Pass an ABI identifier to hard_regno_call_part_clobbered
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 class insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static class insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 poly_int64_pod initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 poly_int64_pod offset; /* Current offset between the two regs. */
270 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (class insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (class insn_chain *, int);
342 static void find_reload_regs (class insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (class insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (class insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (class insn_chain *, rtx *);
390 static void choose_reload_regs (class insn_chain *);
391 static void emit_input_reload_insns (class insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (class insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (class insn_chain *, struct reload *, int);
396 static void do_output_reload (class insn_chain *, struct reload *, int);
397 static void emit_reload_insns (class insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
455 }
456
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
459 {
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
462 }
463
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
467 }
468
469 /* List of insn chains that are currently unused. */
470 static class insn_chain *unused_insn_chains = 0;
471
472 /* Allocate an empty insn_chain structure. */
473 class insn_chain *
474 new_insn_chain (void)
475 {
476 class insn_chain *c;
477
478 if (unused_insn_chains == 0)
479 {
480 c = XOBNEW (&reload_obstack, class insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
483 }
484 else
485 {
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
488 }
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
494 }
495
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
498
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
501 {
502 unsigned int regno;
503 reg_set_iterator rsi;
504
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
506 {
507 int r = reg_renumber[regno];
508
509 if (r < 0)
510 {
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
516 }
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
519 }
520 }
521
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
524
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
527 {
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
532
533 if (! x)
534 return;
535
536 code = GET_CODE (x);
537 if (code == REG)
538 {
539 unsigned int regno = REGNO (x);
540
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
543
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
546 {
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
550 }
551
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
561 {
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
565 }
566
567 return;
568 }
569 else if (code == MEM)
570 {
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
573 }
574
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
583 }
584
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
587
588 static bool
589 has_nonexceptional_receiver (void)
590 {
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
594
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
598
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
601
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
604
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
608
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
611 {
612 bb = *--tos;
613
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
616 {
617 basic_block src = e->src;
618
619 if (!(src->flags & BB_REACHABLE))
620 {
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
623 }
624 }
625 }
626 free (worklist);
627
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
633
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
636 }
637
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
640
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
644 {
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
649
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
654 }
655
656 \f
657 /* Global variables used by reload and its subroutines. */
658
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
661
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
668
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
671
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
674
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
683 {
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
685 {
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
687 {
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
690 {
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
692
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
700 ;
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
705 }
706 }
707 }
708 }
709
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
713 {
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
718
719 if (can_throw_internal (insn))
720 return false;
721
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
724
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
726 {
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
730 }
731 return false;
732 }
733
734 /* Main entry point for the reload pass.
735
736 FIRST is the first insn of the function being compiled.
737
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
743
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
747
748 bool
749 reload (rtx_insn *first, int global)
750 {
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
756
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
759
760 failure = 0;
761
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
763
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
767
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
770
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
773
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
777
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
781
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
788
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
795
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_or_fixed_reg_p (i)
799 && ! fixed_regs[i]
800 && ! LOCAL_REGNO (i))
801 df_set_regs_ever_live (i, true);
802
803 /* Find all the pseudo registers that didn't get hard regs
804 but do have known equivalent constants or memory slots.
805 These include parameters (known equivalent to parameter slots)
806 and cse'd or loop-moved constant memory addresses.
807
808 Record constant equivalents in reg_equiv_constant
809 so they will be substituted by find_reloads.
810 Record memory equivalents in reg_mem_equiv so they can
811 be substituted eventually by altering the REG-rtx's. */
812
813 grow_reg_equivs ();
814 reg_old_renumber = XCNEWVEC (short, max_regno);
815 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
816 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
817 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
818
819 CLEAR_HARD_REG_SET (bad_spill_regs_global);
820
821 init_eliminable_invariants (first, true);
822 init_elim_table ();
823
824 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
825 stack slots to the pseudos that lack hard regs or equivalents.
826 Do not touch virtual registers. */
827
828 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
829 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
830 temp_pseudo_reg_arr[n++] = i;
831
832 if (ira_conflicts_p)
833 /* Ask IRA to order pseudo-registers for better stack slot
834 sharing. */
835 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
836
837 for (i = 0; i < n; i++)
838 alter_reg (temp_pseudo_reg_arr[i], -1, false);
839
840 /* If we have some registers we think can be eliminated, scan all insns to
841 see if there is an insn that sets one of these registers to something
842 other than itself plus a constant. If so, the register cannot be
843 eliminated. Doing this scan here eliminates an extra pass through the
844 main reload loop in the most common case where register elimination
845 cannot be done. */
846 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
847 if (INSN_P (insn))
848 note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);
849
850 maybe_fix_stack_asms ();
851
852 insns_need_reload = 0;
853 something_needs_elimination = 0;
854
855 /* Initialize to -1, which means take the first spill register. */
856 last_spill_reg = -1;
857
858 /* Spill any hard regs that we know we can't eliminate. */
859 CLEAR_HARD_REG_SET (used_spill_regs);
860 /* There can be multiple ways to eliminate a register;
861 they should be listed adjacently.
862 Elimination for any register fails only if all possible ways fail. */
863 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
864 {
865 int from = ep->from;
866 int can_eliminate = 0;
867 do
868 {
869 can_eliminate |= ep->can_eliminate;
870 ep++;
871 }
872 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
873 if (! can_eliminate)
874 spill_hard_reg (from, 1);
875 }
876
877 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
878 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
879
880 finish_spills (global);
881
882 /* From now on, we may need to generate moves differently. We may also
883 allow modifications of insns which cause them to not be recognized.
884 Any such modifications will be cleaned up during reload itself. */
885 reload_in_progress = 1;
886
887 /* This loop scans the entire function each go-round
888 and repeats until one repetition spills no additional hard regs. */
889 for (;;)
890 {
891 int something_changed;
892 poly_int64 starting_frame_size;
893
894 starting_frame_size = get_frame_size ();
895 something_was_spilled = false;
896
897 set_initial_elim_offsets ();
898 set_initial_label_offsets ();
899
900 /* For each pseudo register that has an equivalent location defined,
901 try to eliminate any eliminable registers (such as the frame pointer)
902 assuming initial offsets for the replacement register, which
903 is the normal case.
904
905 If the resulting location is directly addressable, substitute
906 the MEM we just got directly for the old REG.
907
908 If it is not addressable but is a constant or the sum of a hard reg
909 and constant, it is probably not addressable because the constant is
910 out of range, in that case record the address; we will generate
911 hairy code to compute the address in a register each time it is
912 needed. Similarly if it is a hard register, but one that is not
913 valid as an address register.
914
915 If the location is not addressable, but does not have one of the
916 above forms, assign a stack slot. We have to do this to avoid the
917 potential of producing lots of reloads if, e.g., a location involves
918 a pseudo that didn't get a hard register and has an equivalent memory
919 location that also involves a pseudo that didn't get a hard register.
920
921 Perhaps at some point we will improve reload_when_needed handling
922 so this problem goes away. But that's very hairy. */
923
924 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
925 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
926 {
927 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
928 NULL_RTX);
929
930 if (strict_memory_address_addr_space_p
931 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
932 MEM_ADDR_SPACE (x)))
933 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
934 else if (CONSTANT_P (XEXP (x, 0))
935 || (REG_P (XEXP (x, 0))
936 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
937 || (GET_CODE (XEXP (x, 0)) == PLUS
938 && REG_P (XEXP (XEXP (x, 0), 0))
939 && (REGNO (XEXP (XEXP (x, 0), 0))
940 < FIRST_PSEUDO_REGISTER)
941 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
942 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
943 else
944 {
945 /* Make a new stack slot. Then indicate that something
946 changed so we go back and recompute offsets for
947 eliminable registers because the allocation of memory
948 below might change some offset. reg_equiv_{mem,address}
949 will be set up for this pseudo on the next pass around
950 the loop. */
951 reg_equiv_memory_loc (i) = 0;
952 reg_equiv_init (i) = 0;
953 alter_reg (i, -1, true);
954 }
955 }
956
957 if (caller_save_needed)
958 setup_save_areas ();
959
960 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
961 {
962 /* If we have a stack frame, we must align it now. The
963 stack size may be a part of the offset computation for
964 register elimination. So if this changes the stack size,
965 then repeat the elimination bookkeeping. We don't
966 realign when there is no stack, as that will cause a
967 stack frame when none is needed should
968 TARGET_STARTING_FRAME_OFFSET not be already aligned to
969 STACK_BOUNDARY. */
970 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
971 }
972 /* If we allocated another stack slot, redo elimination bookkeeping. */
973 if (something_was_spilled
974 || maybe_ne (starting_frame_size, get_frame_size ()))
975 {
976 if (update_eliminables_and_spill ())
977 finish_spills (0);
978 continue;
979 }
980
981 if (caller_save_needed)
982 {
983 save_call_clobbered_regs ();
984 /* That might have allocated new insn_chain structures. */
985 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
986 }
987
988 calculate_needs_all_insns (global);
989
990 if (! ira_conflicts_p)
991 /* Don't do it for IRA. We need this info because we don't
992 change live_throughout and dead_or_set for chains when IRA
993 is used. */
994 CLEAR_REG_SET (&spilled_pseudos);
995
996 something_changed = 0;
997
998 /* If we allocated any new memory locations, make another pass
999 since it might have changed elimination offsets. */
1000 if (something_was_spilled
1001 || maybe_ne (starting_frame_size, get_frame_size ()))
1002 something_changed = 1;
1003
1004 /* Even if the frame size remained the same, we might still have
1005 changed elimination offsets, e.g. if find_reloads called
1006 force_const_mem requiring the back end to allocate a constant
1007 pool base register that needs to be saved on the stack. */
1008 else if (!verify_initial_elim_offsets ())
1009 something_changed = 1;
1010
1011 if (update_eliminables_and_spill ())
1012 {
1013 finish_spills (0);
1014 something_changed = 1;
1015 }
1016 else
1017 {
1018 select_reload_regs ();
1019 if (failure)
1020 goto failed;
1021 if (insns_need_reload)
1022 something_changed |= finish_spills (global);
1023 }
1024
1025 if (! something_changed)
1026 break;
1027
1028 if (caller_save_needed)
1029 delete_caller_save_insns ();
1030
1031 obstack_free (&reload_obstack, reload_firstobj);
1032 }
1033
1034 /* If global-alloc was run, notify it of any register eliminations we have
1035 done. */
1036 if (global)
1037 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1038 if (ep->can_eliminate)
1039 mark_elimination (ep->from, ep->to);
1040
1041 remove_init_insns ();
1042
1043 /* Use the reload registers where necessary
1044 by generating move instructions to move the must-be-register
1045 values into or out of the reload registers. */
1046
1047 if (insns_need_reload != 0 || something_needs_elimination
1048 || something_needs_operands_changed)
1049 {
1050 poly_int64 old_frame_size = get_frame_size ();
1051
1052 reload_as_needed (global);
1053
1054 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1055
1056 gcc_assert (verify_initial_elim_offsets ());
1057 }
1058
1059 /* If we were able to eliminate the frame pointer, show that it is no
1060 longer live at the start of any basic block. If it ls live by
1061 virtue of being in a pseudo, that pseudo will be marked live
1062 and hence the frame pointer will be known to be live via that
1063 pseudo. */
1064
1065 if (! frame_pointer_needed)
1066 FOR_EACH_BB_FN (bb, cfun)
1067 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1068
1069 /* Come here (with failure set nonzero) if we can't get enough spill
1070 regs. */
1071 failed:
1072
1073 CLEAR_REG_SET (&changed_allocation_pseudos);
1074 CLEAR_REG_SET (&spilled_pseudos);
1075 reload_in_progress = 0;
1076
1077 /* Now eliminate all pseudo regs by modifying them into
1078 their equivalent memory references.
1079 The REG-rtx's for the pseudos are modified in place,
1080 so all insns that used to refer to them now refer to memory.
1081
1082 For a reg that has a reg_equiv_address, all those insns
1083 were changed by reloading so that no insns refer to it any longer;
1084 but the DECL_RTL of a variable decl may refer to it,
1085 and if so this causes the debugging info to mention the variable. */
1086
1087 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1088 {
1089 rtx addr = 0;
1090
1091 if (reg_equiv_mem (i))
1092 addr = XEXP (reg_equiv_mem (i), 0);
1093
1094 if (reg_equiv_address (i))
1095 addr = reg_equiv_address (i);
1096
1097 if (addr)
1098 {
1099 if (reg_renumber[i] < 0)
1100 {
1101 rtx reg = regno_reg_rtx[i];
1102
1103 REG_USERVAR_P (reg) = 0;
1104 PUT_CODE (reg, MEM);
1105 XEXP (reg, 0) = addr;
1106 if (reg_equiv_memory_loc (i))
1107 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1108 else
1109 MEM_ATTRS (reg) = 0;
1110 MEM_NOTRAP_P (reg) = 1;
1111 }
1112 else if (reg_equiv_mem (i))
1113 XEXP (reg_equiv_mem (i), 0) = addr;
1114 }
1115
1116 /* We don't want complex addressing modes in debug insns
1117 if simpler ones will do, so delegitimize equivalences
1118 in debug insns. */
1119 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1120 {
1121 rtx reg = regno_reg_rtx[i];
1122 rtx equiv = 0;
1123 df_ref use, next;
1124
1125 if (reg_equiv_constant (i))
1126 equiv = reg_equiv_constant (i);
1127 else if (reg_equiv_invariant (i))
1128 equiv = reg_equiv_invariant (i);
1129 else if (reg && MEM_P (reg))
1130 equiv = targetm.delegitimize_address (reg);
1131 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1132 equiv = reg;
1133
1134 if (equiv == reg)
1135 continue;
1136
1137 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1138 {
1139 insn = DF_REF_INSN (use);
1140
1141 /* Make sure the next ref is for a different instruction,
1142 so that we're not affected by the rescan. */
1143 next = DF_REF_NEXT_REG (use);
1144 while (next && DF_REF_INSN (next) == insn)
1145 next = DF_REF_NEXT_REG (next);
1146
1147 if (DEBUG_BIND_INSN_P (insn))
1148 {
1149 if (!equiv)
1150 {
1151 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1152 df_insn_rescan_debug_internal (insn);
1153 }
1154 else
1155 INSN_VAR_LOCATION_LOC (insn)
1156 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1157 reg, equiv);
1158 }
1159 }
1160 }
1161 }
1162
1163 /* We must set reload_completed now since the cleanup_subreg_operands call
1164 below will re-recognize each insn and reload may have generated insns
1165 which are only valid during and after reload. */
1166 reload_completed = 1;
1167
1168 /* Make a pass over all the insns and delete all USEs which we inserted
1169 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1170 notes. Delete all CLOBBER insns, except those that refer to the return
1171 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1172 from misarranging variable-array code, and simplify (subreg (reg))
1173 operands. Strip and regenerate REG_INC notes that may have been moved
1174 around. */
1175
1176 for (insn = first; insn; insn = NEXT_INSN (insn))
1177 if (INSN_P (insn))
1178 {
1179 rtx *pnote;
1180
1181 if (CALL_P (insn))
1182 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1183 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1184
1185 if ((GET_CODE (PATTERN (insn)) == USE
1186 /* We mark with QImode USEs introduced by reload itself. */
1187 && (GET_MODE (insn) == QImode
1188 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1189 || (GET_CODE (PATTERN (insn)) == CLOBBER
1190 && (!MEM_P (XEXP (PATTERN (insn), 0))
1191 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1192 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1193 && XEXP (XEXP (PATTERN (insn), 0), 0)
1194 != stack_pointer_rtx))
1195 && (!REG_P (XEXP (PATTERN (insn), 0))
1196 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1197 {
1198 delete_insn (insn);
1199 continue;
1200 }
1201
1202 /* Some CLOBBERs may survive until here and still reference unassigned
1203 pseudos with const equivalent, which may in turn cause ICE in later
1204 passes if the reference remains in place. */
1205 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1206 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1207 VOIDmode, PATTERN (insn));
1208
1209 /* Discard obvious no-ops, even without -O. This optimization
1210 is fast and doesn't interfere with debugging. */
1211 if (NONJUMP_INSN_P (insn)
1212 && GET_CODE (PATTERN (insn)) == SET
1213 && REG_P (SET_SRC (PATTERN (insn)))
1214 && REG_P (SET_DEST (PATTERN (insn)))
1215 && (REGNO (SET_SRC (PATTERN (insn)))
1216 == REGNO (SET_DEST (PATTERN (insn)))))
1217 {
1218 delete_insn (insn);
1219 continue;
1220 }
1221
1222 pnote = &REG_NOTES (insn);
1223 while (*pnote != 0)
1224 {
1225 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1226 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1227 || REG_NOTE_KIND (*pnote) == REG_INC)
1228 *pnote = XEXP (*pnote, 1);
1229 else
1230 pnote = &XEXP (*pnote, 1);
1231 }
1232
1233 if (AUTO_INC_DEC)
1234 add_auto_inc_notes (insn, PATTERN (insn));
1235
1236 /* Simplify (subreg (reg)) if it appears as an operand. */
1237 cleanup_subreg_operands (insn);
1238
1239 /* Clean up invalid ASMs so that they don't confuse later passes.
1240 See PR 21299. */
1241 if (asm_noperands (PATTERN (insn)) >= 0)
1242 {
1243 extract_insn (insn);
1244 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1245 {
1246 error_for_asm (insn,
1247 "%<asm%> operand has impossible constraints");
1248 delete_insn (insn);
1249 continue;
1250 }
1251 }
1252 }
1253
1254 free (temp_pseudo_reg_arr);
1255
1256 /* Indicate that we no longer have known memory locations or constants. */
1257 free_reg_equiv ();
1258
1259 free (reg_max_ref_mode);
1260 free (reg_old_renumber);
1261 free (pseudo_previous_regs);
1262 free (pseudo_forbidden_regs);
1263
1264 CLEAR_HARD_REG_SET (used_spill_regs);
1265 for (i = 0; i < n_spills; i++)
1266 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1267
1268 /* Free all the insn_chain structures at once. */
1269 obstack_free (&reload_obstack, reload_startobj);
1270 unused_insn_chains = 0;
1271
1272 inserted = fixup_abnormal_edges ();
1273
1274 /* We've possibly turned single trapping insn into multiple ones. */
1275 if (cfun->can_throw_non_call_exceptions)
1276 {
1277 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1278 bitmap_ones (blocks);
1279 find_many_sub_basic_blocks (blocks);
1280 }
1281
1282 if (inserted)
1283 commit_edge_insertions ();
1284
1285 /* Replacing pseudos with their memory equivalents might have
1286 created shared rtx. Subsequent passes would get confused
1287 by this, so unshare everything here. */
1288 unshare_all_rtl_again (first);
1289
1290 #ifdef STACK_BOUNDARY
1291 /* init_emit has set the alignment of the hard frame pointer
1292 to STACK_BOUNDARY. It is very likely no longer valid if
1293 the hard frame pointer was used for register allocation. */
1294 if (!frame_pointer_needed)
1295 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1296 #endif
1297
1298 substitute_stack.release ();
1299
1300 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1301
1302 reload_completed = !failure;
1303
1304 return need_dce;
1305 }
1306
1307 /* Yet another special case. Unfortunately, reg-stack forces people to
1308 write incorrect clobbers in asm statements. These clobbers must not
1309 cause the register to appear in bad_spill_regs, otherwise we'll call
1310 fatal_insn later. We clear the corresponding regnos in the live
1311 register sets to avoid this.
1312 The whole thing is rather sick, I'm afraid. */
1313
1314 static void
1315 maybe_fix_stack_asms (void)
1316 {
1317 #ifdef STACK_REGS
1318 const char *constraints[MAX_RECOG_OPERANDS];
1319 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1320 class insn_chain *chain;
1321
1322 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1323 {
1324 int i, noperands;
1325 HARD_REG_SET clobbered, allowed;
1326 rtx pat;
1327
1328 if (! INSN_P (chain->insn)
1329 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1330 continue;
1331 pat = PATTERN (chain->insn);
1332 if (GET_CODE (pat) != PARALLEL)
1333 continue;
1334
1335 CLEAR_HARD_REG_SET (clobbered);
1336 CLEAR_HARD_REG_SET (allowed);
1337
1338 /* First, make a mask of all stack regs that are clobbered. */
1339 for (i = 0; i < XVECLEN (pat, 0); i++)
1340 {
1341 rtx t = XVECEXP (pat, 0, i);
1342 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1343 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1344 /* CLOBBER_HIGH is only supported for LRA. */
1345 gcc_assert (GET_CODE (t) != CLOBBER_HIGH);
1346 }
1347
1348 /* Get the operand values and constraints out of the insn. */
1349 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1350 constraints, operand_mode, NULL);
1351
1352 /* For every operand, see what registers are allowed. */
1353 for (i = 0; i < noperands; i++)
1354 {
1355 const char *p = constraints[i];
1356 /* For every alternative, we compute the class of registers allowed
1357 for reloading in CLS, and merge its contents into the reg set
1358 ALLOWED. */
1359 int cls = (int) NO_REGS;
1360
1361 for (;;)
1362 {
1363 char c = *p;
1364
1365 if (c == '\0' || c == ',' || c == '#')
1366 {
1367 /* End of one alternative - mark the regs in the current
1368 class, and reset the class. */
1369 allowed |= reg_class_contents[cls];
1370 cls = NO_REGS;
1371 p++;
1372 if (c == '#')
1373 do {
1374 c = *p++;
1375 } while (c != '\0' && c != ',');
1376 if (c == '\0')
1377 break;
1378 continue;
1379 }
1380
1381 switch (c)
1382 {
1383 case 'g':
1384 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1385 break;
1386
1387 default:
1388 enum constraint_num cn = lookup_constraint (p);
1389 if (insn_extra_address_constraint (cn))
1390 cls = (int) reg_class_subunion[cls]
1391 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1392 ADDRESS, SCRATCH)];
1393 else
1394 cls = (int) reg_class_subunion[cls]
1395 [reg_class_for_constraint (cn)];
1396 break;
1397 }
1398 p += CONSTRAINT_LEN (c, p);
1399 }
1400 }
1401 /* Those of the registers which are clobbered, but allowed by the
1402 constraints, must be usable as reload registers. So clear them
1403 out of the life information. */
1404 allowed &= clobbered;
1405 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1406 if (TEST_HARD_REG_BIT (allowed, i))
1407 {
1408 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1409 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1410 }
1411 }
1412
1413 #endif
1414 }
1415 \f
1416 /* Copy the global variables n_reloads and rld into the corresponding elts
1417 of CHAIN. */
1418 static void
1419 copy_reloads (class insn_chain *chain)
1420 {
1421 chain->n_reloads = n_reloads;
1422 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1423 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1424 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1425 }
1426
1427 /* Walk the chain of insns, and determine for each whether it needs reloads
1428 and/or eliminations. Build the corresponding insns_need_reload list, and
1429 set something_needs_elimination as appropriate. */
1430 static void
1431 calculate_needs_all_insns (int global)
1432 {
1433 class insn_chain **pprev_reload = &insns_need_reload;
1434 class insn_chain *chain, *next = 0;
1435
1436 something_needs_elimination = 0;
1437
1438 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1439 for (chain = reload_insn_chain; chain != 0; chain = next)
1440 {
1441 rtx_insn *insn = chain->insn;
1442
1443 next = chain->next;
1444
1445 /* Clear out the shortcuts. */
1446 chain->n_reloads = 0;
1447 chain->need_elim = 0;
1448 chain->need_reload = 0;
1449 chain->need_operand_change = 0;
1450
1451 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1452 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1453 what effects this has on the known offsets at labels. */
1454
1455 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1456 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1457 set_label_offsets (insn, insn, 0);
1458
1459 if (INSN_P (insn))
1460 {
1461 rtx old_body = PATTERN (insn);
1462 int old_code = INSN_CODE (insn);
1463 rtx old_notes = REG_NOTES (insn);
1464 int did_elimination = 0;
1465 int operands_changed = 0;
1466
1467 /* Skip insns that only set an equivalence. */
1468 if (will_delete_init_insn_p (insn))
1469 continue;
1470
1471 /* If needed, eliminate any eliminable registers. */
1472 if (num_eliminable || num_eliminable_invariants)
1473 did_elimination = eliminate_regs_in_insn (insn, 0);
1474
1475 /* Analyze the instruction. */
1476 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1477 global, spill_reg_order);
1478
1479 /* If a no-op set needs more than one reload, this is likely
1480 to be something that needs input address reloads. We
1481 can't get rid of this cleanly later, and it is of no use
1482 anyway, so discard it now.
1483 We only do this when expensive_optimizations is enabled,
1484 since this complements reload inheritance / output
1485 reload deletion, and it can make debugging harder. */
1486 if (flag_expensive_optimizations && n_reloads > 1)
1487 {
1488 rtx set = single_set (insn);
1489 if (set
1490 &&
1491 ((SET_SRC (set) == SET_DEST (set)
1492 && REG_P (SET_SRC (set))
1493 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1494 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1495 && reg_renumber[REGNO (SET_SRC (set))] < 0
1496 && reg_renumber[REGNO (SET_DEST (set))] < 0
1497 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1498 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1499 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1500 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1501 {
1502 if (ira_conflicts_p)
1503 /* Inform IRA about the insn deletion. */
1504 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1505 REGNO (SET_SRC (set)));
1506 delete_insn (insn);
1507 /* Delete it from the reload chain. */
1508 if (chain->prev)
1509 chain->prev->next = next;
1510 else
1511 reload_insn_chain = next;
1512 if (next)
1513 next->prev = chain->prev;
1514 chain->next = unused_insn_chains;
1515 unused_insn_chains = chain;
1516 continue;
1517 }
1518 }
1519 if (num_eliminable)
1520 update_eliminable_offsets ();
1521
1522 /* Remember for later shortcuts which insns had any reloads or
1523 register eliminations. */
1524 chain->need_elim = did_elimination;
1525 chain->need_reload = n_reloads > 0;
1526 chain->need_operand_change = operands_changed;
1527
1528 /* Discard any register replacements done. */
1529 if (did_elimination)
1530 {
1531 obstack_free (&reload_obstack, reload_insn_firstobj);
1532 PATTERN (insn) = old_body;
1533 INSN_CODE (insn) = old_code;
1534 REG_NOTES (insn) = old_notes;
1535 something_needs_elimination = 1;
1536 }
1537
1538 something_needs_operands_changed |= operands_changed;
1539
1540 if (n_reloads != 0)
1541 {
1542 copy_reloads (chain);
1543 *pprev_reload = chain;
1544 pprev_reload = &chain->next_need_reload;
1545 }
1546 }
1547 }
1548 *pprev_reload = 0;
1549 }
1550 \f
1551 /* This function is called from the register allocator to set up estimates
1552 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1553 an invariant. The structure is similar to calculate_needs_all_insns. */
1554
1555 void
1556 calculate_elim_costs_all_insns (void)
1557 {
1558 int *reg_equiv_init_cost;
1559 basic_block bb;
1560 int i;
1561
1562 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1563 init_elim_table ();
1564 init_eliminable_invariants (get_insns (), false);
1565
1566 set_initial_elim_offsets ();
1567 set_initial_label_offsets ();
1568
1569 FOR_EACH_BB_FN (bb, cfun)
1570 {
1571 rtx_insn *insn;
1572 elim_bb = bb;
1573
1574 FOR_BB_INSNS (bb, insn)
1575 {
1576 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1577 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1578 what effects this has on the known offsets at labels. */
1579
1580 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1581 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1582 set_label_offsets (insn, insn, 0);
1583
1584 if (INSN_P (insn))
1585 {
1586 rtx set = single_set (insn);
1587
1588 /* Skip insns that only set an equivalence. */
1589 if (set && REG_P (SET_DEST (set))
1590 && reg_renumber[REGNO (SET_DEST (set))] < 0
1591 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1592 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1593 {
1594 unsigned regno = REGNO (SET_DEST (set));
1595 rtx_insn_list *init = reg_equiv_init (regno);
1596 if (init)
1597 {
1598 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1599 false, true);
1600 machine_mode mode = GET_MODE (SET_DEST (set));
1601 int cost = set_src_cost (t, mode,
1602 optimize_bb_for_speed_p (bb));
1603 int freq = REG_FREQ_FROM_BB (bb);
1604
1605 reg_equiv_init_cost[regno] = cost * freq;
1606 continue;
1607 }
1608 }
1609 /* If needed, eliminate any eliminable registers. */
1610 if (num_eliminable || num_eliminable_invariants)
1611 elimination_costs_in_insn (insn);
1612
1613 if (num_eliminable)
1614 update_eliminable_offsets ();
1615 }
1616 }
1617 }
1618 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1619 {
1620 if (reg_equiv_invariant (i))
1621 {
1622 if (reg_equiv_init (i))
1623 {
1624 int cost = reg_equiv_init_cost[i];
1625 if (dump_file)
1626 fprintf (dump_file,
1627 "Reg %d has equivalence, initial gains %d\n", i, cost);
1628 if (cost != 0)
1629 ira_adjust_equiv_reg_cost (i, cost);
1630 }
1631 else
1632 {
1633 if (dump_file)
1634 fprintf (dump_file,
1635 "Reg %d had equivalence, but can't be eliminated\n",
1636 i);
1637 ira_adjust_equiv_reg_cost (i, 0);
1638 }
1639 }
1640 }
1641
1642 free (reg_equiv_init_cost);
1643 free (offsets_known_at);
1644 free (offsets_at);
1645 offsets_at = NULL;
1646 offsets_known_at = NULL;
1647 }
1648 \f
1649 /* Comparison function for qsort to decide which of two reloads
1650 should be handled first. *P1 and *P2 are the reload numbers. */
1651
1652 static int
1653 reload_reg_class_lower (const void *r1p, const void *r2p)
1654 {
1655 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1656 int t;
1657
1658 /* Consider required reloads before optional ones. */
1659 t = rld[r1].optional - rld[r2].optional;
1660 if (t != 0)
1661 return t;
1662
1663 /* Count all solitary classes before non-solitary ones. */
1664 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1665 - (reg_class_size[(int) rld[r1].rclass] == 1));
1666 if (t != 0)
1667 return t;
1668
1669 /* Aside from solitaires, consider all multi-reg groups first. */
1670 t = rld[r2].nregs - rld[r1].nregs;
1671 if (t != 0)
1672 return t;
1673
1674 /* Consider reloads in order of increasing reg-class number. */
1675 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1676 if (t != 0)
1677 return t;
1678
1679 /* If reloads are equally urgent, sort by reload number,
1680 so that the results of qsort leave nothing to chance. */
1681 return r1 - r2;
1682 }
1683 \f
1684 /* The cost of spilling each hard reg. */
1685 static int spill_cost[FIRST_PSEUDO_REGISTER];
1686
1687 /* When spilling multiple hard registers, we use SPILL_COST for the first
1688 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1689 only the first hard reg for a multi-reg pseudo. */
1690 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1691
1692 /* Map of hard regno to pseudo regno currently occupying the hard
1693 reg. */
1694 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1695
1696 /* Update the spill cost arrays, considering that pseudo REG is live. */
1697
1698 static void
1699 count_pseudo (int reg)
1700 {
1701 int freq = REG_FREQ (reg);
1702 int r = reg_renumber[reg];
1703 int nregs;
1704
1705 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1706 if (ira_conflicts_p && r < 0)
1707 return;
1708
1709 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1710 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1711 return;
1712
1713 SET_REGNO_REG_SET (&pseudos_counted, reg);
1714
1715 gcc_assert (r >= 0);
1716
1717 spill_add_cost[r] += freq;
1718 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1719 while (nregs-- > 0)
1720 {
1721 hard_regno_to_pseudo_regno[r + nregs] = reg;
1722 spill_cost[r + nregs] += freq;
1723 }
1724 }
1725
1726 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1727 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1728
1729 static void
1730 order_regs_for_reload (class insn_chain *chain)
1731 {
1732 unsigned i;
1733 HARD_REG_SET used_by_pseudos;
1734 HARD_REG_SET used_by_pseudos2;
1735 reg_set_iterator rsi;
1736
1737 bad_spill_regs = fixed_reg_set;
1738
1739 memset (spill_cost, 0, sizeof spill_cost);
1740 memset (spill_add_cost, 0, sizeof spill_add_cost);
1741 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1742 hard_regno_to_pseudo_regno[i] = -1;
1743
1744 /* Count number of uses of each hard reg by pseudo regs allocated to it
1745 and then order them by decreasing use. First exclude hard registers
1746 that are live in or across this insn. */
1747
1748 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1749 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1750 bad_spill_regs |= used_by_pseudos;
1751 bad_spill_regs |= used_by_pseudos2;
1752
1753 /* Now find out which pseudos are allocated to it, and update
1754 hard_reg_n_uses. */
1755 CLEAR_REG_SET (&pseudos_counted);
1756
1757 EXECUTE_IF_SET_IN_REG_SET
1758 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1759 {
1760 count_pseudo (i);
1761 }
1762 EXECUTE_IF_SET_IN_REG_SET
1763 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1764 {
1765 count_pseudo (i);
1766 }
1767 CLEAR_REG_SET (&pseudos_counted);
1768 }
1769 \f
1770 /* Vector of reload-numbers showing the order in which the reloads should
1771 be processed. */
1772 static short reload_order[MAX_RELOADS];
1773
1774 /* This is used to keep track of the spill regs used in one insn. */
1775 static HARD_REG_SET used_spill_regs_local;
1776
1777 /* We decided to spill hard register SPILLED, which has a size of
1778 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1779 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1780 update SPILL_COST/SPILL_ADD_COST. */
1781
1782 static void
1783 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1784 {
1785 int freq = REG_FREQ (reg);
1786 int r = reg_renumber[reg];
1787 int nregs;
1788
1789 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1790 if (ira_conflicts_p && r < 0)
1791 return;
1792
1793 gcc_assert (r >= 0);
1794
1795 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1796
1797 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1798 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1799 return;
1800
1801 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1802
1803 spill_add_cost[r] -= freq;
1804 while (nregs-- > 0)
1805 {
1806 hard_regno_to_pseudo_regno[r + nregs] = -1;
1807 spill_cost[r + nregs] -= freq;
1808 }
1809 }
1810
1811 /* Find reload register to use for reload number ORDER. */
1812
1813 static int
1814 find_reg (class insn_chain *chain, int order)
1815 {
1816 int rnum = reload_order[order];
1817 struct reload *rl = rld + rnum;
1818 int best_cost = INT_MAX;
1819 int best_reg = -1;
1820 unsigned int i, j, n;
1821 int k;
1822 HARD_REG_SET not_usable;
1823 HARD_REG_SET used_by_other_reload;
1824 reg_set_iterator rsi;
1825 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1826 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1827
1828 not_usable = (bad_spill_regs
1829 | bad_spill_regs_global
1830 | ~reg_class_contents[rl->rclass]);
1831
1832 CLEAR_HARD_REG_SET (used_by_other_reload);
1833 for (k = 0; k < order; k++)
1834 {
1835 int other = reload_order[k];
1836
1837 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1838 for (j = 0; j < rld[other].nregs; j++)
1839 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1840 }
1841
1842 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1843 {
1844 #ifdef REG_ALLOC_ORDER
1845 unsigned int regno = reg_alloc_order[i];
1846 #else
1847 unsigned int regno = i;
1848 #endif
1849
1850 if (! TEST_HARD_REG_BIT (not_usable, regno)
1851 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1852 && targetm.hard_regno_mode_ok (regno, rl->mode))
1853 {
1854 int this_cost = spill_cost[regno];
1855 int ok = 1;
1856 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1857
1858 for (j = 1; j < this_nregs; j++)
1859 {
1860 this_cost += spill_add_cost[regno + j];
1861 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1862 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1863 ok = 0;
1864 }
1865 if (! ok)
1866 continue;
1867
1868 if (ira_conflicts_p)
1869 {
1870 /* Ask IRA to find a better pseudo-register for
1871 spilling. */
1872 for (n = j = 0; j < this_nregs; j++)
1873 {
1874 int r = hard_regno_to_pseudo_regno[regno + j];
1875
1876 if (r < 0)
1877 continue;
1878 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1879 regno_pseudo_regs[n++] = r;
1880 }
1881 regno_pseudo_regs[n++] = -1;
1882 if (best_reg < 0
1883 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1884 best_regno_pseudo_regs,
1885 rl->in, rl->out,
1886 chain->insn))
1887 {
1888 best_reg = regno;
1889 for (j = 0;; j++)
1890 {
1891 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1892 if (regno_pseudo_regs[j] < 0)
1893 break;
1894 }
1895 }
1896 continue;
1897 }
1898
1899 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1900 this_cost--;
1901 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1902 this_cost--;
1903 if (this_cost < best_cost
1904 /* Among registers with equal cost, prefer caller-saved ones, or
1905 use REG_ALLOC_ORDER if it is defined. */
1906 || (this_cost == best_cost
1907 #ifdef REG_ALLOC_ORDER
1908 && (inv_reg_alloc_order[regno]
1909 < inv_reg_alloc_order[best_reg])
1910 #else
1911 && call_used_or_fixed_reg_p (regno)
1912 && ! call_used_or_fixed_reg_p (best_reg)
1913 #endif
1914 ))
1915 {
1916 best_reg = regno;
1917 best_cost = this_cost;
1918 }
1919 }
1920 }
1921 if (best_reg == -1)
1922 return 0;
1923
1924 if (dump_file)
1925 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1926
1927 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1928 rl->regno = best_reg;
1929
1930 EXECUTE_IF_SET_IN_REG_SET
1931 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1932 {
1933 count_spilled_pseudo (best_reg, rl->nregs, j);
1934 }
1935
1936 EXECUTE_IF_SET_IN_REG_SET
1937 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1938 {
1939 count_spilled_pseudo (best_reg, rl->nregs, j);
1940 }
1941
1942 for (i = 0; i < rl->nregs; i++)
1943 {
1944 gcc_assert (spill_cost[best_reg + i] == 0);
1945 gcc_assert (spill_add_cost[best_reg + i] == 0);
1946 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1947 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1948 }
1949 return 1;
1950 }
1951
1952 /* Find more reload regs to satisfy the remaining need of an insn, which
1953 is given by CHAIN.
1954 Do it by ascending class number, since otherwise a reg
1955 might be spilled for a big class and might fail to count
1956 for a smaller class even though it belongs to that class. */
1957
1958 static void
1959 find_reload_regs (class insn_chain *chain)
1960 {
1961 int i;
1962
1963 /* In order to be certain of getting the registers we need,
1964 we must sort the reloads into order of increasing register class.
1965 Then our grabbing of reload registers will parallel the process
1966 that provided the reload registers. */
1967 for (i = 0; i < chain->n_reloads; i++)
1968 {
1969 /* Show whether this reload already has a hard reg. */
1970 if (chain->rld[i].reg_rtx)
1971 {
1972 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1973 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1974 }
1975 else
1976 chain->rld[i].regno = -1;
1977 reload_order[i] = i;
1978 }
1979
1980 n_reloads = chain->n_reloads;
1981 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1982
1983 CLEAR_HARD_REG_SET (used_spill_regs_local);
1984
1985 if (dump_file)
1986 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1987
1988 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1989
1990 /* Compute the order of preference for hard registers to spill. */
1991
1992 order_regs_for_reload (chain);
1993
1994 for (i = 0; i < n_reloads; i++)
1995 {
1996 int r = reload_order[i];
1997
1998 /* Ignore reloads that got marked inoperative. */
1999 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2000 && ! rld[r].optional
2001 && rld[r].regno == -1)
2002 if (! find_reg (chain, i))
2003 {
2004 if (dump_file)
2005 fprintf (dump_file, "reload failure for reload %d\n", r);
2006 spill_failure (chain->insn, rld[r].rclass);
2007 failure = 1;
2008 return;
2009 }
2010 }
2011
2012 chain->used_spill_regs = used_spill_regs_local;
2013 used_spill_regs |= used_spill_regs_local;
2014
2015 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2016 }
2017
2018 static void
2019 select_reload_regs (void)
2020 {
2021 class insn_chain *chain;
2022
2023 /* Try to satisfy the needs for each insn. */
2024 for (chain = insns_need_reload; chain != 0;
2025 chain = chain->next_need_reload)
2026 find_reload_regs (chain);
2027 }
2028 \f
2029 /* Delete all insns that were inserted by emit_caller_save_insns during
2030 this iteration. */
2031 static void
2032 delete_caller_save_insns (void)
2033 {
2034 class insn_chain *c = reload_insn_chain;
2035
2036 while (c != 0)
2037 {
2038 while (c != 0 && c->is_caller_save_insn)
2039 {
2040 class insn_chain *next = c->next;
2041 rtx_insn *insn = c->insn;
2042
2043 if (c == reload_insn_chain)
2044 reload_insn_chain = next;
2045 delete_insn (insn);
2046
2047 if (next)
2048 next->prev = c->prev;
2049 if (c->prev)
2050 c->prev->next = next;
2051 c->next = unused_insn_chains;
2052 unused_insn_chains = c;
2053 c = next;
2054 }
2055 if (c != 0)
2056 c = c->next;
2057 }
2058 }
2059 \f
2060 /* Handle the failure to find a register to spill.
2061 INSN should be one of the insns which needed this particular spill reg. */
2062
2063 static void
2064 spill_failure (rtx_insn *insn, enum reg_class rclass)
2065 {
2066 if (asm_noperands (PATTERN (insn)) >= 0)
2067 error_for_asm (insn, "cannot find a register in class %qs while "
2068 "reloading %<asm%>",
2069 reg_class_names[rclass]);
2070 else
2071 {
2072 error ("unable to find a register to spill in class %qs",
2073 reg_class_names[rclass]);
2074
2075 if (dump_file)
2076 {
2077 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2078 debug_reload_to_stream (dump_file);
2079 }
2080 fatal_insn ("this is the insn:", insn);
2081 }
2082 }
2083 \f
2084 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2085 data that is dead in INSN. */
2086
2087 static void
2088 delete_dead_insn (rtx_insn *insn)
2089 {
2090 rtx_insn *prev = prev_active_insn (insn);
2091 rtx prev_dest;
2092
2093 /* If the previous insn sets a register that dies in our insn make
2094 a note that we want to run DCE immediately after reload.
2095
2096 We used to delete the previous insn & recurse, but that's wrong for
2097 block local equivalences. Instead of trying to figure out the exact
2098 circumstances where we can delete the potentially dead insns, just
2099 let DCE do the job. */
2100 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2101 && GET_CODE (PATTERN (prev)) == SET
2102 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2103 && reg_mentioned_p (prev_dest, PATTERN (insn))
2104 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2105 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2106 need_dce = 1;
2107
2108 SET_INSN_DELETED (insn);
2109 }
2110
2111 /* Modify the home of pseudo-reg I.
2112 The new home is present in reg_renumber[I].
2113
2114 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2115 or it may be -1, meaning there is none or it is not relevant.
2116 This is used so that all pseudos spilled from a given hard reg
2117 can share one stack slot. */
2118
2119 static void
2120 alter_reg (int i, int from_reg, bool dont_share_p)
2121 {
2122 /* When outputting an inline function, this can happen
2123 for a reg that isn't actually used. */
2124 if (regno_reg_rtx[i] == 0)
2125 return;
2126
2127 /* If the reg got changed to a MEM at rtl-generation time,
2128 ignore it. */
2129 if (!REG_P (regno_reg_rtx[i]))
2130 return;
2131
2132 /* Modify the reg-rtx to contain the new hard reg
2133 number or else to contain its pseudo reg number. */
2134 SET_REGNO (regno_reg_rtx[i],
2135 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2136
2137 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2138 allocate a stack slot for it. */
2139
2140 if (reg_renumber[i] < 0
2141 && REG_N_REFS (i) > 0
2142 && reg_equiv_constant (i) == 0
2143 && (reg_equiv_invariant (i) == 0
2144 || reg_equiv_init (i) == 0)
2145 && reg_equiv_memory_loc (i) == 0)
2146 {
2147 rtx x = NULL_RTX;
2148 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2149 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2150 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2151 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2152 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2153 /* ??? Seems strange to derive the minimum alignment from the size,
2154 but that's the traditional behavior. For polynomial-size modes,
2155 the natural extension is to use the minimum possible size. */
2156 unsigned int min_align
2157 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2158 poly_int64 adjust = 0;
2159
2160 something_was_spilled = true;
2161
2162 if (ira_conflicts_p)
2163 {
2164 /* Mark the spill for IRA. */
2165 SET_REGNO_REG_SET (&spilled_pseudos, i);
2166 if (!dont_share_p)
2167 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2168 }
2169
2170 if (x)
2171 ;
2172
2173 /* Each pseudo reg has an inherent size which comes from its own mode,
2174 and a total size which provides room for paradoxical subregs
2175 which refer to the pseudo reg in wider modes.
2176
2177 We can use a slot already allocated if it provides both
2178 enough inherent space and enough total space.
2179 Otherwise, we allocate a new slot, making sure that it has no less
2180 inherent space, and no less total space, then the previous slot. */
2181 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2182 {
2183 rtx stack_slot;
2184
2185 /* The sizes are taken from a subreg operation, which guarantees
2186 that they're ordered. */
2187 gcc_checking_assert (ordered_p (total_size, inherent_size));
2188
2189 /* No known place to spill from => no slot to reuse. */
2190 x = assign_stack_local (mode, total_size,
2191 min_align > inherent_align
2192 || maybe_gt (total_size, inherent_size)
2193 ? -1 : 0);
2194
2195 stack_slot = x;
2196
2197 /* Cancel the big-endian correction done in assign_stack_local.
2198 Get the address of the beginning of the slot. This is so we
2199 can do a big-endian correction unconditionally below. */
2200 if (BYTES_BIG_ENDIAN)
2201 {
2202 adjust = inherent_size - total_size;
2203 if (maybe_ne (adjust, 0))
2204 {
2205 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2206 machine_mode mem_mode
2207 = int_mode_for_size (total_bits, 1).else_blk ();
2208 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2209 }
2210 }
2211
2212 if (! dont_share_p && ira_conflicts_p)
2213 /* Inform IRA about allocation a new stack slot. */
2214 ira_mark_new_stack_slot (stack_slot, i, total_size);
2215 }
2216
2217 /* Reuse a stack slot if possible. */
2218 else if (spill_stack_slot[from_reg] != 0
2219 && known_ge (spill_stack_slot_width[from_reg], total_size)
2220 && known_ge (GET_MODE_SIZE
2221 (GET_MODE (spill_stack_slot[from_reg])),
2222 inherent_size)
2223 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2224 x = spill_stack_slot[from_reg];
2225
2226 /* Allocate a bigger slot. */
2227 else
2228 {
2229 /* Compute maximum size needed, both for inherent size
2230 and for total size. */
2231 rtx stack_slot;
2232
2233 if (spill_stack_slot[from_reg])
2234 {
2235 if (partial_subreg_p (mode,
2236 GET_MODE (spill_stack_slot[from_reg])))
2237 mode = GET_MODE (spill_stack_slot[from_reg]);
2238 total_size = ordered_max (total_size,
2239 spill_stack_slot_width[from_reg]);
2240 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2241 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2242 }
2243
2244 /* The sizes are taken from a subreg operation, which guarantees
2245 that they're ordered. */
2246 gcc_checking_assert (ordered_p (total_size, inherent_size));
2247
2248 /* Make a slot with that size. */
2249 x = assign_stack_local (mode, total_size,
2250 min_align > inherent_align
2251 || maybe_gt (total_size, inherent_size)
2252 ? -1 : 0);
2253 stack_slot = x;
2254
2255 /* Cancel the big-endian correction done in assign_stack_local.
2256 Get the address of the beginning of the slot. This is so we
2257 can do a big-endian correction unconditionally below. */
2258 if (BYTES_BIG_ENDIAN)
2259 {
2260 adjust = GET_MODE_SIZE (mode) - total_size;
2261 if (maybe_ne (adjust, 0))
2262 {
2263 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2264 machine_mode mem_mode
2265 = int_mode_for_size (total_bits, 1).else_blk ();
2266 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2267 }
2268 }
2269
2270 spill_stack_slot[from_reg] = stack_slot;
2271 spill_stack_slot_width[from_reg] = total_size;
2272 }
2273
2274 /* On a big endian machine, the "address" of the slot
2275 is the address of the low part that fits its inherent mode. */
2276 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2277
2278 /* If we have any adjustment to make, or if the stack slot is the
2279 wrong mode, make a new stack slot. */
2280 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2281
2282 /* Set all of the memory attributes as appropriate for a spill. */
2283 set_mem_attrs_for_spill (x);
2284
2285 /* Save the stack slot for later. */
2286 reg_equiv_memory_loc (i) = x;
2287 }
2288 }
2289
2290 /* Mark the slots in regs_ever_live for the hard regs used by
2291 pseudo-reg number REGNO, accessed in MODE. */
2292
2293 static void
2294 mark_home_live_1 (int regno, machine_mode mode)
2295 {
2296 int i, lim;
2297
2298 i = reg_renumber[regno];
2299 if (i < 0)
2300 return;
2301 lim = end_hard_regno (mode, i);
2302 while (i < lim)
2303 df_set_regs_ever_live (i++, true);
2304 }
2305
2306 /* Mark the slots in regs_ever_live for the hard regs
2307 used by pseudo-reg number REGNO. */
2308
2309 void
2310 mark_home_live (int regno)
2311 {
2312 if (reg_renumber[regno] >= 0)
2313 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2314 }
2315 \f
2316 /* This function handles the tracking of elimination offsets around branches.
2317
2318 X is a piece of RTL being scanned.
2319
2320 INSN is the insn that it came from, if any.
2321
2322 INITIAL_P is nonzero if we are to set the offset to be the initial
2323 offset and zero if we are setting the offset of the label to be the
2324 current offset. */
2325
2326 static void
2327 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2328 {
2329 enum rtx_code code = GET_CODE (x);
2330 rtx tem;
2331 unsigned int i;
2332 struct elim_table *p;
2333
2334 switch (code)
2335 {
2336 case LABEL_REF:
2337 if (LABEL_REF_NONLOCAL_P (x))
2338 return;
2339
2340 x = label_ref_label (x);
2341
2342 /* fall through */
2343
2344 case CODE_LABEL:
2345 /* If we know nothing about this label, set the desired offsets. Note
2346 that this sets the offset at a label to be the offset before a label
2347 if we don't know anything about the label. This is not correct for
2348 the label after a BARRIER, but is the best guess we can make. If
2349 we guessed wrong, we will suppress an elimination that might have
2350 been possible had we been able to guess correctly. */
2351
2352 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2353 {
2354 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2355 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2356 = (initial_p ? reg_eliminate[i].initial_offset
2357 : reg_eliminate[i].offset);
2358 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2359 }
2360
2361 /* Otherwise, if this is the definition of a label and it is
2362 preceded by a BARRIER, set our offsets to the known offset of
2363 that label. */
2364
2365 else if (x == insn
2366 && (tem = prev_nonnote_insn (insn)) != 0
2367 && BARRIER_P (tem))
2368 set_offsets_for_label (insn);
2369 else
2370 /* If neither of the above cases is true, compare each offset
2371 with those previously recorded and suppress any eliminations
2372 where the offsets disagree. */
2373
2374 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2375 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2376 (initial_p ? reg_eliminate[i].initial_offset
2377 : reg_eliminate[i].offset)))
2378 reg_eliminate[i].can_eliminate = 0;
2379
2380 return;
2381
2382 case JUMP_TABLE_DATA:
2383 set_label_offsets (PATTERN (insn), insn, initial_p);
2384 return;
2385
2386 case JUMP_INSN:
2387 set_label_offsets (PATTERN (insn), insn, initial_p);
2388
2389 /* fall through */
2390
2391 case INSN:
2392 case CALL_INSN:
2393 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2394 to indirectly and hence must have all eliminations at their
2395 initial offsets. */
2396 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2397 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2398 set_label_offsets (XEXP (tem, 0), insn, 1);
2399 return;
2400
2401 case PARALLEL:
2402 case ADDR_VEC:
2403 case ADDR_DIFF_VEC:
2404 /* Each of the labels in the parallel or address vector must be
2405 at their initial offsets. We want the first field for PARALLEL
2406 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2407
2408 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2409 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2410 insn, initial_p);
2411 return;
2412
2413 case SET:
2414 /* We only care about setting PC. If the source is not RETURN,
2415 IF_THEN_ELSE, or a label, disable any eliminations not at
2416 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2417 isn't one of those possibilities. For branches to a label,
2418 call ourselves recursively.
2419
2420 Note that this can disable elimination unnecessarily when we have
2421 a non-local goto since it will look like a non-constant jump to
2422 someplace in the current function. This isn't a significant
2423 problem since such jumps will normally be when all elimination
2424 pairs are back to their initial offsets. */
2425
2426 if (SET_DEST (x) != pc_rtx)
2427 return;
2428
2429 switch (GET_CODE (SET_SRC (x)))
2430 {
2431 case PC:
2432 case RETURN:
2433 return;
2434
2435 case LABEL_REF:
2436 set_label_offsets (SET_SRC (x), insn, initial_p);
2437 return;
2438
2439 case IF_THEN_ELSE:
2440 tem = XEXP (SET_SRC (x), 1);
2441 if (GET_CODE (tem) == LABEL_REF)
2442 set_label_offsets (label_ref_label (tem), insn, initial_p);
2443 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2444 break;
2445
2446 tem = XEXP (SET_SRC (x), 2);
2447 if (GET_CODE (tem) == LABEL_REF)
2448 set_label_offsets (label_ref_label (tem), insn, initial_p);
2449 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2450 break;
2451 return;
2452
2453 default:
2454 break;
2455 }
2456
2457 /* If we reach here, all eliminations must be at their initial
2458 offset because we are doing a jump to a variable address. */
2459 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2460 if (maybe_ne (p->offset, p->initial_offset))
2461 p->can_eliminate = 0;
2462 break;
2463
2464 default:
2465 break;
2466 }
2467 }
2468 \f
2469 /* This function examines every reg that occurs in X and adjusts the
2470 costs for its elimination which are gathered by IRA. INSN is the
2471 insn in which X occurs. We do not recurse into MEM expressions. */
2472
2473 static void
2474 note_reg_elim_costly (const_rtx x, rtx insn)
2475 {
2476 subrtx_iterator::array_type array;
2477 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2478 {
2479 const_rtx x = *iter;
2480 if (MEM_P (x))
2481 iter.skip_subrtxes ();
2482 else if (REG_P (x)
2483 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2484 && reg_equiv_init (REGNO (x))
2485 && reg_equiv_invariant (REGNO (x)))
2486 {
2487 rtx t = reg_equiv_invariant (REGNO (x));
2488 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2489 int cost = set_src_cost (new_rtx, Pmode,
2490 optimize_bb_for_speed_p (elim_bb));
2491 int freq = REG_FREQ_FROM_BB (elim_bb);
2492
2493 if (cost != 0)
2494 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2495 }
2496 }
2497 }
2498
2499 /* Scan X and replace any eliminable registers (such as fp) with a
2500 replacement (such as sp), plus an offset.
2501
2502 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2503 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2504 MEM, we are allowed to replace a sum of a register and the constant zero
2505 with the register, which we cannot do outside a MEM. In addition, we need
2506 to record the fact that a register is referenced outside a MEM.
2507
2508 If INSN is an insn, it is the insn containing X. If we replace a REG
2509 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2510 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2511 the REG is being modified.
2512
2513 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2514 That's used when we eliminate in expressions stored in notes.
2515 This means, do not set ref_outside_mem even if the reference
2516 is outside of MEMs.
2517
2518 If FOR_COSTS is true, we are being called before reload in order to
2519 estimate the costs of keeping registers with an equivalence unallocated.
2520
2521 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2522 replacements done assuming all offsets are at their initial values. If
2523 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2524 encounter, return the actual location so that find_reloads will do
2525 the proper thing. */
2526
2527 static rtx
2528 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2529 bool may_use_invariant, bool for_costs)
2530 {
2531 enum rtx_code code = GET_CODE (x);
2532 struct elim_table *ep;
2533 int regno;
2534 rtx new_rtx;
2535 int i, j;
2536 const char *fmt;
2537 int copied = 0;
2538
2539 if (! current_function_decl)
2540 return x;
2541
2542 switch (code)
2543 {
2544 CASE_CONST_ANY:
2545 case CONST:
2546 case SYMBOL_REF:
2547 case CODE_LABEL:
2548 case PC:
2549 case CC0:
2550 case ASM_INPUT:
2551 case ADDR_VEC:
2552 case ADDR_DIFF_VEC:
2553 case RETURN:
2554 return x;
2555
2556 case REG:
2557 regno = REGNO (x);
2558
2559 /* First handle the case where we encounter a bare register that
2560 is eliminable. Replace it with a PLUS. */
2561 if (regno < FIRST_PSEUDO_REGISTER)
2562 {
2563 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2564 ep++)
2565 if (ep->from_rtx == x && ep->can_eliminate)
2566 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2567
2568 }
2569 else if (reg_renumber && reg_renumber[regno] < 0
2570 && reg_equivs
2571 && reg_equiv_invariant (regno))
2572 {
2573 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2574 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2575 mem_mode, insn, true, for_costs);
2576 /* There exists at least one use of REGNO that cannot be
2577 eliminated. Prevent the defining insn from being deleted. */
2578 reg_equiv_init (regno) = NULL;
2579 if (!for_costs)
2580 alter_reg (regno, -1, true);
2581 }
2582 return x;
2583
2584 /* You might think handling MINUS in a manner similar to PLUS is a
2585 good idea. It is not. It has been tried multiple times and every
2586 time the change has had to have been reverted.
2587
2588 Other parts of reload know a PLUS is special (gen_reload for example)
2589 and require special code to handle code a reloaded PLUS operand.
2590
2591 Also consider backends where the flags register is clobbered by a
2592 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2593 lea instruction comes to mind). If we try to reload a MINUS, we
2594 may kill the flags register that was holding a useful value.
2595
2596 So, please before trying to handle MINUS, consider reload as a
2597 whole instead of this little section as well as the backend issues. */
2598 case PLUS:
2599 /* If this is the sum of an eliminable register and a constant, rework
2600 the sum. */
2601 if (REG_P (XEXP (x, 0))
2602 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2603 && CONSTANT_P (XEXP (x, 1)))
2604 {
2605 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2606 ep++)
2607 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2608 {
2609 /* The only time we want to replace a PLUS with a REG (this
2610 occurs when the constant operand of the PLUS is the negative
2611 of the offset) is when we are inside a MEM. We won't want
2612 to do so at other times because that would change the
2613 structure of the insn in a way that reload can't handle.
2614 We special-case the commonest situation in
2615 eliminate_regs_in_insn, so just replace a PLUS with a
2616 PLUS here, unless inside a MEM. */
2617 if (mem_mode != 0
2618 && CONST_INT_P (XEXP (x, 1))
2619 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2620 return ep->to_rtx;
2621 else
2622 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2623 plus_constant (Pmode, XEXP (x, 1),
2624 ep->previous_offset));
2625 }
2626
2627 /* If the register is not eliminable, we are done since the other
2628 operand is a constant. */
2629 return x;
2630 }
2631
2632 /* If this is part of an address, we want to bring any constant to the
2633 outermost PLUS. We will do this by doing register replacement in
2634 our operands and seeing if a constant shows up in one of them.
2635
2636 Note that there is no risk of modifying the structure of the insn,
2637 since we only get called for its operands, thus we are either
2638 modifying the address inside a MEM, or something like an address
2639 operand of a load-address insn. */
2640
2641 {
2642 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2643 for_costs);
2644 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2645 for_costs);
2646
2647 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2648 {
2649 /* If one side is a PLUS and the other side is a pseudo that
2650 didn't get a hard register but has a reg_equiv_constant,
2651 we must replace the constant here since it may no longer
2652 be in the position of any operand. */
2653 if (GET_CODE (new0) == PLUS && REG_P (new1)
2654 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2655 && reg_renumber[REGNO (new1)] < 0
2656 && reg_equivs
2657 && reg_equiv_constant (REGNO (new1)) != 0)
2658 new1 = reg_equiv_constant (REGNO (new1));
2659 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2660 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2661 && reg_renumber[REGNO (new0)] < 0
2662 && reg_equiv_constant (REGNO (new0)) != 0)
2663 new0 = reg_equiv_constant (REGNO (new0));
2664
2665 new_rtx = form_sum (GET_MODE (x), new0, new1);
2666
2667 /* As above, if we are not inside a MEM we do not want to
2668 turn a PLUS into something else. We might try to do so here
2669 for an addition of 0 if we aren't optimizing. */
2670 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2671 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2672 else
2673 return new_rtx;
2674 }
2675 }
2676 return x;
2677
2678 case MULT:
2679 /* If this is the product of an eliminable register and a
2680 constant, apply the distribute law and move the constant out
2681 so that we have (plus (mult ..) ..). This is needed in order
2682 to keep load-address insns valid. This case is pathological.
2683 We ignore the possibility of overflow here. */
2684 if (REG_P (XEXP (x, 0))
2685 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2686 && CONST_INT_P (XEXP (x, 1)))
2687 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2688 ep++)
2689 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2690 {
2691 if (! mem_mode
2692 /* Refs inside notes or in DEBUG_INSNs don't count for
2693 this purpose. */
2694 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2695 || GET_CODE (insn) == INSN_LIST
2696 || DEBUG_INSN_P (insn))))
2697 ep->ref_outside_mem = 1;
2698
2699 return
2700 plus_constant (Pmode,
2701 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2702 ep->previous_offset * INTVAL (XEXP (x, 1)));
2703 }
2704
2705 /* fall through */
2706
2707 case CALL:
2708 case COMPARE:
2709 /* See comments before PLUS about handling MINUS. */
2710 case MINUS:
2711 case DIV: case UDIV:
2712 case MOD: case UMOD:
2713 case AND: case IOR: case XOR:
2714 case ROTATERT: case ROTATE:
2715 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2716 case NE: case EQ:
2717 case GE: case GT: case GEU: case GTU:
2718 case LE: case LT: case LEU: case LTU:
2719 {
2720 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2721 for_costs);
2722 rtx new1 = XEXP (x, 1)
2723 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2724 for_costs) : 0;
2725
2726 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2727 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2728 }
2729 return x;
2730
2731 case EXPR_LIST:
2732 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2733 if (XEXP (x, 0))
2734 {
2735 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2736 for_costs);
2737 if (new_rtx != XEXP (x, 0))
2738 {
2739 /* If this is a REG_DEAD note, it is not valid anymore.
2740 Using the eliminated version could result in creating a
2741 REG_DEAD note for the stack or frame pointer. */
2742 if (REG_NOTE_KIND (x) == REG_DEAD)
2743 return (XEXP (x, 1)
2744 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2745 for_costs)
2746 : NULL_RTX);
2747
2748 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2749 }
2750 }
2751
2752 /* fall through */
2753
2754 case INSN_LIST:
2755 case INT_LIST:
2756 /* Now do eliminations in the rest of the chain. If this was
2757 an EXPR_LIST, this might result in allocating more memory than is
2758 strictly needed, but it simplifies the code. */
2759 if (XEXP (x, 1))
2760 {
2761 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2762 for_costs);
2763 if (new_rtx != XEXP (x, 1))
2764 return
2765 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2766 }
2767 return x;
2768
2769 case PRE_INC:
2770 case POST_INC:
2771 case PRE_DEC:
2772 case POST_DEC:
2773 /* We do not support elimination of a register that is modified.
2774 elimination_effects has already make sure that this does not
2775 happen. */
2776 return x;
2777
2778 case PRE_MODIFY:
2779 case POST_MODIFY:
2780 /* We do not support elimination of a register that is modified.
2781 elimination_effects has already make sure that this does not
2782 happen. The only remaining case we need to consider here is
2783 that the increment value may be an eliminable register. */
2784 if (GET_CODE (XEXP (x, 1)) == PLUS
2785 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2786 {
2787 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2788 insn, true, for_costs);
2789
2790 if (new_rtx != XEXP (XEXP (x, 1), 1))
2791 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2792 gen_rtx_PLUS (GET_MODE (x),
2793 XEXP (x, 0), new_rtx));
2794 }
2795 return x;
2796
2797 case STRICT_LOW_PART:
2798 case NEG: case NOT:
2799 case SIGN_EXTEND: case ZERO_EXTEND:
2800 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2801 case FLOAT: case FIX:
2802 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2803 case ABS:
2804 case SQRT:
2805 case FFS:
2806 case CLZ:
2807 case CTZ:
2808 case POPCOUNT:
2809 case PARITY:
2810 case BSWAP:
2811 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2812 for_costs);
2813 if (new_rtx != XEXP (x, 0))
2814 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2815 return x;
2816
2817 case SUBREG:
2818 /* Similar to above processing, but preserve SUBREG_BYTE.
2819 Convert (subreg (mem)) to (mem) if not paradoxical.
2820 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2821 pseudo didn't get a hard reg, we must replace this with the
2822 eliminated version of the memory location because push_reload
2823 may do the replacement in certain circumstances. */
2824 if (REG_P (SUBREG_REG (x))
2825 && !paradoxical_subreg_p (x)
2826 && reg_equivs
2827 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2828 {
2829 new_rtx = SUBREG_REG (x);
2830 }
2831 else
2832 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2833
2834 if (new_rtx != SUBREG_REG (x))
2835 {
2836 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2837 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2838
2839 if (MEM_P (new_rtx)
2840 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2841 /* On RISC machines, combine can create rtl of the form
2842 (set (subreg:m1 (reg:m2 R) 0) ...)
2843 where m1 < m2, and expects something interesting to
2844 happen to the entire word. Moreover, it will use the
2845 (reg:m2 R) later, expecting all bits to be preserved.
2846 So if the number of words is the same, preserve the
2847 subreg so that push_reload can see it. */
2848 && !(WORD_REGISTER_OPERATIONS
2849 && known_equal_after_align_down (x_size - 1,
2850 new_size - 1,
2851 UNITS_PER_WORD)))
2852 || known_eq (x_size, new_size))
2853 )
2854 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2855 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2856 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2857 else
2858 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2859 }
2860
2861 return x;
2862
2863 case MEM:
2864 /* Our only special processing is to pass the mode of the MEM to our
2865 recursive call and copy the flags. While we are here, handle this
2866 case more efficiently. */
2867
2868 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2869 for_costs);
2870 if (for_costs
2871 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2872 && !memory_address_p (GET_MODE (x), new_rtx))
2873 note_reg_elim_costly (XEXP (x, 0), insn);
2874
2875 return replace_equiv_address_nv (x, new_rtx);
2876
2877 case USE:
2878 /* Handle insn_list USE that a call to a pure function may generate. */
2879 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2880 for_costs);
2881 if (new_rtx != XEXP (x, 0))
2882 return gen_rtx_USE (GET_MODE (x), new_rtx);
2883 return x;
2884
2885 case CLOBBER:
2886 case CLOBBER_HIGH:
2887 case ASM_OPERANDS:
2888 gcc_assert (insn && DEBUG_INSN_P (insn));
2889 break;
2890
2891 case SET:
2892 gcc_unreachable ();
2893
2894 default:
2895 break;
2896 }
2897
2898 /* Process each of our operands recursively. If any have changed, make a
2899 copy of the rtx. */
2900 fmt = GET_RTX_FORMAT (code);
2901 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2902 {
2903 if (*fmt == 'e')
2904 {
2905 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2906 for_costs);
2907 if (new_rtx != XEXP (x, i) && ! copied)
2908 {
2909 x = shallow_copy_rtx (x);
2910 copied = 1;
2911 }
2912 XEXP (x, i) = new_rtx;
2913 }
2914 else if (*fmt == 'E')
2915 {
2916 int copied_vec = 0;
2917 for (j = 0; j < XVECLEN (x, i); j++)
2918 {
2919 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2920 for_costs);
2921 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2922 {
2923 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2924 XVEC (x, i)->elem);
2925 if (! copied)
2926 {
2927 x = shallow_copy_rtx (x);
2928 copied = 1;
2929 }
2930 XVEC (x, i) = new_v;
2931 copied_vec = 1;
2932 }
2933 XVECEXP (x, i, j) = new_rtx;
2934 }
2935 }
2936 }
2937
2938 return x;
2939 }
2940
2941 rtx
2942 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2943 {
2944 if (reg_eliminate == NULL)
2945 {
2946 gcc_assert (targetm.no_register_allocation);
2947 return x;
2948 }
2949 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2950 }
2951
2952 /* Scan rtx X for modifications of elimination target registers. Update
2953 the table of eliminables to reflect the changed state. MEM_MODE is
2954 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2955
2956 static void
2957 elimination_effects (rtx x, machine_mode mem_mode)
2958 {
2959 enum rtx_code code = GET_CODE (x);
2960 struct elim_table *ep;
2961 int regno;
2962 int i, j;
2963 const char *fmt;
2964
2965 switch (code)
2966 {
2967 CASE_CONST_ANY:
2968 case CONST:
2969 case SYMBOL_REF:
2970 case CODE_LABEL:
2971 case PC:
2972 case CC0:
2973 case ASM_INPUT:
2974 case ADDR_VEC:
2975 case ADDR_DIFF_VEC:
2976 case RETURN:
2977 return;
2978
2979 case REG:
2980 regno = REGNO (x);
2981
2982 /* First handle the case where we encounter a bare register that
2983 is eliminable. Replace it with a PLUS. */
2984 if (regno < FIRST_PSEUDO_REGISTER)
2985 {
2986 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2987 ep++)
2988 if (ep->from_rtx == x && ep->can_eliminate)
2989 {
2990 if (! mem_mode)
2991 ep->ref_outside_mem = 1;
2992 return;
2993 }
2994
2995 }
2996 else if (reg_renumber[regno] < 0
2997 && reg_equivs
2998 && reg_equiv_constant (regno)
2999 && ! function_invariant_p (reg_equiv_constant (regno)))
3000 elimination_effects (reg_equiv_constant (regno), mem_mode);
3001 return;
3002
3003 case PRE_INC:
3004 case POST_INC:
3005 case PRE_DEC:
3006 case POST_DEC:
3007 case POST_MODIFY:
3008 case PRE_MODIFY:
3009 /* If we modify the source of an elimination rule, disable it. */
3010 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3011 if (ep->from_rtx == XEXP (x, 0))
3012 ep->can_eliminate = 0;
3013
3014 /* If we modify the target of an elimination rule by adding a constant,
3015 update its offset. If we modify the target in any other way, we'll
3016 have to disable the rule as well. */
3017 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3018 if (ep->to_rtx == XEXP (x, 0))
3019 {
3020 poly_int64 size = GET_MODE_SIZE (mem_mode);
3021
3022 /* If more bytes than MEM_MODE are pushed, account for them. */
3023 #ifdef PUSH_ROUNDING
3024 if (ep->to_rtx == stack_pointer_rtx)
3025 size = PUSH_ROUNDING (size);
3026 #endif
3027 if (code == PRE_DEC || code == POST_DEC)
3028 ep->offset += size;
3029 else if (code == PRE_INC || code == POST_INC)
3030 ep->offset -= size;
3031 else if (code == PRE_MODIFY || code == POST_MODIFY)
3032 {
3033 if (GET_CODE (XEXP (x, 1)) == PLUS
3034 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3035 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3036 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3037 else
3038 ep->can_eliminate = 0;
3039 }
3040 }
3041
3042 /* These two aren't unary operators. */
3043 if (code == POST_MODIFY || code == PRE_MODIFY)
3044 break;
3045
3046 /* Fall through to generic unary operation case. */
3047 gcc_fallthrough ();
3048 case STRICT_LOW_PART:
3049 case NEG: case NOT:
3050 case SIGN_EXTEND: case ZERO_EXTEND:
3051 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3052 case FLOAT: case FIX:
3053 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3054 case ABS:
3055 case SQRT:
3056 case FFS:
3057 case CLZ:
3058 case CTZ:
3059 case POPCOUNT:
3060 case PARITY:
3061 case BSWAP:
3062 elimination_effects (XEXP (x, 0), mem_mode);
3063 return;
3064
3065 case SUBREG:
3066 if (REG_P (SUBREG_REG (x))
3067 && !paradoxical_subreg_p (x)
3068 && reg_equivs
3069 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3070 return;
3071
3072 elimination_effects (SUBREG_REG (x), mem_mode);
3073 return;
3074
3075 case USE:
3076 /* If using a register that is the source of an eliminate we still
3077 think can be performed, note it cannot be performed since we don't
3078 know how this register is used. */
3079 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3080 if (ep->from_rtx == XEXP (x, 0))
3081 ep->can_eliminate = 0;
3082
3083 elimination_effects (XEXP (x, 0), mem_mode);
3084 return;
3085
3086 case CLOBBER:
3087 /* If clobbering a register that is the replacement register for an
3088 elimination we still think can be performed, note that it cannot
3089 be performed. Otherwise, we need not be concerned about it. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3091 if (ep->to_rtx == XEXP (x, 0))
3092 ep->can_eliminate = 0;
3093
3094 elimination_effects (XEXP (x, 0), mem_mode);
3095 return;
3096
3097 case CLOBBER_HIGH:
3098 /* CLOBBER_HIGH is only supported for LRA. */
3099 return;
3100
3101 case SET:
3102 /* Check for setting a register that we know about. */
3103 if (REG_P (SET_DEST (x)))
3104 {
3105 /* See if this is setting the replacement register for an
3106 elimination.
3107
3108 If DEST is the hard frame pointer, we do nothing because we
3109 assume that all assignments to the frame pointer are for
3110 non-local gotos and are being done at a time when they are valid
3111 and do not disturb anything else. Some machines want to
3112 eliminate a fake argument pointer (or even a fake frame pointer)
3113 with either the real frame or the stack pointer. Assignments to
3114 the hard frame pointer must not prevent this elimination. */
3115
3116 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3117 ep++)
3118 if (ep->to_rtx == SET_DEST (x)
3119 && SET_DEST (x) != hard_frame_pointer_rtx)
3120 {
3121 /* If it is being incremented, adjust the offset. Otherwise,
3122 this elimination can't be done. */
3123 rtx src = SET_SRC (x);
3124
3125 if (GET_CODE (src) == PLUS
3126 && XEXP (src, 0) == SET_DEST (x)
3127 && CONST_INT_P (XEXP (src, 1)))
3128 ep->offset -= INTVAL (XEXP (src, 1));
3129 else
3130 ep->can_eliminate = 0;
3131 }
3132 }
3133
3134 elimination_effects (SET_DEST (x), VOIDmode);
3135 elimination_effects (SET_SRC (x), VOIDmode);
3136 return;
3137
3138 case MEM:
3139 /* Our only special processing is to pass the mode of the MEM to our
3140 recursive call. */
3141 elimination_effects (XEXP (x, 0), GET_MODE (x));
3142 return;
3143
3144 default:
3145 break;
3146 }
3147
3148 fmt = GET_RTX_FORMAT (code);
3149 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3150 {
3151 if (*fmt == 'e')
3152 elimination_effects (XEXP (x, i), mem_mode);
3153 else if (*fmt == 'E')
3154 for (j = 0; j < XVECLEN (x, i); j++)
3155 elimination_effects (XVECEXP (x, i, j), mem_mode);
3156 }
3157 }
3158
3159 /* Descend through rtx X and verify that no references to eliminable registers
3160 remain. If any do remain, mark the involved register as not
3161 eliminable. */
3162
3163 static void
3164 check_eliminable_occurrences (rtx x)
3165 {
3166 const char *fmt;
3167 int i;
3168 enum rtx_code code;
3169
3170 if (x == 0)
3171 return;
3172
3173 code = GET_CODE (x);
3174
3175 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3176 {
3177 struct elim_table *ep;
3178
3179 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3180 if (ep->from_rtx == x)
3181 ep->can_eliminate = 0;
3182 return;
3183 }
3184
3185 fmt = GET_RTX_FORMAT (code);
3186 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3187 {
3188 if (*fmt == 'e')
3189 check_eliminable_occurrences (XEXP (x, i));
3190 else if (*fmt == 'E')
3191 {
3192 int j;
3193 for (j = 0; j < XVECLEN (x, i); j++)
3194 check_eliminable_occurrences (XVECEXP (x, i, j));
3195 }
3196 }
3197 }
3198 \f
3199 /* Scan INSN and eliminate all eliminable registers in it.
3200
3201 If REPLACE is nonzero, do the replacement destructively. Also
3202 delete the insn as dead it if it is setting an eliminable register.
3203
3204 If REPLACE is zero, do all our allocations in reload_obstack.
3205
3206 If no eliminations were done and this insn doesn't require any elimination
3207 processing (these are not identical conditions: it might be updating sp,
3208 but not referencing fp; this needs to be seen during reload_as_needed so
3209 that the offset between fp and sp can be taken into consideration), zero
3210 is returned. Otherwise, 1 is returned. */
3211
3212 static int
3213 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3214 {
3215 int icode = recog_memoized (insn);
3216 rtx old_body = PATTERN (insn);
3217 int insn_is_asm = asm_noperands (old_body) >= 0;
3218 rtx old_set = single_set (insn);
3219 rtx new_body;
3220 int val = 0;
3221 int i;
3222 rtx substed_operand[MAX_RECOG_OPERANDS];
3223 rtx orig_operand[MAX_RECOG_OPERANDS];
3224 struct elim_table *ep;
3225 rtx plus_src, plus_cst_src;
3226
3227 if (! insn_is_asm && icode < 0)
3228 {
3229 gcc_assert (DEBUG_INSN_P (insn)
3230 || GET_CODE (PATTERN (insn)) == USE
3231 || GET_CODE (PATTERN (insn)) == CLOBBER
3232 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3233 if (DEBUG_BIND_INSN_P (insn))
3234 INSN_VAR_LOCATION_LOC (insn)
3235 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3236 return 0;
3237 }
3238
3239 /* We allow one special case which happens to work on all machines we
3240 currently support: a single set with the source or a REG_EQUAL
3241 note being a PLUS of an eliminable register and a constant. */
3242 plus_src = plus_cst_src = 0;
3243 if (old_set && REG_P (SET_DEST (old_set)))
3244 {
3245 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3246 plus_src = SET_SRC (old_set);
3247 /* First see if the source is of the form (plus (...) CST). */
3248 if (plus_src
3249 && CONST_INT_P (XEXP (plus_src, 1)))
3250 plus_cst_src = plus_src;
3251 else if (REG_P (SET_SRC (old_set))
3252 || plus_src)
3253 {
3254 /* Otherwise, see if we have a REG_EQUAL note of the form
3255 (plus (...) CST). */
3256 rtx links;
3257 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3258 {
3259 if ((REG_NOTE_KIND (links) == REG_EQUAL
3260 || REG_NOTE_KIND (links) == REG_EQUIV)
3261 && GET_CODE (XEXP (links, 0)) == PLUS
3262 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3263 {
3264 plus_cst_src = XEXP (links, 0);
3265 break;
3266 }
3267 }
3268 }
3269
3270 /* Check that the first operand of the PLUS is a hard reg or
3271 the lowpart subreg of one. */
3272 if (plus_cst_src)
3273 {
3274 rtx reg = XEXP (plus_cst_src, 0);
3275 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3276 reg = SUBREG_REG (reg);
3277
3278 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3279 plus_cst_src = 0;
3280 }
3281 }
3282 if (plus_cst_src)
3283 {
3284 rtx reg = XEXP (plus_cst_src, 0);
3285 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3286
3287 if (GET_CODE (reg) == SUBREG)
3288 reg = SUBREG_REG (reg);
3289
3290 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3291 if (ep->from_rtx == reg && ep->can_eliminate)
3292 {
3293 rtx to_rtx = ep->to_rtx;
3294 offset += ep->offset;
3295 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3296
3297 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3298 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3299 to_rtx);
3300 /* If we have a nonzero offset, and the source is already
3301 a simple REG, the following transformation would
3302 increase the cost of the insn by replacing a simple REG
3303 with (plus (reg sp) CST). So try only when we already
3304 had a PLUS before. */
3305 if (known_eq (offset, 0) || plus_src)
3306 {
3307 rtx new_src = plus_constant (GET_MODE (to_rtx),
3308 to_rtx, offset);
3309
3310 new_body = old_body;
3311 if (! replace)
3312 {
3313 new_body = copy_insn (old_body);
3314 if (REG_NOTES (insn))
3315 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3316 }
3317 PATTERN (insn) = new_body;
3318 old_set = single_set (insn);
3319
3320 /* First see if this insn remains valid when we make the
3321 change. If not, try to replace the whole pattern with
3322 a simple set (this may help if the original insn was a
3323 PARALLEL that was only recognized as single_set due to
3324 REG_UNUSED notes). If this isn't valid either, keep
3325 the INSN_CODE the same and let reload fix it up. */
3326 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3327 {
3328 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3329
3330 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3331 SET_SRC (old_set) = new_src;
3332 }
3333 }
3334 else
3335 break;
3336
3337 val = 1;
3338 /* This can't have an effect on elimination offsets, so skip right
3339 to the end. */
3340 goto done;
3341 }
3342 }
3343
3344 /* Determine the effects of this insn on elimination offsets. */
3345 elimination_effects (old_body, VOIDmode);
3346
3347 /* Eliminate all eliminable registers occurring in operands that
3348 can be handled by reload. */
3349 extract_insn (insn);
3350 for (i = 0; i < recog_data.n_operands; i++)
3351 {
3352 orig_operand[i] = recog_data.operand[i];
3353 substed_operand[i] = recog_data.operand[i];
3354
3355 /* For an asm statement, every operand is eliminable. */
3356 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3357 {
3358 bool is_set_src, in_plus;
3359
3360 /* Check for setting a register that we know about. */
3361 if (recog_data.operand_type[i] != OP_IN
3362 && REG_P (orig_operand[i]))
3363 {
3364 /* If we are assigning to a register that can be eliminated, it
3365 must be as part of a PARALLEL, since the code above handles
3366 single SETs. We must indicate that we can no longer
3367 eliminate this reg. */
3368 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3369 ep++)
3370 if (ep->from_rtx == orig_operand[i])
3371 ep->can_eliminate = 0;
3372 }
3373
3374 /* Companion to the above plus substitution, we can allow
3375 invariants as the source of a plain move. */
3376 is_set_src = false;
3377 if (old_set
3378 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3379 is_set_src = true;
3380 in_plus = false;
3381 if (plus_src
3382 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3383 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3384 in_plus = true;
3385
3386 substed_operand[i]
3387 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3388 replace ? insn : NULL_RTX,
3389 is_set_src || in_plus, false);
3390 if (substed_operand[i] != orig_operand[i])
3391 val = 1;
3392 /* Terminate the search in check_eliminable_occurrences at
3393 this point. */
3394 *recog_data.operand_loc[i] = 0;
3395
3396 /* If an output operand changed from a REG to a MEM and INSN is an
3397 insn, write a CLOBBER insn. */
3398 if (recog_data.operand_type[i] != OP_IN
3399 && REG_P (orig_operand[i])
3400 && MEM_P (substed_operand[i])
3401 && replace)
3402 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3403 }
3404 }
3405
3406 for (i = 0; i < recog_data.n_dups; i++)
3407 *recog_data.dup_loc[i]
3408 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3409
3410 /* If any eliminable remain, they aren't eliminable anymore. */
3411 check_eliminable_occurrences (old_body);
3412
3413 /* Substitute the operands; the new values are in the substed_operand
3414 array. */
3415 for (i = 0; i < recog_data.n_operands; i++)
3416 *recog_data.operand_loc[i] = substed_operand[i];
3417 for (i = 0; i < recog_data.n_dups; i++)
3418 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3419
3420 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3421 re-recognize the insn. We do this in case we had a simple addition
3422 but now can do this as a load-address. This saves an insn in this
3423 common case.
3424 If re-recognition fails, the old insn code number will still be used,
3425 and some register operands may have changed into PLUS expressions.
3426 These will be handled by find_reloads by loading them into a register
3427 again. */
3428
3429 if (val)
3430 {
3431 /* If we aren't replacing things permanently and we changed something,
3432 make another copy to ensure that all the RTL is new. Otherwise
3433 things can go wrong if find_reload swaps commutative operands
3434 and one is inside RTL that has been copied while the other is not. */
3435 new_body = old_body;
3436 if (! replace)
3437 {
3438 new_body = copy_insn (old_body);
3439 if (REG_NOTES (insn))
3440 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3441 }
3442 PATTERN (insn) = new_body;
3443
3444 /* If we had a move insn but now we don't, rerecognize it. This will
3445 cause spurious re-recognition if the old move had a PARALLEL since
3446 the new one still will, but we can't call single_set without
3447 having put NEW_BODY into the insn and the re-recognition won't
3448 hurt in this rare case. */
3449 /* ??? Why this huge if statement - why don't we just rerecognize the
3450 thing always? */
3451 if (! insn_is_asm
3452 && old_set != 0
3453 && ((REG_P (SET_SRC (old_set))
3454 && (GET_CODE (new_body) != SET
3455 || !REG_P (SET_SRC (new_body))))
3456 /* If this was a load from or store to memory, compare
3457 the MEM in recog_data.operand to the one in the insn.
3458 If they are not equal, then rerecognize the insn. */
3459 || (old_set != 0
3460 && ((MEM_P (SET_SRC (old_set))
3461 && SET_SRC (old_set) != recog_data.operand[1])
3462 || (MEM_P (SET_DEST (old_set))
3463 && SET_DEST (old_set) != recog_data.operand[0])))
3464 /* If this was an add insn before, rerecognize. */
3465 || GET_CODE (SET_SRC (old_set)) == PLUS))
3466 {
3467 int new_icode = recog (PATTERN (insn), insn, 0);
3468 if (new_icode >= 0)
3469 INSN_CODE (insn) = new_icode;
3470 }
3471 }
3472
3473 /* Restore the old body. If there were any changes to it, we made a copy
3474 of it while the changes were still in place, so we'll correctly return
3475 a modified insn below. */
3476 if (! replace)
3477 {
3478 /* Restore the old body. */
3479 for (i = 0; i < recog_data.n_operands; i++)
3480 /* Restoring a top-level match_parallel would clobber the new_body
3481 we installed in the insn. */
3482 if (recog_data.operand_loc[i] != &PATTERN (insn))
3483 *recog_data.operand_loc[i] = orig_operand[i];
3484 for (i = 0; i < recog_data.n_dups; i++)
3485 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3486 }
3487
3488 /* Update all elimination pairs to reflect the status after the current
3489 insn. The changes we make were determined by the earlier call to
3490 elimination_effects.
3491
3492 We also detect cases where register elimination cannot be done,
3493 namely, if a register would be both changed and referenced outside a MEM
3494 in the resulting insn since such an insn is often undefined and, even if
3495 not, we cannot know what meaning will be given to it. Note that it is
3496 valid to have a register used in an address in an insn that changes it
3497 (presumably with a pre- or post-increment or decrement).
3498
3499 If anything changes, return nonzero. */
3500
3501 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3502 {
3503 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3504 ep->can_eliminate = 0;
3505
3506 ep->ref_outside_mem = 0;
3507
3508 if (maybe_ne (ep->previous_offset, ep->offset))
3509 val = 1;
3510 }
3511
3512 done:
3513 /* If we changed something, perform elimination in REG_NOTES. This is
3514 needed even when REPLACE is zero because a REG_DEAD note might refer
3515 to a register that we eliminate and could cause a different number
3516 of spill registers to be needed in the final reload pass than in
3517 the pre-passes. */
3518 if (val && REG_NOTES (insn) != 0)
3519 REG_NOTES (insn)
3520 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3521 false);
3522
3523 return val;
3524 }
3525
3526 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3527 register allocator. INSN is the instruction we need to examine, we perform
3528 eliminations in its operands and record cases where eliminating a reg with
3529 an invariant equivalence would add extra cost. */
3530
3531 #pragma GCC diagnostic push
3532 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3533 static void
3534 elimination_costs_in_insn (rtx_insn *insn)
3535 {
3536 int icode = recog_memoized (insn);
3537 rtx old_body = PATTERN (insn);
3538 int insn_is_asm = asm_noperands (old_body) >= 0;
3539 rtx old_set = single_set (insn);
3540 int i;
3541 rtx orig_operand[MAX_RECOG_OPERANDS];
3542 rtx orig_dup[MAX_RECOG_OPERANDS];
3543 struct elim_table *ep;
3544 rtx plus_src, plus_cst_src;
3545 bool sets_reg_p;
3546
3547 if (! insn_is_asm && icode < 0)
3548 {
3549 gcc_assert (DEBUG_INSN_P (insn)
3550 || GET_CODE (PATTERN (insn)) == USE
3551 || GET_CODE (PATTERN (insn)) == CLOBBER
3552 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3553 return;
3554 }
3555
3556 if (old_set != 0 && REG_P (SET_DEST (old_set))
3557 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3558 {
3559 /* Check for setting an eliminable register. */
3560 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3561 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3562 return;
3563 }
3564
3565 /* We allow one special case which happens to work on all machines we
3566 currently support: a single set with the source or a REG_EQUAL
3567 note being a PLUS of an eliminable register and a constant. */
3568 plus_src = plus_cst_src = 0;
3569 sets_reg_p = false;
3570 if (old_set && REG_P (SET_DEST (old_set)))
3571 {
3572 sets_reg_p = true;
3573 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3574 plus_src = SET_SRC (old_set);
3575 /* First see if the source is of the form (plus (...) CST). */
3576 if (plus_src
3577 && CONST_INT_P (XEXP (plus_src, 1)))
3578 plus_cst_src = plus_src;
3579 else if (REG_P (SET_SRC (old_set))
3580 || plus_src)
3581 {
3582 /* Otherwise, see if we have a REG_EQUAL note of the form
3583 (plus (...) CST). */
3584 rtx links;
3585 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3586 {
3587 if ((REG_NOTE_KIND (links) == REG_EQUAL
3588 || REG_NOTE_KIND (links) == REG_EQUIV)
3589 && GET_CODE (XEXP (links, 0)) == PLUS
3590 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3591 {
3592 plus_cst_src = XEXP (links, 0);
3593 break;
3594 }
3595 }
3596 }
3597 }
3598
3599 /* Determine the effects of this insn on elimination offsets. */
3600 elimination_effects (old_body, VOIDmode);
3601
3602 /* Eliminate all eliminable registers occurring in operands that
3603 can be handled by reload. */
3604 extract_insn (insn);
3605 int n_dups = recog_data.n_dups;
3606 for (i = 0; i < n_dups; i++)
3607 orig_dup[i] = *recog_data.dup_loc[i];
3608
3609 int n_operands = recog_data.n_operands;
3610 for (i = 0; i < n_operands; i++)
3611 {
3612 orig_operand[i] = recog_data.operand[i];
3613
3614 /* For an asm statement, every operand is eliminable. */
3615 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3616 {
3617 bool is_set_src, in_plus;
3618
3619 /* Check for setting a register that we know about. */
3620 if (recog_data.operand_type[i] != OP_IN
3621 && REG_P (orig_operand[i]))
3622 {
3623 /* If we are assigning to a register that can be eliminated, it
3624 must be as part of a PARALLEL, since the code above handles
3625 single SETs. We must indicate that we can no longer
3626 eliminate this reg. */
3627 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3628 ep++)
3629 if (ep->from_rtx == orig_operand[i])
3630 ep->can_eliminate = 0;
3631 }
3632
3633 /* Companion to the above plus substitution, we can allow
3634 invariants as the source of a plain move. */
3635 is_set_src = false;
3636 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3637 is_set_src = true;
3638 if (is_set_src && !sets_reg_p)
3639 note_reg_elim_costly (SET_SRC (old_set), insn);
3640 in_plus = false;
3641 if (plus_src && sets_reg_p
3642 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3643 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3644 in_plus = true;
3645
3646 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3647 NULL_RTX,
3648 is_set_src || in_plus, true);
3649 /* Terminate the search in check_eliminable_occurrences at
3650 this point. */
3651 *recog_data.operand_loc[i] = 0;
3652 }
3653 }
3654
3655 for (i = 0; i < n_dups; i++)
3656 *recog_data.dup_loc[i]
3657 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3658
3659 /* If any eliminable remain, they aren't eliminable anymore. */
3660 check_eliminable_occurrences (old_body);
3661
3662 /* Restore the old body. */
3663 for (i = 0; i < n_operands; i++)
3664 *recog_data.operand_loc[i] = orig_operand[i];
3665 for (i = 0; i < n_dups; i++)
3666 *recog_data.dup_loc[i] = orig_dup[i];
3667
3668 /* Update all elimination pairs to reflect the status after the current
3669 insn. The changes we make were determined by the earlier call to
3670 elimination_effects. */
3671
3672 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3673 {
3674 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3675 ep->can_eliminate = 0;
3676
3677 ep->ref_outside_mem = 0;
3678 }
3679
3680 return;
3681 }
3682 #pragma GCC diagnostic pop
3683
3684 /* Loop through all elimination pairs.
3685 Recalculate the number not at initial offset.
3686
3687 Compute the maximum offset (minimum offset if the stack does not
3688 grow downward) for each elimination pair. */
3689
3690 static void
3691 update_eliminable_offsets (void)
3692 {
3693 struct elim_table *ep;
3694
3695 num_not_at_initial_offset = 0;
3696 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3697 {
3698 ep->previous_offset = ep->offset;
3699 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3700 num_not_at_initial_offset++;
3701 }
3702 }
3703
3704 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3705 replacement we currently believe is valid, mark it as not eliminable if X
3706 modifies DEST in any way other than by adding a constant integer to it.
3707
3708 If DEST is the frame pointer, we do nothing because we assume that
3709 all assignments to the hard frame pointer are nonlocal gotos and are being
3710 done at a time when they are valid and do not disturb anything else.
3711 Some machines want to eliminate a fake argument pointer with either the
3712 frame or stack pointer. Assignments to the hard frame pointer must not
3713 prevent this elimination.
3714
3715 Called via note_stores from reload before starting its passes to scan
3716 the insns of the function. */
3717
3718 static void
3719 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3720 {
3721 unsigned int i;
3722
3723 /* A SUBREG of a hard register here is just changing its mode. We should
3724 not see a SUBREG of an eliminable hard register, but check just in
3725 case. */
3726 if (GET_CODE (dest) == SUBREG)
3727 dest = SUBREG_REG (dest);
3728
3729 if (dest == hard_frame_pointer_rtx)
3730 return;
3731
3732 /* CLOBBER_HIGH is only supported for LRA. */
3733 gcc_assert (GET_CODE (x) != CLOBBER_HIGH);
3734
3735 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3736 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3737 && (GET_CODE (x) != SET
3738 || GET_CODE (SET_SRC (x)) != PLUS
3739 || XEXP (SET_SRC (x), 0) != dest
3740 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3741 {
3742 reg_eliminate[i].can_eliminate_previous
3743 = reg_eliminate[i].can_eliminate = 0;
3744 num_eliminable--;
3745 }
3746 }
3747
3748 /* Verify that the initial elimination offsets did not change since the
3749 last call to set_initial_elim_offsets. This is used to catch cases
3750 where something illegal happened during reload_as_needed that could
3751 cause incorrect code to be generated if we did not check for it. */
3752
3753 static bool
3754 verify_initial_elim_offsets (void)
3755 {
3756 poly_int64 t;
3757 struct elim_table *ep;
3758
3759 if (!num_eliminable)
3760 return true;
3761
3762 targetm.compute_frame_layout ();
3763 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3764 {
3765 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3766 if (maybe_ne (t, ep->initial_offset))
3767 return false;
3768 }
3769
3770 return true;
3771 }
3772
3773 /* Reset all offsets on eliminable registers to their initial values. */
3774
3775 static void
3776 set_initial_elim_offsets (void)
3777 {
3778 struct elim_table *ep = reg_eliminate;
3779
3780 targetm.compute_frame_layout ();
3781 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3782 {
3783 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3784 ep->previous_offset = ep->offset = ep->initial_offset;
3785 }
3786
3787 num_not_at_initial_offset = 0;
3788 }
3789
3790 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3791
3792 static void
3793 set_initial_eh_label_offset (rtx label)
3794 {
3795 set_label_offsets (label, NULL, 1);
3796 }
3797
3798 /* Initialize the known label offsets.
3799 Set a known offset for each forced label to be at the initial offset
3800 of each elimination. We do this because we assume that all
3801 computed jumps occur from a location where each elimination is
3802 at its initial offset.
3803 For all other labels, show that we don't know the offsets. */
3804
3805 static void
3806 set_initial_label_offsets (void)
3807 {
3808 memset (offsets_known_at, 0, num_labels);
3809
3810 unsigned int i;
3811 rtx_insn *insn;
3812 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3813 set_label_offsets (insn, NULL, 1);
3814
3815 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3816 if (x->insn ())
3817 set_label_offsets (x->insn (), NULL, 1);
3818
3819 for_each_eh_label (set_initial_eh_label_offset);
3820 }
3821
3822 /* Set all elimination offsets to the known values for the code label given
3823 by INSN. */
3824
3825 static void
3826 set_offsets_for_label (rtx_insn *insn)
3827 {
3828 unsigned int i;
3829 int label_nr = CODE_LABEL_NUMBER (insn);
3830 struct elim_table *ep;
3831
3832 num_not_at_initial_offset = 0;
3833 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3834 {
3835 ep->offset = ep->previous_offset
3836 = offsets_at[label_nr - first_label_num][i];
3837 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3838 num_not_at_initial_offset++;
3839 }
3840 }
3841
3842 /* See if anything that happened changes which eliminations are valid.
3843 For example, on the SPARC, whether or not the frame pointer can
3844 be eliminated can depend on what registers have been used. We need
3845 not check some conditions again (such as flag_omit_frame_pointer)
3846 since they can't have changed. */
3847
3848 static void
3849 update_eliminables (HARD_REG_SET *pset)
3850 {
3851 int previous_frame_pointer_needed = frame_pointer_needed;
3852 struct elim_table *ep;
3853
3854 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3855 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3856 && targetm.frame_pointer_required ())
3857 || ! targetm.can_eliminate (ep->from, ep->to)
3858 )
3859 ep->can_eliminate = 0;
3860
3861 /* Look for the case where we have discovered that we can't replace
3862 register A with register B and that means that we will now be
3863 trying to replace register A with register C. This means we can
3864 no longer replace register C with register B and we need to disable
3865 such an elimination, if it exists. This occurs often with A == ap,
3866 B == sp, and C == fp. */
3867
3868 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3869 {
3870 struct elim_table *op;
3871 int new_to = -1;
3872
3873 if (! ep->can_eliminate && ep->can_eliminate_previous)
3874 {
3875 /* Find the current elimination for ep->from, if there is a
3876 new one. */
3877 for (op = reg_eliminate;
3878 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3879 if (op->from == ep->from && op->can_eliminate)
3880 {
3881 new_to = op->to;
3882 break;
3883 }
3884
3885 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3886 disable it. */
3887 for (op = reg_eliminate;
3888 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3889 if (op->from == new_to && op->to == ep->to)
3890 op->can_eliminate = 0;
3891 }
3892 }
3893
3894 /* See if any registers that we thought we could eliminate the previous
3895 time are no longer eliminable. If so, something has changed and we
3896 must spill the register. Also, recompute the number of eliminable
3897 registers and see if the frame pointer is needed; it is if there is
3898 no elimination of the frame pointer that we can perform. */
3899
3900 frame_pointer_needed = 1;
3901 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3902 {
3903 if (ep->can_eliminate
3904 && ep->from == FRAME_POINTER_REGNUM
3905 && ep->to != HARD_FRAME_POINTER_REGNUM
3906 && (! SUPPORTS_STACK_ALIGNMENT
3907 || ! crtl->stack_realign_needed))
3908 frame_pointer_needed = 0;
3909
3910 if (! ep->can_eliminate && ep->can_eliminate_previous)
3911 {
3912 ep->can_eliminate_previous = 0;
3913 SET_HARD_REG_BIT (*pset, ep->from);
3914 num_eliminable--;
3915 }
3916 }
3917
3918 /* If we didn't need a frame pointer last time, but we do now, spill
3919 the hard frame pointer. */
3920 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3921 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3922 }
3923
3924 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3925 Return true iff a register was spilled. */
3926
3927 static bool
3928 update_eliminables_and_spill (void)
3929 {
3930 int i;
3931 bool did_spill = false;
3932 HARD_REG_SET to_spill;
3933 CLEAR_HARD_REG_SET (to_spill);
3934 update_eliminables (&to_spill);
3935 used_spill_regs &= ~to_spill;
3936
3937 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3938 if (TEST_HARD_REG_BIT (to_spill, i))
3939 {
3940 spill_hard_reg (i, 1);
3941 did_spill = true;
3942
3943 /* Regardless of the state of spills, if we previously had
3944 a register that we thought we could eliminate, but now
3945 cannot eliminate, we must run another pass.
3946
3947 Consider pseudos which have an entry in reg_equiv_* which
3948 reference an eliminable register. We must make another pass
3949 to update reg_equiv_* so that we do not substitute in the
3950 old value from when we thought the elimination could be
3951 performed. */
3952 }
3953 return did_spill;
3954 }
3955
3956 /* Return true if X is used as the target register of an elimination. */
3957
3958 bool
3959 elimination_target_reg_p (rtx x)
3960 {
3961 struct elim_table *ep;
3962
3963 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3964 if (ep->to_rtx == x && ep->can_eliminate)
3965 return true;
3966
3967 return false;
3968 }
3969
3970 /* Initialize the table of registers to eliminate.
3971 Pre-condition: global flag frame_pointer_needed has been set before
3972 calling this function. */
3973
3974 static void
3975 init_elim_table (void)
3976 {
3977 struct elim_table *ep;
3978 const struct elim_table_1 *ep1;
3979
3980 if (!reg_eliminate)
3981 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3982
3983 num_eliminable = 0;
3984
3985 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3986 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3987 {
3988 ep->from = ep1->from;
3989 ep->to = ep1->to;
3990 ep->can_eliminate = ep->can_eliminate_previous
3991 = (targetm.can_eliminate (ep->from, ep->to)
3992 && ! (ep->to == STACK_POINTER_REGNUM
3993 && frame_pointer_needed
3994 && (! SUPPORTS_STACK_ALIGNMENT
3995 || ! stack_realign_fp)));
3996 }
3997
3998 /* Count the number of eliminable registers and build the FROM and TO
3999 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4000 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4001 We depend on this. */
4002 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4003 {
4004 num_eliminable += ep->can_eliminate;
4005 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4006 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4007 }
4008 }
4009
4010 /* Find all the pseudo registers that didn't get hard regs
4011 but do have known equivalent constants or memory slots.
4012 These include parameters (known equivalent to parameter slots)
4013 and cse'd or loop-moved constant memory addresses.
4014
4015 Record constant equivalents in reg_equiv_constant
4016 so they will be substituted by find_reloads.
4017 Record memory equivalents in reg_mem_equiv so they can
4018 be substituted eventually by altering the REG-rtx's. */
4019
4020 static void
4021 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4022 {
4023 int i;
4024 rtx_insn *insn;
4025
4026 grow_reg_equivs ();
4027 if (do_subregs)
4028 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4029 else
4030 reg_max_ref_mode = NULL;
4031
4032 num_eliminable_invariants = 0;
4033
4034 first_label_num = get_first_label_num ();
4035 num_labels = max_label_num () - first_label_num;
4036
4037 /* Allocate the tables used to store offset information at labels. */
4038 offsets_known_at = XNEWVEC (char, num_labels);
4039 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4040 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4041
4042 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4043 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4044 find largest such for each pseudo. FIRST is the head of the insn
4045 list. */
4046
4047 for (insn = first; insn; insn = NEXT_INSN (insn))
4048 {
4049 rtx set = single_set (insn);
4050
4051 /* We may introduce USEs that we want to remove at the end, so
4052 we'll mark them with QImode. Make sure there are no
4053 previously-marked insns left by say regmove. */
4054 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4055 && GET_MODE (insn) != VOIDmode)
4056 PUT_MODE (insn, VOIDmode);
4057
4058 if (do_subregs && NONDEBUG_INSN_P (insn))
4059 scan_paradoxical_subregs (PATTERN (insn));
4060
4061 if (set != 0 && REG_P (SET_DEST (set)))
4062 {
4063 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4064 rtx x;
4065
4066 if (! note)
4067 continue;
4068
4069 i = REGNO (SET_DEST (set));
4070 x = XEXP (note, 0);
4071
4072 if (i <= LAST_VIRTUAL_REGISTER)
4073 continue;
4074
4075 /* If flag_pic and we have constant, verify it's legitimate. */
4076 if (!CONSTANT_P (x)
4077 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4078 {
4079 /* It can happen that a REG_EQUIV note contains a MEM
4080 that is not a legitimate memory operand. As later
4081 stages of reload assume that all addresses found
4082 in the reg_equiv_* arrays were originally legitimate,
4083 we ignore such REG_EQUIV notes. */
4084 if (memory_operand (x, VOIDmode))
4085 {
4086 /* Always unshare the equivalence, so we can
4087 substitute into this insn without touching the
4088 equivalence. */
4089 reg_equiv_memory_loc (i) = copy_rtx (x);
4090 }
4091 else if (function_invariant_p (x))
4092 {
4093 machine_mode mode;
4094
4095 mode = GET_MODE (SET_DEST (set));
4096 if (GET_CODE (x) == PLUS)
4097 {
4098 /* This is PLUS of frame pointer and a constant,
4099 and might be shared. Unshare it. */
4100 reg_equiv_invariant (i) = copy_rtx (x);
4101 num_eliminable_invariants++;
4102 }
4103 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4104 {
4105 reg_equiv_invariant (i) = x;
4106 num_eliminable_invariants++;
4107 }
4108 else if (targetm.legitimate_constant_p (mode, x))
4109 reg_equiv_constant (i) = x;
4110 else
4111 {
4112 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4113 if (! reg_equiv_memory_loc (i))
4114 reg_equiv_init (i) = NULL;
4115 }
4116 }
4117 else
4118 {
4119 reg_equiv_init (i) = NULL;
4120 continue;
4121 }
4122 }
4123 else
4124 reg_equiv_init (i) = NULL;
4125 }
4126 }
4127
4128 if (dump_file)
4129 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4130 if (reg_equiv_init (i))
4131 {
4132 fprintf (dump_file, "init_insns for %u: ", i);
4133 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4134 fprintf (dump_file, "\n");
4135 }
4136 }
4137
4138 /* Indicate that we no longer have known memory locations or constants.
4139 Free all data involved in tracking these. */
4140
4141 static void
4142 free_reg_equiv (void)
4143 {
4144 int i;
4145
4146 free (offsets_known_at);
4147 free (offsets_at);
4148 offsets_at = 0;
4149 offsets_known_at = 0;
4150
4151 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4152 if (reg_equiv_alt_mem_list (i))
4153 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4154 vec_free (reg_equivs);
4155 }
4156 \f
4157 /* Kick all pseudos out of hard register REGNO.
4158
4159 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4160 because we found we can't eliminate some register. In the case, no pseudos
4161 are allowed to be in the register, even if they are only in a block that
4162 doesn't require spill registers, unlike the case when we are spilling this
4163 hard reg to produce another spill register.
4164
4165 Return nonzero if any pseudos needed to be kicked out. */
4166
4167 static void
4168 spill_hard_reg (unsigned int regno, int cant_eliminate)
4169 {
4170 int i;
4171
4172 if (cant_eliminate)
4173 {
4174 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4175 df_set_regs_ever_live (regno, true);
4176 }
4177
4178 /* Spill every pseudo reg that was allocated to this reg
4179 or to something that overlaps this reg. */
4180
4181 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4182 if (reg_renumber[i] >= 0
4183 && (unsigned int) reg_renumber[i] <= regno
4184 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4185 SET_REGNO_REG_SET (&spilled_pseudos, i);
4186 }
4187
4188 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4189 insns that need reloads, this function is used to actually spill pseudo
4190 registers and try to reallocate them. It also sets up the spill_regs
4191 array for use by choose_reload_regs.
4192
4193 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4194 that we displace from hard registers. */
4195
4196 static int
4197 finish_spills (int global)
4198 {
4199 class insn_chain *chain;
4200 int something_changed = 0;
4201 unsigned i;
4202 reg_set_iterator rsi;
4203
4204 /* Build the spill_regs array for the function. */
4205 /* If there are some registers still to eliminate and one of the spill regs
4206 wasn't ever used before, additional stack space may have to be
4207 allocated to store this register. Thus, we may have changed the offset
4208 between the stack and frame pointers, so mark that something has changed.
4209
4210 One might think that we need only set VAL to 1 if this is a call-used
4211 register. However, the set of registers that must be saved by the
4212 prologue is not identical to the call-used set. For example, the
4213 register used by the call insn for the return PC is a call-used register,
4214 but must be saved by the prologue. */
4215
4216 n_spills = 0;
4217 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4218 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4219 {
4220 spill_reg_order[i] = n_spills;
4221 spill_regs[n_spills++] = i;
4222 if (num_eliminable && ! df_regs_ever_live_p (i))
4223 something_changed = 1;
4224 df_set_regs_ever_live (i, true);
4225 }
4226 else
4227 spill_reg_order[i] = -1;
4228
4229 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4230 if (reg_renumber[i] >= 0)
4231 {
4232 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4233 /* Mark it as no longer having a hard register home. */
4234 reg_renumber[i] = -1;
4235 if (ira_conflicts_p)
4236 /* Inform IRA about the change. */
4237 ira_mark_allocation_change (i);
4238 /* We will need to scan everything again. */
4239 something_changed = 1;
4240 }
4241
4242 /* Retry global register allocation if possible. */
4243 if (global && ira_conflicts_p)
4244 {
4245 unsigned int n;
4246
4247 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4248 /* For every insn that needs reloads, set the registers used as spill
4249 regs in pseudo_forbidden_regs for every pseudo live across the
4250 insn. */
4251 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4252 {
4253 EXECUTE_IF_SET_IN_REG_SET
4254 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4255 {
4256 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4257 }
4258 EXECUTE_IF_SET_IN_REG_SET
4259 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4260 {
4261 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4262 }
4263 }
4264
4265 /* Retry allocating the pseudos spilled in IRA and the
4266 reload. For each reg, merge the various reg sets that
4267 indicate which hard regs can't be used, and call
4268 ira_reassign_pseudos. */
4269 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4270 if (reg_old_renumber[i] != reg_renumber[i])
4271 {
4272 if (reg_renumber[i] < 0)
4273 temp_pseudo_reg_arr[n++] = i;
4274 else
4275 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4276 }
4277 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4278 bad_spill_regs_global,
4279 pseudo_forbidden_regs, pseudo_previous_regs,
4280 &spilled_pseudos))
4281 something_changed = 1;
4282 }
4283 /* Fix up the register information in the insn chain.
4284 This involves deleting those of the spilled pseudos which did not get
4285 a new hard register home from the live_{before,after} sets. */
4286 for (chain = reload_insn_chain; chain; chain = chain->next)
4287 {
4288 HARD_REG_SET used_by_pseudos;
4289 HARD_REG_SET used_by_pseudos2;
4290
4291 if (! ira_conflicts_p)
4292 {
4293 /* Don't do it for IRA because IRA and the reload still can
4294 assign hard registers to the spilled pseudos on next
4295 reload iterations. */
4296 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4297 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4298 }
4299 /* Mark any unallocated hard regs as available for spills. That
4300 makes inheritance work somewhat better. */
4301 if (chain->need_reload)
4302 {
4303 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4304 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4305 used_by_pseudos |= used_by_pseudos2;
4306
4307 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4308 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4309 /* Value of chain->used_spill_regs from previous iteration
4310 may be not included in the value calculated here because
4311 of possible removing caller-saves insns (see function
4312 delete_caller_save_insns. */
4313 chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
4314 }
4315 }
4316
4317 CLEAR_REG_SET (&changed_allocation_pseudos);
4318 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4319 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4320 {
4321 int regno = reg_renumber[i];
4322 if (reg_old_renumber[i] == regno)
4323 continue;
4324
4325 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4326
4327 alter_reg (i, reg_old_renumber[i], false);
4328 reg_old_renumber[i] = regno;
4329 if (dump_file)
4330 {
4331 if (regno == -1)
4332 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4333 else
4334 fprintf (dump_file, " Register %d now in %d.\n\n",
4335 i, reg_renumber[i]);
4336 }
4337 }
4338
4339 return something_changed;
4340 }
4341 \f
4342 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4343
4344 static void
4345 scan_paradoxical_subregs (rtx x)
4346 {
4347 int i;
4348 const char *fmt;
4349 enum rtx_code code = GET_CODE (x);
4350
4351 switch (code)
4352 {
4353 case REG:
4354 case CONST:
4355 case SYMBOL_REF:
4356 case LABEL_REF:
4357 CASE_CONST_ANY:
4358 case CC0:
4359 case PC:
4360 case USE:
4361 case CLOBBER:
4362 case CLOBBER_HIGH:
4363 return;
4364
4365 case SUBREG:
4366 if (REG_P (SUBREG_REG (x)))
4367 {
4368 unsigned int regno = REGNO (SUBREG_REG (x));
4369 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4370 {
4371 reg_max_ref_mode[regno] = GET_MODE (x);
4372 mark_home_live_1 (regno, GET_MODE (x));
4373 }
4374 }
4375 return;
4376
4377 default:
4378 break;
4379 }
4380
4381 fmt = GET_RTX_FORMAT (code);
4382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4383 {
4384 if (fmt[i] == 'e')
4385 scan_paradoxical_subregs (XEXP (x, i));
4386 else if (fmt[i] == 'E')
4387 {
4388 int j;
4389 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4390 scan_paradoxical_subregs (XVECEXP (x, i, j));
4391 }
4392 }
4393 }
4394
4395 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4396 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4397 and apply the corresponding narrowing subreg to *OTHER_PTR.
4398 Return true if the operands were changed, false otherwise. */
4399
4400 static bool
4401 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4402 {
4403 rtx op, inner, other, tem;
4404
4405 op = *op_ptr;
4406 if (!paradoxical_subreg_p (op))
4407 return false;
4408 inner = SUBREG_REG (op);
4409
4410 other = *other_ptr;
4411 tem = gen_lowpart_common (GET_MODE (inner), other);
4412 if (!tem)
4413 return false;
4414
4415 /* If the lowpart operation turned a hard register into a subreg,
4416 rather than simplifying it to another hard register, then the
4417 mode change cannot be properly represented. For example, OTHER
4418 might be valid in its current mode, but not in the new one. */
4419 if (GET_CODE (tem) == SUBREG
4420 && REG_P (other)
4421 && HARD_REGISTER_P (other))
4422 return false;
4423
4424 *op_ptr = inner;
4425 *other_ptr = tem;
4426 return true;
4427 }
4428 \f
4429 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4430 examine all of the reload insns between PREV and NEXT exclusive, and
4431 annotate all that may trap. */
4432
4433 static void
4434 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4435 {
4436 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4437 if (note == NULL)
4438 return;
4439 if (!insn_could_throw_p (insn))
4440 remove_note (insn, note);
4441 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4442 }
4443
4444 /* Reload pseudo-registers into hard regs around each insn as needed.
4445 Additional register load insns are output before the insn that needs it
4446 and perhaps store insns after insns that modify the reloaded pseudo reg.
4447
4448 reg_last_reload_reg and reg_reloaded_contents keep track of
4449 which registers are already available in reload registers.
4450 We update these for the reloads that we perform,
4451 as the insns are scanned. */
4452
4453 static void
4454 reload_as_needed (int live_known)
4455 {
4456 class insn_chain *chain;
4457 #if AUTO_INC_DEC
4458 int i;
4459 #endif
4460 rtx_note *marker;
4461
4462 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4463 memset (spill_reg_store, 0, sizeof spill_reg_store);
4464 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4465 INIT_REG_SET (&reg_has_output_reload);
4466 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4467 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4468
4469 set_initial_elim_offsets ();
4470
4471 /* Generate a marker insn that we will move around. */
4472 marker = emit_note (NOTE_INSN_DELETED);
4473 unlink_insn_chain (marker, marker);
4474
4475 for (chain = reload_insn_chain; chain; chain = chain->next)
4476 {
4477 rtx_insn *prev = 0;
4478 rtx_insn *insn = chain->insn;
4479 rtx_insn *old_next = NEXT_INSN (insn);
4480 #if AUTO_INC_DEC
4481 rtx_insn *old_prev = PREV_INSN (insn);
4482 #endif
4483
4484 if (will_delete_init_insn_p (insn))
4485 continue;
4486
4487 /* If we pass a label, copy the offsets from the label information
4488 into the current offsets of each elimination. */
4489 if (LABEL_P (insn))
4490 set_offsets_for_label (insn);
4491
4492 else if (INSN_P (insn))
4493 {
4494 regset_head regs_to_forget;
4495 INIT_REG_SET (&regs_to_forget);
4496 note_stores (insn, forget_old_reloads_1, &regs_to_forget);
4497
4498 /* If this is a USE and CLOBBER of a MEM, ensure that any
4499 references to eliminable registers have been removed. */
4500
4501 if ((GET_CODE (PATTERN (insn)) == USE
4502 || GET_CODE (PATTERN (insn)) == CLOBBER)
4503 && MEM_P (XEXP (PATTERN (insn), 0)))
4504 XEXP (XEXP (PATTERN (insn), 0), 0)
4505 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4506 GET_MODE (XEXP (PATTERN (insn), 0)),
4507 NULL_RTX);
4508
4509 /* If we need to do register elimination processing, do so.
4510 This might delete the insn, in which case we are done. */
4511 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4512 {
4513 eliminate_regs_in_insn (insn, 1);
4514 if (NOTE_P (insn))
4515 {
4516 update_eliminable_offsets ();
4517 CLEAR_REG_SET (&regs_to_forget);
4518 continue;
4519 }
4520 }
4521
4522 /* If need_elim is nonzero but need_reload is zero, one might think
4523 that we could simply set n_reloads to 0. However, find_reloads
4524 could have done some manipulation of the insn (such as swapping
4525 commutative operands), and these manipulations are lost during
4526 the first pass for every insn that needs register elimination.
4527 So the actions of find_reloads must be redone here. */
4528
4529 if (! chain->need_elim && ! chain->need_reload
4530 && ! chain->need_operand_change)
4531 n_reloads = 0;
4532 /* First find the pseudo regs that must be reloaded for this insn.
4533 This info is returned in the tables reload_... (see reload.h).
4534 Also modify the body of INSN by substituting RELOAD
4535 rtx's for those pseudo regs. */
4536 else
4537 {
4538 CLEAR_REG_SET (&reg_has_output_reload);
4539 CLEAR_HARD_REG_SET (reg_is_output_reload);
4540
4541 find_reloads (insn, 1, spill_indirect_levels, live_known,
4542 spill_reg_order);
4543 }
4544
4545 if (n_reloads > 0)
4546 {
4547 rtx_insn *next = NEXT_INSN (insn);
4548
4549 /* ??? PREV can get deleted by reload inheritance.
4550 Work around this by emitting a marker note. */
4551 prev = PREV_INSN (insn);
4552 reorder_insns_nobb (marker, marker, prev);
4553
4554 /* Now compute which reload regs to reload them into. Perhaps
4555 reusing reload regs from previous insns, or else output
4556 load insns to reload them. Maybe output store insns too.
4557 Record the choices of reload reg in reload_reg_rtx. */
4558 choose_reload_regs (chain);
4559
4560 /* Generate the insns to reload operands into or out of
4561 their reload regs. */
4562 emit_reload_insns (chain);
4563
4564 /* Substitute the chosen reload regs from reload_reg_rtx
4565 into the insn's body (or perhaps into the bodies of other
4566 load and store insn that we just made for reloading
4567 and that we moved the structure into). */
4568 subst_reloads (insn);
4569
4570 prev = PREV_INSN (marker);
4571 unlink_insn_chain (marker, marker);
4572
4573 /* Adjust the exception region notes for loads and stores. */
4574 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4575 fixup_eh_region_note (insn, prev, next);
4576
4577 /* Adjust the location of REG_ARGS_SIZE. */
4578 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4579 if (p)
4580 {
4581 remove_note (insn, p);
4582 fixup_args_size_notes (prev, PREV_INSN (next),
4583 get_args_size (p));
4584 }
4585
4586 /* If this was an ASM, make sure that all the reload insns
4587 we have generated are valid. If not, give an error
4588 and delete them. */
4589 if (asm_noperands (PATTERN (insn)) >= 0)
4590 for (rtx_insn *p = NEXT_INSN (prev);
4591 p != next;
4592 p = NEXT_INSN (p))
4593 if (p != insn && INSN_P (p)
4594 && GET_CODE (PATTERN (p)) != USE
4595 && (recog_memoized (p) < 0
4596 || (extract_insn (p),
4597 !(constrain_operands (1,
4598 get_enabled_alternatives (p))))))
4599 {
4600 error_for_asm (insn,
4601 "%<asm%> operand requires "
4602 "impossible reload");
4603 delete_insn (p);
4604 }
4605 }
4606
4607 if (num_eliminable && chain->need_elim)
4608 update_eliminable_offsets ();
4609
4610 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4611 is no longer validly lying around to save a future reload.
4612 Note that this does not detect pseudos that were reloaded
4613 for this insn in order to be stored in
4614 (obeying register constraints). That is correct; such reload
4615 registers ARE still valid. */
4616 forget_marked_reloads (&regs_to_forget);
4617 CLEAR_REG_SET (&regs_to_forget);
4618
4619 /* There may have been CLOBBER insns placed after INSN. So scan
4620 between INSN and NEXT and use them to forget old reloads. */
4621 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4622 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4623 note_stores (x, forget_old_reloads_1, NULL);
4624
4625 #if AUTO_INC_DEC
4626 /* Likewise for regs altered by auto-increment in this insn.
4627 REG_INC notes have been changed by reloading:
4628 find_reloads_address_1 records substitutions for them,
4629 which have been performed by subst_reloads above. */
4630 for (i = n_reloads - 1; i >= 0; i--)
4631 {
4632 rtx in_reg = rld[i].in_reg;
4633 if (in_reg)
4634 {
4635 enum rtx_code code = GET_CODE (in_reg);
4636 /* PRE_INC / PRE_DEC will have the reload register ending up
4637 with the same value as the stack slot, but that doesn't
4638 hold true for POST_INC / POST_DEC. Either we have to
4639 convert the memory access to a true POST_INC / POST_DEC,
4640 or we can't use the reload register for inheritance. */
4641 if ((code == POST_INC || code == POST_DEC)
4642 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4643 REGNO (rld[i].reg_rtx))
4644 /* Make sure it is the inc/dec pseudo, and not
4645 some other (e.g. output operand) pseudo. */
4646 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4647 == REGNO (XEXP (in_reg, 0))))
4648
4649 {
4650 rtx reload_reg = rld[i].reg_rtx;
4651 machine_mode mode = GET_MODE (reload_reg);
4652 int n = 0;
4653 rtx_insn *p;
4654
4655 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4656 {
4657 /* We really want to ignore REG_INC notes here, so
4658 use PATTERN (p) as argument to reg_set_p . */
4659 if (reg_set_p (reload_reg, PATTERN (p)))
4660 break;
4661 n = count_occurrences (PATTERN (p), reload_reg, 0);
4662 if (! n)
4663 continue;
4664 if (n == 1)
4665 {
4666 rtx replace_reg
4667 = gen_rtx_fmt_e (code, mode, reload_reg);
4668
4669 validate_replace_rtx_group (reload_reg,
4670 replace_reg, p);
4671 n = verify_changes (0);
4672
4673 /* We must also verify that the constraints
4674 are met after the replacement. Make sure
4675 extract_insn is only called for an insn
4676 where the replacements were found to be
4677 valid so far. */
4678 if (n)
4679 {
4680 extract_insn (p);
4681 n = constrain_operands (1,
4682 get_enabled_alternatives (p));
4683 }
4684
4685 /* If the constraints were not met, then
4686 undo the replacement, else confirm it. */
4687 if (!n)
4688 cancel_changes (0);
4689 else
4690 confirm_change_group ();
4691 }
4692 break;
4693 }
4694 if (n == 1)
4695 {
4696 add_reg_note (p, REG_INC, reload_reg);
4697 /* Mark this as having an output reload so that the
4698 REG_INC processing code below won't invalidate
4699 the reload for inheritance. */
4700 SET_HARD_REG_BIT (reg_is_output_reload,
4701 REGNO (reload_reg));
4702 SET_REGNO_REG_SET (&reg_has_output_reload,
4703 REGNO (XEXP (in_reg, 0)));
4704 }
4705 else
4706 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4707 NULL);
4708 }
4709 else if ((code == PRE_INC || code == PRE_DEC)
4710 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4711 REGNO (rld[i].reg_rtx))
4712 /* Make sure it is the inc/dec pseudo, and not
4713 some other (e.g. output operand) pseudo. */
4714 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4715 == REGNO (XEXP (in_reg, 0))))
4716 {
4717 SET_HARD_REG_BIT (reg_is_output_reload,
4718 REGNO (rld[i].reg_rtx));
4719 SET_REGNO_REG_SET (&reg_has_output_reload,
4720 REGNO (XEXP (in_reg, 0)));
4721 }
4722 else if (code == PRE_INC || code == PRE_DEC
4723 || code == POST_INC || code == POST_DEC)
4724 {
4725 int in_regno = REGNO (XEXP (in_reg, 0));
4726
4727 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4728 {
4729 int in_hard_regno;
4730 bool forget_p = true;
4731
4732 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4733 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4734 in_hard_regno))
4735 {
4736 for (rtx_insn *x = (old_prev ?
4737 NEXT_INSN (old_prev) : insn);
4738 x != old_next;
4739 x = NEXT_INSN (x))
4740 if (x == reg_reloaded_insn[in_hard_regno])
4741 {
4742 forget_p = false;
4743 break;
4744 }
4745 }
4746 /* If for some reasons, we didn't set up
4747 reg_last_reload_reg in this insn,
4748 invalidate inheritance from previous
4749 insns for the incremented/decremented
4750 register. Such registers will be not in
4751 reg_has_output_reload. Invalidate it
4752 also if the corresponding element in
4753 reg_reloaded_insn is also
4754 invalidated. */
4755 if (forget_p)
4756 forget_old_reloads_1 (XEXP (in_reg, 0),
4757 NULL_RTX, NULL);
4758 }
4759 }
4760 }
4761 }
4762 /* If a pseudo that got a hard register is auto-incremented,
4763 we must purge records of copying it into pseudos without
4764 hard registers. */
4765 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4766 if (REG_NOTE_KIND (x) == REG_INC)
4767 {
4768 /* See if this pseudo reg was reloaded in this insn.
4769 If so, its last-reload info is still valid
4770 because it is based on this insn's reload. */
4771 for (i = 0; i < n_reloads; i++)
4772 if (rld[i].out == XEXP (x, 0))
4773 break;
4774
4775 if (i == n_reloads)
4776 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4777 }
4778 #endif
4779 }
4780 /* A reload reg's contents are unknown after a label. */
4781 if (LABEL_P (insn))
4782 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4783
4784 /* Don't assume a reload reg is still good after a call insn
4785 if it is a call-used reg, or if it contains a value that will
4786 be partially clobbered by the call. */
4787 else if (CALL_P (insn))
4788 {
4789 reg_reloaded_valid &= ~(call_used_or_fixed_regs
4790 | reg_reloaded_call_part_clobbered);
4791
4792 /* If this is a call to a setjmp-type function, we must not
4793 reuse any reload reg contents across the call; that will
4794 just be clobbered by other uses of the register in later
4795 code, before the longjmp. */
4796 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4797 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4798 }
4799 }
4800
4801 /* Clean up. */
4802 free (reg_last_reload_reg);
4803 CLEAR_REG_SET (&reg_has_output_reload);
4804 }
4805
4806 /* Discard all record of any value reloaded from X,
4807 or reloaded in X from someplace else;
4808 unless X is an output reload reg of the current insn.
4809
4810 X may be a hard reg (the reload reg)
4811 or it may be a pseudo reg that was reloaded from.
4812
4813 When DATA is non-NULL just mark the registers in regset
4814 to be forgotten later. */
4815
4816 static void
4817 forget_old_reloads_1 (rtx x, const_rtx setter,
4818 void *data)
4819 {
4820 unsigned int regno;
4821 unsigned int nr;
4822 regset regs = (regset) data;
4823
4824 /* note_stores does give us subregs of hard regs,
4825 subreg_regno_offset requires a hard reg. */
4826 while (GET_CODE (x) == SUBREG)
4827 {
4828 /* We ignore the subreg offset when calculating the regno,
4829 because we are using the entire underlying hard register
4830 below. */
4831 x = SUBREG_REG (x);
4832 }
4833
4834 if (!REG_P (x))
4835 return;
4836
4837 /* CLOBBER_HIGH is only supported for LRA. */
4838 gcc_assert (setter == NULL_RTX || GET_CODE (setter) != CLOBBER_HIGH);
4839
4840 regno = REGNO (x);
4841
4842 if (regno >= FIRST_PSEUDO_REGISTER)
4843 nr = 1;
4844 else
4845 {
4846 unsigned int i;
4847
4848 nr = REG_NREGS (x);
4849 /* Storing into a spilled-reg invalidates its contents.
4850 This can happen if a block-local pseudo is allocated to that reg
4851 and it wasn't spilled because this block's total need is 0.
4852 Then some insn might have an optional reload and use this reg. */
4853 if (!regs)
4854 for (i = 0; i < nr; i++)
4855 /* But don't do this if the reg actually serves as an output
4856 reload reg in the current instruction. */
4857 if (n_reloads == 0
4858 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4859 {
4860 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4861 spill_reg_store[regno + i] = 0;
4862 }
4863 }
4864
4865 if (regs)
4866 while (nr-- > 0)
4867 SET_REGNO_REG_SET (regs, regno + nr);
4868 else
4869 {
4870 /* Since value of X has changed,
4871 forget any value previously copied from it. */
4872
4873 while (nr-- > 0)
4874 /* But don't forget a copy if this is the output reload
4875 that establishes the copy's validity. */
4876 if (n_reloads == 0
4877 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4878 reg_last_reload_reg[regno + nr] = 0;
4879 }
4880 }
4881
4882 /* Forget the reloads marked in regset by previous function. */
4883 static void
4884 forget_marked_reloads (regset regs)
4885 {
4886 unsigned int reg;
4887 reg_set_iterator rsi;
4888 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4889 {
4890 if (reg < FIRST_PSEUDO_REGISTER
4891 /* But don't do this if the reg actually serves as an output
4892 reload reg in the current instruction. */
4893 && (n_reloads == 0
4894 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4895 {
4896 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4897 spill_reg_store[reg] = 0;
4898 }
4899 if (n_reloads == 0
4900 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4901 reg_last_reload_reg[reg] = 0;
4902 }
4903 }
4904 \f
4905 /* The following HARD_REG_SETs indicate when each hard register is
4906 used for a reload of various parts of the current insn. */
4907
4908 /* If reg is unavailable for all reloads. */
4909 static HARD_REG_SET reload_reg_unavailable;
4910 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4911 static HARD_REG_SET reload_reg_used;
4912 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4913 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4914 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4915 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4916 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4917 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4918 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4919 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4920 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4921 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4922 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4923 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4924 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4925 static HARD_REG_SET reload_reg_used_in_op_addr;
4926 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4927 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4928 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4929 static HARD_REG_SET reload_reg_used_in_insn;
4930 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4931 static HARD_REG_SET reload_reg_used_in_other_addr;
4932
4933 /* If reg is in use as a reload reg for any sort of reload. */
4934 static HARD_REG_SET reload_reg_used_at_all;
4935
4936 /* If reg is use as an inherited reload. We just mark the first register
4937 in the group. */
4938 static HARD_REG_SET reload_reg_used_for_inherit;
4939
4940 /* Records which hard regs are used in any way, either as explicit use or
4941 by being allocated to a pseudo during any point of the current insn. */
4942 static HARD_REG_SET reg_used_in_insn;
4943
4944 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4945 TYPE. MODE is used to indicate how many consecutive regs are
4946 actually used. */
4947
4948 static void
4949 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4950 machine_mode mode)
4951 {
4952 switch (type)
4953 {
4954 case RELOAD_OTHER:
4955 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4956 break;
4957
4958 case RELOAD_FOR_INPUT_ADDRESS:
4959 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4960 break;
4961
4962 case RELOAD_FOR_INPADDR_ADDRESS:
4963 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4964 break;
4965
4966 case RELOAD_FOR_OUTPUT_ADDRESS:
4967 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4968 break;
4969
4970 case RELOAD_FOR_OUTADDR_ADDRESS:
4971 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4972 break;
4973
4974 case RELOAD_FOR_OPERAND_ADDRESS:
4975 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4976 break;
4977
4978 case RELOAD_FOR_OPADDR_ADDR:
4979 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4980 break;
4981
4982 case RELOAD_FOR_OTHER_ADDRESS:
4983 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4984 break;
4985
4986 case RELOAD_FOR_INPUT:
4987 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4988 break;
4989
4990 case RELOAD_FOR_OUTPUT:
4991 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4992 break;
4993
4994 case RELOAD_FOR_INSN:
4995 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
4996 break;
4997 }
4998
4999 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5000 }
5001
5002 /* Similarly, but show REGNO is no longer in use for a reload. */
5003
5004 static void
5005 clear_reload_reg_in_use (unsigned int regno, int opnum,
5006 enum reload_type type, machine_mode mode)
5007 {
5008 unsigned int nregs = hard_regno_nregs (regno, mode);
5009 unsigned int start_regno, end_regno, r;
5010 int i;
5011 /* A complication is that for some reload types, inheritance might
5012 allow multiple reloads of the same types to share a reload register.
5013 We set check_opnum if we have to check only reloads with the same
5014 operand number, and check_any if we have to check all reloads. */
5015 int check_opnum = 0;
5016 int check_any = 0;
5017 HARD_REG_SET *used_in_set;
5018
5019 switch (type)
5020 {
5021 case RELOAD_OTHER:
5022 used_in_set = &reload_reg_used;
5023 break;
5024
5025 case RELOAD_FOR_INPUT_ADDRESS:
5026 used_in_set = &reload_reg_used_in_input_addr[opnum];
5027 break;
5028
5029 case RELOAD_FOR_INPADDR_ADDRESS:
5030 check_opnum = 1;
5031 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5032 break;
5033
5034 case RELOAD_FOR_OUTPUT_ADDRESS:
5035 used_in_set = &reload_reg_used_in_output_addr[opnum];
5036 break;
5037
5038 case RELOAD_FOR_OUTADDR_ADDRESS:
5039 check_opnum = 1;
5040 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5041 break;
5042
5043 case RELOAD_FOR_OPERAND_ADDRESS:
5044 used_in_set = &reload_reg_used_in_op_addr;
5045 break;
5046
5047 case RELOAD_FOR_OPADDR_ADDR:
5048 check_any = 1;
5049 used_in_set = &reload_reg_used_in_op_addr_reload;
5050 break;
5051
5052 case RELOAD_FOR_OTHER_ADDRESS:
5053 used_in_set = &reload_reg_used_in_other_addr;
5054 check_any = 1;
5055 break;
5056
5057 case RELOAD_FOR_INPUT:
5058 used_in_set = &reload_reg_used_in_input[opnum];
5059 break;
5060
5061 case RELOAD_FOR_OUTPUT:
5062 used_in_set = &reload_reg_used_in_output[opnum];
5063 break;
5064
5065 case RELOAD_FOR_INSN:
5066 used_in_set = &reload_reg_used_in_insn;
5067 break;
5068 default:
5069 gcc_unreachable ();
5070 }
5071 /* We resolve conflicts with remaining reloads of the same type by
5072 excluding the intervals of reload registers by them from the
5073 interval of freed reload registers. Since we only keep track of
5074 one set of interval bounds, we might have to exclude somewhat
5075 more than what would be necessary if we used a HARD_REG_SET here.
5076 But this should only happen very infrequently, so there should
5077 be no reason to worry about it. */
5078
5079 start_regno = regno;
5080 end_regno = regno + nregs;
5081 if (check_opnum || check_any)
5082 {
5083 for (i = n_reloads - 1; i >= 0; i--)
5084 {
5085 if (rld[i].when_needed == type
5086 && (check_any || rld[i].opnum == opnum)
5087 && rld[i].reg_rtx)
5088 {
5089 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5090 unsigned int conflict_end
5091 = end_hard_regno (rld[i].mode, conflict_start);
5092
5093 /* If there is an overlap with the first to-be-freed register,
5094 adjust the interval start. */
5095 if (conflict_start <= start_regno && conflict_end > start_regno)
5096 start_regno = conflict_end;
5097 /* Otherwise, if there is a conflict with one of the other
5098 to-be-freed registers, adjust the interval end. */
5099 if (conflict_start > start_regno && conflict_start < end_regno)
5100 end_regno = conflict_start;
5101 }
5102 }
5103 }
5104
5105 for (r = start_regno; r < end_regno; r++)
5106 CLEAR_HARD_REG_BIT (*used_in_set, r);
5107 }
5108
5109 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5110 specified by OPNUM and TYPE. */
5111
5112 static int
5113 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5114 {
5115 int i;
5116
5117 /* In use for a RELOAD_OTHER means it's not available for anything. */
5118 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5119 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5120 return 0;
5121
5122 switch (type)
5123 {
5124 case RELOAD_OTHER:
5125 /* In use for anything means we can't use it for RELOAD_OTHER. */
5126 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5127 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5128 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5129 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5130 return 0;
5131
5132 for (i = 0; i < reload_n_operands; i++)
5133 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5134 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5135 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5136 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5137 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5138 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5139 return 0;
5140
5141 return 1;
5142
5143 case RELOAD_FOR_INPUT:
5144 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5145 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5146 return 0;
5147
5148 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5149 return 0;
5150
5151 /* If it is used for some other input, can't use it. */
5152 for (i = 0; i < reload_n_operands; i++)
5153 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5154 return 0;
5155
5156 /* If it is used in a later operand's address, can't use it. */
5157 for (i = opnum + 1; i < reload_n_operands; i++)
5158 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5159 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5160 return 0;
5161
5162 return 1;
5163
5164 case RELOAD_FOR_INPUT_ADDRESS:
5165 /* Can't use a register if it is used for an input address for this
5166 operand or used as an input in an earlier one. */
5167 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5168 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5169 return 0;
5170
5171 for (i = 0; i < opnum; i++)
5172 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5173 return 0;
5174
5175 return 1;
5176
5177 case RELOAD_FOR_INPADDR_ADDRESS:
5178 /* Can't use a register if it is used for an input address
5179 for this operand or used as an input in an earlier
5180 one. */
5181 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5182 return 0;
5183
5184 for (i = 0; i < opnum; i++)
5185 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5186 return 0;
5187
5188 return 1;
5189
5190 case RELOAD_FOR_OUTPUT_ADDRESS:
5191 /* Can't use a register if it is used for an output address for this
5192 operand or used as an output in this or a later operand. Note
5193 that multiple output operands are emitted in reverse order, so
5194 the conflicting ones are those with lower indices. */
5195 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5196 return 0;
5197
5198 for (i = 0; i <= opnum; i++)
5199 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5200 return 0;
5201
5202 return 1;
5203
5204 case RELOAD_FOR_OUTADDR_ADDRESS:
5205 /* Can't use a register if it is used for an output address
5206 for this operand or used as an output in this or a
5207 later operand. Note that multiple output operands are
5208 emitted in reverse order, so the conflicting ones are
5209 those with lower indices. */
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5211 return 0;
5212
5213 for (i = 0; i <= opnum; i++)
5214 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5215 return 0;
5216
5217 return 1;
5218
5219 case RELOAD_FOR_OPERAND_ADDRESS:
5220 for (i = 0; i < reload_n_operands; i++)
5221 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5222 return 0;
5223
5224 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5225 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5226
5227 case RELOAD_FOR_OPADDR_ADDR:
5228 for (i = 0; i < reload_n_operands; i++)
5229 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5230 return 0;
5231
5232 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5233
5234 case RELOAD_FOR_OUTPUT:
5235 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5236 outputs, or an operand address for this or an earlier output.
5237 Note that multiple output operands are emitted in reverse order,
5238 so the conflicting ones are those with higher indices. */
5239 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5240 return 0;
5241
5242 for (i = 0; i < reload_n_operands; i++)
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5244 return 0;
5245
5246 for (i = opnum; i < reload_n_operands; i++)
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5248 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5249 return 0;
5250
5251 return 1;
5252
5253 case RELOAD_FOR_INSN:
5254 for (i = 0; i < reload_n_operands; i++)
5255 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5256 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5257 return 0;
5258
5259 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5260 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5261
5262 case RELOAD_FOR_OTHER_ADDRESS:
5263 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5264
5265 default:
5266 gcc_unreachable ();
5267 }
5268 }
5269
5270 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5271 the number RELOADNUM, is still available in REGNO at the end of the insn.
5272
5273 We can assume that the reload reg was already tested for availability
5274 at the time it is needed, and we should not check this again,
5275 in case the reg has already been marked in use. */
5276
5277 static int
5278 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5279 {
5280 int opnum = rld[reloadnum].opnum;
5281 enum reload_type type = rld[reloadnum].when_needed;
5282 int i;
5283
5284 /* See if there is a reload with the same type for this operand, using
5285 the same register. This case is not handled by the code below. */
5286 for (i = reloadnum + 1; i < n_reloads; i++)
5287 {
5288 rtx reg;
5289
5290 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5291 continue;
5292 reg = rld[i].reg_rtx;
5293 if (reg == NULL_RTX)
5294 continue;
5295 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5296 return 0;
5297 }
5298
5299 switch (type)
5300 {
5301 case RELOAD_OTHER:
5302 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5303 its value must reach the end. */
5304 return 1;
5305
5306 /* If this use is for part of the insn,
5307 its value reaches if no subsequent part uses the same register.
5308 Just like the above function, don't try to do this with lots
5309 of fallthroughs. */
5310
5311 case RELOAD_FOR_OTHER_ADDRESS:
5312 /* Here we check for everything else, since these don't conflict
5313 with anything else and everything comes later. */
5314
5315 for (i = 0; i < reload_n_operands; i++)
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5317 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5318 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5319 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5320 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5321 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5322 return 0;
5323
5324 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5325 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5326 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5327 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5328
5329 case RELOAD_FOR_INPUT_ADDRESS:
5330 case RELOAD_FOR_INPADDR_ADDRESS:
5331 /* Similar, except that we check only for this and subsequent inputs
5332 and the address of only subsequent inputs and we do not need
5333 to check for RELOAD_OTHER objects since they are known not to
5334 conflict. */
5335
5336 for (i = opnum; i < reload_n_operands; i++)
5337 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5338 return 0;
5339
5340 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5341 could be killed if the register is also used by reload with type
5342 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5343 if (type == RELOAD_FOR_INPADDR_ADDRESS
5344 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5345 return 0;
5346
5347 for (i = opnum + 1; i < reload_n_operands; i++)
5348 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5349 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5350 return 0;
5351
5352 for (i = 0; i < reload_n_operands; i++)
5353 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5354 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5355 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5356 return 0;
5357
5358 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5359 return 0;
5360
5361 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5362 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5363 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5364
5365 case RELOAD_FOR_INPUT:
5366 /* Similar to input address, except we start at the next operand for
5367 both input and input address and we do not check for
5368 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5369 would conflict. */
5370
5371 for (i = opnum + 1; i < reload_n_operands; i++)
5372 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5373 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5374 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5375 return 0;
5376
5377 /* ... fall through ... */
5378
5379 case RELOAD_FOR_OPERAND_ADDRESS:
5380 /* Check outputs and their addresses. */
5381
5382 for (i = 0; i < reload_n_operands; i++)
5383 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5386 return 0;
5387
5388 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5389
5390 case RELOAD_FOR_OPADDR_ADDR:
5391 for (i = 0; i < reload_n_operands; i++)
5392 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5393 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5394 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5395 return 0;
5396
5397 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5398 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5399 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5400
5401 case RELOAD_FOR_INSN:
5402 /* These conflict with other outputs with RELOAD_OTHER. So
5403 we need only check for output addresses. */
5404
5405 opnum = reload_n_operands;
5406
5407 /* fall through */
5408
5409 case RELOAD_FOR_OUTPUT:
5410 case RELOAD_FOR_OUTPUT_ADDRESS:
5411 case RELOAD_FOR_OUTADDR_ADDRESS:
5412 /* We already know these can't conflict with a later output. So the
5413 only thing to check are later output addresses.
5414 Note that multiple output operands are emitted in reverse order,
5415 so the conflicting ones are those with lower indices. */
5416 for (i = 0; i < opnum; i++)
5417 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5418 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5419 return 0;
5420
5421 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5422 could be killed if the register is also used by reload with type
5423 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5424 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5425 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5426 return 0;
5427
5428 return 1;
5429
5430 default:
5431 gcc_unreachable ();
5432 }
5433 }
5434
5435 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5436 every register in REG. */
5437
5438 static bool
5439 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5440 {
5441 unsigned int i;
5442
5443 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5444 if (!reload_reg_reaches_end_p (i, reloadnum))
5445 return false;
5446 return true;
5447 }
5448 \f
5449
5450 /* Returns whether R1 and R2 are uniquely chained: the value of one
5451 is used by the other, and that value is not used by any other
5452 reload for this insn. This is used to partially undo the decision
5453 made in find_reloads when in the case of multiple
5454 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5455 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5456 reloads. This code tries to avoid the conflict created by that
5457 change. It might be cleaner to explicitly keep track of which
5458 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5459 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5460 this after the fact. */
5461 static bool
5462 reloads_unique_chain_p (int r1, int r2)
5463 {
5464 int i;
5465
5466 /* We only check input reloads. */
5467 if (! rld[r1].in || ! rld[r2].in)
5468 return false;
5469
5470 /* Avoid anything with output reloads. */
5471 if (rld[r1].out || rld[r2].out)
5472 return false;
5473
5474 /* "chained" means one reload is a component of the other reload,
5475 not the same as the other reload. */
5476 if (rld[r1].opnum != rld[r2].opnum
5477 || rtx_equal_p (rld[r1].in, rld[r2].in)
5478 || rld[r1].optional || rld[r2].optional
5479 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5480 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5481 return false;
5482
5483 /* The following loop assumes that r1 is the reload that feeds r2. */
5484 if (r1 > r2)
5485 std::swap (r1, r2);
5486
5487 for (i = 0; i < n_reloads; i ++)
5488 /* Look for input reloads that aren't our two */
5489 if (i != r1 && i != r2 && rld[i].in)
5490 {
5491 /* If our reload is mentioned at all, it isn't a simple chain. */
5492 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5493 return false;
5494 }
5495 return true;
5496 }
5497
5498 /* The recursive function change all occurrences of WHAT in *WHERE
5499 to REPL. */
5500 static void
5501 substitute (rtx *where, const_rtx what, rtx repl)
5502 {
5503 const char *fmt;
5504 int i;
5505 enum rtx_code code;
5506
5507 if (*where == 0)
5508 return;
5509
5510 if (*where == what || rtx_equal_p (*where, what))
5511 {
5512 /* Record the location of the changed rtx. */
5513 substitute_stack.safe_push (where);
5514 *where = repl;
5515 return;
5516 }
5517
5518 code = GET_CODE (*where);
5519 fmt = GET_RTX_FORMAT (code);
5520 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5521 {
5522 if (fmt[i] == 'E')
5523 {
5524 int j;
5525
5526 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5527 substitute (&XVECEXP (*where, i, j), what, repl);
5528 }
5529 else if (fmt[i] == 'e')
5530 substitute (&XEXP (*where, i), what, repl);
5531 }
5532 }
5533
5534 /* The function returns TRUE if chain of reload R1 and R2 (in any
5535 order) can be evaluated without usage of intermediate register for
5536 the reload containing another reload. It is important to see
5537 gen_reload to understand what the function is trying to do. As an
5538 example, let us have reload chain
5539
5540 r2: const
5541 r1: <something> + const
5542
5543 and reload R2 got reload reg HR. The function returns true if
5544 there is a correct insn HR = HR + <something>. Otherwise,
5545 gen_reload will use intermediate register (and this is the reload
5546 reg for R1) to reload <something>.
5547
5548 We need this function to find a conflict for chain reloads. In our
5549 example, if HR = HR + <something> is incorrect insn, then we cannot
5550 use HR as a reload register for R2. If we do use it then we get a
5551 wrong code:
5552
5553 HR = const
5554 HR = <something>
5555 HR = HR + HR
5556
5557 */
5558 static bool
5559 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5560 {
5561 /* Assume other cases in gen_reload are not possible for
5562 chain reloads or do need an intermediate hard registers. */
5563 bool result = true;
5564 int regno, code;
5565 rtx out, in;
5566 rtx_insn *insn;
5567 rtx_insn *last = get_last_insn ();
5568
5569 /* Make r2 a component of r1. */
5570 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5571 std::swap (r1, r2);
5572
5573 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5574 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5575 gcc_assert (regno >= 0);
5576 out = gen_rtx_REG (rld[r1].mode, regno);
5577 in = rld[r1].in;
5578 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5579
5580 /* If IN is a paradoxical SUBREG, remove it and try to put the
5581 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5582 strip_paradoxical_subreg (&in, &out);
5583
5584 if (GET_CODE (in) == PLUS
5585 && (REG_P (XEXP (in, 0))
5586 || GET_CODE (XEXP (in, 0)) == SUBREG
5587 || MEM_P (XEXP (in, 0)))
5588 && (REG_P (XEXP (in, 1))
5589 || GET_CODE (XEXP (in, 1)) == SUBREG
5590 || CONSTANT_P (XEXP (in, 1))
5591 || MEM_P (XEXP (in, 1))))
5592 {
5593 insn = emit_insn (gen_rtx_SET (out, in));
5594 code = recog_memoized (insn);
5595 result = false;
5596
5597 if (code >= 0)
5598 {
5599 extract_insn (insn);
5600 /* We want constrain operands to treat this insn strictly in
5601 its validity determination, i.e., the way it would after
5602 reload has completed. */
5603 result = constrain_operands (1, get_enabled_alternatives (insn));
5604 }
5605
5606 delete_insns_since (last);
5607 }
5608
5609 /* Restore the original value at each changed address within R1. */
5610 while (!substitute_stack.is_empty ())
5611 {
5612 rtx *where = substitute_stack.pop ();
5613 *where = rld[r2].in;
5614 }
5615
5616 return result;
5617 }
5618
5619 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5620 Return 0 otherwise.
5621
5622 This function uses the same algorithm as reload_reg_free_p above. */
5623
5624 static int
5625 reloads_conflict (int r1, int r2)
5626 {
5627 enum reload_type r1_type = rld[r1].when_needed;
5628 enum reload_type r2_type = rld[r2].when_needed;
5629 int r1_opnum = rld[r1].opnum;
5630 int r2_opnum = rld[r2].opnum;
5631
5632 /* RELOAD_OTHER conflicts with everything. */
5633 if (r2_type == RELOAD_OTHER)
5634 return 1;
5635
5636 /* Otherwise, check conflicts differently for each type. */
5637
5638 switch (r1_type)
5639 {
5640 case RELOAD_FOR_INPUT:
5641 return (r2_type == RELOAD_FOR_INSN
5642 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5643 || r2_type == RELOAD_FOR_OPADDR_ADDR
5644 || r2_type == RELOAD_FOR_INPUT
5645 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5646 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5647 && r2_opnum > r1_opnum));
5648
5649 case RELOAD_FOR_INPUT_ADDRESS:
5650 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5651 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5652
5653 case RELOAD_FOR_INPADDR_ADDRESS:
5654 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5655 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5656
5657 case RELOAD_FOR_OUTPUT_ADDRESS:
5658 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5659 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5660
5661 case RELOAD_FOR_OUTADDR_ADDRESS:
5662 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5663 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5664
5665 case RELOAD_FOR_OPERAND_ADDRESS:
5666 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5667 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5668 && (!reloads_unique_chain_p (r1, r2)
5669 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5670
5671 case RELOAD_FOR_OPADDR_ADDR:
5672 return (r2_type == RELOAD_FOR_INPUT
5673 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5674
5675 case RELOAD_FOR_OUTPUT:
5676 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5677 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5678 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5679 && r2_opnum >= r1_opnum));
5680
5681 case RELOAD_FOR_INSN:
5682 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5683 || r2_type == RELOAD_FOR_INSN
5684 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5685
5686 case RELOAD_FOR_OTHER_ADDRESS:
5687 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5688
5689 case RELOAD_OTHER:
5690 return 1;
5691
5692 default:
5693 gcc_unreachable ();
5694 }
5695 }
5696 \f
5697 /* Indexed by reload number, 1 if incoming value
5698 inherited from previous insns. */
5699 static char reload_inherited[MAX_RELOADS];
5700
5701 /* For an inherited reload, this is the insn the reload was inherited from,
5702 if we know it. Otherwise, this is 0. */
5703 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5704
5705 /* If nonzero, this is a place to get the value of the reload,
5706 rather than using reload_in. */
5707 static rtx reload_override_in[MAX_RELOADS];
5708
5709 /* For each reload, the hard register number of the register used,
5710 or -1 if we did not need a register for this reload. */
5711 static int reload_spill_index[MAX_RELOADS];
5712
5713 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5714 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5715
5716 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5717 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5718
5719 /* Subroutine of free_for_value_p, used to check a single register.
5720 START_REGNO is the starting regno of the full reload register
5721 (possibly comprising multiple hard registers) that we are considering. */
5722
5723 static int
5724 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5725 enum reload_type type, rtx value, rtx out,
5726 int reloadnum, int ignore_address_reloads)
5727 {
5728 int time1;
5729 /* Set if we see an input reload that must not share its reload register
5730 with any new earlyclobber, but might otherwise share the reload
5731 register with an output or input-output reload. */
5732 int check_earlyclobber = 0;
5733 int i;
5734 int copy = 0;
5735
5736 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5737 return 0;
5738
5739 if (out == const0_rtx)
5740 {
5741 copy = 1;
5742 out = NULL_RTX;
5743 }
5744
5745 /* We use some pseudo 'time' value to check if the lifetimes of the
5746 new register use would overlap with the one of a previous reload
5747 that is not read-only or uses a different value.
5748 The 'time' used doesn't have to be linear in any shape or form, just
5749 monotonic.
5750 Some reload types use different 'buckets' for each operand.
5751 So there are MAX_RECOG_OPERANDS different time values for each
5752 such reload type.
5753 We compute TIME1 as the time when the register for the prospective
5754 new reload ceases to be live, and TIME2 for each existing
5755 reload as the time when that the reload register of that reload
5756 becomes live.
5757 Where there is little to be gained by exact lifetime calculations,
5758 we just make conservative assumptions, i.e. a longer lifetime;
5759 this is done in the 'default:' cases. */
5760 switch (type)
5761 {
5762 case RELOAD_FOR_OTHER_ADDRESS:
5763 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5764 time1 = copy ? 0 : 1;
5765 break;
5766 case RELOAD_OTHER:
5767 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5768 break;
5769 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5770 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5771 respectively, to the time values for these, we get distinct time
5772 values. To get distinct time values for each operand, we have to
5773 multiply opnum by at least three. We round that up to four because
5774 multiply by four is often cheaper. */
5775 case RELOAD_FOR_INPADDR_ADDRESS:
5776 time1 = opnum * 4 + 2;
5777 break;
5778 case RELOAD_FOR_INPUT_ADDRESS:
5779 time1 = opnum * 4 + 3;
5780 break;
5781 case RELOAD_FOR_INPUT:
5782 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5783 executes (inclusive). */
5784 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5785 break;
5786 case RELOAD_FOR_OPADDR_ADDR:
5787 /* opnum * 4 + 4
5788 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5789 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5790 break;
5791 case RELOAD_FOR_OPERAND_ADDRESS:
5792 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5793 is executed. */
5794 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5795 break;
5796 case RELOAD_FOR_OUTADDR_ADDRESS:
5797 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5798 break;
5799 case RELOAD_FOR_OUTPUT_ADDRESS:
5800 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5801 break;
5802 default:
5803 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5804 }
5805
5806 for (i = 0; i < n_reloads; i++)
5807 {
5808 rtx reg = rld[i].reg_rtx;
5809 if (reg && REG_P (reg)
5810 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5811 && i != reloadnum)
5812 {
5813 rtx other_input = rld[i].in;
5814
5815 /* If the other reload loads the same input value, that
5816 will not cause a conflict only if it's loading it into
5817 the same register. */
5818 if (true_regnum (reg) != start_regno)
5819 other_input = NULL_RTX;
5820 if (! other_input || ! rtx_equal_p (other_input, value)
5821 || rld[i].out || out)
5822 {
5823 int time2;
5824 switch (rld[i].when_needed)
5825 {
5826 case RELOAD_FOR_OTHER_ADDRESS:
5827 time2 = 0;
5828 break;
5829 case RELOAD_FOR_INPADDR_ADDRESS:
5830 /* find_reloads makes sure that a
5831 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5832 by at most one - the first -
5833 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5834 address reload is inherited, the address address reload
5835 goes away, so we can ignore this conflict. */
5836 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5837 && ignore_address_reloads
5838 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5839 Then the address address is still needed to store
5840 back the new address. */
5841 && ! rld[reloadnum].out)
5842 continue;
5843 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5844 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5845 reloads go away. */
5846 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5847 && ignore_address_reloads
5848 /* Unless we are reloading an auto_inc expression. */
5849 && ! rld[reloadnum].out)
5850 continue;
5851 time2 = rld[i].opnum * 4 + 2;
5852 break;
5853 case RELOAD_FOR_INPUT_ADDRESS:
5854 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5855 && ignore_address_reloads
5856 && ! rld[reloadnum].out)
5857 continue;
5858 time2 = rld[i].opnum * 4 + 3;
5859 break;
5860 case RELOAD_FOR_INPUT:
5861 time2 = rld[i].opnum * 4 + 4;
5862 check_earlyclobber = 1;
5863 break;
5864 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5865 == MAX_RECOG_OPERAND * 4 */
5866 case RELOAD_FOR_OPADDR_ADDR:
5867 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5868 && ignore_address_reloads
5869 && ! rld[reloadnum].out)
5870 continue;
5871 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5872 break;
5873 case RELOAD_FOR_OPERAND_ADDRESS:
5874 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5875 check_earlyclobber = 1;
5876 break;
5877 case RELOAD_FOR_INSN:
5878 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5879 break;
5880 case RELOAD_FOR_OUTPUT:
5881 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5882 instruction is executed. */
5883 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5884 break;
5885 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5886 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5887 value. */
5888 case RELOAD_FOR_OUTADDR_ADDRESS:
5889 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5890 && ignore_address_reloads
5891 && ! rld[reloadnum].out)
5892 continue;
5893 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5894 break;
5895 case RELOAD_FOR_OUTPUT_ADDRESS:
5896 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5897 break;
5898 case RELOAD_OTHER:
5899 /* If there is no conflict in the input part, handle this
5900 like an output reload. */
5901 if (! rld[i].in || rtx_equal_p (other_input, value))
5902 {
5903 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5904 /* Earlyclobbered outputs must conflict with inputs. */
5905 if (earlyclobber_operand_p (rld[i].out))
5906 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5907
5908 break;
5909 }
5910 time2 = 1;
5911 /* RELOAD_OTHER might be live beyond instruction execution,
5912 but this is not obvious when we set time2 = 1. So check
5913 here if there might be a problem with the new reload
5914 clobbering the register used by the RELOAD_OTHER. */
5915 if (out)
5916 return 0;
5917 break;
5918 default:
5919 return 0;
5920 }
5921 if ((time1 >= time2
5922 && (! rld[i].in || rld[i].out
5923 || ! rtx_equal_p (other_input, value)))
5924 || (out && rld[reloadnum].out_reg
5925 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5926 return 0;
5927 }
5928 }
5929 }
5930
5931 /* Earlyclobbered outputs must conflict with inputs. */
5932 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5933 return 0;
5934
5935 return 1;
5936 }
5937
5938 /* Return 1 if the value in reload reg REGNO, as used by a reload
5939 needed for the part of the insn specified by OPNUM and TYPE,
5940 may be used to load VALUE into it.
5941
5942 MODE is the mode in which the register is used, this is needed to
5943 determine how many hard regs to test.
5944
5945 Other read-only reloads with the same value do not conflict
5946 unless OUT is nonzero and these other reloads have to live while
5947 output reloads live.
5948 If OUT is CONST0_RTX, this is a special case: it means that the
5949 test should not be for using register REGNO as reload register, but
5950 for copying from register REGNO into the reload register.
5951
5952 RELOADNUM is the number of the reload we want to load this value for;
5953 a reload does not conflict with itself.
5954
5955 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5956 reloads that load an address for the very reload we are considering.
5957
5958 The caller has to make sure that there is no conflict with the return
5959 register. */
5960
5961 static int
5962 free_for_value_p (int regno, machine_mode mode, int opnum,
5963 enum reload_type type, rtx value, rtx out, int reloadnum,
5964 int ignore_address_reloads)
5965 {
5966 int nregs = hard_regno_nregs (regno, mode);
5967 while (nregs-- > 0)
5968 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5969 value, out, reloadnum,
5970 ignore_address_reloads))
5971 return 0;
5972 return 1;
5973 }
5974
5975 /* Return nonzero if the rtx X is invariant over the current function. */
5976 /* ??? Actually, the places where we use this expect exactly what is
5977 tested here, and not everything that is function invariant. In
5978 particular, the frame pointer and arg pointer are special cased;
5979 pic_offset_table_rtx is not, and we must not spill these things to
5980 memory. */
5981
5982 int
5983 function_invariant_p (const_rtx x)
5984 {
5985 if (CONSTANT_P (x))
5986 return 1;
5987 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5988 return 1;
5989 if (GET_CODE (x) == PLUS
5990 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5991 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5992 return 1;
5993 return 0;
5994 }
5995
5996 /* Determine whether the reload reg X overlaps any rtx'es used for
5997 overriding inheritance. Return nonzero if so. */
5998
5999 static int
6000 conflicts_with_override (rtx x)
6001 {
6002 int i;
6003 for (i = 0; i < n_reloads; i++)
6004 if (reload_override_in[i]
6005 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6006 return 1;
6007 return 0;
6008 }
6009 \f
6010 /* Give an error message saying we failed to find a reload for INSN,
6011 and clear out reload R. */
6012 static void
6013 failed_reload (rtx_insn *insn, int r)
6014 {
6015 if (asm_noperands (PATTERN (insn)) < 0)
6016 /* It's the compiler's fault. */
6017 fatal_insn ("could not find a spill register", insn);
6018
6019 /* It's the user's fault; the operand's mode and constraint
6020 don't match. Disable this reload so we don't crash in final. */
6021 error_for_asm (insn,
6022 "%<asm%> operand constraint incompatible with operand size");
6023 rld[r].in = 0;
6024 rld[r].out = 0;
6025 rld[r].reg_rtx = 0;
6026 rld[r].optional = 1;
6027 rld[r].secondary_p = 1;
6028 }
6029
6030 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6031 for reload R. If it's valid, get an rtx for it. Return nonzero if
6032 successful. */
6033 static int
6034 set_reload_reg (int i, int r)
6035 {
6036 int regno;
6037 rtx reg = spill_reg_rtx[i];
6038
6039 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6040 spill_reg_rtx[i] = reg
6041 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6042
6043 regno = true_regnum (reg);
6044
6045 /* Detect when the reload reg can't hold the reload mode.
6046 This used to be one `if', but Sequent compiler can't handle that. */
6047 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6048 {
6049 machine_mode test_mode = VOIDmode;
6050 if (rld[r].in)
6051 test_mode = GET_MODE (rld[r].in);
6052 /* If rld[r].in has VOIDmode, it means we will load it
6053 in whatever mode the reload reg has: to wit, rld[r].mode.
6054 We have already tested that for validity. */
6055 /* Aside from that, we need to test that the expressions
6056 to reload from or into have modes which are valid for this
6057 reload register. Otherwise the reload insns would be invalid. */
6058 if (! (rld[r].in != 0 && test_mode != VOIDmode
6059 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6060 if (! (rld[r].out != 0
6061 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6062 {
6063 /* The reg is OK. */
6064 last_spill_reg = i;
6065
6066 /* Mark as in use for this insn the reload regs we use
6067 for this. */
6068 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6069 rld[r].when_needed, rld[r].mode);
6070
6071 rld[r].reg_rtx = reg;
6072 reload_spill_index[r] = spill_regs[i];
6073 return 1;
6074 }
6075 }
6076 return 0;
6077 }
6078
6079 /* Find a spill register to use as a reload register for reload R.
6080 LAST_RELOAD is nonzero if this is the last reload for the insn being
6081 processed.
6082
6083 Set rld[R].reg_rtx to the register allocated.
6084
6085 We return 1 if successful, or 0 if we couldn't find a spill reg and
6086 we didn't change anything. */
6087
6088 static int
6089 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6090 int last_reload)
6091 {
6092 int i, pass, count;
6093
6094 /* If we put this reload ahead, thinking it is a group,
6095 then insist on finding a group. Otherwise we can grab a
6096 reg that some other reload needs.
6097 (That can happen when we have a 68000 DATA_OR_FP_REG
6098 which is a group of data regs or one fp reg.)
6099 We need not be so restrictive if there are no more reloads
6100 for this insn.
6101
6102 ??? Really it would be nicer to have smarter handling
6103 for that kind of reg class, where a problem like this is normal.
6104 Perhaps those classes should be avoided for reloading
6105 by use of more alternatives. */
6106
6107 int force_group = rld[r].nregs > 1 && ! last_reload;
6108
6109 /* If we want a single register and haven't yet found one,
6110 take any reg in the right class and not in use.
6111 If we want a consecutive group, here is where we look for it.
6112
6113 We use three passes so we can first look for reload regs to
6114 reuse, which are already in use for other reloads in this insn,
6115 and only then use additional registers which are not "bad", then
6116 finally any register.
6117
6118 I think that maximizing reuse is needed to make sure we don't
6119 run out of reload regs. Suppose we have three reloads, and
6120 reloads A and B can share regs. These need two regs.
6121 Suppose A and B are given different regs.
6122 That leaves none for C. */
6123 for (pass = 0; pass < 3; pass++)
6124 {
6125 /* I is the index in spill_regs.
6126 We advance it round-robin between insns to use all spill regs
6127 equally, so that inherited reloads have a chance
6128 of leapfrogging each other. */
6129
6130 i = last_spill_reg;
6131
6132 for (count = 0; count < n_spills; count++)
6133 {
6134 int rclass = (int) rld[r].rclass;
6135 int regnum;
6136
6137 i++;
6138 if (i >= n_spills)
6139 i -= n_spills;
6140 regnum = spill_regs[i];
6141
6142 if ((reload_reg_free_p (regnum, rld[r].opnum,
6143 rld[r].when_needed)
6144 || (rld[r].in
6145 /* We check reload_reg_used to make sure we
6146 don't clobber the return register. */
6147 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6148 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6149 rld[r].when_needed, rld[r].in,
6150 rld[r].out, r, 1)))
6151 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6152 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6153 /* Look first for regs to share, then for unshared. But
6154 don't share regs used for inherited reloads; they are
6155 the ones we want to preserve. */
6156 && (pass
6157 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6158 regnum)
6159 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6160 regnum))))
6161 {
6162 int nr = hard_regno_nregs (regnum, rld[r].mode);
6163
6164 /* During the second pass we want to avoid reload registers
6165 which are "bad" for this reload. */
6166 if (pass == 1
6167 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6168 continue;
6169
6170 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6171 (on 68000) got us two FP regs. If NR is 1,
6172 we would reject both of them. */
6173 if (force_group)
6174 nr = rld[r].nregs;
6175 /* If we need only one reg, we have already won. */
6176 if (nr == 1)
6177 {
6178 /* But reject a single reg if we demand a group. */
6179 if (force_group)
6180 continue;
6181 break;
6182 }
6183 /* Otherwise check that as many consecutive regs as we need
6184 are available here. */
6185 while (nr > 1)
6186 {
6187 int regno = regnum + nr - 1;
6188 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6189 && spill_reg_order[regno] >= 0
6190 && reload_reg_free_p (regno, rld[r].opnum,
6191 rld[r].when_needed)))
6192 break;
6193 nr--;
6194 }
6195 if (nr == 1)
6196 break;
6197 }
6198 }
6199
6200 /* If we found something on the current pass, omit later passes. */
6201 if (count < n_spills)
6202 break;
6203 }
6204
6205 /* We should have found a spill register by now. */
6206 if (count >= n_spills)
6207 return 0;
6208
6209 /* I is the index in SPILL_REG_RTX of the reload register we are to
6210 allocate. Get an rtx for it and find its register number. */
6211
6212 return set_reload_reg (i, r);
6213 }
6214 \f
6215 /* Initialize all the tables needed to allocate reload registers.
6216 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6217 is the array we use to restore the reg_rtx field for every reload. */
6218
6219 static void
6220 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6221 {
6222 int i;
6223
6224 for (i = 0; i < n_reloads; i++)
6225 rld[i].reg_rtx = save_reload_reg_rtx[i];
6226
6227 memset (reload_inherited, 0, MAX_RELOADS);
6228 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6229 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6230
6231 CLEAR_HARD_REG_SET (reload_reg_used);
6232 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6233 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6235 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6236 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6237
6238 CLEAR_HARD_REG_SET (reg_used_in_insn);
6239 {
6240 HARD_REG_SET tmp;
6241 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6242 reg_used_in_insn |= tmp;
6243 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6244 reg_used_in_insn |= tmp;
6245 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6246 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6247 }
6248
6249 for (i = 0; i < reload_n_operands; i++)
6250 {
6251 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6252 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6253 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6254 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6255 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6256 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6257 }
6258
6259 reload_reg_unavailable = ~chain->used_spill_regs;
6260
6261 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6262
6263 for (i = 0; i < n_reloads; i++)
6264 /* If we have already decided to use a certain register,
6265 don't use it in another way. */
6266 if (rld[i].reg_rtx)
6267 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6268 rld[i].when_needed, rld[i].mode);
6269 }
6270
6271 /* If X is not a subreg, return it unmodified. If it is a subreg,
6272 look up whether we made a replacement for the SUBREG_REG. Return
6273 either the replacement or the SUBREG_REG. */
6274
6275 static rtx
6276 replaced_subreg (rtx x)
6277 {
6278 if (GET_CODE (x) == SUBREG)
6279 return find_replacement (&SUBREG_REG (x));
6280 return x;
6281 }
6282
6283 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6284 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6285 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6286 otherwise it is NULL. */
6287
6288 static poly_int64
6289 compute_reload_subreg_offset (machine_mode outermode,
6290 rtx subreg,
6291 machine_mode innermode)
6292 {
6293 poly_int64 outer_offset;
6294 machine_mode middlemode;
6295
6296 if (!subreg)
6297 return subreg_lowpart_offset (outermode, innermode);
6298
6299 outer_offset = SUBREG_BYTE (subreg);
6300 middlemode = GET_MODE (SUBREG_REG (subreg));
6301
6302 /* If SUBREG is paradoxical then return the normal lowpart offset
6303 for OUTERMODE and INNERMODE. Our caller has already checked
6304 that OUTERMODE fits in INNERMODE. */
6305 if (paradoxical_subreg_p (outermode, middlemode))
6306 return subreg_lowpart_offset (outermode, innermode);
6307
6308 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6309 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6310 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6311 }
6312
6313 /* Assign hard reg targets for the pseudo-registers we must reload
6314 into hard regs for this insn.
6315 Also output the instructions to copy them in and out of the hard regs.
6316
6317 For machines with register classes, we are responsible for
6318 finding a reload reg in the proper class. */
6319
6320 static void
6321 choose_reload_regs (class insn_chain *chain)
6322 {
6323 rtx_insn *insn = chain->insn;
6324 int i, j;
6325 unsigned int max_group_size = 1;
6326 enum reg_class group_class = NO_REGS;
6327 int pass, win, inheritance;
6328
6329 rtx save_reload_reg_rtx[MAX_RELOADS];
6330
6331 /* In order to be certain of getting the registers we need,
6332 we must sort the reloads into order of increasing register class.
6333 Then our grabbing of reload registers will parallel the process
6334 that provided the reload registers.
6335
6336 Also note whether any of the reloads wants a consecutive group of regs.
6337 If so, record the maximum size of the group desired and what
6338 register class contains all the groups needed by this insn. */
6339
6340 for (j = 0; j < n_reloads; j++)
6341 {
6342 reload_order[j] = j;
6343 if (rld[j].reg_rtx != NULL_RTX)
6344 {
6345 gcc_assert (REG_P (rld[j].reg_rtx)
6346 && HARD_REGISTER_P (rld[j].reg_rtx));
6347 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6348 }
6349 else
6350 reload_spill_index[j] = -1;
6351
6352 if (rld[j].nregs > 1)
6353 {
6354 max_group_size = MAX (rld[j].nregs, max_group_size);
6355 group_class
6356 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6357 }
6358
6359 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6360 }
6361
6362 if (n_reloads > 1)
6363 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6364
6365 /* If -O, try first with inheritance, then turning it off.
6366 If not -O, don't do inheritance.
6367 Using inheritance when not optimizing leads to paradoxes
6368 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6369 because one side of the comparison might be inherited. */
6370 win = 0;
6371 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6372 {
6373 choose_reload_regs_init (chain, save_reload_reg_rtx);
6374
6375 /* Process the reloads in order of preference just found.
6376 Beyond this point, subregs can be found in reload_reg_rtx.
6377
6378 This used to look for an existing reloaded home for all of the
6379 reloads, and only then perform any new reloads. But that could lose
6380 if the reloads were done out of reg-class order because a later
6381 reload with a looser constraint might have an old home in a register
6382 needed by an earlier reload with a tighter constraint.
6383
6384 To solve this, we make two passes over the reloads, in the order
6385 described above. In the first pass we try to inherit a reload
6386 from a previous insn. If there is a later reload that needs a
6387 class that is a proper subset of the class being processed, we must
6388 also allocate a spill register during the first pass.
6389
6390 Then make a second pass over the reloads to allocate any reloads
6391 that haven't been given registers yet. */
6392
6393 for (j = 0; j < n_reloads; j++)
6394 {
6395 int r = reload_order[j];
6396 rtx search_equiv = NULL_RTX;
6397
6398 /* Ignore reloads that got marked inoperative. */
6399 if (rld[r].out == 0 && rld[r].in == 0
6400 && ! rld[r].secondary_p)
6401 continue;
6402
6403 /* If find_reloads chose to use reload_in or reload_out as a reload
6404 register, we don't need to chose one. Otherwise, try even if it
6405 found one since we might save an insn if we find the value lying
6406 around.
6407 Try also when reload_in is a pseudo without a hard reg. */
6408 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6409 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6410 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6411 && !MEM_P (rld[r].in)
6412 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6413 continue;
6414
6415 #if 0 /* No longer needed for correct operation.
6416 It might give better code, or might not; worth an experiment? */
6417 /* If this is an optional reload, we can't inherit from earlier insns
6418 until we are sure that any non-optional reloads have been allocated.
6419 The following code takes advantage of the fact that optional reloads
6420 are at the end of reload_order. */
6421 if (rld[r].optional != 0)
6422 for (i = 0; i < j; i++)
6423 if ((rld[reload_order[i]].out != 0
6424 || rld[reload_order[i]].in != 0
6425 || rld[reload_order[i]].secondary_p)
6426 && ! rld[reload_order[i]].optional
6427 && rld[reload_order[i]].reg_rtx == 0)
6428 allocate_reload_reg (chain, reload_order[i], 0);
6429 #endif
6430
6431 /* First see if this pseudo is already available as reloaded
6432 for a previous insn. We cannot try to inherit for reloads
6433 that are smaller than the maximum number of registers needed
6434 for groups unless the register we would allocate cannot be used
6435 for the groups.
6436
6437 We could check here to see if this is a secondary reload for
6438 an object that is already in a register of the desired class.
6439 This would avoid the need for the secondary reload register.
6440 But this is complex because we can't easily determine what
6441 objects might want to be loaded via this reload. So let a
6442 register be allocated here. In `emit_reload_insns' we suppress
6443 one of the loads in the case described above. */
6444
6445 if (inheritance)
6446 {
6447 poly_int64 byte = 0;
6448 int regno = -1;
6449 machine_mode mode = VOIDmode;
6450 rtx subreg = NULL_RTX;
6451
6452 if (rld[r].in == 0)
6453 ;
6454 else if (REG_P (rld[r].in))
6455 {
6456 regno = REGNO (rld[r].in);
6457 mode = GET_MODE (rld[r].in);
6458 }
6459 else if (REG_P (rld[r].in_reg))
6460 {
6461 regno = REGNO (rld[r].in_reg);
6462 mode = GET_MODE (rld[r].in_reg);
6463 }
6464 else if (GET_CODE (rld[r].in_reg) == SUBREG
6465 && REG_P (SUBREG_REG (rld[r].in_reg)))
6466 {
6467 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6468 if (regno < FIRST_PSEUDO_REGISTER)
6469 regno = subreg_regno (rld[r].in_reg);
6470 else
6471 {
6472 subreg = rld[r].in_reg;
6473 byte = SUBREG_BYTE (subreg);
6474 }
6475 mode = GET_MODE (rld[r].in_reg);
6476 }
6477 #if AUTO_INC_DEC
6478 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6479 && REG_P (XEXP (rld[r].in_reg, 0)))
6480 {
6481 regno = REGNO (XEXP (rld[r].in_reg, 0));
6482 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6483 rld[r].out = rld[r].in;
6484 }
6485 #endif
6486 #if 0
6487 /* This won't work, since REGNO can be a pseudo reg number.
6488 Also, it takes much more hair to keep track of all the things
6489 that can invalidate an inherited reload of part of a pseudoreg. */
6490 else if (GET_CODE (rld[r].in) == SUBREG
6491 && REG_P (SUBREG_REG (rld[r].in)))
6492 regno = subreg_regno (rld[r].in);
6493 #endif
6494
6495 if (regno >= 0
6496 && reg_last_reload_reg[regno] != 0
6497 && (known_ge
6498 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6499 GET_MODE_SIZE (mode) + byte))
6500 /* Verify that the register it's in can be used in
6501 mode MODE. */
6502 && (REG_CAN_CHANGE_MODE_P
6503 (REGNO (reg_last_reload_reg[regno]),
6504 GET_MODE (reg_last_reload_reg[regno]),
6505 mode)))
6506 {
6507 enum reg_class rclass = rld[r].rclass, last_class;
6508 rtx last_reg = reg_last_reload_reg[regno];
6509
6510 i = REGNO (last_reg);
6511 byte = compute_reload_subreg_offset (mode,
6512 subreg,
6513 GET_MODE (last_reg));
6514 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6515 last_class = REGNO_REG_CLASS (i);
6516
6517 if (reg_reloaded_contents[i] == regno
6518 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6519 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6520 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6521 /* Even if we can't use this register as a reload
6522 register, we might use it for reload_override_in,
6523 if copying it to the desired class is cheap
6524 enough. */
6525 || ((register_move_cost (mode, last_class, rclass)
6526 < memory_move_cost (mode, rclass, true))
6527 && (secondary_reload_class (1, rclass, mode,
6528 last_reg)
6529 == NO_REGS)
6530 && !(targetm.secondary_memory_needed
6531 (mode, last_class, rclass))))
6532 && (rld[r].nregs == max_group_size
6533 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6534 i))
6535 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6536 rld[r].when_needed, rld[r].in,
6537 const0_rtx, r, 1))
6538 {
6539 /* If a group is needed, verify that all the subsequent
6540 registers still have their values intact. */
6541 int nr = hard_regno_nregs (i, rld[r].mode);
6542 int k;
6543
6544 for (k = 1; k < nr; k++)
6545 if (reg_reloaded_contents[i + k] != regno
6546 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6547 break;
6548
6549 if (k == nr)
6550 {
6551 int i1;
6552 int bad_for_class;
6553
6554 last_reg = (GET_MODE (last_reg) == mode
6555 ? last_reg : gen_rtx_REG (mode, i));
6556
6557 bad_for_class = 0;
6558 for (k = 0; k < nr; k++)
6559 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6560 i+k);
6561
6562 /* We found a register that contains the
6563 value we need. If this register is the
6564 same as an `earlyclobber' operand of the
6565 current insn, just mark it as a place to
6566 reload from since we can't use it as the
6567 reload register itself. */
6568
6569 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6570 if (reg_overlap_mentioned_for_reload_p
6571 (reg_last_reload_reg[regno],
6572 reload_earlyclobbers[i1]))
6573 break;
6574
6575 if (i1 != n_earlyclobbers
6576 || ! (free_for_value_p (i, rld[r].mode,
6577 rld[r].opnum,
6578 rld[r].when_needed, rld[r].in,
6579 rld[r].out, r, 1))
6580 /* Don't use it if we'd clobber a pseudo reg. */
6581 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6582 && rld[r].out
6583 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6584 /* Don't clobber the frame pointer. */
6585 || (i == HARD_FRAME_POINTER_REGNUM
6586 && frame_pointer_needed
6587 && rld[r].out)
6588 /* Don't really use the inherited spill reg
6589 if we need it wider than we've got it. */
6590 || paradoxical_subreg_p (rld[r].mode, mode)
6591 || bad_for_class
6592
6593 /* If find_reloads chose reload_out as reload
6594 register, stay with it - that leaves the
6595 inherited register for subsequent reloads. */
6596 || (rld[r].out && rld[r].reg_rtx
6597 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6598 {
6599 if (! rld[r].optional)
6600 {
6601 reload_override_in[r] = last_reg;
6602 reload_inheritance_insn[r]
6603 = reg_reloaded_insn[i];
6604 }
6605 }
6606 else
6607 {
6608 int k;
6609 /* We can use this as a reload reg. */
6610 /* Mark the register as in use for this part of
6611 the insn. */
6612 mark_reload_reg_in_use (i,
6613 rld[r].opnum,
6614 rld[r].when_needed,
6615 rld[r].mode);
6616 rld[r].reg_rtx = last_reg;
6617 reload_inherited[r] = 1;
6618 reload_inheritance_insn[r]
6619 = reg_reloaded_insn[i];
6620 reload_spill_index[r] = i;
6621 for (k = 0; k < nr; k++)
6622 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6623 i + k);
6624 }
6625 }
6626 }
6627 }
6628 }
6629
6630 /* Here's another way to see if the value is already lying around. */
6631 if (inheritance
6632 && rld[r].in != 0
6633 && ! reload_inherited[r]
6634 && rld[r].out == 0
6635 && (CONSTANT_P (rld[r].in)
6636 || GET_CODE (rld[r].in) == PLUS
6637 || REG_P (rld[r].in)
6638 || MEM_P (rld[r].in))
6639 && (rld[r].nregs == max_group_size
6640 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6641 search_equiv = rld[r].in;
6642
6643 if (search_equiv)
6644 {
6645 rtx equiv
6646 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6647 -1, NULL, 0, rld[r].mode);
6648 int regno = 0;
6649
6650 if (equiv != 0)
6651 {
6652 if (REG_P (equiv))
6653 regno = REGNO (equiv);
6654 else
6655 {
6656 /* This must be a SUBREG of a hard register.
6657 Make a new REG since this might be used in an
6658 address and not all machines support SUBREGs
6659 there. */
6660 gcc_assert (GET_CODE (equiv) == SUBREG);
6661 regno = subreg_regno (equiv);
6662 equiv = gen_rtx_REG (rld[r].mode, regno);
6663 /* If we choose EQUIV as the reload register, but the
6664 loop below decides to cancel the inheritance, we'll
6665 end up reloading EQUIV in rld[r].mode, not the mode
6666 it had originally. That isn't safe when EQUIV isn't
6667 available as a spill register since its value might
6668 still be live at this point. */
6669 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6670 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6671 equiv = 0;
6672 }
6673 }
6674
6675 /* If we found a spill reg, reject it unless it is free
6676 and of the desired class. */
6677 if (equiv != 0)
6678 {
6679 int regs_used = 0;
6680 int bad_for_class = 0;
6681 int max_regno = regno + rld[r].nregs;
6682
6683 for (i = regno; i < max_regno; i++)
6684 {
6685 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6686 i);
6687 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6688 i);
6689 }
6690
6691 if ((regs_used
6692 && ! free_for_value_p (regno, rld[r].mode,
6693 rld[r].opnum, rld[r].when_needed,
6694 rld[r].in, rld[r].out, r, 1))
6695 || bad_for_class)
6696 equiv = 0;
6697 }
6698
6699 if (equiv != 0
6700 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6701 equiv = 0;
6702
6703 /* We found a register that contains the value we need.
6704 If this register is the same as an `earlyclobber' operand
6705 of the current insn, just mark it as a place to reload from
6706 since we can't use it as the reload register itself. */
6707
6708 if (equiv != 0)
6709 for (i = 0; i < n_earlyclobbers; i++)
6710 if (reg_overlap_mentioned_for_reload_p (equiv,
6711 reload_earlyclobbers[i]))
6712 {
6713 if (! rld[r].optional)
6714 reload_override_in[r] = equiv;
6715 equiv = 0;
6716 break;
6717 }
6718
6719 /* If the equiv register we have found is explicitly clobbered
6720 in the current insn, it depends on the reload type if we
6721 can use it, use it for reload_override_in, or not at all.
6722 In particular, we then can't use EQUIV for a
6723 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6724
6725 if (equiv != 0)
6726 {
6727 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6728 switch (rld[r].when_needed)
6729 {
6730 case RELOAD_FOR_OTHER_ADDRESS:
6731 case RELOAD_FOR_INPADDR_ADDRESS:
6732 case RELOAD_FOR_INPUT_ADDRESS:
6733 case RELOAD_FOR_OPADDR_ADDR:
6734 break;
6735 case RELOAD_OTHER:
6736 case RELOAD_FOR_INPUT:
6737 case RELOAD_FOR_OPERAND_ADDRESS:
6738 if (! rld[r].optional)
6739 reload_override_in[r] = equiv;
6740 /* Fall through. */
6741 default:
6742 equiv = 0;
6743 break;
6744 }
6745 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6746 switch (rld[r].when_needed)
6747 {
6748 case RELOAD_FOR_OTHER_ADDRESS:
6749 case RELOAD_FOR_INPADDR_ADDRESS:
6750 case RELOAD_FOR_INPUT_ADDRESS:
6751 case RELOAD_FOR_OPADDR_ADDR:
6752 case RELOAD_FOR_OPERAND_ADDRESS:
6753 case RELOAD_FOR_INPUT:
6754 break;
6755 case RELOAD_OTHER:
6756 if (! rld[r].optional)
6757 reload_override_in[r] = equiv;
6758 /* Fall through. */
6759 default:
6760 equiv = 0;
6761 break;
6762 }
6763 }
6764
6765 /* If we found an equivalent reg, say no code need be generated
6766 to load it, and use it as our reload reg. */
6767 if (equiv != 0
6768 && (regno != HARD_FRAME_POINTER_REGNUM
6769 || !frame_pointer_needed))
6770 {
6771 int nr = hard_regno_nregs (regno, rld[r].mode);
6772 int k;
6773 rld[r].reg_rtx = equiv;
6774 reload_spill_index[r] = regno;
6775 reload_inherited[r] = 1;
6776
6777 /* If reg_reloaded_valid is not set for this register,
6778 there might be a stale spill_reg_store lying around.
6779 We must clear it, since otherwise emit_reload_insns
6780 might delete the store. */
6781 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6782 spill_reg_store[regno] = NULL;
6783 /* If any of the hard registers in EQUIV are spill
6784 registers, mark them as in use for this insn. */
6785 for (k = 0; k < nr; k++)
6786 {
6787 i = spill_reg_order[regno + k];
6788 if (i >= 0)
6789 {
6790 mark_reload_reg_in_use (regno, rld[r].opnum,
6791 rld[r].when_needed,
6792 rld[r].mode);
6793 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6794 regno + k);
6795 }
6796 }
6797 }
6798 }
6799
6800 /* If we found a register to use already, or if this is an optional
6801 reload, we are done. */
6802 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6803 continue;
6804
6805 #if 0
6806 /* No longer needed for correct operation. Might or might
6807 not give better code on the average. Want to experiment? */
6808
6809 /* See if there is a later reload that has a class different from our
6810 class that intersects our class or that requires less register
6811 than our reload. If so, we must allocate a register to this
6812 reload now, since that reload might inherit a previous reload
6813 and take the only available register in our class. Don't do this
6814 for optional reloads since they will force all previous reloads
6815 to be allocated. Also don't do this for reloads that have been
6816 turned off. */
6817
6818 for (i = j + 1; i < n_reloads; i++)
6819 {
6820 int s = reload_order[i];
6821
6822 if ((rld[s].in == 0 && rld[s].out == 0
6823 && ! rld[s].secondary_p)
6824 || rld[s].optional)
6825 continue;
6826
6827 if ((rld[s].rclass != rld[r].rclass
6828 && reg_classes_intersect_p (rld[r].rclass,
6829 rld[s].rclass))
6830 || rld[s].nregs < rld[r].nregs)
6831 break;
6832 }
6833
6834 if (i == n_reloads)
6835 continue;
6836
6837 allocate_reload_reg (chain, r, j == n_reloads - 1);
6838 #endif
6839 }
6840
6841 /* Now allocate reload registers for anything non-optional that
6842 didn't get one yet. */
6843 for (j = 0; j < n_reloads; j++)
6844 {
6845 int r = reload_order[j];
6846
6847 /* Ignore reloads that got marked inoperative. */
6848 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6849 continue;
6850
6851 /* Skip reloads that already have a register allocated or are
6852 optional. */
6853 if (rld[r].reg_rtx != 0 || rld[r].optional)
6854 continue;
6855
6856 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6857 break;
6858 }
6859
6860 /* If that loop got all the way, we have won. */
6861 if (j == n_reloads)
6862 {
6863 win = 1;
6864 break;
6865 }
6866
6867 /* Loop around and try without any inheritance. */
6868 }
6869
6870 if (! win)
6871 {
6872 /* First undo everything done by the failed attempt
6873 to allocate with inheritance. */
6874 choose_reload_regs_init (chain, save_reload_reg_rtx);
6875
6876 /* Some sanity tests to verify that the reloads found in the first
6877 pass are identical to the ones we have now. */
6878 gcc_assert (chain->n_reloads == n_reloads);
6879
6880 for (i = 0; i < n_reloads; i++)
6881 {
6882 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6883 continue;
6884 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6885 for (j = 0; j < n_spills; j++)
6886 if (spill_regs[j] == chain->rld[i].regno)
6887 if (! set_reload_reg (j, i))
6888 failed_reload (chain->insn, i);
6889 }
6890 }
6891
6892 /* If we thought we could inherit a reload, because it seemed that
6893 nothing else wanted the same reload register earlier in the insn,
6894 verify that assumption, now that all reloads have been assigned.
6895 Likewise for reloads where reload_override_in has been set. */
6896
6897 /* If doing expensive optimizations, do one preliminary pass that doesn't
6898 cancel any inheritance, but removes reloads that have been needed only
6899 for reloads that we know can be inherited. */
6900 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6901 {
6902 for (j = 0; j < n_reloads; j++)
6903 {
6904 int r = reload_order[j];
6905 rtx check_reg;
6906 rtx tem;
6907 if (reload_inherited[r] && rld[r].reg_rtx)
6908 check_reg = rld[r].reg_rtx;
6909 else if (reload_override_in[r]
6910 && (REG_P (reload_override_in[r])
6911 || GET_CODE (reload_override_in[r]) == SUBREG))
6912 check_reg = reload_override_in[r];
6913 else
6914 continue;
6915 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6916 rld[r].opnum, rld[r].when_needed, rld[r].in,
6917 (reload_inherited[r]
6918 ? rld[r].out : const0_rtx),
6919 r, 1))
6920 {
6921 if (pass)
6922 continue;
6923 reload_inherited[r] = 0;
6924 reload_override_in[r] = 0;
6925 }
6926 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6927 reload_override_in, then we do not need its related
6928 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6929 likewise for other reload types.
6930 We handle this by removing a reload when its only replacement
6931 is mentioned in reload_in of the reload we are going to inherit.
6932 A special case are auto_inc expressions; even if the input is
6933 inherited, we still need the address for the output. We can
6934 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6935 If we succeeded removing some reload and we are doing a preliminary
6936 pass just to remove such reloads, make another pass, since the
6937 removal of one reload might allow us to inherit another one. */
6938 else if (rld[r].in
6939 && rld[r].out != rld[r].in
6940 && remove_address_replacements (rld[r].in))
6941 {
6942 if (pass)
6943 pass = 2;
6944 }
6945 /* If we needed a memory location for the reload, we also have to
6946 remove its related reloads. */
6947 else if (rld[r].in
6948 && rld[r].out != rld[r].in
6949 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6950 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6951 && (targetm.secondary_memory_needed
6952 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6953 rld[r].rclass))
6954 && remove_address_replacements
6955 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6956 rld[r].when_needed)))
6957 {
6958 if (pass)
6959 pass = 2;
6960 }
6961 }
6962 }
6963
6964 /* Now that reload_override_in is known valid,
6965 actually override reload_in. */
6966 for (j = 0; j < n_reloads; j++)
6967 if (reload_override_in[j])
6968 rld[j].in = reload_override_in[j];
6969
6970 /* If this reload won't be done because it has been canceled or is
6971 optional and not inherited, clear reload_reg_rtx so other
6972 routines (such as subst_reloads) don't get confused. */
6973 for (j = 0; j < n_reloads; j++)
6974 if (rld[j].reg_rtx != 0
6975 && ((rld[j].optional && ! reload_inherited[j])
6976 || (rld[j].in == 0 && rld[j].out == 0
6977 && ! rld[j].secondary_p)))
6978 {
6979 int regno = true_regnum (rld[j].reg_rtx);
6980
6981 if (spill_reg_order[regno] >= 0)
6982 clear_reload_reg_in_use (regno, rld[j].opnum,
6983 rld[j].when_needed, rld[j].mode);
6984 rld[j].reg_rtx = 0;
6985 reload_spill_index[j] = -1;
6986 }
6987
6988 /* Record which pseudos and which spill regs have output reloads. */
6989 for (j = 0; j < n_reloads; j++)
6990 {
6991 int r = reload_order[j];
6992
6993 i = reload_spill_index[r];
6994
6995 /* I is nonneg if this reload uses a register.
6996 If rld[r].reg_rtx is 0, this is an optional reload
6997 that we opted to ignore. */
6998 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6999 && rld[r].reg_rtx != 0)
7000 {
7001 int nregno = REGNO (rld[r].out_reg);
7002 int nr = 1;
7003
7004 if (nregno < FIRST_PSEUDO_REGISTER)
7005 nr = hard_regno_nregs (nregno, rld[r].mode);
7006
7007 while (--nr >= 0)
7008 SET_REGNO_REG_SET (&reg_has_output_reload,
7009 nregno + nr);
7010
7011 if (i >= 0)
7012 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7013
7014 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7015 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7016 || rld[r].when_needed == RELOAD_FOR_INSN);
7017 }
7018 }
7019 }
7020
7021 /* Deallocate the reload register for reload R. This is called from
7022 remove_address_replacements. */
7023
7024 void
7025 deallocate_reload_reg (int r)
7026 {
7027 int regno;
7028
7029 if (! rld[r].reg_rtx)
7030 return;
7031 regno = true_regnum (rld[r].reg_rtx);
7032 rld[r].reg_rtx = 0;
7033 if (spill_reg_order[regno] >= 0)
7034 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7035 rld[r].mode);
7036 reload_spill_index[r] = -1;
7037 }
7038 \f
7039 /* These arrays are filled by emit_reload_insns and its subroutines. */
7040 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7041 static rtx_insn *other_input_address_reload_insns = 0;
7042 static rtx_insn *other_input_reload_insns = 0;
7043 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7044 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7045 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7046 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7047 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7048 static rtx_insn *operand_reload_insns = 0;
7049 static rtx_insn *other_operand_reload_insns = 0;
7050 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7051
7052 /* Values to be put in spill_reg_store are put here first. Instructions
7053 must only be placed here if the associated reload register reaches
7054 the end of the instruction's reload sequence. */
7055 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7056 static HARD_REG_SET reg_reloaded_died;
7057
7058 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7059 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7060 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7061 adjusted register, and return true. Otherwise, return false. */
7062 static bool
7063 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7064 enum reg_class new_class,
7065 machine_mode new_mode)
7066
7067 {
7068 rtx reg;
7069
7070 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7071 {
7072 unsigned regno = REGNO (reg);
7073
7074 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7075 continue;
7076 if (GET_MODE (reg) != new_mode)
7077 {
7078 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7079 continue;
7080 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7081 continue;
7082 reg = reload_adjust_reg_for_mode (reg, new_mode);
7083 }
7084 *reload_reg = reg;
7085 return true;
7086 }
7087 return false;
7088 }
7089
7090 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7091 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7092 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7093 adjusted register, and return true. Otherwise, return false. */
7094 static bool
7095 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7096 enum insn_code icode)
7097
7098 {
7099 enum reg_class new_class = scratch_reload_class (icode);
7100 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7101
7102 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7103 new_class, new_mode);
7104 }
7105
7106 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7107 has the number J. OLD contains the value to be used as input. */
7108
7109 static void
7110 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7111 rtx old, int j)
7112 {
7113 rtx_insn *insn = chain->insn;
7114 rtx reloadreg;
7115 rtx oldequiv_reg = 0;
7116 rtx oldequiv = 0;
7117 int special = 0;
7118 machine_mode mode;
7119 rtx_insn **where;
7120
7121 /* delete_output_reload is only invoked properly if old contains
7122 the original pseudo register. Since this is replaced with a
7123 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7124 find the pseudo in RELOAD_IN_REG. This is also used to
7125 determine whether a secondary reload is needed. */
7126 if (reload_override_in[j]
7127 && (REG_P (rl->in_reg)
7128 || (GET_CODE (rl->in_reg) == SUBREG
7129 && REG_P (SUBREG_REG (rl->in_reg)))))
7130 {
7131 oldequiv = old;
7132 old = rl->in_reg;
7133 }
7134 if (oldequiv == 0)
7135 oldequiv = old;
7136 else if (REG_P (oldequiv))
7137 oldequiv_reg = oldequiv;
7138 else if (GET_CODE (oldequiv) == SUBREG)
7139 oldequiv_reg = SUBREG_REG (oldequiv);
7140
7141 reloadreg = reload_reg_rtx_for_input[j];
7142 mode = GET_MODE (reloadreg);
7143
7144 /* If we are reloading from a register that was recently stored in
7145 with an output-reload, see if we can prove there was
7146 actually no need to store the old value in it. */
7147
7148 if (optimize && REG_P (oldequiv)
7149 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7150 && spill_reg_store[REGNO (oldequiv)]
7151 && REG_P (old)
7152 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7153 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7154 rl->out_reg)))
7155 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7156
7157 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7158 OLDEQUIV. */
7159
7160 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7161 oldequiv = SUBREG_REG (oldequiv);
7162 if (GET_MODE (oldequiv) != VOIDmode
7163 && mode != GET_MODE (oldequiv))
7164 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7165
7166 /* Switch to the right place to emit the reload insns. */
7167 switch (rl->when_needed)
7168 {
7169 case RELOAD_OTHER:
7170 where = &other_input_reload_insns;
7171 break;
7172 case RELOAD_FOR_INPUT:
7173 where = &input_reload_insns[rl->opnum];
7174 break;
7175 case RELOAD_FOR_INPUT_ADDRESS:
7176 where = &input_address_reload_insns[rl->opnum];
7177 break;
7178 case RELOAD_FOR_INPADDR_ADDRESS:
7179 where = &inpaddr_address_reload_insns[rl->opnum];
7180 break;
7181 case RELOAD_FOR_OUTPUT_ADDRESS:
7182 where = &output_address_reload_insns[rl->opnum];
7183 break;
7184 case RELOAD_FOR_OUTADDR_ADDRESS:
7185 where = &outaddr_address_reload_insns[rl->opnum];
7186 break;
7187 case RELOAD_FOR_OPERAND_ADDRESS:
7188 where = &operand_reload_insns;
7189 break;
7190 case RELOAD_FOR_OPADDR_ADDR:
7191 where = &other_operand_reload_insns;
7192 break;
7193 case RELOAD_FOR_OTHER_ADDRESS:
7194 where = &other_input_address_reload_insns;
7195 break;
7196 default:
7197 gcc_unreachable ();
7198 }
7199
7200 push_to_sequence (*where);
7201
7202 /* Auto-increment addresses must be reloaded in a special way. */
7203 if (rl->out && ! rl->out_reg)
7204 {
7205 /* We are not going to bother supporting the case where a
7206 incremented register can't be copied directly from
7207 OLDEQUIV since this seems highly unlikely. */
7208 gcc_assert (rl->secondary_in_reload < 0);
7209
7210 if (reload_inherited[j])
7211 oldequiv = reloadreg;
7212
7213 old = XEXP (rl->in_reg, 0);
7214
7215 /* Prevent normal processing of this reload. */
7216 special = 1;
7217 /* Output a special code sequence for this case. */
7218 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7219 }
7220
7221 /* If we are reloading a pseudo-register that was set by the previous
7222 insn, see if we can get rid of that pseudo-register entirely
7223 by redirecting the previous insn into our reload register. */
7224
7225 else if (optimize && REG_P (old)
7226 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7227 && dead_or_set_p (insn, old)
7228 /* This is unsafe if some other reload
7229 uses the same reg first. */
7230 && ! conflicts_with_override (reloadreg)
7231 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7232 rl->when_needed, old, rl->out, j, 0))
7233 {
7234 rtx_insn *temp = PREV_INSN (insn);
7235 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7236 temp = PREV_INSN (temp);
7237 if (temp
7238 && NONJUMP_INSN_P (temp)
7239 && GET_CODE (PATTERN (temp)) == SET
7240 && SET_DEST (PATTERN (temp)) == old
7241 /* Make sure we can access insn_operand_constraint. */
7242 && asm_noperands (PATTERN (temp)) < 0
7243 /* This is unsafe if operand occurs more than once in current
7244 insn. Perhaps some occurrences aren't reloaded. */
7245 && count_occurrences (PATTERN (insn), old, 0) == 1)
7246 {
7247 rtx old = SET_DEST (PATTERN (temp));
7248 /* Store into the reload register instead of the pseudo. */
7249 SET_DEST (PATTERN (temp)) = reloadreg;
7250
7251 /* Verify that resulting insn is valid.
7252
7253 Note that we have replaced the destination of TEMP with
7254 RELOADREG. If TEMP references RELOADREG within an
7255 autoincrement addressing mode, then the resulting insn
7256 is ill-formed and we must reject this optimization. */
7257 extract_insn (temp);
7258 if (constrain_operands (1, get_enabled_alternatives (temp))
7259 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7260 {
7261 /* If the previous insn is an output reload, the source is
7262 a reload register, and its spill_reg_store entry will
7263 contain the previous destination. This is now
7264 invalid. */
7265 if (REG_P (SET_SRC (PATTERN (temp)))
7266 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7267 {
7268 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7269 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7270 }
7271
7272 /* If these are the only uses of the pseudo reg,
7273 pretend for GDB it lives in the reload reg we used. */
7274 if (REG_N_DEATHS (REGNO (old)) == 1
7275 && REG_N_SETS (REGNO (old)) == 1)
7276 {
7277 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7278 if (ira_conflicts_p)
7279 /* Inform IRA about the change. */
7280 ira_mark_allocation_change (REGNO (old));
7281 alter_reg (REGNO (old), -1, false);
7282 }
7283 special = 1;
7284
7285 /* Adjust any debug insns between temp and insn. */
7286 while ((temp = NEXT_INSN (temp)) != insn)
7287 if (DEBUG_BIND_INSN_P (temp))
7288 INSN_VAR_LOCATION_LOC (temp)
7289 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7290 old, reloadreg);
7291 else
7292 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7293 }
7294 else
7295 {
7296 SET_DEST (PATTERN (temp)) = old;
7297 }
7298 }
7299 }
7300
7301 /* We can't do that, so output an insn to load RELOADREG. */
7302
7303 /* If we have a secondary reload, pick up the secondary register
7304 and icode, if any. If OLDEQUIV and OLD are different or
7305 if this is an in-out reload, recompute whether or not we
7306 still need a secondary register and what the icode should
7307 be. If we still need a secondary register and the class or
7308 icode is different, go back to reloading from OLD if using
7309 OLDEQUIV means that we got the wrong type of register. We
7310 cannot have different class or icode due to an in-out reload
7311 because we don't make such reloads when both the input and
7312 output need secondary reload registers. */
7313
7314 if (! special && rl->secondary_in_reload >= 0)
7315 {
7316 rtx second_reload_reg = 0;
7317 rtx third_reload_reg = 0;
7318 int secondary_reload = rl->secondary_in_reload;
7319 rtx real_oldequiv = oldequiv;
7320 rtx real_old = old;
7321 rtx tmp;
7322 enum insn_code icode;
7323 enum insn_code tertiary_icode = CODE_FOR_nothing;
7324
7325 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7326 and similarly for OLD.
7327 See comments in get_secondary_reload in reload.c. */
7328 /* If it is a pseudo that cannot be replaced with its
7329 equivalent MEM, we must fall back to reload_in, which
7330 will have all the necessary substitutions registered.
7331 Likewise for a pseudo that can't be replaced with its
7332 equivalent constant.
7333
7334 Take extra care for subregs of such pseudos. Note that
7335 we cannot use reg_equiv_mem in this case because it is
7336 not in the right mode. */
7337
7338 tmp = oldequiv;
7339 if (GET_CODE (tmp) == SUBREG)
7340 tmp = SUBREG_REG (tmp);
7341 if (REG_P (tmp)
7342 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7343 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7344 || reg_equiv_constant (REGNO (tmp)) != 0))
7345 {
7346 if (! reg_equiv_mem (REGNO (tmp))
7347 || num_not_at_initial_offset
7348 || GET_CODE (oldequiv) == SUBREG)
7349 real_oldequiv = rl->in;
7350 else
7351 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7352 }
7353
7354 tmp = old;
7355 if (GET_CODE (tmp) == SUBREG)
7356 tmp = SUBREG_REG (tmp);
7357 if (REG_P (tmp)
7358 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7359 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7360 || reg_equiv_constant (REGNO (tmp)) != 0))
7361 {
7362 if (! reg_equiv_mem (REGNO (tmp))
7363 || num_not_at_initial_offset
7364 || GET_CODE (old) == SUBREG)
7365 real_old = rl->in;
7366 else
7367 real_old = reg_equiv_mem (REGNO (tmp));
7368 }
7369
7370 second_reload_reg = rld[secondary_reload].reg_rtx;
7371 if (rld[secondary_reload].secondary_in_reload >= 0)
7372 {
7373 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7374
7375 third_reload_reg = rld[tertiary_reload].reg_rtx;
7376 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7377 /* We'd have to add more code for quartary reloads. */
7378 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7379 }
7380 icode = rl->secondary_in_icode;
7381
7382 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7383 || (rl->in != 0 && rl->out != 0))
7384 {
7385 secondary_reload_info sri, sri2;
7386 enum reg_class new_class, new_t_class;
7387
7388 sri.icode = CODE_FOR_nothing;
7389 sri.prev_sri = NULL;
7390 new_class
7391 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7392 rl->rclass, mode,
7393 &sri);
7394
7395 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7396 second_reload_reg = 0;
7397 else if (new_class == NO_REGS)
7398 {
7399 if (reload_adjust_reg_for_icode (&second_reload_reg,
7400 third_reload_reg,
7401 (enum insn_code) sri.icode))
7402 {
7403 icode = (enum insn_code) sri.icode;
7404 third_reload_reg = 0;
7405 }
7406 else
7407 {
7408 oldequiv = old;
7409 real_oldequiv = real_old;
7410 }
7411 }
7412 else if (sri.icode != CODE_FOR_nothing)
7413 /* We currently lack a way to express this in reloads. */
7414 gcc_unreachable ();
7415 else
7416 {
7417 sri2.icode = CODE_FOR_nothing;
7418 sri2.prev_sri = &sri;
7419 new_t_class
7420 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7421 new_class, mode,
7422 &sri);
7423 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7424 {
7425 if (reload_adjust_reg_for_temp (&second_reload_reg,
7426 third_reload_reg,
7427 new_class, mode))
7428 {
7429 third_reload_reg = 0;
7430 tertiary_icode = (enum insn_code) sri2.icode;
7431 }
7432 else
7433 {
7434 oldequiv = old;
7435 real_oldequiv = real_old;
7436 }
7437 }
7438 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7439 {
7440 rtx intermediate = second_reload_reg;
7441
7442 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7443 new_class, mode)
7444 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7445 ((enum insn_code)
7446 sri2.icode)))
7447 {
7448 second_reload_reg = intermediate;
7449 tertiary_icode = (enum insn_code) sri2.icode;
7450 }
7451 else
7452 {
7453 oldequiv = old;
7454 real_oldequiv = real_old;
7455 }
7456 }
7457 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7458 {
7459 rtx intermediate = second_reload_reg;
7460
7461 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7462 new_class, mode)
7463 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7464 new_t_class, mode))
7465 {
7466 second_reload_reg = intermediate;
7467 tertiary_icode = (enum insn_code) sri2.icode;
7468 }
7469 else
7470 {
7471 oldequiv = old;
7472 real_oldequiv = real_old;
7473 }
7474 }
7475 else
7476 {
7477 /* This could be handled more intelligently too. */
7478 oldequiv = old;
7479 real_oldequiv = real_old;
7480 }
7481 }
7482 }
7483
7484 /* If we still need a secondary reload register, check
7485 to see if it is being used as a scratch or intermediate
7486 register and generate code appropriately. If we need
7487 a scratch register, use REAL_OLDEQUIV since the form of
7488 the insn may depend on the actual address if it is
7489 a MEM. */
7490
7491 if (second_reload_reg)
7492 {
7493 if (icode != CODE_FOR_nothing)
7494 {
7495 /* We'd have to add extra code to handle this case. */
7496 gcc_assert (!third_reload_reg);
7497
7498 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7499 second_reload_reg));
7500 special = 1;
7501 }
7502 else
7503 {
7504 /* See if we need a scratch register to load the
7505 intermediate register (a tertiary reload). */
7506 if (tertiary_icode != CODE_FOR_nothing)
7507 {
7508 emit_insn ((GEN_FCN (tertiary_icode)
7509 (second_reload_reg, real_oldequiv,
7510 third_reload_reg)));
7511 }
7512 else if (third_reload_reg)
7513 {
7514 gen_reload (third_reload_reg, real_oldequiv,
7515 rl->opnum,
7516 rl->when_needed);
7517 gen_reload (second_reload_reg, third_reload_reg,
7518 rl->opnum,
7519 rl->when_needed);
7520 }
7521 else
7522 gen_reload (second_reload_reg, real_oldequiv,
7523 rl->opnum,
7524 rl->when_needed);
7525
7526 oldequiv = second_reload_reg;
7527 }
7528 }
7529 }
7530
7531 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7532 {
7533 rtx real_oldequiv = oldequiv;
7534
7535 if ((REG_P (oldequiv)
7536 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7537 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7538 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7539 || (GET_CODE (oldequiv) == SUBREG
7540 && REG_P (SUBREG_REG (oldequiv))
7541 && (REGNO (SUBREG_REG (oldequiv))
7542 >= FIRST_PSEUDO_REGISTER)
7543 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7544 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7545 || (CONSTANT_P (oldequiv)
7546 && (targetm.preferred_reload_class (oldequiv,
7547 REGNO_REG_CLASS (REGNO (reloadreg)))
7548 == NO_REGS)))
7549 real_oldequiv = rl->in;
7550 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7551 rl->when_needed);
7552 }
7553
7554 if (cfun->can_throw_non_call_exceptions)
7555 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7556
7557 /* End this sequence. */
7558 *where = get_insns ();
7559 end_sequence ();
7560
7561 /* Update reload_override_in so that delete_address_reloads_1
7562 can see the actual register usage. */
7563 if (oldequiv_reg)
7564 reload_override_in[j] = oldequiv;
7565 }
7566
7567 /* Generate insns to for the output reload RL, which is for the insn described
7568 by CHAIN and has the number J. */
7569 static void
7570 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7571 int j)
7572 {
7573 rtx reloadreg;
7574 rtx_insn *insn = chain->insn;
7575 int special = 0;
7576 rtx old = rl->out;
7577 machine_mode mode;
7578 rtx_insn *p;
7579 rtx rl_reg_rtx;
7580
7581 if (rl->when_needed == RELOAD_OTHER)
7582 start_sequence ();
7583 else
7584 push_to_sequence (output_reload_insns[rl->opnum]);
7585
7586 rl_reg_rtx = reload_reg_rtx_for_output[j];
7587 mode = GET_MODE (rl_reg_rtx);
7588
7589 reloadreg = rl_reg_rtx;
7590
7591 /* If we need two reload regs, set RELOADREG to the intermediate
7592 one, since it will be stored into OLD. We might need a secondary
7593 register only for an input reload, so check again here. */
7594
7595 if (rl->secondary_out_reload >= 0)
7596 {
7597 rtx real_old = old;
7598 int secondary_reload = rl->secondary_out_reload;
7599 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7600
7601 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7602 && reg_equiv_mem (REGNO (old)) != 0)
7603 real_old = reg_equiv_mem (REGNO (old));
7604
7605 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7606 {
7607 rtx second_reloadreg = reloadreg;
7608 reloadreg = rld[secondary_reload].reg_rtx;
7609
7610 /* See if RELOADREG is to be used as a scratch register
7611 or as an intermediate register. */
7612 if (rl->secondary_out_icode != CODE_FOR_nothing)
7613 {
7614 /* We'd have to add extra code to handle this case. */
7615 gcc_assert (tertiary_reload < 0);
7616
7617 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7618 (real_old, second_reloadreg, reloadreg)));
7619 special = 1;
7620 }
7621 else
7622 {
7623 /* See if we need both a scratch and intermediate reload
7624 register. */
7625
7626 enum insn_code tertiary_icode
7627 = rld[secondary_reload].secondary_out_icode;
7628
7629 /* We'd have to add more code for quartary reloads. */
7630 gcc_assert (tertiary_reload < 0
7631 || rld[tertiary_reload].secondary_out_reload < 0);
7632
7633 if (GET_MODE (reloadreg) != mode)
7634 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7635
7636 if (tertiary_icode != CODE_FOR_nothing)
7637 {
7638 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7639
7640 /* Copy primary reload reg to secondary reload reg.
7641 (Note that these have been swapped above, then
7642 secondary reload reg to OLD using our insn.) */
7643
7644 /* If REAL_OLD is a paradoxical SUBREG, remove it
7645 and try to put the opposite SUBREG on
7646 RELOADREG. */
7647 strip_paradoxical_subreg (&real_old, &reloadreg);
7648
7649 gen_reload (reloadreg, second_reloadreg,
7650 rl->opnum, rl->when_needed);
7651 emit_insn ((GEN_FCN (tertiary_icode)
7652 (real_old, reloadreg, third_reloadreg)));
7653 special = 1;
7654 }
7655
7656 else
7657 {
7658 /* Copy between the reload regs here and then to
7659 OUT later. */
7660
7661 gen_reload (reloadreg, second_reloadreg,
7662 rl->opnum, rl->when_needed);
7663 if (tertiary_reload >= 0)
7664 {
7665 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7666
7667 gen_reload (third_reloadreg, reloadreg,
7668 rl->opnum, rl->when_needed);
7669 reloadreg = third_reloadreg;
7670 }
7671 }
7672 }
7673 }
7674 }
7675
7676 /* Output the last reload insn. */
7677 if (! special)
7678 {
7679 rtx set;
7680
7681 /* Don't output the last reload if OLD is not the dest of
7682 INSN and is in the src and is clobbered by INSN. */
7683 if (! flag_expensive_optimizations
7684 || !REG_P (old)
7685 || !(set = single_set (insn))
7686 || rtx_equal_p (old, SET_DEST (set))
7687 || !reg_mentioned_p (old, SET_SRC (set))
7688 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7689 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7690 gen_reload (old, reloadreg, rl->opnum,
7691 rl->when_needed);
7692 }
7693
7694 /* Look at all insns we emitted, just to be safe. */
7695 for (p = get_insns (); p; p = NEXT_INSN (p))
7696 if (INSN_P (p))
7697 {
7698 rtx pat = PATTERN (p);
7699
7700 /* If this output reload doesn't come from a spill reg,
7701 clear any memory of reloaded copies of the pseudo reg.
7702 If this output reload comes from a spill reg,
7703 reg_has_output_reload will make this do nothing. */
7704 note_stores (p, forget_old_reloads_1, NULL);
7705
7706 if (reg_mentioned_p (rl_reg_rtx, pat))
7707 {
7708 rtx set = single_set (insn);
7709 if (reload_spill_index[j] < 0
7710 && set
7711 && SET_SRC (set) == rl_reg_rtx)
7712 {
7713 int src = REGNO (SET_SRC (set));
7714
7715 reload_spill_index[j] = src;
7716 SET_HARD_REG_BIT (reg_is_output_reload, src);
7717 if (find_regno_note (insn, REG_DEAD, src))
7718 SET_HARD_REG_BIT (reg_reloaded_died, src);
7719 }
7720 if (HARD_REGISTER_P (rl_reg_rtx))
7721 {
7722 int s = rl->secondary_out_reload;
7723 set = single_set (p);
7724 /* If this reload copies only to the secondary reload
7725 register, the secondary reload does the actual
7726 store. */
7727 if (s >= 0 && set == NULL_RTX)
7728 /* We can't tell what function the secondary reload
7729 has and where the actual store to the pseudo is
7730 made; leave new_spill_reg_store alone. */
7731 ;
7732 else if (s >= 0
7733 && SET_SRC (set) == rl_reg_rtx
7734 && SET_DEST (set) == rld[s].reg_rtx)
7735 {
7736 /* Usually the next instruction will be the
7737 secondary reload insn; if we can confirm
7738 that it is, setting new_spill_reg_store to
7739 that insn will allow an extra optimization. */
7740 rtx s_reg = rld[s].reg_rtx;
7741 rtx_insn *next = NEXT_INSN (p);
7742 rld[s].out = rl->out;
7743 rld[s].out_reg = rl->out_reg;
7744 set = single_set (next);
7745 if (set && SET_SRC (set) == s_reg
7746 && reload_reg_rtx_reaches_end_p (s_reg, s))
7747 {
7748 SET_HARD_REG_BIT (reg_is_output_reload,
7749 REGNO (s_reg));
7750 new_spill_reg_store[REGNO (s_reg)] = next;
7751 }
7752 }
7753 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7754 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7755 }
7756 }
7757 }
7758
7759 if (rl->when_needed == RELOAD_OTHER)
7760 {
7761 emit_insn (other_output_reload_insns[rl->opnum]);
7762 other_output_reload_insns[rl->opnum] = get_insns ();
7763 }
7764 else
7765 output_reload_insns[rl->opnum] = get_insns ();
7766
7767 if (cfun->can_throw_non_call_exceptions)
7768 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7769
7770 end_sequence ();
7771 }
7772
7773 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7774 and has the number J. */
7775 static void
7776 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7777 {
7778 rtx_insn *insn = chain->insn;
7779 rtx old = (rl->in && MEM_P (rl->in)
7780 ? rl->in_reg : rl->in);
7781 rtx reg_rtx = rl->reg_rtx;
7782
7783 if (old && reg_rtx)
7784 {
7785 machine_mode mode;
7786
7787 /* Determine the mode to reload in.
7788 This is very tricky because we have three to choose from.
7789 There is the mode the insn operand wants (rl->inmode).
7790 There is the mode of the reload register RELOADREG.
7791 There is the intrinsic mode of the operand, which we could find
7792 by stripping some SUBREGs.
7793 It turns out that RELOADREG's mode is irrelevant:
7794 we can change that arbitrarily.
7795
7796 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7797 then the reload reg may not support QImode moves, so use SImode.
7798 If foo is in memory due to spilling a pseudo reg, this is safe,
7799 because the QImode value is in the least significant part of a
7800 slot big enough for a SImode. If foo is some other sort of
7801 memory reference, then it is impossible to reload this case,
7802 so previous passes had better make sure this never happens.
7803
7804 Then consider a one-word union which has SImode and one of its
7805 members is a float, being fetched as (SUBREG:SF union:SI).
7806 We must fetch that as SFmode because we could be loading into
7807 a float-only register. In this case OLD's mode is correct.
7808
7809 Consider an immediate integer: it has VOIDmode. Here we need
7810 to get a mode from something else.
7811
7812 In some cases, there is a fourth mode, the operand's
7813 containing mode. If the insn specifies a containing mode for
7814 this operand, it overrides all others.
7815
7816 I am not sure whether the algorithm here is always right,
7817 but it does the right things in those cases. */
7818
7819 mode = GET_MODE (old);
7820 if (mode == VOIDmode)
7821 mode = rl->inmode;
7822
7823 /* We cannot use gen_lowpart_common since it can do the wrong thing
7824 when REG_RTX has a multi-word mode. Note that REG_RTX must
7825 always be a REG here. */
7826 if (GET_MODE (reg_rtx) != mode)
7827 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7828 }
7829 reload_reg_rtx_for_input[j] = reg_rtx;
7830
7831 if (old != 0
7832 /* AUTO_INC reloads need to be handled even if inherited. We got an
7833 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7834 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7835 && ! rtx_equal_p (reg_rtx, old)
7836 && reg_rtx != 0)
7837 emit_input_reload_insns (chain, rld + j, old, j);
7838
7839 /* When inheriting a wider reload, we have a MEM in rl->in,
7840 e.g. inheriting a SImode output reload for
7841 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7842 if (optimize && reload_inherited[j] && rl->in
7843 && MEM_P (rl->in)
7844 && MEM_P (rl->in_reg)
7845 && reload_spill_index[j] >= 0
7846 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7847 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7848
7849 /* If we are reloading a register that was recently stored in with an
7850 output-reload, see if we can prove there was
7851 actually no need to store the old value in it. */
7852
7853 if (optimize
7854 && (reload_inherited[j] || reload_override_in[j])
7855 && reg_rtx
7856 && REG_P (reg_rtx)
7857 && spill_reg_store[REGNO (reg_rtx)] != 0
7858 #if 0
7859 /* There doesn't seem to be any reason to restrict this to pseudos
7860 and doing so loses in the case where we are copying from a
7861 register of the wrong class. */
7862 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7863 #endif
7864 /* The insn might have already some references to stackslots
7865 replaced by MEMs, while reload_out_reg still names the
7866 original pseudo. */
7867 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7868 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7869 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7870 }
7871
7872 /* Do output reloading for reload RL, which is for the insn described by
7873 CHAIN and has the number J.
7874 ??? At some point we need to support handling output reloads of
7875 JUMP_INSNs or insns that set cc0. */
7876 static void
7877 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7878 {
7879 rtx note, old;
7880 rtx_insn *insn = chain->insn;
7881 /* If this is an output reload that stores something that is
7882 not loaded in this same reload, see if we can eliminate a previous
7883 store. */
7884 rtx pseudo = rl->out_reg;
7885 rtx reg_rtx = rl->reg_rtx;
7886
7887 if (rl->out && reg_rtx)
7888 {
7889 machine_mode mode;
7890
7891 /* Determine the mode to reload in.
7892 See comments above (for input reloading). */
7893 mode = GET_MODE (rl->out);
7894 if (mode == VOIDmode)
7895 {
7896 /* VOIDmode should never happen for an output. */
7897 if (asm_noperands (PATTERN (insn)) < 0)
7898 /* It's the compiler's fault. */
7899 fatal_insn ("VOIDmode on an output", insn);
7900 error_for_asm (insn, "output operand is constant in %<asm%>");
7901 /* Prevent crash--use something we know is valid. */
7902 mode = word_mode;
7903 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7904 }
7905 if (GET_MODE (reg_rtx) != mode)
7906 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7907 }
7908 reload_reg_rtx_for_output[j] = reg_rtx;
7909
7910 if (pseudo
7911 && optimize
7912 && REG_P (pseudo)
7913 && ! rtx_equal_p (rl->in_reg, pseudo)
7914 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7915 && reg_last_reload_reg[REGNO (pseudo)])
7916 {
7917 int pseudo_no = REGNO (pseudo);
7918 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7919
7920 /* We don't need to test full validity of last_regno for
7921 inherit here; we only want to know if the store actually
7922 matches the pseudo. */
7923 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7924 && reg_reloaded_contents[last_regno] == pseudo_no
7925 && spill_reg_store[last_regno]
7926 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7927 delete_output_reload (insn, j, last_regno, reg_rtx);
7928 }
7929
7930 old = rl->out_reg;
7931 if (old == 0
7932 || reg_rtx == 0
7933 || rtx_equal_p (old, reg_rtx))
7934 return;
7935
7936 /* An output operand that dies right away does need a reload,
7937 but need not be copied from it. Show the new location in the
7938 REG_UNUSED note. */
7939 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7940 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7941 {
7942 XEXP (note, 0) = reg_rtx;
7943 return;
7944 }
7945 /* Likewise for a SUBREG of an operand that dies. */
7946 else if (GET_CODE (old) == SUBREG
7947 && REG_P (SUBREG_REG (old))
7948 && (note = find_reg_note (insn, REG_UNUSED,
7949 SUBREG_REG (old))) != 0)
7950 {
7951 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7952 return;
7953 }
7954 else if (GET_CODE (old) == SCRATCH)
7955 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7956 but we don't want to make an output reload. */
7957 return;
7958
7959 /* If is a JUMP_INSN, we can't support output reloads yet. */
7960 gcc_assert (NONJUMP_INSN_P (insn));
7961
7962 emit_output_reload_insns (chain, rld + j, j);
7963 }
7964
7965 /* A reload copies values of MODE from register SRC to register DEST.
7966 Return true if it can be treated for inheritance purposes like a
7967 group of reloads, each one reloading a single hard register. The
7968 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7969 occupy the same number of hard registers. */
7970
7971 static bool
7972 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7973 int src ATTRIBUTE_UNUSED,
7974 machine_mode mode ATTRIBUTE_UNUSED)
7975 {
7976 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7977 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7978 }
7979
7980 /* Output insns to reload values in and out of the chosen reload regs. */
7981
7982 static void
7983 emit_reload_insns (class insn_chain *chain)
7984 {
7985 rtx_insn *insn = chain->insn;
7986
7987 int j;
7988
7989 CLEAR_HARD_REG_SET (reg_reloaded_died);
7990
7991 for (j = 0; j < reload_n_operands; j++)
7992 input_reload_insns[j] = input_address_reload_insns[j]
7993 = inpaddr_address_reload_insns[j]
7994 = output_reload_insns[j] = output_address_reload_insns[j]
7995 = outaddr_address_reload_insns[j]
7996 = other_output_reload_insns[j] = 0;
7997 other_input_address_reload_insns = 0;
7998 other_input_reload_insns = 0;
7999 operand_reload_insns = 0;
8000 other_operand_reload_insns = 0;
8001
8002 /* Dump reloads into the dump file. */
8003 if (dump_file)
8004 {
8005 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8006 debug_reload_to_stream (dump_file);
8007 }
8008
8009 for (j = 0; j < n_reloads; j++)
8010 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8011 {
8012 unsigned int i;
8013
8014 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8015 new_spill_reg_store[i] = 0;
8016 }
8017
8018 /* Now output the instructions to copy the data into and out of the
8019 reload registers. Do these in the order that the reloads were reported,
8020 since reloads of base and index registers precede reloads of operands
8021 and the operands may need the base and index registers reloaded. */
8022
8023 for (j = 0; j < n_reloads; j++)
8024 {
8025 do_input_reload (chain, rld + j, j);
8026 do_output_reload (chain, rld + j, j);
8027 }
8028
8029 /* Now write all the insns we made for reloads in the order expected by
8030 the allocation functions. Prior to the insn being reloaded, we write
8031 the following reloads:
8032
8033 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8034
8035 RELOAD_OTHER reloads.
8036
8037 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8038 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8039 RELOAD_FOR_INPUT reload for the operand.
8040
8041 RELOAD_FOR_OPADDR_ADDRS reloads.
8042
8043 RELOAD_FOR_OPERAND_ADDRESS reloads.
8044
8045 After the insn being reloaded, we write the following:
8046
8047 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8048 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8049 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8050 reloads for the operand. The RELOAD_OTHER output reloads are
8051 output in descending order by reload number. */
8052
8053 emit_insn_before (other_input_address_reload_insns, insn);
8054 emit_insn_before (other_input_reload_insns, insn);
8055
8056 for (j = 0; j < reload_n_operands; j++)
8057 {
8058 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8059 emit_insn_before (input_address_reload_insns[j], insn);
8060 emit_insn_before (input_reload_insns[j], insn);
8061 }
8062
8063 emit_insn_before (other_operand_reload_insns, insn);
8064 emit_insn_before (operand_reload_insns, insn);
8065
8066 for (j = 0; j < reload_n_operands; j++)
8067 {
8068 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8069 x = emit_insn_after (output_address_reload_insns[j], x);
8070 x = emit_insn_after (output_reload_insns[j], x);
8071 emit_insn_after (other_output_reload_insns[j], x);
8072 }
8073
8074 /* For all the spill regs newly reloaded in this instruction,
8075 record what they were reloaded from, so subsequent instructions
8076 can inherit the reloads.
8077
8078 Update spill_reg_store for the reloads of this insn.
8079 Copy the elements that were updated in the loop above. */
8080
8081 for (j = 0; j < n_reloads; j++)
8082 {
8083 int r = reload_order[j];
8084 int i = reload_spill_index[r];
8085
8086 /* If this is a non-inherited input reload from a pseudo, we must
8087 clear any memory of a previous store to the same pseudo. Only do
8088 something if there will not be an output reload for the pseudo
8089 being reloaded. */
8090 if (rld[r].in_reg != 0
8091 && ! (reload_inherited[r] || reload_override_in[r]))
8092 {
8093 rtx reg = rld[r].in_reg;
8094
8095 if (GET_CODE (reg) == SUBREG)
8096 reg = SUBREG_REG (reg);
8097
8098 if (REG_P (reg)
8099 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8100 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8101 {
8102 int nregno = REGNO (reg);
8103
8104 if (reg_last_reload_reg[nregno])
8105 {
8106 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8107
8108 if (reg_reloaded_contents[last_regno] == nregno)
8109 spill_reg_store[last_regno] = 0;
8110 }
8111 }
8112 }
8113
8114 /* I is nonneg if this reload used a register.
8115 If rld[r].reg_rtx is 0, this is an optional reload
8116 that we opted to ignore. */
8117
8118 if (i >= 0 && rld[r].reg_rtx != 0)
8119 {
8120 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8121 int k;
8122
8123 /* For a multi register reload, we need to check if all or part
8124 of the value lives to the end. */
8125 for (k = 0; k < nr; k++)
8126 if (reload_reg_reaches_end_p (i + k, r))
8127 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8128
8129 /* Maybe the spill reg contains a copy of reload_out. */
8130 if (rld[r].out != 0
8131 && (REG_P (rld[r].out)
8132 || (rld[r].out_reg
8133 ? REG_P (rld[r].out_reg)
8134 /* The reload value is an auto-modification of
8135 some kind. For PRE_INC, POST_INC, PRE_DEC
8136 and POST_DEC, we record an equivalence
8137 between the reload register and the operand
8138 on the optimistic assumption that we can make
8139 the equivalence hold. reload_as_needed must
8140 then either make it hold or invalidate the
8141 equivalence.
8142
8143 PRE_MODIFY and POST_MODIFY addresses are reloaded
8144 somewhat differently, and allowing them here leads
8145 to problems. */
8146 : (GET_CODE (rld[r].out) != POST_MODIFY
8147 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8148 {
8149 rtx reg;
8150
8151 reg = reload_reg_rtx_for_output[r];
8152 if (reload_reg_rtx_reaches_end_p (reg, r))
8153 {
8154 machine_mode mode = GET_MODE (reg);
8155 int regno = REGNO (reg);
8156 int nregs = REG_NREGS (reg);
8157 rtx out = (REG_P (rld[r].out)
8158 ? rld[r].out
8159 : rld[r].out_reg
8160 ? rld[r].out_reg
8161 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8162 int out_regno = REGNO (out);
8163 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8164 : hard_regno_nregs (out_regno, mode));
8165 bool piecemeal;
8166
8167 spill_reg_store[regno] = new_spill_reg_store[regno];
8168 spill_reg_stored_to[regno] = out;
8169 reg_last_reload_reg[out_regno] = reg;
8170
8171 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8172 && nregs == out_nregs
8173 && inherit_piecemeal_p (out_regno, regno, mode));
8174
8175 /* If OUT_REGNO is a hard register, it may occupy more than
8176 one register. If it does, say what is in the
8177 rest of the registers assuming that both registers
8178 agree on how many words the object takes. If not,
8179 invalidate the subsequent registers. */
8180
8181 if (HARD_REGISTER_NUM_P (out_regno))
8182 for (k = 1; k < out_nregs; k++)
8183 reg_last_reload_reg[out_regno + k]
8184 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8185
8186 /* Now do the inverse operation. */
8187 for (k = 0; k < nregs; k++)
8188 {
8189 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8190 reg_reloaded_contents[regno + k]
8191 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8192 ? out_regno
8193 : out_regno + k);
8194 reg_reloaded_insn[regno + k] = insn;
8195 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8196 if (targetm.hard_regno_call_part_clobbered (0, regno + k,
8197 mode))
8198 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8199 regno + k);
8200 else
8201 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8202 regno + k);
8203 }
8204 }
8205 }
8206 /* Maybe the spill reg contains a copy of reload_in. Only do
8207 something if there will not be an output reload for
8208 the register being reloaded. */
8209 else if (rld[r].out_reg == 0
8210 && rld[r].in != 0
8211 && ((REG_P (rld[r].in)
8212 && !HARD_REGISTER_P (rld[r].in)
8213 && !REGNO_REG_SET_P (&reg_has_output_reload,
8214 REGNO (rld[r].in)))
8215 || (REG_P (rld[r].in_reg)
8216 && !REGNO_REG_SET_P (&reg_has_output_reload,
8217 REGNO (rld[r].in_reg))))
8218 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8219 {
8220 rtx reg;
8221
8222 reg = reload_reg_rtx_for_input[r];
8223 if (reload_reg_rtx_reaches_end_p (reg, r))
8224 {
8225 machine_mode mode;
8226 int regno;
8227 int nregs;
8228 int in_regno;
8229 int in_nregs;
8230 rtx in;
8231 bool piecemeal;
8232
8233 mode = GET_MODE (reg);
8234 regno = REGNO (reg);
8235 nregs = REG_NREGS (reg);
8236 if (REG_P (rld[r].in)
8237 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8238 in = rld[r].in;
8239 else if (REG_P (rld[r].in_reg))
8240 in = rld[r].in_reg;
8241 else
8242 in = XEXP (rld[r].in_reg, 0);
8243 in_regno = REGNO (in);
8244
8245 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8246 : hard_regno_nregs (in_regno, mode));
8247
8248 reg_last_reload_reg[in_regno] = reg;
8249
8250 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8251 && nregs == in_nregs
8252 && inherit_piecemeal_p (regno, in_regno, mode));
8253
8254 if (HARD_REGISTER_NUM_P (in_regno))
8255 for (k = 1; k < in_nregs; k++)
8256 reg_last_reload_reg[in_regno + k]
8257 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8258
8259 /* Unless we inherited this reload, show we haven't
8260 recently done a store.
8261 Previous stores of inherited auto_inc expressions
8262 also have to be discarded. */
8263 if (! reload_inherited[r]
8264 || (rld[r].out && ! rld[r].out_reg))
8265 spill_reg_store[regno] = 0;
8266
8267 for (k = 0; k < nregs; k++)
8268 {
8269 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8270 reg_reloaded_contents[regno + k]
8271 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8272 ? in_regno
8273 : in_regno + k);
8274 reg_reloaded_insn[regno + k] = insn;
8275 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8276 if (targetm.hard_regno_call_part_clobbered (0, regno + k,
8277 mode))
8278 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8279 regno + k);
8280 else
8281 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8282 regno + k);
8283 }
8284 }
8285 }
8286 }
8287
8288 /* The following if-statement was #if 0'd in 1.34 (or before...).
8289 It's reenabled in 1.35 because supposedly nothing else
8290 deals with this problem. */
8291
8292 /* If a register gets output-reloaded from a non-spill register,
8293 that invalidates any previous reloaded copy of it.
8294 But forget_old_reloads_1 won't get to see it, because
8295 it thinks only about the original insn. So invalidate it here.
8296 Also do the same thing for RELOAD_OTHER constraints where the
8297 output is discarded. */
8298 if (i < 0
8299 && ((rld[r].out != 0
8300 && (REG_P (rld[r].out)
8301 || (MEM_P (rld[r].out)
8302 && REG_P (rld[r].out_reg))))
8303 || (rld[r].out == 0 && rld[r].out_reg
8304 && REG_P (rld[r].out_reg))))
8305 {
8306 rtx out = ((rld[r].out && REG_P (rld[r].out))
8307 ? rld[r].out : rld[r].out_reg);
8308 int out_regno = REGNO (out);
8309 machine_mode mode = GET_MODE (out);
8310
8311 /* REG_RTX is now set or clobbered by the main instruction.
8312 As the comment above explains, forget_old_reloads_1 only
8313 sees the original instruction, and there is no guarantee
8314 that the original instruction also clobbered REG_RTX.
8315 For example, if find_reloads sees that the input side of
8316 a matched operand pair dies in this instruction, it may
8317 use the input register as the reload register.
8318
8319 Calling forget_old_reloads_1 is a waste of effort if
8320 REG_RTX is also the output register.
8321
8322 If we know that REG_RTX holds the value of a pseudo
8323 register, the code after the call will record that fact. */
8324 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8325 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8326
8327 if (!HARD_REGISTER_NUM_P (out_regno))
8328 {
8329 rtx src_reg;
8330 rtx_insn *store_insn = NULL;
8331
8332 reg_last_reload_reg[out_regno] = 0;
8333
8334 /* If we can find a hard register that is stored, record
8335 the storing insn so that we may delete this insn with
8336 delete_output_reload. */
8337 src_reg = reload_reg_rtx_for_output[r];
8338
8339 if (src_reg)
8340 {
8341 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8342 store_insn = new_spill_reg_store[REGNO (src_reg)];
8343 else
8344 src_reg = NULL_RTX;
8345 }
8346 else
8347 {
8348 /* If this is an optional reload, try to find the
8349 source reg from an input reload. */
8350 rtx set = single_set (insn);
8351 if (set && SET_DEST (set) == rld[r].out)
8352 {
8353 int k;
8354
8355 src_reg = SET_SRC (set);
8356 store_insn = insn;
8357 for (k = 0; k < n_reloads; k++)
8358 {
8359 if (rld[k].in == src_reg)
8360 {
8361 src_reg = reload_reg_rtx_for_input[k];
8362 break;
8363 }
8364 }
8365 }
8366 }
8367 if (src_reg && REG_P (src_reg)
8368 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8369 {
8370 int src_regno, src_nregs, k;
8371 rtx note;
8372
8373 gcc_assert (GET_MODE (src_reg) == mode);
8374 src_regno = REGNO (src_reg);
8375 src_nregs = hard_regno_nregs (src_regno, mode);
8376 /* The place where to find a death note varies with
8377 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8378 necessarily checked exactly in the code that moves
8379 notes, so just check both locations. */
8380 note = find_regno_note (insn, REG_DEAD, src_regno);
8381 if (! note && store_insn)
8382 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8383 for (k = 0; k < src_nregs; k++)
8384 {
8385 spill_reg_store[src_regno + k] = store_insn;
8386 spill_reg_stored_to[src_regno + k] = out;
8387 reg_reloaded_contents[src_regno + k] = out_regno;
8388 reg_reloaded_insn[src_regno + k] = store_insn;
8389 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8390 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8391 if (targetm.hard_regno_call_part_clobbered
8392 (0, src_regno + k, mode))
8393 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8394 src_regno + k);
8395 else
8396 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8397 src_regno + k);
8398 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8399 if (note)
8400 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8401 else
8402 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8403 }
8404 reg_last_reload_reg[out_regno] = src_reg;
8405 /* We have to set reg_has_output_reload here, or else
8406 forget_old_reloads_1 will clear reg_last_reload_reg
8407 right away. */
8408 SET_REGNO_REG_SET (&reg_has_output_reload,
8409 out_regno);
8410 }
8411 }
8412 else
8413 {
8414 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8415
8416 for (k = 0; k < out_nregs; k++)
8417 reg_last_reload_reg[out_regno + k] = 0;
8418 }
8419 }
8420 }
8421 reg_reloaded_dead |= reg_reloaded_died;
8422 }
8423 \f
8424 /* Go through the motions to emit INSN and test if it is strictly valid.
8425 Return the emitted insn if valid, else return NULL. */
8426
8427 static rtx_insn *
8428 emit_insn_if_valid_for_reload (rtx pat)
8429 {
8430 rtx_insn *last = get_last_insn ();
8431 int code;
8432
8433 rtx_insn *insn = emit_insn (pat);
8434 code = recog_memoized (insn);
8435
8436 if (code >= 0)
8437 {
8438 extract_insn (insn);
8439 /* We want constrain operands to treat this insn strictly in its
8440 validity determination, i.e., the way it would after reload has
8441 completed. */
8442 if (constrain_operands (1, get_enabled_alternatives (insn)))
8443 return insn;
8444 }
8445
8446 delete_insns_since (last);
8447 return NULL;
8448 }
8449
8450 /* Emit code to perform a reload from IN (which may be a reload register) to
8451 OUT (which may also be a reload register). IN or OUT is from operand
8452 OPNUM with reload type TYPE.
8453
8454 Returns first insn emitted. */
8455
8456 static rtx_insn *
8457 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8458 {
8459 rtx_insn *last = get_last_insn ();
8460 rtx_insn *tem;
8461 rtx tem1, tem2;
8462
8463 /* If IN is a paradoxical SUBREG, remove it and try to put the
8464 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8465 if (!strip_paradoxical_subreg (&in, &out))
8466 strip_paradoxical_subreg (&out, &in);
8467
8468 /* How to do this reload can get quite tricky. Normally, we are being
8469 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8470 register that didn't get a hard register. In that case we can just
8471 call emit_move_insn.
8472
8473 We can also be asked to reload a PLUS that adds a register or a MEM to
8474 another register, constant or MEM. This can occur during frame pointer
8475 elimination and while reloading addresses. This case is handled by
8476 trying to emit a single insn to perform the add. If it is not valid,
8477 we use a two insn sequence.
8478
8479 Or we can be asked to reload an unary operand that was a fragment of
8480 an addressing mode, into a register. If it isn't recognized as-is,
8481 we try making the unop operand and the reload-register the same:
8482 (set reg:X (unop:X expr:Y))
8483 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8484
8485 Finally, we could be called to handle an 'o' constraint by putting
8486 an address into a register. In that case, we first try to do this
8487 with a named pattern of "reload_load_address". If no such pattern
8488 exists, we just emit a SET insn and hope for the best (it will normally
8489 be valid on machines that use 'o').
8490
8491 This entire process is made complex because reload will never
8492 process the insns we generate here and so we must ensure that
8493 they will fit their constraints and also by the fact that parts of
8494 IN might be being reloaded separately and replaced with spill registers.
8495 Because of this, we are, in some sense, just guessing the right approach
8496 here. The one listed above seems to work.
8497
8498 ??? At some point, this whole thing needs to be rethought. */
8499
8500 if (GET_CODE (in) == PLUS
8501 && (REG_P (XEXP (in, 0))
8502 || GET_CODE (XEXP (in, 0)) == SUBREG
8503 || MEM_P (XEXP (in, 0)))
8504 && (REG_P (XEXP (in, 1))
8505 || GET_CODE (XEXP (in, 1)) == SUBREG
8506 || CONSTANT_P (XEXP (in, 1))
8507 || MEM_P (XEXP (in, 1))))
8508 {
8509 /* We need to compute the sum of a register or a MEM and another
8510 register, constant, or MEM, and put it into the reload
8511 register. The best possible way of doing this is if the machine
8512 has a three-operand ADD insn that accepts the required operands.
8513
8514 The simplest approach is to try to generate such an insn and see if it
8515 is recognized and matches its constraints. If so, it can be used.
8516
8517 It might be better not to actually emit the insn unless it is valid,
8518 but we need to pass the insn as an operand to `recog' and
8519 `extract_insn' and it is simpler to emit and then delete the insn if
8520 not valid than to dummy things up. */
8521
8522 rtx op0, op1, tem;
8523 rtx_insn *insn;
8524 enum insn_code code;
8525
8526 op0 = find_replacement (&XEXP (in, 0));
8527 op1 = find_replacement (&XEXP (in, 1));
8528
8529 /* Since constraint checking is strict, commutativity won't be
8530 checked, so we need to do that here to avoid spurious failure
8531 if the add instruction is two-address and the second operand
8532 of the add is the same as the reload reg, which is frequently
8533 the case. If the insn would be A = B + A, rearrange it so
8534 it will be A = A + B as constrain_operands expects. */
8535
8536 if (REG_P (XEXP (in, 1))
8537 && REGNO (out) == REGNO (XEXP (in, 1)))
8538 tem = op0, op0 = op1, op1 = tem;
8539
8540 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8541 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8542
8543 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8544 if (insn)
8545 return insn;
8546
8547 /* If that failed, we must use a conservative two-insn sequence.
8548
8549 Use a move to copy one operand into the reload register. Prefer
8550 to reload a constant, MEM or pseudo since the move patterns can
8551 handle an arbitrary operand. If OP1 is not a constant, MEM or
8552 pseudo and OP1 is not a valid operand for an add instruction, then
8553 reload OP1.
8554
8555 After reloading one of the operands into the reload register, add
8556 the reload register to the output register.
8557
8558 If there is another way to do this for a specific machine, a
8559 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8560 we emit below. */
8561
8562 code = optab_handler (add_optab, GET_MODE (out));
8563
8564 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8565 || (REG_P (op1)
8566 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8567 || (code != CODE_FOR_nothing
8568 && !insn_operand_matches (code, 2, op1)))
8569 tem = op0, op0 = op1, op1 = tem;
8570
8571 gen_reload (out, op0, opnum, type);
8572
8573 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8574 This fixes a problem on the 32K where the stack pointer cannot
8575 be used as an operand of an add insn. */
8576
8577 if (rtx_equal_p (op0, op1))
8578 op1 = out;
8579
8580 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8581 if (insn)
8582 {
8583 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8584 set_dst_reg_note (insn, REG_EQUIV, in, out);
8585 return insn;
8586 }
8587
8588 /* If that failed, copy the address register to the reload register.
8589 Then add the constant to the reload register. */
8590
8591 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8592 gen_reload (out, op1, opnum, type);
8593 insn = emit_insn (gen_add2_insn (out, op0));
8594 set_dst_reg_note (insn, REG_EQUIV, in, out);
8595 }
8596
8597 /* If we need a memory location to do the move, do it that way. */
8598 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8599 (REG_P (tem1) && REG_P (tem2)))
8600 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8601 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8602 && targetm.secondary_memory_needed (GET_MODE (out),
8603 REGNO_REG_CLASS (REGNO (tem1)),
8604 REGNO_REG_CLASS (REGNO (tem2))))
8605 {
8606 /* Get the memory to use and rewrite both registers to its mode. */
8607 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8608
8609 if (GET_MODE (loc) != GET_MODE (out))
8610 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8611
8612 if (GET_MODE (loc) != GET_MODE (in))
8613 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8614
8615 gen_reload (loc, in, opnum, type);
8616 gen_reload (out, loc, opnum, type);
8617 }
8618 else if (REG_P (out) && UNARY_P (in))
8619 {
8620 rtx op1;
8621 rtx out_moded;
8622 rtx_insn *set;
8623
8624 op1 = find_replacement (&XEXP (in, 0));
8625 if (op1 != XEXP (in, 0))
8626 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8627
8628 /* First, try a plain SET. */
8629 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8630 if (set)
8631 return set;
8632
8633 /* If that failed, move the inner operand to the reload
8634 register, and try the same unop with the inner expression
8635 replaced with the reload register. */
8636
8637 if (GET_MODE (op1) != GET_MODE (out))
8638 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8639 else
8640 out_moded = out;
8641
8642 gen_reload (out_moded, op1, opnum, type);
8643
8644 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8645 out_moded));
8646 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8647 if (insn)
8648 {
8649 set_unique_reg_note (insn, REG_EQUIV, in);
8650 return insn;
8651 }
8652
8653 fatal_insn ("failure trying to reload:", set);
8654 }
8655 /* If IN is a simple operand, use gen_move_insn. */
8656 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8657 {
8658 tem = emit_insn (gen_move_insn (out, in));
8659 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8660 mark_jump_label (in, tem, 0);
8661 }
8662
8663 else if (targetm.have_reload_load_address ())
8664 emit_insn (targetm.gen_reload_load_address (out, in));
8665
8666 /* Otherwise, just write (set OUT IN) and hope for the best. */
8667 else
8668 emit_insn (gen_rtx_SET (out, in));
8669
8670 /* Return the first insn emitted.
8671 We cannot just return get_last_insn, because there may have
8672 been multiple instructions emitted. Also note that gen_move_insn may
8673 emit more than one insn itself, so we cannot assume that there is one
8674 insn emitted per emit_insn_before call. */
8675
8676 return last ? NEXT_INSN (last) : get_insns ();
8677 }
8678 \f
8679 /* Delete a previously made output-reload whose result we now believe
8680 is not needed. First we double-check.
8681
8682 INSN is the insn now being processed.
8683 LAST_RELOAD_REG is the hard register number for which we want to delete
8684 the last output reload.
8685 J is the reload-number that originally used REG. The caller has made
8686 certain that reload J doesn't use REG any longer for input.
8687 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8688
8689 static void
8690 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8691 rtx new_reload_reg)
8692 {
8693 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8694 rtx reg = spill_reg_stored_to[last_reload_reg];
8695 int k;
8696 int n_occurrences;
8697 int n_inherited = 0;
8698 rtx substed;
8699 unsigned regno;
8700 int nregs;
8701
8702 /* It is possible that this reload has been only used to set another reload
8703 we eliminated earlier and thus deleted this instruction too. */
8704 if (output_reload_insn->deleted ())
8705 return;
8706
8707 /* Get the raw pseudo-register referred to. */
8708
8709 while (GET_CODE (reg) == SUBREG)
8710 reg = SUBREG_REG (reg);
8711 substed = reg_equiv_memory_loc (REGNO (reg));
8712
8713 /* This is unsafe if the operand occurs more often in the current
8714 insn than it is inherited. */
8715 for (k = n_reloads - 1; k >= 0; k--)
8716 {
8717 rtx reg2 = rld[k].in;
8718 if (! reg2)
8719 continue;
8720 if (MEM_P (reg2) || reload_override_in[k])
8721 reg2 = rld[k].in_reg;
8722
8723 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8724 reg2 = XEXP (rld[k].in_reg, 0);
8725
8726 while (GET_CODE (reg2) == SUBREG)
8727 reg2 = SUBREG_REG (reg2);
8728 if (rtx_equal_p (reg2, reg))
8729 {
8730 if (reload_inherited[k] || reload_override_in[k] || k == j)
8731 n_inherited++;
8732 else
8733 return;
8734 }
8735 }
8736 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8737 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8738 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8739 reg, 0);
8740 if (substed)
8741 n_occurrences += count_occurrences (PATTERN (insn),
8742 eliminate_regs (substed, VOIDmode,
8743 NULL_RTX), 0);
8744 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8745 {
8746 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8747 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8748 }
8749 if (n_occurrences > n_inherited)
8750 return;
8751
8752 regno = REGNO (reg);
8753 nregs = REG_NREGS (reg);
8754
8755 /* If the pseudo-reg we are reloading is no longer referenced
8756 anywhere between the store into it and here,
8757 and we're within the same basic block, then the value can only
8758 pass through the reload reg and end up here.
8759 Otherwise, give up--return. */
8760 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8761 i1 != insn; i1 = NEXT_INSN (i1))
8762 {
8763 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8764 return;
8765 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8766 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8767 {
8768 /* If this is USE in front of INSN, we only have to check that
8769 there are no more references than accounted for by inheritance. */
8770 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8771 {
8772 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8773 i1 = NEXT_INSN (i1);
8774 }
8775 if (n_occurrences <= n_inherited && i1 == insn)
8776 break;
8777 return;
8778 }
8779 }
8780
8781 /* We will be deleting the insn. Remove the spill reg information. */
8782 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8783 {
8784 spill_reg_store[last_reload_reg + k] = 0;
8785 spill_reg_stored_to[last_reload_reg + k] = 0;
8786 }
8787
8788 /* The caller has already checked that REG dies or is set in INSN.
8789 It has also checked that we are optimizing, and thus some
8790 inaccuracies in the debugging information are acceptable.
8791 So we could just delete output_reload_insn. But in some cases
8792 we can improve the debugging information without sacrificing
8793 optimization - maybe even improving the code: See if the pseudo
8794 reg has been completely replaced with reload regs. If so, delete
8795 the store insn and forget we had a stack slot for the pseudo. */
8796 if (rld[j].out != rld[j].in
8797 && REG_N_DEATHS (REGNO (reg)) == 1
8798 && REG_N_SETS (REGNO (reg)) == 1
8799 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8800 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8801 {
8802 rtx_insn *i2;
8803
8804 /* We know that it was used only between here and the beginning of
8805 the current basic block. (We also know that the last use before
8806 INSN was the output reload we are thinking of deleting, but never
8807 mind that.) Search that range; see if any ref remains. */
8808 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8809 {
8810 rtx set = single_set (i2);
8811
8812 /* Uses which just store in the pseudo don't count,
8813 since if they are the only uses, they are dead. */
8814 if (set != 0 && SET_DEST (set) == reg)
8815 continue;
8816 if (LABEL_P (i2) || JUMP_P (i2))
8817 break;
8818 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8819 && reg_mentioned_p (reg, PATTERN (i2)))
8820 {
8821 /* Some other ref remains; just delete the output reload we
8822 know to be dead. */
8823 delete_address_reloads (output_reload_insn, insn);
8824 delete_insn (output_reload_insn);
8825 return;
8826 }
8827 }
8828
8829 /* Delete the now-dead stores into this pseudo. Note that this
8830 loop also takes care of deleting output_reload_insn. */
8831 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8832 {
8833 rtx set = single_set (i2);
8834
8835 if (set != 0 && SET_DEST (set) == reg)
8836 {
8837 delete_address_reloads (i2, insn);
8838 delete_insn (i2);
8839 }
8840 if (LABEL_P (i2) || JUMP_P (i2))
8841 break;
8842 }
8843
8844 /* For the debugging info, say the pseudo lives in this reload reg. */
8845 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8846 if (ira_conflicts_p)
8847 /* Inform IRA about the change. */
8848 ira_mark_allocation_change (REGNO (reg));
8849 alter_reg (REGNO (reg), -1, false);
8850 }
8851 else
8852 {
8853 delete_address_reloads (output_reload_insn, insn);
8854 delete_insn (output_reload_insn);
8855 }
8856 }
8857
8858 /* We are going to delete DEAD_INSN. Recursively delete loads of
8859 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8860 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8861 static void
8862 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8863 {
8864 rtx set = single_set (dead_insn);
8865 rtx set2, dst;
8866 rtx_insn *prev, *next;
8867 if (set)
8868 {
8869 rtx dst = SET_DEST (set);
8870 if (MEM_P (dst))
8871 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8872 }
8873 /* If we deleted the store from a reloaded post_{in,de}c expression,
8874 we can delete the matching adds. */
8875 prev = PREV_INSN (dead_insn);
8876 next = NEXT_INSN (dead_insn);
8877 if (! prev || ! next)
8878 return;
8879 set = single_set (next);
8880 set2 = single_set (prev);
8881 if (! set || ! set2
8882 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8883 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8884 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8885 return;
8886 dst = SET_DEST (set);
8887 if (! rtx_equal_p (dst, SET_DEST (set2))
8888 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8889 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8890 || (INTVAL (XEXP (SET_SRC (set), 1))
8891 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8892 return;
8893 delete_related_insns (prev);
8894 delete_related_insns (next);
8895 }
8896
8897 /* Subfunction of delete_address_reloads: process registers found in X. */
8898 static void
8899 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8900 {
8901 rtx_insn *prev, *i2;
8902 rtx set, dst;
8903 int i, j;
8904 enum rtx_code code = GET_CODE (x);
8905
8906 if (code != REG)
8907 {
8908 const char *fmt = GET_RTX_FORMAT (code);
8909 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8910 {
8911 if (fmt[i] == 'e')
8912 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8913 else if (fmt[i] == 'E')
8914 {
8915 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8916 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8917 current_insn);
8918 }
8919 }
8920 return;
8921 }
8922
8923 if (spill_reg_order[REGNO (x)] < 0)
8924 return;
8925
8926 /* Scan backwards for the insn that sets x. This might be a way back due
8927 to inheritance. */
8928 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8929 {
8930 code = GET_CODE (prev);
8931 if (code == CODE_LABEL || code == JUMP_INSN)
8932 return;
8933 if (!INSN_P (prev))
8934 continue;
8935 if (reg_set_p (x, PATTERN (prev)))
8936 break;
8937 if (reg_referenced_p (x, PATTERN (prev)))
8938 return;
8939 }
8940 if (! prev || INSN_UID (prev) < reload_first_uid)
8941 return;
8942 /* Check that PREV only sets the reload register. */
8943 set = single_set (prev);
8944 if (! set)
8945 return;
8946 dst = SET_DEST (set);
8947 if (!REG_P (dst)
8948 || ! rtx_equal_p (dst, x))
8949 return;
8950 if (! reg_set_p (dst, PATTERN (dead_insn)))
8951 {
8952 /* Check if DST was used in a later insn -
8953 it might have been inherited. */
8954 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8955 {
8956 if (LABEL_P (i2))
8957 break;
8958 if (! INSN_P (i2))
8959 continue;
8960 if (reg_referenced_p (dst, PATTERN (i2)))
8961 {
8962 /* If there is a reference to the register in the current insn,
8963 it might be loaded in a non-inherited reload. If no other
8964 reload uses it, that means the register is set before
8965 referenced. */
8966 if (i2 == current_insn)
8967 {
8968 for (j = n_reloads - 1; j >= 0; j--)
8969 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8970 || reload_override_in[j] == dst)
8971 return;
8972 for (j = n_reloads - 1; j >= 0; j--)
8973 if (rld[j].in && rld[j].reg_rtx == dst)
8974 break;
8975 if (j >= 0)
8976 break;
8977 }
8978 return;
8979 }
8980 if (JUMP_P (i2))
8981 break;
8982 /* If DST is still live at CURRENT_INSN, check if it is used for
8983 any reload. Note that even if CURRENT_INSN sets DST, we still
8984 have to check the reloads. */
8985 if (i2 == current_insn)
8986 {
8987 for (j = n_reloads - 1; j >= 0; j--)
8988 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8989 || reload_override_in[j] == dst)
8990 return;
8991 /* ??? We can't finish the loop here, because dst might be
8992 allocated to a pseudo in this block if no reload in this
8993 block needs any of the classes containing DST - see
8994 spill_hard_reg. There is no easy way to tell this, so we
8995 have to scan till the end of the basic block. */
8996 }
8997 if (reg_set_p (dst, PATTERN (i2)))
8998 break;
8999 }
9000 }
9001 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9002 reg_reloaded_contents[REGNO (dst)] = -1;
9003 delete_insn (prev);
9004 }
9005 \f
9006 /* Output reload-insns to reload VALUE into RELOADREG.
9007 VALUE is an autoincrement or autodecrement RTX whose operand
9008 is a register or memory location;
9009 so reloading involves incrementing that location.
9010 IN is either identical to VALUE, or some cheaper place to reload from.
9011
9012 INC_AMOUNT is the number to increment or decrement by (always positive).
9013 This cannot be deduced from VALUE. */
9014
9015 static void
9016 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9017 {
9018 /* REG or MEM to be copied and incremented. */
9019 rtx incloc = find_replacement (&XEXP (value, 0));
9020 /* Nonzero if increment after copying. */
9021 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9022 || GET_CODE (value) == POST_MODIFY);
9023 rtx_insn *last;
9024 rtx inc;
9025 rtx_insn *add_insn;
9026 int code;
9027 rtx real_in = in == value ? incloc : in;
9028
9029 /* No hard register is equivalent to this register after
9030 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9031 we could inc/dec that register as well (maybe even using it for
9032 the source), but I'm not sure it's worth worrying about. */
9033 if (REG_P (incloc))
9034 reg_last_reload_reg[REGNO (incloc)] = 0;
9035
9036 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9037 {
9038 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9039 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9040 }
9041 else
9042 {
9043 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9044 inc_amount = -inc_amount;
9045
9046 inc = gen_int_mode (inc_amount, Pmode);
9047 }
9048
9049 /* If this is post-increment, first copy the location to the reload reg. */
9050 if (post && real_in != reloadreg)
9051 emit_insn (gen_move_insn (reloadreg, real_in));
9052
9053 if (in == value)
9054 {
9055 /* See if we can directly increment INCLOC. Use a method similar to
9056 that in gen_reload. */
9057
9058 last = get_last_insn ();
9059 add_insn = emit_insn (gen_rtx_SET (incloc,
9060 gen_rtx_PLUS (GET_MODE (incloc),
9061 incloc, inc)));
9062
9063 code = recog_memoized (add_insn);
9064 if (code >= 0)
9065 {
9066 extract_insn (add_insn);
9067 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9068 {
9069 /* If this is a pre-increment and we have incremented the value
9070 where it lives, copy the incremented value to RELOADREG to
9071 be used as an address. */
9072
9073 if (! post)
9074 emit_insn (gen_move_insn (reloadreg, incloc));
9075 return;
9076 }
9077 }
9078 delete_insns_since (last);
9079 }
9080
9081 /* If couldn't do the increment directly, must increment in RELOADREG.
9082 The way we do this depends on whether this is pre- or post-increment.
9083 For pre-increment, copy INCLOC to the reload register, increment it
9084 there, then save back. */
9085
9086 if (! post)
9087 {
9088 if (in != reloadreg)
9089 emit_insn (gen_move_insn (reloadreg, real_in));
9090 emit_insn (gen_add2_insn (reloadreg, inc));
9091 emit_insn (gen_move_insn (incloc, reloadreg));
9092 }
9093 else
9094 {
9095 /* Postincrement.
9096 Because this might be a jump insn or a compare, and because RELOADREG
9097 may not be available after the insn in an input reload, we must do
9098 the incrementation before the insn being reloaded for.
9099
9100 We have already copied IN to RELOADREG. Increment the copy in
9101 RELOADREG, save that back, then decrement RELOADREG so it has
9102 the original value. */
9103
9104 emit_insn (gen_add2_insn (reloadreg, inc));
9105 emit_insn (gen_move_insn (incloc, reloadreg));
9106 if (CONST_INT_P (inc))
9107 emit_insn (gen_add2_insn (reloadreg,
9108 gen_int_mode (-INTVAL (inc),
9109 GET_MODE (reloadreg))));
9110 else
9111 emit_insn (gen_sub2_insn (reloadreg, inc));
9112 }
9113 }
9114 \f
9115 static void
9116 add_auto_inc_notes (rtx_insn *insn, rtx x)
9117 {
9118 enum rtx_code code = GET_CODE (x);
9119 const char *fmt;
9120 int i, j;
9121
9122 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9123 {
9124 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9125 return;
9126 }
9127
9128 /* Scan all the operand sub-expressions. */
9129 fmt = GET_RTX_FORMAT (code);
9130 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9131 {
9132 if (fmt[i] == 'e')
9133 add_auto_inc_notes (insn, XEXP (x, i));
9134 else if (fmt[i] == 'E')
9135 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9136 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9137 }
9138 }