8531 src_regno + k);
8532 else
8533 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8534 src_regno + k);
8535 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8536 if (note)
8537 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8538 else
8539 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8540 }
8541 reg_last_reload_reg[out_regno] = src_reg;
8542 /* We have to set reg_has_output_reload here, or else
8543 forget_old_reloads_1 will clear reg_last_reload_reg
8544 right away. */
8545 SET_REGNO_REG_SET (&reg_has_output_reload,
8546 out_regno);
8547 }
8548 }
8549 else
8550 {
8551 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8552
8553 for (k = 0; k < out_nregs; k++)
8554 reg_last_reload_reg[out_regno + k] = 0;
8555 }
8556 }
8557 }
8558 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8559 }
8560 \f
8561 /* Go through the motions to emit INSN and test if it is strictly valid.
8562 Return the emitted insn if valid, else return NULL. */
8563
8564 static rtx_insn *
8565 emit_insn_if_valid_for_reload (rtx insn)
8566 {
8567 rtx_insn *last = get_last_insn ();
8568 int code;
8569
8570 insn = emit_insn (insn);
8571 code = recog_memoized (insn);
8572
8573 if (code >= 0)
8574 {
8575 extract_insn (insn);
8576 /* We want constrain operands to treat this insn strictly in its
8577 validity determination, i.e., the way it would after reload has
8578 completed. */
8579 if (constrain_operands (1))
8580 return as_a <rtx_insn *> (insn);
8581 }
8582
8583 delete_insns_since (last);
8584 return NULL;
8585 }
8586
8587 /* Emit code to perform a reload from IN (which may be a reload register) to
8588 OUT (which may also be a reload register). IN or OUT is from operand
8589 OPNUM with reload type TYPE.
8590
8591 Returns first insn emitted. */
8592
8593 static rtx_insn *
8594 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8595 {
8596 rtx_insn *last = get_last_insn ();
8597 rtx tem;
8598 #ifdef SECONDARY_MEMORY_NEEDED
8599 rtx tem1, tem2;
8600 #endif
8601
8602 /* If IN is a paradoxical SUBREG, remove it and try to put the
8603 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8604 if (!strip_paradoxical_subreg (&in, &out))
8605 strip_paradoxical_subreg (&out, &in);
8606
8607 /* How to do this reload can get quite tricky. Normally, we are being
8608 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8609 register that didn't get a hard register. In that case we can just
8610 call emit_move_insn.
8611
8612 We can also be asked to reload a PLUS that adds a register or a MEM to
8613 another register, constant or MEM. This can occur during frame pointer
8614 elimination and while reloading addresses. This case is handled by
8615 trying to emit a single insn to perform the add. If it is not valid,
8616 we use a two insn sequence.
8617
8618 Or we can be asked to reload an unary operand that was a fragment of
8619 an addressing mode, into a register. If it isn't recognized as-is,
8620 we try making the unop operand and the reload-register the same:
8621 (set reg:X (unop:X expr:Y))
8622 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8623
8624 Finally, we could be called to handle an 'o' constraint by putting
8625 an address into a register. In that case, we first try to do this
8626 with a named pattern of "reload_load_address". If no such pattern
8627 exists, we just emit a SET insn and hope for the best (it will normally
8628 be valid on machines that use 'o').
8629
8630 This entire process is made complex because reload will never
8631 process the insns we generate here and so we must ensure that
8632 they will fit their constraints and also by the fact that parts of
8633 IN might be being reloaded separately and replaced with spill registers.
8634 Because of this, we are, in some sense, just guessing the right approach
8635 here. The one listed above seems to work.
8636
8637 ??? At some point, this whole thing needs to be rethought. */
8638
8639 if (GET_CODE (in) == PLUS
8640 && (REG_P (XEXP (in, 0))
8641 || GET_CODE (XEXP (in, 0)) == SUBREG
8642 || MEM_P (XEXP (in, 0)))
8643 && (REG_P (XEXP (in, 1))
8644 || GET_CODE (XEXP (in, 1)) == SUBREG
8645 || CONSTANT_P (XEXP (in, 1))
8646 || MEM_P (XEXP (in, 1))))
8647 {
8648 /* We need to compute the sum of a register or a MEM and another
8649 register, constant, or MEM, and put it into the reload
8650 register. The best possible way of doing this is if the machine
8651 has a three-operand ADD insn that accepts the required operands.
8652
8653 The simplest approach is to try to generate such an insn and see if it
8654 is recognized and matches its constraints. If so, it can be used.
8655
8656 It might be better not to actually emit the insn unless it is valid,
8657 but we need to pass the insn as an operand to `recog' and
8658 `extract_insn' and it is simpler to emit and then delete the insn if
8659 not valid than to dummy things up. */
8660
8661 rtx op0, op1, tem;
8662 rtx_insn *insn;
8663 enum insn_code code;
8664
8665 op0 = find_replacement (&XEXP (in, 0));
8666 op1 = find_replacement (&XEXP (in, 1));
8667
8668 /* Since constraint checking is strict, commutativity won't be
8669 checked, so we need to do that here to avoid spurious failure
8670 if the add instruction is two-address and the second operand
8671 of the add is the same as the reload reg, which is frequently
8672 the case. If the insn would be A = B + A, rearrange it so
8673 it will be A = A + B as constrain_operands expects. */
8674
8675 if (REG_P (XEXP (in, 1))
8676 && REGNO (out) == REGNO (XEXP (in, 1)))
8677 tem = op0, op0 = op1, op1 = tem;
8678
8679 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8680 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8681
8682 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8683 if (insn)
8684 return insn;
8685
8686 /* If that failed, we must use a conservative two-insn sequence.
8687
8688 Use a move to copy one operand into the reload register. Prefer
8689 to reload a constant, MEM or pseudo since the move patterns can
8690 handle an arbitrary operand. If OP1 is not a constant, MEM or
8691 pseudo and OP1 is not a valid operand for an add instruction, then
8692 reload OP1.
8693
8694 After reloading one of the operands into the reload register, add
8695 the reload register to the output register.
8696
8697 If there is another way to do this for a specific machine, a
8698 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8699 we emit below. */
8700
8701 code = optab_handler (add_optab, GET_MODE (out));
8702
8703 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8704 || (REG_P (op1)
8705 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8706 || (code != CODE_FOR_nothing
8707 && !insn_operand_matches (code, 2, op1)))
8708 tem = op0, op0 = op1, op1 = tem;
8709
8710 gen_reload (out, op0, opnum, type);
8711
8712 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8713 This fixes a problem on the 32K where the stack pointer cannot
8714 be used as an operand of an add insn. */
8715
8716 if (rtx_equal_p (op0, op1))
8717 op1 = out;
8718
8719 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8720 if (insn)
8721 {
8722 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8723 set_dst_reg_note (insn, REG_EQUIV, in, out);
8724 return insn;
8725 }
8726
8727 /* If that failed, copy the address register to the reload register.
8728 Then add the constant to the reload register. */
8729
8730 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8731 gen_reload (out, op1, opnum, type);
8732 insn = emit_insn (gen_add2_insn (out, op0));
8733 set_dst_reg_note (insn, REG_EQUIV, in, out);
8734 }
8735
8736 #ifdef SECONDARY_MEMORY_NEEDED
8737 /* If we need a memory location to do the move, do it that way. */
8738 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8739 (REG_P (tem1) && REG_P (tem2)))
8740 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8741 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8742 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8743 REGNO_REG_CLASS (REGNO (tem2)),
8744 GET_MODE (out)))
8745 {
8746 /* Get the memory to use and rewrite both registers to its mode. */
8747 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8748
8749 if (GET_MODE (loc) != GET_MODE (out))
8750 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8751
8752 if (GET_MODE (loc) != GET_MODE (in))
8753 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8754
8755 gen_reload (loc, in, opnum, type);
8756 gen_reload (out, loc, opnum, type);
8757 }
8758 #endif
8759 else if (REG_P (out) && UNARY_P (in))
8760 {
8761 rtx insn;
8762 rtx op1;
8763 rtx out_moded;
8764 rtx_insn *set;
8765
8766 op1 = find_replacement (&XEXP (in, 0));
8767 if (op1 != XEXP (in, 0))
8768 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8769
8770 /* First, try a plain SET. */
8771 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8772 if (set)
8773 return set;
8774
8775 /* If that failed, move the inner operand to the reload
8776 register, and try the same unop with the inner expression
8777 replaced with the reload register. */
8778
8779 if (GET_MODE (op1) != GET_MODE (out))
8780 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8781 else
8782 out_moded = out;
8783
8784 gen_reload (out_moded, op1, opnum, type);
8785
8786 insn
8787 = gen_rtx_SET (VOIDmode, out,
8788 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8789 out_moded));
8790 insn = emit_insn_if_valid_for_reload (insn);
8791 if (insn)
8792 {
8793 set_unique_reg_note (insn, REG_EQUIV, in);
8794 return as_a <rtx_insn *> (insn);
8795 }
8796
8797 fatal_insn ("failure trying to reload:", set);
8798 }
8799 /* If IN is a simple operand, use gen_move_insn. */
8800 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8801 {
8802 tem = emit_insn (gen_move_insn (out, in));
8803 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8804 mark_jump_label (in, tem, 0);
8805 }
8806
8807 #ifdef HAVE_reload_load_address
8808 else if (HAVE_reload_load_address)
8809 emit_insn (gen_reload_load_address (out, in));
8810 #endif
8811
8812 /* Otherwise, just write (set OUT IN) and hope for the best. */
8813 else
8814 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8815
8816 /* Return the first insn emitted.
8817 We can not just return get_last_insn, because there may have
8818 been multiple instructions emitted. Also note that gen_move_insn may
8819 emit more than one insn itself, so we can not assume that there is one
8820 insn emitted per emit_insn_before call. */
8821
8822 return last ? NEXT_INSN (last) : get_insns ();
8823 }
8824 \f
8825 /* Delete a previously made output-reload whose result we now believe
8826 is not needed. First we double-check.
8827
8828 INSN is the insn now being processed.
8829 LAST_RELOAD_REG is the hard register number for which we want to delete
8830 the last output reload.
8831 J is the reload-number that originally used REG. The caller has made
8832 certain that reload J doesn't use REG any longer for input.
8833 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8834
8835 static void
8836 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8837 rtx new_reload_reg)
8838 {
8839 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8840 rtx reg = spill_reg_stored_to[last_reload_reg];
8841 int k;
8842 int n_occurrences;
8843 int n_inherited = 0;
8844 rtx i1;
8845 rtx substed;
8846 unsigned regno;
8847 int nregs;
8848
8849 /* It is possible that this reload has been only used to set another reload
8850 we eliminated earlier and thus deleted this instruction too. */
8851 if (INSN_DELETED_P (output_reload_insn))
8852 return;
8853
8854 /* Get the raw pseudo-register referred to. */
8855
8856 while (GET_CODE (reg) == SUBREG)
8857 reg = SUBREG_REG (reg);
8858 substed = reg_equiv_memory_loc (REGNO (reg));
8859
8860 /* This is unsafe if the operand occurs more often in the current
8861 insn than it is inherited. */
8862 for (k = n_reloads - 1; k >= 0; k--)
8863 {
8864 rtx reg2 = rld[k].in;
8865 if (! reg2)
8866 continue;
8867 if (MEM_P (reg2) || reload_override_in[k])
8868 reg2 = rld[k].in_reg;
8869 #ifdef AUTO_INC_DEC
8870 if (rld[k].out && ! rld[k].out_reg)
8871 reg2 = XEXP (rld[k].in_reg, 0);
8872 #endif
8873 while (GET_CODE (reg2) == SUBREG)
8874 reg2 = SUBREG_REG (reg2);
8875 if (rtx_equal_p (reg2, reg))
8876 {
8877 if (reload_inherited[k] || reload_override_in[k] || k == j)
8878 n_inherited++;
8879 else
8880 return;
8881 }
8882 }
8883 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8884 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8885 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8886 reg, 0);
8887 if (substed)
8888 n_occurrences += count_occurrences (PATTERN (insn),
8889 eliminate_regs (substed, VOIDmode,
8890 NULL_RTX), 0);
8891 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8892 {
8893 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8894 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8895 }
8896 if (n_occurrences > n_inherited)
8897 return;
8898
8899 regno = REGNO (reg);
8900 if (regno >= FIRST_PSEUDO_REGISTER)
8901 nregs = 1;
8902 else
8903 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8904
8905 /* If the pseudo-reg we are reloading is no longer referenced
8906 anywhere between the store into it and here,
8907 and we're within the same basic block, then the value can only
8908 pass through the reload reg and end up here.
8909 Otherwise, give up--return. */
8910 for (i1 = NEXT_INSN (output_reload_insn);
8911 i1 != insn; i1 = NEXT_INSN (i1))
8912 {
8913 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8914 return;
8915 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8916 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8917 {
8918 /* If this is USE in front of INSN, we only have to check that
8919 there are no more references than accounted for by inheritance. */
8920 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8921 {
8922 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8923 i1 = NEXT_INSN (i1);
8924 }
8925 if (n_occurrences <= n_inherited && i1 == insn)
8926 break;
8927 return;
8928 }
8929 }
8930
8931 /* We will be deleting the insn. Remove the spill reg information. */
8932 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8933 {
8934 spill_reg_store[last_reload_reg + k] = 0;
8935 spill_reg_stored_to[last_reload_reg + k] = 0;
8936 }
8937
8938 /* The caller has already checked that REG dies or is set in INSN.
8939 It has also checked that we are optimizing, and thus some
8940 inaccuracies in the debugging information are acceptable.
8941 So we could just delete output_reload_insn. But in some cases
8942 we can improve the debugging information without sacrificing
8943 optimization - maybe even improving the code: See if the pseudo
8944 reg has been completely replaced with reload regs. If so, delete
8945 the store insn and forget we had a stack slot for the pseudo. */
8946 if (rld[j].out != rld[j].in
8947 && REG_N_DEATHS (REGNO (reg)) == 1
8948 && REG_N_SETS (REGNO (reg)) == 1
8949 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8950 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8951 {
8952 rtx_insn *i2;
8953
8954 /* We know that it was used only between here and the beginning of
8955 the current basic block. (We also know that the last use before
8956 INSN was the output reload we are thinking of deleting, but never
8957 mind that.) Search that range; see if any ref remains. */
8958 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8959 {
8960 rtx set = single_set (i2);
8961
8962 /* Uses which just store in the pseudo don't count,
8963 since if they are the only uses, they are dead. */
8964 if (set != 0 && SET_DEST (set) == reg)
8965 continue;
8966 if (LABEL_P (i2) || JUMP_P (i2))
8967 break;
8968 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8969 && reg_mentioned_p (reg, PATTERN (i2)))
8970 {
8971 /* Some other ref remains; just delete the output reload we
8972 know to be dead. */
8973 delete_address_reloads (output_reload_insn, insn);
8974 delete_insn (output_reload_insn);
8975 return;
8976 }
8977 }
8978
8979 /* Delete the now-dead stores into this pseudo. Note that this
8980 loop also takes care of deleting output_reload_insn. */
8981 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8982 {
8983 rtx set = single_set (i2);
8984
8985 if (set != 0 && SET_DEST (set) == reg)
8986 {
8987 delete_address_reloads (i2, insn);
8988 delete_insn (i2);
8989 }
8990 if (LABEL_P (i2) || JUMP_P (i2))
8991 break;
8992 }
8993
8994 /* For the debugging info, say the pseudo lives in this reload reg. */
8995 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8996 if (ira_conflicts_p)
8997 /* Inform IRA about the change. */
8998 ira_mark_allocation_change (REGNO (reg));
8999 alter_reg (REGNO (reg), -1, false);
9000 }
9001 else
9002 {
9003 delete_address_reloads (output_reload_insn, insn);
9004 delete_insn (output_reload_insn);
9005 }
9006 }
9007
9008 /* We are going to delete DEAD_INSN. Recursively delete loads of
9009 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9010 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9011 static void
9012 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9013 {
9014 rtx set = single_set (dead_insn);
9015 rtx set2, dst;
9016 rtx_insn *prev, *next;
9017 if (set)
9018 {
9019 rtx dst = SET_DEST (set);
9020 if (MEM_P (dst))
9021 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9022 }
9023 /* If we deleted the store from a reloaded post_{in,de}c expression,
9024 we can delete the matching adds. */
9025 prev = PREV_INSN (dead_insn);
9026 next = NEXT_INSN (dead_insn);
9027 if (! prev || ! next)
9028 return;
9029 set = single_set (next);
9030 set2 = single_set (prev);
9031 if (! set || ! set2
9032 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9033 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9034 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9035 return;
9036 dst = SET_DEST (set);
9037 if (! rtx_equal_p (dst, SET_DEST (set2))
9038 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9039 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9040 || (INTVAL (XEXP (SET_SRC (set), 1))
9041 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9042 return;
9043 delete_related_insns (prev);
9044 delete_related_insns (next);
9045 }
9046
9047 /* Subfunction of delete_address_reloads: process registers found in X. */
9048 static void
9049 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9050 {
9051 rtx_insn *prev, *i2;
9052 rtx set, dst;
9053 int i, j;
9054 enum rtx_code code = GET_CODE (x);
9055
9056 if (code != REG)
9057 {
9058 const char *fmt = GET_RTX_FORMAT (code);
9059 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9060 {
9061 if (fmt[i] == 'e')
9062 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9063 else if (fmt[i] == 'E')
9064 {
9065 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9066 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9067 current_insn);
9068 }
9069 }
9070 return;
9071 }
9072
9073 if (spill_reg_order[REGNO (x)] < 0)
9074 return;
9075
9076 /* Scan backwards for the insn that sets x. This might be a way back due
9077 to inheritance. */
9078 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9079 {
9080 code = GET_CODE (prev);
9081 if (code == CODE_LABEL || code == JUMP_INSN)
9082 return;
9083 if (!INSN_P (prev))
9084 continue;
9085 if (reg_set_p (x, PATTERN (prev)))
9086 break;
9087 if (reg_referenced_p (x, PATTERN (prev)))
9088 return;
9089 }
9090 if (! prev || INSN_UID (prev) < reload_first_uid)
9091 return;
9092 /* Check that PREV only sets the reload register. */
9093 set = single_set (prev);
9094 if (! set)
9095 return;
9096 dst = SET_DEST (set);
9097 if (!REG_P (dst)
9098 || ! rtx_equal_p (dst, x))
9099 return;
9100 if (! reg_set_p (dst, PATTERN (dead_insn)))
9101 {
9102 /* Check if DST was used in a later insn -
9103 it might have been inherited. */
9104 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9105 {
9106 if (LABEL_P (i2))
9107 break;
9108 if (! INSN_P (i2))
9109 continue;
9110 if (reg_referenced_p (dst, PATTERN (i2)))
9111 {
9112 /* If there is a reference to the register in the current insn,
9113 it might be loaded in a non-inherited reload. If no other
9114 reload uses it, that means the register is set before
9115 referenced. */
9116 if (i2 == current_insn)
9117 {
9118 for (j = n_reloads - 1; j >= 0; j--)
9119 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9120 || reload_override_in[j] == dst)
9121 return;
9122 for (j = n_reloads - 1; j >= 0; j--)
9123 if (rld[j].in && rld[j].reg_rtx == dst)
9124 break;
9125 if (j >= 0)
9126 break;
9127 }
9128 return;
9129 }
9130 if (JUMP_P (i2))
9131 break;
9132 /* If DST is still live at CURRENT_INSN, check if it is used for
9133 any reload. Note that even if CURRENT_INSN sets DST, we still
9134 have to check the reloads. */
9135 if (i2 == current_insn)
9136 {
9137 for (j = n_reloads - 1; j >= 0; j--)
9138 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9139 || reload_override_in[j] == dst)
9140 return;
9141 /* ??? We can't finish the loop here, because dst might be
9142 allocated to a pseudo in this block if no reload in this
9143 block needs any of the classes containing DST - see
9144 spill_hard_reg. There is no easy way to tell this, so we
9145 have to scan till the end of the basic block. */
9146 }
9147 if (reg_set_p (dst, PATTERN (i2)))
9148 break;
9149 }
9150 }
9151 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9152 reg_reloaded_contents[REGNO (dst)] = -1;
9153 delete_insn (prev);
9154 }
9155 \f
9156 /* Output reload-insns to reload VALUE into RELOADREG.
9157 VALUE is an autoincrement or autodecrement RTX whose operand
9158 is a register or memory location;
9159 so reloading involves incrementing that location.
9160 IN is either identical to VALUE, or some cheaper place to reload from.
9161
9162 INC_AMOUNT is the number to increment or decrement by (always positive).
9163 This cannot be deduced from VALUE. */
9164
9165 static void
9166 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9167 {
9168 /* REG or MEM to be copied and incremented. */
9169 rtx incloc = find_replacement (&XEXP (value, 0));
9170 /* Nonzero if increment after copying. */
9171 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9172 || GET_CODE (value) == POST_MODIFY);
9173 rtx_insn *last;
9174 rtx inc;
9175 rtx_insn *add_insn;
9176 int code;
9177 rtx real_in = in == value ? incloc : in;
9178
9179 /* No hard register is equivalent to this register after
9180 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9181 we could inc/dec that register as well (maybe even using it for
9182 the source), but I'm not sure it's worth worrying about. */
9183 if (REG_P (incloc))
9184 reg_last_reload_reg[REGNO (incloc)] = 0;
9185
9186 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9187 {
9188 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9189 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9190 }
9191 else
9192 {
9193 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9194 inc_amount = -inc_amount;
9195
9196 inc = GEN_INT (inc_amount);
9197 }
9198
9199 /* If this is post-increment, first copy the location to the reload reg. */
9200 if (post && real_in != reloadreg)
9201 emit_insn (gen_move_insn (reloadreg, real_in));
9202
9203 if (in == value)
9204 {
9205 /* See if we can directly increment INCLOC. Use a method similar to
9206 that in gen_reload. */
9207
9208 last = get_last_insn ();
9209 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9210 gen_rtx_PLUS (GET_MODE (incloc),
9211 incloc, inc)));
9212
9213 code = recog_memoized (add_insn);
9214 if (code >= 0)
9215 {
9216 extract_insn (add_insn);
9217 if (constrain_operands (1))
9218 {
9219 /* If this is a pre-increment and we have incremented the value
9220 where it lives, copy the incremented value to RELOADREG to
9221 be used as an address. */
9222
9223 if (! post)
9224 emit_insn (gen_move_insn (reloadreg, incloc));
9225 return;
9226 }
9227 }
9228 delete_insns_since (last);
9229 }
9230
9231 /* If couldn't do the increment directly, must increment in RELOADREG.
9232 The way we do this depends on whether this is pre- or post-increment.
9233 For pre-increment, copy INCLOC to the reload register, increment it
9234 there, then save back. */
9235
9236 if (! post)
9237 {
9238 if (in != reloadreg)
9239 emit_insn (gen_move_insn (reloadreg, real_in));
9240 emit_insn (gen_add2_insn (reloadreg, inc));
9241 emit_insn (gen_move_insn (incloc, reloadreg));
9242 }
9243 else
9244 {
9245 /* Postincrement.
9246 Because this might be a jump insn or a compare, and because RELOADREG
9247 may not be available after the insn in an input reload, we must do
9248 the incrementation before the insn being reloaded for.
9249
9250 We have already copied IN to RELOADREG. Increment the copy in
9251 RELOADREG, save that back, then decrement RELOADREG so it has
9252 the original value. */
9253
9254 emit_insn (gen_add2_insn (reloadreg, inc));
9255 emit_insn (gen_move_insn (incloc, reloadreg));
9256 if (CONST_INT_P (inc))
9257 emit_insn (gen_add2_insn (reloadreg,
9258 gen_int_mode (-INTVAL (inc),
9259 GET_MODE (reloadreg))));
9260 else
9261 emit_insn (gen_sub2_insn (reloadreg, inc));
9262 }
9263 }
9264 \f
9265 #ifdef AUTO_INC_DEC
9266 static void
9267 add_auto_inc_notes (rtx_insn *insn, rtx x)
9268 {
9269 enum rtx_code code = GET_CODE (x);
9270 const char *fmt;
9271 int i, j;
9272
9273 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9274 {
9275 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9276 return;
9277 }
9278
9279 /* Scan all the operand sub-expressions. */
9280 fmt = GET_RTX_FORMAT (code);
9281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9282 {
9283 if (fmt[i] == 'e')
9284 add_auto_inc_notes (insn, XEXP (x, i));
9285 else if (fmt[i] == 'E')
9286 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9287 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9288 }
9289 }
9290 #endif