tm.texi.in (MODE_CODE_BASE_REG_CLASS): Add address space argument.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "output.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "target.h"
49 #include "emit-rtl.h"
50
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
57
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
61
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
65
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
73
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
77
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
84 \f
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
89
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
92
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
96
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
100
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
104
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
107
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
110
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
116
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
121
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
127
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
132
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
135
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
141
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
146
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
151
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
156
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
159
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
165
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
171
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
175
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
182
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
189
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
195
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
199
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
203
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
206
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
209
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
212
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
215
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
219
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
223
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
227
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
231
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
236
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
240
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
244
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
248
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
252
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
256
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
259 \f
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
264
265 struct elim_table
266 {
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
283 };
284
285 static struct elim_table *reg_eliminate = 0;
286
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
290 {
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
294
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
298
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
304
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
306
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
311
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
317
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
326
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
330
331 VEC(reg_equivs_t,gc) *reg_equivs;
332
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
336
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
342
343 typedef rtx *rtx_p;
344 DEF_VEC_P(rtx_p);
345 DEF_VEC_ALLOC_P(rtx_p,heap);
346 static VEC(rtx_p,heap) *substitute_stack;
347
348 /* Number of labels in the current function. */
349
350 static int num_labels;
351 \f
352 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
353 static void maybe_fix_stack_asms (void);
354 static void copy_reloads (struct insn_chain *);
355 static void calculate_needs_all_insns (int);
356 static int find_reg (struct insn_chain *, int);
357 static void find_reload_regs (struct insn_chain *);
358 static void select_reload_regs (void);
359 static void delete_caller_save_insns (void);
360
361 static void spill_failure (rtx, enum reg_class);
362 static void count_spilled_pseudo (int, int, int);
363 static void delete_dead_insn (rtx);
364 static void alter_reg (int, int, bool);
365 static void set_label_offsets (rtx, rtx, int);
366 static void check_eliminable_occurrences (rtx);
367 static void elimination_effects (rtx, enum machine_mode);
368 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
369 static int eliminate_regs_in_insn (rtx, int);
370 static void update_eliminable_offsets (void);
371 static void mark_not_eliminable (rtx, const_rtx, void *);
372 static void set_initial_elim_offsets (void);
373 static bool verify_initial_elim_offsets (void);
374 static void set_initial_label_offsets (void);
375 static void set_offsets_for_label (rtx);
376 static void init_eliminable_invariants (rtx, bool);
377 static void init_elim_table (void);
378 static void free_reg_equiv (void);
379 static void update_eliminables (HARD_REG_SET *);
380 static void elimination_costs_in_insn (rtx);
381 static void spill_hard_reg (unsigned int, int);
382 static int finish_spills (int);
383 static void scan_paradoxical_subregs (rtx);
384 static void count_pseudo (int);
385 static void order_regs_for_reload (struct insn_chain *);
386 static void reload_as_needed (int);
387 static void forget_old_reloads_1 (rtx, const_rtx, void *);
388 static void forget_marked_reloads (regset);
389 static int reload_reg_class_lower (const void *, const void *);
390 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static int reload_reg_free_p (unsigned int, int, enum reload_type);
395 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int allocate_reload_reg (struct insn_chain *, int, int);
400 static int conflicts_with_override (rtx);
401 static void failed_reload (rtx, int);
402 static int set_reload_reg (int, int);
403 static void choose_reload_regs_init (struct insn_chain *, rtx *);
404 static void choose_reload_regs (struct insn_chain *);
405 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
406 rtx, int);
407 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
408 int);
409 static void do_input_reload (struct insn_chain *, struct reload *, int);
410 static void do_output_reload (struct insn_chain *, struct reload *, int);
411 static void emit_reload_insns (struct insn_chain *);
412 static void delete_output_reload (rtx, int, int, rtx);
413 static void delete_address_reloads (rtx, rtx);
414 static void delete_address_reloads_1 (rtx, rtx, rtx);
415 static void inc_for_reload (rtx, rtx, rtx, int);
416 #ifdef AUTO_INC_DEC
417 static void add_auto_inc_notes (rtx, rtx);
418 #endif
419 static void substitute (rtx *, const_rtx, rtx);
420 static bool gen_reload_chain_without_interm_reg_p (int, int);
421 static int reloads_conflict (int, int);
422 static rtx gen_reload (rtx, rtx, int, enum reload_type);
423 static rtx emit_insn_if_valid_for_reload (rtx);
424 \f
425 /* Initialize the reload pass. This is called at the beginning of compilation
426 and may be called again if the target is reinitialized. */
427
428 void
429 init_reload (void)
430 {
431 int i;
432
433 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
434 Set spill_indirect_levels to the number of levels such addressing is
435 permitted, zero if it is not permitted at all. */
436
437 rtx tem
438 = gen_rtx_MEM (Pmode,
439 gen_rtx_PLUS (Pmode,
440 gen_rtx_REG (Pmode,
441 LAST_VIRTUAL_REGISTER + 1),
442 GEN_INT (4)));
443 spill_indirect_levels = 0;
444
445 while (memory_address_p (QImode, tem))
446 {
447 spill_indirect_levels++;
448 tem = gen_rtx_MEM (Pmode, tem);
449 }
450
451 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
452
453 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
454 indirect_symref_ok = memory_address_p (QImode, tem);
455
456 /* See if reg+reg is a valid (and offsettable) address. */
457
458 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
459 {
460 tem = gen_rtx_PLUS (Pmode,
461 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
462 gen_rtx_REG (Pmode, i));
463
464 /* This way, we make sure that reg+reg is an offsettable address. */
465 tem = plus_constant (tem, 4);
466
467 if (memory_address_p (QImode, tem))
468 {
469 double_reg_address_ok = 1;
470 break;
471 }
472 }
473
474 /* Initialize obstack for our rtl allocation. */
475 gcc_obstack_init (&reload_obstack);
476 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
477
478 INIT_REG_SET (&spilled_pseudos);
479 INIT_REG_SET (&changed_allocation_pseudos);
480 INIT_REG_SET (&pseudos_counted);
481 }
482
483 /* List of insn chains that are currently unused. */
484 static struct insn_chain *unused_insn_chains = 0;
485
486 /* Allocate an empty insn_chain structure. */
487 struct insn_chain *
488 new_insn_chain (void)
489 {
490 struct insn_chain *c;
491
492 if (unused_insn_chains == 0)
493 {
494 c = XOBNEW (&reload_obstack, struct insn_chain);
495 INIT_REG_SET (&c->live_throughout);
496 INIT_REG_SET (&c->dead_or_set);
497 }
498 else
499 {
500 c = unused_insn_chains;
501 unused_insn_chains = c->next;
502 }
503 c->is_caller_save_insn = 0;
504 c->need_operand_change = 0;
505 c->need_reload = 0;
506 c->need_elim = 0;
507 return c;
508 }
509
510 /* Small utility function to set all regs in hard reg set TO which are
511 allocated to pseudos in regset FROM. */
512
513 void
514 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
515 {
516 unsigned int regno;
517 reg_set_iterator rsi;
518
519 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
520 {
521 int r = reg_renumber[regno];
522
523 if (r < 0)
524 {
525 /* reload_combine uses the information from DF_LIVE_IN,
526 which might still contain registers that have not
527 actually been allocated since they have an
528 equivalence. */
529 gcc_assert (ira_conflicts_p || reload_completed);
530 }
531 else
532 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
533 }
534 }
535
536 /* Replace all pseudos found in LOC with their corresponding
537 equivalences. */
538
539 static void
540 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
541 {
542 rtx x = *loc;
543 enum rtx_code code;
544 const char *fmt;
545 int i, j;
546
547 if (! x)
548 return;
549
550 code = GET_CODE (x);
551 if (code == REG)
552 {
553 unsigned int regno = REGNO (x);
554
555 if (regno < FIRST_PSEUDO_REGISTER)
556 return;
557
558 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
559 if (x != *loc)
560 {
561 *loc = x;
562 replace_pseudos_in (loc, mem_mode, usage);
563 return;
564 }
565
566 if (reg_equiv_constant (regno))
567 *loc = reg_equiv_constant (regno);
568 else if (reg_equiv_invariant (regno))
569 *loc = reg_equiv_invariant (regno);
570 else if (reg_equiv_mem (regno))
571 *loc = reg_equiv_mem (regno);
572 else if (reg_equiv_address (regno))
573 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
574 else
575 {
576 gcc_assert (!REG_P (regno_reg_rtx[regno])
577 || REGNO (regno_reg_rtx[regno]) != regno);
578 *loc = regno_reg_rtx[regno];
579 }
580
581 return;
582 }
583 else if (code == MEM)
584 {
585 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
586 return;
587 }
588
589 /* Process each of our operands recursively. */
590 fmt = GET_RTX_FORMAT (code);
591 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
592 if (*fmt == 'e')
593 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
594 else if (*fmt == 'E')
595 for (j = 0; j < XVECLEN (x, i); j++)
596 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
597 }
598
599 /* Determine if the current function has an exception receiver block
600 that reaches the exit block via non-exceptional edges */
601
602 static bool
603 has_nonexceptional_receiver (void)
604 {
605 edge e;
606 edge_iterator ei;
607 basic_block *tos, *worklist, bb;
608
609 /* If we're not optimizing, then just err on the safe side. */
610 if (!optimize)
611 return true;
612
613 /* First determine which blocks can reach exit via normal paths. */
614 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
615
616 FOR_EACH_BB (bb)
617 bb->flags &= ~BB_REACHABLE;
618
619 /* Place the exit block on our worklist. */
620 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
621 *tos++ = EXIT_BLOCK_PTR;
622
623 /* Iterate: find everything reachable from what we've already seen. */
624 while (tos != worklist)
625 {
626 bb = *--tos;
627
628 FOR_EACH_EDGE (e, ei, bb->preds)
629 if (!(e->flags & EDGE_ABNORMAL))
630 {
631 basic_block src = e->src;
632
633 if (!(src->flags & BB_REACHABLE))
634 {
635 src->flags |= BB_REACHABLE;
636 *tos++ = src;
637 }
638 }
639 }
640 free (worklist);
641
642 /* Now see if there's a reachable block with an exceptional incoming
643 edge. */
644 FOR_EACH_BB (bb)
645 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
646 return true;
647
648 /* No exceptional block reached exit unexceptionally. */
649 return false;
650 }
651
652 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
653 zero elements) to MAX_REG_NUM elements.
654
655 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
656 void
657 grow_reg_equivs (void)
658 {
659 int old_size = VEC_length (reg_equivs_t, reg_equivs);
660 int max_regno = max_reg_num ();
661 int i;
662
663 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
664 for (i = old_size; i < max_regno; i++)
665 {
666 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
667 memset (VEC_index (reg_equivs_t, reg_equivs, i), 0, sizeof (reg_equivs_t));
668 }
669
670 }
671
672 \f
673 /* Global variables used by reload and its subroutines. */
674
675 /* The current basic block while in calculate_elim_costs_all_insns. */
676 static basic_block elim_bb;
677
678 /* Set during calculate_needs if an insn needs register elimination. */
679 static int something_needs_elimination;
680 /* Set during calculate_needs if an insn needs an operand changed. */
681 static int something_needs_operands_changed;
682 /* Set by alter_regs if we spilled a register to the stack. */
683 static bool something_was_spilled;
684
685 /* Nonzero means we couldn't get enough spill regs. */
686 static int failure;
687
688 /* Temporary array of pseudo-register number. */
689 static int *temp_pseudo_reg_arr;
690
691 /* Main entry point for the reload pass.
692
693 FIRST is the first insn of the function being compiled.
694
695 GLOBAL nonzero means we were called from global_alloc
696 and should attempt to reallocate any pseudoregs that we
697 displace from hard regs we will use for reloads.
698 If GLOBAL is zero, we do not have enough information to do that,
699 so any pseudo reg that is spilled must go to the stack.
700
701 Return value is TRUE if reload likely left dead insns in the
702 stream and a DCE pass should be run to elimiante them. Else the
703 return value is FALSE. */
704
705 bool
706 reload (rtx first, int global)
707 {
708 int i, n;
709 rtx insn;
710 struct elim_table *ep;
711 basic_block bb;
712 bool inserted;
713
714 /* Make sure even insns with volatile mem refs are recognizable. */
715 init_recog ();
716
717 failure = 0;
718
719 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
720
721 /* Make sure that the last insn in the chain
722 is not something that needs reloading. */
723 emit_note (NOTE_INSN_DELETED);
724
725 /* Enable find_equiv_reg to distinguish insns made by reload. */
726 reload_first_uid = get_max_uid ();
727
728 #ifdef SECONDARY_MEMORY_NEEDED
729 /* Initialize the secondary memory table. */
730 clear_secondary_mem ();
731 #endif
732
733 /* We don't have a stack slot for any spill reg yet. */
734 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
735 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
736
737 /* Initialize the save area information for caller-save, in case some
738 are needed. */
739 init_save_areas ();
740
741 /* Compute which hard registers are now in use
742 as homes for pseudo registers.
743 This is done here rather than (eg) in global_alloc
744 because this point is reached even if not optimizing. */
745 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
746 mark_home_live (i);
747
748 /* A function that has a nonlocal label that can reach the exit
749 block via non-exceptional paths must save all call-saved
750 registers. */
751 if (cfun->has_nonlocal_label
752 && has_nonexceptional_receiver ())
753 crtl->saves_all_registers = 1;
754
755 if (crtl->saves_all_registers)
756 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
757 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
758 df_set_regs_ever_live (i, true);
759
760 /* Find all the pseudo registers that didn't get hard regs
761 but do have known equivalent constants or memory slots.
762 These include parameters (known equivalent to parameter slots)
763 and cse'd or loop-moved constant memory addresses.
764
765 Record constant equivalents in reg_equiv_constant
766 so they will be substituted by find_reloads.
767 Record memory equivalents in reg_mem_equiv so they can
768 be substituted eventually by altering the REG-rtx's. */
769
770 grow_reg_equivs ();
771 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
772 reg_old_renumber = XCNEWVEC (short, max_regno);
773 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
774 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
775 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
776
777 CLEAR_HARD_REG_SET (bad_spill_regs_global);
778
779 init_eliminable_invariants (first, true);
780 init_elim_table ();
781
782 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
783 stack slots to the pseudos that lack hard regs or equivalents.
784 Do not touch virtual registers. */
785
786 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
787 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
788 temp_pseudo_reg_arr[n++] = i;
789
790 if (ira_conflicts_p)
791 /* Ask IRA to order pseudo-registers for better stack slot
792 sharing. */
793 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
794
795 for (i = 0; i < n; i++)
796 alter_reg (temp_pseudo_reg_arr[i], -1, false);
797
798 /* If we have some registers we think can be eliminated, scan all insns to
799 see if there is an insn that sets one of these registers to something
800 other than itself plus a constant. If so, the register cannot be
801 eliminated. Doing this scan here eliminates an extra pass through the
802 main reload loop in the most common case where register elimination
803 cannot be done. */
804 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
805 if (INSN_P (insn))
806 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
807
808 maybe_fix_stack_asms ();
809
810 insns_need_reload = 0;
811 something_needs_elimination = 0;
812
813 /* Initialize to -1, which means take the first spill register. */
814 last_spill_reg = -1;
815
816 /* Spill any hard regs that we know we can't eliminate. */
817 CLEAR_HARD_REG_SET (used_spill_regs);
818 /* There can be multiple ways to eliminate a register;
819 they should be listed adjacently.
820 Elimination for any register fails only if all possible ways fail. */
821 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
822 {
823 int from = ep->from;
824 int can_eliminate = 0;
825 do
826 {
827 can_eliminate |= ep->can_eliminate;
828 ep++;
829 }
830 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
831 if (! can_eliminate)
832 spill_hard_reg (from, 1);
833 }
834
835 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
836 if (frame_pointer_needed)
837 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
838 #endif
839 finish_spills (global);
840
841 /* From now on, we may need to generate moves differently. We may also
842 allow modifications of insns which cause them to not be recognized.
843 Any such modifications will be cleaned up during reload itself. */
844 reload_in_progress = 1;
845
846 /* This loop scans the entire function each go-round
847 and repeats until one repetition spills no additional hard regs. */
848 for (;;)
849 {
850 int something_changed;
851 int did_spill;
852 HOST_WIDE_INT starting_frame_size;
853
854 starting_frame_size = get_frame_size ();
855 something_was_spilled = false;
856
857 set_initial_elim_offsets ();
858 set_initial_label_offsets ();
859
860 /* For each pseudo register that has an equivalent location defined,
861 try to eliminate any eliminable registers (such as the frame pointer)
862 assuming initial offsets for the replacement register, which
863 is the normal case.
864
865 If the resulting location is directly addressable, substitute
866 the MEM we just got directly for the old REG.
867
868 If it is not addressable but is a constant or the sum of a hard reg
869 and constant, it is probably not addressable because the constant is
870 out of range, in that case record the address; we will generate
871 hairy code to compute the address in a register each time it is
872 needed. Similarly if it is a hard register, but one that is not
873 valid as an address register.
874
875 If the location is not addressable, but does not have one of the
876 above forms, assign a stack slot. We have to do this to avoid the
877 potential of producing lots of reloads if, e.g., a location involves
878 a pseudo that didn't get a hard register and has an equivalent memory
879 location that also involves a pseudo that didn't get a hard register.
880
881 Perhaps at some point we will improve reload_when_needed handling
882 so this problem goes away. But that's very hairy. */
883
884 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
885 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
886 {
887 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
888 NULL_RTX);
889
890 if (strict_memory_address_addr_space_p
891 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
892 MEM_ADDR_SPACE (x)))
893 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
894 else if (CONSTANT_P (XEXP (x, 0))
895 || (REG_P (XEXP (x, 0))
896 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
897 || (GET_CODE (XEXP (x, 0)) == PLUS
898 && REG_P (XEXP (XEXP (x, 0), 0))
899 && (REGNO (XEXP (XEXP (x, 0), 0))
900 < FIRST_PSEUDO_REGISTER)
901 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
902 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
903 else
904 {
905 /* Make a new stack slot. Then indicate that something
906 changed so we go back and recompute offsets for
907 eliminable registers because the allocation of memory
908 below might change some offset. reg_equiv_{mem,address}
909 will be set up for this pseudo on the next pass around
910 the loop. */
911 reg_equiv_memory_loc (i) = 0;
912 reg_equiv_init (i) = 0;
913 alter_reg (i, -1, true);
914 }
915 }
916
917 if (caller_save_needed)
918 setup_save_areas ();
919
920 /* If we allocated another stack slot, redo elimination bookkeeping. */
921 if (something_was_spilled || starting_frame_size != get_frame_size ())
922 continue;
923 if (starting_frame_size && crtl->stack_alignment_needed)
924 {
925 /* If we have a stack frame, we must align it now. The
926 stack size may be a part of the offset computation for
927 register elimination. So if this changes the stack size,
928 then repeat the elimination bookkeeping. We don't
929 realign when there is no stack, as that will cause a
930 stack frame when none is needed should
931 STARTING_FRAME_OFFSET not be already aligned to
932 STACK_BOUNDARY. */
933 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
934 if (starting_frame_size != get_frame_size ())
935 continue;
936 }
937
938 if (caller_save_needed)
939 {
940 save_call_clobbered_regs ();
941 /* That might have allocated new insn_chain structures. */
942 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
943 }
944
945 calculate_needs_all_insns (global);
946
947 if (! ira_conflicts_p)
948 /* Don't do it for IRA. We need this info because we don't
949 change live_throughout and dead_or_set for chains when IRA
950 is used. */
951 CLEAR_REG_SET (&spilled_pseudos);
952
953 did_spill = 0;
954
955 something_changed = 0;
956
957 /* If we allocated any new memory locations, make another pass
958 since it might have changed elimination offsets. */
959 if (something_was_spilled || starting_frame_size != get_frame_size ())
960 something_changed = 1;
961
962 /* Even if the frame size remained the same, we might still have
963 changed elimination offsets, e.g. if find_reloads called
964 force_const_mem requiring the back end to allocate a constant
965 pool base register that needs to be saved on the stack. */
966 else if (!verify_initial_elim_offsets ())
967 something_changed = 1;
968
969 {
970 HARD_REG_SET to_spill;
971 CLEAR_HARD_REG_SET (to_spill);
972 update_eliminables (&to_spill);
973 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
974
975 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
976 if (TEST_HARD_REG_BIT (to_spill, i))
977 {
978 spill_hard_reg (i, 1);
979 did_spill = 1;
980
981 /* Regardless of the state of spills, if we previously had
982 a register that we thought we could eliminate, but now can
983 not eliminate, we must run another pass.
984
985 Consider pseudos which have an entry in reg_equiv_* which
986 reference an eliminable register. We must make another pass
987 to update reg_equiv_* so that we do not substitute in the
988 old value from when we thought the elimination could be
989 performed. */
990 something_changed = 1;
991 }
992 }
993
994 select_reload_regs ();
995 if (failure)
996 goto failed;
997
998 if (insns_need_reload != 0 || did_spill)
999 something_changed |= finish_spills (global);
1000
1001 if (! something_changed)
1002 break;
1003
1004 if (caller_save_needed)
1005 delete_caller_save_insns ();
1006
1007 obstack_free (&reload_obstack, reload_firstobj);
1008 }
1009
1010 /* If global-alloc was run, notify it of any register eliminations we have
1011 done. */
1012 if (global)
1013 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1014 if (ep->can_eliminate)
1015 mark_elimination (ep->from, ep->to);
1016
1017 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1018 If that insn didn't set the register (i.e., it copied the register to
1019 memory), just delete that insn instead of the equivalencing insn plus
1020 anything now dead. If we call delete_dead_insn on that insn, we may
1021 delete the insn that actually sets the register if the register dies
1022 there and that is incorrect. */
1023
1024 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1025 {
1026 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1027 {
1028 rtx list;
1029 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1030 {
1031 rtx equiv_insn = XEXP (list, 0);
1032
1033 /* If we already deleted the insn or if it may trap, we can't
1034 delete it. The latter case shouldn't happen, but can
1035 if an insn has a variable address, gets a REG_EH_REGION
1036 note added to it, and then gets converted into a load
1037 from a constant address. */
1038 if (NOTE_P (equiv_insn)
1039 || can_throw_internal (equiv_insn))
1040 ;
1041 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1042 delete_dead_insn (equiv_insn);
1043 else
1044 SET_INSN_DELETED (equiv_insn);
1045 }
1046 }
1047 }
1048
1049 /* Use the reload registers where necessary
1050 by generating move instructions to move the must-be-register
1051 values into or out of the reload registers. */
1052
1053 if (insns_need_reload != 0 || something_needs_elimination
1054 || something_needs_operands_changed)
1055 {
1056 HOST_WIDE_INT old_frame_size = get_frame_size ();
1057
1058 reload_as_needed (global);
1059
1060 gcc_assert (old_frame_size == get_frame_size ());
1061
1062 gcc_assert (verify_initial_elim_offsets ());
1063 }
1064
1065 /* If we were able to eliminate the frame pointer, show that it is no
1066 longer live at the start of any basic block. If it ls live by
1067 virtue of being in a pseudo, that pseudo will be marked live
1068 and hence the frame pointer will be known to be live via that
1069 pseudo. */
1070
1071 if (! frame_pointer_needed)
1072 FOR_EACH_BB (bb)
1073 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1074
1075 /* Come here (with failure set nonzero) if we can't get enough spill
1076 regs. */
1077 failed:
1078
1079 CLEAR_REG_SET (&changed_allocation_pseudos);
1080 CLEAR_REG_SET (&spilled_pseudos);
1081 reload_in_progress = 0;
1082
1083 /* Now eliminate all pseudo regs by modifying them into
1084 their equivalent memory references.
1085 The REG-rtx's for the pseudos are modified in place,
1086 so all insns that used to refer to them now refer to memory.
1087
1088 For a reg that has a reg_equiv_address, all those insns
1089 were changed by reloading so that no insns refer to it any longer;
1090 but the DECL_RTL of a variable decl may refer to it,
1091 and if so this causes the debugging info to mention the variable. */
1092
1093 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1094 {
1095 rtx addr = 0;
1096
1097 if (reg_equiv_mem (i))
1098 addr = XEXP (reg_equiv_mem (i), 0);
1099
1100 if (reg_equiv_address (i))
1101 addr = reg_equiv_address (i);
1102
1103 if (addr)
1104 {
1105 if (reg_renumber[i] < 0)
1106 {
1107 rtx reg = regno_reg_rtx[i];
1108
1109 REG_USERVAR_P (reg) = 0;
1110 PUT_CODE (reg, MEM);
1111 XEXP (reg, 0) = addr;
1112 if (reg_equiv_memory_loc (i))
1113 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1114 else
1115 {
1116 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1117 MEM_ATTRS (reg) = 0;
1118 }
1119 MEM_NOTRAP_P (reg) = 1;
1120 }
1121 else if (reg_equiv_mem (i))
1122 XEXP (reg_equiv_mem (i), 0) = addr;
1123 }
1124
1125 /* We don't want complex addressing modes in debug insns
1126 if simpler ones will do, so delegitimize equivalences
1127 in debug insns. */
1128 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1129 {
1130 rtx reg = regno_reg_rtx[i];
1131 rtx equiv = 0;
1132 df_ref use, next;
1133
1134 if (reg_equiv_constant (i))
1135 equiv = reg_equiv_constant (i);
1136 else if (reg_equiv_invariant (i))
1137 equiv = reg_equiv_invariant (i);
1138 else if (reg && MEM_P (reg))
1139 equiv = targetm.delegitimize_address (reg);
1140 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1141 equiv = reg;
1142
1143 if (equiv == reg)
1144 continue;
1145
1146 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1147 {
1148 insn = DF_REF_INSN (use);
1149
1150 /* Make sure the next ref is for a different instruction,
1151 so that we're not affected by the rescan. */
1152 next = DF_REF_NEXT_REG (use);
1153 while (next && DF_REF_INSN (next) == insn)
1154 next = DF_REF_NEXT_REG (next);
1155
1156 if (DEBUG_INSN_P (insn))
1157 {
1158 if (!equiv)
1159 {
1160 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1161 df_insn_rescan_debug_internal (insn);
1162 }
1163 else
1164 INSN_VAR_LOCATION_LOC (insn)
1165 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1166 reg, equiv);
1167 }
1168 }
1169 }
1170 }
1171
1172 /* We must set reload_completed now since the cleanup_subreg_operands call
1173 below will re-recognize each insn and reload may have generated insns
1174 which are only valid during and after reload. */
1175 reload_completed = 1;
1176
1177 /* Make a pass over all the insns and delete all USEs which we inserted
1178 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1179 notes. Delete all CLOBBER insns, except those that refer to the return
1180 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1181 from misarranging variable-array code, and simplify (subreg (reg))
1182 operands. Strip and regenerate REG_INC notes that may have been moved
1183 around. */
1184
1185 for (insn = first; insn; insn = NEXT_INSN (insn))
1186 if (INSN_P (insn))
1187 {
1188 rtx *pnote;
1189
1190 if (CALL_P (insn))
1191 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1192 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1193
1194 if ((GET_CODE (PATTERN (insn)) == USE
1195 /* We mark with QImode USEs introduced by reload itself. */
1196 && (GET_MODE (insn) == QImode
1197 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1198 || (GET_CODE (PATTERN (insn)) == CLOBBER
1199 && (!MEM_P (XEXP (PATTERN (insn), 0))
1200 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1201 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1202 && XEXP (XEXP (PATTERN (insn), 0), 0)
1203 != stack_pointer_rtx))
1204 && (!REG_P (XEXP (PATTERN (insn), 0))
1205 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1206 {
1207 delete_insn (insn);
1208 continue;
1209 }
1210
1211 /* Some CLOBBERs may survive until here and still reference unassigned
1212 pseudos with const equivalent, which may in turn cause ICE in later
1213 passes if the reference remains in place. */
1214 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1215 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1216 VOIDmode, PATTERN (insn));
1217
1218 /* Discard obvious no-ops, even without -O. This optimization
1219 is fast and doesn't interfere with debugging. */
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SET
1222 && REG_P (SET_SRC (PATTERN (insn)))
1223 && REG_P (SET_DEST (PATTERN (insn)))
1224 && (REGNO (SET_SRC (PATTERN (insn)))
1225 == REGNO (SET_DEST (PATTERN (insn)))))
1226 {
1227 delete_insn (insn);
1228 continue;
1229 }
1230
1231 pnote = &REG_NOTES (insn);
1232 while (*pnote != 0)
1233 {
1234 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1235 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1236 || REG_NOTE_KIND (*pnote) == REG_INC)
1237 *pnote = XEXP (*pnote, 1);
1238 else
1239 pnote = &XEXP (*pnote, 1);
1240 }
1241
1242 #ifdef AUTO_INC_DEC
1243 add_auto_inc_notes (insn, PATTERN (insn));
1244 #endif
1245
1246 /* Simplify (subreg (reg)) if it appears as an operand. */
1247 cleanup_subreg_operands (insn);
1248
1249 /* Clean up invalid ASMs so that they don't confuse later passes.
1250 See PR 21299. */
1251 if (asm_noperands (PATTERN (insn)) >= 0)
1252 {
1253 extract_insn (insn);
1254 if (!constrain_operands (1))
1255 {
1256 error_for_asm (insn,
1257 "%<asm%> operand has impossible constraints");
1258 delete_insn (insn);
1259 continue;
1260 }
1261 }
1262 }
1263
1264 /* If we are doing generic stack checking, give a warning if this
1265 function's frame size is larger than we expect. */
1266 if (flag_stack_check == GENERIC_STACK_CHECK)
1267 {
1268 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1269 static int verbose_warned = 0;
1270
1271 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1272 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1273 size += UNITS_PER_WORD;
1274
1275 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1276 {
1277 warning (0, "frame size too large for reliable stack checking");
1278 if (! verbose_warned)
1279 {
1280 warning (0, "try reducing the number of local variables");
1281 verbose_warned = 1;
1282 }
1283 }
1284 }
1285
1286 free (temp_pseudo_reg_arr);
1287
1288 /* Indicate that we no longer have known memory locations or constants. */
1289 free_reg_equiv ();
1290
1291 free (reg_max_ref_width);
1292 free (reg_old_renumber);
1293 free (pseudo_previous_regs);
1294 free (pseudo_forbidden_regs);
1295
1296 CLEAR_HARD_REG_SET (used_spill_regs);
1297 for (i = 0; i < n_spills; i++)
1298 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1299
1300 /* Free all the insn_chain structures at once. */
1301 obstack_free (&reload_obstack, reload_startobj);
1302 unused_insn_chains = 0;
1303
1304 inserted = fixup_abnormal_edges ();
1305
1306 /* We've possibly turned single trapping insn into multiple ones. */
1307 if (cfun->can_throw_non_call_exceptions)
1308 {
1309 sbitmap blocks;
1310 blocks = sbitmap_alloc (last_basic_block);
1311 sbitmap_ones (blocks);
1312 find_many_sub_basic_blocks (blocks);
1313 sbitmap_free (blocks);
1314 }
1315
1316 if (inserted)
1317 commit_edge_insertions ();
1318
1319 /* Replacing pseudos with their memory equivalents might have
1320 created shared rtx. Subsequent passes would get confused
1321 by this, so unshare everything here. */
1322 unshare_all_rtl_again (first);
1323
1324 #ifdef STACK_BOUNDARY
1325 /* init_emit has set the alignment of the hard frame pointer
1326 to STACK_BOUNDARY. It is very likely no longer valid if
1327 the hard frame pointer was used for register allocation. */
1328 if (!frame_pointer_needed)
1329 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1330 #endif
1331
1332 VEC_free (rtx_p, heap, substitute_stack);
1333
1334 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1335
1336 reload_completed = !failure;
1337
1338 return need_dce;
1339 }
1340
1341 /* Yet another special case. Unfortunately, reg-stack forces people to
1342 write incorrect clobbers in asm statements. These clobbers must not
1343 cause the register to appear in bad_spill_regs, otherwise we'll call
1344 fatal_insn later. We clear the corresponding regnos in the live
1345 register sets to avoid this.
1346 The whole thing is rather sick, I'm afraid. */
1347
1348 static void
1349 maybe_fix_stack_asms (void)
1350 {
1351 #ifdef STACK_REGS
1352 const char *constraints[MAX_RECOG_OPERANDS];
1353 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1354 struct insn_chain *chain;
1355
1356 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1357 {
1358 int i, noperands;
1359 HARD_REG_SET clobbered, allowed;
1360 rtx pat;
1361
1362 if (! INSN_P (chain->insn)
1363 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1364 continue;
1365 pat = PATTERN (chain->insn);
1366 if (GET_CODE (pat) != PARALLEL)
1367 continue;
1368
1369 CLEAR_HARD_REG_SET (clobbered);
1370 CLEAR_HARD_REG_SET (allowed);
1371
1372 /* First, make a mask of all stack regs that are clobbered. */
1373 for (i = 0; i < XVECLEN (pat, 0); i++)
1374 {
1375 rtx t = XVECEXP (pat, 0, i);
1376 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1377 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1378 }
1379
1380 /* Get the operand values and constraints out of the insn. */
1381 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1382 constraints, operand_mode, NULL);
1383
1384 /* For every operand, see what registers are allowed. */
1385 for (i = 0; i < noperands; i++)
1386 {
1387 const char *p = constraints[i];
1388 /* For every alternative, we compute the class of registers allowed
1389 for reloading in CLS, and merge its contents into the reg set
1390 ALLOWED. */
1391 int cls = (int) NO_REGS;
1392
1393 for (;;)
1394 {
1395 char c = *p;
1396
1397 if (c == '\0' || c == ',' || c == '#')
1398 {
1399 /* End of one alternative - mark the regs in the current
1400 class, and reset the class. */
1401 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1402 cls = NO_REGS;
1403 p++;
1404 if (c == '#')
1405 do {
1406 c = *p++;
1407 } while (c != '\0' && c != ',');
1408 if (c == '\0')
1409 break;
1410 continue;
1411 }
1412
1413 switch (c)
1414 {
1415 case '=': case '+': case '*': case '%': case '?': case '!':
1416 case '0': case '1': case '2': case '3': case '4': case '<':
1417 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1418 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1419 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1420 case TARGET_MEM_CONSTRAINT:
1421 break;
1422
1423 case 'p':
1424 cls = (int) reg_class_subunion[cls]
1425 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1426 ADDRESS, SCRATCH)];
1427 break;
1428
1429 case 'g':
1430 case 'r':
1431 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1432 break;
1433
1434 default:
1435 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1436 cls = (int) reg_class_subunion[cls]
1437 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1438 ADDRESS, SCRATCH)];
1439 else
1440 cls = (int) reg_class_subunion[cls]
1441 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1442 }
1443 p += CONSTRAINT_LEN (c, p);
1444 }
1445 }
1446 /* Those of the registers which are clobbered, but allowed by the
1447 constraints, must be usable as reload registers. So clear them
1448 out of the life information. */
1449 AND_HARD_REG_SET (allowed, clobbered);
1450 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1451 if (TEST_HARD_REG_BIT (allowed, i))
1452 {
1453 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1454 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1455 }
1456 }
1457
1458 #endif
1459 }
1460 \f
1461 /* Copy the global variables n_reloads and rld into the corresponding elts
1462 of CHAIN. */
1463 static void
1464 copy_reloads (struct insn_chain *chain)
1465 {
1466 chain->n_reloads = n_reloads;
1467 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1468 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1469 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1470 }
1471
1472 /* Walk the chain of insns, and determine for each whether it needs reloads
1473 and/or eliminations. Build the corresponding insns_need_reload list, and
1474 set something_needs_elimination as appropriate. */
1475 static void
1476 calculate_needs_all_insns (int global)
1477 {
1478 struct insn_chain **pprev_reload = &insns_need_reload;
1479 struct insn_chain *chain, *next = 0;
1480
1481 something_needs_elimination = 0;
1482
1483 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1484 for (chain = reload_insn_chain; chain != 0; chain = next)
1485 {
1486 rtx insn = chain->insn;
1487
1488 next = chain->next;
1489
1490 /* Clear out the shortcuts. */
1491 chain->n_reloads = 0;
1492 chain->need_elim = 0;
1493 chain->need_reload = 0;
1494 chain->need_operand_change = 0;
1495
1496 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1497 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1498 what effects this has on the known offsets at labels. */
1499
1500 if (LABEL_P (insn) || JUMP_P (insn)
1501 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1502 set_label_offsets (insn, insn, 0);
1503
1504 if (INSN_P (insn))
1505 {
1506 rtx old_body = PATTERN (insn);
1507 int old_code = INSN_CODE (insn);
1508 rtx old_notes = REG_NOTES (insn);
1509 int did_elimination = 0;
1510 int operands_changed = 0;
1511 rtx set = single_set (insn);
1512
1513 /* Skip insns that only set an equivalence. */
1514 if (set && REG_P (SET_DEST (set))
1515 && reg_renumber[REGNO (SET_DEST (set))] < 0
1516 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1517 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1518 && reg_equiv_init (REGNO (SET_DEST (set))))
1519 continue;
1520
1521 /* If needed, eliminate any eliminable registers. */
1522 if (num_eliminable || num_eliminable_invariants)
1523 did_elimination = eliminate_regs_in_insn (insn, 0);
1524
1525 /* Analyze the instruction. */
1526 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1527 global, spill_reg_order);
1528
1529 /* If a no-op set needs more than one reload, this is likely
1530 to be something that needs input address reloads. We
1531 can't get rid of this cleanly later, and it is of no use
1532 anyway, so discard it now.
1533 We only do this when expensive_optimizations is enabled,
1534 since this complements reload inheritance / output
1535 reload deletion, and it can make debugging harder. */
1536 if (flag_expensive_optimizations && n_reloads > 1)
1537 {
1538 rtx set = single_set (insn);
1539 if (set
1540 &&
1541 ((SET_SRC (set) == SET_DEST (set)
1542 && REG_P (SET_SRC (set))
1543 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1544 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1545 && reg_renumber[REGNO (SET_SRC (set))] < 0
1546 && reg_renumber[REGNO (SET_DEST (set))] < 0
1547 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1548 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1549 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1550 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1551 {
1552 if (ira_conflicts_p)
1553 /* Inform IRA about the insn deletion. */
1554 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1555 REGNO (SET_SRC (set)));
1556 delete_insn (insn);
1557 /* Delete it from the reload chain. */
1558 if (chain->prev)
1559 chain->prev->next = next;
1560 else
1561 reload_insn_chain = next;
1562 if (next)
1563 next->prev = chain->prev;
1564 chain->next = unused_insn_chains;
1565 unused_insn_chains = chain;
1566 continue;
1567 }
1568 }
1569 if (num_eliminable)
1570 update_eliminable_offsets ();
1571
1572 /* Remember for later shortcuts which insns had any reloads or
1573 register eliminations. */
1574 chain->need_elim = did_elimination;
1575 chain->need_reload = n_reloads > 0;
1576 chain->need_operand_change = operands_changed;
1577
1578 /* Discard any register replacements done. */
1579 if (did_elimination)
1580 {
1581 obstack_free (&reload_obstack, reload_insn_firstobj);
1582 PATTERN (insn) = old_body;
1583 INSN_CODE (insn) = old_code;
1584 REG_NOTES (insn) = old_notes;
1585 something_needs_elimination = 1;
1586 }
1587
1588 something_needs_operands_changed |= operands_changed;
1589
1590 if (n_reloads != 0)
1591 {
1592 copy_reloads (chain);
1593 *pprev_reload = chain;
1594 pprev_reload = &chain->next_need_reload;
1595 }
1596 }
1597 }
1598 *pprev_reload = 0;
1599 }
1600 \f
1601 /* This function is called from the register allocator to set up estimates
1602 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1603 an invariant. The structure is similar to calculate_needs_all_insns. */
1604
1605 void
1606 calculate_elim_costs_all_insns (void)
1607 {
1608 int *reg_equiv_init_cost;
1609 basic_block bb;
1610 int i;
1611
1612 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1613 init_elim_table ();
1614 init_eliminable_invariants (get_insns (), false);
1615
1616 set_initial_elim_offsets ();
1617 set_initial_label_offsets ();
1618
1619 FOR_EACH_BB (bb)
1620 {
1621 rtx insn;
1622 elim_bb = bb;
1623
1624 FOR_BB_INSNS (bb, insn)
1625 {
1626 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1627 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1628 what effects this has on the known offsets at labels. */
1629
1630 if (LABEL_P (insn) || JUMP_P (insn)
1631 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1632 set_label_offsets (insn, insn, 0);
1633
1634 if (INSN_P (insn))
1635 {
1636 rtx set = single_set (insn);
1637
1638 /* Skip insns that only set an equivalence. */
1639 if (set && REG_P (SET_DEST (set))
1640 && reg_renumber[REGNO (SET_DEST (set))] < 0
1641 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1642 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1643 {
1644 unsigned regno = REGNO (SET_DEST (set));
1645 rtx init = reg_equiv_init (regno);
1646 if (init)
1647 {
1648 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1649 false, true);
1650 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1651 int freq = REG_FREQ_FROM_BB (bb);
1652
1653 reg_equiv_init_cost[regno] = cost * freq;
1654 continue;
1655 }
1656 }
1657 /* If needed, eliminate any eliminable registers. */
1658 if (num_eliminable || num_eliminable_invariants)
1659 elimination_costs_in_insn (insn);
1660
1661 if (num_eliminable)
1662 update_eliminable_offsets ();
1663 }
1664 }
1665 }
1666 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1667 {
1668 if (reg_equiv_invariant (i))
1669 {
1670 if (reg_equiv_init (i))
1671 {
1672 int cost = reg_equiv_init_cost[i];
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d has equivalence, initial gains %d\n", i, cost);
1676 if (cost != 0)
1677 ira_adjust_equiv_reg_cost (i, cost);
1678 }
1679 else
1680 {
1681 if (dump_file)
1682 fprintf (dump_file,
1683 "Reg %d had equivalence, but can't be eliminated\n",
1684 i);
1685 ira_adjust_equiv_reg_cost (i, 0);
1686 }
1687 }
1688 }
1689
1690 free (reg_equiv_init_cost);
1691 }
1692 \f
1693 /* Comparison function for qsort to decide which of two reloads
1694 should be handled first. *P1 and *P2 are the reload numbers. */
1695
1696 static int
1697 reload_reg_class_lower (const void *r1p, const void *r2p)
1698 {
1699 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1700 int t;
1701
1702 /* Consider required reloads before optional ones. */
1703 t = rld[r1].optional - rld[r2].optional;
1704 if (t != 0)
1705 return t;
1706
1707 /* Count all solitary classes before non-solitary ones. */
1708 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1709 - (reg_class_size[(int) rld[r1].rclass] == 1));
1710 if (t != 0)
1711 return t;
1712
1713 /* Aside from solitaires, consider all multi-reg groups first. */
1714 t = rld[r2].nregs - rld[r1].nregs;
1715 if (t != 0)
1716 return t;
1717
1718 /* Consider reloads in order of increasing reg-class number. */
1719 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1720 if (t != 0)
1721 return t;
1722
1723 /* If reloads are equally urgent, sort by reload number,
1724 so that the results of qsort leave nothing to chance. */
1725 return r1 - r2;
1726 }
1727 \f
1728 /* The cost of spilling each hard reg. */
1729 static int spill_cost[FIRST_PSEUDO_REGISTER];
1730
1731 /* When spilling multiple hard registers, we use SPILL_COST for the first
1732 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1733 only the first hard reg for a multi-reg pseudo. */
1734 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1735
1736 /* Map of hard regno to pseudo regno currently occupying the hard
1737 reg. */
1738 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1739
1740 /* Update the spill cost arrays, considering that pseudo REG is live. */
1741
1742 static void
1743 count_pseudo (int reg)
1744 {
1745 int freq = REG_FREQ (reg);
1746 int r = reg_renumber[reg];
1747 int nregs;
1748
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1751 /* Ignore spilled pseudo-registers which can be here only if IRA
1752 is used. */
1753 || (ira_conflicts_p && r < 0))
1754 return;
1755
1756 SET_REGNO_REG_SET (&pseudos_counted, reg);
1757
1758 gcc_assert (r >= 0);
1759
1760 spill_add_cost[r] += freq;
1761 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1762 while (nregs-- > 0)
1763 {
1764 hard_regno_to_pseudo_regno[r + nregs] = reg;
1765 spill_cost[r + nregs] += freq;
1766 }
1767 }
1768
1769 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1770 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1771
1772 static void
1773 order_regs_for_reload (struct insn_chain *chain)
1774 {
1775 unsigned i;
1776 HARD_REG_SET used_by_pseudos;
1777 HARD_REG_SET used_by_pseudos2;
1778 reg_set_iterator rsi;
1779
1780 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1781
1782 memset (spill_cost, 0, sizeof spill_cost);
1783 memset (spill_add_cost, 0, sizeof spill_add_cost);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1785 hard_regno_to_pseudo_regno[i] = -1;
1786
1787 /* Count number of uses of each hard reg by pseudo regs allocated to it
1788 and then order them by decreasing use. First exclude hard registers
1789 that are live in or across this insn. */
1790
1791 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1792 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1793 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1794 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1795
1796 /* Now find out which pseudos are allocated to it, and update
1797 hard_reg_n_uses. */
1798 CLEAR_REG_SET (&pseudos_counted);
1799
1800 EXECUTE_IF_SET_IN_REG_SET
1801 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1802 {
1803 count_pseudo (i);
1804 }
1805 EXECUTE_IF_SET_IN_REG_SET
1806 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1807 {
1808 count_pseudo (i);
1809 }
1810 CLEAR_REG_SET (&pseudos_counted);
1811 }
1812 \f
1813 /* Vector of reload-numbers showing the order in which the reloads should
1814 be processed. */
1815 static short reload_order[MAX_RELOADS];
1816
1817 /* This is used to keep track of the spill regs used in one insn. */
1818 static HARD_REG_SET used_spill_regs_local;
1819
1820 /* We decided to spill hard register SPILLED, which has a size of
1821 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1822 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1823 update SPILL_COST/SPILL_ADD_COST. */
1824
1825 static void
1826 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1827 {
1828 int freq = REG_FREQ (reg);
1829 int r = reg_renumber[reg];
1830 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1831
1832 /* Ignore spilled pseudo-registers which can be here only if IRA is
1833 used. */
1834 if ((ira_conflicts_p && r < 0)
1835 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1836 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1837 return;
1838
1839 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1840
1841 spill_add_cost[r] -= freq;
1842 while (nregs-- > 0)
1843 {
1844 hard_regno_to_pseudo_regno[r + nregs] = -1;
1845 spill_cost[r + nregs] -= freq;
1846 }
1847 }
1848
1849 /* Find reload register to use for reload number ORDER. */
1850
1851 static int
1852 find_reg (struct insn_chain *chain, int order)
1853 {
1854 int rnum = reload_order[order];
1855 struct reload *rl = rld + rnum;
1856 int best_cost = INT_MAX;
1857 int best_reg = -1;
1858 unsigned int i, j, n;
1859 int k;
1860 HARD_REG_SET not_usable;
1861 HARD_REG_SET used_by_other_reload;
1862 reg_set_iterator rsi;
1863 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1865
1866 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1867 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1868 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1869
1870 CLEAR_HARD_REG_SET (used_by_other_reload);
1871 for (k = 0; k < order; k++)
1872 {
1873 int other = reload_order[k];
1874
1875 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1876 for (j = 0; j < rld[other].nregs; j++)
1877 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1878 }
1879
1880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1881 {
1882 #ifdef REG_ALLOC_ORDER
1883 unsigned int regno = reg_alloc_order[i];
1884 #else
1885 unsigned int regno = i;
1886 #endif
1887
1888 if (! TEST_HARD_REG_BIT (not_usable, regno)
1889 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1890 && HARD_REGNO_MODE_OK (regno, rl->mode))
1891 {
1892 int this_cost = spill_cost[regno];
1893 int ok = 1;
1894 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1895
1896 for (j = 1; j < this_nregs; j++)
1897 {
1898 this_cost += spill_add_cost[regno + j];
1899 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1900 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1901 ok = 0;
1902 }
1903 if (! ok)
1904 continue;
1905
1906 if (ira_conflicts_p)
1907 {
1908 /* Ask IRA to find a better pseudo-register for
1909 spilling. */
1910 for (n = j = 0; j < this_nregs; j++)
1911 {
1912 int r = hard_regno_to_pseudo_regno[regno + j];
1913
1914 if (r < 0)
1915 continue;
1916 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1917 regno_pseudo_regs[n++] = r;
1918 }
1919 regno_pseudo_regs[n++] = -1;
1920 if (best_reg < 0
1921 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1922 best_regno_pseudo_regs,
1923 rl->in, rl->out,
1924 chain->insn))
1925 {
1926 best_reg = regno;
1927 for (j = 0;; j++)
1928 {
1929 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1930 if (regno_pseudo_regs[j] < 0)
1931 break;
1932 }
1933 }
1934 continue;
1935 }
1936
1937 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1938 this_cost--;
1939 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1940 this_cost--;
1941 if (this_cost < best_cost
1942 /* Among registers with equal cost, prefer caller-saved ones, or
1943 use REG_ALLOC_ORDER if it is defined. */
1944 || (this_cost == best_cost
1945 #ifdef REG_ALLOC_ORDER
1946 && (inv_reg_alloc_order[regno]
1947 < inv_reg_alloc_order[best_reg])
1948 #else
1949 && call_used_regs[regno]
1950 && ! call_used_regs[best_reg]
1951 #endif
1952 ))
1953 {
1954 best_reg = regno;
1955 best_cost = this_cost;
1956 }
1957 }
1958 }
1959 if (best_reg == -1)
1960 return 0;
1961
1962 if (dump_file)
1963 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1964
1965 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1966 rl->regno = best_reg;
1967
1968 EXECUTE_IF_SET_IN_REG_SET
1969 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1970 {
1971 count_spilled_pseudo (best_reg, rl->nregs, j);
1972 }
1973
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1976 {
1977 count_spilled_pseudo (best_reg, rl->nregs, j);
1978 }
1979
1980 for (i = 0; i < rl->nregs; i++)
1981 {
1982 gcc_assert (spill_cost[best_reg + i] == 0);
1983 gcc_assert (spill_add_cost[best_reg + i] == 0);
1984 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1985 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1986 }
1987 return 1;
1988 }
1989
1990 /* Find more reload regs to satisfy the remaining need of an insn, which
1991 is given by CHAIN.
1992 Do it by ascending class number, since otherwise a reg
1993 might be spilled for a big class and might fail to count
1994 for a smaller class even though it belongs to that class. */
1995
1996 static void
1997 find_reload_regs (struct insn_chain *chain)
1998 {
1999 int i;
2000
2001 /* In order to be certain of getting the registers we need,
2002 we must sort the reloads into order of increasing register class.
2003 Then our grabbing of reload registers will parallel the process
2004 that provided the reload registers. */
2005 for (i = 0; i < chain->n_reloads; i++)
2006 {
2007 /* Show whether this reload already has a hard reg. */
2008 if (chain->rld[i].reg_rtx)
2009 {
2010 int regno = REGNO (chain->rld[i].reg_rtx);
2011 chain->rld[i].regno = regno;
2012 chain->rld[i].nregs
2013 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2014 }
2015 else
2016 chain->rld[i].regno = -1;
2017 reload_order[i] = i;
2018 }
2019
2020 n_reloads = chain->n_reloads;
2021 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2022
2023 CLEAR_HARD_REG_SET (used_spill_regs_local);
2024
2025 if (dump_file)
2026 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2027
2028 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2029
2030 /* Compute the order of preference for hard registers to spill. */
2031
2032 order_regs_for_reload (chain);
2033
2034 for (i = 0; i < n_reloads; i++)
2035 {
2036 int r = reload_order[i];
2037
2038 /* Ignore reloads that got marked inoperative. */
2039 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2040 && ! rld[r].optional
2041 && rld[r].regno == -1)
2042 if (! find_reg (chain, i))
2043 {
2044 if (dump_file)
2045 fprintf (dump_file, "reload failure for reload %d\n", r);
2046 spill_failure (chain->insn, rld[r].rclass);
2047 failure = 1;
2048 return;
2049 }
2050 }
2051
2052 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2053 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2054
2055 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2056 }
2057
2058 static void
2059 select_reload_regs (void)
2060 {
2061 struct insn_chain *chain;
2062
2063 /* Try to satisfy the needs for each insn. */
2064 for (chain = insns_need_reload; chain != 0;
2065 chain = chain->next_need_reload)
2066 find_reload_regs (chain);
2067 }
2068 \f
2069 /* Delete all insns that were inserted by emit_caller_save_insns during
2070 this iteration. */
2071 static void
2072 delete_caller_save_insns (void)
2073 {
2074 struct insn_chain *c = reload_insn_chain;
2075
2076 while (c != 0)
2077 {
2078 while (c != 0 && c->is_caller_save_insn)
2079 {
2080 struct insn_chain *next = c->next;
2081 rtx insn = c->insn;
2082
2083 if (c == reload_insn_chain)
2084 reload_insn_chain = next;
2085 delete_insn (insn);
2086
2087 if (next)
2088 next->prev = c->prev;
2089 if (c->prev)
2090 c->prev->next = next;
2091 c->next = unused_insn_chains;
2092 unused_insn_chains = c;
2093 c = next;
2094 }
2095 if (c != 0)
2096 c = c->next;
2097 }
2098 }
2099 \f
2100 /* Handle the failure to find a register to spill.
2101 INSN should be one of the insns which needed this particular spill reg. */
2102
2103 static void
2104 spill_failure (rtx insn, enum reg_class rclass)
2105 {
2106 if (asm_noperands (PATTERN (insn)) >= 0)
2107 error_for_asm (insn, "can%'t find a register in class %qs while "
2108 "reloading %<asm%>",
2109 reg_class_names[rclass]);
2110 else
2111 {
2112 error ("unable to find a register to spill in class %qs",
2113 reg_class_names[rclass]);
2114
2115 if (dump_file)
2116 {
2117 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2118 debug_reload_to_stream (dump_file);
2119 }
2120 fatal_insn ("this is the insn:", insn);
2121 }
2122 }
2123 \f
2124 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2125 data that is dead in INSN. */
2126
2127 static void
2128 delete_dead_insn (rtx insn)
2129 {
2130 rtx prev = prev_active_insn (insn);
2131 rtx prev_dest;
2132
2133 /* If the previous insn sets a register that dies in our insn make
2134 a note that we want to run DCE immediately after reload.
2135
2136 We used to delete the previous insn & recurse, but that's wrong for
2137 block local equivalences. Instead of trying to figure out the exact
2138 circumstances where we can delete the potentially dead insns, just
2139 let DCE do the job. */
2140 if (prev && GET_CODE (PATTERN (prev)) == SET
2141 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2142 && reg_mentioned_p (prev_dest, PATTERN (insn))
2143 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2144 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2145 need_dce = 1;
2146
2147 SET_INSN_DELETED (insn);
2148 }
2149
2150 /* Modify the home of pseudo-reg I.
2151 The new home is present in reg_renumber[I].
2152
2153 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2154 or it may be -1, meaning there is none or it is not relevant.
2155 This is used so that all pseudos spilled from a given hard reg
2156 can share one stack slot. */
2157
2158 static void
2159 alter_reg (int i, int from_reg, bool dont_share_p)
2160 {
2161 /* When outputting an inline function, this can happen
2162 for a reg that isn't actually used. */
2163 if (regno_reg_rtx[i] == 0)
2164 return;
2165
2166 /* If the reg got changed to a MEM at rtl-generation time,
2167 ignore it. */
2168 if (!REG_P (regno_reg_rtx[i]))
2169 return;
2170
2171 /* Modify the reg-rtx to contain the new hard reg
2172 number or else to contain its pseudo reg number. */
2173 SET_REGNO (regno_reg_rtx[i],
2174 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2175
2176 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2177 allocate a stack slot for it. */
2178
2179 if (reg_renumber[i] < 0
2180 && REG_N_REFS (i) > 0
2181 && reg_equiv_constant (i) == 0
2182 && (reg_equiv_invariant (i) == 0
2183 || reg_equiv_init (i) == 0)
2184 && reg_equiv_memory_loc (i) == 0)
2185 {
2186 rtx x = NULL_RTX;
2187 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2188 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2189 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2190 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2191 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2192 int adjust = 0;
2193
2194 something_was_spilled = true;
2195
2196 if (ira_conflicts_p)
2197 {
2198 /* Mark the spill for IRA. */
2199 SET_REGNO_REG_SET (&spilled_pseudos, i);
2200 if (!dont_share_p)
2201 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2202 }
2203
2204 if (x)
2205 ;
2206
2207 /* Each pseudo reg has an inherent size which comes from its own mode,
2208 and a total size which provides room for paradoxical subregs
2209 which refer to the pseudo reg in wider modes.
2210
2211 We can use a slot already allocated if it provides both
2212 enough inherent space and enough total space.
2213 Otherwise, we allocate a new slot, making sure that it has no less
2214 inherent space, and no less total space, then the previous slot. */
2215 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2216 {
2217 rtx stack_slot;
2218
2219 /* No known place to spill from => no slot to reuse. */
2220 x = assign_stack_local (mode, total_size,
2221 min_align > inherent_align
2222 || total_size > inherent_size ? -1 : 0);
2223
2224 stack_slot = x;
2225
2226 /* Cancel the big-endian correction done in assign_stack_local.
2227 Get the address of the beginning of the slot. This is so we
2228 can do a big-endian correction unconditionally below. */
2229 if (BYTES_BIG_ENDIAN)
2230 {
2231 adjust = inherent_size - total_size;
2232 if (adjust)
2233 stack_slot
2234 = adjust_address_nv (x, mode_for_size (total_size
2235 * BITS_PER_UNIT,
2236 MODE_INT, 1),
2237 adjust);
2238 }
2239
2240 if (! dont_share_p && ira_conflicts_p)
2241 /* Inform IRA about allocation a new stack slot. */
2242 ira_mark_new_stack_slot (stack_slot, i, total_size);
2243 }
2244
2245 /* Reuse a stack slot if possible. */
2246 else if (spill_stack_slot[from_reg] != 0
2247 && spill_stack_slot_width[from_reg] >= total_size
2248 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2249 >= inherent_size)
2250 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2251 x = spill_stack_slot[from_reg];
2252
2253 /* Allocate a bigger slot. */
2254 else
2255 {
2256 /* Compute maximum size needed, both for inherent size
2257 and for total size. */
2258 rtx stack_slot;
2259
2260 if (spill_stack_slot[from_reg])
2261 {
2262 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2263 > inherent_size)
2264 mode = GET_MODE (spill_stack_slot[from_reg]);
2265 if (spill_stack_slot_width[from_reg] > total_size)
2266 total_size = spill_stack_slot_width[from_reg];
2267 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2268 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2269 }
2270
2271 /* Make a slot with that size. */
2272 x = assign_stack_local (mode, total_size,
2273 min_align > inherent_align
2274 || total_size > inherent_size ? -1 : 0);
2275 stack_slot = x;
2276
2277 /* Cancel the big-endian correction done in assign_stack_local.
2278 Get the address of the beginning of the slot. This is so we
2279 can do a big-endian correction unconditionally below. */
2280 if (BYTES_BIG_ENDIAN)
2281 {
2282 adjust = GET_MODE_SIZE (mode) - total_size;
2283 if (adjust)
2284 stack_slot
2285 = adjust_address_nv (x, mode_for_size (total_size
2286 * BITS_PER_UNIT,
2287 MODE_INT, 1),
2288 adjust);
2289 }
2290
2291 spill_stack_slot[from_reg] = stack_slot;
2292 spill_stack_slot_width[from_reg] = total_size;
2293 }
2294
2295 /* On a big endian machine, the "address" of the slot
2296 is the address of the low part that fits its inherent mode. */
2297 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2298 adjust += (total_size - inherent_size);
2299
2300 /* If we have any adjustment to make, or if the stack slot is the
2301 wrong mode, make a new stack slot. */
2302 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2303
2304 /* Set all of the memory attributes as appropriate for a spill. */
2305 set_mem_attrs_for_spill (x);
2306
2307 /* Save the stack slot for later. */
2308 reg_equiv_memory_loc (i) = x;
2309 }
2310 }
2311
2312 /* Mark the slots in regs_ever_live for the hard regs used by
2313 pseudo-reg number REGNO, accessed in MODE. */
2314
2315 static void
2316 mark_home_live_1 (int regno, enum machine_mode mode)
2317 {
2318 int i, lim;
2319
2320 i = reg_renumber[regno];
2321 if (i < 0)
2322 return;
2323 lim = end_hard_regno (mode, i);
2324 while (i < lim)
2325 df_set_regs_ever_live(i++, true);
2326 }
2327
2328 /* Mark the slots in regs_ever_live for the hard regs
2329 used by pseudo-reg number REGNO. */
2330
2331 void
2332 mark_home_live (int regno)
2333 {
2334 if (reg_renumber[regno] >= 0)
2335 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2336 }
2337 \f
2338 /* This function handles the tracking of elimination offsets around branches.
2339
2340 X is a piece of RTL being scanned.
2341
2342 INSN is the insn that it came from, if any.
2343
2344 INITIAL_P is nonzero if we are to set the offset to be the initial
2345 offset and zero if we are setting the offset of the label to be the
2346 current offset. */
2347
2348 static void
2349 set_label_offsets (rtx x, rtx insn, int initial_p)
2350 {
2351 enum rtx_code code = GET_CODE (x);
2352 rtx tem;
2353 unsigned int i;
2354 struct elim_table *p;
2355
2356 switch (code)
2357 {
2358 case LABEL_REF:
2359 if (LABEL_REF_NONLOCAL_P (x))
2360 return;
2361
2362 x = XEXP (x, 0);
2363
2364 /* ... fall through ... */
2365
2366 case CODE_LABEL:
2367 /* If we know nothing about this label, set the desired offsets. Note
2368 that this sets the offset at a label to be the offset before a label
2369 if we don't know anything about the label. This is not correct for
2370 the label after a BARRIER, but is the best guess we can make. If
2371 we guessed wrong, we will suppress an elimination that might have
2372 been possible had we been able to guess correctly. */
2373
2374 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2375 {
2376 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2377 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2378 = (initial_p ? reg_eliminate[i].initial_offset
2379 : reg_eliminate[i].offset);
2380 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2381 }
2382
2383 /* Otherwise, if this is the definition of a label and it is
2384 preceded by a BARRIER, set our offsets to the known offset of
2385 that label. */
2386
2387 else if (x == insn
2388 && (tem = prev_nonnote_insn (insn)) != 0
2389 && BARRIER_P (tem))
2390 set_offsets_for_label (insn);
2391 else
2392 /* If neither of the above cases is true, compare each offset
2393 with those previously recorded and suppress any eliminations
2394 where the offsets disagree. */
2395
2396 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2397 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2398 != (initial_p ? reg_eliminate[i].initial_offset
2399 : reg_eliminate[i].offset))
2400 reg_eliminate[i].can_eliminate = 0;
2401
2402 return;
2403
2404 case JUMP_INSN:
2405 set_label_offsets (PATTERN (insn), insn, initial_p);
2406
2407 /* ... fall through ... */
2408
2409 case INSN:
2410 case CALL_INSN:
2411 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2412 to indirectly and hence must have all eliminations at their
2413 initial offsets. */
2414 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2415 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2416 set_label_offsets (XEXP (tem, 0), insn, 1);
2417 return;
2418
2419 case PARALLEL:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 /* Each of the labels in the parallel or address vector must be
2423 at their initial offsets. We want the first field for PARALLEL
2424 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2425
2426 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2427 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2428 insn, initial_p);
2429 return;
2430
2431 case SET:
2432 /* We only care about setting PC. If the source is not RETURN,
2433 IF_THEN_ELSE, or a label, disable any eliminations not at
2434 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2435 isn't one of those possibilities. For branches to a label,
2436 call ourselves recursively.
2437
2438 Note that this can disable elimination unnecessarily when we have
2439 a non-local goto since it will look like a non-constant jump to
2440 someplace in the current function. This isn't a significant
2441 problem since such jumps will normally be when all elimination
2442 pairs are back to their initial offsets. */
2443
2444 if (SET_DEST (x) != pc_rtx)
2445 return;
2446
2447 switch (GET_CODE (SET_SRC (x)))
2448 {
2449 case PC:
2450 case RETURN:
2451 return;
2452
2453 case LABEL_REF:
2454 set_label_offsets (SET_SRC (x), insn, initial_p);
2455 return;
2456
2457 case IF_THEN_ELSE:
2458 tem = XEXP (SET_SRC (x), 1);
2459 if (GET_CODE (tem) == LABEL_REF)
2460 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2461 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2462 break;
2463
2464 tem = XEXP (SET_SRC (x), 2);
2465 if (GET_CODE (tem) == LABEL_REF)
2466 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2467 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2468 break;
2469 return;
2470
2471 default:
2472 break;
2473 }
2474
2475 /* If we reach here, all eliminations must be at their initial
2476 offset because we are doing a jump to a variable address. */
2477 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2478 if (p->offset != p->initial_offset)
2479 p->can_eliminate = 0;
2480 break;
2481
2482 default:
2483 break;
2484 }
2485 }
2486 \f
2487 /* Called through for_each_rtx, this function examines every reg that occurs
2488 in PX and adjusts the costs for its elimination which are gathered by IRA.
2489 DATA is the insn in which PX occurs. We do not recurse into MEM
2490 expressions. */
2491
2492 static int
2493 note_reg_elim_costly (rtx *px, void *data)
2494 {
2495 rtx insn = (rtx)data;
2496 rtx x = *px;
2497
2498 if (MEM_P (x))
2499 return -1;
2500
2501 if (REG_P (x)
2502 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2503 && reg_equiv_init (REGNO (x))
2504 && reg_equiv_invariant (REGNO (x)))
2505 {
2506 rtx t = reg_equiv_invariant (REGNO (x));
2507 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2508 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2509 int freq = REG_FREQ_FROM_BB (elim_bb);
2510
2511 if (cost != 0)
2512 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2513 }
2514 return 0;
2515 }
2516
2517 /* Scan X and replace any eliminable registers (such as fp) with a
2518 replacement (such as sp), plus an offset.
2519
2520 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2521 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2522 MEM, we are allowed to replace a sum of a register and the constant zero
2523 with the register, which we cannot do outside a MEM. In addition, we need
2524 to record the fact that a register is referenced outside a MEM.
2525
2526 If INSN is an insn, it is the insn containing X. If we replace a REG
2527 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2528 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2529 the REG is being modified.
2530
2531 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2532 That's used when we eliminate in expressions stored in notes.
2533 This means, do not set ref_outside_mem even if the reference
2534 is outside of MEMs.
2535
2536 If FOR_COSTS is true, we are being called before reload in order to
2537 estimate the costs of keeping registers with an equivalence unallocated.
2538
2539 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2540 replacements done assuming all offsets are at their initial values. If
2541 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2542 encounter, return the actual location so that find_reloads will do
2543 the proper thing. */
2544
2545 static rtx
2546 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2547 bool may_use_invariant, bool for_costs)
2548 {
2549 enum rtx_code code = GET_CODE (x);
2550 struct elim_table *ep;
2551 int regno;
2552 rtx new_rtx;
2553 int i, j;
2554 const char *fmt;
2555 int copied = 0;
2556
2557 if (! current_function_decl)
2558 return x;
2559
2560 switch (code)
2561 {
2562 case CONST_INT:
2563 case CONST_DOUBLE:
2564 case CONST_FIXED:
2565 case CONST_VECTOR:
2566 case CONST:
2567 case SYMBOL_REF:
2568 case CODE_LABEL:
2569 case PC:
2570 case CC0:
2571 case ASM_INPUT:
2572 case ADDR_VEC:
2573 case ADDR_DIFF_VEC:
2574 case RETURN:
2575 return x;
2576
2577 case REG:
2578 regno = REGNO (x);
2579
2580 /* First handle the case where we encounter a bare register that
2581 is eliminable. Replace it with a PLUS. */
2582 if (regno < FIRST_PSEUDO_REGISTER)
2583 {
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == x && ep->can_eliminate)
2587 return plus_constant (ep->to_rtx, ep->previous_offset);
2588
2589 }
2590 else if (reg_renumber && reg_renumber[regno] < 0
2591 && reg_equivs
2592 && reg_equiv_invariant (regno))
2593 {
2594 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 mem_mode, insn, true, for_costs);
2597 /* There exists at least one use of REGNO that cannot be
2598 eliminated. Prevent the defining insn from being deleted. */
2599 reg_equiv_init (regno) = NULL_RTX;
2600 if (!for_costs)
2601 alter_reg (regno, -1, true);
2602 }
2603 return x;
2604
2605 /* You might think handling MINUS in a manner similar to PLUS is a
2606 good idea. It is not. It has been tried multiple times and every
2607 time the change has had to have been reverted.
2608
2609 Other parts of reload know a PLUS is special (gen_reload for example)
2610 and require special code to handle code a reloaded PLUS operand.
2611
2612 Also consider backends where the flags register is clobbered by a
2613 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614 lea instruction comes to mind). If we try to reload a MINUS, we
2615 may kill the flags register that was holding a useful value.
2616
2617 So, please before trying to handle MINUS, consider reload as a
2618 whole instead of this little section as well as the backend issues. */
2619 case PLUS:
2620 /* If this is the sum of an eliminable register and a constant, rework
2621 the sum. */
2622 if (REG_P (XEXP (x, 0))
2623 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && CONSTANT_P (XEXP (x, 1)))
2625 {
2626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 ep++)
2628 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 {
2630 /* The only time we want to replace a PLUS with a REG (this
2631 occurs when the constant operand of the PLUS is the negative
2632 of the offset) is when we are inside a MEM. We won't want
2633 to do so at other times because that would change the
2634 structure of the insn in a way that reload can't handle.
2635 We special-case the commonest situation in
2636 eliminate_regs_in_insn, so just replace a PLUS with a
2637 PLUS here, unless inside a MEM. */
2638 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 return ep->to_rtx;
2641 else
2642 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 plus_constant (XEXP (x, 1),
2644 ep->previous_offset));
2645 }
2646
2647 /* If the register is not eliminable, we are done since the other
2648 operand is a constant. */
2649 return x;
2650 }
2651
2652 /* If this is part of an address, we want to bring any constant to the
2653 outermost PLUS. We will do this by doing register replacement in
2654 our operands and seeing if a constant shows up in one of them.
2655
2656 Note that there is no risk of modifying the structure of the insn,
2657 since we only get called for its operands, thus we are either
2658 modifying the address inside a MEM, or something like an address
2659 operand of a load-address insn. */
2660
2661 {
2662 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 for_costs);
2664 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 for_costs);
2666
2667 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 {
2669 /* If one side is a PLUS and the other side is a pseudo that
2670 didn't get a hard register but has a reg_equiv_constant,
2671 we must replace the constant here since it may no longer
2672 be in the position of any operand. */
2673 if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 && reg_renumber[REGNO (new1)] < 0
2676 && reg_equivs
2677 && reg_equiv_constant (REGNO (new1)) != 0)
2678 new1 = reg_equiv_constant (REGNO (new1));
2679 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (new0)] < 0
2682 && reg_equiv_constant (REGNO (new0)) != 0)
2683 new0 = reg_equiv_constant (REGNO (new0));
2684
2685 new_rtx = form_sum (GET_MODE (x), new0, new1);
2686
2687 /* As above, if we are not inside a MEM we do not want to
2688 turn a PLUS into something else. We might try to do so here
2689 for an addition of 0 if we aren't optimizing. */
2690 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 else
2693 return new_rtx;
2694 }
2695 }
2696 return x;
2697
2698 case MULT:
2699 /* If this is the product of an eliminable register and a
2700 constant, apply the distribute law and move the constant out
2701 so that we have (plus (mult ..) ..). This is needed in order
2702 to keep load-address insns valid. This case is pathological.
2703 We ignore the possibility of overflow here. */
2704 if (REG_P (XEXP (x, 0))
2705 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && CONST_INT_P (XEXP (x, 1)))
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 {
2711 if (! mem_mode
2712 /* Refs inside notes or in DEBUG_INSNs don't count for
2713 this purpose. */
2714 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 || GET_CODE (insn) == INSN_LIST
2716 || DEBUG_INSN_P (insn))))
2717 ep->ref_outside_mem = 1;
2718
2719 return
2720 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2722 }
2723
2724 /* ... fall through ... */
2725
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2738 {
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2744
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2747 }
2748 return x;
2749
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2753 {
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2757 {
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2766
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2768 }
2769 }
2770
2771 /* ... fall through ... */
2772
2773 case INSN_LIST:
2774 /* Now do eliminations in the rest of the chain. If this was
2775 an EXPR_LIST, this might result in allocating more memory than is
2776 strictly needed, but it simplifies the code. */
2777 if (XEXP (x, 1))
2778 {
2779 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 1))
2782 return
2783 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2784 }
2785 return x;
2786
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 /* We do not support elimination of a register that is modified.
2792 elimination_effects has already make sure that this does not
2793 happen. */
2794 return x;
2795
2796 case PRE_MODIFY:
2797 case POST_MODIFY:
2798 /* We do not support elimination of a register that is modified.
2799 elimination_effects has already make sure that this does not
2800 happen. The only remaining case we need to consider here is
2801 that the increment value may be an eliminable register. */
2802 if (GET_CODE (XEXP (x, 1)) == PLUS
2803 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2804 {
2805 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2806 insn, true, for_costs);
2807
2808 if (new_rtx != XEXP (XEXP (x, 1), 1))
2809 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2810 gen_rtx_PLUS (GET_MODE (x),
2811 XEXP (x, 0), new_rtx));
2812 }
2813 return x;
2814
2815 case STRICT_LOW_PART:
2816 case NEG: case NOT:
2817 case SIGN_EXTEND: case ZERO_EXTEND:
2818 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2819 case FLOAT: case FIX:
2820 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2821 case ABS:
2822 case SQRT:
2823 case FFS:
2824 case CLZ:
2825 case CTZ:
2826 case POPCOUNT:
2827 case PARITY:
2828 case BSWAP:
2829 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2830 for_costs);
2831 if (new_rtx != XEXP (x, 0))
2832 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2833 return x;
2834
2835 case SUBREG:
2836 /* Similar to above processing, but preserve SUBREG_BYTE.
2837 Convert (subreg (mem)) to (mem) if not paradoxical.
2838 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2839 pseudo didn't get a hard reg, we must replace this with the
2840 eliminated version of the memory location because push_reload
2841 may do the replacement in certain circumstances. */
2842 if (REG_P (SUBREG_REG (x))
2843 && !paradoxical_subreg_p (x)
2844 && reg_equivs
2845 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2846 {
2847 new_rtx = SUBREG_REG (x);
2848 }
2849 else
2850 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2851
2852 if (new_rtx != SUBREG_REG (x))
2853 {
2854 int x_size = GET_MODE_SIZE (GET_MODE (x));
2855 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2856
2857 if (MEM_P (new_rtx)
2858 && ((x_size < new_size
2859 #ifdef WORD_REGISTER_OPERATIONS
2860 /* On these machines, combine can create rtl of the form
2861 (set (subreg:m1 (reg:m2 R) 0) ...)
2862 where m1 < m2, and expects something interesting to
2863 happen to the entire word. Moreover, it will use the
2864 (reg:m2 R) later, expecting all bits to be preserved.
2865 So if the number of words is the same, preserve the
2866 subreg so that push_reload can see it. */
2867 && ! ((x_size - 1) / UNITS_PER_WORD
2868 == (new_size -1 ) / UNITS_PER_WORD)
2869 #endif
2870 )
2871 || x_size == new_size)
2872 )
2873 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2874 else
2875 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2876 }
2877
2878 return x;
2879
2880 case MEM:
2881 /* Our only special processing is to pass the mode of the MEM to our
2882 recursive call and copy the flags. While we are here, handle this
2883 case more efficiently. */
2884
2885 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2886 for_costs);
2887 if (for_costs
2888 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2889 && !memory_address_p (GET_MODE (x), new_rtx))
2890 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2891
2892 return replace_equiv_address_nv (x, new_rtx);
2893
2894 case USE:
2895 /* Handle insn_list USE that a call to a pure function may generate. */
2896 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2897 for_costs);
2898 if (new_rtx != XEXP (x, 0))
2899 return gen_rtx_USE (GET_MODE (x), new_rtx);
2900 return x;
2901
2902 case CLOBBER:
2903 case ASM_OPERANDS:
2904 gcc_assert (insn && DEBUG_INSN_P (insn));
2905 break;
2906
2907 case SET:
2908 gcc_unreachable ();
2909
2910 default:
2911 break;
2912 }
2913
2914 /* Process each of our operands recursively. If any have changed, make a
2915 copy of the rtx. */
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2918 {
2919 if (*fmt == 'e')
2920 {
2921 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, i) && ! copied)
2924 {
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2927 }
2928 XEXP (x, i) = new_rtx;
2929 }
2930 else if (*fmt == 'E')
2931 {
2932 int copied_vec = 0;
2933 for (j = 0; j < XVECLEN (x, i); j++)
2934 {
2935 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2936 for_costs);
2937 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2938 {
2939 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2940 XVEC (x, i)->elem);
2941 if (! copied)
2942 {
2943 x = shallow_copy_rtx (x);
2944 copied = 1;
2945 }
2946 XVEC (x, i) = new_v;
2947 copied_vec = 1;
2948 }
2949 XVECEXP (x, i, j) = new_rtx;
2950 }
2951 }
2952 }
2953
2954 return x;
2955 }
2956
2957 rtx
2958 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2959 {
2960 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2961 }
2962
2963 /* Scan rtx X for modifications of elimination target registers. Update
2964 the table of eliminables to reflect the changed state. MEM_MODE is
2965 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2966
2967 static void
2968 elimination_effects (rtx x, enum machine_mode mem_mode)
2969 {
2970 enum rtx_code code = GET_CODE (x);
2971 struct elim_table *ep;
2972 int regno;
2973 int i, j;
2974 const char *fmt;
2975
2976 switch (code)
2977 {
2978 case CONST_INT:
2979 case CONST_DOUBLE:
2980 case CONST_FIXED:
2981 case CONST_VECTOR:
2982 case CONST:
2983 case SYMBOL_REF:
2984 case CODE_LABEL:
2985 case PC:
2986 case CC0:
2987 case ASM_INPUT:
2988 case ADDR_VEC:
2989 case ADDR_DIFF_VEC:
2990 case RETURN:
2991 return;
2992
2993 case REG:
2994 regno = REGNO (x);
2995
2996 /* First handle the case where we encounter a bare register that
2997 is eliminable. Replace it with a PLUS. */
2998 if (regno < FIRST_PSEUDO_REGISTER)
2999 {
3000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3001 ep++)
3002 if (ep->from_rtx == x && ep->can_eliminate)
3003 {
3004 if (! mem_mode)
3005 ep->ref_outside_mem = 1;
3006 return;
3007 }
3008
3009 }
3010 else if (reg_renumber[regno] < 0
3011 && reg_equivs != 0
3012 && reg_equiv_constant (regno)
3013 && ! function_invariant_p (reg_equiv_constant (regno)))
3014 elimination_effects (reg_equiv_constant (regno), mem_mode);
3015 return;
3016
3017 case PRE_INC:
3018 case POST_INC:
3019 case PRE_DEC:
3020 case POST_DEC:
3021 case POST_MODIFY:
3022 case PRE_MODIFY:
3023 /* If we modify the source of an elimination rule, disable it. */
3024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3025 if (ep->from_rtx == XEXP (x, 0))
3026 ep->can_eliminate = 0;
3027
3028 /* If we modify the target of an elimination rule by adding a constant,
3029 update its offset. If we modify the target in any other way, we'll
3030 have to disable the rule as well. */
3031 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3032 if (ep->to_rtx == XEXP (x, 0))
3033 {
3034 int size = GET_MODE_SIZE (mem_mode);
3035
3036 /* If more bytes than MEM_MODE are pushed, account for them. */
3037 #ifdef PUSH_ROUNDING
3038 if (ep->to_rtx == stack_pointer_rtx)
3039 size = PUSH_ROUNDING (size);
3040 #endif
3041 if (code == PRE_DEC || code == POST_DEC)
3042 ep->offset += size;
3043 else if (code == PRE_INC || code == POST_INC)
3044 ep->offset -= size;
3045 else if (code == PRE_MODIFY || code == POST_MODIFY)
3046 {
3047 if (GET_CODE (XEXP (x, 1)) == PLUS
3048 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3049 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3050 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3051 else
3052 ep->can_eliminate = 0;
3053 }
3054 }
3055
3056 /* These two aren't unary operators. */
3057 if (code == POST_MODIFY || code == PRE_MODIFY)
3058 break;
3059
3060 /* Fall through to generic unary operation case. */
3061 case STRICT_LOW_PART:
3062 case NEG: case NOT:
3063 case SIGN_EXTEND: case ZERO_EXTEND:
3064 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3065 case FLOAT: case FIX:
3066 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3067 case ABS:
3068 case SQRT:
3069 case FFS:
3070 case CLZ:
3071 case CTZ:
3072 case POPCOUNT:
3073 case PARITY:
3074 case BSWAP:
3075 elimination_effects (XEXP (x, 0), mem_mode);
3076 return;
3077
3078 case SUBREG:
3079 if (REG_P (SUBREG_REG (x))
3080 && (GET_MODE_SIZE (GET_MODE (x))
3081 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3082 && reg_equivs != 0
3083 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3084 return;
3085
3086 elimination_effects (SUBREG_REG (x), mem_mode);
3087 return;
3088
3089 case USE:
3090 /* If using a register that is the source of an eliminate we still
3091 think can be performed, note it cannot be performed since we don't
3092 know how this register is used. */
3093 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3094 if (ep->from_rtx == XEXP (x, 0))
3095 ep->can_eliminate = 0;
3096
3097 elimination_effects (XEXP (x, 0), mem_mode);
3098 return;
3099
3100 case CLOBBER:
3101 /* If clobbering a register that is the replacement register for an
3102 elimination we still think can be performed, note that it cannot
3103 be performed. Otherwise, we need not be concerned about it. */
3104 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3105 if (ep->to_rtx == XEXP (x, 0))
3106 ep->can_eliminate = 0;
3107
3108 elimination_effects (XEXP (x, 0), mem_mode);
3109 return;
3110
3111 case SET:
3112 /* Check for setting a register that we know about. */
3113 if (REG_P (SET_DEST (x)))
3114 {
3115 /* See if this is setting the replacement register for an
3116 elimination.
3117
3118 If DEST is the hard frame pointer, we do nothing because we
3119 assume that all assignments to the frame pointer are for
3120 non-local gotos and are being done at a time when they are valid
3121 and do not disturb anything else. Some machines want to
3122 eliminate a fake argument pointer (or even a fake frame pointer)
3123 with either the real frame or the stack pointer. Assignments to
3124 the hard frame pointer must not prevent this elimination. */
3125
3126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3127 ep++)
3128 if (ep->to_rtx == SET_DEST (x)
3129 && SET_DEST (x) != hard_frame_pointer_rtx)
3130 {
3131 /* If it is being incremented, adjust the offset. Otherwise,
3132 this elimination can't be done. */
3133 rtx src = SET_SRC (x);
3134
3135 if (GET_CODE (src) == PLUS
3136 && XEXP (src, 0) == SET_DEST (x)
3137 && CONST_INT_P (XEXP (src, 1)))
3138 ep->offset -= INTVAL (XEXP (src, 1));
3139 else
3140 ep->can_eliminate = 0;
3141 }
3142 }
3143
3144 elimination_effects (SET_DEST (x), VOIDmode);
3145 elimination_effects (SET_SRC (x), VOIDmode);
3146 return;
3147
3148 case MEM:
3149 /* Our only special processing is to pass the mode of the MEM to our
3150 recursive call. */
3151 elimination_effects (XEXP (x, 0), GET_MODE (x));
3152 return;
3153
3154 default:
3155 break;
3156 }
3157
3158 fmt = GET_RTX_FORMAT (code);
3159 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3160 {
3161 if (*fmt == 'e')
3162 elimination_effects (XEXP (x, i), mem_mode);
3163 else if (*fmt == 'E')
3164 for (j = 0; j < XVECLEN (x, i); j++)
3165 elimination_effects (XVECEXP (x, i, j), mem_mode);
3166 }
3167 }
3168
3169 /* Descend through rtx X and verify that no references to eliminable registers
3170 remain. If any do remain, mark the involved register as not
3171 eliminable. */
3172
3173 static void
3174 check_eliminable_occurrences (rtx x)
3175 {
3176 const char *fmt;
3177 int i;
3178 enum rtx_code code;
3179
3180 if (x == 0)
3181 return;
3182
3183 code = GET_CODE (x);
3184
3185 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3186 {
3187 struct elim_table *ep;
3188
3189 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3190 if (ep->from_rtx == x)
3191 ep->can_eliminate = 0;
3192 return;
3193 }
3194
3195 fmt = GET_RTX_FORMAT (code);
3196 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3197 {
3198 if (*fmt == 'e')
3199 check_eliminable_occurrences (XEXP (x, i));
3200 else if (*fmt == 'E')
3201 {
3202 int j;
3203 for (j = 0; j < XVECLEN (x, i); j++)
3204 check_eliminable_occurrences (XVECEXP (x, i, j));
3205 }
3206 }
3207 }
3208 \f
3209 /* Scan INSN and eliminate all eliminable registers in it.
3210
3211 If REPLACE is nonzero, do the replacement destructively. Also
3212 delete the insn as dead it if it is setting an eliminable register.
3213
3214 If REPLACE is zero, do all our allocations in reload_obstack.
3215
3216 If no eliminations were done and this insn doesn't require any elimination
3217 processing (these are not identical conditions: it might be updating sp,
3218 but not referencing fp; this needs to be seen during reload_as_needed so
3219 that the offset between fp and sp can be taken into consideration), zero
3220 is returned. Otherwise, 1 is returned. */
3221
3222 static int
3223 eliminate_regs_in_insn (rtx insn, int replace)
3224 {
3225 int icode = recog_memoized (insn);
3226 rtx old_body = PATTERN (insn);
3227 int insn_is_asm = asm_noperands (old_body) >= 0;
3228 rtx old_set = single_set (insn);
3229 rtx new_body;
3230 int val = 0;
3231 int i;
3232 rtx substed_operand[MAX_RECOG_OPERANDS];
3233 rtx orig_operand[MAX_RECOG_OPERANDS];
3234 struct elim_table *ep;
3235 rtx plus_src, plus_cst_src;
3236
3237 if (! insn_is_asm && icode < 0)
3238 {
3239 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3240 || GET_CODE (PATTERN (insn)) == CLOBBER
3241 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3242 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3243 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3244 || DEBUG_INSN_P (insn));
3245 if (DEBUG_INSN_P (insn))
3246 INSN_VAR_LOCATION_LOC (insn)
3247 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3248 return 0;
3249 }
3250
3251 if (old_set != 0 && REG_P (SET_DEST (old_set))
3252 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3253 {
3254 /* Check for setting an eliminable register. */
3255 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3256 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3257 {
3258 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3259 /* If this is setting the frame pointer register to the
3260 hardware frame pointer register and this is an elimination
3261 that will be done (tested above), this insn is really
3262 adjusting the frame pointer downward to compensate for
3263 the adjustment done before a nonlocal goto. */
3264 if (ep->from == FRAME_POINTER_REGNUM
3265 && ep->to == HARD_FRAME_POINTER_REGNUM)
3266 {
3267 rtx base = SET_SRC (old_set);
3268 rtx base_insn = insn;
3269 HOST_WIDE_INT offset = 0;
3270
3271 while (base != ep->to_rtx)
3272 {
3273 rtx prev_insn, prev_set;
3274
3275 if (GET_CODE (base) == PLUS
3276 && CONST_INT_P (XEXP (base, 1)))
3277 {
3278 offset += INTVAL (XEXP (base, 1));
3279 base = XEXP (base, 0);
3280 }
3281 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3282 && (prev_set = single_set (prev_insn)) != 0
3283 && rtx_equal_p (SET_DEST (prev_set), base))
3284 {
3285 base = SET_SRC (prev_set);
3286 base_insn = prev_insn;
3287 }
3288 else
3289 break;
3290 }
3291
3292 if (base == ep->to_rtx)
3293 {
3294 rtx src
3295 = plus_constant (ep->to_rtx, offset - ep->offset);
3296
3297 new_body = old_body;
3298 if (! replace)
3299 {
3300 new_body = copy_insn (old_body);
3301 if (REG_NOTES (insn))
3302 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3303 }
3304 PATTERN (insn) = new_body;
3305 old_set = single_set (insn);
3306
3307 /* First see if this insn remains valid when we
3308 make the change. If not, keep the INSN_CODE
3309 the same and let reload fit it up. */
3310 validate_change (insn, &SET_SRC (old_set), src, 1);
3311 validate_change (insn, &SET_DEST (old_set),
3312 ep->to_rtx, 1);
3313 if (! apply_change_group ())
3314 {
3315 SET_SRC (old_set) = src;
3316 SET_DEST (old_set) = ep->to_rtx;
3317 }
3318
3319 val = 1;
3320 goto done;
3321 }
3322 }
3323 #endif
3324
3325 /* In this case this insn isn't serving a useful purpose. We
3326 will delete it in reload_as_needed once we know that this
3327 elimination is, in fact, being done.
3328
3329 If REPLACE isn't set, we can't delete this insn, but needn't
3330 process it since it won't be used unless something changes. */
3331 if (replace)
3332 {
3333 delete_dead_insn (insn);
3334 return 1;
3335 }
3336 val = 1;
3337 goto done;
3338 }
3339 }
3340
3341 /* We allow one special case which happens to work on all machines we
3342 currently support: a single set with the source or a REG_EQUAL
3343 note being a PLUS of an eliminable register and a constant. */
3344 plus_src = plus_cst_src = 0;
3345 if (old_set && REG_P (SET_DEST (old_set)))
3346 {
3347 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3348 plus_src = SET_SRC (old_set);
3349 /* First see if the source is of the form (plus (...) CST). */
3350 if (plus_src
3351 && CONST_INT_P (XEXP (plus_src, 1)))
3352 plus_cst_src = plus_src;
3353 else if (REG_P (SET_SRC (old_set))
3354 || plus_src)
3355 {
3356 /* Otherwise, see if we have a REG_EQUAL note of the form
3357 (plus (...) CST). */
3358 rtx links;
3359 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3360 {
3361 if ((REG_NOTE_KIND (links) == REG_EQUAL
3362 || REG_NOTE_KIND (links) == REG_EQUIV)
3363 && GET_CODE (XEXP (links, 0)) == PLUS
3364 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3365 {
3366 plus_cst_src = XEXP (links, 0);
3367 break;
3368 }
3369 }
3370 }
3371
3372 /* Check that the first operand of the PLUS is a hard reg or
3373 the lowpart subreg of one. */
3374 if (plus_cst_src)
3375 {
3376 rtx reg = XEXP (plus_cst_src, 0);
3377 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3378 reg = SUBREG_REG (reg);
3379
3380 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3381 plus_cst_src = 0;
3382 }
3383 }
3384 if (plus_cst_src)
3385 {
3386 rtx reg = XEXP (plus_cst_src, 0);
3387 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3388
3389 if (GET_CODE (reg) == SUBREG)
3390 reg = SUBREG_REG (reg);
3391
3392 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3393 if (ep->from_rtx == reg && ep->can_eliminate)
3394 {
3395 rtx to_rtx = ep->to_rtx;
3396 offset += ep->offset;
3397 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3398
3399 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3400 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3401 to_rtx);
3402 /* If we have a nonzero offset, and the source is already
3403 a simple REG, the following transformation would
3404 increase the cost of the insn by replacing a simple REG
3405 with (plus (reg sp) CST). So try only when we already
3406 had a PLUS before. */
3407 if (offset == 0 || plus_src)
3408 {
3409 rtx new_src = plus_constant (to_rtx, offset);
3410
3411 new_body = old_body;
3412 if (! replace)
3413 {
3414 new_body = copy_insn (old_body);
3415 if (REG_NOTES (insn))
3416 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3417 }
3418 PATTERN (insn) = new_body;
3419 old_set = single_set (insn);
3420
3421 /* First see if this insn remains valid when we make the
3422 change. If not, try to replace the whole pattern with
3423 a simple set (this may help if the original insn was a
3424 PARALLEL that was only recognized as single_set due to
3425 REG_UNUSED notes). If this isn't valid either, keep
3426 the INSN_CODE the same and let reload fix it up. */
3427 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3428 {
3429 rtx new_pat = gen_rtx_SET (VOIDmode,
3430 SET_DEST (old_set), new_src);
3431
3432 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3433 SET_SRC (old_set) = new_src;
3434 }
3435 }
3436 else
3437 break;
3438
3439 val = 1;
3440 /* This can't have an effect on elimination offsets, so skip right
3441 to the end. */
3442 goto done;
3443 }
3444 }
3445
3446 /* Determine the effects of this insn on elimination offsets. */
3447 elimination_effects (old_body, VOIDmode);
3448
3449 /* Eliminate all eliminable registers occurring in operands that
3450 can be handled by reload. */
3451 extract_insn (insn);
3452 for (i = 0; i < recog_data.n_operands; i++)
3453 {
3454 orig_operand[i] = recog_data.operand[i];
3455 substed_operand[i] = recog_data.operand[i];
3456
3457 /* For an asm statement, every operand is eliminable. */
3458 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3459 {
3460 bool is_set_src, in_plus;
3461
3462 /* Check for setting a register that we know about. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i]))
3465 {
3466 /* If we are assigning to a register that can be eliminated, it
3467 must be as part of a PARALLEL, since the code above handles
3468 single SETs. We must indicate that we can no longer
3469 eliminate this reg. */
3470 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3471 ep++)
3472 if (ep->from_rtx == orig_operand[i])
3473 ep->can_eliminate = 0;
3474 }
3475
3476 /* Companion to the above plus substitution, we can allow
3477 invariants as the source of a plain move. */
3478 is_set_src = false;
3479 if (old_set
3480 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3481 is_set_src = true;
3482 in_plus = false;
3483 if (plus_src
3484 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3485 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3486 in_plus = true;
3487
3488 substed_operand[i]
3489 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3490 replace ? insn : NULL_RTX,
3491 is_set_src || in_plus, false);
3492 if (substed_operand[i] != orig_operand[i])
3493 val = 1;
3494 /* Terminate the search in check_eliminable_occurrences at
3495 this point. */
3496 *recog_data.operand_loc[i] = 0;
3497
3498 /* If an output operand changed from a REG to a MEM and INSN is an
3499 insn, write a CLOBBER insn. */
3500 if (recog_data.operand_type[i] != OP_IN
3501 && REG_P (orig_operand[i])
3502 && MEM_P (substed_operand[i])
3503 && replace)
3504 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3505 }
3506 }
3507
3508 for (i = 0; i < recog_data.n_dups; i++)
3509 *recog_data.dup_loc[i]
3510 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3511
3512 /* If any eliminable remain, they aren't eliminable anymore. */
3513 check_eliminable_occurrences (old_body);
3514
3515 /* Substitute the operands; the new values are in the substed_operand
3516 array. */
3517 for (i = 0; i < recog_data.n_operands; i++)
3518 *recog_data.operand_loc[i] = substed_operand[i];
3519 for (i = 0; i < recog_data.n_dups; i++)
3520 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3521
3522 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3523 re-recognize the insn. We do this in case we had a simple addition
3524 but now can do this as a load-address. This saves an insn in this
3525 common case.
3526 If re-recognition fails, the old insn code number will still be used,
3527 and some register operands may have changed into PLUS expressions.
3528 These will be handled by find_reloads by loading them into a register
3529 again. */
3530
3531 if (val)
3532 {
3533 /* If we aren't replacing things permanently and we changed something,
3534 make another copy to ensure that all the RTL is new. Otherwise
3535 things can go wrong if find_reload swaps commutative operands
3536 and one is inside RTL that has been copied while the other is not. */
3537 new_body = old_body;
3538 if (! replace)
3539 {
3540 new_body = copy_insn (old_body);
3541 if (REG_NOTES (insn))
3542 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3543 }
3544 PATTERN (insn) = new_body;
3545
3546 /* If we had a move insn but now we don't, rerecognize it. This will
3547 cause spurious re-recognition if the old move had a PARALLEL since
3548 the new one still will, but we can't call single_set without
3549 having put NEW_BODY into the insn and the re-recognition won't
3550 hurt in this rare case. */
3551 /* ??? Why this huge if statement - why don't we just rerecognize the
3552 thing always? */
3553 if (! insn_is_asm
3554 && old_set != 0
3555 && ((REG_P (SET_SRC (old_set))
3556 && (GET_CODE (new_body) != SET
3557 || !REG_P (SET_SRC (new_body))))
3558 /* If this was a load from or store to memory, compare
3559 the MEM in recog_data.operand to the one in the insn.
3560 If they are not equal, then rerecognize the insn. */
3561 || (old_set != 0
3562 && ((MEM_P (SET_SRC (old_set))
3563 && SET_SRC (old_set) != recog_data.operand[1])
3564 || (MEM_P (SET_DEST (old_set))
3565 && SET_DEST (old_set) != recog_data.operand[0])))
3566 /* If this was an add insn before, rerecognize. */
3567 || GET_CODE (SET_SRC (old_set)) == PLUS))
3568 {
3569 int new_icode = recog (PATTERN (insn), insn, 0);
3570 if (new_icode >= 0)
3571 INSN_CODE (insn) = new_icode;
3572 }
3573 }
3574
3575 /* Restore the old body. If there were any changes to it, we made a copy
3576 of it while the changes were still in place, so we'll correctly return
3577 a modified insn below. */
3578 if (! replace)
3579 {
3580 /* Restore the old body. */
3581 for (i = 0; i < recog_data.n_operands; i++)
3582 /* Restoring a top-level match_parallel would clobber the new_body
3583 we installed in the insn. */
3584 if (recog_data.operand_loc[i] != &PATTERN (insn))
3585 *recog_data.operand_loc[i] = orig_operand[i];
3586 for (i = 0; i < recog_data.n_dups; i++)
3587 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3588 }
3589
3590 /* Update all elimination pairs to reflect the status after the current
3591 insn. The changes we make were determined by the earlier call to
3592 elimination_effects.
3593
3594 We also detect cases where register elimination cannot be done,
3595 namely, if a register would be both changed and referenced outside a MEM
3596 in the resulting insn since such an insn is often undefined and, even if
3597 not, we cannot know what meaning will be given to it. Note that it is
3598 valid to have a register used in an address in an insn that changes it
3599 (presumably with a pre- or post-increment or decrement).
3600
3601 If anything changes, return nonzero. */
3602
3603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3604 {
3605 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3606 ep->can_eliminate = 0;
3607
3608 ep->ref_outside_mem = 0;
3609
3610 if (ep->previous_offset != ep->offset)
3611 val = 1;
3612 }
3613
3614 done:
3615 /* If we changed something, perform elimination in REG_NOTES. This is
3616 needed even when REPLACE is zero because a REG_DEAD note might refer
3617 to a register that we eliminate and could cause a different number
3618 of spill registers to be needed in the final reload pass than in
3619 the pre-passes. */
3620 if (val && REG_NOTES (insn) != 0)
3621 REG_NOTES (insn)
3622 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3623 false);
3624
3625 return val;
3626 }
3627
3628 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3629 register allocator. INSN is the instruction we need to examine, we perform
3630 eliminations in its operands and record cases where eliminating a reg with
3631 an invariant equivalence would add extra cost. */
3632
3633 static void
3634 elimination_costs_in_insn (rtx insn)
3635 {
3636 int icode = recog_memoized (insn);
3637 rtx old_body = PATTERN (insn);
3638 int insn_is_asm = asm_noperands (old_body) >= 0;
3639 rtx old_set = single_set (insn);
3640 int i;
3641 rtx orig_operand[MAX_RECOG_OPERANDS];
3642 rtx orig_dup[MAX_RECOG_OPERANDS];
3643 struct elim_table *ep;
3644 rtx plus_src, plus_cst_src;
3645 bool sets_reg_p;
3646
3647 if (! insn_is_asm && icode < 0)
3648 {
3649 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3650 || GET_CODE (PATTERN (insn)) == CLOBBER
3651 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3653 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3654 || DEBUG_INSN_P (insn));
3655 return;
3656 }
3657
3658 if (old_set != 0 && REG_P (SET_DEST (old_set))
3659 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3660 {
3661 /* Check for setting an eliminable register. */
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3664 return;
3665 }
3666
3667 /* We allow one special case which happens to work on all machines we
3668 currently support: a single set with the source or a REG_EQUAL
3669 note being a PLUS of an eliminable register and a constant. */
3670 plus_src = plus_cst_src = 0;
3671 sets_reg_p = false;
3672 if (old_set && REG_P (SET_DEST (old_set)))
3673 {
3674 sets_reg_p = true;
3675 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3676 plus_src = SET_SRC (old_set);
3677 /* First see if the source is of the form (plus (...) CST). */
3678 if (plus_src
3679 && CONST_INT_P (XEXP (plus_src, 1)))
3680 plus_cst_src = plus_src;
3681 else if (REG_P (SET_SRC (old_set))
3682 || plus_src)
3683 {
3684 /* Otherwise, see if we have a REG_EQUAL note of the form
3685 (plus (...) CST). */
3686 rtx links;
3687 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3688 {
3689 if ((REG_NOTE_KIND (links) == REG_EQUAL
3690 || REG_NOTE_KIND (links) == REG_EQUIV)
3691 && GET_CODE (XEXP (links, 0)) == PLUS
3692 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3693 {
3694 plus_cst_src = XEXP (links, 0);
3695 break;
3696 }
3697 }
3698 }
3699 }
3700
3701 /* Determine the effects of this insn on elimination offsets. */
3702 elimination_effects (old_body, VOIDmode);
3703
3704 /* Eliminate all eliminable registers occurring in operands that
3705 can be handled by reload. */
3706 extract_insn (insn);
3707 for (i = 0; i < recog_data.n_dups; i++)
3708 orig_dup[i] = *recog_data.dup_loc[i];
3709
3710 for (i = 0; i < recog_data.n_operands; i++)
3711 {
3712 orig_operand[i] = recog_data.operand[i];
3713
3714 /* For an asm statement, every operand is eliminable. */
3715 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3716 {
3717 bool is_set_src, in_plus;
3718
3719 /* Check for setting a register that we know about. */
3720 if (recog_data.operand_type[i] != OP_IN
3721 && REG_P (orig_operand[i]))
3722 {
3723 /* If we are assigning to a register that can be eliminated, it
3724 must be as part of a PARALLEL, since the code above handles
3725 single SETs. We must indicate that we can no longer
3726 eliminate this reg. */
3727 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3728 ep++)
3729 if (ep->from_rtx == orig_operand[i])
3730 ep->can_eliminate = 0;
3731 }
3732
3733 /* Companion to the above plus substitution, we can allow
3734 invariants as the source of a plain move. */
3735 is_set_src = false;
3736 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3737 is_set_src = true;
3738 if (is_set_src && !sets_reg_p)
3739 note_reg_elim_costly (&SET_SRC (old_set), insn);
3740 in_plus = false;
3741 if (plus_src && sets_reg_p
3742 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3743 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3744 in_plus = true;
3745
3746 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3747 NULL_RTX,
3748 is_set_src || in_plus, true);
3749 /* Terminate the search in check_eliminable_occurrences at
3750 this point. */
3751 *recog_data.operand_loc[i] = 0;
3752 }
3753 }
3754
3755 for (i = 0; i < recog_data.n_dups; i++)
3756 *recog_data.dup_loc[i]
3757 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3758
3759 /* If any eliminable remain, they aren't eliminable anymore. */
3760 check_eliminable_occurrences (old_body);
3761
3762 /* Restore the old body. */
3763 for (i = 0; i < recog_data.n_operands; i++)
3764 *recog_data.operand_loc[i] = orig_operand[i];
3765 for (i = 0; i < recog_data.n_dups; i++)
3766 *recog_data.dup_loc[i] = orig_dup[i];
3767
3768 /* Update all elimination pairs to reflect the status after the current
3769 insn. The changes we make were determined by the earlier call to
3770 elimination_effects. */
3771
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3773 {
3774 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3775 ep->can_eliminate = 0;
3776
3777 ep->ref_outside_mem = 0;
3778 }
3779
3780 return;
3781 }
3782
3783 /* Loop through all elimination pairs.
3784 Recalculate the number not at initial offset.
3785
3786 Compute the maximum offset (minimum offset if the stack does not
3787 grow downward) for each elimination pair. */
3788
3789 static void
3790 update_eliminable_offsets (void)
3791 {
3792 struct elim_table *ep;
3793
3794 num_not_at_initial_offset = 0;
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3796 {
3797 ep->previous_offset = ep->offset;
3798 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3799 num_not_at_initial_offset++;
3800 }
3801 }
3802
3803 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3804 replacement we currently believe is valid, mark it as not eliminable if X
3805 modifies DEST in any way other than by adding a constant integer to it.
3806
3807 If DEST is the frame pointer, we do nothing because we assume that
3808 all assignments to the hard frame pointer are nonlocal gotos and are being
3809 done at a time when they are valid and do not disturb anything else.
3810 Some machines want to eliminate a fake argument pointer with either the
3811 frame or stack pointer. Assignments to the hard frame pointer must not
3812 prevent this elimination.
3813
3814 Called via note_stores from reload before starting its passes to scan
3815 the insns of the function. */
3816
3817 static void
3818 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3819 {
3820 unsigned int i;
3821
3822 /* A SUBREG of a hard register here is just changing its mode. We should
3823 not see a SUBREG of an eliminable hard register, but check just in
3824 case. */
3825 if (GET_CODE (dest) == SUBREG)
3826 dest = SUBREG_REG (dest);
3827
3828 if (dest == hard_frame_pointer_rtx)
3829 return;
3830
3831 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3832 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3833 && (GET_CODE (x) != SET
3834 || GET_CODE (SET_SRC (x)) != PLUS
3835 || XEXP (SET_SRC (x), 0) != dest
3836 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3837 {
3838 reg_eliminate[i].can_eliminate_previous
3839 = reg_eliminate[i].can_eliminate = 0;
3840 num_eliminable--;
3841 }
3842 }
3843
3844 /* Verify that the initial elimination offsets did not change since the
3845 last call to set_initial_elim_offsets. This is used to catch cases
3846 where something illegal happened during reload_as_needed that could
3847 cause incorrect code to be generated if we did not check for it. */
3848
3849 static bool
3850 verify_initial_elim_offsets (void)
3851 {
3852 HOST_WIDE_INT t;
3853
3854 if (!num_eliminable)
3855 return true;
3856
3857 #ifdef ELIMINABLE_REGS
3858 {
3859 struct elim_table *ep;
3860
3861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3862 {
3863 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3864 if (t != ep->initial_offset)
3865 return false;
3866 }
3867 }
3868 #else
3869 INITIAL_FRAME_POINTER_OFFSET (t);
3870 if (t != reg_eliminate[0].initial_offset)
3871 return false;
3872 #endif
3873
3874 return true;
3875 }
3876
3877 /* Reset all offsets on eliminable registers to their initial values. */
3878
3879 static void
3880 set_initial_elim_offsets (void)
3881 {
3882 struct elim_table *ep = reg_eliminate;
3883
3884 #ifdef ELIMINABLE_REGS
3885 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3886 {
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 }
3890 #else
3891 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #endif
3894
3895 num_not_at_initial_offset = 0;
3896 }
3897
3898 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3899
3900 static void
3901 set_initial_eh_label_offset (rtx label)
3902 {
3903 set_label_offsets (label, NULL_RTX, 1);
3904 }
3905
3906 /* Initialize the known label offsets.
3907 Set a known offset for each forced label to be at the initial offset
3908 of each elimination. We do this because we assume that all
3909 computed jumps occur from a location where each elimination is
3910 at its initial offset.
3911 For all other labels, show that we don't know the offsets. */
3912
3913 static void
3914 set_initial_label_offsets (void)
3915 {
3916 rtx x;
3917 memset (offsets_known_at, 0, num_labels);
3918
3919 for (x = forced_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3922
3923 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3924 if (XEXP (x, 0))
3925 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3926
3927 for_each_eh_label (set_initial_eh_label_offset);
3928 }
3929
3930 /* Set all elimination offsets to the known values for the code label given
3931 by INSN. */
3932
3933 static void
3934 set_offsets_for_label (rtx insn)
3935 {
3936 unsigned int i;
3937 int label_nr = CODE_LABEL_NUMBER (insn);
3938 struct elim_table *ep;
3939
3940 num_not_at_initial_offset = 0;
3941 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3942 {
3943 ep->offset = ep->previous_offset
3944 = offsets_at[label_nr - first_label_num][i];
3945 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3946 num_not_at_initial_offset++;
3947 }
3948 }
3949
3950 /* See if anything that happened changes which eliminations are valid.
3951 For example, on the SPARC, whether or not the frame pointer can
3952 be eliminated can depend on what registers have been used. We need
3953 not check some conditions again (such as flag_omit_frame_pointer)
3954 since they can't have changed. */
3955
3956 static void
3957 update_eliminables (HARD_REG_SET *pset)
3958 {
3959 int previous_frame_pointer_needed = frame_pointer_needed;
3960 struct elim_table *ep;
3961
3962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3963 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3964 && targetm.frame_pointer_required ())
3965 #ifdef ELIMINABLE_REGS
3966 || ! targetm.can_eliminate (ep->from, ep->to)
3967 #endif
3968 )
3969 ep->can_eliminate = 0;
3970
3971 /* Look for the case where we have discovered that we can't replace
3972 register A with register B and that means that we will now be
3973 trying to replace register A with register C. This means we can
3974 no longer replace register C with register B and we need to disable
3975 such an elimination, if it exists. This occurs often with A == ap,
3976 B == sp, and C == fp. */
3977
3978 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3979 {
3980 struct elim_table *op;
3981 int new_to = -1;
3982
3983 if (! ep->can_eliminate && ep->can_eliminate_previous)
3984 {
3985 /* Find the current elimination for ep->from, if there is a
3986 new one. */
3987 for (op = reg_eliminate;
3988 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3989 if (op->from == ep->from && op->can_eliminate)
3990 {
3991 new_to = op->to;
3992 break;
3993 }
3994
3995 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3996 disable it. */
3997 for (op = reg_eliminate;
3998 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3999 if (op->from == new_to && op->to == ep->to)
4000 op->can_eliminate = 0;
4001 }
4002 }
4003
4004 /* See if any registers that we thought we could eliminate the previous
4005 time are no longer eliminable. If so, something has changed and we
4006 must spill the register. Also, recompute the number of eliminable
4007 registers and see if the frame pointer is needed; it is if there is
4008 no elimination of the frame pointer that we can perform. */
4009
4010 frame_pointer_needed = 1;
4011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4012 {
4013 if (ep->can_eliminate
4014 && ep->from == FRAME_POINTER_REGNUM
4015 && ep->to != HARD_FRAME_POINTER_REGNUM
4016 && (! SUPPORTS_STACK_ALIGNMENT
4017 || ! crtl->stack_realign_needed))
4018 frame_pointer_needed = 0;
4019
4020 if (! ep->can_eliminate && ep->can_eliminate_previous)
4021 {
4022 ep->can_eliminate_previous = 0;
4023 SET_HARD_REG_BIT (*pset, ep->from);
4024 num_eliminable--;
4025 }
4026 }
4027
4028 /* If we didn't need a frame pointer last time, but we do now, spill
4029 the hard frame pointer. */
4030 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4031 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4032 }
4033
4034 /* Return true if X is used as the target register of an elimination. */
4035
4036 bool
4037 elimination_target_reg_p (rtx x)
4038 {
4039 struct elim_table *ep;
4040
4041 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4042 if (ep->to_rtx == x && ep->can_eliminate)
4043 return true;
4044
4045 return false;
4046 }
4047
4048 /* Initialize the table of registers to eliminate.
4049 Pre-condition: global flag frame_pointer_needed has been set before
4050 calling this function. */
4051
4052 static void
4053 init_elim_table (void)
4054 {
4055 struct elim_table *ep;
4056 #ifdef ELIMINABLE_REGS
4057 const struct elim_table_1 *ep1;
4058 #endif
4059
4060 if (!reg_eliminate)
4061 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4062
4063 num_eliminable = 0;
4064
4065 #ifdef ELIMINABLE_REGS
4066 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4067 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4068 {
4069 ep->from = ep1->from;
4070 ep->to = ep1->to;
4071 ep->can_eliminate = ep->can_eliminate_previous
4072 = (targetm.can_eliminate (ep->from, ep->to)
4073 && ! (ep->to == STACK_POINTER_REGNUM
4074 && frame_pointer_needed
4075 && (! SUPPORTS_STACK_ALIGNMENT
4076 || ! stack_realign_fp)));
4077 }
4078 #else
4079 reg_eliminate[0].from = reg_eliminate_1[0].from;
4080 reg_eliminate[0].to = reg_eliminate_1[0].to;
4081 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4082 = ! frame_pointer_needed;
4083 #endif
4084
4085 /* Count the number of eliminable registers and build the FROM and TO
4086 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4087 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4088 We depend on this. */
4089 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4090 {
4091 num_eliminable += ep->can_eliminate;
4092 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4093 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4094 }
4095 }
4096
4097 /* Find all the pseudo registers that didn't get hard regs
4098 but do have known equivalent constants or memory slots.
4099 These include parameters (known equivalent to parameter slots)
4100 and cse'd or loop-moved constant memory addresses.
4101
4102 Record constant equivalents in reg_equiv_constant
4103 so they will be substituted by find_reloads.
4104 Record memory equivalents in reg_mem_equiv so they can
4105 be substituted eventually by altering the REG-rtx's. */
4106
4107 static void
4108 init_eliminable_invariants (rtx first, bool do_subregs)
4109 {
4110 int i;
4111 rtx insn;
4112
4113 grow_reg_equivs ();
4114 if (do_subregs)
4115 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4116 else
4117 reg_max_ref_width = NULL;
4118
4119 num_eliminable_invariants = 0;
4120
4121 first_label_num = get_first_label_num ();
4122 num_labels = max_label_num () - first_label_num;
4123
4124 /* Allocate the tables used to store offset information at labels. */
4125 offsets_known_at = XNEWVEC (char, num_labels);
4126 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4127
4128 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4129 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4130 find largest such for each pseudo. FIRST is the head of the insn
4131 list. */
4132
4133 for (insn = first; insn; insn = NEXT_INSN (insn))
4134 {
4135 rtx set = single_set (insn);
4136
4137 /* We may introduce USEs that we want to remove at the end, so
4138 we'll mark them with QImode. Make sure there are no
4139 previously-marked insns left by say regmove. */
4140 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4141 && GET_MODE (insn) != VOIDmode)
4142 PUT_MODE (insn, VOIDmode);
4143
4144 if (do_subregs && NONDEBUG_INSN_P (insn))
4145 scan_paradoxical_subregs (PATTERN (insn));
4146
4147 if (set != 0 && REG_P (SET_DEST (set)))
4148 {
4149 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4150 rtx x;
4151
4152 if (! note)
4153 continue;
4154
4155 i = REGNO (SET_DEST (set));
4156 x = XEXP (note, 0);
4157
4158 if (i <= LAST_VIRTUAL_REGISTER)
4159 continue;
4160
4161 /* If flag_pic and we have constant, verify it's legitimate. */
4162 if (!CONSTANT_P (x)
4163 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4164 {
4165 /* It can happen that a REG_EQUIV note contains a MEM
4166 that is not a legitimate memory operand. As later
4167 stages of reload assume that all addresses found
4168 in the reg_equiv_* arrays were originally legitimate,
4169 we ignore such REG_EQUIV notes. */
4170 if (memory_operand (x, VOIDmode))
4171 {
4172 /* Always unshare the equivalence, so we can
4173 substitute into this insn without touching the
4174 equivalence. */
4175 reg_equiv_memory_loc (i) = copy_rtx (x);
4176 }
4177 else if (function_invariant_p (x))
4178 {
4179 enum machine_mode mode;
4180
4181 mode = GET_MODE (SET_DEST (set));
4182 if (GET_CODE (x) == PLUS)
4183 {
4184 /* This is PLUS of frame pointer and a constant,
4185 and might be shared. Unshare it. */
4186 reg_equiv_invariant (i) = copy_rtx (x);
4187 num_eliminable_invariants++;
4188 }
4189 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4190 {
4191 reg_equiv_invariant (i) = x;
4192 num_eliminable_invariants++;
4193 }
4194 else if (targetm.legitimate_constant_p (mode, x))
4195 reg_equiv_constant (i) = x;
4196 else
4197 {
4198 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4199 if (! reg_equiv_memory_loc (i))
4200 reg_equiv_init (i) = NULL_RTX;
4201 }
4202 }
4203 else
4204 {
4205 reg_equiv_init (i) = NULL_RTX;
4206 continue;
4207 }
4208 }
4209 else
4210 reg_equiv_init (i) = NULL_RTX;
4211 }
4212 }
4213
4214 if (dump_file)
4215 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4216 if (reg_equiv_init (i))
4217 {
4218 fprintf (dump_file, "init_insns for %u: ", i);
4219 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4220 fprintf (dump_file, "\n");
4221 }
4222 }
4223
4224 /* Indicate that we no longer have known memory locations or constants.
4225 Free all data involved in tracking these. */
4226
4227 static void
4228 free_reg_equiv (void)
4229 {
4230 int i;
4231
4232
4233 free (offsets_known_at);
4234 free (offsets_at);
4235 offsets_at = 0;
4236 offsets_known_at = 0;
4237
4238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4239 if (reg_equiv_alt_mem_list (i))
4240 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4241 VEC_free (reg_equivs_t, gc, reg_equivs);
4242 reg_equivs = NULL;
4243
4244 }
4245 \f
4246 /* Kick all pseudos out of hard register REGNO.
4247
4248 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4249 because we found we can't eliminate some register. In the case, no pseudos
4250 are allowed to be in the register, even if they are only in a block that
4251 doesn't require spill registers, unlike the case when we are spilling this
4252 hard reg to produce another spill register.
4253
4254 Return nonzero if any pseudos needed to be kicked out. */
4255
4256 static void
4257 spill_hard_reg (unsigned int regno, int cant_eliminate)
4258 {
4259 int i;
4260
4261 if (cant_eliminate)
4262 {
4263 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4264 df_set_regs_ever_live (regno, true);
4265 }
4266
4267 /* Spill every pseudo reg that was allocated to this reg
4268 or to something that overlaps this reg. */
4269
4270 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4271 if (reg_renumber[i] >= 0
4272 && (unsigned int) reg_renumber[i] <= regno
4273 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4274 SET_REGNO_REG_SET (&spilled_pseudos, i);
4275 }
4276
4277 /* After find_reload_regs has been run for all insn that need reloads,
4278 and/or spill_hard_regs was called, this function is used to actually
4279 spill pseudo registers and try to reallocate them. It also sets up the
4280 spill_regs array for use by choose_reload_regs. */
4281
4282 static int
4283 finish_spills (int global)
4284 {
4285 struct insn_chain *chain;
4286 int something_changed = 0;
4287 unsigned i;
4288 reg_set_iterator rsi;
4289
4290 /* Build the spill_regs array for the function. */
4291 /* If there are some registers still to eliminate and one of the spill regs
4292 wasn't ever used before, additional stack space may have to be
4293 allocated to store this register. Thus, we may have changed the offset
4294 between the stack and frame pointers, so mark that something has changed.
4295
4296 One might think that we need only set VAL to 1 if this is a call-used
4297 register. However, the set of registers that must be saved by the
4298 prologue is not identical to the call-used set. For example, the
4299 register used by the call insn for the return PC is a call-used register,
4300 but must be saved by the prologue. */
4301
4302 n_spills = 0;
4303 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4304 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4305 {
4306 spill_reg_order[i] = n_spills;
4307 spill_regs[n_spills++] = i;
4308 if (num_eliminable && ! df_regs_ever_live_p (i))
4309 something_changed = 1;
4310 df_set_regs_ever_live (i, true);
4311 }
4312 else
4313 spill_reg_order[i] = -1;
4314
4315 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4316 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4317 {
4318 /* Record the current hard register the pseudo is allocated to
4319 in pseudo_previous_regs so we avoid reallocating it to the
4320 same hard reg in a later pass. */
4321 gcc_assert (reg_renumber[i] >= 0);
4322
4323 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4324 /* Mark it as no longer having a hard register home. */
4325 reg_renumber[i] = -1;
4326 if (ira_conflicts_p)
4327 /* Inform IRA about the change. */
4328 ira_mark_allocation_change (i);
4329 /* We will need to scan everything again. */
4330 something_changed = 1;
4331 }
4332
4333 /* Retry global register allocation if possible. */
4334 if (global && ira_conflicts_p)
4335 {
4336 unsigned int n;
4337
4338 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4339 /* For every insn that needs reloads, set the registers used as spill
4340 regs in pseudo_forbidden_regs for every pseudo live across the
4341 insn. */
4342 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4343 {
4344 EXECUTE_IF_SET_IN_REG_SET
4345 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4346 {
4347 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4348 chain->used_spill_regs);
4349 }
4350 EXECUTE_IF_SET_IN_REG_SET
4351 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4352 {
4353 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4354 chain->used_spill_regs);
4355 }
4356 }
4357
4358 /* Retry allocating the pseudos spilled in IRA and the
4359 reload. For each reg, merge the various reg sets that
4360 indicate which hard regs can't be used, and call
4361 ira_reassign_pseudos. */
4362 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4363 if (reg_old_renumber[i] != reg_renumber[i])
4364 {
4365 if (reg_renumber[i] < 0)
4366 temp_pseudo_reg_arr[n++] = i;
4367 else
4368 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4369 }
4370 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4371 bad_spill_regs_global,
4372 pseudo_forbidden_regs, pseudo_previous_regs,
4373 &spilled_pseudos))
4374 something_changed = 1;
4375 }
4376 /* Fix up the register information in the insn chain.
4377 This involves deleting those of the spilled pseudos which did not get
4378 a new hard register home from the live_{before,after} sets. */
4379 for (chain = reload_insn_chain; chain; chain = chain->next)
4380 {
4381 HARD_REG_SET used_by_pseudos;
4382 HARD_REG_SET used_by_pseudos2;
4383
4384 if (! ira_conflicts_p)
4385 {
4386 /* Don't do it for IRA because IRA and the reload still can
4387 assign hard registers to the spilled pseudos on next
4388 reload iterations. */
4389 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4390 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4391 }
4392 /* Mark any unallocated hard regs as available for spills. That
4393 makes inheritance work somewhat better. */
4394 if (chain->need_reload)
4395 {
4396 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4397 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4398 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4399
4400 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4401 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4402 /* Value of chain->used_spill_regs from previous iteration
4403 may be not included in the value calculated here because
4404 of possible removing caller-saves insns (see function
4405 delete_caller_save_insns. */
4406 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4407 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4408 }
4409 }
4410
4411 CLEAR_REG_SET (&changed_allocation_pseudos);
4412 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4413 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4414 {
4415 int regno = reg_renumber[i];
4416 if (reg_old_renumber[i] == regno)
4417 continue;
4418
4419 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4420
4421 alter_reg (i, reg_old_renumber[i], false);
4422 reg_old_renumber[i] = regno;
4423 if (dump_file)
4424 {
4425 if (regno == -1)
4426 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4427 else
4428 fprintf (dump_file, " Register %d now in %d.\n\n",
4429 i, reg_renumber[i]);
4430 }
4431 }
4432
4433 return something_changed;
4434 }
4435 \f
4436 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4437
4438 static void
4439 scan_paradoxical_subregs (rtx x)
4440 {
4441 int i;
4442 const char *fmt;
4443 enum rtx_code code = GET_CODE (x);
4444
4445 switch (code)
4446 {
4447 case REG:
4448 case CONST_INT:
4449 case CONST:
4450 case SYMBOL_REF:
4451 case LABEL_REF:
4452 case CONST_DOUBLE:
4453 case CONST_FIXED:
4454 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4455 case CC0:
4456 case PC:
4457 case USE:
4458 case CLOBBER:
4459 return;
4460
4461 case SUBREG:
4462 if (REG_P (SUBREG_REG (x))
4463 && (GET_MODE_SIZE (GET_MODE (x))
4464 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4465 {
4466 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4467 = GET_MODE_SIZE (GET_MODE (x));
4468 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4469 }
4470 return;
4471
4472 default:
4473 break;
4474 }
4475
4476 fmt = GET_RTX_FORMAT (code);
4477 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4478 {
4479 if (fmt[i] == 'e')
4480 scan_paradoxical_subregs (XEXP (x, i));
4481 else if (fmt[i] == 'E')
4482 {
4483 int j;
4484 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4485 scan_paradoxical_subregs (XVECEXP (x, i, j));
4486 }
4487 }
4488 }
4489
4490 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4491 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4492 and apply the corresponding narrowing subreg to *OTHER_PTR.
4493 Return true if the operands were changed, false otherwise. */
4494
4495 static bool
4496 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4497 {
4498 rtx op, inner, other, tem;
4499
4500 op = *op_ptr;
4501 if (!paradoxical_subreg_p (op))
4502 return false;
4503 inner = SUBREG_REG (op);
4504
4505 other = *other_ptr;
4506 tem = gen_lowpart_common (GET_MODE (inner), other);
4507 if (!tem)
4508 return false;
4509
4510 /* If the lowpart operation turned a hard register into a subreg,
4511 rather than simplifying it to another hard register, then the
4512 mode change cannot be properly represented. For example, OTHER
4513 might be valid in its current mode, but not in the new one. */
4514 if (GET_CODE (tem) == SUBREG
4515 && REG_P (other)
4516 && HARD_REGISTER_P (other))
4517 return false;
4518
4519 *op_ptr = inner;
4520 *other_ptr = tem;
4521 return true;
4522 }
4523 \f
4524 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4525 examine all of the reload insns between PREV and NEXT exclusive, and
4526 annotate all that may trap. */
4527
4528 static void
4529 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4530 {
4531 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4532 if (note == NULL)
4533 return;
4534 if (!insn_could_throw_p (insn))
4535 remove_note (insn, note);
4536 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4537 }
4538
4539 /* Reload pseudo-registers into hard regs around each insn as needed.
4540 Additional register load insns are output before the insn that needs it
4541 and perhaps store insns after insns that modify the reloaded pseudo reg.
4542
4543 reg_last_reload_reg and reg_reloaded_contents keep track of
4544 which registers are already available in reload registers.
4545 We update these for the reloads that we perform,
4546 as the insns are scanned. */
4547
4548 static void
4549 reload_as_needed (int live_known)
4550 {
4551 struct insn_chain *chain;
4552 #if defined (AUTO_INC_DEC)
4553 int i;
4554 #endif
4555 rtx x, marker;
4556
4557 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4558 memset (spill_reg_store, 0, sizeof spill_reg_store);
4559 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4560 INIT_REG_SET (&reg_has_output_reload);
4561 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4562 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4563
4564 set_initial_elim_offsets ();
4565
4566 /* Generate a marker insn that we will move around. */
4567 marker = emit_note (NOTE_INSN_DELETED);
4568 unlink_insn_chain (marker, marker);
4569
4570 for (chain = reload_insn_chain; chain; chain = chain->next)
4571 {
4572 rtx prev = 0;
4573 rtx insn = chain->insn;
4574 rtx old_next = NEXT_INSN (insn);
4575 #ifdef AUTO_INC_DEC
4576 rtx old_prev = PREV_INSN (insn);
4577 #endif
4578
4579 /* If we pass a label, copy the offsets from the label information
4580 into the current offsets of each elimination. */
4581 if (LABEL_P (insn))
4582 set_offsets_for_label (insn);
4583
4584 else if (INSN_P (insn))
4585 {
4586 regset_head regs_to_forget;
4587 INIT_REG_SET (&regs_to_forget);
4588 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4589
4590 /* If this is a USE and CLOBBER of a MEM, ensure that any
4591 references to eliminable registers have been removed. */
4592
4593 if ((GET_CODE (PATTERN (insn)) == USE
4594 || GET_CODE (PATTERN (insn)) == CLOBBER)
4595 && MEM_P (XEXP (PATTERN (insn), 0)))
4596 XEXP (XEXP (PATTERN (insn), 0), 0)
4597 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4598 GET_MODE (XEXP (PATTERN (insn), 0)),
4599 NULL_RTX);
4600
4601 /* If we need to do register elimination processing, do so.
4602 This might delete the insn, in which case we are done. */
4603 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4604 {
4605 eliminate_regs_in_insn (insn, 1);
4606 if (NOTE_P (insn))
4607 {
4608 update_eliminable_offsets ();
4609 CLEAR_REG_SET (&regs_to_forget);
4610 continue;
4611 }
4612 }
4613
4614 /* If need_elim is nonzero but need_reload is zero, one might think
4615 that we could simply set n_reloads to 0. However, find_reloads
4616 could have done some manipulation of the insn (such as swapping
4617 commutative operands), and these manipulations are lost during
4618 the first pass for every insn that needs register elimination.
4619 So the actions of find_reloads must be redone here. */
4620
4621 if (! chain->need_elim && ! chain->need_reload
4622 && ! chain->need_operand_change)
4623 n_reloads = 0;
4624 /* First find the pseudo regs that must be reloaded for this insn.
4625 This info is returned in the tables reload_... (see reload.h).
4626 Also modify the body of INSN by substituting RELOAD
4627 rtx's for those pseudo regs. */
4628 else
4629 {
4630 CLEAR_REG_SET (&reg_has_output_reload);
4631 CLEAR_HARD_REG_SET (reg_is_output_reload);
4632
4633 find_reloads (insn, 1, spill_indirect_levels, live_known,
4634 spill_reg_order);
4635 }
4636
4637 if (n_reloads > 0)
4638 {
4639 rtx next = NEXT_INSN (insn);
4640 rtx p;
4641
4642 /* ??? PREV can get deleted by reload inheritance.
4643 Work around this by emitting a marker note. */
4644 prev = PREV_INSN (insn);
4645 reorder_insns_nobb (marker, marker, prev);
4646
4647 /* Now compute which reload regs to reload them into. Perhaps
4648 reusing reload regs from previous insns, or else output
4649 load insns to reload them. Maybe output store insns too.
4650 Record the choices of reload reg in reload_reg_rtx. */
4651 choose_reload_regs (chain);
4652
4653 /* Generate the insns to reload operands into or out of
4654 their reload regs. */
4655 emit_reload_insns (chain);
4656
4657 /* Substitute the chosen reload regs from reload_reg_rtx
4658 into the insn's body (or perhaps into the bodies of other
4659 load and store insn that we just made for reloading
4660 and that we moved the structure into). */
4661 subst_reloads (insn);
4662
4663 prev = PREV_INSN (marker);
4664 unlink_insn_chain (marker, marker);
4665
4666 /* Adjust the exception region notes for loads and stores. */
4667 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4668 fixup_eh_region_note (insn, prev, next);
4669
4670 /* Adjust the location of REG_ARGS_SIZE. */
4671 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4672 if (p)
4673 {
4674 remove_note (insn, p);
4675 fixup_args_size_notes (prev, PREV_INSN (next),
4676 INTVAL (XEXP (p, 0)));
4677 }
4678
4679 /* If this was an ASM, make sure that all the reload insns
4680 we have generated are valid. If not, give an error
4681 and delete them. */
4682 if (asm_noperands (PATTERN (insn)) >= 0)
4683 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4684 if (p != insn && INSN_P (p)
4685 && GET_CODE (PATTERN (p)) != USE
4686 && (recog_memoized (p) < 0
4687 || (extract_insn (p), ! constrain_operands (1))))
4688 {
4689 error_for_asm (insn,
4690 "%<asm%> operand requires "
4691 "impossible reload");
4692 delete_insn (p);
4693 }
4694 }
4695
4696 if (num_eliminable && chain->need_elim)
4697 update_eliminable_offsets ();
4698
4699 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4700 is no longer validly lying around to save a future reload.
4701 Note that this does not detect pseudos that were reloaded
4702 for this insn in order to be stored in
4703 (obeying register constraints). That is correct; such reload
4704 registers ARE still valid. */
4705 forget_marked_reloads (&regs_to_forget);
4706 CLEAR_REG_SET (&regs_to_forget);
4707
4708 /* There may have been CLOBBER insns placed after INSN. So scan
4709 between INSN and NEXT and use them to forget old reloads. */
4710 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4711 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4712 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4713
4714 #ifdef AUTO_INC_DEC
4715 /* Likewise for regs altered by auto-increment in this insn.
4716 REG_INC notes have been changed by reloading:
4717 find_reloads_address_1 records substitutions for them,
4718 which have been performed by subst_reloads above. */
4719 for (i = n_reloads - 1; i >= 0; i--)
4720 {
4721 rtx in_reg = rld[i].in_reg;
4722 if (in_reg)
4723 {
4724 enum rtx_code code = GET_CODE (in_reg);
4725 /* PRE_INC / PRE_DEC will have the reload register ending up
4726 with the same value as the stack slot, but that doesn't
4727 hold true for POST_INC / POST_DEC. Either we have to
4728 convert the memory access to a true POST_INC / POST_DEC,
4729 or we can't use the reload register for inheritance. */
4730 if ((code == POST_INC || code == POST_DEC)
4731 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4732 REGNO (rld[i].reg_rtx))
4733 /* Make sure it is the inc/dec pseudo, and not
4734 some other (e.g. output operand) pseudo. */
4735 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4736 == REGNO (XEXP (in_reg, 0))))
4737
4738 {
4739 rtx reload_reg = rld[i].reg_rtx;
4740 enum machine_mode mode = GET_MODE (reload_reg);
4741 int n = 0;
4742 rtx p;
4743
4744 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4745 {
4746 /* We really want to ignore REG_INC notes here, so
4747 use PATTERN (p) as argument to reg_set_p . */
4748 if (reg_set_p (reload_reg, PATTERN (p)))
4749 break;
4750 n = count_occurrences (PATTERN (p), reload_reg, 0);
4751 if (! n)
4752 continue;
4753 if (n == 1)
4754 {
4755 rtx replace_reg
4756 = gen_rtx_fmt_e (code, mode, reload_reg);
4757
4758 validate_replace_rtx_group (reload_reg,
4759 replace_reg, p);
4760 n = verify_changes (0);
4761
4762 /* We must also verify that the constraints
4763 are met after the replacement. Make sure
4764 extract_insn is only called for an insn
4765 where the replacements were found to be
4766 valid so far. */
4767 if (n)
4768 {
4769 extract_insn (p);
4770 n = constrain_operands (1);
4771 }
4772
4773 /* If the constraints were not met, then
4774 undo the replacement, else confirm it. */
4775 if (!n)
4776 cancel_changes (0);
4777 else
4778 confirm_change_group ();
4779 }
4780 break;
4781 }
4782 if (n == 1)
4783 {
4784 add_reg_note (p, REG_INC, reload_reg);
4785 /* Mark this as having an output reload so that the
4786 REG_INC processing code below won't invalidate
4787 the reload for inheritance. */
4788 SET_HARD_REG_BIT (reg_is_output_reload,
4789 REGNO (reload_reg));
4790 SET_REGNO_REG_SET (&reg_has_output_reload,
4791 REGNO (XEXP (in_reg, 0)));
4792 }
4793 else
4794 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4795 NULL);
4796 }
4797 else if ((code == PRE_INC || code == PRE_DEC)
4798 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4799 REGNO (rld[i].reg_rtx))
4800 /* Make sure it is the inc/dec pseudo, and not
4801 some other (e.g. output operand) pseudo. */
4802 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4803 == REGNO (XEXP (in_reg, 0))))
4804 {
4805 SET_HARD_REG_BIT (reg_is_output_reload,
4806 REGNO (rld[i].reg_rtx));
4807 SET_REGNO_REG_SET (&reg_has_output_reload,
4808 REGNO (XEXP (in_reg, 0)));
4809 }
4810 else if (code == PRE_INC || code == PRE_DEC
4811 || code == POST_INC || code == POST_DEC)
4812 {
4813 int in_regno = REGNO (XEXP (in_reg, 0));
4814
4815 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4816 {
4817 int in_hard_regno;
4818 bool forget_p = true;
4819
4820 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4821 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4822 in_hard_regno))
4823 {
4824 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4825 x != old_next;
4826 x = NEXT_INSN (x))
4827 if (x == reg_reloaded_insn[in_hard_regno])
4828 {
4829 forget_p = false;
4830 break;
4831 }
4832 }
4833 /* If for some reasons, we didn't set up
4834 reg_last_reload_reg in this insn,
4835 invalidate inheritance from previous
4836 insns for the incremented/decremented
4837 register. Such registers will be not in
4838 reg_has_output_reload. Invalidate it
4839 also if the corresponding element in
4840 reg_reloaded_insn is also
4841 invalidated. */
4842 if (forget_p)
4843 forget_old_reloads_1 (XEXP (in_reg, 0),
4844 NULL_RTX, NULL);
4845 }
4846 }
4847 }
4848 }
4849 /* If a pseudo that got a hard register is auto-incremented,
4850 we must purge records of copying it into pseudos without
4851 hard registers. */
4852 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4853 if (REG_NOTE_KIND (x) == REG_INC)
4854 {
4855 /* See if this pseudo reg was reloaded in this insn.
4856 If so, its last-reload info is still valid
4857 because it is based on this insn's reload. */
4858 for (i = 0; i < n_reloads; i++)
4859 if (rld[i].out == XEXP (x, 0))
4860 break;
4861
4862 if (i == n_reloads)
4863 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4864 }
4865 #endif
4866 }
4867 /* A reload reg's contents are unknown after a label. */
4868 if (LABEL_P (insn))
4869 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4870
4871 /* Don't assume a reload reg is still good after a call insn
4872 if it is a call-used reg, or if it contains a value that will
4873 be partially clobbered by the call. */
4874 else if (CALL_P (insn))
4875 {
4876 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4877 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4878
4879 /* If this is a call to a setjmp-type function, we must not
4880 reuse any reload reg contents across the call; that will
4881 just be clobbered by other uses of the register in later
4882 code, before the longjmp. */
4883 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4884 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4885 }
4886 }
4887
4888 /* Clean up. */
4889 free (reg_last_reload_reg);
4890 CLEAR_REG_SET (&reg_has_output_reload);
4891 }
4892
4893 /* Discard all record of any value reloaded from X,
4894 or reloaded in X from someplace else;
4895 unless X is an output reload reg of the current insn.
4896
4897 X may be a hard reg (the reload reg)
4898 or it may be a pseudo reg that was reloaded from.
4899
4900 When DATA is non-NULL just mark the registers in regset
4901 to be forgotten later. */
4902
4903 static void
4904 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4905 void *data)
4906 {
4907 unsigned int regno;
4908 unsigned int nr;
4909 regset regs = (regset) data;
4910
4911 /* note_stores does give us subregs of hard regs,
4912 subreg_regno_offset requires a hard reg. */
4913 while (GET_CODE (x) == SUBREG)
4914 {
4915 /* We ignore the subreg offset when calculating the regno,
4916 because we are using the entire underlying hard register
4917 below. */
4918 x = SUBREG_REG (x);
4919 }
4920
4921 if (!REG_P (x))
4922 return;
4923
4924 regno = REGNO (x);
4925
4926 if (regno >= FIRST_PSEUDO_REGISTER)
4927 nr = 1;
4928 else
4929 {
4930 unsigned int i;
4931
4932 nr = hard_regno_nregs[regno][GET_MODE (x)];
4933 /* Storing into a spilled-reg invalidates its contents.
4934 This can happen if a block-local pseudo is allocated to that reg
4935 and it wasn't spilled because this block's total need is 0.
4936 Then some insn might have an optional reload and use this reg. */
4937 if (!regs)
4938 for (i = 0; i < nr; i++)
4939 /* But don't do this if the reg actually serves as an output
4940 reload reg in the current instruction. */
4941 if (n_reloads == 0
4942 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4943 {
4944 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4945 spill_reg_store[regno + i] = 0;
4946 }
4947 }
4948
4949 if (regs)
4950 while (nr-- > 0)
4951 SET_REGNO_REG_SET (regs, regno + nr);
4952 else
4953 {
4954 /* Since value of X has changed,
4955 forget any value previously copied from it. */
4956
4957 while (nr-- > 0)
4958 /* But don't forget a copy if this is the output reload
4959 that establishes the copy's validity. */
4960 if (n_reloads == 0
4961 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4962 reg_last_reload_reg[regno + nr] = 0;
4963 }
4964 }
4965
4966 /* Forget the reloads marked in regset by previous function. */
4967 static void
4968 forget_marked_reloads (regset regs)
4969 {
4970 unsigned int reg;
4971 reg_set_iterator rsi;
4972 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4973 {
4974 if (reg < FIRST_PSEUDO_REGISTER
4975 /* But don't do this if the reg actually serves as an output
4976 reload reg in the current instruction. */
4977 && (n_reloads == 0
4978 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4979 {
4980 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4981 spill_reg_store[reg] = 0;
4982 }
4983 if (n_reloads == 0
4984 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4985 reg_last_reload_reg[reg] = 0;
4986 }
4987 }
4988 \f
4989 /* The following HARD_REG_SETs indicate when each hard register is
4990 used for a reload of various parts of the current insn. */
4991
4992 /* If reg is unavailable for all reloads. */
4993 static HARD_REG_SET reload_reg_unavailable;
4994 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4995 static HARD_REG_SET reload_reg_used;
4996 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5001 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5002 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5003 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5004 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5005 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5006 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5007 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5008 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5009 static HARD_REG_SET reload_reg_used_in_op_addr;
5010 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5011 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5012 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5013 static HARD_REG_SET reload_reg_used_in_insn;
5014 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5015 static HARD_REG_SET reload_reg_used_in_other_addr;
5016
5017 /* If reg is in use as a reload reg for any sort of reload. */
5018 static HARD_REG_SET reload_reg_used_at_all;
5019
5020 /* If reg is use as an inherited reload. We just mark the first register
5021 in the group. */
5022 static HARD_REG_SET reload_reg_used_for_inherit;
5023
5024 /* Records which hard regs are used in any way, either as explicit use or
5025 by being allocated to a pseudo during any point of the current insn. */
5026 static HARD_REG_SET reg_used_in_insn;
5027
5028 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5029 TYPE. MODE is used to indicate how many consecutive regs are
5030 actually used. */
5031
5032 static void
5033 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5034 enum machine_mode mode)
5035 {
5036 switch (type)
5037 {
5038 case RELOAD_OTHER:
5039 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5040 break;
5041
5042 case RELOAD_FOR_INPUT_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5044 break;
5045
5046 case RELOAD_FOR_INPADDR_ADDRESS:
5047 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5048 break;
5049
5050 case RELOAD_FOR_OUTPUT_ADDRESS:
5051 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5052 break;
5053
5054 case RELOAD_FOR_OUTADDR_ADDRESS:
5055 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5056 break;
5057
5058 case RELOAD_FOR_OPERAND_ADDRESS:
5059 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5060 break;
5061
5062 case RELOAD_FOR_OPADDR_ADDR:
5063 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5064 break;
5065
5066 case RELOAD_FOR_OTHER_ADDRESS:
5067 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5068 break;
5069
5070 case RELOAD_FOR_INPUT:
5071 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5072 break;
5073
5074 case RELOAD_FOR_OUTPUT:
5075 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5076 break;
5077
5078 case RELOAD_FOR_INSN:
5079 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5080 break;
5081 }
5082
5083 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5084 }
5085
5086 /* Similarly, but show REGNO is no longer in use for a reload. */
5087
5088 static void
5089 clear_reload_reg_in_use (unsigned int regno, int opnum,
5090 enum reload_type type, enum machine_mode mode)
5091 {
5092 unsigned int nregs = hard_regno_nregs[regno][mode];
5093 unsigned int start_regno, end_regno, r;
5094 int i;
5095 /* A complication is that for some reload types, inheritance might
5096 allow multiple reloads of the same types to share a reload register.
5097 We set check_opnum if we have to check only reloads with the same
5098 operand number, and check_any if we have to check all reloads. */
5099 int check_opnum = 0;
5100 int check_any = 0;
5101 HARD_REG_SET *used_in_set;
5102
5103 switch (type)
5104 {
5105 case RELOAD_OTHER:
5106 used_in_set = &reload_reg_used;
5107 break;
5108
5109 case RELOAD_FOR_INPUT_ADDRESS:
5110 used_in_set = &reload_reg_used_in_input_addr[opnum];
5111 break;
5112
5113 case RELOAD_FOR_INPADDR_ADDRESS:
5114 check_opnum = 1;
5115 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5116 break;
5117
5118 case RELOAD_FOR_OUTPUT_ADDRESS:
5119 used_in_set = &reload_reg_used_in_output_addr[opnum];
5120 break;
5121
5122 case RELOAD_FOR_OUTADDR_ADDRESS:
5123 check_opnum = 1;
5124 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5125 break;
5126
5127 case RELOAD_FOR_OPERAND_ADDRESS:
5128 used_in_set = &reload_reg_used_in_op_addr;
5129 break;
5130
5131 case RELOAD_FOR_OPADDR_ADDR:
5132 check_any = 1;
5133 used_in_set = &reload_reg_used_in_op_addr_reload;
5134 break;
5135
5136 case RELOAD_FOR_OTHER_ADDRESS:
5137 used_in_set = &reload_reg_used_in_other_addr;
5138 check_any = 1;
5139 break;
5140
5141 case RELOAD_FOR_INPUT:
5142 used_in_set = &reload_reg_used_in_input[opnum];
5143 break;
5144
5145 case RELOAD_FOR_OUTPUT:
5146 used_in_set = &reload_reg_used_in_output[opnum];
5147 break;
5148
5149 case RELOAD_FOR_INSN:
5150 used_in_set = &reload_reg_used_in_insn;
5151 break;
5152 default:
5153 gcc_unreachable ();
5154 }
5155 /* We resolve conflicts with remaining reloads of the same type by
5156 excluding the intervals of reload registers by them from the
5157 interval of freed reload registers. Since we only keep track of
5158 one set of interval bounds, we might have to exclude somewhat
5159 more than what would be necessary if we used a HARD_REG_SET here.
5160 But this should only happen very infrequently, so there should
5161 be no reason to worry about it. */
5162
5163 start_regno = regno;
5164 end_regno = regno + nregs;
5165 if (check_opnum || check_any)
5166 {
5167 for (i = n_reloads - 1; i >= 0; i--)
5168 {
5169 if (rld[i].when_needed == type
5170 && (check_any || rld[i].opnum == opnum)
5171 && rld[i].reg_rtx)
5172 {
5173 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5174 unsigned int conflict_end
5175 = end_hard_regno (rld[i].mode, conflict_start);
5176
5177 /* If there is an overlap with the first to-be-freed register,
5178 adjust the interval start. */
5179 if (conflict_start <= start_regno && conflict_end > start_regno)
5180 start_regno = conflict_end;
5181 /* Otherwise, if there is a conflict with one of the other
5182 to-be-freed registers, adjust the interval end. */
5183 if (conflict_start > start_regno && conflict_start < end_regno)
5184 end_regno = conflict_start;
5185 }
5186 }
5187 }
5188
5189 for (r = start_regno; r < end_regno; r++)
5190 CLEAR_HARD_REG_BIT (*used_in_set, r);
5191 }
5192
5193 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5194 specified by OPNUM and TYPE. */
5195
5196 static int
5197 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5198 {
5199 int i;
5200
5201 /* In use for a RELOAD_OTHER means it's not available for anything. */
5202 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5203 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5204 return 0;
5205
5206 switch (type)
5207 {
5208 case RELOAD_OTHER:
5209 /* In use for anything means we can't use it for RELOAD_OTHER. */
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5211 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5214 return 0;
5215
5216 for (i = 0; i < reload_n_operands; i++)
5217 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5218 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5219 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5222 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5223 return 0;
5224
5225 return 1;
5226
5227 case RELOAD_FOR_INPUT:
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5230 return 0;
5231
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5233 return 0;
5234
5235 /* If it is used for some other input, can't use it. */
5236 for (i = 0; i < reload_n_operands; i++)
5237 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5238 return 0;
5239
5240 /* If it is used in a later operand's address, can't use it. */
5241 for (i = opnum + 1; i < reload_n_operands; i++)
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5243 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5244 return 0;
5245
5246 return 1;
5247
5248 case RELOAD_FOR_INPUT_ADDRESS:
5249 /* Can't use a register if it is used for an input address for this
5250 operand or used as an input in an earlier one. */
5251 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5252 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5253 return 0;
5254
5255 for (i = 0; i < opnum; i++)
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5257 return 0;
5258
5259 return 1;
5260
5261 case RELOAD_FOR_INPADDR_ADDRESS:
5262 /* Can't use a register if it is used for an input address
5263 for this operand or used as an input in an earlier
5264 one. */
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5266 return 0;
5267
5268 for (i = 0; i < opnum; i++)
5269 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5270 return 0;
5271
5272 return 1;
5273
5274 case RELOAD_FOR_OUTPUT_ADDRESS:
5275 /* Can't use a register if it is used for an output address for this
5276 operand or used as an output in this or a later operand. Note
5277 that multiple output operands are emitted in reverse order, so
5278 the conflicting ones are those with lower indices. */
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5280 return 0;
5281
5282 for (i = 0; i <= opnum; i++)
5283 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5284 return 0;
5285
5286 return 1;
5287
5288 case RELOAD_FOR_OUTADDR_ADDRESS:
5289 /* Can't use a register if it is used for an output address
5290 for this operand or used as an output in this or a
5291 later operand. Note that multiple output operands are
5292 emitted in reverse order, so the conflicting ones are
5293 those with lower indices. */
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5295 return 0;
5296
5297 for (i = 0; i <= opnum; i++)
5298 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5299 return 0;
5300
5301 return 1;
5302
5303 case RELOAD_FOR_OPERAND_ADDRESS:
5304 for (i = 0; i < reload_n_operands; i++)
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5306 return 0;
5307
5308 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5309 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5310
5311 case RELOAD_FOR_OPADDR_ADDR:
5312 for (i = 0; i < reload_n_operands; i++)
5313 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5314 return 0;
5315
5316 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5317
5318 case RELOAD_FOR_OUTPUT:
5319 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5320 outputs, or an operand address for this or an earlier output.
5321 Note that multiple output operands are emitted in reverse order,
5322 so the conflicting ones are those with higher indices. */
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5324 return 0;
5325
5326 for (i = 0; i < reload_n_operands; i++)
5327 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5328 return 0;
5329
5330 for (i = opnum; i < reload_n_operands; i++)
5331 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5332 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5333 return 0;
5334
5335 return 1;
5336
5337 case RELOAD_FOR_INSN:
5338 for (i = 0; i < reload_n_operands; i++)
5339 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5340 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5341 return 0;
5342
5343 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5344 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5345
5346 case RELOAD_FOR_OTHER_ADDRESS:
5347 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5348
5349 default:
5350 gcc_unreachable ();
5351 }
5352 }
5353
5354 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5355 the number RELOADNUM, is still available in REGNO at the end of the insn.
5356
5357 We can assume that the reload reg was already tested for availability
5358 at the time it is needed, and we should not check this again,
5359 in case the reg has already been marked in use. */
5360
5361 static int
5362 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5363 {
5364 int opnum = rld[reloadnum].opnum;
5365 enum reload_type type = rld[reloadnum].when_needed;
5366 int i;
5367
5368 /* See if there is a reload with the same type for this operand, using
5369 the same register. This case is not handled by the code below. */
5370 for (i = reloadnum + 1; i < n_reloads; i++)
5371 {
5372 rtx reg;
5373 int nregs;
5374
5375 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5376 continue;
5377 reg = rld[i].reg_rtx;
5378 if (reg == NULL_RTX)
5379 continue;
5380 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5381 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5382 return 0;
5383 }
5384
5385 switch (type)
5386 {
5387 case RELOAD_OTHER:
5388 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5389 its value must reach the end. */
5390 return 1;
5391
5392 /* If this use is for part of the insn,
5393 its value reaches if no subsequent part uses the same register.
5394 Just like the above function, don't try to do this with lots
5395 of fallthroughs. */
5396
5397 case RELOAD_FOR_OTHER_ADDRESS:
5398 /* Here we check for everything else, since these don't conflict
5399 with anything else and everything comes later. */
5400
5401 for (i = 0; i < reload_n_operands; i++)
5402 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5403 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5404 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5405 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5406 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5407 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5408 return 0;
5409
5410 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5411 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5412 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5413 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5414
5415 case RELOAD_FOR_INPUT_ADDRESS:
5416 case RELOAD_FOR_INPADDR_ADDRESS:
5417 /* Similar, except that we check only for this and subsequent inputs
5418 and the address of only subsequent inputs and we do not need
5419 to check for RELOAD_OTHER objects since they are known not to
5420 conflict. */
5421
5422 for (i = opnum; i < reload_n_operands; i++)
5423 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5424 return 0;
5425
5426 for (i = opnum + 1; i < reload_n_operands; i++)
5427 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5428 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5429 return 0;
5430
5431 for (i = 0; i < reload_n_operands; i++)
5432 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5433 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5434 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5435 return 0;
5436
5437 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5438 return 0;
5439
5440 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5441 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5442 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5443
5444 case RELOAD_FOR_INPUT:
5445 /* Similar to input address, except we start at the next operand for
5446 both input and input address and we do not check for
5447 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5448 would conflict. */
5449
5450 for (i = opnum + 1; i < reload_n_operands; i++)
5451 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5452 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5453 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5454 return 0;
5455
5456 /* ... fall through ... */
5457
5458 case RELOAD_FOR_OPERAND_ADDRESS:
5459 /* Check outputs and their addresses. */
5460
5461 for (i = 0; i < reload_n_operands; i++)
5462 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5463 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5464 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5465 return 0;
5466
5467 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5468
5469 case RELOAD_FOR_OPADDR_ADDR:
5470 for (i = 0; i < reload_n_operands; i++)
5471 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5472 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5473 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5474 return 0;
5475
5476 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5477 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5478 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5479
5480 case RELOAD_FOR_INSN:
5481 /* These conflict with other outputs with RELOAD_OTHER. So
5482 we need only check for output addresses. */
5483
5484 opnum = reload_n_operands;
5485
5486 /* ... fall through ... */
5487
5488 case RELOAD_FOR_OUTPUT:
5489 case RELOAD_FOR_OUTPUT_ADDRESS:
5490 case RELOAD_FOR_OUTADDR_ADDRESS:
5491 /* We already know these can't conflict with a later output. So the
5492 only thing to check are later output addresses.
5493 Note that multiple output operands are emitted in reverse order,
5494 so the conflicting ones are those with lower indices. */
5495 for (i = 0; i < opnum; i++)
5496 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5497 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5498 return 0;
5499
5500 return 1;
5501
5502 default:
5503 gcc_unreachable ();
5504 }
5505 }
5506
5507 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5508 every register in the range [REGNO, REGNO + NREGS). */
5509
5510 static bool
5511 reload_regs_reach_end_p (unsigned int regno, int nregs, int reloadnum)
5512 {
5513 int i;
5514
5515 for (i = 0; i < nregs; i++)
5516 if (!reload_reg_reaches_end_p (regno + i, reloadnum))
5517 return false;
5518 return true;
5519 }
5520 \f
5521
5522 /* Returns whether R1 and R2 are uniquely chained: the value of one
5523 is used by the other, and that value is not used by any other
5524 reload for this insn. This is used to partially undo the decision
5525 made in find_reloads when in the case of multiple
5526 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5527 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5528 reloads. This code tries to avoid the conflict created by that
5529 change. It might be cleaner to explicitly keep track of which
5530 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5531 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5532 this after the fact. */
5533 static bool
5534 reloads_unique_chain_p (int r1, int r2)
5535 {
5536 int i;
5537
5538 /* We only check input reloads. */
5539 if (! rld[r1].in || ! rld[r2].in)
5540 return false;
5541
5542 /* Avoid anything with output reloads. */
5543 if (rld[r1].out || rld[r2].out)
5544 return false;
5545
5546 /* "chained" means one reload is a component of the other reload,
5547 not the same as the other reload. */
5548 if (rld[r1].opnum != rld[r2].opnum
5549 || rtx_equal_p (rld[r1].in, rld[r2].in)
5550 || rld[r1].optional || rld[r2].optional
5551 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5552 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5553 return false;
5554
5555 for (i = 0; i < n_reloads; i ++)
5556 /* Look for input reloads that aren't our two */
5557 if (i != r1 && i != r2 && rld[i].in)
5558 {
5559 /* If our reload is mentioned at all, it isn't a simple chain. */
5560 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5561 return false;
5562 }
5563 return true;
5564 }
5565
5566 /* The recursive function change all occurrences of WHAT in *WHERE
5567 to REPL. */
5568 static void
5569 substitute (rtx *where, const_rtx what, rtx repl)
5570 {
5571 const char *fmt;
5572 int i;
5573 enum rtx_code code;
5574
5575 if (*where == 0)
5576 return;
5577
5578 if (*where == what || rtx_equal_p (*where, what))
5579 {
5580 /* Record the location of the changed rtx. */
5581 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5582 *where = repl;
5583 return;
5584 }
5585
5586 code = GET_CODE (*where);
5587 fmt = GET_RTX_FORMAT (code);
5588 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5589 {
5590 if (fmt[i] == 'E')
5591 {
5592 int j;
5593
5594 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5595 substitute (&XVECEXP (*where, i, j), what, repl);
5596 }
5597 else if (fmt[i] == 'e')
5598 substitute (&XEXP (*where, i), what, repl);
5599 }
5600 }
5601
5602 /* The function returns TRUE if chain of reload R1 and R2 (in any
5603 order) can be evaluated without usage of intermediate register for
5604 the reload containing another reload. It is important to see
5605 gen_reload to understand what the function is trying to do. As an
5606 example, let us have reload chain
5607
5608 r2: const
5609 r1: <something> + const
5610
5611 and reload R2 got reload reg HR. The function returns true if
5612 there is a correct insn HR = HR + <something>. Otherwise,
5613 gen_reload will use intermediate register (and this is the reload
5614 reg for R1) to reload <something>.
5615
5616 We need this function to find a conflict for chain reloads. In our
5617 example, if HR = HR + <something> is incorrect insn, then we cannot
5618 use HR as a reload register for R2. If we do use it then we get a
5619 wrong code:
5620
5621 HR = const
5622 HR = <something>
5623 HR = HR + HR
5624
5625 */
5626 static bool
5627 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5628 {
5629 /* Assume other cases in gen_reload are not possible for
5630 chain reloads or do need an intermediate hard registers. */
5631 bool result = true;
5632 int regno, n, code;
5633 rtx out, in, insn;
5634 rtx last = get_last_insn ();
5635
5636 /* Make r2 a component of r1. */
5637 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5638 {
5639 n = r1;
5640 r1 = r2;
5641 r2 = n;
5642 }
5643 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5644 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5645 gcc_assert (regno >= 0);
5646 out = gen_rtx_REG (rld[r1].mode, regno);
5647 in = rld[r1].in;
5648 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5649
5650 /* If IN is a paradoxical SUBREG, remove it and try to put the
5651 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5652 strip_paradoxical_subreg (&in, &out);
5653
5654 if (GET_CODE (in) == PLUS
5655 && (REG_P (XEXP (in, 0))
5656 || GET_CODE (XEXP (in, 0)) == SUBREG
5657 || MEM_P (XEXP (in, 0)))
5658 && (REG_P (XEXP (in, 1))
5659 || GET_CODE (XEXP (in, 1)) == SUBREG
5660 || CONSTANT_P (XEXP (in, 1))
5661 || MEM_P (XEXP (in, 1))))
5662 {
5663 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5664 code = recog_memoized (insn);
5665 result = false;
5666
5667 if (code >= 0)
5668 {
5669 extract_insn (insn);
5670 /* We want constrain operands to treat this insn strictly in
5671 its validity determination, i.e., the way it would after
5672 reload has completed. */
5673 result = constrain_operands (1);
5674 }
5675
5676 delete_insns_since (last);
5677 }
5678
5679 /* Restore the original value at each changed address within R1. */
5680 while (!VEC_empty (rtx_p, substitute_stack))
5681 {
5682 rtx *where = VEC_pop (rtx_p, substitute_stack);
5683 *where = rld[r2].in;
5684 }
5685
5686 return result;
5687 }
5688
5689 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5690 Return 0 otherwise.
5691
5692 This function uses the same algorithm as reload_reg_free_p above. */
5693
5694 static int
5695 reloads_conflict (int r1, int r2)
5696 {
5697 enum reload_type r1_type = rld[r1].when_needed;
5698 enum reload_type r2_type = rld[r2].when_needed;
5699 int r1_opnum = rld[r1].opnum;
5700 int r2_opnum = rld[r2].opnum;
5701
5702 /* RELOAD_OTHER conflicts with everything. */
5703 if (r2_type == RELOAD_OTHER)
5704 return 1;
5705
5706 /* Otherwise, check conflicts differently for each type. */
5707
5708 switch (r1_type)
5709 {
5710 case RELOAD_FOR_INPUT:
5711 return (r2_type == RELOAD_FOR_INSN
5712 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5713 || r2_type == RELOAD_FOR_OPADDR_ADDR
5714 || r2_type == RELOAD_FOR_INPUT
5715 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5716 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5717 && r2_opnum > r1_opnum));
5718
5719 case RELOAD_FOR_INPUT_ADDRESS:
5720 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5721 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5722
5723 case RELOAD_FOR_INPADDR_ADDRESS:
5724 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5725 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5726
5727 case RELOAD_FOR_OUTPUT_ADDRESS:
5728 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5729 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5730
5731 case RELOAD_FOR_OUTADDR_ADDRESS:
5732 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5733 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5734
5735 case RELOAD_FOR_OPERAND_ADDRESS:
5736 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5737 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5738 && (!reloads_unique_chain_p (r1, r2)
5739 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5740
5741 case RELOAD_FOR_OPADDR_ADDR:
5742 return (r2_type == RELOAD_FOR_INPUT
5743 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5744
5745 case RELOAD_FOR_OUTPUT:
5746 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5747 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5748 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5749 && r2_opnum >= r1_opnum));
5750
5751 case RELOAD_FOR_INSN:
5752 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5753 || r2_type == RELOAD_FOR_INSN
5754 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5755
5756 case RELOAD_FOR_OTHER_ADDRESS:
5757 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5758
5759 case RELOAD_OTHER:
5760 return 1;
5761
5762 default:
5763 gcc_unreachable ();
5764 }
5765 }
5766 \f
5767 /* Indexed by reload number, 1 if incoming value
5768 inherited from previous insns. */
5769 static char reload_inherited[MAX_RELOADS];
5770
5771 /* For an inherited reload, this is the insn the reload was inherited from,
5772 if we know it. Otherwise, this is 0. */
5773 static rtx reload_inheritance_insn[MAX_RELOADS];
5774
5775 /* If nonzero, this is a place to get the value of the reload,
5776 rather than using reload_in. */
5777 static rtx reload_override_in[MAX_RELOADS];
5778
5779 /* For each reload, the hard register number of the register used,
5780 or -1 if we did not need a register for this reload. */
5781 static int reload_spill_index[MAX_RELOADS];
5782
5783 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5784 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5785
5786 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5787 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5788
5789 /* Subroutine of free_for_value_p, used to check a single register.
5790 START_REGNO is the starting regno of the full reload register
5791 (possibly comprising multiple hard registers) that we are considering. */
5792
5793 static int
5794 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5795 enum reload_type type, rtx value, rtx out,
5796 int reloadnum, int ignore_address_reloads)
5797 {
5798 int time1;
5799 /* Set if we see an input reload that must not share its reload register
5800 with any new earlyclobber, but might otherwise share the reload
5801 register with an output or input-output reload. */
5802 int check_earlyclobber = 0;
5803 int i;
5804 int copy = 0;
5805
5806 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5807 return 0;
5808
5809 if (out == const0_rtx)
5810 {
5811 copy = 1;
5812 out = NULL_RTX;
5813 }
5814
5815 /* We use some pseudo 'time' value to check if the lifetimes of the
5816 new register use would overlap with the one of a previous reload
5817 that is not read-only or uses a different value.
5818 The 'time' used doesn't have to be linear in any shape or form, just
5819 monotonic.
5820 Some reload types use different 'buckets' for each operand.
5821 So there are MAX_RECOG_OPERANDS different time values for each
5822 such reload type.
5823 We compute TIME1 as the time when the register for the prospective
5824 new reload ceases to be live, and TIME2 for each existing
5825 reload as the time when that the reload register of that reload
5826 becomes live.
5827 Where there is little to be gained by exact lifetime calculations,
5828 we just make conservative assumptions, i.e. a longer lifetime;
5829 this is done in the 'default:' cases. */
5830 switch (type)
5831 {
5832 case RELOAD_FOR_OTHER_ADDRESS:
5833 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5834 time1 = copy ? 0 : 1;
5835 break;
5836 case RELOAD_OTHER:
5837 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5838 break;
5839 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5840 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5841 respectively, to the time values for these, we get distinct time
5842 values. To get distinct time values for each operand, we have to
5843 multiply opnum by at least three. We round that up to four because
5844 multiply by four is often cheaper. */
5845 case RELOAD_FOR_INPADDR_ADDRESS:
5846 time1 = opnum * 4 + 2;
5847 break;
5848 case RELOAD_FOR_INPUT_ADDRESS:
5849 time1 = opnum * 4 + 3;
5850 break;
5851 case RELOAD_FOR_INPUT:
5852 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5853 executes (inclusive). */
5854 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5855 break;
5856 case RELOAD_FOR_OPADDR_ADDR:
5857 /* opnum * 4 + 4
5858 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5859 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5860 break;
5861 case RELOAD_FOR_OPERAND_ADDRESS:
5862 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5863 is executed. */
5864 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5865 break;
5866 case RELOAD_FOR_OUTADDR_ADDRESS:
5867 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5868 break;
5869 case RELOAD_FOR_OUTPUT_ADDRESS:
5870 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5871 break;
5872 default:
5873 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5874 }
5875
5876 for (i = 0; i < n_reloads; i++)
5877 {
5878 rtx reg = rld[i].reg_rtx;
5879 if (reg && REG_P (reg)
5880 && ((unsigned) regno - true_regnum (reg)
5881 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5882 && i != reloadnum)
5883 {
5884 rtx other_input = rld[i].in;
5885
5886 /* If the other reload loads the same input value, that
5887 will not cause a conflict only if it's loading it into
5888 the same register. */
5889 if (true_regnum (reg) != start_regno)
5890 other_input = NULL_RTX;
5891 if (! other_input || ! rtx_equal_p (other_input, value)
5892 || rld[i].out || out)
5893 {
5894 int time2;
5895 switch (rld[i].when_needed)
5896 {
5897 case RELOAD_FOR_OTHER_ADDRESS:
5898 time2 = 0;
5899 break;
5900 case RELOAD_FOR_INPADDR_ADDRESS:
5901 /* find_reloads makes sure that a
5902 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5903 by at most one - the first -
5904 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5905 address reload is inherited, the address address reload
5906 goes away, so we can ignore this conflict. */
5907 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5908 && ignore_address_reloads
5909 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5910 Then the address address is still needed to store
5911 back the new address. */
5912 && ! rld[reloadnum].out)
5913 continue;
5914 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5915 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5916 reloads go away. */
5917 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5918 && ignore_address_reloads
5919 /* Unless we are reloading an auto_inc expression. */
5920 && ! rld[reloadnum].out)
5921 continue;
5922 time2 = rld[i].opnum * 4 + 2;
5923 break;
5924 case RELOAD_FOR_INPUT_ADDRESS:
5925 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5926 && ignore_address_reloads
5927 && ! rld[reloadnum].out)
5928 continue;
5929 time2 = rld[i].opnum * 4 + 3;
5930 break;
5931 case RELOAD_FOR_INPUT:
5932 time2 = rld[i].opnum * 4 + 4;
5933 check_earlyclobber = 1;
5934 break;
5935 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5936 == MAX_RECOG_OPERAND * 4 */
5937 case RELOAD_FOR_OPADDR_ADDR:
5938 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5939 && ignore_address_reloads
5940 && ! rld[reloadnum].out)
5941 continue;
5942 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5943 break;
5944 case RELOAD_FOR_OPERAND_ADDRESS:
5945 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5946 check_earlyclobber = 1;
5947 break;
5948 case RELOAD_FOR_INSN:
5949 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5950 break;
5951 case RELOAD_FOR_OUTPUT:
5952 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5953 instruction is executed. */
5954 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5955 break;
5956 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5957 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5958 value. */
5959 case RELOAD_FOR_OUTADDR_ADDRESS:
5960 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5961 && ignore_address_reloads
5962 && ! rld[reloadnum].out)
5963 continue;
5964 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5965 break;
5966 case RELOAD_FOR_OUTPUT_ADDRESS:
5967 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5968 break;
5969 case RELOAD_OTHER:
5970 /* If there is no conflict in the input part, handle this
5971 like an output reload. */
5972 if (! rld[i].in || rtx_equal_p (other_input, value))
5973 {
5974 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5975 /* Earlyclobbered outputs must conflict with inputs. */
5976 if (earlyclobber_operand_p (rld[i].out))
5977 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5978
5979 break;
5980 }
5981 time2 = 1;
5982 /* RELOAD_OTHER might be live beyond instruction execution,
5983 but this is not obvious when we set time2 = 1. So check
5984 here if there might be a problem with the new reload
5985 clobbering the register used by the RELOAD_OTHER. */
5986 if (out)
5987 return 0;
5988 break;
5989 default:
5990 return 0;
5991 }
5992 if ((time1 >= time2
5993 && (! rld[i].in || rld[i].out
5994 || ! rtx_equal_p (other_input, value)))
5995 || (out && rld[reloadnum].out_reg
5996 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5997 return 0;
5998 }
5999 }
6000 }
6001
6002 /* Earlyclobbered outputs must conflict with inputs. */
6003 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6004 return 0;
6005
6006 return 1;
6007 }
6008
6009 /* Return 1 if the value in reload reg REGNO, as used by a reload
6010 needed for the part of the insn specified by OPNUM and TYPE,
6011 may be used to load VALUE into it.
6012
6013 MODE is the mode in which the register is used, this is needed to
6014 determine how many hard regs to test.
6015
6016 Other read-only reloads with the same value do not conflict
6017 unless OUT is nonzero and these other reloads have to live while
6018 output reloads live.
6019 If OUT is CONST0_RTX, this is a special case: it means that the
6020 test should not be for using register REGNO as reload register, but
6021 for copying from register REGNO into the reload register.
6022
6023 RELOADNUM is the number of the reload we want to load this value for;
6024 a reload does not conflict with itself.
6025
6026 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6027 reloads that load an address for the very reload we are considering.
6028
6029 The caller has to make sure that there is no conflict with the return
6030 register. */
6031
6032 static int
6033 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6034 enum reload_type type, rtx value, rtx out, int reloadnum,
6035 int ignore_address_reloads)
6036 {
6037 int nregs = hard_regno_nregs[regno][mode];
6038 while (nregs-- > 0)
6039 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6040 value, out, reloadnum,
6041 ignore_address_reloads))
6042 return 0;
6043 return 1;
6044 }
6045
6046 /* Return nonzero if the rtx X is invariant over the current function. */
6047 /* ??? Actually, the places where we use this expect exactly what is
6048 tested here, and not everything that is function invariant. In
6049 particular, the frame pointer and arg pointer are special cased;
6050 pic_offset_table_rtx is not, and we must not spill these things to
6051 memory. */
6052
6053 int
6054 function_invariant_p (const_rtx x)
6055 {
6056 if (CONSTANT_P (x))
6057 return 1;
6058 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6059 return 1;
6060 if (GET_CODE (x) == PLUS
6061 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6062 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6063 return 1;
6064 return 0;
6065 }
6066
6067 /* Determine whether the reload reg X overlaps any rtx'es used for
6068 overriding inheritance. Return nonzero if so. */
6069
6070 static int
6071 conflicts_with_override (rtx x)
6072 {
6073 int i;
6074 for (i = 0; i < n_reloads; i++)
6075 if (reload_override_in[i]
6076 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6077 return 1;
6078 return 0;
6079 }
6080 \f
6081 /* Give an error message saying we failed to find a reload for INSN,
6082 and clear out reload R. */
6083 static void
6084 failed_reload (rtx insn, int r)
6085 {
6086 if (asm_noperands (PATTERN (insn)) < 0)
6087 /* It's the compiler's fault. */
6088 fatal_insn ("could not find a spill register", insn);
6089
6090 /* It's the user's fault; the operand's mode and constraint
6091 don't match. Disable this reload so we don't crash in final. */
6092 error_for_asm (insn,
6093 "%<asm%> operand constraint incompatible with operand size");
6094 rld[r].in = 0;
6095 rld[r].out = 0;
6096 rld[r].reg_rtx = 0;
6097 rld[r].optional = 1;
6098 rld[r].secondary_p = 1;
6099 }
6100
6101 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6102 for reload R. If it's valid, get an rtx for it. Return nonzero if
6103 successful. */
6104 static int
6105 set_reload_reg (int i, int r)
6106 {
6107 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6108 parameter. */
6109 int regno ATTRIBUTE_UNUSED;
6110 rtx reg = spill_reg_rtx[i];
6111
6112 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6113 spill_reg_rtx[i] = reg
6114 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6115
6116 regno = true_regnum (reg);
6117
6118 /* Detect when the reload reg can't hold the reload mode.
6119 This used to be one `if', but Sequent compiler can't handle that. */
6120 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6121 {
6122 enum machine_mode test_mode = VOIDmode;
6123 if (rld[r].in)
6124 test_mode = GET_MODE (rld[r].in);
6125 /* If rld[r].in has VOIDmode, it means we will load it
6126 in whatever mode the reload reg has: to wit, rld[r].mode.
6127 We have already tested that for validity. */
6128 /* Aside from that, we need to test that the expressions
6129 to reload from or into have modes which are valid for this
6130 reload register. Otherwise the reload insns would be invalid. */
6131 if (! (rld[r].in != 0 && test_mode != VOIDmode
6132 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6133 if (! (rld[r].out != 0
6134 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6135 {
6136 /* The reg is OK. */
6137 last_spill_reg = i;
6138
6139 /* Mark as in use for this insn the reload regs we use
6140 for this. */
6141 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6142 rld[r].when_needed, rld[r].mode);
6143
6144 rld[r].reg_rtx = reg;
6145 reload_spill_index[r] = spill_regs[i];
6146 return 1;
6147 }
6148 }
6149 return 0;
6150 }
6151
6152 /* Find a spill register to use as a reload register for reload R.
6153 LAST_RELOAD is nonzero if this is the last reload for the insn being
6154 processed.
6155
6156 Set rld[R].reg_rtx to the register allocated.
6157
6158 We return 1 if successful, or 0 if we couldn't find a spill reg and
6159 we didn't change anything. */
6160
6161 static int
6162 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6163 int last_reload)
6164 {
6165 int i, pass, count;
6166
6167 /* If we put this reload ahead, thinking it is a group,
6168 then insist on finding a group. Otherwise we can grab a
6169 reg that some other reload needs.
6170 (That can happen when we have a 68000 DATA_OR_FP_REG
6171 which is a group of data regs or one fp reg.)
6172 We need not be so restrictive if there are no more reloads
6173 for this insn.
6174
6175 ??? Really it would be nicer to have smarter handling
6176 for that kind of reg class, where a problem like this is normal.
6177 Perhaps those classes should be avoided for reloading
6178 by use of more alternatives. */
6179
6180 int force_group = rld[r].nregs > 1 && ! last_reload;
6181
6182 /* If we want a single register and haven't yet found one,
6183 take any reg in the right class and not in use.
6184 If we want a consecutive group, here is where we look for it.
6185
6186 We use three passes so we can first look for reload regs to
6187 reuse, which are already in use for other reloads in this insn,
6188 and only then use additional registers which are not "bad", then
6189 finally any register.
6190
6191 I think that maximizing reuse is needed to make sure we don't
6192 run out of reload regs. Suppose we have three reloads, and
6193 reloads A and B can share regs. These need two regs.
6194 Suppose A and B are given different regs.
6195 That leaves none for C. */
6196 for (pass = 0; pass < 3; pass++)
6197 {
6198 /* I is the index in spill_regs.
6199 We advance it round-robin between insns to use all spill regs
6200 equally, so that inherited reloads have a chance
6201 of leapfrogging each other. */
6202
6203 i = last_spill_reg;
6204
6205 for (count = 0; count < n_spills; count++)
6206 {
6207 int rclass = (int) rld[r].rclass;
6208 int regnum;
6209
6210 i++;
6211 if (i >= n_spills)
6212 i -= n_spills;
6213 regnum = spill_regs[i];
6214
6215 if ((reload_reg_free_p (regnum, rld[r].opnum,
6216 rld[r].when_needed)
6217 || (rld[r].in
6218 /* We check reload_reg_used to make sure we
6219 don't clobber the return register. */
6220 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6221 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6222 rld[r].when_needed, rld[r].in,
6223 rld[r].out, r, 1)))
6224 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6225 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6226 /* Look first for regs to share, then for unshared. But
6227 don't share regs used for inherited reloads; they are
6228 the ones we want to preserve. */
6229 && (pass
6230 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6231 regnum)
6232 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6233 regnum))))
6234 {
6235 int nr = hard_regno_nregs[regnum][rld[r].mode];
6236
6237 /* During the second pass we want to avoid reload registers
6238 which are "bad" for this reload. */
6239 if (pass == 1
6240 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6241 continue;
6242
6243 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6244 (on 68000) got us two FP regs. If NR is 1,
6245 we would reject both of them. */
6246 if (force_group)
6247 nr = rld[r].nregs;
6248 /* If we need only one reg, we have already won. */
6249 if (nr == 1)
6250 {
6251 /* But reject a single reg if we demand a group. */
6252 if (force_group)
6253 continue;
6254 break;
6255 }
6256 /* Otherwise check that as many consecutive regs as we need
6257 are available here. */
6258 while (nr > 1)
6259 {
6260 int regno = regnum + nr - 1;
6261 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6262 && spill_reg_order[regno] >= 0
6263 && reload_reg_free_p (regno, rld[r].opnum,
6264 rld[r].when_needed)))
6265 break;
6266 nr--;
6267 }
6268 if (nr == 1)
6269 break;
6270 }
6271 }
6272
6273 /* If we found something on the current pass, omit later passes. */
6274 if (count < n_spills)
6275 break;
6276 }
6277
6278 /* We should have found a spill register by now. */
6279 if (count >= n_spills)
6280 return 0;
6281
6282 /* I is the index in SPILL_REG_RTX of the reload register we are to
6283 allocate. Get an rtx for it and find its register number. */
6284
6285 return set_reload_reg (i, r);
6286 }
6287 \f
6288 /* Initialize all the tables needed to allocate reload registers.
6289 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6290 is the array we use to restore the reg_rtx field for every reload. */
6291
6292 static void
6293 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6294 {
6295 int i;
6296
6297 for (i = 0; i < n_reloads; i++)
6298 rld[i].reg_rtx = save_reload_reg_rtx[i];
6299
6300 memset (reload_inherited, 0, MAX_RELOADS);
6301 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6302 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6303
6304 CLEAR_HARD_REG_SET (reload_reg_used);
6305 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6306 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6307 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6308 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6309 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6310
6311 CLEAR_HARD_REG_SET (reg_used_in_insn);
6312 {
6313 HARD_REG_SET tmp;
6314 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6315 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6316 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6317 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6318 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6319 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6320 }
6321
6322 for (i = 0; i < reload_n_operands; i++)
6323 {
6324 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6325 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6326 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6327 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6328 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6329 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6330 }
6331
6332 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6333
6334 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6335
6336 for (i = 0; i < n_reloads; i++)
6337 /* If we have already decided to use a certain register,
6338 don't use it in another way. */
6339 if (rld[i].reg_rtx)
6340 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6341 rld[i].when_needed, rld[i].mode);
6342 }
6343
6344 /* Assign hard reg targets for the pseudo-registers we must reload
6345 into hard regs for this insn.
6346 Also output the instructions to copy them in and out of the hard regs.
6347
6348 For machines with register classes, we are responsible for
6349 finding a reload reg in the proper class. */
6350
6351 static void
6352 choose_reload_regs (struct insn_chain *chain)
6353 {
6354 rtx insn = chain->insn;
6355 int i, j;
6356 unsigned int max_group_size = 1;
6357 enum reg_class group_class = NO_REGS;
6358 int pass, win, inheritance;
6359
6360 rtx save_reload_reg_rtx[MAX_RELOADS];
6361
6362 /* In order to be certain of getting the registers we need,
6363 we must sort the reloads into order of increasing register class.
6364 Then our grabbing of reload registers will parallel the process
6365 that provided the reload registers.
6366
6367 Also note whether any of the reloads wants a consecutive group of regs.
6368 If so, record the maximum size of the group desired and what
6369 register class contains all the groups needed by this insn. */
6370
6371 for (j = 0; j < n_reloads; j++)
6372 {
6373 reload_order[j] = j;
6374 if (rld[j].reg_rtx != NULL_RTX)
6375 {
6376 gcc_assert (REG_P (rld[j].reg_rtx)
6377 && HARD_REGISTER_P (rld[j].reg_rtx));
6378 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6379 }
6380 else
6381 reload_spill_index[j] = -1;
6382
6383 if (rld[j].nregs > 1)
6384 {
6385 max_group_size = MAX (rld[j].nregs, max_group_size);
6386 group_class
6387 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6388 }
6389
6390 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6391 }
6392
6393 if (n_reloads > 1)
6394 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6395
6396 /* If -O, try first with inheritance, then turning it off.
6397 If not -O, don't do inheritance.
6398 Using inheritance when not optimizing leads to paradoxes
6399 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6400 because one side of the comparison might be inherited. */
6401 win = 0;
6402 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6403 {
6404 choose_reload_regs_init (chain, save_reload_reg_rtx);
6405
6406 /* Process the reloads in order of preference just found.
6407 Beyond this point, subregs can be found in reload_reg_rtx.
6408
6409 This used to look for an existing reloaded home for all of the
6410 reloads, and only then perform any new reloads. But that could lose
6411 if the reloads were done out of reg-class order because a later
6412 reload with a looser constraint might have an old home in a register
6413 needed by an earlier reload with a tighter constraint.
6414
6415 To solve this, we make two passes over the reloads, in the order
6416 described above. In the first pass we try to inherit a reload
6417 from a previous insn. If there is a later reload that needs a
6418 class that is a proper subset of the class being processed, we must
6419 also allocate a spill register during the first pass.
6420
6421 Then make a second pass over the reloads to allocate any reloads
6422 that haven't been given registers yet. */
6423
6424 for (j = 0; j < n_reloads; j++)
6425 {
6426 int r = reload_order[j];
6427 rtx search_equiv = NULL_RTX;
6428
6429 /* Ignore reloads that got marked inoperative. */
6430 if (rld[r].out == 0 && rld[r].in == 0
6431 && ! rld[r].secondary_p)
6432 continue;
6433
6434 /* If find_reloads chose to use reload_in or reload_out as a reload
6435 register, we don't need to chose one. Otherwise, try even if it
6436 found one since we might save an insn if we find the value lying
6437 around.
6438 Try also when reload_in is a pseudo without a hard reg. */
6439 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6440 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6441 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6442 && !MEM_P (rld[r].in)
6443 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6444 continue;
6445
6446 #if 0 /* No longer needed for correct operation.
6447 It might give better code, or might not; worth an experiment? */
6448 /* If this is an optional reload, we can't inherit from earlier insns
6449 until we are sure that any non-optional reloads have been allocated.
6450 The following code takes advantage of the fact that optional reloads
6451 are at the end of reload_order. */
6452 if (rld[r].optional != 0)
6453 for (i = 0; i < j; i++)
6454 if ((rld[reload_order[i]].out != 0
6455 || rld[reload_order[i]].in != 0
6456 || rld[reload_order[i]].secondary_p)
6457 && ! rld[reload_order[i]].optional
6458 && rld[reload_order[i]].reg_rtx == 0)
6459 allocate_reload_reg (chain, reload_order[i], 0);
6460 #endif
6461
6462 /* First see if this pseudo is already available as reloaded
6463 for a previous insn. We cannot try to inherit for reloads
6464 that are smaller than the maximum number of registers needed
6465 for groups unless the register we would allocate cannot be used
6466 for the groups.
6467
6468 We could check here to see if this is a secondary reload for
6469 an object that is already in a register of the desired class.
6470 This would avoid the need for the secondary reload register.
6471 But this is complex because we can't easily determine what
6472 objects might want to be loaded via this reload. So let a
6473 register be allocated here. In `emit_reload_insns' we suppress
6474 one of the loads in the case described above. */
6475
6476 if (inheritance)
6477 {
6478 int byte = 0;
6479 int regno = -1;
6480 enum machine_mode mode = VOIDmode;
6481
6482 if (rld[r].in == 0)
6483 ;
6484 else if (REG_P (rld[r].in))
6485 {
6486 regno = REGNO (rld[r].in);
6487 mode = GET_MODE (rld[r].in);
6488 }
6489 else if (REG_P (rld[r].in_reg))
6490 {
6491 regno = REGNO (rld[r].in_reg);
6492 mode = GET_MODE (rld[r].in_reg);
6493 }
6494 else if (GET_CODE (rld[r].in_reg) == SUBREG
6495 && REG_P (SUBREG_REG (rld[r].in_reg)))
6496 {
6497 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6498 if (regno < FIRST_PSEUDO_REGISTER)
6499 regno = subreg_regno (rld[r].in_reg);
6500 else
6501 byte = SUBREG_BYTE (rld[r].in_reg);
6502 mode = GET_MODE (rld[r].in_reg);
6503 }
6504 #ifdef AUTO_INC_DEC
6505 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6506 && REG_P (XEXP (rld[r].in_reg, 0)))
6507 {
6508 regno = REGNO (XEXP (rld[r].in_reg, 0));
6509 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6510 rld[r].out = rld[r].in;
6511 }
6512 #endif
6513 #if 0
6514 /* This won't work, since REGNO can be a pseudo reg number.
6515 Also, it takes much more hair to keep track of all the things
6516 that can invalidate an inherited reload of part of a pseudoreg. */
6517 else if (GET_CODE (rld[r].in) == SUBREG
6518 && REG_P (SUBREG_REG (rld[r].in)))
6519 regno = subreg_regno (rld[r].in);
6520 #endif
6521
6522 if (regno >= 0
6523 && reg_last_reload_reg[regno] != 0
6524 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6525 >= GET_MODE_SIZE (mode) + byte)
6526 #ifdef CANNOT_CHANGE_MODE_CLASS
6527 /* Verify that the register it's in can be used in
6528 mode MODE. */
6529 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6530 GET_MODE (reg_last_reload_reg[regno]),
6531 mode)
6532 #endif
6533 )
6534 {
6535 enum reg_class rclass = rld[r].rclass, last_class;
6536 rtx last_reg = reg_last_reload_reg[regno];
6537
6538 i = REGNO (last_reg);
6539 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6540 last_class = REGNO_REG_CLASS (i);
6541
6542 if (reg_reloaded_contents[i] == regno
6543 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6544 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6545 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6546 /* Even if we can't use this register as a reload
6547 register, we might use it for reload_override_in,
6548 if copying it to the desired class is cheap
6549 enough. */
6550 || ((register_move_cost (mode, last_class, rclass)
6551 < memory_move_cost (mode, rclass, true))
6552 && (secondary_reload_class (1, rclass, mode,
6553 last_reg)
6554 == NO_REGS)
6555 #ifdef SECONDARY_MEMORY_NEEDED
6556 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6557 mode)
6558 #endif
6559 ))
6560
6561 && (rld[r].nregs == max_group_size
6562 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6563 i))
6564 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6565 rld[r].when_needed, rld[r].in,
6566 const0_rtx, r, 1))
6567 {
6568 /* If a group is needed, verify that all the subsequent
6569 registers still have their values intact. */
6570 int nr = hard_regno_nregs[i][rld[r].mode];
6571 int k;
6572
6573 for (k = 1; k < nr; k++)
6574 if (reg_reloaded_contents[i + k] != regno
6575 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6576 break;
6577
6578 if (k == nr)
6579 {
6580 int i1;
6581 int bad_for_class;
6582
6583 last_reg = (GET_MODE (last_reg) == mode
6584 ? last_reg : gen_rtx_REG (mode, i));
6585
6586 bad_for_class = 0;
6587 for (k = 0; k < nr; k++)
6588 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6589 i+k);
6590
6591 /* We found a register that contains the
6592 value we need. If this register is the
6593 same as an `earlyclobber' operand of the
6594 current insn, just mark it as a place to
6595 reload from since we can't use it as the
6596 reload register itself. */
6597
6598 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6599 if (reg_overlap_mentioned_for_reload_p
6600 (reg_last_reload_reg[regno],
6601 reload_earlyclobbers[i1]))
6602 break;
6603
6604 if (i1 != n_earlyclobbers
6605 || ! (free_for_value_p (i, rld[r].mode,
6606 rld[r].opnum,
6607 rld[r].when_needed, rld[r].in,
6608 rld[r].out, r, 1))
6609 /* Don't use it if we'd clobber a pseudo reg. */
6610 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6611 && rld[r].out
6612 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6613 /* Don't clobber the frame pointer. */
6614 || (i == HARD_FRAME_POINTER_REGNUM
6615 && frame_pointer_needed
6616 && rld[r].out)
6617 /* Don't really use the inherited spill reg
6618 if we need it wider than we've got it. */
6619 || (GET_MODE_SIZE (rld[r].mode)
6620 > GET_MODE_SIZE (mode))
6621 || bad_for_class
6622
6623 /* If find_reloads chose reload_out as reload
6624 register, stay with it - that leaves the
6625 inherited register for subsequent reloads. */
6626 || (rld[r].out && rld[r].reg_rtx
6627 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6628 {
6629 if (! rld[r].optional)
6630 {
6631 reload_override_in[r] = last_reg;
6632 reload_inheritance_insn[r]
6633 = reg_reloaded_insn[i];
6634 }
6635 }
6636 else
6637 {
6638 int k;
6639 /* We can use this as a reload reg. */
6640 /* Mark the register as in use for this part of
6641 the insn. */
6642 mark_reload_reg_in_use (i,
6643 rld[r].opnum,
6644 rld[r].when_needed,
6645 rld[r].mode);
6646 rld[r].reg_rtx = last_reg;
6647 reload_inherited[r] = 1;
6648 reload_inheritance_insn[r]
6649 = reg_reloaded_insn[i];
6650 reload_spill_index[r] = i;
6651 for (k = 0; k < nr; k++)
6652 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6653 i + k);
6654 }
6655 }
6656 }
6657 }
6658 }
6659
6660 /* Here's another way to see if the value is already lying around. */
6661 if (inheritance
6662 && rld[r].in != 0
6663 && ! reload_inherited[r]
6664 && rld[r].out == 0
6665 && (CONSTANT_P (rld[r].in)
6666 || GET_CODE (rld[r].in) == PLUS
6667 || REG_P (rld[r].in)
6668 || MEM_P (rld[r].in))
6669 && (rld[r].nregs == max_group_size
6670 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6671 search_equiv = rld[r].in;
6672
6673 if (search_equiv)
6674 {
6675 rtx equiv
6676 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6677 -1, NULL, 0, rld[r].mode);
6678 int regno = 0;
6679
6680 if (equiv != 0)
6681 {
6682 if (REG_P (equiv))
6683 regno = REGNO (equiv);
6684 else
6685 {
6686 /* This must be a SUBREG of a hard register.
6687 Make a new REG since this might be used in an
6688 address and not all machines support SUBREGs
6689 there. */
6690 gcc_assert (GET_CODE (equiv) == SUBREG);
6691 regno = subreg_regno (equiv);
6692 equiv = gen_rtx_REG (rld[r].mode, regno);
6693 /* If we choose EQUIV as the reload register, but the
6694 loop below decides to cancel the inheritance, we'll
6695 end up reloading EQUIV in rld[r].mode, not the mode
6696 it had originally. That isn't safe when EQUIV isn't
6697 available as a spill register since its value might
6698 still be live at this point. */
6699 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6700 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6701 equiv = 0;
6702 }
6703 }
6704
6705 /* If we found a spill reg, reject it unless it is free
6706 and of the desired class. */
6707 if (equiv != 0)
6708 {
6709 int regs_used = 0;
6710 int bad_for_class = 0;
6711 int max_regno = regno + rld[r].nregs;
6712
6713 for (i = regno; i < max_regno; i++)
6714 {
6715 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6716 i);
6717 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6718 i);
6719 }
6720
6721 if ((regs_used
6722 && ! free_for_value_p (regno, rld[r].mode,
6723 rld[r].opnum, rld[r].when_needed,
6724 rld[r].in, rld[r].out, r, 1))
6725 || bad_for_class)
6726 equiv = 0;
6727 }
6728
6729 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6730 equiv = 0;
6731
6732 /* We found a register that contains the value we need.
6733 If this register is the same as an `earlyclobber' operand
6734 of the current insn, just mark it as a place to reload from
6735 since we can't use it as the reload register itself. */
6736
6737 if (equiv != 0)
6738 for (i = 0; i < n_earlyclobbers; i++)
6739 if (reg_overlap_mentioned_for_reload_p (equiv,
6740 reload_earlyclobbers[i]))
6741 {
6742 if (! rld[r].optional)
6743 reload_override_in[r] = equiv;
6744 equiv = 0;
6745 break;
6746 }
6747
6748 /* If the equiv register we have found is explicitly clobbered
6749 in the current insn, it depends on the reload type if we
6750 can use it, use it for reload_override_in, or not at all.
6751 In particular, we then can't use EQUIV for a
6752 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6753
6754 if (equiv != 0)
6755 {
6756 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6757 switch (rld[r].when_needed)
6758 {
6759 case RELOAD_FOR_OTHER_ADDRESS:
6760 case RELOAD_FOR_INPADDR_ADDRESS:
6761 case RELOAD_FOR_INPUT_ADDRESS:
6762 case RELOAD_FOR_OPADDR_ADDR:
6763 break;
6764 case RELOAD_OTHER:
6765 case RELOAD_FOR_INPUT:
6766 case RELOAD_FOR_OPERAND_ADDRESS:
6767 if (! rld[r].optional)
6768 reload_override_in[r] = equiv;
6769 /* Fall through. */
6770 default:
6771 equiv = 0;
6772 break;
6773 }
6774 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6775 switch (rld[r].when_needed)
6776 {
6777 case RELOAD_FOR_OTHER_ADDRESS:
6778 case RELOAD_FOR_INPADDR_ADDRESS:
6779 case RELOAD_FOR_INPUT_ADDRESS:
6780 case RELOAD_FOR_OPADDR_ADDR:
6781 case RELOAD_FOR_OPERAND_ADDRESS:
6782 case RELOAD_FOR_INPUT:
6783 break;
6784 case RELOAD_OTHER:
6785 if (! rld[r].optional)
6786 reload_override_in[r] = equiv;
6787 /* Fall through. */
6788 default:
6789 equiv = 0;
6790 break;
6791 }
6792 }
6793
6794 /* If we found an equivalent reg, say no code need be generated
6795 to load it, and use it as our reload reg. */
6796 if (equiv != 0
6797 && (regno != HARD_FRAME_POINTER_REGNUM
6798 || !frame_pointer_needed))
6799 {
6800 int nr = hard_regno_nregs[regno][rld[r].mode];
6801 int k;
6802 rld[r].reg_rtx = equiv;
6803 reload_spill_index[r] = regno;
6804 reload_inherited[r] = 1;
6805
6806 /* If reg_reloaded_valid is not set for this register,
6807 there might be a stale spill_reg_store lying around.
6808 We must clear it, since otherwise emit_reload_insns
6809 might delete the store. */
6810 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6811 spill_reg_store[regno] = NULL_RTX;
6812 /* If any of the hard registers in EQUIV are spill
6813 registers, mark them as in use for this insn. */
6814 for (k = 0; k < nr; k++)
6815 {
6816 i = spill_reg_order[regno + k];
6817 if (i >= 0)
6818 {
6819 mark_reload_reg_in_use (regno, rld[r].opnum,
6820 rld[r].when_needed,
6821 rld[r].mode);
6822 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6823 regno + k);
6824 }
6825 }
6826 }
6827 }
6828
6829 /* If we found a register to use already, or if this is an optional
6830 reload, we are done. */
6831 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6832 continue;
6833
6834 #if 0
6835 /* No longer needed for correct operation. Might or might
6836 not give better code on the average. Want to experiment? */
6837
6838 /* See if there is a later reload that has a class different from our
6839 class that intersects our class or that requires less register
6840 than our reload. If so, we must allocate a register to this
6841 reload now, since that reload might inherit a previous reload
6842 and take the only available register in our class. Don't do this
6843 for optional reloads since they will force all previous reloads
6844 to be allocated. Also don't do this for reloads that have been
6845 turned off. */
6846
6847 for (i = j + 1; i < n_reloads; i++)
6848 {
6849 int s = reload_order[i];
6850
6851 if ((rld[s].in == 0 && rld[s].out == 0
6852 && ! rld[s].secondary_p)
6853 || rld[s].optional)
6854 continue;
6855
6856 if ((rld[s].rclass != rld[r].rclass
6857 && reg_classes_intersect_p (rld[r].rclass,
6858 rld[s].rclass))
6859 || rld[s].nregs < rld[r].nregs)
6860 break;
6861 }
6862
6863 if (i == n_reloads)
6864 continue;
6865
6866 allocate_reload_reg (chain, r, j == n_reloads - 1);
6867 #endif
6868 }
6869
6870 /* Now allocate reload registers for anything non-optional that
6871 didn't get one yet. */
6872 for (j = 0; j < n_reloads; j++)
6873 {
6874 int r = reload_order[j];
6875
6876 /* Ignore reloads that got marked inoperative. */
6877 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6878 continue;
6879
6880 /* Skip reloads that already have a register allocated or are
6881 optional. */
6882 if (rld[r].reg_rtx != 0 || rld[r].optional)
6883 continue;
6884
6885 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6886 break;
6887 }
6888
6889 /* If that loop got all the way, we have won. */
6890 if (j == n_reloads)
6891 {
6892 win = 1;
6893 break;
6894 }
6895
6896 /* Loop around and try without any inheritance. */
6897 }
6898
6899 if (! win)
6900 {
6901 /* First undo everything done by the failed attempt
6902 to allocate with inheritance. */
6903 choose_reload_regs_init (chain, save_reload_reg_rtx);
6904
6905 /* Some sanity tests to verify that the reloads found in the first
6906 pass are identical to the ones we have now. */
6907 gcc_assert (chain->n_reloads == n_reloads);
6908
6909 for (i = 0; i < n_reloads; i++)
6910 {
6911 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6912 continue;
6913 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6914 for (j = 0; j < n_spills; j++)
6915 if (spill_regs[j] == chain->rld[i].regno)
6916 if (! set_reload_reg (j, i))
6917 failed_reload (chain->insn, i);
6918 }
6919 }
6920
6921 /* If we thought we could inherit a reload, because it seemed that
6922 nothing else wanted the same reload register earlier in the insn,
6923 verify that assumption, now that all reloads have been assigned.
6924 Likewise for reloads where reload_override_in has been set. */
6925
6926 /* If doing expensive optimizations, do one preliminary pass that doesn't
6927 cancel any inheritance, but removes reloads that have been needed only
6928 for reloads that we know can be inherited. */
6929 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6930 {
6931 for (j = 0; j < n_reloads; j++)
6932 {
6933 int r = reload_order[j];
6934 rtx check_reg;
6935 if (reload_inherited[r] && rld[r].reg_rtx)
6936 check_reg = rld[r].reg_rtx;
6937 else if (reload_override_in[r]
6938 && (REG_P (reload_override_in[r])
6939 || GET_CODE (reload_override_in[r]) == SUBREG))
6940 check_reg = reload_override_in[r];
6941 else
6942 continue;
6943 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6944 rld[r].opnum, rld[r].when_needed, rld[r].in,
6945 (reload_inherited[r]
6946 ? rld[r].out : const0_rtx),
6947 r, 1))
6948 {
6949 if (pass)
6950 continue;
6951 reload_inherited[r] = 0;
6952 reload_override_in[r] = 0;
6953 }
6954 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6955 reload_override_in, then we do not need its related
6956 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6957 likewise for other reload types.
6958 We handle this by removing a reload when its only replacement
6959 is mentioned in reload_in of the reload we are going to inherit.
6960 A special case are auto_inc expressions; even if the input is
6961 inherited, we still need the address for the output. We can
6962 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6963 If we succeeded removing some reload and we are doing a preliminary
6964 pass just to remove such reloads, make another pass, since the
6965 removal of one reload might allow us to inherit another one. */
6966 else if (rld[r].in
6967 && rld[r].out != rld[r].in
6968 && remove_address_replacements (rld[r].in) && pass)
6969 pass = 2;
6970 }
6971 }
6972
6973 /* Now that reload_override_in is known valid,
6974 actually override reload_in. */
6975 for (j = 0; j < n_reloads; j++)
6976 if (reload_override_in[j])
6977 rld[j].in = reload_override_in[j];
6978
6979 /* If this reload won't be done because it has been canceled or is
6980 optional and not inherited, clear reload_reg_rtx so other
6981 routines (such as subst_reloads) don't get confused. */
6982 for (j = 0; j < n_reloads; j++)
6983 if (rld[j].reg_rtx != 0
6984 && ((rld[j].optional && ! reload_inherited[j])
6985 || (rld[j].in == 0 && rld[j].out == 0
6986 && ! rld[j].secondary_p)))
6987 {
6988 int regno = true_regnum (rld[j].reg_rtx);
6989
6990 if (spill_reg_order[regno] >= 0)
6991 clear_reload_reg_in_use (regno, rld[j].opnum,
6992 rld[j].when_needed, rld[j].mode);
6993 rld[j].reg_rtx = 0;
6994 reload_spill_index[j] = -1;
6995 }
6996
6997 /* Record which pseudos and which spill regs have output reloads. */
6998 for (j = 0; j < n_reloads; j++)
6999 {
7000 int r = reload_order[j];
7001
7002 i = reload_spill_index[r];
7003
7004 /* I is nonneg if this reload uses a register.
7005 If rld[r].reg_rtx is 0, this is an optional reload
7006 that we opted to ignore. */
7007 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7008 && rld[r].reg_rtx != 0)
7009 {
7010 int nregno = REGNO (rld[r].out_reg);
7011 int nr = 1;
7012
7013 if (nregno < FIRST_PSEUDO_REGISTER)
7014 nr = hard_regno_nregs[nregno][rld[r].mode];
7015
7016 while (--nr >= 0)
7017 SET_REGNO_REG_SET (&reg_has_output_reload,
7018 nregno + nr);
7019
7020 if (i >= 0)
7021 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7022
7023 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7024 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7025 || rld[r].when_needed == RELOAD_FOR_INSN);
7026 }
7027 }
7028 }
7029
7030 /* Deallocate the reload register for reload R. This is called from
7031 remove_address_replacements. */
7032
7033 void
7034 deallocate_reload_reg (int r)
7035 {
7036 int regno;
7037
7038 if (! rld[r].reg_rtx)
7039 return;
7040 regno = true_regnum (rld[r].reg_rtx);
7041 rld[r].reg_rtx = 0;
7042 if (spill_reg_order[regno] >= 0)
7043 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7044 rld[r].mode);
7045 reload_spill_index[r] = -1;
7046 }
7047 \f
7048 /* These arrays are filled by emit_reload_insns and its subroutines. */
7049 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7050 static rtx other_input_address_reload_insns = 0;
7051 static rtx other_input_reload_insns = 0;
7052 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7053 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7054 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7055 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7056 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7057 static rtx operand_reload_insns = 0;
7058 static rtx other_operand_reload_insns = 0;
7059 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7060
7061 /* Values to be put in spill_reg_store are put here first. */
7062 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7063 static HARD_REG_SET reg_reloaded_died;
7064
7065 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7066 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7067 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7068 adjusted register, and return true. Otherwise, return false. */
7069 static bool
7070 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7071 enum reg_class new_class,
7072 enum machine_mode new_mode)
7073
7074 {
7075 rtx reg;
7076
7077 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7078 {
7079 unsigned regno = REGNO (reg);
7080
7081 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7082 continue;
7083 if (GET_MODE (reg) != new_mode)
7084 {
7085 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7086 continue;
7087 if (hard_regno_nregs[regno][new_mode]
7088 > hard_regno_nregs[regno][GET_MODE (reg)])
7089 continue;
7090 reg = reload_adjust_reg_for_mode (reg, new_mode);
7091 }
7092 *reload_reg = reg;
7093 return true;
7094 }
7095 return false;
7096 }
7097
7098 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7099 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7100 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7101 adjusted register, and return true. Otherwise, return false. */
7102 static bool
7103 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7104 enum insn_code icode)
7105
7106 {
7107 enum reg_class new_class = scratch_reload_class (icode);
7108 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7109
7110 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7111 new_class, new_mode);
7112 }
7113
7114 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7115 has the number J. OLD contains the value to be used as input. */
7116
7117 static void
7118 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7119 rtx old, int j)
7120 {
7121 rtx insn = chain->insn;
7122 rtx reloadreg;
7123 rtx oldequiv_reg = 0;
7124 rtx oldequiv = 0;
7125 int special = 0;
7126 enum machine_mode mode;
7127 rtx *where;
7128
7129 /* delete_output_reload is only invoked properly if old contains
7130 the original pseudo register. Since this is replaced with a
7131 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7132 find the pseudo in RELOAD_IN_REG. */
7133 if (reload_override_in[j]
7134 && REG_P (rl->in_reg))
7135 {
7136 oldequiv = old;
7137 old = rl->in_reg;
7138 }
7139 if (oldequiv == 0)
7140 oldequiv = old;
7141 else if (REG_P (oldequiv))
7142 oldequiv_reg = oldequiv;
7143 else if (GET_CODE (oldequiv) == SUBREG)
7144 oldequiv_reg = SUBREG_REG (oldequiv);
7145
7146 reloadreg = reload_reg_rtx_for_input[j];
7147 mode = GET_MODE (reloadreg);
7148
7149 /* If we are reloading from a register that was recently stored in
7150 with an output-reload, see if we can prove there was
7151 actually no need to store the old value in it. */
7152
7153 if (optimize && REG_P (oldequiv)
7154 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7155 && spill_reg_store[REGNO (oldequiv)]
7156 && REG_P (old)
7157 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7158 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7159 rl->out_reg)))
7160 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7161
7162 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7163 OLDEQUIV. */
7164
7165 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7166 oldequiv = SUBREG_REG (oldequiv);
7167 if (GET_MODE (oldequiv) != VOIDmode
7168 && mode != GET_MODE (oldequiv))
7169 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7170
7171 /* Switch to the right place to emit the reload insns. */
7172 switch (rl->when_needed)
7173 {
7174 case RELOAD_OTHER:
7175 where = &other_input_reload_insns;
7176 break;
7177 case RELOAD_FOR_INPUT:
7178 where = &input_reload_insns[rl->opnum];
7179 break;
7180 case RELOAD_FOR_INPUT_ADDRESS:
7181 where = &input_address_reload_insns[rl->opnum];
7182 break;
7183 case RELOAD_FOR_INPADDR_ADDRESS:
7184 where = &inpaddr_address_reload_insns[rl->opnum];
7185 break;
7186 case RELOAD_FOR_OUTPUT_ADDRESS:
7187 where = &output_address_reload_insns[rl->opnum];
7188 break;
7189 case RELOAD_FOR_OUTADDR_ADDRESS:
7190 where = &outaddr_address_reload_insns[rl->opnum];
7191 break;
7192 case RELOAD_FOR_OPERAND_ADDRESS:
7193 where = &operand_reload_insns;
7194 break;
7195 case RELOAD_FOR_OPADDR_ADDR:
7196 where = &other_operand_reload_insns;
7197 break;
7198 case RELOAD_FOR_OTHER_ADDRESS:
7199 where = &other_input_address_reload_insns;
7200 break;
7201 default:
7202 gcc_unreachable ();
7203 }
7204
7205 push_to_sequence (*where);
7206
7207 /* Auto-increment addresses must be reloaded in a special way. */
7208 if (rl->out && ! rl->out_reg)
7209 {
7210 /* We are not going to bother supporting the case where a
7211 incremented register can't be copied directly from
7212 OLDEQUIV since this seems highly unlikely. */
7213 gcc_assert (rl->secondary_in_reload < 0);
7214
7215 if (reload_inherited[j])
7216 oldequiv = reloadreg;
7217
7218 old = XEXP (rl->in_reg, 0);
7219
7220 /* Prevent normal processing of this reload. */
7221 special = 1;
7222 /* Output a special code sequence for this case, and forget about
7223 spill reg information. */
7224 new_spill_reg_store[REGNO (reloadreg)] = NULL;
7225 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7226 }
7227
7228 /* If we are reloading a pseudo-register that was set by the previous
7229 insn, see if we can get rid of that pseudo-register entirely
7230 by redirecting the previous insn into our reload register. */
7231
7232 else if (optimize && REG_P (old)
7233 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7234 && dead_or_set_p (insn, old)
7235 /* This is unsafe if some other reload
7236 uses the same reg first. */
7237 && ! conflicts_with_override (reloadreg)
7238 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7239 rl->when_needed, old, rl->out, j, 0))
7240 {
7241 rtx temp = PREV_INSN (insn);
7242 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7243 temp = PREV_INSN (temp);
7244 if (temp
7245 && NONJUMP_INSN_P (temp)
7246 && GET_CODE (PATTERN (temp)) == SET
7247 && SET_DEST (PATTERN (temp)) == old
7248 /* Make sure we can access insn_operand_constraint. */
7249 && asm_noperands (PATTERN (temp)) < 0
7250 /* This is unsafe if operand occurs more than once in current
7251 insn. Perhaps some occurrences aren't reloaded. */
7252 && count_occurrences (PATTERN (insn), old, 0) == 1)
7253 {
7254 rtx old = SET_DEST (PATTERN (temp));
7255 /* Store into the reload register instead of the pseudo. */
7256 SET_DEST (PATTERN (temp)) = reloadreg;
7257
7258 /* Verify that resulting insn is valid. */
7259 extract_insn (temp);
7260 if (constrain_operands (1))
7261 {
7262 /* If the previous insn is an output reload, the source is
7263 a reload register, and its spill_reg_store entry will
7264 contain the previous destination. This is now
7265 invalid. */
7266 if (REG_P (SET_SRC (PATTERN (temp)))
7267 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7268 {
7269 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7270 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7271 }
7272
7273 /* If these are the only uses of the pseudo reg,
7274 pretend for GDB it lives in the reload reg we used. */
7275 if (REG_N_DEATHS (REGNO (old)) == 1
7276 && REG_N_SETS (REGNO (old)) == 1)
7277 {
7278 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7279 if (ira_conflicts_p)
7280 /* Inform IRA about the change. */
7281 ira_mark_allocation_change (REGNO (old));
7282 alter_reg (REGNO (old), -1, false);
7283 }
7284 special = 1;
7285
7286 /* Adjust any debug insns between temp and insn. */
7287 while ((temp = NEXT_INSN (temp)) != insn)
7288 if (DEBUG_INSN_P (temp))
7289 replace_rtx (PATTERN (temp), old, reloadreg);
7290 else
7291 gcc_assert (NOTE_P (temp));
7292 }
7293 else
7294 {
7295 SET_DEST (PATTERN (temp)) = old;
7296 }
7297 }
7298 }
7299
7300 /* We can't do that, so output an insn to load RELOADREG. */
7301
7302 /* If we have a secondary reload, pick up the secondary register
7303 and icode, if any. If OLDEQUIV and OLD are different or
7304 if this is an in-out reload, recompute whether or not we
7305 still need a secondary register and what the icode should
7306 be. If we still need a secondary register and the class or
7307 icode is different, go back to reloading from OLD if using
7308 OLDEQUIV means that we got the wrong type of register. We
7309 cannot have different class or icode due to an in-out reload
7310 because we don't make such reloads when both the input and
7311 output need secondary reload registers. */
7312
7313 if (! special && rl->secondary_in_reload >= 0)
7314 {
7315 rtx second_reload_reg = 0;
7316 rtx third_reload_reg = 0;
7317 int secondary_reload = rl->secondary_in_reload;
7318 rtx real_oldequiv = oldequiv;
7319 rtx real_old = old;
7320 rtx tmp;
7321 enum insn_code icode;
7322 enum insn_code tertiary_icode = CODE_FOR_nothing;
7323
7324 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7325 and similarly for OLD.
7326 See comments in get_secondary_reload in reload.c. */
7327 /* If it is a pseudo that cannot be replaced with its
7328 equivalent MEM, we must fall back to reload_in, which
7329 will have all the necessary substitutions registered.
7330 Likewise for a pseudo that can't be replaced with its
7331 equivalent constant.
7332
7333 Take extra care for subregs of such pseudos. Note that
7334 we cannot use reg_equiv_mem in this case because it is
7335 not in the right mode. */
7336
7337 tmp = oldequiv;
7338 if (GET_CODE (tmp) == SUBREG)
7339 tmp = SUBREG_REG (tmp);
7340 if (REG_P (tmp)
7341 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7342 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7343 || reg_equiv_constant (REGNO (tmp)) != 0))
7344 {
7345 if (! reg_equiv_mem (REGNO (tmp))
7346 || num_not_at_initial_offset
7347 || GET_CODE (oldequiv) == SUBREG)
7348 real_oldequiv = rl->in;
7349 else
7350 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7351 }
7352
7353 tmp = old;
7354 if (GET_CODE (tmp) == SUBREG)
7355 tmp = SUBREG_REG (tmp);
7356 if (REG_P (tmp)
7357 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7358 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7359 || reg_equiv_constant (REGNO (tmp)) != 0))
7360 {
7361 if (! reg_equiv_mem (REGNO (tmp))
7362 || num_not_at_initial_offset
7363 || GET_CODE (old) == SUBREG)
7364 real_old = rl->in;
7365 else
7366 real_old = reg_equiv_mem (REGNO (tmp));
7367 }
7368
7369 second_reload_reg = rld[secondary_reload].reg_rtx;
7370 if (rld[secondary_reload].secondary_in_reload >= 0)
7371 {
7372 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7373
7374 third_reload_reg = rld[tertiary_reload].reg_rtx;
7375 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7376 /* We'd have to add more code for quartary reloads. */
7377 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7378 }
7379 icode = rl->secondary_in_icode;
7380
7381 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7382 || (rl->in != 0 && rl->out != 0))
7383 {
7384 secondary_reload_info sri, sri2;
7385 enum reg_class new_class, new_t_class;
7386
7387 sri.icode = CODE_FOR_nothing;
7388 sri.prev_sri = NULL;
7389 new_class
7390 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7391 rl->rclass, mode,
7392 &sri);
7393
7394 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7395 second_reload_reg = 0;
7396 else if (new_class == NO_REGS)
7397 {
7398 if (reload_adjust_reg_for_icode (&second_reload_reg,
7399 third_reload_reg,
7400 (enum insn_code) sri.icode))
7401 {
7402 icode = (enum insn_code) sri.icode;
7403 third_reload_reg = 0;
7404 }
7405 else
7406 {
7407 oldequiv = old;
7408 real_oldequiv = real_old;
7409 }
7410 }
7411 else if (sri.icode != CODE_FOR_nothing)
7412 /* We currently lack a way to express this in reloads. */
7413 gcc_unreachable ();
7414 else
7415 {
7416 sri2.icode = CODE_FOR_nothing;
7417 sri2.prev_sri = &sri;
7418 new_t_class
7419 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7420 new_class, mode,
7421 &sri);
7422 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7423 {
7424 if (reload_adjust_reg_for_temp (&second_reload_reg,
7425 third_reload_reg,
7426 new_class, mode))
7427 {
7428 third_reload_reg = 0;
7429 tertiary_icode = (enum insn_code) sri2.icode;
7430 }
7431 else
7432 {
7433 oldequiv = old;
7434 real_oldequiv = real_old;
7435 }
7436 }
7437 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7438 {
7439 rtx intermediate = second_reload_reg;
7440
7441 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7442 new_class, mode)
7443 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7444 ((enum insn_code)
7445 sri2.icode)))
7446 {
7447 second_reload_reg = intermediate;
7448 tertiary_icode = (enum insn_code) sri2.icode;
7449 }
7450 else
7451 {
7452 oldequiv = old;
7453 real_oldequiv = real_old;
7454 }
7455 }
7456 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7457 {
7458 rtx intermediate = second_reload_reg;
7459
7460 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7461 new_class, mode)
7462 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7463 new_t_class, mode))
7464 {
7465 second_reload_reg = intermediate;
7466 tertiary_icode = (enum insn_code) sri2.icode;
7467 }
7468 else
7469 {
7470 oldequiv = old;
7471 real_oldequiv = real_old;
7472 }
7473 }
7474 else
7475 {
7476 /* This could be handled more intelligently too. */
7477 oldequiv = old;
7478 real_oldequiv = real_old;
7479 }
7480 }
7481 }
7482
7483 /* If we still need a secondary reload register, check
7484 to see if it is being used as a scratch or intermediate
7485 register and generate code appropriately. If we need
7486 a scratch register, use REAL_OLDEQUIV since the form of
7487 the insn may depend on the actual address if it is
7488 a MEM. */
7489
7490 if (second_reload_reg)
7491 {
7492 if (icode != CODE_FOR_nothing)
7493 {
7494 /* We'd have to add extra code to handle this case. */
7495 gcc_assert (!third_reload_reg);
7496
7497 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7498 second_reload_reg));
7499 special = 1;
7500 }
7501 else
7502 {
7503 /* See if we need a scratch register to load the
7504 intermediate register (a tertiary reload). */
7505 if (tertiary_icode != CODE_FOR_nothing)
7506 {
7507 emit_insn ((GEN_FCN (tertiary_icode)
7508 (second_reload_reg, real_oldequiv,
7509 third_reload_reg)));
7510 }
7511 else if (third_reload_reg)
7512 {
7513 gen_reload (third_reload_reg, real_oldequiv,
7514 rl->opnum,
7515 rl->when_needed);
7516 gen_reload (second_reload_reg, third_reload_reg,
7517 rl->opnum,
7518 rl->when_needed);
7519 }
7520 else
7521 gen_reload (second_reload_reg, real_oldequiv,
7522 rl->opnum,
7523 rl->when_needed);
7524
7525 oldequiv = second_reload_reg;
7526 }
7527 }
7528 }
7529
7530 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7531 {
7532 rtx real_oldequiv = oldequiv;
7533
7534 if ((REG_P (oldequiv)
7535 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7536 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7537 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7538 || (GET_CODE (oldequiv) == SUBREG
7539 && REG_P (SUBREG_REG (oldequiv))
7540 && (REGNO (SUBREG_REG (oldequiv))
7541 >= FIRST_PSEUDO_REGISTER)
7542 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7543 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7544 || (CONSTANT_P (oldequiv)
7545 && (targetm.preferred_reload_class (oldequiv,
7546 REGNO_REG_CLASS (REGNO (reloadreg)))
7547 == NO_REGS)))
7548 real_oldequiv = rl->in;
7549 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7550 rl->when_needed);
7551 }
7552
7553 if (cfun->can_throw_non_call_exceptions)
7554 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7555
7556 /* End this sequence. */
7557 *where = get_insns ();
7558 end_sequence ();
7559
7560 /* Update reload_override_in so that delete_address_reloads_1
7561 can see the actual register usage. */
7562 if (oldequiv_reg)
7563 reload_override_in[j] = oldequiv;
7564 }
7565
7566 /* Generate insns to for the output reload RL, which is for the insn described
7567 by CHAIN and has the number J. */
7568 static void
7569 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7570 int j)
7571 {
7572 rtx reloadreg;
7573 rtx insn = chain->insn;
7574 int special = 0;
7575 rtx old = rl->out;
7576 enum machine_mode mode;
7577 rtx p;
7578 rtx rl_reg_rtx;
7579
7580 if (rl->when_needed == RELOAD_OTHER)
7581 start_sequence ();
7582 else
7583 push_to_sequence (output_reload_insns[rl->opnum]);
7584
7585 rl_reg_rtx = reload_reg_rtx_for_output[j];
7586 mode = GET_MODE (rl_reg_rtx);
7587
7588 reloadreg = rl_reg_rtx;
7589
7590 /* If we need two reload regs, set RELOADREG to the intermediate
7591 one, since it will be stored into OLD. We might need a secondary
7592 register only for an input reload, so check again here. */
7593
7594 if (rl->secondary_out_reload >= 0)
7595 {
7596 rtx real_old = old;
7597 int secondary_reload = rl->secondary_out_reload;
7598 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7599
7600 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7601 && reg_equiv_mem (REGNO (old)) != 0)
7602 real_old = reg_equiv_mem (REGNO (old));
7603
7604 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7605 {
7606 rtx second_reloadreg = reloadreg;
7607 reloadreg = rld[secondary_reload].reg_rtx;
7608
7609 /* See if RELOADREG is to be used as a scratch register
7610 or as an intermediate register. */
7611 if (rl->secondary_out_icode != CODE_FOR_nothing)
7612 {
7613 /* We'd have to add extra code to handle this case. */
7614 gcc_assert (tertiary_reload < 0);
7615
7616 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7617 (real_old, second_reloadreg, reloadreg)));
7618 special = 1;
7619 }
7620 else
7621 {
7622 /* See if we need both a scratch and intermediate reload
7623 register. */
7624
7625 enum insn_code tertiary_icode
7626 = rld[secondary_reload].secondary_out_icode;
7627
7628 /* We'd have to add more code for quartary reloads. */
7629 gcc_assert (tertiary_reload < 0
7630 || rld[tertiary_reload].secondary_out_reload < 0);
7631
7632 if (GET_MODE (reloadreg) != mode)
7633 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7634
7635 if (tertiary_icode != CODE_FOR_nothing)
7636 {
7637 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7638
7639 /* Copy primary reload reg to secondary reload reg.
7640 (Note that these have been swapped above, then
7641 secondary reload reg to OLD using our insn.) */
7642
7643 /* If REAL_OLD is a paradoxical SUBREG, remove it
7644 and try to put the opposite SUBREG on
7645 RELOADREG. */
7646 strip_paradoxical_subreg (&real_old, &reloadreg);
7647
7648 gen_reload (reloadreg, second_reloadreg,
7649 rl->opnum, rl->when_needed);
7650 emit_insn ((GEN_FCN (tertiary_icode)
7651 (real_old, reloadreg, third_reloadreg)));
7652 special = 1;
7653 }
7654
7655 else
7656 {
7657 /* Copy between the reload regs here and then to
7658 OUT later. */
7659
7660 gen_reload (reloadreg, second_reloadreg,
7661 rl->opnum, rl->when_needed);
7662 if (tertiary_reload >= 0)
7663 {
7664 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7665
7666 gen_reload (third_reloadreg, reloadreg,
7667 rl->opnum, rl->when_needed);
7668 reloadreg = third_reloadreg;
7669 }
7670 }
7671 }
7672 }
7673 }
7674
7675 /* Output the last reload insn. */
7676 if (! special)
7677 {
7678 rtx set;
7679
7680 /* Don't output the last reload if OLD is not the dest of
7681 INSN and is in the src and is clobbered by INSN. */
7682 if (! flag_expensive_optimizations
7683 || !REG_P (old)
7684 || !(set = single_set (insn))
7685 || rtx_equal_p (old, SET_DEST (set))
7686 || !reg_mentioned_p (old, SET_SRC (set))
7687 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7688 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7689 gen_reload (old, reloadreg, rl->opnum,
7690 rl->when_needed);
7691 }
7692
7693 /* Look at all insns we emitted, just to be safe. */
7694 for (p = get_insns (); p; p = NEXT_INSN (p))
7695 if (INSN_P (p))
7696 {
7697 rtx pat = PATTERN (p);
7698
7699 /* If this output reload doesn't come from a spill reg,
7700 clear any memory of reloaded copies of the pseudo reg.
7701 If this output reload comes from a spill reg,
7702 reg_has_output_reload will make this do nothing. */
7703 note_stores (pat, forget_old_reloads_1, NULL);
7704
7705 if (reg_mentioned_p (rl_reg_rtx, pat))
7706 {
7707 rtx set = single_set (insn);
7708 if (reload_spill_index[j] < 0
7709 && set
7710 && SET_SRC (set) == rl_reg_rtx)
7711 {
7712 int src = REGNO (SET_SRC (set));
7713
7714 reload_spill_index[j] = src;
7715 SET_HARD_REG_BIT (reg_is_output_reload, src);
7716 if (find_regno_note (insn, REG_DEAD, src))
7717 SET_HARD_REG_BIT (reg_reloaded_died, src);
7718 }
7719 if (HARD_REGISTER_P (rl_reg_rtx))
7720 {
7721 int s = rl->secondary_out_reload;
7722 set = single_set (p);
7723 /* If this reload copies only to the secondary reload
7724 register, the secondary reload does the actual
7725 store. */
7726 if (s >= 0 && set == NULL_RTX)
7727 /* We can't tell what function the secondary reload
7728 has and where the actual store to the pseudo is
7729 made; leave new_spill_reg_store alone. */
7730 ;
7731 else if (s >= 0
7732 && SET_SRC (set) == rl_reg_rtx
7733 && SET_DEST (set) == rld[s].reg_rtx)
7734 {
7735 /* Usually the next instruction will be the
7736 secondary reload insn; if we can confirm
7737 that it is, setting new_spill_reg_store to
7738 that insn will allow an extra optimization. */
7739 rtx s_reg = rld[s].reg_rtx;
7740 rtx next = NEXT_INSN (p);
7741 rld[s].out = rl->out;
7742 rld[s].out_reg = rl->out_reg;
7743 set = single_set (next);
7744 if (set && SET_SRC (set) == s_reg
7745 && ! new_spill_reg_store[REGNO (s_reg)])
7746 {
7747 SET_HARD_REG_BIT (reg_is_output_reload,
7748 REGNO (s_reg));
7749 new_spill_reg_store[REGNO (s_reg)] = next;
7750 }
7751 }
7752 else
7753 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7754 }
7755 }
7756 }
7757
7758 if (rl->when_needed == RELOAD_OTHER)
7759 {
7760 emit_insn (other_output_reload_insns[rl->opnum]);
7761 other_output_reload_insns[rl->opnum] = get_insns ();
7762 }
7763 else
7764 output_reload_insns[rl->opnum] = get_insns ();
7765
7766 if (cfun->can_throw_non_call_exceptions)
7767 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7768
7769 end_sequence ();
7770 }
7771
7772 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7773 and has the number J. */
7774 static void
7775 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7776 {
7777 rtx insn = chain->insn;
7778 rtx old = (rl->in && MEM_P (rl->in)
7779 ? rl->in_reg : rl->in);
7780 rtx reg_rtx = rl->reg_rtx;
7781
7782 if (old && reg_rtx)
7783 {
7784 enum machine_mode mode;
7785
7786 /* Determine the mode to reload in.
7787 This is very tricky because we have three to choose from.
7788 There is the mode the insn operand wants (rl->inmode).
7789 There is the mode of the reload register RELOADREG.
7790 There is the intrinsic mode of the operand, which we could find
7791 by stripping some SUBREGs.
7792 It turns out that RELOADREG's mode is irrelevant:
7793 we can change that arbitrarily.
7794
7795 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7796 then the reload reg may not support QImode moves, so use SImode.
7797 If foo is in memory due to spilling a pseudo reg, this is safe,
7798 because the QImode value is in the least significant part of a
7799 slot big enough for a SImode. If foo is some other sort of
7800 memory reference, then it is impossible to reload this case,
7801 so previous passes had better make sure this never happens.
7802
7803 Then consider a one-word union which has SImode and one of its
7804 members is a float, being fetched as (SUBREG:SF union:SI).
7805 We must fetch that as SFmode because we could be loading into
7806 a float-only register. In this case OLD's mode is correct.
7807
7808 Consider an immediate integer: it has VOIDmode. Here we need
7809 to get a mode from something else.
7810
7811 In some cases, there is a fourth mode, the operand's
7812 containing mode. If the insn specifies a containing mode for
7813 this operand, it overrides all others.
7814
7815 I am not sure whether the algorithm here is always right,
7816 but it does the right things in those cases. */
7817
7818 mode = GET_MODE (old);
7819 if (mode == VOIDmode)
7820 mode = rl->inmode;
7821
7822 /* We cannot use gen_lowpart_common since it can do the wrong thing
7823 when REG_RTX has a multi-word mode. Note that REG_RTX must
7824 always be a REG here. */
7825 if (GET_MODE (reg_rtx) != mode)
7826 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7827 }
7828 reload_reg_rtx_for_input[j] = reg_rtx;
7829
7830 if (old != 0
7831 /* AUTO_INC reloads need to be handled even if inherited. We got an
7832 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7833 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7834 && ! rtx_equal_p (reg_rtx, old)
7835 && reg_rtx != 0)
7836 emit_input_reload_insns (chain, rld + j, old, j);
7837
7838 /* When inheriting a wider reload, we have a MEM in rl->in,
7839 e.g. inheriting a SImode output reload for
7840 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7841 if (optimize && reload_inherited[j] && rl->in
7842 && MEM_P (rl->in)
7843 && MEM_P (rl->in_reg)
7844 && reload_spill_index[j] >= 0
7845 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7846 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7847
7848 /* If we are reloading a register that was recently stored in with an
7849 output-reload, see if we can prove there was
7850 actually no need to store the old value in it. */
7851
7852 if (optimize
7853 && (reload_inherited[j] || reload_override_in[j])
7854 && reg_rtx
7855 && REG_P (reg_rtx)
7856 && spill_reg_store[REGNO (reg_rtx)] != 0
7857 #if 0
7858 /* There doesn't seem to be any reason to restrict this to pseudos
7859 and doing so loses in the case where we are copying from a
7860 register of the wrong class. */
7861 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7862 #endif
7863 /* The insn might have already some references to stackslots
7864 replaced by MEMs, while reload_out_reg still names the
7865 original pseudo. */
7866 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7867 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7868 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7869 }
7870
7871 /* Do output reloading for reload RL, which is for the insn described by
7872 CHAIN and has the number J.
7873 ??? At some point we need to support handling output reloads of
7874 JUMP_INSNs or insns that set cc0. */
7875 static void
7876 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7877 {
7878 rtx note, old;
7879 rtx insn = chain->insn;
7880 /* If this is an output reload that stores something that is
7881 not loaded in this same reload, see if we can eliminate a previous
7882 store. */
7883 rtx pseudo = rl->out_reg;
7884 rtx reg_rtx = rl->reg_rtx;
7885
7886 if (rl->out && reg_rtx)
7887 {
7888 enum machine_mode mode;
7889
7890 /* Determine the mode to reload in.
7891 See comments above (for input reloading). */
7892 mode = GET_MODE (rl->out);
7893 if (mode == VOIDmode)
7894 {
7895 /* VOIDmode should never happen for an output. */
7896 if (asm_noperands (PATTERN (insn)) < 0)
7897 /* It's the compiler's fault. */
7898 fatal_insn ("VOIDmode on an output", insn);
7899 error_for_asm (insn, "output operand is constant in %<asm%>");
7900 /* Prevent crash--use something we know is valid. */
7901 mode = word_mode;
7902 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7903 }
7904 if (GET_MODE (reg_rtx) != mode)
7905 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7906 }
7907 reload_reg_rtx_for_output[j] = reg_rtx;
7908
7909 if (pseudo
7910 && optimize
7911 && REG_P (pseudo)
7912 && ! rtx_equal_p (rl->in_reg, pseudo)
7913 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7914 && reg_last_reload_reg[REGNO (pseudo)])
7915 {
7916 int pseudo_no = REGNO (pseudo);
7917 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7918
7919 /* We don't need to test full validity of last_regno for
7920 inherit here; we only want to know if the store actually
7921 matches the pseudo. */
7922 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7923 && reg_reloaded_contents[last_regno] == pseudo_no
7924 && spill_reg_store[last_regno]
7925 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7926 delete_output_reload (insn, j, last_regno, reg_rtx);
7927 }
7928
7929 old = rl->out_reg;
7930 if (old == 0
7931 || reg_rtx == 0
7932 || rtx_equal_p (old, reg_rtx))
7933 return;
7934
7935 /* An output operand that dies right away does need a reload,
7936 but need not be copied from it. Show the new location in the
7937 REG_UNUSED note. */
7938 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7939 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7940 {
7941 XEXP (note, 0) = reg_rtx;
7942 return;
7943 }
7944 /* Likewise for a SUBREG of an operand that dies. */
7945 else if (GET_CODE (old) == SUBREG
7946 && REG_P (SUBREG_REG (old))
7947 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7948 SUBREG_REG (old))))
7949 {
7950 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7951 return;
7952 }
7953 else if (GET_CODE (old) == SCRATCH)
7954 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7955 but we don't want to make an output reload. */
7956 return;
7957
7958 /* If is a JUMP_INSN, we can't support output reloads yet. */
7959 gcc_assert (NONJUMP_INSN_P (insn));
7960
7961 emit_output_reload_insns (chain, rld + j, j);
7962 }
7963
7964 /* A reload copies values of MODE from register SRC to register DEST.
7965 Return true if it can be treated for inheritance purposes like a
7966 group of reloads, each one reloading a single hard register. The
7967 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7968 occupy the same number of hard registers. */
7969
7970 static bool
7971 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7972 int src ATTRIBUTE_UNUSED,
7973 enum machine_mode mode ATTRIBUTE_UNUSED)
7974 {
7975 #ifdef CANNOT_CHANGE_MODE_CLASS
7976 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7977 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7978 #else
7979 return true;
7980 #endif
7981 }
7982
7983 /* Output insns to reload values in and out of the chosen reload regs. */
7984
7985 static void
7986 emit_reload_insns (struct insn_chain *chain)
7987 {
7988 rtx insn = chain->insn;
7989
7990 int j;
7991
7992 CLEAR_HARD_REG_SET (reg_reloaded_died);
7993
7994 for (j = 0; j < reload_n_operands; j++)
7995 input_reload_insns[j] = input_address_reload_insns[j]
7996 = inpaddr_address_reload_insns[j]
7997 = output_reload_insns[j] = output_address_reload_insns[j]
7998 = outaddr_address_reload_insns[j]
7999 = other_output_reload_insns[j] = 0;
8000 other_input_address_reload_insns = 0;
8001 other_input_reload_insns = 0;
8002 operand_reload_insns = 0;
8003 other_operand_reload_insns = 0;
8004
8005 /* Dump reloads into the dump file. */
8006 if (dump_file)
8007 {
8008 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8009 debug_reload_to_stream (dump_file);
8010 }
8011
8012 /* Now output the instructions to copy the data into and out of the
8013 reload registers. Do these in the order that the reloads were reported,
8014 since reloads of base and index registers precede reloads of operands
8015 and the operands may need the base and index registers reloaded. */
8016
8017 for (j = 0; j < n_reloads; j++)
8018 {
8019 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8020 {
8021 unsigned int i;
8022
8023 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8024 new_spill_reg_store[i] = 0;
8025 }
8026
8027 do_input_reload (chain, rld + j, j);
8028 do_output_reload (chain, rld + j, j);
8029 }
8030
8031 /* Now write all the insns we made for reloads in the order expected by
8032 the allocation functions. Prior to the insn being reloaded, we write
8033 the following reloads:
8034
8035 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8036
8037 RELOAD_OTHER reloads.
8038
8039 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8040 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8041 RELOAD_FOR_INPUT reload for the operand.
8042
8043 RELOAD_FOR_OPADDR_ADDRS reloads.
8044
8045 RELOAD_FOR_OPERAND_ADDRESS reloads.
8046
8047 After the insn being reloaded, we write the following:
8048
8049 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8050 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8051 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8052 reloads for the operand. The RELOAD_OTHER output reloads are
8053 output in descending order by reload number. */
8054
8055 emit_insn_before (other_input_address_reload_insns, insn);
8056 emit_insn_before (other_input_reload_insns, insn);
8057
8058 for (j = 0; j < reload_n_operands; j++)
8059 {
8060 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8061 emit_insn_before (input_address_reload_insns[j], insn);
8062 emit_insn_before (input_reload_insns[j], insn);
8063 }
8064
8065 emit_insn_before (other_operand_reload_insns, insn);
8066 emit_insn_before (operand_reload_insns, insn);
8067
8068 for (j = 0; j < reload_n_operands; j++)
8069 {
8070 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8071 x = emit_insn_after (output_address_reload_insns[j], x);
8072 x = emit_insn_after (output_reload_insns[j], x);
8073 emit_insn_after (other_output_reload_insns[j], x);
8074 }
8075
8076 /* For all the spill regs newly reloaded in this instruction,
8077 record what they were reloaded from, so subsequent instructions
8078 can inherit the reloads.
8079
8080 Update spill_reg_store for the reloads of this insn.
8081 Copy the elements that were updated in the loop above. */
8082
8083 for (j = 0; j < n_reloads; j++)
8084 {
8085 int r = reload_order[j];
8086 int i = reload_spill_index[r];
8087
8088 /* If this is a non-inherited input reload from a pseudo, we must
8089 clear any memory of a previous store to the same pseudo. Only do
8090 something if there will not be an output reload for the pseudo
8091 being reloaded. */
8092 if (rld[r].in_reg != 0
8093 && ! (reload_inherited[r] || reload_override_in[r]))
8094 {
8095 rtx reg = rld[r].in_reg;
8096
8097 if (GET_CODE (reg) == SUBREG)
8098 reg = SUBREG_REG (reg);
8099
8100 if (REG_P (reg)
8101 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8102 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8103 {
8104 int nregno = REGNO (reg);
8105
8106 if (reg_last_reload_reg[nregno])
8107 {
8108 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8109
8110 if (reg_reloaded_contents[last_regno] == nregno)
8111 spill_reg_store[last_regno] = 0;
8112 }
8113 }
8114 }
8115
8116 /* I is nonneg if this reload used a register.
8117 If rld[r].reg_rtx is 0, this is an optional reload
8118 that we opted to ignore. */
8119
8120 if (i >= 0 && rld[r].reg_rtx != 0)
8121 {
8122 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8123 int k;
8124
8125 /* For a multi register reload, we need to check if all or part
8126 of the value lives to the end. */
8127 for (k = 0; k < nr; k++)
8128 if (reload_reg_reaches_end_p (i + k, r))
8129 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8130
8131 /* Maybe the spill reg contains a copy of reload_out. */
8132 if (rld[r].out != 0
8133 && (REG_P (rld[r].out)
8134 || (rld[r].out_reg
8135 ? REG_P (rld[r].out_reg)
8136 /* The reload value is an auto-modification of
8137 some kind. For PRE_INC, POST_INC, PRE_DEC
8138 and POST_DEC, we record an equivalence
8139 between the reload register and the operand
8140 on the optimistic assumption that we can make
8141 the equivalence hold. reload_as_needed must
8142 then either make it hold or invalidate the
8143 equivalence.
8144
8145 PRE_MODIFY and POST_MODIFY addresses are reloaded
8146 somewhat differently, and allowing them here leads
8147 to problems. */
8148 : (GET_CODE (rld[r].out) != POST_MODIFY
8149 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8150 {
8151 rtx reg;
8152 enum machine_mode mode;
8153 int regno, nregs;
8154
8155 reg = reload_reg_rtx_for_output[r];
8156 mode = GET_MODE (reg);
8157 regno = REGNO (reg);
8158 nregs = hard_regno_nregs[regno][mode];
8159 if (reload_regs_reach_end_p (regno, nregs, r))
8160 {
8161 rtx out = (REG_P (rld[r].out)
8162 ? rld[r].out
8163 : rld[r].out_reg
8164 ? rld[r].out_reg
8165 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8166 int out_regno = REGNO (out);
8167 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8168 : hard_regno_nregs[out_regno][mode]);
8169 bool piecemeal;
8170
8171 spill_reg_store[regno] = new_spill_reg_store[regno];
8172 spill_reg_stored_to[regno] = out;
8173 reg_last_reload_reg[out_regno] = reg;
8174
8175 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8176 && nregs == out_nregs
8177 && inherit_piecemeal_p (out_regno, regno, mode));
8178
8179 /* If OUT_REGNO is a hard register, it may occupy more than
8180 one register. If it does, say what is in the
8181 rest of the registers assuming that both registers
8182 agree on how many words the object takes. If not,
8183 invalidate the subsequent registers. */
8184
8185 if (HARD_REGISTER_NUM_P (out_regno))
8186 for (k = 1; k < out_nregs; k++)
8187 reg_last_reload_reg[out_regno + k]
8188 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8189
8190 /* Now do the inverse operation. */
8191 for (k = 0; k < nregs; k++)
8192 {
8193 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8194 reg_reloaded_contents[regno + k]
8195 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8196 ? out_regno
8197 : out_regno + k);
8198 reg_reloaded_insn[regno + k] = insn;
8199 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8200 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8201 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8202 regno + k);
8203 else
8204 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8205 regno + k);
8206 }
8207 }
8208 }
8209 /* Maybe the spill reg contains a copy of reload_in. Only do
8210 something if there will not be an output reload for
8211 the register being reloaded. */
8212 else if (rld[r].out_reg == 0
8213 && rld[r].in != 0
8214 && ((REG_P (rld[r].in)
8215 && !HARD_REGISTER_P (rld[r].in)
8216 && !REGNO_REG_SET_P (&reg_has_output_reload,
8217 REGNO (rld[r].in)))
8218 || (REG_P (rld[r].in_reg)
8219 && !REGNO_REG_SET_P (&reg_has_output_reload,
8220 REGNO (rld[r].in_reg))))
8221 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8222 {
8223 rtx reg;
8224 enum machine_mode mode;
8225 int regno, nregs;
8226
8227 reg = reload_reg_rtx_for_input[r];
8228 mode = GET_MODE (reg);
8229 regno = REGNO (reg);
8230 nregs = hard_regno_nregs[regno][mode];
8231 if (reload_regs_reach_end_p (regno, nregs, r))
8232 {
8233 int in_regno;
8234 int in_nregs;
8235 rtx in;
8236 bool piecemeal;
8237
8238 if (REG_P (rld[r].in)
8239 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8240 in = rld[r].in;
8241 else if (REG_P (rld[r].in_reg))
8242 in = rld[r].in_reg;
8243 else
8244 in = XEXP (rld[r].in_reg, 0);
8245 in_regno = REGNO (in);
8246
8247 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8248 : hard_regno_nregs[in_regno][mode]);
8249
8250 reg_last_reload_reg[in_regno] = reg;
8251
8252 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8253 && nregs == in_nregs
8254 && inherit_piecemeal_p (regno, in_regno, mode));
8255
8256 if (HARD_REGISTER_NUM_P (in_regno))
8257 for (k = 1; k < in_nregs; k++)
8258 reg_last_reload_reg[in_regno + k]
8259 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8260
8261 /* Unless we inherited this reload, show we haven't
8262 recently done a store.
8263 Previous stores of inherited auto_inc expressions
8264 also have to be discarded. */
8265 if (! reload_inherited[r]
8266 || (rld[r].out && ! rld[r].out_reg))
8267 spill_reg_store[regno] = 0;
8268
8269 for (k = 0; k < nregs; k++)
8270 {
8271 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8272 reg_reloaded_contents[regno + k]
8273 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8274 ? in_regno
8275 : in_regno + k);
8276 reg_reloaded_insn[regno + k] = insn;
8277 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8278 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8279 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8280 regno + k);
8281 else
8282 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8283 regno + k);
8284 }
8285 }
8286 }
8287 }
8288
8289 /* The following if-statement was #if 0'd in 1.34 (or before...).
8290 It's reenabled in 1.35 because supposedly nothing else
8291 deals with this problem. */
8292
8293 /* If a register gets output-reloaded from a non-spill register,
8294 that invalidates any previous reloaded copy of it.
8295 But forget_old_reloads_1 won't get to see it, because
8296 it thinks only about the original insn. So invalidate it here.
8297 Also do the same thing for RELOAD_OTHER constraints where the
8298 output is discarded. */
8299 if (i < 0
8300 && ((rld[r].out != 0
8301 && (REG_P (rld[r].out)
8302 || (MEM_P (rld[r].out)
8303 && REG_P (rld[r].out_reg))))
8304 || (rld[r].out == 0 && rld[r].out_reg
8305 && REG_P (rld[r].out_reg))))
8306 {
8307 rtx out = ((rld[r].out && REG_P (rld[r].out))
8308 ? rld[r].out : rld[r].out_reg);
8309 int out_regno = REGNO (out);
8310 enum machine_mode mode = GET_MODE (out);
8311
8312 /* REG_RTX is now set or clobbered by the main instruction.
8313 As the comment above explains, forget_old_reloads_1 only
8314 sees the original instruction, and there is no guarantee
8315 that the original instruction also clobbered REG_RTX.
8316 For example, if find_reloads sees that the input side of
8317 a matched operand pair dies in this instruction, it may
8318 use the input register as the reload register.
8319
8320 Calling forget_old_reloads_1 is a waste of effort if
8321 REG_RTX is also the output register.
8322
8323 If we know that REG_RTX holds the value of a pseudo
8324 register, the code after the call will record that fact. */
8325 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8326 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8327
8328 if (!HARD_REGISTER_NUM_P (out_regno))
8329 {
8330 rtx src_reg, store_insn = NULL_RTX;
8331
8332 reg_last_reload_reg[out_regno] = 0;
8333
8334 /* If we can find a hard register that is stored, record
8335 the storing insn so that we may delete this insn with
8336 delete_output_reload. */
8337 src_reg = reload_reg_rtx_for_output[r];
8338
8339 /* If this is an optional reload, try to find the source reg
8340 from an input reload. */
8341 if (! src_reg)
8342 {
8343 rtx set = single_set (insn);
8344 if (set && SET_DEST (set) == rld[r].out)
8345 {
8346 int k;
8347
8348 src_reg = SET_SRC (set);
8349 store_insn = insn;
8350 for (k = 0; k < n_reloads; k++)
8351 {
8352 if (rld[k].in == src_reg)
8353 {
8354 src_reg = reload_reg_rtx_for_input[k];
8355 break;
8356 }
8357 }
8358 }
8359 }
8360 else
8361 store_insn = new_spill_reg_store[REGNO (src_reg)];
8362 if (src_reg && REG_P (src_reg)
8363 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8364 {
8365 int src_regno, src_nregs, k;
8366 rtx note;
8367
8368 gcc_assert (GET_MODE (src_reg) == mode);
8369 src_regno = REGNO (src_reg);
8370 src_nregs = hard_regno_nregs[src_regno][mode];
8371 /* The place where to find a death note varies with
8372 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8373 necessarily checked exactly in the code that moves
8374 notes, so just check both locations. */
8375 note = find_regno_note (insn, REG_DEAD, src_regno);
8376 if (! note && store_insn)
8377 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8378 for (k = 0; k < src_nregs; k++)
8379 {
8380 spill_reg_store[src_regno + k] = store_insn;
8381 spill_reg_stored_to[src_regno + k] = out;
8382 reg_reloaded_contents[src_regno + k] = out_regno;
8383 reg_reloaded_insn[src_regno + k] = store_insn;
8384 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8385 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8386 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8387 mode))
8388 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8389 src_regno + k);
8390 else
8391 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8392 src_regno + k);
8393 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8394 if (note)
8395 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8396 else
8397 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8398 }
8399 reg_last_reload_reg[out_regno] = src_reg;
8400 /* We have to set reg_has_output_reload here, or else
8401 forget_old_reloads_1 will clear reg_last_reload_reg
8402 right away. */
8403 SET_REGNO_REG_SET (&reg_has_output_reload,
8404 out_regno);
8405 }
8406 }
8407 else
8408 {
8409 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8410
8411 for (k = 0; k < out_nregs; k++)
8412 reg_last_reload_reg[out_regno + k] = 0;
8413 }
8414 }
8415 }
8416 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8417 }
8418 \f
8419 /* Go through the motions to emit INSN and test if it is strictly valid.
8420 Return the emitted insn if valid, else return NULL. */
8421
8422 static rtx
8423 emit_insn_if_valid_for_reload (rtx insn)
8424 {
8425 rtx last = get_last_insn ();
8426 int code;
8427
8428 insn = emit_insn (insn);
8429 code = recog_memoized (insn);
8430
8431 if (code >= 0)
8432 {
8433 extract_insn (insn);
8434 /* We want constrain operands to treat this insn strictly in its
8435 validity determination, i.e., the way it would after reload has
8436 completed. */
8437 if (constrain_operands (1))
8438 return insn;
8439 }
8440
8441 delete_insns_since (last);
8442 return NULL;
8443 }
8444
8445 /* Emit code to perform a reload from IN (which may be a reload register) to
8446 OUT (which may also be a reload register). IN or OUT is from operand
8447 OPNUM with reload type TYPE.
8448
8449 Returns first insn emitted. */
8450
8451 static rtx
8452 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8453 {
8454 rtx last = get_last_insn ();
8455 rtx tem;
8456
8457 /* If IN is a paradoxical SUBREG, remove it and try to put the
8458 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8459 if (!strip_paradoxical_subreg (&in, &out))
8460 strip_paradoxical_subreg (&out, &in);
8461
8462 /* How to do this reload can get quite tricky. Normally, we are being
8463 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8464 register that didn't get a hard register. In that case we can just
8465 call emit_move_insn.
8466
8467 We can also be asked to reload a PLUS that adds a register or a MEM to
8468 another register, constant or MEM. This can occur during frame pointer
8469 elimination and while reloading addresses. This case is handled by
8470 trying to emit a single insn to perform the add. If it is not valid,
8471 we use a two insn sequence.
8472
8473 Or we can be asked to reload an unary operand that was a fragment of
8474 an addressing mode, into a register. If it isn't recognized as-is,
8475 we try making the unop operand and the reload-register the same:
8476 (set reg:X (unop:X expr:Y))
8477 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8478
8479 Finally, we could be called to handle an 'o' constraint by putting
8480 an address into a register. In that case, we first try to do this
8481 with a named pattern of "reload_load_address". If no such pattern
8482 exists, we just emit a SET insn and hope for the best (it will normally
8483 be valid on machines that use 'o').
8484
8485 This entire process is made complex because reload will never
8486 process the insns we generate here and so we must ensure that
8487 they will fit their constraints and also by the fact that parts of
8488 IN might be being reloaded separately and replaced with spill registers.
8489 Because of this, we are, in some sense, just guessing the right approach
8490 here. The one listed above seems to work.
8491
8492 ??? At some point, this whole thing needs to be rethought. */
8493
8494 if (GET_CODE (in) == PLUS
8495 && (REG_P (XEXP (in, 0))
8496 || GET_CODE (XEXP (in, 0)) == SUBREG
8497 || MEM_P (XEXP (in, 0)))
8498 && (REG_P (XEXP (in, 1))
8499 || GET_CODE (XEXP (in, 1)) == SUBREG
8500 || CONSTANT_P (XEXP (in, 1))
8501 || MEM_P (XEXP (in, 1))))
8502 {
8503 /* We need to compute the sum of a register or a MEM and another
8504 register, constant, or MEM, and put it into the reload
8505 register. The best possible way of doing this is if the machine
8506 has a three-operand ADD insn that accepts the required operands.
8507
8508 The simplest approach is to try to generate such an insn and see if it
8509 is recognized and matches its constraints. If so, it can be used.
8510
8511 It might be better not to actually emit the insn unless it is valid,
8512 but we need to pass the insn as an operand to `recog' and
8513 `extract_insn' and it is simpler to emit and then delete the insn if
8514 not valid than to dummy things up. */
8515
8516 rtx op0, op1, tem, insn;
8517 enum insn_code code;
8518
8519 op0 = find_replacement (&XEXP (in, 0));
8520 op1 = find_replacement (&XEXP (in, 1));
8521
8522 /* Since constraint checking is strict, commutativity won't be
8523 checked, so we need to do that here to avoid spurious failure
8524 if the add instruction is two-address and the second operand
8525 of the add is the same as the reload reg, which is frequently
8526 the case. If the insn would be A = B + A, rearrange it so
8527 it will be A = A + B as constrain_operands expects. */
8528
8529 if (REG_P (XEXP (in, 1))
8530 && REGNO (out) == REGNO (XEXP (in, 1)))
8531 tem = op0, op0 = op1, op1 = tem;
8532
8533 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8534 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8535
8536 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8537 if (insn)
8538 return insn;
8539
8540 /* If that failed, we must use a conservative two-insn sequence.
8541
8542 Use a move to copy one operand into the reload register. Prefer
8543 to reload a constant, MEM or pseudo since the move patterns can
8544 handle an arbitrary operand. If OP1 is not a constant, MEM or
8545 pseudo and OP1 is not a valid operand for an add instruction, then
8546 reload OP1.
8547
8548 After reloading one of the operands into the reload register, add
8549 the reload register to the output register.
8550
8551 If there is another way to do this for a specific machine, a
8552 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8553 we emit below. */
8554
8555 code = optab_handler (add_optab, GET_MODE (out));
8556
8557 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8558 || (REG_P (op1)
8559 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8560 || (code != CODE_FOR_nothing
8561 && !insn_operand_matches (code, 2, op1)))
8562 tem = op0, op0 = op1, op1 = tem;
8563
8564 gen_reload (out, op0, opnum, type);
8565
8566 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8567 This fixes a problem on the 32K where the stack pointer cannot
8568 be used as an operand of an add insn. */
8569
8570 if (rtx_equal_p (op0, op1))
8571 op1 = out;
8572
8573 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8574 if (insn)
8575 {
8576 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8577 set_unique_reg_note (insn, REG_EQUIV, in);
8578 return insn;
8579 }
8580
8581 /* If that failed, copy the address register to the reload register.
8582 Then add the constant to the reload register. */
8583
8584 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8585 gen_reload (out, op1, opnum, type);
8586 insn = emit_insn (gen_add2_insn (out, op0));
8587 set_unique_reg_note (insn, REG_EQUIV, in);
8588 }
8589
8590 #ifdef SECONDARY_MEMORY_NEEDED
8591 /* If we need a memory location to do the move, do it that way. */
8592 else if ((REG_P (in)
8593 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8594 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8595 && (REG_P (out)
8596 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8597 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8598 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8599 REGNO_REG_CLASS (reg_or_subregno (out)),
8600 GET_MODE (out)))
8601 {
8602 /* Get the memory to use and rewrite both registers to its mode. */
8603 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8604
8605 if (GET_MODE (loc) != GET_MODE (out))
8606 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8607
8608 if (GET_MODE (loc) != GET_MODE (in))
8609 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8610
8611 gen_reload (loc, in, opnum, type);
8612 gen_reload (out, loc, opnum, type);
8613 }
8614 #endif
8615 else if (REG_P (out) && UNARY_P (in))
8616 {
8617 rtx insn;
8618 rtx op1;
8619 rtx out_moded;
8620 rtx set;
8621
8622 op1 = find_replacement (&XEXP (in, 0));
8623 if (op1 != XEXP (in, 0))
8624 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8625
8626 /* First, try a plain SET. */
8627 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8628 if (set)
8629 return set;
8630
8631 /* If that failed, move the inner operand to the reload
8632 register, and try the same unop with the inner expression
8633 replaced with the reload register. */
8634
8635 if (GET_MODE (op1) != GET_MODE (out))
8636 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8637 else
8638 out_moded = out;
8639
8640 gen_reload (out_moded, op1, opnum, type);
8641
8642 insn
8643 = gen_rtx_SET (VOIDmode, out,
8644 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8645 out_moded));
8646 insn = emit_insn_if_valid_for_reload (insn);
8647 if (insn)
8648 {
8649 set_unique_reg_note (insn, REG_EQUIV, in);
8650 return insn;
8651 }
8652
8653 fatal_insn ("failure trying to reload:", set);
8654 }
8655 /* If IN is a simple operand, use gen_move_insn. */
8656 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8657 {
8658 tem = emit_insn (gen_move_insn (out, in));
8659 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8660 mark_jump_label (in, tem, 0);
8661 }
8662
8663 #ifdef HAVE_reload_load_address
8664 else if (HAVE_reload_load_address)
8665 emit_insn (gen_reload_load_address (out, in));
8666 #endif
8667
8668 /* Otherwise, just write (set OUT IN) and hope for the best. */
8669 else
8670 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8671
8672 /* Return the first insn emitted.
8673 We can not just return get_last_insn, because there may have
8674 been multiple instructions emitted. Also note that gen_move_insn may
8675 emit more than one insn itself, so we can not assume that there is one
8676 insn emitted per emit_insn_before call. */
8677
8678 return last ? NEXT_INSN (last) : get_insns ();
8679 }
8680 \f
8681 /* Delete a previously made output-reload whose result we now believe
8682 is not needed. First we double-check.
8683
8684 INSN is the insn now being processed.
8685 LAST_RELOAD_REG is the hard register number for which we want to delete
8686 the last output reload.
8687 J is the reload-number that originally used REG. The caller has made
8688 certain that reload J doesn't use REG any longer for input.
8689 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8690
8691 static void
8692 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8693 {
8694 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8695 rtx reg = spill_reg_stored_to[last_reload_reg];
8696 int k;
8697 int n_occurrences;
8698 int n_inherited = 0;
8699 rtx i1;
8700 rtx substed;
8701 unsigned regno;
8702 int nregs;
8703
8704 /* It is possible that this reload has been only used to set another reload
8705 we eliminated earlier and thus deleted this instruction too. */
8706 if (INSN_DELETED_P (output_reload_insn))
8707 return;
8708
8709 /* Get the raw pseudo-register referred to. */
8710
8711 while (GET_CODE (reg) == SUBREG)
8712 reg = SUBREG_REG (reg);
8713 substed = reg_equiv_memory_loc (REGNO (reg));
8714
8715 /* This is unsafe if the operand occurs more often in the current
8716 insn than it is inherited. */
8717 for (k = n_reloads - 1; k >= 0; k--)
8718 {
8719 rtx reg2 = rld[k].in;
8720 if (! reg2)
8721 continue;
8722 if (MEM_P (reg2) || reload_override_in[k])
8723 reg2 = rld[k].in_reg;
8724 #ifdef AUTO_INC_DEC
8725 if (rld[k].out && ! rld[k].out_reg)
8726 reg2 = XEXP (rld[k].in_reg, 0);
8727 #endif
8728 while (GET_CODE (reg2) == SUBREG)
8729 reg2 = SUBREG_REG (reg2);
8730 if (rtx_equal_p (reg2, reg))
8731 {
8732 if (reload_inherited[k] || reload_override_in[k] || k == j)
8733 n_inherited++;
8734 else
8735 return;
8736 }
8737 }
8738 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8739 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8740 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8741 reg, 0);
8742 if (substed)
8743 n_occurrences += count_occurrences (PATTERN (insn),
8744 eliminate_regs (substed, VOIDmode,
8745 NULL_RTX), 0);
8746 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8747 {
8748 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8749 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8750 }
8751 if (n_occurrences > n_inherited)
8752 return;
8753
8754 regno = REGNO (reg);
8755 if (regno >= FIRST_PSEUDO_REGISTER)
8756 nregs = 1;
8757 else
8758 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8759
8760 /* If the pseudo-reg we are reloading is no longer referenced
8761 anywhere between the store into it and here,
8762 and we're within the same basic block, then the value can only
8763 pass through the reload reg and end up here.
8764 Otherwise, give up--return. */
8765 for (i1 = NEXT_INSN (output_reload_insn);
8766 i1 != insn; i1 = NEXT_INSN (i1))
8767 {
8768 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8769 return;
8770 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8771 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8772 {
8773 /* If this is USE in front of INSN, we only have to check that
8774 there are no more references than accounted for by inheritance. */
8775 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8776 {
8777 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8778 i1 = NEXT_INSN (i1);
8779 }
8780 if (n_occurrences <= n_inherited && i1 == insn)
8781 break;
8782 return;
8783 }
8784 }
8785
8786 /* We will be deleting the insn. Remove the spill reg information. */
8787 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8788 {
8789 spill_reg_store[last_reload_reg + k] = 0;
8790 spill_reg_stored_to[last_reload_reg + k] = 0;
8791 }
8792
8793 /* The caller has already checked that REG dies or is set in INSN.
8794 It has also checked that we are optimizing, and thus some
8795 inaccuracies in the debugging information are acceptable.
8796 So we could just delete output_reload_insn. But in some cases
8797 we can improve the debugging information without sacrificing
8798 optimization - maybe even improving the code: See if the pseudo
8799 reg has been completely replaced with reload regs. If so, delete
8800 the store insn and forget we had a stack slot for the pseudo. */
8801 if (rld[j].out != rld[j].in
8802 && REG_N_DEATHS (REGNO (reg)) == 1
8803 && REG_N_SETS (REGNO (reg)) == 1
8804 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8805 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8806 {
8807 rtx i2;
8808
8809 /* We know that it was used only between here and the beginning of
8810 the current basic block. (We also know that the last use before
8811 INSN was the output reload we are thinking of deleting, but never
8812 mind that.) Search that range; see if any ref remains. */
8813 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8814 {
8815 rtx set = single_set (i2);
8816
8817 /* Uses which just store in the pseudo don't count,
8818 since if they are the only uses, they are dead. */
8819 if (set != 0 && SET_DEST (set) == reg)
8820 continue;
8821 if (LABEL_P (i2)
8822 || JUMP_P (i2))
8823 break;
8824 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8825 && reg_mentioned_p (reg, PATTERN (i2)))
8826 {
8827 /* Some other ref remains; just delete the output reload we
8828 know to be dead. */
8829 delete_address_reloads (output_reload_insn, insn);
8830 delete_insn (output_reload_insn);
8831 return;
8832 }
8833 }
8834
8835 /* Delete the now-dead stores into this pseudo. Note that this
8836 loop also takes care of deleting output_reload_insn. */
8837 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8838 {
8839 rtx set = single_set (i2);
8840
8841 if (set != 0 && SET_DEST (set) == reg)
8842 {
8843 delete_address_reloads (i2, insn);
8844 delete_insn (i2);
8845 }
8846 if (LABEL_P (i2)
8847 || JUMP_P (i2))
8848 break;
8849 }
8850
8851 /* For the debugging info, say the pseudo lives in this reload reg. */
8852 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8853 if (ira_conflicts_p)
8854 /* Inform IRA about the change. */
8855 ira_mark_allocation_change (REGNO (reg));
8856 alter_reg (REGNO (reg), -1, false);
8857 }
8858 else
8859 {
8860 delete_address_reloads (output_reload_insn, insn);
8861 delete_insn (output_reload_insn);
8862 }
8863 }
8864
8865 /* We are going to delete DEAD_INSN. Recursively delete loads of
8866 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8867 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8868 static void
8869 delete_address_reloads (rtx dead_insn, rtx current_insn)
8870 {
8871 rtx set = single_set (dead_insn);
8872 rtx set2, dst, prev, next;
8873 if (set)
8874 {
8875 rtx dst = SET_DEST (set);
8876 if (MEM_P (dst))
8877 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8878 }
8879 /* If we deleted the store from a reloaded post_{in,de}c expression,
8880 we can delete the matching adds. */
8881 prev = PREV_INSN (dead_insn);
8882 next = NEXT_INSN (dead_insn);
8883 if (! prev || ! next)
8884 return;
8885 set = single_set (next);
8886 set2 = single_set (prev);
8887 if (! set || ! set2
8888 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8889 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8890 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8891 return;
8892 dst = SET_DEST (set);
8893 if (! rtx_equal_p (dst, SET_DEST (set2))
8894 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8895 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8896 || (INTVAL (XEXP (SET_SRC (set), 1))
8897 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8898 return;
8899 delete_related_insns (prev);
8900 delete_related_insns (next);
8901 }
8902
8903 /* Subfunction of delete_address_reloads: process registers found in X. */
8904 static void
8905 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8906 {
8907 rtx prev, set, dst, i2;
8908 int i, j;
8909 enum rtx_code code = GET_CODE (x);
8910
8911 if (code != REG)
8912 {
8913 const char *fmt = GET_RTX_FORMAT (code);
8914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8915 {
8916 if (fmt[i] == 'e')
8917 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8918 else if (fmt[i] == 'E')
8919 {
8920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8921 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8922 current_insn);
8923 }
8924 }
8925 return;
8926 }
8927
8928 if (spill_reg_order[REGNO (x)] < 0)
8929 return;
8930
8931 /* Scan backwards for the insn that sets x. This might be a way back due
8932 to inheritance. */
8933 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8934 {
8935 code = GET_CODE (prev);
8936 if (code == CODE_LABEL || code == JUMP_INSN)
8937 return;
8938 if (!INSN_P (prev))
8939 continue;
8940 if (reg_set_p (x, PATTERN (prev)))
8941 break;
8942 if (reg_referenced_p (x, PATTERN (prev)))
8943 return;
8944 }
8945 if (! prev || INSN_UID (prev) < reload_first_uid)
8946 return;
8947 /* Check that PREV only sets the reload register. */
8948 set = single_set (prev);
8949 if (! set)
8950 return;
8951 dst = SET_DEST (set);
8952 if (!REG_P (dst)
8953 || ! rtx_equal_p (dst, x))
8954 return;
8955 if (! reg_set_p (dst, PATTERN (dead_insn)))
8956 {
8957 /* Check if DST was used in a later insn -
8958 it might have been inherited. */
8959 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8960 {
8961 if (LABEL_P (i2))
8962 break;
8963 if (! INSN_P (i2))
8964 continue;
8965 if (reg_referenced_p (dst, PATTERN (i2)))
8966 {
8967 /* If there is a reference to the register in the current insn,
8968 it might be loaded in a non-inherited reload. If no other
8969 reload uses it, that means the register is set before
8970 referenced. */
8971 if (i2 == current_insn)
8972 {
8973 for (j = n_reloads - 1; j >= 0; j--)
8974 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8975 || reload_override_in[j] == dst)
8976 return;
8977 for (j = n_reloads - 1; j >= 0; j--)
8978 if (rld[j].in && rld[j].reg_rtx == dst)
8979 break;
8980 if (j >= 0)
8981 break;
8982 }
8983 return;
8984 }
8985 if (JUMP_P (i2))
8986 break;
8987 /* If DST is still live at CURRENT_INSN, check if it is used for
8988 any reload. Note that even if CURRENT_INSN sets DST, we still
8989 have to check the reloads. */
8990 if (i2 == current_insn)
8991 {
8992 for (j = n_reloads - 1; j >= 0; j--)
8993 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8994 || reload_override_in[j] == dst)
8995 return;
8996 /* ??? We can't finish the loop here, because dst might be
8997 allocated to a pseudo in this block if no reload in this
8998 block needs any of the classes containing DST - see
8999 spill_hard_reg. There is no easy way to tell this, so we
9000 have to scan till the end of the basic block. */
9001 }
9002 if (reg_set_p (dst, PATTERN (i2)))
9003 break;
9004 }
9005 }
9006 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9007 reg_reloaded_contents[REGNO (dst)] = -1;
9008 delete_insn (prev);
9009 }
9010 \f
9011 /* Output reload-insns to reload VALUE into RELOADREG.
9012 VALUE is an autoincrement or autodecrement RTX whose operand
9013 is a register or memory location;
9014 so reloading involves incrementing that location.
9015 IN is either identical to VALUE, or some cheaper place to reload from.
9016
9017 INC_AMOUNT is the number to increment or decrement by (always positive).
9018 This cannot be deduced from VALUE. */
9019
9020 static void
9021 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9022 {
9023 /* REG or MEM to be copied and incremented. */
9024 rtx incloc = find_replacement (&XEXP (value, 0));
9025 /* Nonzero if increment after copying. */
9026 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9027 || GET_CODE (value) == POST_MODIFY);
9028 rtx last;
9029 rtx inc;
9030 rtx add_insn;
9031 int code;
9032 rtx real_in = in == value ? incloc : in;
9033
9034 /* No hard register is equivalent to this register after
9035 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9036 we could inc/dec that register as well (maybe even using it for
9037 the source), but I'm not sure it's worth worrying about. */
9038 if (REG_P (incloc))
9039 reg_last_reload_reg[REGNO (incloc)] = 0;
9040
9041 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9042 {
9043 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9044 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9045 }
9046 else
9047 {
9048 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9049 inc_amount = -inc_amount;
9050
9051 inc = GEN_INT (inc_amount);
9052 }
9053
9054 /* If this is post-increment, first copy the location to the reload reg. */
9055 if (post && real_in != reloadreg)
9056 emit_insn (gen_move_insn (reloadreg, real_in));
9057
9058 if (in == value)
9059 {
9060 /* See if we can directly increment INCLOC. Use a method similar to
9061 that in gen_reload. */
9062
9063 last = get_last_insn ();
9064 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9065 gen_rtx_PLUS (GET_MODE (incloc),
9066 incloc, inc)));
9067
9068 code = recog_memoized (add_insn);
9069 if (code >= 0)
9070 {
9071 extract_insn (add_insn);
9072 if (constrain_operands (1))
9073 {
9074 /* If this is a pre-increment and we have incremented the value
9075 where it lives, copy the incremented value to RELOADREG to
9076 be used as an address. */
9077
9078 if (! post)
9079 emit_insn (gen_move_insn (reloadreg, incloc));
9080 return;
9081 }
9082 }
9083 delete_insns_since (last);
9084 }
9085
9086 /* If couldn't do the increment directly, must increment in RELOADREG.
9087 The way we do this depends on whether this is pre- or post-increment.
9088 For pre-increment, copy INCLOC to the reload register, increment it
9089 there, then save back. */
9090
9091 if (! post)
9092 {
9093 if (in != reloadreg)
9094 emit_insn (gen_move_insn (reloadreg, real_in));
9095 emit_insn (gen_add2_insn (reloadreg, inc));
9096 emit_insn (gen_move_insn (incloc, reloadreg));
9097 }
9098 else
9099 {
9100 /* Postincrement.
9101 Because this might be a jump insn or a compare, and because RELOADREG
9102 may not be available after the insn in an input reload, we must do
9103 the incrementation before the insn being reloaded for.
9104
9105 We have already copied IN to RELOADREG. Increment the copy in
9106 RELOADREG, save that back, then decrement RELOADREG so it has
9107 the original value. */
9108
9109 emit_insn (gen_add2_insn (reloadreg, inc));
9110 emit_insn (gen_move_insn (incloc, reloadreg));
9111 if (CONST_INT_P (inc))
9112 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9113 else
9114 emit_insn (gen_sub2_insn (reloadreg, inc));
9115 }
9116 }
9117 \f
9118 #ifdef AUTO_INC_DEC
9119 static void
9120 add_auto_inc_notes (rtx insn, rtx x)
9121 {
9122 enum rtx_code code = GET_CODE (x);
9123 const char *fmt;
9124 int i, j;
9125
9126 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9127 {
9128 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9129 return;
9130 }
9131
9132 /* Scan all the operand sub-expressions. */
9133 fmt = GET_RTX_FORMAT (code);
9134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9135 {
9136 if (fmt[i] == 'e')
9137 add_auto_inc_notes (insn, XEXP (x, i));
9138 else if (fmt[i] == 'E')
9139 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9140 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9141 }
9142 }
9143 #endif