re PR debug/49864 (ICE: in maybe_record_trace_start, at dwarf2cfi.c:2439)
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "output.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "target.h"
49 #include "emit-rtl.h"
50
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
57
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
61
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
65
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
73
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
77
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
84 \f
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
89
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
92
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
96
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
100
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
104
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
107
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
110
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
116
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
121
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
127
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
132
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
135
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
141
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
146
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
151
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
156
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
159
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
165
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
171
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
175
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
182
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
189
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
195
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
199
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
203
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
206
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
209
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
212
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
215
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
219
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
223
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
227
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
231
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
236
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
240
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
244
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
248
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
252
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
256
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
259 \f
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
264
265 struct elim_table
266 {
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
283 };
284
285 static struct elim_table *reg_eliminate = 0;
286
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
290 {
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
294
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
298
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
304
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
306
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
311
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
317
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
326
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
330
331 VEC(reg_equivs_t,gc) *reg_equivs;
332
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
336
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
342
343 typedef rtx *rtx_p;
344 DEF_VEC_P(rtx_p);
345 DEF_VEC_ALLOC_P(rtx_p,heap);
346 static VEC(rtx_p,heap) *substitute_stack;
347
348 /* Number of labels in the current function. */
349
350 static int num_labels;
351 \f
352 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
353 static void maybe_fix_stack_asms (void);
354 static void copy_reloads (struct insn_chain *);
355 static void calculate_needs_all_insns (int);
356 static int find_reg (struct insn_chain *, int);
357 static void find_reload_regs (struct insn_chain *);
358 static void select_reload_regs (void);
359 static void delete_caller_save_insns (void);
360
361 static void spill_failure (rtx, enum reg_class);
362 static void count_spilled_pseudo (int, int, int);
363 static void delete_dead_insn (rtx);
364 static void alter_reg (int, int, bool);
365 static void set_label_offsets (rtx, rtx, int);
366 static void check_eliminable_occurrences (rtx);
367 static void elimination_effects (rtx, enum machine_mode);
368 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
369 static int eliminate_regs_in_insn (rtx, int);
370 static void update_eliminable_offsets (void);
371 static void mark_not_eliminable (rtx, const_rtx, void *);
372 static void set_initial_elim_offsets (void);
373 static bool verify_initial_elim_offsets (void);
374 static void set_initial_label_offsets (void);
375 static void set_offsets_for_label (rtx);
376 static void init_eliminable_invariants (rtx, bool);
377 static void init_elim_table (void);
378 static void free_reg_equiv (void);
379 static void update_eliminables (HARD_REG_SET *);
380 static void elimination_costs_in_insn (rtx);
381 static void spill_hard_reg (unsigned int, int);
382 static int finish_spills (int);
383 static void scan_paradoxical_subregs (rtx);
384 static void count_pseudo (int);
385 static void order_regs_for_reload (struct insn_chain *);
386 static void reload_as_needed (int);
387 static void forget_old_reloads_1 (rtx, const_rtx, void *);
388 static void forget_marked_reloads (regset);
389 static int reload_reg_class_lower (const void *, const void *);
390 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static int reload_reg_free_p (unsigned int, int, enum reload_type);
395 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
400 static int allocate_reload_reg (struct insn_chain *, int, int);
401 static int conflicts_with_override (rtx);
402 static void failed_reload (rtx, int);
403 static int set_reload_reg (int, int);
404 static void choose_reload_regs_init (struct insn_chain *, rtx *);
405 static void choose_reload_regs (struct insn_chain *);
406 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
407 rtx, int);
408 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
409 int);
410 static void do_input_reload (struct insn_chain *, struct reload *, int);
411 static void do_output_reload (struct insn_chain *, struct reload *, int);
412 static void emit_reload_insns (struct insn_chain *);
413 static void delete_output_reload (rtx, int, int, rtx);
414 static void delete_address_reloads (rtx, rtx);
415 static void delete_address_reloads_1 (rtx, rtx, rtx);
416 static void inc_for_reload (rtx, rtx, rtx, int);
417 #ifdef AUTO_INC_DEC
418 static void add_auto_inc_notes (rtx, rtx);
419 #endif
420 static void substitute (rtx *, const_rtx, rtx);
421 static bool gen_reload_chain_without_interm_reg_p (int, int);
422 static int reloads_conflict (int, int);
423 static rtx gen_reload (rtx, rtx, int, enum reload_type);
424 static rtx emit_insn_if_valid_for_reload (rtx);
425 \f
426 /* Initialize the reload pass. This is called at the beginning of compilation
427 and may be called again if the target is reinitialized. */
428
429 void
430 init_reload (void)
431 {
432 int i;
433
434 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
435 Set spill_indirect_levels to the number of levels such addressing is
436 permitted, zero if it is not permitted at all. */
437
438 rtx tem
439 = gen_rtx_MEM (Pmode,
440 gen_rtx_PLUS (Pmode,
441 gen_rtx_REG (Pmode,
442 LAST_VIRTUAL_REGISTER + 1),
443 GEN_INT (4)));
444 spill_indirect_levels = 0;
445
446 while (memory_address_p (QImode, tem))
447 {
448 spill_indirect_levels++;
449 tem = gen_rtx_MEM (Pmode, tem);
450 }
451
452 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
453
454 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
455 indirect_symref_ok = memory_address_p (QImode, tem);
456
457 /* See if reg+reg is a valid (and offsettable) address. */
458
459 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
460 {
461 tem = gen_rtx_PLUS (Pmode,
462 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
463 gen_rtx_REG (Pmode, i));
464
465 /* This way, we make sure that reg+reg is an offsettable address. */
466 tem = plus_constant (tem, 4);
467
468 if (memory_address_p (QImode, tem))
469 {
470 double_reg_address_ok = 1;
471 break;
472 }
473 }
474
475 /* Initialize obstack for our rtl allocation. */
476 gcc_obstack_init (&reload_obstack);
477 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
478
479 INIT_REG_SET (&spilled_pseudos);
480 INIT_REG_SET (&changed_allocation_pseudos);
481 INIT_REG_SET (&pseudos_counted);
482 }
483
484 /* List of insn chains that are currently unused. */
485 static struct insn_chain *unused_insn_chains = 0;
486
487 /* Allocate an empty insn_chain structure. */
488 struct insn_chain *
489 new_insn_chain (void)
490 {
491 struct insn_chain *c;
492
493 if (unused_insn_chains == 0)
494 {
495 c = XOBNEW (&reload_obstack, struct insn_chain);
496 INIT_REG_SET (&c->live_throughout);
497 INIT_REG_SET (&c->dead_or_set);
498 }
499 else
500 {
501 c = unused_insn_chains;
502 unused_insn_chains = c->next;
503 }
504 c->is_caller_save_insn = 0;
505 c->need_operand_change = 0;
506 c->need_reload = 0;
507 c->need_elim = 0;
508 return c;
509 }
510
511 /* Small utility function to set all regs in hard reg set TO which are
512 allocated to pseudos in regset FROM. */
513
514 void
515 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
516 {
517 unsigned int regno;
518 reg_set_iterator rsi;
519
520 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
521 {
522 int r = reg_renumber[regno];
523
524 if (r < 0)
525 {
526 /* reload_combine uses the information from DF_LIVE_IN,
527 which might still contain registers that have not
528 actually been allocated since they have an
529 equivalence. */
530 gcc_assert (ira_conflicts_p || reload_completed);
531 }
532 else
533 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
534 }
535 }
536
537 /* Replace all pseudos found in LOC with their corresponding
538 equivalences. */
539
540 static void
541 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
542 {
543 rtx x = *loc;
544 enum rtx_code code;
545 const char *fmt;
546 int i, j;
547
548 if (! x)
549 return;
550
551 code = GET_CODE (x);
552 if (code == REG)
553 {
554 unsigned int regno = REGNO (x);
555
556 if (regno < FIRST_PSEUDO_REGISTER)
557 return;
558
559 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
560 if (x != *loc)
561 {
562 *loc = x;
563 replace_pseudos_in (loc, mem_mode, usage);
564 return;
565 }
566
567 if (reg_equiv_constant (regno))
568 *loc = reg_equiv_constant (regno);
569 else if (reg_equiv_invariant (regno))
570 *loc = reg_equiv_invariant (regno);
571 else if (reg_equiv_mem (regno))
572 *loc = reg_equiv_mem (regno);
573 else if (reg_equiv_address (regno))
574 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
575 else
576 {
577 gcc_assert (!REG_P (regno_reg_rtx[regno])
578 || REGNO (regno_reg_rtx[regno]) != regno);
579 *loc = regno_reg_rtx[regno];
580 }
581
582 return;
583 }
584 else if (code == MEM)
585 {
586 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
587 return;
588 }
589
590 /* Process each of our operands recursively. */
591 fmt = GET_RTX_FORMAT (code);
592 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
593 if (*fmt == 'e')
594 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
595 else if (*fmt == 'E')
596 for (j = 0; j < XVECLEN (x, i); j++)
597 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
598 }
599
600 /* Determine if the current function has an exception receiver block
601 that reaches the exit block via non-exceptional edges */
602
603 static bool
604 has_nonexceptional_receiver (void)
605 {
606 edge e;
607 edge_iterator ei;
608 basic_block *tos, *worklist, bb;
609
610 /* If we're not optimizing, then just err on the safe side. */
611 if (!optimize)
612 return true;
613
614 /* First determine which blocks can reach exit via normal paths. */
615 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
616
617 FOR_EACH_BB (bb)
618 bb->flags &= ~BB_REACHABLE;
619
620 /* Place the exit block on our worklist. */
621 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
622 *tos++ = EXIT_BLOCK_PTR;
623
624 /* Iterate: find everything reachable from what we've already seen. */
625 while (tos != worklist)
626 {
627 bb = *--tos;
628
629 FOR_EACH_EDGE (e, ei, bb->preds)
630 if (!(e->flags & EDGE_ABNORMAL))
631 {
632 basic_block src = e->src;
633
634 if (!(src->flags & BB_REACHABLE))
635 {
636 src->flags |= BB_REACHABLE;
637 *tos++ = src;
638 }
639 }
640 }
641 free (worklist);
642
643 /* Now see if there's a reachable block with an exceptional incoming
644 edge. */
645 FOR_EACH_BB (bb)
646 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
647 return true;
648
649 /* No exceptional block reached exit unexceptionally. */
650 return false;
651 }
652
653 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
654 zero elements) to MAX_REG_NUM elements.
655
656 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
657 void
658 grow_reg_equivs (void)
659 {
660 int old_size = VEC_length (reg_equivs_t, reg_equivs);
661 int max_regno = max_reg_num ();
662 int i;
663
664 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
665 for (i = old_size; i < max_regno; i++)
666 {
667 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
668 memset (VEC_index (reg_equivs_t, reg_equivs, i), 0, sizeof (reg_equivs_t));
669 }
670
671 }
672
673 \f
674 /* Global variables used by reload and its subroutines. */
675
676 /* The current basic block while in calculate_elim_costs_all_insns. */
677 static basic_block elim_bb;
678
679 /* Set during calculate_needs if an insn needs register elimination. */
680 static int something_needs_elimination;
681 /* Set during calculate_needs if an insn needs an operand changed. */
682 static int something_needs_operands_changed;
683 /* Set by alter_regs if we spilled a register to the stack. */
684 static bool something_was_spilled;
685
686 /* Nonzero means we couldn't get enough spill regs. */
687 static int failure;
688
689 /* Temporary array of pseudo-register number. */
690 static int *temp_pseudo_reg_arr;
691
692 /* Main entry point for the reload pass.
693
694 FIRST is the first insn of the function being compiled.
695
696 GLOBAL nonzero means we were called from global_alloc
697 and should attempt to reallocate any pseudoregs that we
698 displace from hard regs we will use for reloads.
699 If GLOBAL is zero, we do not have enough information to do that,
700 so any pseudo reg that is spilled must go to the stack.
701
702 Return value is TRUE if reload likely left dead insns in the
703 stream and a DCE pass should be run to elimiante them. Else the
704 return value is FALSE. */
705
706 bool
707 reload (rtx first, int global)
708 {
709 int i, n;
710 rtx insn;
711 struct elim_table *ep;
712 basic_block bb;
713 bool inserted;
714
715 /* Make sure even insns with volatile mem refs are recognizable. */
716 init_recog ();
717
718 failure = 0;
719
720 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
721
722 /* Make sure that the last insn in the chain
723 is not something that needs reloading. */
724 emit_note (NOTE_INSN_DELETED);
725
726 /* Enable find_equiv_reg to distinguish insns made by reload. */
727 reload_first_uid = get_max_uid ();
728
729 #ifdef SECONDARY_MEMORY_NEEDED
730 /* Initialize the secondary memory table. */
731 clear_secondary_mem ();
732 #endif
733
734 /* We don't have a stack slot for any spill reg yet. */
735 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
736 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
737
738 /* Initialize the save area information for caller-save, in case some
739 are needed. */
740 init_save_areas ();
741
742 /* Compute which hard registers are now in use
743 as homes for pseudo registers.
744 This is done here rather than (eg) in global_alloc
745 because this point is reached even if not optimizing. */
746 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
747 mark_home_live (i);
748
749 /* A function that has a nonlocal label that can reach the exit
750 block via non-exceptional paths must save all call-saved
751 registers. */
752 if (cfun->has_nonlocal_label
753 && has_nonexceptional_receiver ())
754 crtl->saves_all_registers = 1;
755
756 if (crtl->saves_all_registers)
757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
759 df_set_regs_ever_live (i, true);
760
761 /* Find all the pseudo registers that didn't get hard regs
762 but do have known equivalent constants or memory slots.
763 These include parameters (known equivalent to parameter slots)
764 and cse'd or loop-moved constant memory addresses.
765
766 Record constant equivalents in reg_equiv_constant
767 so they will be substituted by find_reloads.
768 Record memory equivalents in reg_mem_equiv so they can
769 be substituted eventually by altering the REG-rtx's. */
770
771 grow_reg_equivs ();
772 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
773 reg_old_renumber = XCNEWVEC (short, max_regno);
774 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
775 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
776 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
777
778 CLEAR_HARD_REG_SET (bad_spill_regs_global);
779
780 init_eliminable_invariants (first, true);
781 init_elim_table ();
782
783 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
784 stack slots to the pseudos that lack hard regs or equivalents.
785 Do not touch virtual registers. */
786
787 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
788 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
789 temp_pseudo_reg_arr[n++] = i;
790
791 if (ira_conflicts_p)
792 /* Ask IRA to order pseudo-registers for better stack slot
793 sharing. */
794 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
795
796 for (i = 0; i < n; i++)
797 alter_reg (temp_pseudo_reg_arr[i], -1, false);
798
799 /* If we have some registers we think can be eliminated, scan all insns to
800 see if there is an insn that sets one of these registers to something
801 other than itself plus a constant. If so, the register cannot be
802 eliminated. Doing this scan here eliminates an extra pass through the
803 main reload loop in the most common case where register elimination
804 cannot be done. */
805 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
806 if (INSN_P (insn))
807 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
808
809 maybe_fix_stack_asms ();
810
811 insns_need_reload = 0;
812 something_needs_elimination = 0;
813
814 /* Initialize to -1, which means take the first spill register. */
815 last_spill_reg = -1;
816
817 /* Spill any hard regs that we know we can't eliminate. */
818 CLEAR_HARD_REG_SET (used_spill_regs);
819 /* There can be multiple ways to eliminate a register;
820 they should be listed adjacently.
821 Elimination for any register fails only if all possible ways fail. */
822 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
823 {
824 int from = ep->from;
825 int can_eliminate = 0;
826 do
827 {
828 can_eliminate |= ep->can_eliminate;
829 ep++;
830 }
831 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
832 if (! can_eliminate)
833 spill_hard_reg (from, 1);
834 }
835
836 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
837 if (frame_pointer_needed)
838 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
839 #endif
840 finish_spills (global);
841
842 /* From now on, we may need to generate moves differently. We may also
843 allow modifications of insns which cause them to not be recognized.
844 Any such modifications will be cleaned up during reload itself. */
845 reload_in_progress = 1;
846
847 /* This loop scans the entire function each go-round
848 and repeats until one repetition spills no additional hard regs. */
849 for (;;)
850 {
851 int something_changed;
852 int did_spill;
853 HOST_WIDE_INT starting_frame_size;
854
855 starting_frame_size = get_frame_size ();
856 something_was_spilled = false;
857
858 set_initial_elim_offsets ();
859 set_initial_label_offsets ();
860
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
865
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
868
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
875
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
881
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
884
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
887 {
888 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
889 NULL_RTX);
890
891 if (strict_memory_address_addr_space_p
892 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
893 MEM_ADDR_SPACE (x)))
894 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
895 else if (CONSTANT_P (XEXP (x, 0))
896 || (REG_P (XEXP (x, 0))
897 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
898 || (GET_CODE (XEXP (x, 0)) == PLUS
899 && REG_P (XEXP (XEXP (x, 0), 0))
900 && (REGNO (XEXP (XEXP (x, 0), 0))
901 < FIRST_PSEUDO_REGISTER)
902 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
903 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
904 else
905 {
906 /* Make a new stack slot. Then indicate that something
907 changed so we go back and recompute offsets for
908 eliminable registers because the allocation of memory
909 below might change some offset. reg_equiv_{mem,address}
910 will be set up for this pseudo on the next pass around
911 the loop. */
912 reg_equiv_memory_loc (i) = 0;
913 reg_equiv_init (i) = 0;
914 alter_reg (i, -1, true);
915 }
916 }
917
918 if (caller_save_needed)
919 setup_save_areas ();
920
921 /* If we allocated another stack slot, redo elimination bookkeeping. */
922 if (something_was_spilled || starting_frame_size != get_frame_size ())
923 continue;
924 if (starting_frame_size && crtl->stack_alignment_needed)
925 {
926 /* If we have a stack frame, we must align it now. The
927 stack size may be a part of the offset computation for
928 register elimination. So if this changes the stack size,
929 then repeat the elimination bookkeeping. We don't
930 realign when there is no stack, as that will cause a
931 stack frame when none is needed should
932 STARTING_FRAME_OFFSET not be already aligned to
933 STACK_BOUNDARY. */
934 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
935 if (starting_frame_size != get_frame_size ())
936 continue;
937 }
938
939 if (caller_save_needed)
940 {
941 save_call_clobbered_regs ();
942 /* That might have allocated new insn_chain structures. */
943 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
944 }
945
946 calculate_needs_all_insns (global);
947
948 if (! ira_conflicts_p)
949 /* Don't do it for IRA. We need this info because we don't
950 change live_throughout and dead_or_set for chains when IRA
951 is used. */
952 CLEAR_REG_SET (&spilled_pseudos);
953
954 did_spill = 0;
955
956 something_changed = 0;
957
958 /* If we allocated any new memory locations, make another pass
959 since it might have changed elimination offsets. */
960 if (something_was_spilled || starting_frame_size != get_frame_size ())
961 something_changed = 1;
962
963 /* Even if the frame size remained the same, we might still have
964 changed elimination offsets, e.g. if find_reloads called
965 force_const_mem requiring the back end to allocate a constant
966 pool base register that needs to be saved on the stack. */
967 else if (!verify_initial_elim_offsets ())
968 something_changed = 1;
969
970 {
971 HARD_REG_SET to_spill;
972 CLEAR_HARD_REG_SET (to_spill);
973 update_eliminables (&to_spill);
974 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
975
976 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
977 if (TEST_HARD_REG_BIT (to_spill, i))
978 {
979 spill_hard_reg (i, 1);
980 did_spill = 1;
981
982 /* Regardless of the state of spills, if we previously had
983 a register that we thought we could eliminate, but now can
984 not eliminate, we must run another pass.
985
986 Consider pseudos which have an entry in reg_equiv_* which
987 reference an eliminable register. We must make another pass
988 to update reg_equiv_* so that we do not substitute in the
989 old value from when we thought the elimination could be
990 performed. */
991 something_changed = 1;
992 }
993 }
994
995 select_reload_regs ();
996 if (failure)
997 goto failed;
998
999 if (insns_need_reload != 0 || did_spill)
1000 something_changed |= finish_spills (global);
1001
1002 if (! something_changed)
1003 break;
1004
1005 if (caller_save_needed)
1006 delete_caller_save_insns ();
1007
1008 obstack_free (&reload_obstack, reload_firstobj);
1009 }
1010
1011 /* If global-alloc was run, notify it of any register eliminations we have
1012 done. */
1013 if (global)
1014 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1015 if (ep->can_eliminate)
1016 mark_elimination (ep->from, ep->to);
1017
1018 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1019 If that insn didn't set the register (i.e., it copied the register to
1020 memory), just delete that insn instead of the equivalencing insn plus
1021 anything now dead. If we call delete_dead_insn on that insn, we may
1022 delete the insn that actually sets the register if the register dies
1023 there and that is incorrect. */
1024
1025 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1026 {
1027 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1028 {
1029 rtx list;
1030 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1031 {
1032 rtx equiv_insn = XEXP (list, 0);
1033
1034 /* If we already deleted the insn or if it may trap, we can't
1035 delete it. The latter case shouldn't happen, but can
1036 if an insn has a variable address, gets a REG_EH_REGION
1037 note added to it, and then gets converted into a load
1038 from a constant address. */
1039 if (NOTE_P (equiv_insn)
1040 || can_throw_internal (equiv_insn))
1041 ;
1042 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1043 delete_dead_insn (equiv_insn);
1044 else
1045 SET_INSN_DELETED (equiv_insn);
1046 }
1047 }
1048 }
1049
1050 /* Use the reload registers where necessary
1051 by generating move instructions to move the must-be-register
1052 values into or out of the reload registers. */
1053
1054 if (insns_need_reload != 0 || something_needs_elimination
1055 || something_needs_operands_changed)
1056 {
1057 HOST_WIDE_INT old_frame_size = get_frame_size ();
1058
1059 reload_as_needed (global);
1060
1061 gcc_assert (old_frame_size == get_frame_size ());
1062
1063 gcc_assert (verify_initial_elim_offsets ());
1064 }
1065
1066 /* If we were able to eliminate the frame pointer, show that it is no
1067 longer live at the start of any basic block. If it ls live by
1068 virtue of being in a pseudo, that pseudo will be marked live
1069 and hence the frame pointer will be known to be live via that
1070 pseudo. */
1071
1072 if (! frame_pointer_needed)
1073 FOR_EACH_BB (bb)
1074 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1075
1076 /* Come here (with failure set nonzero) if we can't get enough spill
1077 regs. */
1078 failed:
1079
1080 CLEAR_REG_SET (&changed_allocation_pseudos);
1081 CLEAR_REG_SET (&spilled_pseudos);
1082 reload_in_progress = 0;
1083
1084 /* Now eliminate all pseudo regs by modifying them into
1085 their equivalent memory references.
1086 The REG-rtx's for the pseudos are modified in place,
1087 so all insns that used to refer to them now refer to memory.
1088
1089 For a reg that has a reg_equiv_address, all those insns
1090 were changed by reloading so that no insns refer to it any longer;
1091 but the DECL_RTL of a variable decl may refer to it,
1092 and if so this causes the debugging info to mention the variable. */
1093
1094 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1095 {
1096 rtx addr = 0;
1097
1098 if (reg_equiv_mem (i))
1099 addr = XEXP (reg_equiv_mem (i), 0);
1100
1101 if (reg_equiv_address (i))
1102 addr = reg_equiv_address (i);
1103
1104 if (addr)
1105 {
1106 if (reg_renumber[i] < 0)
1107 {
1108 rtx reg = regno_reg_rtx[i];
1109
1110 REG_USERVAR_P (reg) = 0;
1111 PUT_CODE (reg, MEM);
1112 XEXP (reg, 0) = addr;
1113 if (reg_equiv_memory_loc (i))
1114 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1115 else
1116 {
1117 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1118 MEM_ATTRS (reg) = 0;
1119 }
1120 MEM_NOTRAP_P (reg) = 1;
1121 }
1122 else if (reg_equiv_mem (i))
1123 XEXP (reg_equiv_mem (i), 0) = addr;
1124 }
1125
1126 /* We don't want complex addressing modes in debug insns
1127 if simpler ones will do, so delegitimize equivalences
1128 in debug insns. */
1129 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1130 {
1131 rtx reg = regno_reg_rtx[i];
1132 rtx equiv = 0;
1133 df_ref use, next;
1134
1135 if (reg_equiv_constant (i))
1136 equiv = reg_equiv_constant (i);
1137 else if (reg_equiv_invariant (i))
1138 equiv = reg_equiv_invariant (i);
1139 else if (reg && MEM_P (reg))
1140 equiv = targetm.delegitimize_address (reg);
1141 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1142 equiv = reg;
1143
1144 if (equiv == reg)
1145 continue;
1146
1147 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1148 {
1149 insn = DF_REF_INSN (use);
1150
1151 /* Make sure the next ref is for a different instruction,
1152 so that we're not affected by the rescan. */
1153 next = DF_REF_NEXT_REG (use);
1154 while (next && DF_REF_INSN (next) == insn)
1155 next = DF_REF_NEXT_REG (next);
1156
1157 if (DEBUG_INSN_P (insn))
1158 {
1159 if (!equiv)
1160 {
1161 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1162 df_insn_rescan_debug_internal (insn);
1163 }
1164 else
1165 INSN_VAR_LOCATION_LOC (insn)
1166 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1167 reg, equiv);
1168 }
1169 }
1170 }
1171 }
1172
1173 /* We must set reload_completed now since the cleanup_subreg_operands call
1174 below will re-recognize each insn and reload may have generated insns
1175 which are only valid during and after reload. */
1176 reload_completed = 1;
1177
1178 /* Make a pass over all the insns and delete all USEs which we inserted
1179 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1180 notes. Delete all CLOBBER insns, except those that refer to the return
1181 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1182 from misarranging variable-array code, and simplify (subreg (reg))
1183 operands. Strip and regenerate REG_INC notes that may have been moved
1184 around. */
1185
1186 for (insn = first; insn; insn = NEXT_INSN (insn))
1187 if (INSN_P (insn))
1188 {
1189 rtx *pnote;
1190
1191 if (CALL_P (insn))
1192 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1193 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1194
1195 if ((GET_CODE (PATTERN (insn)) == USE
1196 /* We mark with QImode USEs introduced by reload itself. */
1197 && (GET_MODE (insn) == QImode
1198 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1199 || (GET_CODE (PATTERN (insn)) == CLOBBER
1200 && (!MEM_P (XEXP (PATTERN (insn), 0))
1201 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1202 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1203 && XEXP (XEXP (PATTERN (insn), 0), 0)
1204 != stack_pointer_rtx))
1205 && (!REG_P (XEXP (PATTERN (insn), 0))
1206 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1207 {
1208 delete_insn (insn);
1209 continue;
1210 }
1211
1212 /* Some CLOBBERs may survive until here and still reference unassigned
1213 pseudos with const equivalent, which may in turn cause ICE in later
1214 passes if the reference remains in place. */
1215 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1216 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1217 VOIDmode, PATTERN (insn));
1218
1219 /* Discard obvious no-ops, even without -O. This optimization
1220 is fast and doesn't interfere with debugging. */
1221 if (NONJUMP_INSN_P (insn)
1222 && GET_CODE (PATTERN (insn)) == SET
1223 && REG_P (SET_SRC (PATTERN (insn)))
1224 && REG_P (SET_DEST (PATTERN (insn)))
1225 && (REGNO (SET_SRC (PATTERN (insn)))
1226 == REGNO (SET_DEST (PATTERN (insn)))))
1227 {
1228 delete_insn (insn);
1229 continue;
1230 }
1231
1232 pnote = &REG_NOTES (insn);
1233 while (*pnote != 0)
1234 {
1235 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1236 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1237 || REG_NOTE_KIND (*pnote) == REG_INC)
1238 *pnote = XEXP (*pnote, 1);
1239 else
1240 pnote = &XEXP (*pnote, 1);
1241 }
1242
1243 #ifdef AUTO_INC_DEC
1244 add_auto_inc_notes (insn, PATTERN (insn));
1245 #endif
1246
1247 /* Simplify (subreg (reg)) if it appears as an operand. */
1248 cleanup_subreg_operands (insn);
1249
1250 /* Clean up invalid ASMs so that they don't confuse later passes.
1251 See PR 21299. */
1252 if (asm_noperands (PATTERN (insn)) >= 0)
1253 {
1254 extract_insn (insn);
1255 if (!constrain_operands (1))
1256 {
1257 error_for_asm (insn,
1258 "%<asm%> operand has impossible constraints");
1259 delete_insn (insn);
1260 continue;
1261 }
1262 }
1263 }
1264
1265 /* If we are doing generic stack checking, give a warning if this
1266 function's frame size is larger than we expect. */
1267 if (flag_stack_check == GENERIC_STACK_CHECK)
1268 {
1269 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1270 static int verbose_warned = 0;
1271
1272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1273 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1274 size += UNITS_PER_WORD;
1275
1276 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1277 {
1278 warning (0, "frame size too large for reliable stack checking");
1279 if (! verbose_warned)
1280 {
1281 warning (0, "try reducing the number of local variables");
1282 verbose_warned = 1;
1283 }
1284 }
1285 }
1286
1287 free (temp_pseudo_reg_arr);
1288
1289 /* Indicate that we no longer have known memory locations or constants. */
1290 free_reg_equiv ();
1291
1292 free (reg_max_ref_width);
1293 free (reg_old_renumber);
1294 free (pseudo_previous_regs);
1295 free (pseudo_forbidden_regs);
1296
1297 CLEAR_HARD_REG_SET (used_spill_regs);
1298 for (i = 0; i < n_spills; i++)
1299 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1300
1301 /* Free all the insn_chain structures at once. */
1302 obstack_free (&reload_obstack, reload_startobj);
1303 unused_insn_chains = 0;
1304
1305 inserted = fixup_abnormal_edges ();
1306
1307 /* We've possibly turned single trapping insn into multiple ones. */
1308 if (cfun->can_throw_non_call_exceptions)
1309 {
1310 sbitmap blocks;
1311 blocks = sbitmap_alloc (last_basic_block);
1312 sbitmap_ones (blocks);
1313 find_many_sub_basic_blocks (blocks);
1314 sbitmap_free (blocks);
1315 }
1316
1317 if (inserted)
1318 commit_edge_insertions ();
1319
1320 /* Replacing pseudos with their memory equivalents might have
1321 created shared rtx. Subsequent passes would get confused
1322 by this, so unshare everything here. */
1323 unshare_all_rtl_again (first);
1324
1325 #ifdef STACK_BOUNDARY
1326 /* init_emit has set the alignment of the hard frame pointer
1327 to STACK_BOUNDARY. It is very likely no longer valid if
1328 the hard frame pointer was used for register allocation. */
1329 if (!frame_pointer_needed)
1330 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1331 #endif
1332
1333 VEC_free (rtx_p, heap, substitute_stack);
1334
1335 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1336
1337 reload_completed = !failure;
1338
1339 return need_dce;
1340 }
1341
1342 /* Yet another special case. Unfortunately, reg-stack forces people to
1343 write incorrect clobbers in asm statements. These clobbers must not
1344 cause the register to appear in bad_spill_regs, otherwise we'll call
1345 fatal_insn later. We clear the corresponding regnos in the live
1346 register sets to avoid this.
1347 The whole thing is rather sick, I'm afraid. */
1348
1349 static void
1350 maybe_fix_stack_asms (void)
1351 {
1352 #ifdef STACK_REGS
1353 const char *constraints[MAX_RECOG_OPERANDS];
1354 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1355 struct insn_chain *chain;
1356
1357 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1358 {
1359 int i, noperands;
1360 HARD_REG_SET clobbered, allowed;
1361 rtx pat;
1362
1363 if (! INSN_P (chain->insn)
1364 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1365 continue;
1366 pat = PATTERN (chain->insn);
1367 if (GET_CODE (pat) != PARALLEL)
1368 continue;
1369
1370 CLEAR_HARD_REG_SET (clobbered);
1371 CLEAR_HARD_REG_SET (allowed);
1372
1373 /* First, make a mask of all stack regs that are clobbered. */
1374 for (i = 0; i < XVECLEN (pat, 0); i++)
1375 {
1376 rtx t = XVECEXP (pat, 0, i);
1377 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1378 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1379 }
1380
1381 /* Get the operand values and constraints out of the insn. */
1382 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1383 constraints, operand_mode, NULL);
1384
1385 /* For every operand, see what registers are allowed. */
1386 for (i = 0; i < noperands; i++)
1387 {
1388 const char *p = constraints[i];
1389 /* For every alternative, we compute the class of registers allowed
1390 for reloading in CLS, and merge its contents into the reg set
1391 ALLOWED. */
1392 int cls = (int) NO_REGS;
1393
1394 for (;;)
1395 {
1396 char c = *p;
1397
1398 if (c == '\0' || c == ',' || c == '#')
1399 {
1400 /* End of one alternative - mark the regs in the current
1401 class, and reset the class. */
1402 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1403 cls = NO_REGS;
1404 p++;
1405 if (c == '#')
1406 do {
1407 c = *p++;
1408 } while (c != '\0' && c != ',');
1409 if (c == '\0')
1410 break;
1411 continue;
1412 }
1413
1414 switch (c)
1415 {
1416 case '=': case '+': case '*': case '%': case '?': case '!':
1417 case '0': case '1': case '2': case '3': case '4': case '<':
1418 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1419 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1420 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1421 case TARGET_MEM_CONSTRAINT:
1422 break;
1423
1424 case 'p':
1425 cls = (int) reg_class_subunion[cls]
1426 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1427 break;
1428
1429 case 'g':
1430 case 'r':
1431 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1432 break;
1433
1434 default:
1435 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1436 cls = (int) reg_class_subunion[cls]
1437 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1438 else
1439 cls = (int) reg_class_subunion[cls]
1440 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1441 }
1442 p += CONSTRAINT_LEN (c, p);
1443 }
1444 }
1445 /* Those of the registers which are clobbered, but allowed by the
1446 constraints, must be usable as reload registers. So clear them
1447 out of the life information. */
1448 AND_HARD_REG_SET (allowed, clobbered);
1449 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1450 if (TEST_HARD_REG_BIT (allowed, i))
1451 {
1452 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1453 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1454 }
1455 }
1456
1457 #endif
1458 }
1459 \f
1460 /* Copy the global variables n_reloads and rld into the corresponding elts
1461 of CHAIN. */
1462 static void
1463 copy_reloads (struct insn_chain *chain)
1464 {
1465 chain->n_reloads = n_reloads;
1466 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1467 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1468 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1469 }
1470
1471 /* Walk the chain of insns, and determine for each whether it needs reloads
1472 and/or eliminations. Build the corresponding insns_need_reload list, and
1473 set something_needs_elimination as appropriate. */
1474 static void
1475 calculate_needs_all_insns (int global)
1476 {
1477 struct insn_chain **pprev_reload = &insns_need_reload;
1478 struct insn_chain *chain, *next = 0;
1479
1480 something_needs_elimination = 0;
1481
1482 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1483 for (chain = reload_insn_chain; chain != 0; chain = next)
1484 {
1485 rtx insn = chain->insn;
1486
1487 next = chain->next;
1488
1489 /* Clear out the shortcuts. */
1490 chain->n_reloads = 0;
1491 chain->need_elim = 0;
1492 chain->need_reload = 0;
1493 chain->need_operand_change = 0;
1494
1495 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1496 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1497 what effects this has on the known offsets at labels. */
1498
1499 if (LABEL_P (insn) || JUMP_P (insn)
1500 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1501 set_label_offsets (insn, insn, 0);
1502
1503 if (INSN_P (insn))
1504 {
1505 rtx old_body = PATTERN (insn);
1506 int old_code = INSN_CODE (insn);
1507 rtx old_notes = REG_NOTES (insn);
1508 int did_elimination = 0;
1509 int operands_changed = 0;
1510 rtx set = single_set (insn);
1511
1512 /* Skip insns that only set an equivalence. */
1513 if (set && REG_P (SET_DEST (set))
1514 && reg_renumber[REGNO (SET_DEST (set))] < 0
1515 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1516 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1517 && reg_equiv_init (REGNO (SET_DEST (set))))
1518 continue;
1519
1520 /* If needed, eliminate any eliminable registers. */
1521 if (num_eliminable || num_eliminable_invariants)
1522 did_elimination = eliminate_regs_in_insn (insn, 0);
1523
1524 /* Analyze the instruction. */
1525 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1526 global, spill_reg_order);
1527
1528 /* If a no-op set needs more than one reload, this is likely
1529 to be something that needs input address reloads. We
1530 can't get rid of this cleanly later, and it is of no use
1531 anyway, so discard it now.
1532 We only do this when expensive_optimizations is enabled,
1533 since this complements reload inheritance / output
1534 reload deletion, and it can make debugging harder. */
1535 if (flag_expensive_optimizations && n_reloads > 1)
1536 {
1537 rtx set = single_set (insn);
1538 if (set
1539 &&
1540 ((SET_SRC (set) == SET_DEST (set)
1541 && REG_P (SET_SRC (set))
1542 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1543 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1544 && reg_renumber[REGNO (SET_SRC (set))] < 0
1545 && reg_renumber[REGNO (SET_DEST (set))] < 0
1546 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1547 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1548 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1549 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1550 {
1551 if (ira_conflicts_p)
1552 /* Inform IRA about the insn deletion. */
1553 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1554 REGNO (SET_SRC (set)));
1555 delete_insn (insn);
1556 /* Delete it from the reload chain. */
1557 if (chain->prev)
1558 chain->prev->next = next;
1559 else
1560 reload_insn_chain = next;
1561 if (next)
1562 next->prev = chain->prev;
1563 chain->next = unused_insn_chains;
1564 unused_insn_chains = chain;
1565 continue;
1566 }
1567 }
1568 if (num_eliminable)
1569 update_eliminable_offsets ();
1570
1571 /* Remember for later shortcuts which insns had any reloads or
1572 register eliminations. */
1573 chain->need_elim = did_elimination;
1574 chain->need_reload = n_reloads > 0;
1575 chain->need_operand_change = operands_changed;
1576
1577 /* Discard any register replacements done. */
1578 if (did_elimination)
1579 {
1580 obstack_free (&reload_obstack, reload_insn_firstobj);
1581 PATTERN (insn) = old_body;
1582 INSN_CODE (insn) = old_code;
1583 REG_NOTES (insn) = old_notes;
1584 something_needs_elimination = 1;
1585 }
1586
1587 something_needs_operands_changed |= operands_changed;
1588
1589 if (n_reloads != 0)
1590 {
1591 copy_reloads (chain);
1592 *pprev_reload = chain;
1593 pprev_reload = &chain->next_need_reload;
1594 }
1595 }
1596 }
1597 *pprev_reload = 0;
1598 }
1599 \f
1600 /* This function is called from the register allocator to set up estimates
1601 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1602 an invariant. The structure is similar to calculate_needs_all_insns. */
1603
1604 void
1605 calculate_elim_costs_all_insns (void)
1606 {
1607 int *reg_equiv_init_cost;
1608 basic_block bb;
1609 int i;
1610
1611 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1612 init_elim_table ();
1613 init_eliminable_invariants (get_insns (), false);
1614
1615 set_initial_elim_offsets ();
1616 set_initial_label_offsets ();
1617
1618 FOR_EACH_BB (bb)
1619 {
1620 rtx insn;
1621 elim_bb = bb;
1622
1623 FOR_BB_INSNS (bb, insn)
1624 {
1625 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1626 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1627 what effects this has on the known offsets at labels. */
1628
1629 if (LABEL_P (insn) || JUMP_P (insn)
1630 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1631 set_label_offsets (insn, insn, 0);
1632
1633 if (INSN_P (insn))
1634 {
1635 rtx set = single_set (insn);
1636
1637 /* Skip insns that only set an equivalence. */
1638 if (set && REG_P (SET_DEST (set))
1639 && reg_renumber[REGNO (SET_DEST (set))] < 0
1640 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1641 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1642 {
1643 unsigned regno = REGNO (SET_DEST (set));
1644 rtx init = reg_equiv_init (regno);
1645 if (init)
1646 {
1647 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1648 false, true);
1649 int cost = rtx_cost (t, SET,
1650 optimize_bb_for_speed_p (bb));
1651 int freq = REG_FREQ_FROM_BB (bb);
1652
1653 reg_equiv_init_cost[regno] = cost * freq;
1654 continue;
1655 }
1656 }
1657 /* If needed, eliminate any eliminable registers. */
1658 if (num_eliminable || num_eliminable_invariants)
1659 elimination_costs_in_insn (insn);
1660
1661 if (num_eliminable)
1662 update_eliminable_offsets ();
1663 }
1664 }
1665 }
1666 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1667 {
1668 if (reg_equiv_invariant (i))
1669 {
1670 if (reg_equiv_init (i))
1671 {
1672 int cost = reg_equiv_init_cost[i];
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d has equivalence, initial gains %d\n", i, cost);
1676 if (cost != 0)
1677 ira_adjust_equiv_reg_cost (i, cost);
1678 }
1679 else
1680 {
1681 if (dump_file)
1682 fprintf (dump_file,
1683 "Reg %d had equivalence, but can't be eliminated\n",
1684 i);
1685 ira_adjust_equiv_reg_cost (i, 0);
1686 }
1687 }
1688 }
1689
1690 free (reg_equiv_init_cost);
1691 }
1692 \f
1693 /* Comparison function for qsort to decide which of two reloads
1694 should be handled first. *P1 and *P2 are the reload numbers. */
1695
1696 static int
1697 reload_reg_class_lower (const void *r1p, const void *r2p)
1698 {
1699 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1700 int t;
1701
1702 /* Consider required reloads before optional ones. */
1703 t = rld[r1].optional - rld[r2].optional;
1704 if (t != 0)
1705 return t;
1706
1707 /* Count all solitary classes before non-solitary ones. */
1708 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1709 - (reg_class_size[(int) rld[r1].rclass] == 1));
1710 if (t != 0)
1711 return t;
1712
1713 /* Aside from solitaires, consider all multi-reg groups first. */
1714 t = rld[r2].nregs - rld[r1].nregs;
1715 if (t != 0)
1716 return t;
1717
1718 /* Consider reloads in order of increasing reg-class number. */
1719 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1720 if (t != 0)
1721 return t;
1722
1723 /* If reloads are equally urgent, sort by reload number,
1724 so that the results of qsort leave nothing to chance. */
1725 return r1 - r2;
1726 }
1727 \f
1728 /* The cost of spilling each hard reg. */
1729 static int spill_cost[FIRST_PSEUDO_REGISTER];
1730
1731 /* When spilling multiple hard registers, we use SPILL_COST for the first
1732 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1733 only the first hard reg for a multi-reg pseudo. */
1734 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1735
1736 /* Map of hard regno to pseudo regno currently occupying the hard
1737 reg. */
1738 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1739
1740 /* Update the spill cost arrays, considering that pseudo REG is live. */
1741
1742 static void
1743 count_pseudo (int reg)
1744 {
1745 int freq = REG_FREQ (reg);
1746 int r = reg_renumber[reg];
1747 int nregs;
1748
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1751 /* Ignore spilled pseudo-registers which can be here only if IRA
1752 is used. */
1753 || (ira_conflicts_p && r < 0))
1754 return;
1755
1756 SET_REGNO_REG_SET (&pseudos_counted, reg);
1757
1758 gcc_assert (r >= 0);
1759
1760 spill_add_cost[r] += freq;
1761 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1762 while (nregs-- > 0)
1763 {
1764 hard_regno_to_pseudo_regno[r + nregs] = reg;
1765 spill_cost[r + nregs] += freq;
1766 }
1767 }
1768
1769 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1770 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1771
1772 static void
1773 order_regs_for_reload (struct insn_chain *chain)
1774 {
1775 unsigned i;
1776 HARD_REG_SET used_by_pseudos;
1777 HARD_REG_SET used_by_pseudos2;
1778 reg_set_iterator rsi;
1779
1780 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1781
1782 memset (spill_cost, 0, sizeof spill_cost);
1783 memset (spill_add_cost, 0, sizeof spill_add_cost);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1785 hard_regno_to_pseudo_regno[i] = -1;
1786
1787 /* Count number of uses of each hard reg by pseudo regs allocated to it
1788 and then order them by decreasing use. First exclude hard registers
1789 that are live in or across this insn. */
1790
1791 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1792 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1793 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1794 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1795
1796 /* Now find out which pseudos are allocated to it, and update
1797 hard_reg_n_uses. */
1798 CLEAR_REG_SET (&pseudos_counted);
1799
1800 EXECUTE_IF_SET_IN_REG_SET
1801 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1802 {
1803 count_pseudo (i);
1804 }
1805 EXECUTE_IF_SET_IN_REG_SET
1806 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1807 {
1808 count_pseudo (i);
1809 }
1810 CLEAR_REG_SET (&pseudos_counted);
1811 }
1812 \f
1813 /* Vector of reload-numbers showing the order in which the reloads should
1814 be processed. */
1815 static short reload_order[MAX_RELOADS];
1816
1817 /* This is used to keep track of the spill regs used in one insn. */
1818 static HARD_REG_SET used_spill_regs_local;
1819
1820 /* We decided to spill hard register SPILLED, which has a size of
1821 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1822 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1823 update SPILL_COST/SPILL_ADD_COST. */
1824
1825 static void
1826 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1827 {
1828 int freq = REG_FREQ (reg);
1829 int r = reg_renumber[reg];
1830 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1831
1832 /* Ignore spilled pseudo-registers which can be here only if IRA is
1833 used. */
1834 if ((ira_conflicts_p && r < 0)
1835 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1836 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1837 return;
1838
1839 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1840
1841 spill_add_cost[r] -= freq;
1842 while (nregs-- > 0)
1843 {
1844 hard_regno_to_pseudo_regno[r + nregs] = -1;
1845 spill_cost[r + nregs] -= freq;
1846 }
1847 }
1848
1849 /* Find reload register to use for reload number ORDER. */
1850
1851 static int
1852 find_reg (struct insn_chain *chain, int order)
1853 {
1854 int rnum = reload_order[order];
1855 struct reload *rl = rld + rnum;
1856 int best_cost = INT_MAX;
1857 int best_reg = -1;
1858 unsigned int i, j, n;
1859 int k;
1860 HARD_REG_SET not_usable;
1861 HARD_REG_SET used_by_other_reload;
1862 reg_set_iterator rsi;
1863 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1865
1866 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1867 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1868 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1869
1870 CLEAR_HARD_REG_SET (used_by_other_reload);
1871 for (k = 0; k < order; k++)
1872 {
1873 int other = reload_order[k];
1874
1875 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1876 for (j = 0; j < rld[other].nregs; j++)
1877 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1878 }
1879
1880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1881 {
1882 #ifdef REG_ALLOC_ORDER
1883 unsigned int regno = reg_alloc_order[i];
1884 #else
1885 unsigned int regno = i;
1886 #endif
1887
1888 if (! TEST_HARD_REG_BIT (not_usable, regno)
1889 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1890 && HARD_REGNO_MODE_OK (regno, rl->mode))
1891 {
1892 int this_cost = spill_cost[regno];
1893 int ok = 1;
1894 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1895
1896 for (j = 1; j < this_nregs; j++)
1897 {
1898 this_cost += spill_add_cost[regno + j];
1899 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1900 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1901 ok = 0;
1902 }
1903 if (! ok)
1904 continue;
1905
1906 if (ira_conflicts_p)
1907 {
1908 /* Ask IRA to find a better pseudo-register for
1909 spilling. */
1910 for (n = j = 0; j < this_nregs; j++)
1911 {
1912 int r = hard_regno_to_pseudo_regno[regno + j];
1913
1914 if (r < 0)
1915 continue;
1916 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1917 regno_pseudo_regs[n++] = r;
1918 }
1919 regno_pseudo_regs[n++] = -1;
1920 if (best_reg < 0
1921 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1922 best_regno_pseudo_regs,
1923 rl->in, rl->out,
1924 chain->insn))
1925 {
1926 best_reg = regno;
1927 for (j = 0;; j++)
1928 {
1929 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1930 if (regno_pseudo_regs[j] < 0)
1931 break;
1932 }
1933 }
1934 continue;
1935 }
1936
1937 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1938 this_cost--;
1939 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1940 this_cost--;
1941 if (this_cost < best_cost
1942 /* Among registers with equal cost, prefer caller-saved ones, or
1943 use REG_ALLOC_ORDER if it is defined. */
1944 || (this_cost == best_cost
1945 #ifdef REG_ALLOC_ORDER
1946 && (inv_reg_alloc_order[regno]
1947 < inv_reg_alloc_order[best_reg])
1948 #else
1949 && call_used_regs[regno]
1950 && ! call_used_regs[best_reg]
1951 #endif
1952 ))
1953 {
1954 best_reg = regno;
1955 best_cost = this_cost;
1956 }
1957 }
1958 }
1959 if (best_reg == -1)
1960 return 0;
1961
1962 if (dump_file)
1963 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1964
1965 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1966 rl->regno = best_reg;
1967
1968 EXECUTE_IF_SET_IN_REG_SET
1969 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1970 {
1971 count_spilled_pseudo (best_reg, rl->nregs, j);
1972 }
1973
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1976 {
1977 count_spilled_pseudo (best_reg, rl->nregs, j);
1978 }
1979
1980 for (i = 0; i < rl->nregs; i++)
1981 {
1982 gcc_assert (spill_cost[best_reg + i] == 0);
1983 gcc_assert (spill_add_cost[best_reg + i] == 0);
1984 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1985 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1986 }
1987 return 1;
1988 }
1989
1990 /* Find more reload regs to satisfy the remaining need of an insn, which
1991 is given by CHAIN.
1992 Do it by ascending class number, since otherwise a reg
1993 might be spilled for a big class and might fail to count
1994 for a smaller class even though it belongs to that class. */
1995
1996 static void
1997 find_reload_regs (struct insn_chain *chain)
1998 {
1999 int i;
2000
2001 /* In order to be certain of getting the registers we need,
2002 we must sort the reloads into order of increasing register class.
2003 Then our grabbing of reload registers will parallel the process
2004 that provided the reload registers. */
2005 for (i = 0; i < chain->n_reloads; i++)
2006 {
2007 /* Show whether this reload already has a hard reg. */
2008 if (chain->rld[i].reg_rtx)
2009 {
2010 int regno = REGNO (chain->rld[i].reg_rtx);
2011 chain->rld[i].regno = regno;
2012 chain->rld[i].nregs
2013 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2014 }
2015 else
2016 chain->rld[i].regno = -1;
2017 reload_order[i] = i;
2018 }
2019
2020 n_reloads = chain->n_reloads;
2021 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2022
2023 CLEAR_HARD_REG_SET (used_spill_regs_local);
2024
2025 if (dump_file)
2026 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2027
2028 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2029
2030 /* Compute the order of preference for hard registers to spill. */
2031
2032 order_regs_for_reload (chain);
2033
2034 for (i = 0; i < n_reloads; i++)
2035 {
2036 int r = reload_order[i];
2037
2038 /* Ignore reloads that got marked inoperative. */
2039 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2040 && ! rld[r].optional
2041 && rld[r].regno == -1)
2042 if (! find_reg (chain, i))
2043 {
2044 if (dump_file)
2045 fprintf (dump_file, "reload failure for reload %d\n", r);
2046 spill_failure (chain->insn, rld[r].rclass);
2047 failure = 1;
2048 return;
2049 }
2050 }
2051
2052 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2053 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2054
2055 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2056 }
2057
2058 static void
2059 select_reload_regs (void)
2060 {
2061 struct insn_chain *chain;
2062
2063 /* Try to satisfy the needs for each insn. */
2064 for (chain = insns_need_reload; chain != 0;
2065 chain = chain->next_need_reload)
2066 find_reload_regs (chain);
2067 }
2068 \f
2069 /* Delete all insns that were inserted by emit_caller_save_insns during
2070 this iteration. */
2071 static void
2072 delete_caller_save_insns (void)
2073 {
2074 struct insn_chain *c = reload_insn_chain;
2075
2076 while (c != 0)
2077 {
2078 while (c != 0 && c->is_caller_save_insn)
2079 {
2080 struct insn_chain *next = c->next;
2081 rtx insn = c->insn;
2082
2083 if (c == reload_insn_chain)
2084 reload_insn_chain = next;
2085 delete_insn (insn);
2086
2087 if (next)
2088 next->prev = c->prev;
2089 if (c->prev)
2090 c->prev->next = next;
2091 c->next = unused_insn_chains;
2092 unused_insn_chains = c;
2093 c = next;
2094 }
2095 if (c != 0)
2096 c = c->next;
2097 }
2098 }
2099 \f
2100 /* Handle the failure to find a register to spill.
2101 INSN should be one of the insns which needed this particular spill reg. */
2102
2103 static void
2104 spill_failure (rtx insn, enum reg_class rclass)
2105 {
2106 if (asm_noperands (PATTERN (insn)) >= 0)
2107 error_for_asm (insn, "can%'t find a register in class %qs while "
2108 "reloading %<asm%>",
2109 reg_class_names[rclass]);
2110 else
2111 {
2112 error ("unable to find a register to spill in class %qs",
2113 reg_class_names[rclass]);
2114
2115 if (dump_file)
2116 {
2117 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2118 debug_reload_to_stream (dump_file);
2119 }
2120 fatal_insn ("this is the insn:", insn);
2121 }
2122 }
2123 \f
2124 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2125 data that is dead in INSN. */
2126
2127 static void
2128 delete_dead_insn (rtx insn)
2129 {
2130 rtx prev = prev_active_insn (insn);
2131 rtx prev_dest;
2132
2133 /* If the previous insn sets a register that dies in our insn make
2134 a note that we want to run DCE immediately after reload.
2135
2136 We used to delete the previous insn & recurse, but that's wrong for
2137 block local equivalences. Instead of trying to figure out the exact
2138 circumstances where we can delete the potentially dead insns, just
2139 let DCE do the job. */
2140 if (prev && GET_CODE (PATTERN (prev)) == SET
2141 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2142 && reg_mentioned_p (prev_dest, PATTERN (insn))
2143 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2144 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2145 need_dce = 1;
2146
2147 SET_INSN_DELETED (insn);
2148 }
2149
2150 /* Modify the home of pseudo-reg I.
2151 The new home is present in reg_renumber[I].
2152
2153 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2154 or it may be -1, meaning there is none or it is not relevant.
2155 This is used so that all pseudos spilled from a given hard reg
2156 can share one stack slot. */
2157
2158 static void
2159 alter_reg (int i, int from_reg, bool dont_share_p)
2160 {
2161 /* When outputting an inline function, this can happen
2162 for a reg that isn't actually used. */
2163 if (regno_reg_rtx[i] == 0)
2164 return;
2165
2166 /* If the reg got changed to a MEM at rtl-generation time,
2167 ignore it. */
2168 if (!REG_P (regno_reg_rtx[i]))
2169 return;
2170
2171 /* Modify the reg-rtx to contain the new hard reg
2172 number or else to contain its pseudo reg number. */
2173 SET_REGNO (regno_reg_rtx[i],
2174 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2175
2176 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2177 allocate a stack slot for it. */
2178
2179 if (reg_renumber[i] < 0
2180 && REG_N_REFS (i) > 0
2181 && reg_equiv_constant (i) == 0
2182 && (reg_equiv_invariant (i) == 0
2183 || reg_equiv_init (i) == 0)
2184 && reg_equiv_memory_loc (i) == 0)
2185 {
2186 rtx x = NULL_RTX;
2187 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2188 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2189 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2190 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2191 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2192 int adjust = 0;
2193
2194 something_was_spilled = true;
2195
2196 if (ira_conflicts_p)
2197 {
2198 /* Mark the spill for IRA. */
2199 SET_REGNO_REG_SET (&spilled_pseudos, i);
2200 if (!dont_share_p)
2201 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2202 }
2203
2204 if (x)
2205 ;
2206
2207 /* Each pseudo reg has an inherent size which comes from its own mode,
2208 and a total size which provides room for paradoxical subregs
2209 which refer to the pseudo reg in wider modes.
2210
2211 We can use a slot already allocated if it provides both
2212 enough inherent space and enough total space.
2213 Otherwise, we allocate a new slot, making sure that it has no less
2214 inherent space, and no less total space, then the previous slot. */
2215 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2216 {
2217 rtx stack_slot;
2218
2219 /* No known place to spill from => no slot to reuse. */
2220 x = assign_stack_local (mode, total_size,
2221 min_align > inherent_align
2222 || total_size > inherent_size ? -1 : 0);
2223
2224 stack_slot = x;
2225
2226 /* Cancel the big-endian correction done in assign_stack_local.
2227 Get the address of the beginning of the slot. This is so we
2228 can do a big-endian correction unconditionally below. */
2229 if (BYTES_BIG_ENDIAN)
2230 {
2231 adjust = inherent_size - total_size;
2232 if (adjust)
2233 stack_slot
2234 = adjust_address_nv (x, mode_for_size (total_size
2235 * BITS_PER_UNIT,
2236 MODE_INT, 1),
2237 adjust);
2238 }
2239
2240 if (! dont_share_p && ira_conflicts_p)
2241 /* Inform IRA about allocation a new stack slot. */
2242 ira_mark_new_stack_slot (stack_slot, i, total_size);
2243 }
2244
2245 /* Reuse a stack slot if possible. */
2246 else if (spill_stack_slot[from_reg] != 0
2247 && spill_stack_slot_width[from_reg] >= total_size
2248 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2249 >= inherent_size)
2250 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2251 x = spill_stack_slot[from_reg];
2252
2253 /* Allocate a bigger slot. */
2254 else
2255 {
2256 /* Compute maximum size needed, both for inherent size
2257 and for total size. */
2258 rtx stack_slot;
2259
2260 if (spill_stack_slot[from_reg])
2261 {
2262 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2263 > inherent_size)
2264 mode = GET_MODE (spill_stack_slot[from_reg]);
2265 if (spill_stack_slot_width[from_reg] > total_size)
2266 total_size = spill_stack_slot_width[from_reg];
2267 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2268 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2269 }
2270
2271 /* Make a slot with that size. */
2272 x = assign_stack_local (mode, total_size,
2273 min_align > inherent_align
2274 || total_size > inherent_size ? -1 : 0);
2275 stack_slot = x;
2276
2277 /* Cancel the big-endian correction done in assign_stack_local.
2278 Get the address of the beginning of the slot. This is so we
2279 can do a big-endian correction unconditionally below. */
2280 if (BYTES_BIG_ENDIAN)
2281 {
2282 adjust = GET_MODE_SIZE (mode) - total_size;
2283 if (adjust)
2284 stack_slot
2285 = adjust_address_nv (x, mode_for_size (total_size
2286 * BITS_PER_UNIT,
2287 MODE_INT, 1),
2288 adjust);
2289 }
2290
2291 spill_stack_slot[from_reg] = stack_slot;
2292 spill_stack_slot_width[from_reg] = total_size;
2293 }
2294
2295 /* On a big endian machine, the "address" of the slot
2296 is the address of the low part that fits its inherent mode. */
2297 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2298 adjust += (total_size - inherent_size);
2299
2300 /* If we have any adjustment to make, or if the stack slot is the
2301 wrong mode, make a new stack slot. */
2302 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2303
2304 /* Set all of the memory attributes as appropriate for a spill. */
2305 set_mem_attrs_for_spill (x);
2306
2307 /* Save the stack slot for later. */
2308 reg_equiv_memory_loc (i) = x;
2309 }
2310 }
2311
2312 /* Mark the slots in regs_ever_live for the hard regs used by
2313 pseudo-reg number REGNO, accessed in MODE. */
2314
2315 static void
2316 mark_home_live_1 (int regno, enum machine_mode mode)
2317 {
2318 int i, lim;
2319
2320 i = reg_renumber[regno];
2321 if (i < 0)
2322 return;
2323 lim = end_hard_regno (mode, i);
2324 while (i < lim)
2325 df_set_regs_ever_live(i++, true);
2326 }
2327
2328 /* Mark the slots in regs_ever_live for the hard regs
2329 used by pseudo-reg number REGNO. */
2330
2331 void
2332 mark_home_live (int regno)
2333 {
2334 if (reg_renumber[regno] >= 0)
2335 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2336 }
2337 \f
2338 /* This function handles the tracking of elimination offsets around branches.
2339
2340 X is a piece of RTL being scanned.
2341
2342 INSN is the insn that it came from, if any.
2343
2344 INITIAL_P is nonzero if we are to set the offset to be the initial
2345 offset and zero if we are setting the offset of the label to be the
2346 current offset. */
2347
2348 static void
2349 set_label_offsets (rtx x, rtx insn, int initial_p)
2350 {
2351 enum rtx_code code = GET_CODE (x);
2352 rtx tem;
2353 unsigned int i;
2354 struct elim_table *p;
2355
2356 switch (code)
2357 {
2358 case LABEL_REF:
2359 if (LABEL_REF_NONLOCAL_P (x))
2360 return;
2361
2362 x = XEXP (x, 0);
2363
2364 /* ... fall through ... */
2365
2366 case CODE_LABEL:
2367 /* If we know nothing about this label, set the desired offsets. Note
2368 that this sets the offset at a label to be the offset before a label
2369 if we don't know anything about the label. This is not correct for
2370 the label after a BARRIER, but is the best guess we can make. If
2371 we guessed wrong, we will suppress an elimination that might have
2372 been possible had we been able to guess correctly. */
2373
2374 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2375 {
2376 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2377 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2378 = (initial_p ? reg_eliminate[i].initial_offset
2379 : reg_eliminate[i].offset);
2380 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2381 }
2382
2383 /* Otherwise, if this is the definition of a label and it is
2384 preceded by a BARRIER, set our offsets to the known offset of
2385 that label. */
2386
2387 else if (x == insn
2388 && (tem = prev_nonnote_insn (insn)) != 0
2389 && BARRIER_P (tem))
2390 set_offsets_for_label (insn);
2391 else
2392 /* If neither of the above cases is true, compare each offset
2393 with those previously recorded and suppress any eliminations
2394 where the offsets disagree. */
2395
2396 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2397 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2398 != (initial_p ? reg_eliminate[i].initial_offset
2399 : reg_eliminate[i].offset))
2400 reg_eliminate[i].can_eliminate = 0;
2401
2402 return;
2403
2404 case JUMP_INSN:
2405 set_label_offsets (PATTERN (insn), insn, initial_p);
2406
2407 /* ... fall through ... */
2408
2409 case INSN:
2410 case CALL_INSN:
2411 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2412 to indirectly and hence must have all eliminations at their
2413 initial offsets. */
2414 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2415 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2416 set_label_offsets (XEXP (tem, 0), insn, 1);
2417 return;
2418
2419 case PARALLEL:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 /* Each of the labels in the parallel or address vector must be
2423 at their initial offsets. We want the first field for PARALLEL
2424 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2425
2426 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2427 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2428 insn, initial_p);
2429 return;
2430
2431 case SET:
2432 /* We only care about setting PC. If the source is not RETURN,
2433 IF_THEN_ELSE, or a label, disable any eliminations not at
2434 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2435 isn't one of those possibilities. For branches to a label,
2436 call ourselves recursively.
2437
2438 Note that this can disable elimination unnecessarily when we have
2439 a non-local goto since it will look like a non-constant jump to
2440 someplace in the current function. This isn't a significant
2441 problem since such jumps will normally be when all elimination
2442 pairs are back to their initial offsets. */
2443
2444 if (SET_DEST (x) != pc_rtx)
2445 return;
2446
2447 switch (GET_CODE (SET_SRC (x)))
2448 {
2449 case PC:
2450 case RETURN:
2451 return;
2452
2453 case LABEL_REF:
2454 set_label_offsets (SET_SRC (x), insn, initial_p);
2455 return;
2456
2457 case IF_THEN_ELSE:
2458 tem = XEXP (SET_SRC (x), 1);
2459 if (GET_CODE (tem) == LABEL_REF)
2460 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2461 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2462 break;
2463
2464 tem = XEXP (SET_SRC (x), 2);
2465 if (GET_CODE (tem) == LABEL_REF)
2466 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2467 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2468 break;
2469 return;
2470
2471 default:
2472 break;
2473 }
2474
2475 /* If we reach here, all eliminations must be at their initial
2476 offset because we are doing a jump to a variable address. */
2477 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2478 if (p->offset != p->initial_offset)
2479 p->can_eliminate = 0;
2480 break;
2481
2482 default:
2483 break;
2484 }
2485 }
2486 \f
2487 /* Called through for_each_rtx, this function examines every reg that occurs
2488 in PX and adjusts the costs for its elimination which are gathered by IRA.
2489 DATA is the insn in which PX occurs. We do not recurse into MEM
2490 expressions. */
2491
2492 static int
2493 note_reg_elim_costly (rtx *px, void *data)
2494 {
2495 rtx insn = (rtx)data;
2496 rtx x = *px;
2497
2498 if (MEM_P (x))
2499 return -1;
2500
2501 if (REG_P (x)
2502 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2503 && reg_equiv_init (REGNO (x))
2504 && reg_equiv_invariant (REGNO (x)))
2505 {
2506 rtx t = reg_equiv_invariant (REGNO (x));
2507 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2508 int cost = rtx_cost (new_rtx, SET, optimize_bb_for_speed_p (elim_bb));
2509 int freq = REG_FREQ_FROM_BB (elim_bb);
2510
2511 if (cost != 0)
2512 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2513 }
2514 return 0;
2515 }
2516
2517 /* Scan X and replace any eliminable registers (such as fp) with a
2518 replacement (such as sp), plus an offset.
2519
2520 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2521 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2522 MEM, we are allowed to replace a sum of a register and the constant zero
2523 with the register, which we cannot do outside a MEM. In addition, we need
2524 to record the fact that a register is referenced outside a MEM.
2525
2526 If INSN is an insn, it is the insn containing X. If we replace a REG
2527 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2528 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2529 the REG is being modified.
2530
2531 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2532 That's used when we eliminate in expressions stored in notes.
2533 This means, do not set ref_outside_mem even if the reference
2534 is outside of MEMs.
2535
2536 If FOR_COSTS is true, we are being called before reload in order to
2537 estimate the costs of keeping registers with an equivalence unallocated.
2538
2539 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2540 replacements done assuming all offsets are at their initial values. If
2541 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2542 encounter, return the actual location so that find_reloads will do
2543 the proper thing. */
2544
2545 static rtx
2546 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2547 bool may_use_invariant, bool for_costs)
2548 {
2549 enum rtx_code code = GET_CODE (x);
2550 struct elim_table *ep;
2551 int regno;
2552 rtx new_rtx;
2553 int i, j;
2554 const char *fmt;
2555 int copied = 0;
2556
2557 if (! current_function_decl)
2558 return x;
2559
2560 switch (code)
2561 {
2562 case CONST_INT:
2563 case CONST_DOUBLE:
2564 case CONST_FIXED:
2565 case CONST_VECTOR:
2566 case CONST:
2567 case SYMBOL_REF:
2568 case CODE_LABEL:
2569 case PC:
2570 case CC0:
2571 case ASM_INPUT:
2572 case ADDR_VEC:
2573 case ADDR_DIFF_VEC:
2574 case RETURN:
2575 return x;
2576
2577 case REG:
2578 regno = REGNO (x);
2579
2580 /* First handle the case where we encounter a bare register that
2581 is eliminable. Replace it with a PLUS. */
2582 if (regno < FIRST_PSEUDO_REGISTER)
2583 {
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == x && ep->can_eliminate)
2587 return plus_constant (ep->to_rtx, ep->previous_offset);
2588
2589 }
2590 else if (reg_renumber && reg_renumber[regno] < 0
2591 && reg_equivs
2592 && reg_equiv_invariant (regno))
2593 {
2594 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 mem_mode, insn, true, for_costs);
2597 /* There exists at least one use of REGNO that cannot be
2598 eliminated. Prevent the defining insn from being deleted. */
2599 reg_equiv_init (regno) = NULL_RTX;
2600 if (!for_costs)
2601 alter_reg (regno, -1, true);
2602 }
2603 return x;
2604
2605 /* You might think handling MINUS in a manner similar to PLUS is a
2606 good idea. It is not. It has been tried multiple times and every
2607 time the change has had to have been reverted.
2608
2609 Other parts of reload know a PLUS is special (gen_reload for example)
2610 and require special code to handle code a reloaded PLUS operand.
2611
2612 Also consider backends where the flags register is clobbered by a
2613 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614 lea instruction comes to mind). If we try to reload a MINUS, we
2615 may kill the flags register that was holding a useful value.
2616
2617 So, please before trying to handle MINUS, consider reload as a
2618 whole instead of this little section as well as the backend issues. */
2619 case PLUS:
2620 /* If this is the sum of an eliminable register and a constant, rework
2621 the sum. */
2622 if (REG_P (XEXP (x, 0))
2623 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && CONSTANT_P (XEXP (x, 1)))
2625 {
2626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 ep++)
2628 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 {
2630 /* The only time we want to replace a PLUS with a REG (this
2631 occurs when the constant operand of the PLUS is the negative
2632 of the offset) is when we are inside a MEM. We won't want
2633 to do so at other times because that would change the
2634 structure of the insn in a way that reload can't handle.
2635 We special-case the commonest situation in
2636 eliminate_regs_in_insn, so just replace a PLUS with a
2637 PLUS here, unless inside a MEM. */
2638 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 return ep->to_rtx;
2641 else
2642 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 plus_constant (XEXP (x, 1),
2644 ep->previous_offset));
2645 }
2646
2647 /* If the register is not eliminable, we are done since the other
2648 operand is a constant. */
2649 return x;
2650 }
2651
2652 /* If this is part of an address, we want to bring any constant to the
2653 outermost PLUS. We will do this by doing register replacement in
2654 our operands and seeing if a constant shows up in one of them.
2655
2656 Note that there is no risk of modifying the structure of the insn,
2657 since we only get called for its operands, thus we are either
2658 modifying the address inside a MEM, or something like an address
2659 operand of a load-address insn. */
2660
2661 {
2662 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 for_costs);
2664 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 for_costs);
2666
2667 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 {
2669 /* If one side is a PLUS and the other side is a pseudo that
2670 didn't get a hard register but has a reg_equiv_constant,
2671 we must replace the constant here since it may no longer
2672 be in the position of any operand. */
2673 if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 && reg_renumber[REGNO (new1)] < 0
2676 && reg_equivs
2677 && reg_equiv_constant (REGNO (new1)) != 0)
2678 new1 = reg_equiv_constant (REGNO (new1));
2679 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (new0)] < 0
2682 && reg_equiv_constant (REGNO (new0)) != 0)
2683 new0 = reg_equiv_constant (REGNO (new0));
2684
2685 new_rtx = form_sum (GET_MODE (x), new0, new1);
2686
2687 /* As above, if we are not inside a MEM we do not want to
2688 turn a PLUS into something else. We might try to do so here
2689 for an addition of 0 if we aren't optimizing. */
2690 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 else
2693 return new_rtx;
2694 }
2695 }
2696 return x;
2697
2698 case MULT:
2699 /* If this is the product of an eliminable register and a
2700 constant, apply the distribute law and move the constant out
2701 so that we have (plus (mult ..) ..). This is needed in order
2702 to keep load-address insns valid. This case is pathological.
2703 We ignore the possibility of overflow here. */
2704 if (REG_P (XEXP (x, 0))
2705 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && CONST_INT_P (XEXP (x, 1)))
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 {
2711 if (! mem_mode
2712 /* Refs inside notes or in DEBUG_INSNs don't count for
2713 this purpose. */
2714 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 || GET_CODE (insn) == INSN_LIST
2716 || DEBUG_INSN_P (insn))))
2717 ep->ref_outside_mem = 1;
2718
2719 return
2720 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2722 }
2723
2724 /* ... fall through ... */
2725
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2738 {
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2744
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2747 }
2748 return x;
2749
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2753 {
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2757 {
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2766
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2768 }
2769 }
2770
2771 /* ... fall through ... */
2772
2773 case INSN_LIST:
2774 /* Now do eliminations in the rest of the chain. If this was
2775 an EXPR_LIST, this might result in allocating more memory than is
2776 strictly needed, but it simplifies the code. */
2777 if (XEXP (x, 1))
2778 {
2779 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 1))
2782 return
2783 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2784 }
2785 return x;
2786
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 /* We do not support elimination of a register that is modified.
2792 elimination_effects has already make sure that this does not
2793 happen. */
2794 return x;
2795
2796 case PRE_MODIFY:
2797 case POST_MODIFY:
2798 /* We do not support elimination of a register that is modified.
2799 elimination_effects has already make sure that this does not
2800 happen. The only remaining case we need to consider here is
2801 that the increment value may be an eliminable register. */
2802 if (GET_CODE (XEXP (x, 1)) == PLUS
2803 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2804 {
2805 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2806 insn, true, for_costs);
2807
2808 if (new_rtx != XEXP (XEXP (x, 1), 1))
2809 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2810 gen_rtx_PLUS (GET_MODE (x),
2811 XEXP (x, 0), new_rtx));
2812 }
2813 return x;
2814
2815 case STRICT_LOW_PART:
2816 case NEG: case NOT:
2817 case SIGN_EXTEND: case ZERO_EXTEND:
2818 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2819 case FLOAT: case FIX:
2820 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2821 case ABS:
2822 case SQRT:
2823 case FFS:
2824 case CLZ:
2825 case CTZ:
2826 case POPCOUNT:
2827 case PARITY:
2828 case BSWAP:
2829 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2830 for_costs);
2831 if (new_rtx != XEXP (x, 0))
2832 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2833 return x;
2834
2835 case SUBREG:
2836 /* Similar to above processing, but preserve SUBREG_BYTE.
2837 Convert (subreg (mem)) to (mem) if not paradoxical.
2838 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2839 pseudo didn't get a hard reg, we must replace this with the
2840 eliminated version of the memory location because push_reload
2841 may do the replacement in certain circumstances. */
2842 if (REG_P (SUBREG_REG (x))
2843 && !paradoxical_subreg_p (x)
2844 && reg_equivs
2845 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2846 {
2847 new_rtx = SUBREG_REG (x);
2848 }
2849 else
2850 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2851
2852 if (new_rtx != SUBREG_REG (x))
2853 {
2854 int x_size = GET_MODE_SIZE (GET_MODE (x));
2855 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2856
2857 if (MEM_P (new_rtx)
2858 && ((x_size < new_size
2859 #ifdef WORD_REGISTER_OPERATIONS
2860 /* On these machines, combine can create rtl of the form
2861 (set (subreg:m1 (reg:m2 R) 0) ...)
2862 where m1 < m2, and expects something interesting to
2863 happen to the entire word. Moreover, it will use the
2864 (reg:m2 R) later, expecting all bits to be preserved.
2865 So if the number of words is the same, preserve the
2866 subreg so that push_reload can see it. */
2867 && ! ((x_size - 1) / UNITS_PER_WORD
2868 == (new_size -1 ) / UNITS_PER_WORD)
2869 #endif
2870 )
2871 || x_size == new_size)
2872 )
2873 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2874 else
2875 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2876 }
2877
2878 return x;
2879
2880 case MEM:
2881 /* Our only special processing is to pass the mode of the MEM to our
2882 recursive call and copy the flags. While we are here, handle this
2883 case more efficiently. */
2884
2885 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2886 for_costs);
2887 if (for_costs
2888 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2889 && !memory_address_p (GET_MODE (x), new_rtx))
2890 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2891
2892 return replace_equiv_address_nv (x, new_rtx);
2893
2894 case USE:
2895 /* Handle insn_list USE that a call to a pure function may generate. */
2896 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2897 for_costs);
2898 if (new_rtx != XEXP (x, 0))
2899 return gen_rtx_USE (GET_MODE (x), new_rtx);
2900 return x;
2901
2902 case CLOBBER:
2903 case ASM_OPERANDS:
2904 gcc_assert (insn && DEBUG_INSN_P (insn));
2905 break;
2906
2907 case SET:
2908 gcc_unreachable ();
2909
2910 default:
2911 break;
2912 }
2913
2914 /* Process each of our operands recursively. If any have changed, make a
2915 copy of the rtx. */
2916 fmt = GET_RTX_FORMAT (code);
2917 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2918 {
2919 if (*fmt == 'e')
2920 {
2921 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2922 for_costs);
2923 if (new_rtx != XEXP (x, i) && ! copied)
2924 {
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2927 }
2928 XEXP (x, i) = new_rtx;
2929 }
2930 else if (*fmt == 'E')
2931 {
2932 int copied_vec = 0;
2933 for (j = 0; j < XVECLEN (x, i); j++)
2934 {
2935 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2936 for_costs);
2937 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2938 {
2939 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2940 XVEC (x, i)->elem);
2941 if (! copied)
2942 {
2943 x = shallow_copy_rtx (x);
2944 copied = 1;
2945 }
2946 XVEC (x, i) = new_v;
2947 copied_vec = 1;
2948 }
2949 XVECEXP (x, i, j) = new_rtx;
2950 }
2951 }
2952 }
2953
2954 return x;
2955 }
2956
2957 rtx
2958 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2959 {
2960 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2961 }
2962
2963 /* Scan rtx X for modifications of elimination target registers. Update
2964 the table of eliminables to reflect the changed state. MEM_MODE is
2965 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2966
2967 static void
2968 elimination_effects (rtx x, enum machine_mode mem_mode)
2969 {
2970 enum rtx_code code = GET_CODE (x);
2971 struct elim_table *ep;
2972 int regno;
2973 int i, j;
2974 const char *fmt;
2975
2976 switch (code)
2977 {
2978 case CONST_INT:
2979 case CONST_DOUBLE:
2980 case CONST_FIXED:
2981 case CONST_VECTOR:
2982 case CONST:
2983 case SYMBOL_REF:
2984 case CODE_LABEL:
2985 case PC:
2986 case CC0:
2987 case ASM_INPUT:
2988 case ADDR_VEC:
2989 case ADDR_DIFF_VEC:
2990 case RETURN:
2991 return;
2992
2993 case REG:
2994 regno = REGNO (x);
2995
2996 /* First handle the case where we encounter a bare register that
2997 is eliminable. Replace it with a PLUS. */
2998 if (regno < FIRST_PSEUDO_REGISTER)
2999 {
3000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3001 ep++)
3002 if (ep->from_rtx == x && ep->can_eliminate)
3003 {
3004 if (! mem_mode)
3005 ep->ref_outside_mem = 1;
3006 return;
3007 }
3008
3009 }
3010 else if (reg_renumber[regno] < 0
3011 && reg_equivs != 0
3012 && reg_equiv_constant (regno)
3013 && ! function_invariant_p (reg_equiv_constant (regno)))
3014 elimination_effects (reg_equiv_constant (regno), mem_mode);
3015 return;
3016
3017 case PRE_INC:
3018 case POST_INC:
3019 case PRE_DEC:
3020 case POST_DEC:
3021 case POST_MODIFY:
3022 case PRE_MODIFY:
3023 /* If we modify the source of an elimination rule, disable it. */
3024 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3025 if (ep->from_rtx == XEXP (x, 0))
3026 ep->can_eliminate = 0;
3027
3028 /* If we modify the target of an elimination rule by adding a constant,
3029 update its offset. If we modify the target in any other way, we'll
3030 have to disable the rule as well. */
3031 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3032 if (ep->to_rtx == XEXP (x, 0))
3033 {
3034 int size = GET_MODE_SIZE (mem_mode);
3035
3036 /* If more bytes than MEM_MODE are pushed, account for them. */
3037 #ifdef PUSH_ROUNDING
3038 if (ep->to_rtx == stack_pointer_rtx)
3039 size = PUSH_ROUNDING (size);
3040 #endif
3041 if (code == PRE_DEC || code == POST_DEC)
3042 ep->offset += size;
3043 else if (code == PRE_INC || code == POST_INC)
3044 ep->offset -= size;
3045 else if (code == PRE_MODIFY || code == POST_MODIFY)
3046 {
3047 if (GET_CODE (XEXP (x, 1)) == PLUS
3048 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3049 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3050 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3051 else
3052 ep->can_eliminate = 0;
3053 }
3054 }
3055
3056 /* These two aren't unary operators. */
3057 if (code == POST_MODIFY || code == PRE_MODIFY)
3058 break;
3059
3060 /* Fall through to generic unary operation case. */
3061 case STRICT_LOW_PART:
3062 case NEG: case NOT:
3063 case SIGN_EXTEND: case ZERO_EXTEND:
3064 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3065 case FLOAT: case FIX:
3066 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3067 case ABS:
3068 case SQRT:
3069 case FFS:
3070 case CLZ:
3071 case CTZ:
3072 case POPCOUNT:
3073 case PARITY:
3074 case BSWAP:
3075 elimination_effects (XEXP (x, 0), mem_mode);
3076 return;
3077
3078 case SUBREG:
3079 if (REG_P (SUBREG_REG (x))
3080 && (GET_MODE_SIZE (GET_MODE (x))
3081 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3082 && reg_equivs != 0
3083 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3084 return;
3085
3086 elimination_effects (SUBREG_REG (x), mem_mode);
3087 return;
3088
3089 case USE:
3090 /* If using a register that is the source of an eliminate we still
3091 think can be performed, note it cannot be performed since we don't
3092 know how this register is used. */
3093 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3094 if (ep->from_rtx == XEXP (x, 0))
3095 ep->can_eliminate = 0;
3096
3097 elimination_effects (XEXP (x, 0), mem_mode);
3098 return;
3099
3100 case CLOBBER:
3101 /* If clobbering a register that is the replacement register for an
3102 elimination we still think can be performed, note that it cannot
3103 be performed. Otherwise, we need not be concerned about it. */
3104 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3105 if (ep->to_rtx == XEXP (x, 0))
3106 ep->can_eliminate = 0;
3107
3108 elimination_effects (XEXP (x, 0), mem_mode);
3109 return;
3110
3111 case SET:
3112 /* Check for setting a register that we know about. */
3113 if (REG_P (SET_DEST (x)))
3114 {
3115 /* See if this is setting the replacement register for an
3116 elimination.
3117
3118 If DEST is the hard frame pointer, we do nothing because we
3119 assume that all assignments to the frame pointer are for
3120 non-local gotos and are being done at a time when they are valid
3121 and do not disturb anything else. Some machines want to
3122 eliminate a fake argument pointer (or even a fake frame pointer)
3123 with either the real frame or the stack pointer. Assignments to
3124 the hard frame pointer must not prevent this elimination. */
3125
3126 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3127 ep++)
3128 if (ep->to_rtx == SET_DEST (x)
3129 && SET_DEST (x) != hard_frame_pointer_rtx)
3130 {
3131 /* If it is being incremented, adjust the offset. Otherwise,
3132 this elimination can't be done. */
3133 rtx src = SET_SRC (x);
3134
3135 if (GET_CODE (src) == PLUS
3136 && XEXP (src, 0) == SET_DEST (x)
3137 && CONST_INT_P (XEXP (src, 1)))
3138 ep->offset -= INTVAL (XEXP (src, 1));
3139 else
3140 ep->can_eliminate = 0;
3141 }
3142 }
3143
3144 elimination_effects (SET_DEST (x), VOIDmode);
3145 elimination_effects (SET_SRC (x), VOIDmode);
3146 return;
3147
3148 case MEM:
3149 /* Our only special processing is to pass the mode of the MEM to our
3150 recursive call. */
3151 elimination_effects (XEXP (x, 0), GET_MODE (x));
3152 return;
3153
3154 default:
3155 break;
3156 }
3157
3158 fmt = GET_RTX_FORMAT (code);
3159 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3160 {
3161 if (*fmt == 'e')
3162 elimination_effects (XEXP (x, i), mem_mode);
3163 else if (*fmt == 'E')
3164 for (j = 0; j < XVECLEN (x, i); j++)
3165 elimination_effects (XVECEXP (x, i, j), mem_mode);
3166 }
3167 }
3168
3169 /* Descend through rtx X and verify that no references to eliminable registers
3170 remain. If any do remain, mark the involved register as not
3171 eliminable. */
3172
3173 static void
3174 check_eliminable_occurrences (rtx x)
3175 {
3176 const char *fmt;
3177 int i;
3178 enum rtx_code code;
3179
3180 if (x == 0)
3181 return;
3182
3183 code = GET_CODE (x);
3184
3185 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3186 {
3187 struct elim_table *ep;
3188
3189 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3190 if (ep->from_rtx == x)
3191 ep->can_eliminate = 0;
3192 return;
3193 }
3194
3195 fmt = GET_RTX_FORMAT (code);
3196 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3197 {
3198 if (*fmt == 'e')
3199 check_eliminable_occurrences (XEXP (x, i));
3200 else if (*fmt == 'E')
3201 {
3202 int j;
3203 for (j = 0; j < XVECLEN (x, i); j++)
3204 check_eliminable_occurrences (XVECEXP (x, i, j));
3205 }
3206 }
3207 }
3208 \f
3209 /* Scan INSN and eliminate all eliminable registers in it.
3210
3211 If REPLACE is nonzero, do the replacement destructively. Also
3212 delete the insn as dead it if it is setting an eliminable register.
3213
3214 If REPLACE is zero, do all our allocations in reload_obstack.
3215
3216 If no eliminations were done and this insn doesn't require any elimination
3217 processing (these are not identical conditions: it might be updating sp,
3218 but not referencing fp; this needs to be seen during reload_as_needed so
3219 that the offset between fp and sp can be taken into consideration), zero
3220 is returned. Otherwise, 1 is returned. */
3221
3222 static int
3223 eliminate_regs_in_insn (rtx insn, int replace)
3224 {
3225 int icode = recog_memoized (insn);
3226 rtx old_body = PATTERN (insn);
3227 int insn_is_asm = asm_noperands (old_body) >= 0;
3228 rtx old_set = single_set (insn);
3229 rtx new_body;
3230 int val = 0;
3231 int i;
3232 rtx substed_operand[MAX_RECOG_OPERANDS];
3233 rtx orig_operand[MAX_RECOG_OPERANDS];
3234 struct elim_table *ep;
3235 rtx plus_src, plus_cst_src;
3236
3237 if (! insn_is_asm && icode < 0)
3238 {
3239 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3240 || GET_CODE (PATTERN (insn)) == CLOBBER
3241 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3242 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3243 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3244 || DEBUG_INSN_P (insn));
3245 if (DEBUG_INSN_P (insn))
3246 INSN_VAR_LOCATION_LOC (insn)
3247 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3248 return 0;
3249 }
3250
3251 if (old_set != 0 && REG_P (SET_DEST (old_set))
3252 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3253 {
3254 /* Check for setting an eliminable register. */
3255 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3256 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3257 {
3258 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3259 /* If this is setting the frame pointer register to the
3260 hardware frame pointer register and this is an elimination
3261 that will be done (tested above), this insn is really
3262 adjusting the frame pointer downward to compensate for
3263 the adjustment done before a nonlocal goto. */
3264 if (ep->from == FRAME_POINTER_REGNUM
3265 && ep->to == HARD_FRAME_POINTER_REGNUM)
3266 {
3267 rtx base = SET_SRC (old_set);
3268 rtx base_insn = insn;
3269 HOST_WIDE_INT offset = 0;
3270
3271 while (base != ep->to_rtx)
3272 {
3273 rtx prev_insn, prev_set;
3274
3275 if (GET_CODE (base) == PLUS
3276 && CONST_INT_P (XEXP (base, 1)))
3277 {
3278 offset += INTVAL (XEXP (base, 1));
3279 base = XEXP (base, 0);
3280 }
3281 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3282 && (prev_set = single_set (prev_insn)) != 0
3283 && rtx_equal_p (SET_DEST (prev_set), base))
3284 {
3285 base = SET_SRC (prev_set);
3286 base_insn = prev_insn;
3287 }
3288 else
3289 break;
3290 }
3291
3292 if (base == ep->to_rtx)
3293 {
3294 rtx src
3295 = plus_constant (ep->to_rtx, offset - ep->offset);
3296
3297 new_body = old_body;
3298 if (! replace)
3299 {
3300 new_body = copy_insn (old_body);
3301 if (REG_NOTES (insn))
3302 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3303 }
3304 PATTERN (insn) = new_body;
3305 old_set = single_set (insn);
3306
3307 /* First see if this insn remains valid when we
3308 make the change. If not, keep the INSN_CODE
3309 the same and let reload fit it up. */
3310 validate_change (insn, &SET_SRC (old_set), src, 1);
3311 validate_change (insn, &SET_DEST (old_set),
3312 ep->to_rtx, 1);
3313 if (! apply_change_group ())
3314 {
3315 SET_SRC (old_set) = src;
3316 SET_DEST (old_set) = ep->to_rtx;
3317 }
3318
3319 val = 1;
3320 goto done;
3321 }
3322 }
3323 #endif
3324
3325 /* In this case this insn isn't serving a useful purpose. We
3326 will delete it in reload_as_needed once we know that this
3327 elimination is, in fact, being done.
3328
3329 If REPLACE isn't set, we can't delete this insn, but needn't
3330 process it since it won't be used unless something changes. */
3331 if (replace)
3332 {
3333 delete_dead_insn (insn);
3334 return 1;
3335 }
3336 val = 1;
3337 goto done;
3338 }
3339 }
3340
3341 /* We allow one special case which happens to work on all machines we
3342 currently support: a single set with the source or a REG_EQUAL
3343 note being a PLUS of an eliminable register and a constant. */
3344 plus_src = plus_cst_src = 0;
3345 if (old_set && REG_P (SET_DEST (old_set)))
3346 {
3347 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3348 plus_src = SET_SRC (old_set);
3349 /* First see if the source is of the form (plus (...) CST). */
3350 if (plus_src
3351 && CONST_INT_P (XEXP (plus_src, 1)))
3352 plus_cst_src = plus_src;
3353 else if (REG_P (SET_SRC (old_set))
3354 || plus_src)
3355 {
3356 /* Otherwise, see if we have a REG_EQUAL note of the form
3357 (plus (...) CST). */
3358 rtx links;
3359 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3360 {
3361 if ((REG_NOTE_KIND (links) == REG_EQUAL
3362 || REG_NOTE_KIND (links) == REG_EQUIV)
3363 && GET_CODE (XEXP (links, 0)) == PLUS
3364 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3365 {
3366 plus_cst_src = XEXP (links, 0);
3367 break;
3368 }
3369 }
3370 }
3371
3372 /* Check that the first operand of the PLUS is a hard reg or
3373 the lowpart subreg of one. */
3374 if (plus_cst_src)
3375 {
3376 rtx reg = XEXP (plus_cst_src, 0);
3377 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3378 reg = SUBREG_REG (reg);
3379
3380 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3381 plus_cst_src = 0;
3382 }
3383 }
3384 if (plus_cst_src)
3385 {
3386 rtx reg = XEXP (plus_cst_src, 0);
3387 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3388
3389 if (GET_CODE (reg) == SUBREG)
3390 reg = SUBREG_REG (reg);
3391
3392 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3393 if (ep->from_rtx == reg && ep->can_eliminate)
3394 {
3395 rtx to_rtx = ep->to_rtx;
3396 offset += ep->offset;
3397 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3398
3399 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3400 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3401 to_rtx);
3402 /* If we have a nonzero offset, and the source is already
3403 a simple REG, the following transformation would
3404 increase the cost of the insn by replacing a simple REG
3405 with (plus (reg sp) CST). So try only when we already
3406 had a PLUS before. */
3407 if (offset == 0 || plus_src)
3408 {
3409 rtx new_src = plus_constant (to_rtx, offset);
3410
3411 new_body = old_body;
3412 if (! replace)
3413 {
3414 new_body = copy_insn (old_body);
3415 if (REG_NOTES (insn))
3416 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3417 }
3418 PATTERN (insn) = new_body;
3419 old_set = single_set (insn);
3420
3421 /* First see if this insn remains valid when we make the
3422 change. If not, try to replace the whole pattern with
3423 a simple set (this may help if the original insn was a
3424 PARALLEL that was only recognized as single_set due to
3425 REG_UNUSED notes). If this isn't valid either, keep
3426 the INSN_CODE the same and let reload fix it up. */
3427 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3428 {
3429 rtx new_pat = gen_rtx_SET (VOIDmode,
3430 SET_DEST (old_set), new_src);
3431
3432 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3433 SET_SRC (old_set) = new_src;
3434 }
3435 }
3436 else
3437 break;
3438
3439 val = 1;
3440 /* This can't have an effect on elimination offsets, so skip right
3441 to the end. */
3442 goto done;
3443 }
3444 }
3445
3446 /* Determine the effects of this insn on elimination offsets. */
3447 elimination_effects (old_body, VOIDmode);
3448
3449 /* Eliminate all eliminable registers occurring in operands that
3450 can be handled by reload. */
3451 extract_insn (insn);
3452 for (i = 0; i < recog_data.n_operands; i++)
3453 {
3454 orig_operand[i] = recog_data.operand[i];
3455 substed_operand[i] = recog_data.operand[i];
3456
3457 /* For an asm statement, every operand is eliminable. */
3458 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3459 {
3460 bool is_set_src, in_plus;
3461
3462 /* Check for setting a register that we know about. */
3463 if (recog_data.operand_type[i] != OP_IN
3464 && REG_P (orig_operand[i]))
3465 {
3466 /* If we are assigning to a register that can be eliminated, it
3467 must be as part of a PARALLEL, since the code above handles
3468 single SETs. We must indicate that we can no longer
3469 eliminate this reg. */
3470 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3471 ep++)
3472 if (ep->from_rtx == orig_operand[i])
3473 ep->can_eliminate = 0;
3474 }
3475
3476 /* Companion to the above plus substitution, we can allow
3477 invariants as the source of a plain move. */
3478 is_set_src = false;
3479 if (old_set
3480 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3481 is_set_src = true;
3482 in_plus = false;
3483 if (plus_src
3484 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3485 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3486 in_plus = true;
3487
3488 substed_operand[i]
3489 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3490 replace ? insn : NULL_RTX,
3491 is_set_src || in_plus, false);
3492 if (substed_operand[i] != orig_operand[i])
3493 val = 1;
3494 /* Terminate the search in check_eliminable_occurrences at
3495 this point. */
3496 *recog_data.operand_loc[i] = 0;
3497
3498 /* If an output operand changed from a REG to a MEM and INSN is an
3499 insn, write a CLOBBER insn. */
3500 if (recog_data.operand_type[i] != OP_IN
3501 && REG_P (orig_operand[i])
3502 && MEM_P (substed_operand[i])
3503 && replace)
3504 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3505 }
3506 }
3507
3508 for (i = 0; i < recog_data.n_dups; i++)
3509 *recog_data.dup_loc[i]
3510 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3511
3512 /* If any eliminable remain, they aren't eliminable anymore. */
3513 check_eliminable_occurrences (old_body);
3514
3515 /* Substitute the operands; the new values are in the substed_operand
3516 array. */
3517 for (i = 0; i < recog_data.n_operands; i++)
3518 *recog_data.operand_loc[i] = substed_operand[i];
3519 for (i = 0; i < recog_data.n_dups; i++)
3520 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3521
3522 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3523 re-recognize the insn. We do this in case we had a simple addition
3524 but now can do this as a load-address. This saves an insn in this
3525 common case.
3526 If re-recognition fails, the old insn code number will still be used,
3527 and some register operands may have changed into PLUS expressions.
3528 These will be handled by find_reloads by loading them into a register
3529 again. */
3530
3531 if (val)
3532 {
3533 /* If we aren't replacing things permanently and we changed something,
3534 make another copy to ensure that all the RTL is new. Otherwise
3535 things can go wrong if find_reload swaps commutative operands
3536 and one is inside RTL that has been copied while the other is not. */
3537 new_body = old_body;
3538 if (! replace)
3539 {
3540 new_body = copy_insn (old_body);
3541 if (REG_NOTES (insn))
3542 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3543 }
3544 PATTERN (insn) = new_body;
3545
3546 /* If we had a move insn but now we don't, rerecognize it. This will
3547 cause spurious re-recognition if the old move had a PARALLEL since
3548 the new one still will, but we can't call single_set without
3549 having put NEW_BODY into the insn and the re-recognition won't
3550 hurt in this rare case. */
3551 /* ??? Why this huge if statement - why don't we just rerecognize the
3552 thing always? */
3553 if (! insn_is_asm
3554 && old_set != 0
3555 && ((REG_P (SET_SRC (old_set))
3556 && (GET_CODE (new_body) != SET
3557 || !REG_P (SET_SRC (new_body))))
3558 /* If this was a load from or store to memory, compare
3559 the MEM in recog_data.operand to the one in the insn.
3560 If they are not equal, then rerecognize the insn. */
3561 || (old_set != 0
3562 && ((MEM_P (SET_SRC (old_set))
3563 && SET_SRC (old_set) != recog_data.operand[1])
3564 || (MEM_P (SET_DEST (old_set))
3565 && SET_DEST (old_set) != recog_data.operand[0])))
3566 /* If this was an add insn before, rerecognize. */
3567 || GET_CODE (SET_SRC (old_set)) == PLUS))
3568 {
3569 int new_icode = recog (PATTERN (insn), insn, 0);
3570 if (new_icode >= 0)
3571 INSN_CODE (insn) = new_icode;
3572 }
3573 }
3574
3575 /* Restore the old body. If there were any changes to it, we made a copy
3576 of it while the changes were still in place, so we'll correctly return
3577 a modified insn below. */
3578 if (! replace)
3579 {
3580 /* Restore the old body. */
3581 for (i = 0; i < recog_data.n_operands; i++)
3582 /* Restoring a top-level match_parallel would clobber the new_body
3583 we installed in the insn. */
3584 if (recog_data.operand_loc[i] != &PATTERN (insn))
3585 *recog_data.operand_loc[i] = orig_operand[i];
3586 for (i = 0; i < recog_data.n_dups; i++)
3587 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3588 }
3589
3590 /* Update all elimination pairs to reflect the status after the current
3591 insn. The changes we make were determined by the earlier call to
3592 elimination_effects.
3593
3594 We also detect cases where register elimination cannot be done,
3595 namely, if a register would be both changed and referenced outside a MEM
3596 in the resulting insn since such an insn is often undefined and, even if
3597 not, we cannot know what meaning will be given to it. Note that it is
3598 valid to have a register used in an address in an insn that changes it
3599 (presumably with a pre- or post-increment or decrement).
3600
3601 If anything changes, return nonzero. */
3602
3603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3604 {
3605 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3606 ep->can_eliminate = 0;
3607
3608 ep->ref_outside_mem = 0;
3609
3610 if (ep->previous_offset != ep->offset)
3611 val = 1;
3612 }
3613
3614 done:
3615 /* If we changed something, perform elimination in REG_NOTES. This is
3616 needed even when REPLACE is zero because a REG_DEAD note might refer
3617 to a register that we eliminate and could cause a different number
3618 of spill registers to be needed in the final reload pass than in
3619 the pre-passes. */
3620 if (val && REG_NOTES (insn) != 0)
3621 REG_NOTES (insn)
3622 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3623 false);
3624
3625 return val;
3626 }
3627
3628 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3629 register allocator. INSN is the instruction we need to examine, we perform
3630 eliminations in its operands and record cases where eliminating a reg with
3631 an invariant equivalence would add extra cost. */
3632
3633 static void
3634 elimination_costs_in_insn (rtx insn)
3635 {
3636 int icode = recog_memoized (insn);
3637 rtx old_body = PATTERN (insn);
3638 int insn_is_asm = asm_noperands (old_body) >= 0;
3639 rtx old_set = single_set (insn);
3640 int i;
3641 rtx orig_operand[MAX_RECOG_OPERANDS];
3642 rtx orig_dup[MAX_RECOG_OPERANDS];
3643 struct elim_table *ep;
3644 rtx plus_src, plus_cst_src;
3645 bool sets_reg_p;
3646
3647 if (! insn_is_asm && icode < 0)
3648 {
3649 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3650 || GET_CODE (PATTERN (insn)) == CLOBBER
3651 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3653 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3654 || DEBUG_INSN_P (insn));
3655 return;
3656 }
3657
3658 if (old_set != 0 && REG_P (SET_DEST (old_set))
3659 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3660 {
3661 /* Check for setting an eliminable register. */
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3664 return;
3665 }
3666
3667 /* We allow one special case which happens to work on all machines we
3668 currently support: a single set with the source or a REG_EQUAL
3669 note being a PLUS of an eliminable register and a constant. */
3670 plus_src = plus_cst_src = 0;
3671 sets_reg_p = false;
3672 if (old_set && REG_P (SET_DEST (old_set)))
3673 {
3674 sets_reg_p = true;
3675 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3676 plus_src = SET_SRC (old_set);
3677 /* First see if the source is of the form (plus (...) CST). */
3678 if (plus_src
3679 && CONST_INT_P (XEXP (plus_src, 1)))
3680 plus_cst_src = plus_src;
3681 else if (REG_P (SET_SRC (old_set))
3682 || plus_src)
3683 {
3684 /* Otherwise, see if we have a REG_EQUAL note of the form
3685 (plus (...) CST). */
3686 rtx links;
3687 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3688 {
3689 if ((REG_NOTE_KIND (links) == REG_EQUAL
3690 || REG_NOTE_KIND (links) == REG_EQUIV)
3691 && GET_CODE (XEXP (links, 0)) == PLUS
3692 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3693 {
3694 plus_cst_src = XEXP (links, 0);
3695 break;
3696 }
3697 }
3698 }
3699 }
3700
3701 /* Determine the effects of this insn on elimination offsets. */
3702 elimination_effects (old_body, VOIDmode);
3703
3704 /* Eliminate all eliminable registers occurring in operands that
3705 can be handled by reload. */
3706 extract_insn (insn);
3707 for (i = 0; i < recog_data.n_dups; i++)
3708 orig_dup[i] = *recog_data.dup_loc[i];
3709
3710 for (i = 0; i < recog_data.n_operands; i++)
3711 {
3712 orig_operand[i] = recog_data.operand[i];
3713
3714 /* For an asm statement, every operand is eliminable. */
3715 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3716 {
3717 bool is_set_src, in_plus;
3718
3719 /* Check for setting a register that we know about. */
3720 if (recog_data.operand_type[i] != OP_IN
3721 && REG_P (orig_operand[i]))
3722 {
3723 /* If we are assigning to a register that can be eliminated, it
3724 must be as part of a PARALLEL, since the code above handles
3725 single SETs. We must indicate that we can no longer
3726 eliminate this reg. */
3727 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3728 ep++)
3729 if (ep->from_rtx == orig_operand[i])
3730 ep->can_eliminate = 0;
3731 }
3732
3733 /* Companion to the above plus substitution, we can allow
3734 invariants as the source of a plain move. */
3735 is_set_src = false;
3736 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3737 is_set_src = true;
3738 if (is_set_src && !sets_reg_p)
3739 note_reg_elim_costly (&SET_SRC (old_set), insn);
3740 in_plus = false;
3741 if (plus_src && sets_reg_p
3742 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3743 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3744 in_plus = true;
3745
3746 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3747 NULL_RTX,
3748 is_set_src || in_plus, true);
3749 /* Terminate the search in check_eliminable_occurrences at
3750 this point. */
3751 *recog_data.operand_loc[i] = 0;
3752 }
3753 }
3754
3755 for (i = 0; i < recog_data.n_dups; i++)
3756 *recog_data.dup_loc[i]
3757 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3758
3759 /* If any eliminable remain, they aren't eliminable anymore. */
3760 check_eliminable_occurrences (old_body);
3761
3762 /* Restore the old body. */
3763 for (i = 0; i < recog_data.n_operands; i++)
3764 *recog_data.operand_loc[i] = orig_operand[i];
3765 for (i = 0; i < recog_data.n_dups; i++)
3766 *recog_data.dup_loc[i] = orig_dup[i];
3767
3768 /* Update all elimination pairs to reflect the status after the current
3769 insn. The changes we make were determined by the earlier call to
3770 elimination_effects. */
3771
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3773 {
3774 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3775 ep->can_eliminate = 0;
3776
3777 ep->ref_outside_mem = 0;
3778 }
3779
3780 return;
3781 }
3782
3783 /* Loop through all elimination pairs.
3784 Recalculate the number not at initial offset.
3785
3786 Compute the maximum offset (minimum offset if the stack does not
3787 grow downward) for each elimination pair. */
3788
3789 static void
3790 update_eliminable_offsets (void)
3791 {
3792 struct elim_table *ep;
3793
3794 num_not_at_initial_offset = 0;
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3796 {
3797 ep->previous_offset = ep->offset;
3798 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3799 num_not_at_initial_offset++;
3800 }
3801 }
3802
3803 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3804 replacement we currently believe is valid, mark it as not eliminable if X
3805 modifies DEST in any way other than by adding a constant integer to it.
3806
3807 If DEST is the frame pointer, we do nothing because we assume that
3808 all assignments to the hard frame pointer are nonlocal gotos and are being
3809 done at a time when they are valid and do not disturb anything else.
3810 Some machines want to eliminate a fake argument pointer with either the
3811 frame or stack pointer. Assignments to the hard frame pointer must not
3812 prevent this elimination.
3813
3814 Called via note_stores from reload before starting its passes to scan
3815 the insns of the function. */
3816
3817 static void
3818 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3819 {
3820 unsigned int i;
3821
3822 /* A SUBREG of a hard register here is just changing its mode. We should
3823 not see a SUBREG of an eliminable hard register, but check just in
3824 case. */
3825 if (GET_CODE (dest) == SUBREG)
3826 dest = SUBREG_REG (dest);
3827
3828 if (dest == hard_frame_pointer_rtx)
3829 return;
3830
3831 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3832 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3833 && (GET_CODE (x) != SET
3834 || GET_CODE (SET_SRC (x)) != PLUS
3835 || XEXP (SET_SRC (x), 0) != dest
3836 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3837 {
3838 reg_eliminate[i].can_eliminate_previous
3839 = reg_eliminate[i].can_eliminate = 0;
3840 num_eliminable--;
3841 }
3842 }
3843
3844 /* Verify that the initial elimination offsets did not change since the
3845 last call to set_initial_elim_offsets. This is used to catch cases
3846 where something illegal happened during reload_as_needed that could
3847 cause incorrect code to be generated if we did not check for it. */
3848
3849 static bool
3850 verify_initial_elim_offsets (void)
3851 {
3852 HOST_WIDE_INT t;
3853
3854 if (!num_eliminable)
3855 return true;
3856
3857 #ifdef ELIMINABLE_REGS
3858 {
3859 struct elim_table *ep;
3860
3861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3862 {
3863 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3864 if (t != ep->initial_offset)
3865 return false;
3866 }
3867 }
3868 #else
3869 INITIAL_FRAME_POINTER_OFFSET (t);
3870 if (t != reg_eliminate[0].initial_offset)
3871 return false;
3872 #endif
3873
3874 return true;
3875 }
3876
3877 /* Reset all offsets on eliminable registers to their initial values. */
3878
3879 static void
3880 set_initial_elim_offsets (void)
3881 {
3882 struct elim_table *ep = reg_eliminate;
3883
3884 #ifdef ELIMINABLE_REGS
3885 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3886 {
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 }
3890 #else
3891 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #endif
3894
3895 num_not_at_initial_offset = 0;
3896 }
3897
3898 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3899
3900 static void
3901 set_initial_eh_label_offset (rtx label)
3902 {
3903 set_label_offsets (label, NULL_RTX, 1);
3904 }
3905
3906 /* Initialize the known label offsets.
3907 Set a known offset for each forced label to be at the initial offset
3908 of each elimination. We do this because we assume that all
3909 computed jumps occur from a location where each elimination is
3910 at its initial offset.
3911 For all other labels, show that we don't know the offsets. */
3912
3913 static void
3914 set_initial_label_offsets (void)
3915 {
3916 rtx x;
3917 memset (offsets_known_at, 0, num_labels);
3918
3919 for (x = forced_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3922
3923 for_each_eh_label (set_initial_eh_label_offset);
3924 }
3925
3926 /* Set all elimination offsets to the known values for the code label given
3927 by INSN. */
3928
3929 static void
3930 set_offsets_for_label (rtx insn)
3931 {
3932 unsigned int i;
3933 int label_nr = CODE_LABEL_NUMBER (insn);
3934 struct elim_table *ep;
3935
3936 num_not_at_initial_offset = 0;
3937 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3938 {
3939 ep->offset = ep->previous_offset
3940 = offsets_at[label_nr - first_label_num][i];
3941 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3942 num_not_at_initial_offset++;
3943 }
3944 }
3945
3946 /* See if anything that happened changes which eliminations are valid.
3947 For example, on the SPARC, whether or not the frame pointer can
3948 be eliminated can depend on what registers have been used. We need
3949 not check some conditions again (such as flag_omit_frame_pointer)
3950 since they can't have changed. */
3951
3952 static void
3953 update_eliminables (HARD_REG_SET *pset)
3954 {
3955 int previous_frame_pointer_needed = frame_pointer_needed;
3956 struct elim_table *ep;
3957
3958 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3959 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3960 && targetm.frame_pointer_required ())
3961 #ifdef ELIMINABLE_REGS
3962 || ! targetm.can_eliminate (ep->from, ep->to)
3963 #endif
3964 )
3965 ep->can_eliminate = 0;
3966
3967 /* Look for the case where we have discovered that we can't replace
3968 register A with register B and that means that we will now be
3969 trying to replace register A with register C. This means we can
3970 no longer replace register C with register B and we need to disable
3971 such an elimination, if it exists. This occurs often with A == ap,
3972 B == sp, and C == fp. */
3973
3974 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3975 {
3976 struct elim_table *op;
3977 int new_to = -1;
3978
3979 if (! ep->can_eliminate && ep->can_eliminate_previous)
3980 {
3981 /* Find the current elimination for ep->from, if there is a
3982 new one. */
3983 for (op = reg_eliminate;
3984 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3985 if (op->from == ep->from && op->can_eliminate)
3986 {
3987 new_to = op->to;
3988 break;
3989 }
3990
3991 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3992 disable it. */
3993 for (op = reg_eliminate;
3994 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3995 if (op->from == new_to && op->to == ep->to)
3996 op->can_eliminate = 0;
3997 }
3998 }
3999
4000 /* See if any registers that we thought we could eliminate the previous
4001 time are no longer eliminable. If so, something has changed and we
4002 must spill the register. Also, recompute the number of eliminable
4003 registers and see if the frame pointer is needed; it is if there is
4004 no elimination of the frame pointer that we can perform. */
4005
4006 frame_pointer_needed = 1;
4007 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4008 {
4009 if (ep->can_eliminate
4010 && ep->from == FRAME_POINTER_REGNUM
4011 && ep->to != HARD_FRAME_POINTER_REGNUM
4012 && (! SUPPORTS_STACK_ALIGNMENT
4013 || ! crtl->stack_realign_needed))
4014 frame_pointer_needed = 0;
4015
4016 if (! ep->can_eliminate && ep->can_eliminate_previous)
4017 {
4018 ep->can_eliminate_previous = 0;
4019 SET_HARD_REG_BIT (*pset, ep->from);
4020 num_eliminable--;
4021 }
4022 }
4023
4024 /* If we didn't need a frame pointer last time, but we do now, spill
4025 the hard frame pointer. */
4026 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4027 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4028 }
4029
4030 /* Return true if X is used as the target register of an elimination. */
4031
4032 bool
4033 elimination_target_reg_p (rtx x)
4034 {
4035 struct elim_table *ep;
4036
4037 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4038 if (ep->to_rtx == x && ep->can_eliminate)
4039 return true;
4040
4041 return false;
4042 }
4043
4044 /* Initialize the table of registers to eliminate.
4045 Pre-condition: global flag frame_pointer_needed has been set before
4046 calling this function. */
4047
4048 static void
4049 init_elim_table (void)
4050 {
4051 struct elim_table *ep;
4052 #ifdef ELIMINABLE_REGS
4053 const struct elim_table_1 *ep1;
4054 #endif
4055
4056 if (!reg_eliminate)
4057 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4058
4059 num_eliminable = 0;
4060
4061 #ifdef ELIMINABLE_REGS
4062 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4063 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4064 {
4065 ep->from = ep1->from;
4066 ep->to = ep1->to;
4067 ep->can_eliminate = ep->can_eliminate_previous
4068 = (targetm.can_eliminate (ep->from, ep->to)
4069 && ! (ep->to == STACK_POINTER_REGNUM
4070 && frame_pointer_needed
4071 && (! SUPPORTS_STACK_ALIGNMENT
4072 || ! stack_realign_fp)));
4073 }
4074 #else
4075 reg_eliminate[0].from = reg_eliminate_1[0].from;
4076 reg_eliminate[0].to = reg_eliminate_1[0].to;
4077 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4078 = ! frame_pointer_needed;
4079 #endif
4080
4081 /* Count the number of eliminable registers and build the FROM and TO
4082 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4083 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4084 We depend on this. */
4085 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4086 {
4087 num_eliminable += ep->can_eliminate;
4088 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4089 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4090 }
4091 }
4092
4093 /* Find all the pseudo registers that didn't get hard regs
4094 but do have known equivalent constants or memory slots.
4095 These include parameters (known equivalent to parameter slots)
4096 and cse'd or loop-moved constant memory addresses.
4097
4098 Record constant equivalents in reg_equiv_constant
4099 so they will be substituted by find_reloads.
4100 Record memory equivalents in reg_mem_equiv so they can
4101 be substituted eventually by altering the REG-rtx's. */
4102
4103 static void
4104 init_eliminable_invariants (rtx first, bool do_subregs)
4105 {
4106 int i;
4107 rtx insn;
4108
4109 grow_reg_equivs ();
4110 if (do_subregs)
4111 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4112 else
4113 reg_max_ref_width = NULL;
4114
4115 num_eliminable_invariants = 0;
4116
4117 first_label_num = get_first_label_num ();
4118 num_labels = max_label_num () - first_label_num;
4119
4120 /* Allocate the tables used to store offset information at labels. */
4121 offsets_known_at = XNEWVEC (char, num_labels);
4122 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4123
4124 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4125 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4126 find largest such for each pseudo. FIRST is the head of the insn
4127 list. */
4128
4129 for (insn = first; insn; insn = NEXT_INSN (insn))
4130 {
4131 rtx set = single_set (insn);
4132
4133 /* We may introduce USEs that we want to remove at the end, so
4134 we'll mark them with QImode. Make sure there are no
4135 previously-marked insns left by say regmove. */
4136 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4137 && GET_MODE (insn) != VOIDmode)
4138 PUT_MODE (insn, VOIDmode);
4139
4140 if (do_subregs && NONDEBUG_INSN_P (insn))
4141 scan_paradoxical_subregs (PATTERN (insn));
4142
4143 if (set != 0 && REG_P (SET_DEST (set)))
4144 {
4145 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4146 rtx x;
4147
4148 if (! note)
4149 continue;
4150
4151 i = REGNO (SET_DEST (set));
4152 x = XEXP (note, 0);
4153
4154 if (i <= LAST_VIRTUAL_REGISTER)
4155 continue;
4156
4157 /* If flag_pic and we have constant, verify it's legitimate. */
4158 if (!CONSTANT_P (x)
4159 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4160 {
4161 /* It can happen that a REG_EQUIV note contains a MEM
4162 that is not a legitimate memory operand. As later
4163 stages of reload assume that all addresses found
4164 in the reg_equiv_* arrays were originally legitimate,
4165 we ignore such REG_EQUIV notes. */
4166 if (memory_operand (x, VOIDmode))
4167 {
4168 /* Always unshare the equivalence, so we can
4169 substitute into this insn without touching the
4170 equivalence. */
4171 reg_equiv_memory_loc (i) = copy_rtx (x);
4172 }
4173 else if (function_invariant_p (x))
4174 {
4175 enum machine_mode mode;
4176
4177 mode = GET_MODE (SET_DEST (set));
4178 if (GET_CODE (x) == PLUS)
4179 {
4180 /* This is PLUS of frame pointer and a constant,
4181 and might be shared. Unshare it. */
4182 reg_equiv_invariant (i) = copy_rtx (x);
4183 num_eliminable_invariants++;
4184 }
4185 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4186 {
4187 reg_equiv_invariant (i) = x;
4188 num_eliminable_invariants++;
4189 }
4190 else if (targetm.legitimate_constant_p (mode, x))
4191 reg_equiv_constant (i) = x;
4192 else
4193 {
4194 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4195 if (! reg_equiv_memory_loc (i))
4196 reg_equiv_init (i) = NULL_RTX;
4197 }
4198 }
4199 else
4200 {
4201 reg_equiv_init (i) = NULL_RTX;
4202 continue;
4203 }
4204 }
4205 else
4206 reg_equiv_init (i) = NULL_RTX;
4207 }
4208 }
4209
4210 if (dump_file)
4211 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4212 if (reg_equiv_init (i))
4213 {
4214 fprintf (dump_file, "init_insns for %u: ", i);
4215 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4216 fprintf (dump_file, "\n");
4217 }
4218 }
4219
4220 /* Indicate that we no longer have known memory locations or constants.
4221 Free all data involved in tracking these. */
4222
4223 static void
4224 free_reg_equiv (void)
4225 {
4226 int i;
4227
4228
4229 free (offsets_known_at);
4230 free (offsets_at);
4231 offsets_at = 0;
4232 offsets_known_at = 0;
4233
4234 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4235 if (reg_equiv_alt_mem_list (i))
4236 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4237 VEC_free (reg_equivs_t, gc, reg_equivs);
4238 reg_equivs = NULL;
4239
4240 }
4241 \f
4242 /* Kick all pseudos out of hard register REGNO.
4243
4244 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4245 because we found we can't eliminate some register. In the case, no pseudos
4246 are allowed to be in the register, even if they are only in a block that
4247 doesn't require spill registers, unlike the case when we are spilling this
4248 hard reg to produce another spill register.
4249
4250 Return nonzero if any pseudos needed to be kicked out. */
4251
4252 static void
4253 spill_hard_reg (unsigned int regno, int cant_eliminate)
4254 {
4255 int i;
4256
4257 if (cant_eliminate)
4258 {
4259 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4260 df_set_regs_ever_live (regno, true);
4261 }
4262
4263 /* Spill every pseudo reg that was allocated to this reg
4264 or to something that overlaps this reg. */
4265
4266 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4267 if (reg_renumber[i] >= 0
4268 && (unsigned int) reg_renumber[i] <= regno
4269 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4270 SET_REGNO_REG_SET (&spilled_pseudos, i);
4271 }
4272
4273 /* After find_reload_regs has been run for all insn that need reloads,
4274 and/or spill_hard_regs was called, this function is used to actually
4275 spill pseudo registers and try to reallocate them. It also sets up the
4276 spill_regs array for use by choose_reload_regs. */
4277
4278 static int
4279 finish_spills (int global)
4280 {
4281 struct insn_chain *chain;
4282 int something_changed = 0;
4283 unsigned i;
4284 reg_set_iterator rsi;
4285
4286 /* Build the spill_regs array for the function. */
4287 /* If there are some registers still to eliminate and one of the spill regs
4288 wasn't ever used before, additional stack space may have to be
4289 allocated to store this register. Thus, we may have changed the offset
4290 between the stack and frame pointers, so mark that something has changed.
4291
4292 One might think that we need only set VAL to 1 if this is a call-used
4293 register. However, the set of registers that must be saved by the
4294 prologue is not identical to the call-used set. For example, the
4295 register used by the call insn for the return PC is a call-used register,
4296 but must be saved by the prologue. */
4297
4298 n_spills = 0;
4299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4300 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4301 {
4302 spill_reg_order[i] = n_spills;
4303 spill_regs[n_spills++] = i;
4304 if (num_eliminable && ! df_regs_ever_live_p (i))
4305 something_changed = 1;
4306 df_set_regs_ever_live (i, true);
4307 }
4308 else
4309 spill_reg_order[i] = -1;
4310
4311 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4312 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4313 {
4314 /* Record the current hard register the pseudo is allocated to
4315 in pseudo_previous_regs so we avoid reallocating it to the
4316 same hard reg in a later pass. */
4317 gcc_assert (reg_renumber[i] >= 0);
4318
4319 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4320 /* Mark it as no longer having a hard register home. */
4321 reg_renumber[i] = -1;
4322 if (ira_conflicts_p)
4323 /* Inform IRA about the change. */
4324 ira_mark_allocation_change (i);
4325 /* We will need to scan everything again. */
4326 something_changed = 1;
4327 }
4328
4329 /* Retry global register allocation if possible. */
4330 if (global && ira_conflicts_p)
4331 {
4332 unsigned int n;
4333
4334 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4335 /* For every insn that needs reloads, set the registers used as spill
4336 regs in pseudo_forbidden_regs for every pseudo live across the
4337 insn. */
4338 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4339 {
4340 EXECUTE_IF_SET_IN_REG_SET
4341 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4342 {
4343 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4344 chain->used_spill_regs);
4345 }
4346 EXECUTE_IF_SET_IN_REG_SET
4347 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4348 {
4349 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4350 chain->used_spill_regs);
4351 }
4352 }
4353
4354 /* Retry allocating the pseudos spilled in IRA and the
4355 reload. For each reg, merge the various reg sets that
4356 indicate which hard regs can't be used, and call
4357 ira_reassign_pseudos. */
4358 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4359 if (reg_old_renumber[i] != reg_renumber[i])
4360 {
4361 if (reg_renumber[i] < 0)
4362 temp_pseudo_reg_arr[n++] = i;
4363 else
4364 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4365 }
4366 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4367 bad_spill_regs_global,
4368 pseudo_forbidden_regs, pseudo_previous_regs,
4369 &spilled_pseudos))
4370 something_changed = 1;
4371 }
4372 /* Fix up the register information in the insn chain.
4373 This involves deleting those of the spilled pseudos which did not get
4374 a new hard register home from the live_{before,after} sets. */
4375 for (chain = reload_insn_chain; chain; chain = chain->next)
4376 {
4377 HARD_REG_SET used_by_pseudos;
4378 HARD_REG_SET used_by_pseudos2;
4379
4380 if (! ira_conflicts_p)
4381 {
4382 /* Don't do it for IRA because IRA and the reload still can
4383 assign hard registers to the spilled pseudos on next
4384 reload iterations. */
4385 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4386 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4387 }
4388 /* Mark any unallocated hard regs as available for spills. That
4389 makes inheritance work somewhat better. */
4390 if (chain->need_reload)
4391 {
4392 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4393 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4394 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4395
4396 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4397 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4398 /* Value of chain->used_spill_regs from previous iteration
4399 may be not included in the value calculated here because
4400 of possible removing caller-saves insns (see function
4401 delete_caller_save_insns. */
4402 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4403 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4404 }
4405 }
4406
4407 CLEAR_REG_SET (&changed_allocation_pseudos);
4408 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4409 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4410 {
4411 int regno = reg_renumber[i];
4412 if (reg_old_renumber[i] == regno)
4413 continue;
4414
4415 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4416
4417 alter_reg (i, reg_old_renumber[i], false);
4418 reg_old_renumber[i] = regno;
4419 if (dump_file)
4420 {
4421 if (regno == -1)
4422 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4423 else
4424 fprintf (dump_file, " Register %d now in %d.\n\n",
4425 i, reg_renumber[i]);
4426 }
4427 }
4428
4429 return something_changed;
4430 }
4431 \f
4432 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4433
4434 static void
4435 scan_paradoxical_subregs (rtx x)
4436 {
4437 int i;
4438 const char *fmt;
4439 enum rtx_code code = GET_CODE (x);
4440
4441 switch (code)
4442 {
4443 case REG:
4444 case CONST_INT:
4445 case CONST:
4446 case SYMBOL_REF:
4447 case LABEL_REF:
4448 case CONST_DOUBLE:
4449 case CONST_FIXED:
4450 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4451 case CC0:
4452 case PC:
4453 case USE:
4454 case CLOBBER:
4455 return;
4456
4457 case SUBREG:
4458 if (REG_P (SUBREG_REG (x))
4459 && (GET_MODE_SIZE (GET_MODE (x))
4460 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4461 {
4462 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4463 = GET_MODE_SIZE (GET_MODE (x));
4464 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4465 }
4466 return;
4467
4468 default:
4469 break;
4470 }
4471
4472 fmt = GET_RTX_FORMAT (code);
4473 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4474 {
4475 if (fmt[i] == 'e')
4476 scan_paradoxical_subregs (XEXP (x, i));
4477 else if (fmt[i] == 'E')
4478 {
4479 int j;
4480 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4481 scan_paradoxical_subregs (XVECEXP (x, i, j));
4482 }
4483 }
4484 }
4485
4486 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4487 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4488 and apply the corresponding narrowing subreg to *OTHER_PTR.
4489 Return true if the operands were changed, false otherwise. */
4490
4491 static bool
4492 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4493 {
4494 rtx op, inner, other, tem;
4495
4496 op = *op_ptr;
4497 if (!paradoxical_subreg_p (op))
4498 return false;
4499 inner = SUBREG_REG (op);
4500
4501 other = *other_ptr;
4502 tem = gen_lowpart_common (GET_MODE (inner), other);
4503 if (!tem)
4504 return false;
4505
4506 /* If the lowpart operation turned a hard register into a subreg,
4507 rather than simplifying it to another hard register, then the
4508 mode change cannot be properly represented. For example, OTHER
4509 might be valid in its current mode, but not in the new one. */
4510 if (GET_CODE (tem) == SUBREG
4511 && REG_P (other)
4512 && HARD_REGISTER_P (other))
4513 return false;
4514
4515 *op_ptr = inner;
4516 *other_ptr = tem;
4517 return true;
4518 }
4519 \f
4520 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4521 examine all of the reload insns between PREV and NEXT exclusive, and
4522 annotate all that may trap. */
4523
4524 static void
4525 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4526 {
4527 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4528 if (note == NULL)
4529 return;
4530 if (!insn_could_throw_p (insn))
4531 remove_note (insn, note);
4532 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4533 }
4534
4535 /* Reload pseudo-registers into hard regs around each insn as needed.
4536 Additional register load insns are output before the insn that needs it
4537 and perhaps store insns after insns that modify the reloaded pseudo reg.
4538
4539 reg_last_reload_reg and reg_reloaded_contents keep track of
4540 which registers are already available in reload registers.
4541 We update these for the reloads that we perform,
4542 as the insns are scanned. */
4543
4544 static void
4545 reload_as_needed (int live_known)
4546 {
4547 struct insn_chain *chain;
4548 #if defined (AUTO_INC_DEC)
4549 int i;
4550 #endif
4551 rtx x, marker;
4552
4553 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4554 memset (spill_reg_store, 0, sizeof spill_reg_store);
4555 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4556 INIT_REG_SET (&reg_has_output_reload);
4557 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4558 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4559
4560 set_initial_elim_offsets ();
4561
4562 /* Generate a marker insn that we will move around. */
4563 marker = emit_note (NOTE_INSN_DELETED);
4564 unlink_insn_chain (marker, marker);
4565
4566 for (chain = reload_insn_chain; chain; chain = chain->next)
4567 {
4568 rtx prev = 0;
4569 rtx insn = chain->insn;
4570 rtx old_next = NEXT_INSN (insn);
4571 #ifdef AUTO_INC_DEC
4572 rtx old_prev = PREV_INSN (insn);
4573 #endif
4574
4575 /* If we pass a label, copy the offsets from the label information
4576 into the current offsets of each elimination. */
4577 if (LABEL_P (insn))
4578 set_offsets_for_label (insn);
4579
4580 else if (INSN_P (insn))
4581 {
4582 regset_head regs_to_forget;
4583 INIT_REG_SET (&regs_to_forget);
4584 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4585
4586 /* If this is a USE and CLOBBER of a MEM, ensure that any
4587 references to eliminable registers have been removed. */
4588
4589 if ((GET_CODE (PATTERN (insn)) == USE
4590 || GET_CODE (PATTERN (insn)) == CLOBBER)
4591 && MEM_P (XEXP (PATTERN (insn), 0)))
4592 XEXP (XEXP (PATTERN (insn), 0), 0)
4593 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4594 GET_MODE (XEXP (PATTERN (insn), 0)),
4595 NULL_RTX);
4596
4597 /* If we need to do register elimination processing, do so.
4598 This might delete the insn, in which case we are done. */
4599 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4600 {
4601 eliminate_regs_in_insn (insn, 1);
4602 if (NOTE_P (insn))
4603 {
4604 update_eliminable_offsets ();
4605 CLEAR_REG_SET (&regs_to_forget);
4606 continue;
4607 }
4608 }
4609
4610 /* If need_elim is nonzero but need_reload is zero, one might think
4611 that we could simply set n_reloads to 0. However, find_reloads
4612 could have done some manipulation of the insn (such as swapping
4613 commutative operands), and these manipulations are lost during
4614 the first pass for every insn that needs register elimination.
4615 So the actions of find_reloads must be redone here. */
4616
4617 if (! chain->need_elim && ! chain->need_reload
4618 && ! chain->need_operand_change)
4619 n_reloads = 0;
4620 /* First find the pseudo regs that must be reloaded for this insn.
4621 This info is returned in the tables reload_... (see reload.h).
4622 Also modify the body of INSN by substituting RELOAD
4623 rtx's for those pseudo regs. */
4624 else
4625 {
4626 CLEAR_REG_SET (&reg_has_output_reload);
4627 CLEAR_HARD_REG_SET (reg_is_output_reload);
4628
4629 find_reloads (insn, 1, spill_indirect_levels, live_known,
4630 spill_reg_order);
4631 }
4632
4633 if (n_reloads > 0)
4634 {
4635 rtx next = NEXT_INSN (insn);
4636 rtx p;
4637
4638 /* ??? PREV can get deleted by reload inheritance.
4639 Work around this by emitting a marker note. */
4640 prev = PREV_INSN (insn);
4641 reorder_insns_nobb (marker, marker, prev);
4642
4643 /* Now compute which reload regs to reload them into. Perhaps
4644 reusing reload regs from previous insns, or else output
4645 load insns to reload them. Maybe output store insns too.
4646 Record the choices of reload reg in reload_reg_rtx. */
4647 choose_reload_regs (chain);
4648
4649 /* Generate the insns to reload operands into or out of
4650 their reload regs. */
4651 emit_reload_insns (chain);
4652
4653 /* Substitute the chosen reload regs from reload_reg_rtx
4654 into the insn's body (or perhaps into the bodies of other
4655 load and store insn that we just made for reloading
4656 and that we moved the structure into). */
4657 subst_reloads (insn);
4658
4659 prev = PREV_INSN (marker);
4660 unlink_insn_chain (marker, marker);
4661
4662 /* Adjust the exception region notes for loads and stores. */
4663 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4664 fixup_eh_region_note (insn, prev, next);
4665
4666 /* Adjust the location of REG_ARGS_SIZE. */
4667 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4668 if (p)
4669 {
4670 remove_note (insn, p);
4671 fixup_args_size_notes (prev, PREV_INSN (next),
4672 INTVAL (XEXP (p, 0)));
4673 }
4674
4675 /* If this was an ASM, make sure that all the reload insns
4676 we have generated are valid. If not, give an error
4677 and delete them. */
4678 if (asm_noperands (PATTERN (insn)) >= 0)
4679 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4680 if (p != insn && INSN_P (p)
4681 && GET_CODE (PATTERN (p)) != USE
4682 && (recog_memoized (p) < 0
4683 || (extract_insn (p), ! constrain_operands (1))))
4684 {
4685 error_for_asm (insn,
4686 "%<asm%> operand requires "
4687 "impossible reload");
4688 delete_insn (p);
4689 }
4690 }
4691
4692 if (num_eliminable && chain->need_elim)
4693 update_eliminable_offsets ();
4694
4695 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4696 is no longer validly lying around to save a future reload.
4697 Note that this does not detect pseudos that were reloaded
4698 for this insn in order to be stored in
4699 (obeying register constraints). That is correct; such reload
4700 registers ARE still valid. */
4701 forget_marked_reloads (&regs_to_forget);
4702 CLEAR_REG_SET (&regs_to_forget);
4703
4704 /* There may have been CLOBBER insns placed after INSN. So scan
4705 between INSN and NEXT and use them to forget old reloads. */
4706 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4707 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4708 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4709
4710 #ifdef AUTO_INC_DEC
4711 /* Likewise for regs altered by auto-increment in this insn.
4712 REG_INC notes have been changed by reloading:
4713 find_reloads_address_1 records substitutions for them,
4714 which have been performed by subst_reloads above. */
4715 for (i = n_reloads - 1; i >= 0; i--)
4716 {
4717 rtx in_reg = rld[i].in_reg;
4718 if (in_reg)
4719 {
4720 enum rtx_code code = GET_CODE (in_reg);
4721 /* PRE_INC / PRE_DEC will have the reload register ending up
4722 with the same value as the stack slot, but that doesn't
4723 hold true for POST_INC / POST_DEC. Either we have to
4724 convert the memory access to a true POST_INC / POST_DEC,
4725 or we can't use the reload register for inheritance. */
4726 if ((code == POST_INC || code == POST_DEC)
4727 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4728 REGNO (rld[i].reg_rtx))
4729 /* Make sure it is the inc/dec pseudo, and not
4730 some other (e.g. output operand) pseudo. */
4731 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4732 == REGNO (XEXP (in_reg, 0))))
4733
4734 {
4735 rtx reload_reg = rld[i].reg_rtx;
4736 enum machine_mode mode = GET_MODE (reload_reg);
4737 int n = 0;
4738 rtx p;
4739
4740 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4741 {
4742 /* We really want to ignore REG_INC notes here, so
4743 use PATTERN (p) as argument to reg_set_p . */
4744 if (reg_set_p (reload_reg, PATTERN (p)))
4745 break;
4746 n = count_occurrences (PATTERN (p), reload_reg, 0);
4747 if (! n)
4748 continue;
4749 if (n == 1)
4750 {
4751 rtx replace_reg
4752 = gen_rtx_fmt_e (code, mode, reload_reg);
4753
4754 validate_replace_rtx_group (reload_reg,
4755 replace_reg, p);
4756 n = verify_changes (0);
4757
4758 /* We must also verify that the constraints
4759 are met after the replacement. Make sure
4760 extract_insn is only called for an insn
4761 where the replacements were found to be
4762 valid so far. */
4763 if (n)
4764 {
4765 extract_insn (p);
4766 n = constrain_operands (1);
4767 }
4768
4769 /* If the constraints were not met, then
4770 undo the replacement, else confirm it. */
4771 if (!n)
4772 cancel_changes (0);
4773 else
4774 confirm_change_group ();
4775 }
4776 break;
4777 }
4778 if (n == 1)
4779 {
4780 add_reg_note (p, REG_INC, reload_reg);
4781 /* Mark this as having an output reload so that the
4782 REG_INC processing code below won't invalidate
4783 the reload for inheritance. */
4784 SET_HARD_REG_BIT (reg_is_output_reload,
4785 REGNO (reload_reg));
4786 SET_REGNO_REG_SET (&reg_has_output_reload,
4787 REGNO (XEXP (in_reg, 0)));
4788 }
4789 else
4790 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4791 NULL);
4792 }
4793 else if ((code == PRE_INC || code == PRE_DEC)
4794 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4795 REGNO (rld[i].reg_rtx))
4796 /* Make sure it is the inc/dec pseudo, and not
4797 some other (e.g. output operand) pseudo. */
4798 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4799 == REGNO (XEXP (in_reg, 0))))
4800 {
4801 SET_HARD_REG_BIT (reg_is_output_reload,
4802 REGNO (rld[i].reg_rtx));
4803 SET_REGNO_REG_SET (&reg_has_output_reload,
4804 REGNO (XEXP (in_reg, 0)));
4805 }
4806 else if (code == PRE_INC || code == PRE_DEC
4807 || code == POST_INC || code == POST_DEC)
4808 {
4809 int in_regno = REGNO (XEXP (in_reg, 0));
4810
4811 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4812 {
4813 int in_hard_regno;
4814 bool forget_p = true;
4815
4816 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4817 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4818 in_hard_regno))
4819 {
4820 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4821 x != old_next;
4822 x = NEXT_INSN (x))
4823 if (x == reg_reloaded_insn[in_hard_regno])
4824 {
4825 forget_p = false;
4826 break;
4827 }
4828 }
4829 /* If for some reasons, we didn't set up
4830 reg_last_reload_reg in this insn,
4831 invalidate inheritance from previous
4832 insns for the incremented/decremented
4833 register. Such registers will be not in
4834 reg_has_output_reload. Invalidate it
4835 also if the corresponding element in
4836 reg_reloaded_insn is also
4837 invalidated. */
4838 if (forget_p)
4839 forget_old_reloads_1 (XEXP (in_reg, 0),
4840 NULL_RTX, NULL);
4841 }
4842 }
4843 }
4844 }
4845 /* If a pseudo that got a hard register is auto-incremented,
4846 we must purge records of copying it into pseudos without
4847 hard registers. */
4848 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4849 if (REG_NOTE_KIND (x) == REG_INC)
4850 {
4851 /* See if this pseudo reg was reloaded in this insn.
4852 If so, its last-reload info is still valid
4853 because it is based on this insn's reload. */
4854 for (i = 0; i < n_reloads; i++)
4855 if (rld[i].out == XEXP (x, 0))
4856 break;
4857
4858 if (i == n_reloads)
4859 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4860 }
4861 #endif
4862 }
4863 /* A reload reg's contents are unknown after a label. */
4864 if (LABEL_P (insn))
4865 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4866
4867 /* Don't assume a reload reg is still good after a call insn
4868 if it is a call-used reg, or if it contains a value that will
4869 be partially clobbered by the call. */
4870 else if (CALL_P (insn))
4871 {
4872 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4873 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4874
4875 /* If this is a call to a setjmp-type function, we must not
4876 reuse any reload reg contents across the call; that will
4877 just be clobbered by other uses of the register in later
4878 code, before the longjmp. */
4879 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4880 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4881 }
4882 }
4883
4884 /* Clean up. */
4885 free (reg_last_reload_reg);
4886 CLEAR_REG_SET (&reg_has_output_reload);
4887 }
4888
4889 /* Discard all record of any value reloaded from X,
4890 or reloaded in X from someplace else;
4891 unless X is an output reload reg of the current insn.
4892
4893 X may be a hard reg (the reload reg)
4894 or it may be a pseudo reg that was reloaded from.
4895
4896 When DATA is non-NULL just mark the registers in regset
4897 to be forgotten later. */
4898
4899 static void
4900 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4901 void *data)
4902 {
4903 unsigned int regno;
4904 unsigned int nr;
4905 regset regs = (regset) data;
4906
4907 /* note_stores does give us subregs of hard regs,
4908 subreg_regno_offset requires a hard reg. */
4909 while (GET_CODE (x) == SUBREG)
4910 {
4911 /* We ignore the subreg offset when calculating the regno,
4912 because we are using the entire underlying hard register
4913 below. */
4914 x = SUBREG_REG (x);
4915 }
4916
4917 if (!REG_P (x))
4918 return;
4919
4920 regno = REGNO (x);
4921
4922 if (regno >= FIRST_PSEUDO_REGISTER)
4923 nr = 1;
4924 else
4925 {
4926 unsigned int i;
4927
4928 nr = hard_regno_nregs[regno][GET_MODE (x)];
4929 /* Storing into a spilled-reg invalidates its contents.
4930 This can happen if a block-local pseudo is allocated to that reg
4931 and it wasn't spilled because this block's total need is 0.
4932 Then some insn might have an optional reload and use this reg. */
4933 if (!regs)
4934 for (i = 0; i < nr; i++)
4935 /* But don't do this if the reg actually serves as an output
4936 reload reg in the current instruction. */
4937 if (n_reloads == 0
4938 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4939 {
4940 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4941 spill_reg_store[regno + i] = 0;
4942 }
4943 }
4944
4945 if (regs)
4946 while (nr-- > 0)
4947 SET_REGNO_REG_SET (regs, regno + nr);
4948 else
4949 {
4950 /* Since value of X has changed,
4951 forget any value previously copied from it. */
4952
4953 while (nr-- > 0)
4954 /* But don't forget a copy if this is the output reload
4955 that establishes the copy's validity. */
4956 if (n_reloads == 0
4957 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4958 reg_last_reload_reg[regno + nr] = 0;
4959 }
4960 }
4961
4962 /* Forget the reloads marked in regset by previous function. */
4963 static void
4964 forget_marked_reloads (regset regs)
4965 {
4966 unsigned int reg;
4967 reg_set_iterator rsi;
4968 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4969 {
4970 if (reg < FIRST_PSEUDO_REGISTER
4971 /* But don't do this if the reg actually serves as an output
4972 reload reg in the current instruction. */
4973 && (n_reloads == 0
4974 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4975 {
4976 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4977 spill_reg_store[reg] = 0;
4978 }
4979 if (n_reloads == 0
4980 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4981 reg_last_reload_reg[reg] = 0;
4982 }
4983 }
4984 \f
4985 /* The following HARD_REG_SETs indicate when each hard register is
4986 used for a reload of various parts of the current insn. */
4987
4988 /* If reg is unavailable for all reloads. */
4989 static HARD_REG_SET reload_reg_unavailable;
4990 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4991 static HARD_REG_SET reload_reg_used;
4992 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4993 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4994 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4995 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4996 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5001 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5002 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5003 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5004 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5005 static HARD_REG_SET reload_reg_used_in_op_addr;
5006 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5007 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5008 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5009 static HARD_REG_SET reload_reg_used_in_insn;
5010 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5011 static HARD_REG_SET reload_reg_used_in_other_addr;
5012
5013 /* If reg is in use as a reload reg for any sort of reload. */
5014 static HARD_REG_SET reload_reg_used_at_all;
5015
5016 /* If reg is use as an inherited reload. We just mark the first register
5017 in the group. */
5018 static HARD_REG_SET reload_reg_used_for_inherit;
5019
5020 /* Records which hard regs are used in any way, either as explicit use or
5021 by being allocated to a pseudo during any point of the current insn. */
5022 static HARD_REG_SET reg_used_in_insn;
5023
5024 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5025 TYPE. MODE is used to indicate how many consecutive regs are
5026 actually used. */
5027
5028 static void
5029 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5030 enum machine_mode mode)
5031 {
5032 switch (type)
5033 {
5034 case RELOAD_OTHER:
5035 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5036 break;
5037
5038 case RELOAD_FOR_INPUT_ADDRESS:
5039 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5040 break;
5041
5042 case RELOAD_FOR_INPADDR_ADDRESS:
5043 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5044 break;
5045
5046 case RELOAD_FOR_OUTPUT_ADDRESS:
5047 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5048 break;
5049
5050 case RELOAD_FOR_OUTADDR_ADDRESS:
5051 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5052 break;
5053
5054 case RELOAD_FOR_OPERAND_ADDRESS:
5055 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5056 break;
5057
5058 case RELOAD_FOR_OPADDR_ADDR:
5059 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5060 break;
5061
5062 case RELOAD_FOR_OTHER_ADDRESS:
5063 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5064 break;
5065
5066 case RELOAD_FOR_INPUT:
5067 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5068 break;
5069
5070 case RELOAD_FOR_OUTPUT:
5071 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5072 break;
5073
5074 case RELOAD_FOR_INSN:
5075 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5076 break;
5077 }
5078
5079 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5080 }
5081
5082 /* Similarly, but show REGNO is no longer in use for a reload. */
5083
5084 static void
5085 clear_reload_reg_in_use (unsigned int regno, int opnum,
5086 enum reload_type type, enum machine_mode mode)
5087 {
5088 unsigned int nregs = hard_regno_nregs[regno][mode];
5089 unsigned int start_regno, end_regno, r;
5090 int i;
5091 /* A complication is that for some reload types, inheritance might
5092 allow multiple reloads of the same types to share a reload register.
5093 We set check_opnum if we have to check only reloads with the same
5094 operand number, and check_any if we have to check all reloads. */
5095 int check_opnum = 0;
5096 int check_any = 0;
5097 HARD_REG_SET *used_in_set;
5098
5099 switch (type)
5100 {
5101 case RELOAD_OTHER:
5102 used_in_set = &reload_reg_used;
5103 break;
5104
5105 case RELOAD_FOR_INPUT_ADDRESS:
5106 used_in_set = &reload_reg_used_in_input_addr[opnum];
5107 break;
5108
5109 case RELOAD_FOR_INPADDR_ADDRESS:
5110 check_opnum = 1;
5111 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5112 break;
5113
5114 case RELOAD_FOR_OUTPUT_ADDRESS:
5115 used_in_set = &reload_reg_used_in_output_addr[opnum];
5116 break;
5117
5118 case RELOAD_FOR_OUTADDR_ADDRESS:
5119 check_opnum = 1;
5120 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5121 break;
5122
5123 case RELOAD_FOR_OPERAND_ADDRESS:
5124 used_in_set = &reload_reg_used_in_op_addr;
5125 break;
5126
5127 case RELOAD_FOR_OPADDR_ADDR:
5128 check_any = 1;
5129 used_in_set = &reload_reg_used_in_op_addr_reload;
5130 break;
5131
5132 case RELOAD_FOR_OTHER_ADDRESS:
5133 used_in_set = &reload_reg_used_in_other_addr;
5134 check_any = 1;
5135 break;
5136
5137 case RELOAD_FOR_INPUT:
5138 used_in_set = &reload_reg_used_in_input[opnum];
5139 break;
5140
5141 case RELOAD_FOR_OUTPUT:
5142 used_in_set = &reload_reg_used_in_output[opnum];
5143 break;
5144
5145 case RELOAD_FOR_INSN:
5146 used_in_set = &reload_reg_used_in_insn;
5147 break;
5148 default:
5149 gcc_unreachable ();
5150 }
5151 /* We resolve conflicts with remaining reloads of the same type by
5152 excluding the intervals of reload registers by them from the
5153 interval of freed reload registers. Since we only keep track of
5154 one set of interval bounds, we might have to exclude somewhat
5155 more than what would be necessary if we used a HARD_REG_SET here.
5156 But this should only happen very infrequently, so there should
5157 be no reason to worry about it. */
5158
5159 start_regno = regno;
5160 end_regno = regno + nregs;
5161 if (check_opnum || check_any)
5162 {
5163 for (i = n_reloads - 1; i >= 0; i--)
5164 {
5165 if (rld[i].when_needed == type
5166 && (check_any || rld[i].opnum == opnum)
5167 && rld[i].reg_rtx)
5168 {
5169 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5170 unsigned int conflict_end
5171 = end_hard_regno (rld[i].mode, conflict_start);
5172
5173 /* If there is an overlap with the first to-be-freed register,
5174 adjust the interval start. */
5175 if (conflict_start <= start_regno && conflict_end > start_regno)
5176 start_regno = conflict_end;
5177 /* Otherwise, if there is a conflict with one of the other
5178 to-be-freed registers, adjust the interval end. */
5179 if (conflict_start > start_regno && conflict_start < end_regno)
5180 end_regno = conflict_start;
5181 }
5182 }
5183 }
5184
5185 for (r = start_regno; r < end_regno; r++)
5186 CLEAR_HARD_REG_BIT (*used_in_set, r);
5187 }
5188
5189 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5190 specified by OPNUM and TYPE. */
5191
5192 static int
5193 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5194 {
5195 int i;
5196
5197 /* In use for a RELOAD_OTHER means it's not available for anything. */
5198 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5199 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5200 return 0;
5201
5202 switch (type)
5203 {
5204 case RELOAD_OTHER:
5205 /* In use for anything means we can't use it for RELOAD_OTHER. */
5206 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5207 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5208 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5209 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5210 return 0;
5211
5212 for (i = 0; i < reload_n_operands; i++)
5213 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5214 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5215 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5216 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5217 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5218 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5219 return 0;
5220
5221 return 1;
5222
5223 case RELOAD_FOR_INPUT:
5224 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5225 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5226 return 0;
5227
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5229 return 0;
5230
5231 /* If it is used for some other input, can't use it. */
5232 for (i = 0; i < reload_n_operands; i++)
5233 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5234 return 0;
5235
5236 /* If it is used in a later operand's address, can't use it. */
5237 for (i = opnum + 1; i < reload_n_operands; i++)
5238 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5239 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5240 return 0;
5241
5242 return 1;
5243
5244 case RELOAD_FOR_INPUT_ADDRESS:
5245 /* Can't use a register if it is used for an input address for this
5246 operand or used as an input in an earlier one. */
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5248 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5249 return 0;
5250
5251 for (i = 0; i < opnum; i++)
5252 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5253 return 0;
5254
5255 return 1;
5256
5257 case RELOAD_FOR_INPADDR_ADDRESS:
5258 /* Can't use a register if it is used for an input address
5259 for this operand or used as an input in an earlier
5260 one. */
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5262 return 0;
5263
5264 for (i = 0; i < opnum; i++)
5265 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5266 return 0;
5267
5268 return 1;
5269
5270 case RELOAD_FOR_OUTPUT_ADDRESS:
5271 /* Can't use a register if it is used for an output address for this
5272 operand or used as an output in this or a later operand. Note
5273 that multiple output operands are emitted in reverse order, so
5274 the conflicting ones are those with lower indices. */
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5276 return 0;
5277
5278 for (i = 0; i <= opnum; i++)
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5280 return 0;
5281
5282 return 1;
5283
5284 case RELOAD_FOR_OUTADDR_ADDRESS:
5285 /* Can't use a register if it is used for an output address
5286 for this operand or used as an output in this or a
5287 later operand. Note that multiple output operands are
5288 emitted in reverse order, so the conflicting ones are
5289 those with lower indices. */
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5291 return 0;
5292
5293 for (i = 0; i <= opnum; i++)
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5295 return 0;
5296
5297 return 1;
5298
5299 case RELOAD_FOR_OPERAND_ADDRESS:
5300 for (i = 0; i < reload_n_operands; i++)
5301 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5302 return 0;
5303
5304 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5305 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5306
5307 case RELOAD_FOR_OPADDR_ADDR:
5308 for (i = 0; i < reload_n_operands; i++)
5309 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5310 return 0;
5311
5312 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5313
5314 case RELOAD_FOR_OUTPUT:
5315 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5316 outputs, or an operand address for this or an earlier output.
5317 Note that multiple output operands are emitted in reverse order,
5318 so the conflicting ones are those with higher indices. */
5319 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5320 return 0;
5321
5322 for (i = 0; i < reload_n_operands; i++)
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5324 return 0;
5325
5326 for (i = opnum; i < reload_n_operands; i++)
5327 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5328 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5329 return 0;
5330
5331 return 1;
5332
5333 case RELOAD_FOR_INSN:
5334 for (i = 0; i < reload_n_operands; i++)
5335 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5336 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5337 return 0;
5338
5339 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5340 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5341
5342 case RELOAD_FOR_OTHER_ADDRESS:
5343 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5344
5345 default:
5346 gcc_unreachable ();
5347 }
5348 }
5349
5350 /* Return 1 if the value in reload reg REGNO, as used by a reload
5351 needed for the part of the insn specified by OPNUM and TYPE,
5352 is still available in REGNO at the end of the insn.
5353
5354 We can assume that the reload reg was already tested for availability
5355 at the time it is needed, and we should not check this again,
5356 in case the reg has already been marked in use. */
5357
5358 static int
5359 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
5360 {
5361 int i;
5362
5363 switch (type)
5364 {
5365 case RELOAD_OTHER:
5366 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5367 its value must reach the end. */
5368 return 1;
5369
5370 /* If this use is for part of the insn,
5371 its value reaches if no subsequent part uses the same register.
5372 Just like the above function, don't try to do this with lots
5373 of fallthroughs. */
5374
5375 case RELOAD_FOR_OTHER_ADDRESS:
5376 /* Here we check for everything else, since these don't conflict
5377 with anything else and everything comes later. */
5378
5379 for (i = 0; i < reload_n_operands; i++)
5380 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5384 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5386 return 0;
5387
5388 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5390 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5391 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5392
5393 case RELOAD_FOR_INPUT_ADDRESS:
5394 case RELOAD_FOR_INPADDR_ADDRESS:
5395 /* Similar, except that we check only for this and subsequent inputs
5396 and the address of only subsequent inputs and we do not need
5397 to check for RELOAD_OTHER objects since they are known not to
5398 conflict. */
5399
5400 for (i = opnum; i < reload_n_operands; i++)
5401 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5402 return 0;
5403
5404 for (i = opnum + 1; i < reload_n_operands; i++)
5405 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5406 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5407 return 0;
5408
5409 for (i = 0; i < reload_n_operands; i++)
5410 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5411 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5412 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5413 return 0;
5414
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5416 return 0;
5417
5418 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5419 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5420 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5421
5422 case RELOAD_FOR_INPUT:
5423 /* Similar to input address, except we start at the next operand for
5424 both input and input address and we do not check for
5425 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5426 would conflict. */
5427
5428 for (i = opnum + 1; i < reload_n_operands; i++)
5429 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5430 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5432 return 0;
5433
5434 /* ... fall through ... */
5435
5436 case RELOAD_FOR_OPERAND_ADDRESS:
5437 /* Check outputs and their addresses. */
5438
5439 for (i = 0; i < reload_n_operands; i++)
5440 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5441 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5442 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5443 return 0;
5444
5445 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5446
5447 case RELOAD_FOR_OPADDR_ADDR:
5448 for (i = 0; i < reload_n_operands; i++)
5449 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5450 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5451 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5452 return 0;
5453
5454 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5455 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5456 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5457
5458 case RELOAD_FOR_INSN:
5459 /* These conflict with other outputs with RELOAD_OTHER. So
5460 we need only check for output addresses. */
5461
5462 opnum = reload_n_operands;
5463
5464 /* ... fall through ... */
5465
5466 case RELOAD_FOR_OUTPUT:
5467 case RELOAD_FOR_OUTPUT_ADDRESS:
5468 case RELOAD_FOR_OUTADDR_ADDRESS:
5469 /* We already know these can't conflict with a later output. So the
5470 only thing to check are later output addresses.
5471 Note that multiple output operands are emitted in reverse order,
5472 so the conflicting ones are those with lower indices. */
5473 for (i = 0; i < opnum; i++)
5474 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5475 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5476 return 0;
5477
5478 return 1;
5479
5480 default:
5481 gcc_unreachable ();
5482 }
5483 }
5484
5485 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5486 every register in the range [REGNO, REGNO + NREGS). */
5487
5488 static bool
5489 reload_regs_reach_end_p (unsigned int regno, int nregs,
5490 int opnum, enum reload_type type)
5491 {
5492 int i;
5493
5494 for (i = 0; i < nregs; i++)
5495 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5496 return false;
5497 return true;
5498 }
5499 \f
5500
5501 /* Returns whether R1 and R2 are uniquely chained: the value of one
5502 is used by the other, and that value is not used by any other
5503 reload for this insn. This is used to partially undo the decision
5504 made in find_reloads when in the case of multiple
5505 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5506 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5507 reloads. This code tries to avoid the conflict created by that
5508 change. It might be cleaner to explicitly keep track of which
5509 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5510 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5511 this after the fact. */
5512 static bool
5513 reloads_unique_chain_p (int r1, int r2)
5514 {
5515 int i;
5516
5517 /* We only check input reloads. */
5518 if (! rld[r1].in || ! rld[r2].in)
5519 return false;
5520
5521 /* Avoid anything with output reloads. */
5522 if (rld[r1].out || rld[r2].out)
5523 return false;
5524
5525 /* "chained" means one reload is a component of the other reload,
5526 not the same as the other reload. */
5527 if (rld[r1].opnum != rld[r2].opnum
5528 || rtx_equal_p (rld[r1].in, rld[r2].in)
5529 || rld[r1].optional || rld[r2].optional
5530 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5531 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5532 return false;
5533
5534 for (i = 0; i < n_reloads; i ++)
5535 /* Look for input reloads that aren't our two */
5536 if (i != r1 && i != r2 && rld[i].in)
5537 {
5538 /* If our reload is mentioned at all, it isn't a simple chain. */
5539 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5540 return false;
5541 }
5542 return true;
5543 }
5544
5545 /* The recursive function change all occurrences of WHAT in *WHERE
5546 to REPL. */
5547 static void
5548 substitute (rtx *where, const_rtx what, rtx repl)
5549 {
5550 const char *fmt;
5551 int i;
5552 enum rtx_code code;
5553
5554 if (*where == 0)
5555 return;
5556
5557 if (*where == what || rtx_equal_p (*where, what))
5558 {
5559 /* Record the location of the changed rtx. */
5560 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5561 *where = repl;
5562 return;
5563 }
5564
5565 code = GET_CODE (*where);
5566 fmt = GET_RTX_FORMAT (code);
5567 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5568 {
5569 if (fmt[i] == 'E')
5570 {
5571 int j;
5572
5573 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5574 substitute (&XVECEXP (*where, i, j), what, repl);
5575 }
5576 else if (fmt[i] == 'e')
5577 substitute (&XEXP (*where, i), what, repl);
5578 }
5579 }
5580
5581 /* The function returns TRUE if chain of reload R1 and R2 (in any
5582 order) can be evaluated without usage of intermediate register for
5583 the reload containing another reload. It is important to see
5584 gen_reload to understand what the function is trying to do. As an
5585 example, let us have reload chain
5586
5587 r2: const
5588 r1: <something> + const
5589
5590 and reload R2 got reload reg HR. The function returns true if
5591 there is a correct insn HR = HR + <something>. Otherwise,
5592 gen_reload will use intermediate register (and this is the reload
5593 reg for R1) to reload <something>.
5594
5595 We need this function to find a conflict for chain reloads. In our
5596 example, if HR = HR + <something> is incorrect insn, then we cannot
5597 use HR as a reload register for R2. If we do use it then we get a
5598 wrong code:
5599
5600 HR = const
5601 HR = <something>
5602 HR = HR + HR
5603
5604 */
5605 static bool
5606 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5607 {
5608 /* Assume other cases in gen_reload are not possible for
5609 chain reloads or do need an intermediate hard registers. */
5610 bool result = true;
5611 int regno, n, code;
5612 rtx out, in, insn;
5613 rtx last = get_last_insn ();
5614
5615 /* Make r2 a component of r1. */
5616 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5617 {
5618 n = r1;
5619 r1 = r2;
5620 r2 = n;
5621 }
5622 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5623 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5624 gcc_assert (regno >= 0);
5625 out = gen_rtx_REG (rld[r1].mode, regno);
5626 in = rld[r1].in;
5627 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5628
5629 /* If IN is a paradoxical SUBREG, remove it and try to put the
5630 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5631 strip_paradoxical_subreg (&in, &out);
5632
5633 if (GET_CODE (in) == PLUS
5634 && (REG_P (XEXP (in, 0))
5635 || GET_CODE (XEXP (in, 0)) == SUBREG
5636 || MEM_P (XEXP (in, 0)))
5637 && (REG_P (XEXP (in, 1))
5638 || GET_CODE (XEXP (in, 1)) == SUBREG
5639 || CONSTANT_P (XEXP (in, 1))
5640 || MEM_P (XEXP (in, 1))))
5641 {
5642 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5643 code = recog_memoized (insn);
5644 result = false;
5645
5646 if (code >= 0)
5647 {
5648 extract_insn (insn);
5649 /* We want constrain operands to treat this insn strictly in
5650 its validity determination, i.e., the way it would after
5651 reload has completed. */
5652 result = constrain_operands (1);
5653 }
5654
5655 delete_insns_since (last);
5656 }
5657
5658 /* Restore the original value at each changed address within R1. */
5659 while (!VEC_empty (rtx_p, substitute_stack))
5660 {
5661 rtx *where = VEC_pop (rtx_p, substitute_stack);
5662 *where = rld[r2].in;
5663 }
5664
5665 return result;
5666 }
5667
5668 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5669 Return 0 otherwise.
5670
5671 This function uses the same algorithm as reload_reg_free_p above. */
5672
5673 static int
5674 reloads_conflict (int r1, int r2)
5675 {
5676 enum reload_type r1_type = rld[r1].when_needed;
5677 enum reload_type r2_type = rld[r2].when_needed;
5678 int r1_opnum = rld[r1].opnum;
5679 int r2_opnum = rld[r2].opnum;
5680
5681 /* RELOAD_OTHER conflicts with everything. */
5682 if (r2_type == RELOAD_OTHER)
5683 return 1;
5684
5685 /* Otherwise, check conflicts differently for each type. */
5686
5687 switch (r1_type)
5688 {
5689 case RELOAD_FOR_INPUT:
5690 return (r2_type == RELOAD_FOR_INSN
5691 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5692 || r2_type == RELOAD_FOR_OPADDR_ADDR
5693 || r2_type == RELOAD_FOR_INPUT
5694 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5695 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5696 && r2_opnum > r1_opnum));
5697
5698 case RELOAD_FOR_INPUT_ADDRESS:
5699 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5700 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5701
5702 case RELOAD_FOR_INPADDR_ADDRESS:
5703 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5704 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5705
5706 case RELOAD_FOR_OUTPUT_ADDRESS:
5707 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5708 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5709
5710 case RELOAD_FOR_OUTADDR_ADDRESS:
5711 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5712 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5713
5714 case RELOAD_FOR_OPERAND_ADDRESS:
5715 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5716 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5717 && (!reloads_unique_chain_p (r1, r2)
5718 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5719
5720 case RELOAD_FOR_OPADDR_ADDR:
5721 return (r2_type == RELOAD_FOR_INPUT
5722 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5723
5724 case RELOAD_FOR_OUTPUT:
5725 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5726 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5727 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5728 && r2_opnum >= r1_opnum));
5729
5730 case RELOAD_FOR_INSN:
5731 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5732 || r2_type == RELOAD_FOR_INSN
5733 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5734
5735 case RELOAD_FOR_OTHER_ADDRESS:
5736 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5737
5738 case RELOAD_OTHER:
5739 return 1;
5740
5741 default:
5742 gcc_unreachable ();
5743 }
5744 }
5745 \f
5746 /* Indexed by reload number, 1 if incoming value
5747 inherited from previous insns. */
5748 static char reload_inherited[MAX_RELOADS];
5749
5750 /* For an inherited reload, this is the insn the reload was inherited from,
5751 if we know it. Otherwise, this is 0. */
5752 static rtx reload_inheritance_insn[MAX_RELOADS];
5753
5754 /* If nonzero, this is a place to get the value of the reload,
5755 rather than using reload_in. */
5756 static rtx reload_override_in[MAX_RELOADS];
5757
5758 /* For each reload, the hard register number of the register used,
5759 or -1 if we did not need a register for this reload. */
5760 static int reload_spill_index[MAX_RELOADS];
5761
5762 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5763 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5764
5765 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5766 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5767
5768 /* Subroutine of free_for_value_p, used to check a single register.
5769 START_REGNO is the starting regno of the full reload register
5770 (possibly comprising multiple hard registers) that we are considering. */
5771
5772 static int
5773 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5774 enum reload_type type, rtx value, rtx out,
5775 int reloadnum, int ignore_address_reloads)
5776 {
5777 int time1;
5778 /* Set if we see an input reload that must not share its reload register
5779 with any new earlyclobber, but might otherwise share the reload
5780 register with an output or input-output reload. */
5781 int check_earlyclobber = 0;
5782 int i;
5783 int copy = 0;
5784
5785 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5786 return 0;
5787
5788 if (out == const0_rtx)
5789 {
5790 copy = 1;
5791 out = NULL_RTX;
5792 }
5793
5794 /* We use some pseudo 'time' value to check if the lifetimes of the
5795 new register use would overlap with the one of a previous reload
5796 that is not read-only or uses a different value.
5797 The 'time' used doesn't have to be linear in any shape or form, just
5798 monotonic.
5799 Some reload types use different 'buckets' for each operand.
5800 So there are MAX_RECOG_OPERANDS different time values for each
5801 such reload type.
5802 We compute TIME1 as the time when the register for the prospective
5803 new reload ceases to be live, and TIME2 for each existing
5804 reload as the time when that the reload register of that reload
5805 becomes live.
5806 Where there is little to be gained by exact lifetime calculations,
5807 we just make conservative assumptions, i.e. a longer lifetime;
5808 this is done in the 'default:' cases. */
5809 switch (type)
5810 {
5811 case RELOAD_FOR_OTHER_ADDRESS:
5812 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5813 time1 = copy ? 0 : 1;
5814 break;
5815 case RELOAD_OTHER:
5816 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5817 break;
5818 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5819 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5820 respectively, to the time values for these, we get distinct time
5821 values. To get distinct time values for each operand, we have to
5822 multiply opnum by at least three. We round that up to four because
5823 multiply by four is often cheaper. */
5824 case RELOAD_FOR_INPADDR_ADDRESS:
5825 time1 = opnum * 4 + 2;
5826 break;
5827 case RELOAD_FOR_INPUT_ADDRESS:
5828 time1 = opnum * 4 + 3;
5829 break;
5830 case RELOAD_FOR_INPUT:
5831 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5832 executes (inclusive). */
5833 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5834 break;
5835 case RELOAD_FOR_OPADDR_ADDR:
5836 /* opnum * 4 + 4
5837 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5838 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5839 break;
5840 case RELOAD_FOR_OPERAND_ADDRESS:
5841 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5842 is executed. */
5843 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5844 break;
5845 case RELOAD_FOR_OUTADDR_ADDRESS:
5846 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5847 break;
5848 case RELOAD_FOR_OUTPUT_ADDRESS:
5849 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5850 break;
5851 default:
5852 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5853 }
5854
5855 for (i = 0; i < n_reloads; i++)
5856 {
5857 rtx reg = rld[i].reg_rtx;
5858 if (reg && REG_P (reg)
5859 && ((unsigned) regno - true_regnum (reg)
5860 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5861 && i != reloadnum)
5862 {
5863 rtx other_input = rld[i].in;
5864
5865 /* If the other reload loads the same input value, that
5866 will not cause a conflict only if it's loading it into
5867 the same register. */
5868 if (true_regnum (reg) != start_regno)
5869 other_input = NULL_RTX;
5870 if (! other_input || ! rtx_equal_p (other_input, value)
5871 || rld[i].out || out)
5872 {
5873 int time2;
5874 switch (rld[i].when_needed)
5875 {
5876 case RELOAD_FOR_OTHER_ADDRESS:
5877 time2 = 0;
5878 break;
5879 case RELOAD_FOR_INPADDR_ADDRESS:
5880 /* find_reloads makes sure that a
5881 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5882 by at most one - the first -
5883 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5884 address reload is inherited, the address address reload
5885 goes away, so we can ignore this conflict. */
5886 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5887 && ignore_address_reloads
5888 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5889 Then the address address is still needed to store
5890 back the new address. */
5891 && ! rld[reloadnum].out)
5892 continue;
5893 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5894 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5895 reloads go away. */
5896 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5897 && ignore_address_reloads
5898 /* Unless we are reloading an auto_inc expression. */
5899 && ! rld[reloadnum].out)
5900 continue;
5901 time2 = rld[i].opnum * 4 + 2;
5902 break;
5903 case RELOAD_FOR_INPUT_ADDRESS:
5904 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5905 && ignore_address_reloads
5906 && ! rld[reloadnum].out)
5907 continue;
5908 time2 = rld[i].opnum * 4 + 3;
5909 break;
5910 case RELOAD_FOR_INPUT:
5911 time2 = rld[i].opnum * 4 + 4;
5912 check_earlyclobber = 1;
5913 break;
5914 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5915 == MAX_RECOG_OPERAND * 4 */
5916 case RELOAD_FOR_OPADDR_ADDR:
5917 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5918 && ignore_address_reloads
5919 && ! rld[reloadnum].out)
5920 continue;
5921 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5922 break;
5923 case RELOAD_FOR_OPERAND_ADDRESS:
5924 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5925 check_earlyclobber = 1;
5926 break;
5927 case RELOAD_FOR_INSN:
5928 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5929 break;
5930 case RELOAD_FOR_OUTPUT:
5931 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5932 instruction is executed. */
5933 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5934 break;
5935 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5936 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5937 value. */
5938 case RELOAD_FOR_OUTADDR_ADDRESS:
5939 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5940 && ignore_address_reloads
5941 && ! rld[reloadnum].out)
5942 continue;
5943 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5944 break;
5945 case RELOAD_FOR_OUTPUT_ADDRESS:
5946 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5947 break;
5948 case RELOAD_OTHER:
5949 /* If there is no conflict in the input part, handle this
5950 like an output reload. */
5951 if (! rld[i].in || rtx_equal_p (other_input, value))
5952 {
5953 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5954 /* Earlyclobbered outputs must conflict with inputs. */
5955 if (earlyclobber_operand_p (rld[i].out))
5956 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5957
5958 break;
5959 }
5960 time2 = 1;
5961 /* RELOAD_OTHER might be live beyond instruction execution,
5962 but this is not obvious when we set time2 = 1. So check
5963 here if there might be a problem with the new reload
5964 clobbering the register used by the RELOAD_OTHER. */
5965 if (out)
5966 return 0;
5967 break;
5968 default:
5969 return 0;
5970 }
5971 if ((time1 >= time2
5972 && (! rld[i].in || rld[i].out
5973 || ! rtx_equal_p (other_input, value)))
5974 || (out && rld[reloadnum].out_reg
5975 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5976 return 0;
5977 }
5978 }
5979 }
5980
5981 /* Earlyclobbered outputs must conflict with inputs. */
5982 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5983 return 0;
5984
5985 return 1;
5986 }
5987
5988 /* Return 1 if the value in reload reg REGNO, as used by a reload
5989 needed for the part of the insn specified by OPNUM and TYPE,
5990 may be used to load VALUE into it.
5991
5992 MODE is the mode in which the register is used, this is needed to
5993 determine how many hard regs to test.
5994
5995 Other read-only reloads with the same value do not conflict
5996 unless OUT is nonzero and these other reloads have to live while
5997 output reloads live.
5998 If OUT is CONST0_RTX, this is a special case: it means that the
5999 test should not be for using register REGNO as reload register, but
6000 for copying from register REGNO into the reload register.
6001
6002 RELOADNUM is the number of the reload we want to load this value for;
6003 a reload does not conflict with itself.
6004
6005 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6006 reloads that load an address for the very reload we are considering.
6007
6008 The caller has to make sure that there is no conflict with the return
6009 register. */
6010
6011 static int
6012 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6013 enum reload_type type, rtx value, rtx out, int reloadnum,
6014 int ignore_address_reloads)
6015 {
6016 int nregs = hard_regno_nregs[regno][mode];
6017 while (nregs-- > 0)
6018 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6019 value, out, reloadnum,
6020 ignore_address_reloads))
6021 return 0;
6022 return 1;
6023 }
6024
6025 /* Return nonzero if the rtx X is invariant over the current function. */
6026 /* ??? Actually, the places where we use this expect exactly what is
6027 tested here, and not everything that is function invariant. In
6028 particular, the frame pointer and arg pointer are special cased;
6029 pic_offset_table_rtx is not, and we must not spill these things to
6030 memory. */
6031
6032 int
6033 function_invariant_p (const_rtx x)
6034 {
6035 if (CONSTANT_P (x))
6036 return 1;
6037 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6038 return 1;
6039 if (GET_CODE (x) == PLUS
6040 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6041 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6042 return 1;
6043 return 0;
6044 }
6045
6046 /* Determine whether the reload reg X overlaps any rtx'es used for
6047 overriding inheritance. Return nonzero if so. */
6048
6049 static int
6050 conflicts_with_override (rtx x)
6051 {
6052 int i;
6053 for (i = 0; i < n_reloads; i++)
6054 if (reload_override_in[i]
6055 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6056 return 1;
6057 return 0;
6058 }
6059 \f
6060 /* Give an error message saying we failed to find a reload for INSN,
6061 and clear out reload R. */
6062 static void
6063 failed_reload (rtx insn, int r)
6064 {
6065 if (asm_noperands (PATTERN (insn)) < 0)
6066 /* It's the compiler's fault. */
6067 fatal_insn ("could not find a spill register", insn);
6068
6069 /* It's the user's fault; the operand's mode and constraint
6070 don't match. Disable this reload so we don't crash in final. */
6071 error_for_asm (insn,
6072 "%<asm%> operand constraint incompatible with operand size");
6073 rld[r].in = 0;
6074 rld[r].out = 0;
6075 rld[r].reg_rtx = 0;
6076 rld[r].optional = 1;
6077 rld[r].secondary_p = 1;
6078 }
6079
6080 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6081 for reload R. If it's valid, get an rtx for it. Return nonzero if
6082 successful. */
6083 static int
6084 set_reload_reg (int i, int r)
6085 {
6086 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6087 parameter. */
6088 int regno ATTRIBUTE_UNUSED;
6089 rtx reg = spill_reg_rtx[i];
6090
6091 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6092 spill_reg_rtx[i] = reg
6093 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6094
6095 regno = true_regnum (reg);
6096
6097 /* Detect when the reload reg can't hold the reload mode.
6098 This used to be one `if', but Sequent compiler can't handle that. */
6099 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6100 {
6101 enum machine_mode test_mode = VOIDmode;
6102 if (rld[r].in)
6103 test_mode = GET_MODE (rld[r].in);
6104 /* If rld[r].in has VOIDmode, it means we will load it
6105 in whatever mode the reload reg has: to wit, rld[r].mode.
6106 We have already tested that for validity. */
6107 /* Aside from that, we need to test that the expressions
6108 to reload from or into have modes which are valid for this
6109 reload register. Otherwise the reload insns would be invalid. */
6110 if (! (rld[r].in != 0 && test_mode != VOIDmode
6111 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6112 if (! (rld[r].out != 0
6113 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6114 {
6115 /* The reg is OK. */
6116 last_spill_reg = i;
6117
6118 /* Mark as in use for this insn the reload regs we use
6119 for this. */
6120 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6121 rld[r].when_needed, rld[r].mode);
6122
6123 rld[r].reg_rtx = reg;
6124 reload_spill_index[r] = spill_regs[i];
6125 return 1;
6126 }
6127 }
6128 return 0;
6129 }
6130
6131 /* Find a spill register to use as a reload register for reload R.
6132 LAST_RELOAD is nonzero if this is the last reload for the insn being
6133 processed.
6134
6135 Set rld[R].reg_rtx to the register allocated.
6136
6137 We return 1 if successful, or 0 if we couldn't find a spill reg and
6138 we didn't change anything. */
6139
6140 static int
6141 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6142 int last_reload)
6143 {
6144 int i, pass, count;
6145
6146 /* If we put this reload ahead, thinking it is a group,
6147 then insist on finding a group. Otherwise we can grab a
6148 reg that some other reload needs.
6149 (That can happen when we have a 68000 DATA_OR_FP_REG
6150 which is a group of data regs or one fp reg.)
6151 We need not be so restrictive if there are no more reloads
6152 for this insn.
6153
6154 ??? Really it would be nicer to have smarter handling
6155 for that kind of reg class, where a problem like this is normal.
6156 Perhaps those classes should be avoided for reloading
6157 by use of more alternatives. */
6158
6159 int force_group = rld[r].nregs > 1 && ! last_reload;
6160
6161 /* If we want a single register and haven't yet found one,
6162 take any reg in the right class and not in use.
6163 If we want a consecutive group, here is where we look for it.
6164
6165 We use three passes so we can first look for reload regs to
6166 reuse, which are already in use for other reloads in this insn,
6167 and only then use additional registers which are not "bad", then
6168 finally any register.
6169
6170 I think that maximizing reuse is needed to make sure we don't
6171 run out of reload regs. Suppose we have three reloads, and
6172 reloads A and B can share regs. These need two regs.
6173 Suppose A and B are given different regs.
6174 That leaves none for C. */
6175 for (pass = 0; pass < 3; pass++)
6176 {
6177 /* I is the index in spill_regs.
6178 We advance it round-robin between insns to use all spill regs
6179 equally, so that inherited reloads have a chance
6180 of leapfrogging each other. */
6181
6182 i = last_spill_reg;
6183
6184 for (count = 0; count < n_spills; count++)
6185 {
6186 int rclass = (int) rld[r].rclass;
6187 int regnum;
6188
6189 i++;
6190 if (i >= n_spills)
6191 i -= n_spills;
6192 regnum = spill_regs[i];
6193
6194 if ((reload_reg_free_p (regnum, rld[r].opnum,
6195 rld[r].when_needed)
6196 || (rld[r].in
6197 /* We check reload_reg_used to make sure we
6198 don't clobber the return register. */
6199 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6200 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6201 rld[r].when_needed, rld[r].in,
6202 rld[r].out, r, 1)))
6203 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6204 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6205 /* Look first for regs to share, then for unshared. But
6206 don't share regs used for inherited reloads; they are
6207 the ones we want to preserve. */
6208 && (pass
6209 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6210 regnum)
6211 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6212 regnum))))
6213 {
6214 int nr = hard_regno_nregs[regnum][rld[r].mode];
6215
6216 /* During the second pass we want to avoid reload registers
6217 which are "bad" for this reload. */
6218 if (pass == 1
6219 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6220 continue;
6221
6222 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6223 (on 68000) got us two FP regs. If NR is 1,
6224 we would reject both of them. */
6225 if (force_group)
6226 nr = rld[r].nregs;
6227 /* If we need only one reg, we have already won. */
6228 if (nr == 1)
6229 {
6230 /* But reject a single reg if we demand a group. */
6231 if (force_group)
6232 continue;
6233 break;
6234 }
6235 /* Otherwise check that as many consecutive regs as we need
6236 are available here. */
6237 while (nr > 1)
6238 {
6239 int regno = regnum + nr - 1;
6240 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6241 && spill_reg_order[regno] >= 0
6242 && reload_reg_free_p (regno, rld[r].opnum,
6243 rld[r].when_needed)))
6244 break;
6245 nr--;
6246 }
6247 if (nr == 1)
6248 break;
6249 }
6250 }
6251
6252 /* If we found something on the current pass, omit later passes. */
6253 if (count < n_spills)
6254 break;
6255 }
6256
6257 /* We should have found a spill register by now. */
6258 if (count >= n_spills)
6259 return 0;
6260
6261 /* I is the index in SPILL_REG_RTX of the reload register we are to
6262 allocate. Get an rtx for it and find its register number. */
6263
6264 return set_reload_reg (i, r);
6265 }
6266 \f
6267 /* Initialize all the tables needed to allocate reload registers.
6268 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6269 is the array we use to restore the reg_rtx field for every reload. */
6270
6271 static void
6272 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6273 {
6274 int i;
6275
6276 for (i = 0; i < n_reloads; i++)
6277 rld[i].reg_rtx = save_reload_reg_rtx[i];
6278
6279 memset (reload_inherited, 0, MAX_RELOADS);
6280 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6281 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6282
6283 CLEAR_HARD_REG_SET (reload_reg_used);
6284 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6285 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6286 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6287 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6288 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6289
6290 CLEAR_HARD_REG_SET (reg_used_in_insn);
6291 {
6292 HARD_REG_SET tmp;
6293 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6294 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6295 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6296 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6297 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6298 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6299 }
6300
6301 for (i = 0; i < reload_n_operands; i++)
6302 {
6303 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6304 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6305 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6306 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6307 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6308 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6309 }
6310
6311 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6312
6313 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6314
6315 for (i = 0; i < n_reloads; i++)
6316 /* If we have already decided to use a certain register,
6317 don't use it in another way. */
6318 if (rld[i].reg_rtx)
6319 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6320 rld[i].when_needed, rld[i].mode);
6321 }
6322
6323 /* Assign hard reg targets for the pseudo-registers we must reload
6324 into hard regs for this insn.
6325 Also output the instructions to copy them in and out of the hard regs.
6326
6327 For machines with register classes, we are responsible for
6328 finding a reload reg in the proper class. */
6329
6330 static void
6331 choose_reload_regs (struct insn_chain *chain)
6332 {
6333 rtx insn = chain->insn;
6334 int i, j;
6335 unsigned int max_group_size = 1;
6336 enum reg_class group_class = NO_REGS;
6337 int pass, win, inheritance;
6338
6339 rtx save_reload_reg_rtx[MAX_RELOADS];
6340
6341 /* In order to be certain of getting the registers we need,
6342 we must sort the reloads into order of increasing register class.
6343 Then our grabbing of reload registers will parallel the process
6344 that provided the reload registers.
6345
6346 Also note whether any of the reloads wants a consecutive group of regs.
6347 If so, record the maximum size of the group desired and what
6348 register class contains all the groups needed by this insn. */
6349
6350 for (j = 0; j < n_reloads; j++)
6351 {
6352 reload_order[j] = j;
6353 if (rld[j].reg_rtx != NULL_RTX)
6354 {
6355 gcc_assert (REG_P (rld[j].reg_rtx)
6356 && HARD_REGISTER_P (rld[j].reg_rtx));
6357 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6358 }
6359 else
6360 reload_spill_index[j] = -1;
6361
6362 if (rld[j].nregs > 1)
6363 {
6364 max_group_size = MAX (rld[j].nregs, max_group_size);
6365 group_class
6366 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6367 }
6368
6369 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6370 }
6371
6372 if (n_reloads > 1)
6373 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6374
6375 /* If -O, try first with inheritance, then turning it off.
6376 If not -O, don't do inheritance.
6377 Using inheritance when not optimizing leads to paradoxes
6378 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6379 because one side of the comparison might be inherited. */
6380 win = 0;
6381 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6382 {
6383 choose_reload_regs_init (chain, save_reload_reg_rtx);
6384
6385 /* Process the reloads in order of preference just found.
6386 Beyond this point, subregs can be found in reload_reg_rtx.
6387
6388 This used to look for an existing reloaded home for all of the
6389 reloads, and only then perform any new reloads. But that could lose
6390 if the reloads were done out of reg-class order because a later
6391 reload with a looser constraint might have an old home in a register
6392 needed by an earlier reload with a tighter constraint.
6393
6394 To solve this, we make two passes over the reloads, in the order
6395 described above. In the first pass we try to inherit a reload
6396 from a previous insn. If there is a later reload that needs a
6397 class that is a proper subset of the class being processed, we must
6398 also allocate a spill register during the first pass.
6399
6400 Then make a second pass over the reloads to allocate any reloads
6401 that haven't been given registers yet. */
6402
6403 for (j = 0; j < n_reloads; j++)
6404 {
6405 int r = reload_order[j];
6406 rtx search_equiv = NULL_RTX;
6407
6408 /* Ignore reloads that got marked inoperative. */
6409 if (rld[r].out == 0 && rld[r].in == 0
6410 && ! rld[r].secondary_p)
6411 continue;
6412
6413 /* If find_reloads chose to use reload_in or reload_out as a reload
6414 register, we don't need to chose one. Otherwise, try even if it
6415 found one since we might save an insn if we find the value lying
6416 around.
6417 Try also when reload_in is a pseudo without a hard reg. */
6418 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6419 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6420 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6421 && !MEM_P (rld[r].in)
6422 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6423 continue;
6424
6425 #if 0 /* No longer needed for correct operation.
6426 It might give better code, or might not; worth an experiment? */
6427 /* If this is an optional reload, we can't inherit from earlier insns
6428 until we are sure that any non-optional reloads have been allocated.
6429 The following code takes advantage of the fact that optional reloads
6430 are at the end of reload_order. */
6431 if (rld[r].optional != 0)
6432 for (i = 0; i < j; i++)
6433 if ((rld[reload_order[i]].out != 0
6434 || rld[reload_order[i]].in != 0
6435 || rld[reload_order[i]].secondary_p)
6436 && ! rld[reload_order[i]].optional
6437 && rld[reload_order[i]].reg_rtx == 0)
6438 allocate_reload_reg (chain, reload_order[i], 0);
6439 #endif
6440
6441 /* First see if this pseudo is already available as reloaded
6442 for a previous insn. We cannot try to inherit for reloads
6443 that are smaller than the maximum number of registers needed
6444 for groups unless the register we would allocate cannot be used
6445 for the groups.
6446
6447 We could check here to see if this is a secondary reload for
6448 an object that is already in a register of the desired class.
6449 This would avoid the need for the secondary reload register.
6450 But this is complex because we can't easily determine what
6451 objects might want to be loaded via this reload. So let a
6452 register be allocated here. In `emit_reload_insns' we suppress
6453 one of the loads in the case described above. */
6454
6455 if (inheritance)
6456 {
6457 int byte = 0;
6458 int regno = -1;
6459 enum machine_mode mode = VOIDmode;
6460
6461 if (rld[r].in == 0)
6462 ;
6463 else if (REG_P (rld[r].in))
6464 {
6465 regno = REGNO (rld[r].in);
6466 mode = GET_MODE (rld[r].in);
6467 }
6468 else if (REG_P (rld[r].in_reg))
6469 {
6470 regno = REGNO (rld[r].in_reg);
6471 mode = GET_MODE (rld[r].in_reg);
6472 }
6473 else if (GET_CODE (rld[r].in_reg) == SUBREG
6474 && REG_P (SUBREG_REG (rld[r].in_reg)))
6475 {
6476 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6477 if (regno < FIRST_PSEUDO_REGISTER)
6478 regno = subreg_regno (rld[r].in_reg);
6479 else
6480 byte = SUBREG_BYTE (rld[r].in_reg);
6481 mode = GET_MODE (rld[r].in_reg);
6482 }
6483 #ifdef AUTO_INC_DEC
6484 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6485 && REG_P (XEXP (rld[r].in_reg, 0)))
6486 {
6487 regno = REGNO (XEXP (rld[r].in_reg, 0));
6488 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6489 rld[r].out = rld[r].in;
6490 }
6491 #endif
6492 #if 0
6493 /* This won't work, since REGNO can be a pseudo reg number.
6494 Also, it takes much more hair to keep track of all the things
6495 that can invalidate an inherited reload of part of a pseudoreg. */
6496 else if (GET_CODE (rld[r].in) == SUBREG
6497 && REG_P (SUBREG_REG (rld[r].in)))
6498 regno = subreg_regno (rld[r].in);
6499 #endif
6500
6501 if (regno >= 0
6502 && reg_last_reload_reg[regno] != 0
6503 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6504 >= GET_MODE_SIZE (mode) + byte)
6505 #ifdef CANNOT_CHANGE_MODE_CLASS
6506 /* Verify that the register it's in can be used in
6507 mode MODE. */
6508 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6509 GET_MODE (reg_last_reload_reg[regno]),
6510 mode)
6511 #endif
6512 )
6513 {
6514 enum reg_class rclass = rld[r].rclass, last_class;
6515 rtx last_reg = reg_last_reload_reg[regno];
6516
6517 i = REGNO (last_reg);
6518 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6519 last_class = REGNO_REG_CLASS (i);
6520
6521 if (reg_reloaded_contents[i] == regno
6522 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6523 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6524 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6525 /* Even if we can't use this register as a reload
6526 register, we might use it for reload_override_in,
6527 if copying it to the desired class is cheap
6528 enough. */
6529 || ((register_move_cost (mode, last_class, rclass)
6530 < memory_move_cost (mode, rclass, true))
6531 && (secondary_reload_class (1, rclass, mode,
6532 last_reg)
6533 == NO_REGS)
6534 #ifdef SECONDARY_MEMORY_NEEDED
6535 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6536 mode)
6537 #endif
6538 ))
6539
6540 && (rld[r].nregs == max_group_size
6541 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6542 i))
6543 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6544 rld[r].when_needed, rld[r].in,
6545 const0_rtx, r, 1))
6546 {
6547 /* If a group is needed, verify that all the subsequent
6548 registers still have their values intact. */
6549 int nr = hard_regno_nregs[i][rld[r].mode];
6550 int k;
6551
6552 for (k = 1; k < nr; k++)
6553 if (reg_reloaded_contents[i + k] != regno
6554 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6555 break;
6556
6557 if (k == nr)
6558 {
6559 int i1;
6560 int bad_for_class;
6561
6562 last_reg = (GET_MODE (last_reg) == mode
6563 ? last_reg : gen_rtx_REG (mode, i));
6564
6565 bad_for_class = 0;
6566 for (k = 0; k < nr; k++)
6567 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6568 i+k);
6569
6570 /* We found a register that contains the
6571 value we need. If this register is the
6572 same as an `earlyclobber' operand of the
6573 current insn, just mark it as a place to
6574 reload from since we can't use it as the
6575 reload register itself. */
6576
6577 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6578 if (reg_overlap_mentioned_for_reload_p
6579 (reg_last_reload_reg[regno],
6580 reload_earlyclobbers[i1]))
6581 break;
6582
6583 if (i1 != n_earlyclobbers
6584 || ! (free_for_value_p (i, rld[r].mode,
6585 rld[r].opnum,
6586 rld[r].when_needed, rld[r].in,
6587 rld[r].out, r, 1))
6588 /* Don't use it if we'd clobber a pseudo reg. */
6589 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6590 && rld[r].out
6591 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6592 /* Don't clobber the frame pointer. */
6593 || (i == HARD_FRAME_POINTER_REGNUM
6594 && frame_pointer_needed
6595 && rld[r].out)
6596 /* Don't really use the inherited spill reg
6597 if we need it wider than we've got it. */
6598 || (GET_MODE_SIZE (rld[r].mode)
6599 > GET_MODE_SIZE (mode))
6600 || bad_for_class
6601
6602 /* If find_reloads chose reload_out as reload
6603 register, stay with it - that leaves the
6604 inherited register for subsequent reloads. */
6605 || (rld[r].out && rld[r].reg_rtx
6606 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6607 {
6608 if (! rld[r].optional)
6609 {
6610 reload_override_in[r] = last_reg;
6611 reload_inheritance_insn[r]
6612 = reg_reloaded_insn[i];
6613 }
6614 }
6615 else
6616 {
6617 int k;
6618 /* We can use this as a reload reg. */
6619 /* Mark the register as in use for this part of
6620 the insn. */
6621 mark_reload_reg_in_use (i,
6622 rld[r].opnum,
6623 rld[r].when_needed,
6624 rld[r].mode);
6625 rld[r].reg_rtx = last_reg;
6626 reload_inherited[r] = 1;
6627 reload_inheritance_insn[r]
6628 = reg_reloaded_insn[i];
6629 reload_spill_index[r] = i;
6630 for (k = 0; k < nr; k++)
6631 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6632 i + k);
6633 }
6634 }
6635 }
6636 }
6637 }
6638
6639 /* Here's another way to see if the value is already lying around. */
6640 if (inheritance
6641 && rld[r].in != 0
6642 && ! reload_inherited[r]
6643 && rld[r].out == 0
6644 && (CONSTANT_P (rld[r].in)
6645 || GET_CODE (rld[r].in) == PLUS
6646 || REG_P (rld[r].in)
6647 || MEM_P (rld[r].in))
6648 && (rld[r].nregs == max_group_size
6649 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6650 search_equiv = rld[r].in;
6651
6652 if (search_equiv)
6653 {
6654 rtx equiv
6655 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6656 -1, NULL, 0, rld[r].mode);
6657 int regno = 0;
6658
6659 if (equiv != 0)
6660 {
6661 if (REG_P (equiv))
6662 regno = REGNO (equiv);
6663 else
6664 {
6665 /* This must be a SUBREG of a hard register.
6666 Make a new REG since this might be used in an
6667 address and not all machines support SUBREGs
6668 there. */
6669 gcc_assert (GET_CODE (equiv) == SUBREG);
6670 regno = subreg_regno (equiv);
6671 equiv = gen_rtx_REG (rld[r].mode, regno);
6672 /* If we choose EQUIV as the reload register, but the
6673 loop below decides to cancel the inheritance, we'll
6674 end up reloading EQUIV in rld[r].mode, not the mode
6675 it had originally. That isn't safe when EQUIV isn't
6676 available as a spill register since its value might
6677 still be live at this point. */
6678 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6679 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6680 equiv = 0;
6681 }
6682 }
6683
6684 /* If we found a spill reg, reject it unless it is free
6685 and of the desired class. */
6686 if (equiv != 0)
6687 {
6688 int regs_used = 0;
6689 int bad_for_class = 0;
6690 int max_regno = regno + rld[r].nregs;
6691
6692 for (i = regno; i < max_regno; i++)
6693 {
6694 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6695 i);
6696 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6697 i);
6698 }
6699
6700 if ((regs_used
6701 && ! free_for_value_p (regno, rld[r].mode,
6702 rld[r].opnum, rld[r].when_needed,
6703 rld[r].in, rld[r].out, r, 1))
6704 || bad_for_class)
6705 equiv = 0;
6706 }
6707
6708 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6709 equiv = 0;
6710
6711 /* We found a register that contains the value we need.
6712 If this register is the same as an `earlyclobber' operand
6713 of the current insn, just mark it as a place to reload from
6714 since we can't use it as the reload register itself. */
6715
6716 if (equiv != 0)
6717 for (i = 0; i < n_earlyclobbers; i++)
6718 if (reg_overlap_mentioned_for_reload_p (equiv,
6719 reload_earlyclobbers[i]))
6720 {
6721 if (! rld[r].optional)
6722 reload_override_in[r] = equiv;
6723 equiv = 0;
6724 break;
6725 }
6726
6727 /* If the equiv register we have found is explicitly clobbered
6728 in the current insn, it depends on the reload type if we
6729 can use it, use it for reload_override_in, or not at all.
6730 In particular, we then can't use EQUIV for a
6731 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6732
6733 if (equiv != 0)
6734 {
6735 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6736 switch (rld[r].when_needed)
6737 {
6738 case RELOAD_FOR_OTHER_ADDRESS:
6739 case RELOAD_FOR_INPADDR_ADDRESS:
6740 case RELOAD_FOR_INPUT_ADDRESS:
6741 case RELOAD_FOR_OPADDR_ADDR:
6742 break;
6743 case RELOAD_OTHER:
6744 case RELOAD_FOR_INPUT:
6745 case RELOAD_FOR_OPERAND_ADDRESS:
6746 if (! rld[r].optional)
6747 reload_override_in[r] = equiv;
6748 /* Fall through. */
6749 default:
6750 equiv = 0;
6751 break;
6752 }
6753 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6754 switch (rld[r].when_needed)
6755 {
6756 case RELOAD_FOR_OTHER_ADDRESS:
6757 case RELOAD_FOR_INPADDR_ADDRESS:
6758 case RELOAD_FOR_INPUT_ADDRESS:
6759 case RELOAD_FOR_OPADDR_ADDR:
6760 case RELOAD_FOR_OPERAND_ADDRESS:
6761 case RELOAD_FOR_INPUT:
6762 break;
6763 case RELOAD_OTHER:
6764 if (! rld[r].optional)
6765 reload_override_in[r] = equiv;
6766 /* Fall through. */
6767 default:
6768 equiv = 0;
6769 break;
6770 }
6771 }
6772
6773 /* If we found an equivalent reg, say no code need be generated
6774 to load it, and use it as our reload reg. */
6775 if (equiv != 0
6776 && (regno != HARD_FRAME_POINTER_REGNUM
6777 || !frame_pointer_needed))
6778 {
6779 int nr = hard_regno_nregs[regno][rld[r].mode];
6780 int k;
6781 rld[r].reg_rtx = equiv;
6782 reload_spill_index[r] = regno;
6783 reload_inherited[r] = 1;
6784
6785 /* If reg_reloaded_valid is not set for this register,
6786 there might be a stale spill_reg_store lying around.
6787 We must clear it, since otherwise emit_reload_insns
6788 might delete the store. */
6789 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6790 spill_reg_store[regno] = NULL_RTX;
6791 /* If any of the hard registers in EQUIV are spill
6792 registers, mark them as in use for this insn. */
6793 for (k = 0; k < nr; k++)
6794 {
6795 i = spill_reg_order[regno + k];
6796 if (i >= 0)
6797 {
6798 mark_reload_reg_in_use (regno, rld[r].opnum,
6799 rld[r].when_needed,
6800 rld[r].mode);
6801 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6802 regno + k);
6803 }
6804 }
6805 }
6806 }
6807
6808 /* If we found a register to use already, or if this is an optional
6809 reload, we are done. */
6810 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6811 continue;
6812
6813 #if 0
6814 /* No longer needed for correct operation. Might or might
6815 not give better code on the average. Want to experiment? */
6816
6817 /* See if there is a later reload that has a class different from our
6818 class that intersects our class or that requires less register
6819 than our reload. If so, we must allocate a register to this
6820 reload now, since that reload might inherit a previous reload
6821 and take the only available register in our class. Don't do this
6822 for optional reloads since they will force all previous reloads
6823 to be allocated. Also don't do this for reloads that have been
6824 turned off. */
6825
6826 for (i = j + 1; i < n_reloads; i++)
6827 {
6828 int s = reload_order[i];
6829
6830 if ((rld[s].in == 0 && rld[s].out == 0
6831 && ! rld[s].secondary_p)
6832 || rld[s].optional)
6833 continue;
6834
6835 if ((rld[s].rclass != rld[r].rclass
6836 && reg_classes_intersect_p (rld[r].rclass,
6837 rld[s].rclass))
6838 || rld[s].nregs < rld[r].nregs)
6839 break;
6840 }
6841
6842 if (i == n_reloads)
6843 continue;
6844
6845 allocate_reload_reg (chain, r, j == n_reloads - 1);
6846 #endif
6847 }
6848
6849 /* Now allocate reload registers for anything non-optional that
6850 didn't get one yet. */
6851 for (j = 0; j < n_reloads; j++)
6852 {
6853 int r = reload_order[j];
6854
6855 /* Ignore reloads that got marked inoperative. */
6856 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6857 continue;
6858
6859 /* Skip reloads that already have a register allocated or are
6860 optional. */
6861 if (rld[r].reg_rtx != 0 || rld[r].optional)
6862 continue;
6863
6864 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6865 break;
6866 }
6867
6868 /* If that loop got all the way, we have won. */
6869 if (j == n_reloads)
6870 {
6871 win = 1;
6872 break;
6873 }
6874
6875 /* Loop around and try without any inheritance. */
6876 }
6877
6878 if (! win)
6879 {
6880 /* First undo everything done by the failed attempt
6881 to allocate with inheritance. */
6882 choose_reload_regs_init (chain, save_reload_reg_rtx);
6883
6884 /* Some sanity tests to verify that the reloads found in the first
6885 pass are identical to the ones we have now. */
6886 gcc_assert (chain->n_reloads == n_reloads);
6887
6888 for (i = 0; i < n_reloads; i++)
6889 {
6890 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6891 continue;
6892 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6893 for (j = 0; j < n_spills; j++)
6894 if (spill_regs[j] == chain->rld[i].regno)
6895 if (! set_reload_reg (j, i))
6896 failed_reload (chain->insn, i);
6897 }
6898 }
6899
6900 /* If we thought we could inherit a reload, because it seemed that
6901 nothing else wanted the same reload register earlier in the insn,
6902 verify that assumption, now that all reloads have been assigned.
6903 Likewise for reloads where reload_override_in has been set. */
6904
6905 /* If doing expensive optimizations, do one preliminary pass that doesn't
6906 cancel any inheritance, but removes reloads that have been needed only
6907 for reloads that we know can be inherited. */
6908 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6909 {
6910 for (j = 0; j < n_reloads; j++)
6911 {
6912 int r = reload_order[j];
6913 rtx check_reg;
6914 if (reload_inherited[r] && rld[r].reg_rtx)
6915 check_reg = rld[r].reg_rtx;
6916 else if (reload_override_in[r]
6917 && (REG_P (reload_override_in[r])
6918 || GET_CODE (reload_override_in[r]) == SUBREG))
6919 check_reg = reload_override_in[r];
6920 else
6921 continue;
6922 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6923 rld[r].opnum, rld[r].when_needed, rld[r].in,
6924 (reload_inherited[r]
6925 ? rld[r].out : const0_rtx),
6926 r, 1))
6927 {
6928 if (pass)
6929 continue;
6930 reload_inherited[r] = 0;
6931 reload_override_in[r] = 0;
6932 }
6933 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6934 reload_override_in, then we do not need its related
6935 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6936 likewise for other reload types.
6937 We handle this by removing a reload when its only replacement
6938 is mentioned in reload_in of the reload we are going to inherit.
6939 A special case are auto_inc expressions; even if the input is
6940 inherited, we still need the address for the output. We can
6941 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6942 If we succeeded removing some reload and we are doing a preliminary
6943 pass just to remove such reloads, make another pass, since the
6944 removal of one reload might allow us to inherit another one. */
6945 else if (rld[r].in
6946 && rld[r].out != rld[r].in
6947 && remove_address_replacements (rld[r].in) && pass)
6948 pass = 2;
6949 }
6950 }
6951
6952 /* Now that reload_override_in is known valid,
6953 actually override reload_in. */
6954 for (j = 0; j < n_reloads; j++)
6955 if (reload_override_in[j])
6956 rld[j].in = reload_override_in[j];
6957
6958 /* If this reload won't be done because it has been canceled or is
6959 optional and not inherited, clear reload_reg_rtx so other
6960 routines (such as subst_reloads) don't get confused. */
6961 for (j = 0; j < n_reloads; j++)
6962 if (rld[j].reg_rtx != 0
6963 && ((rld[j].optional && ! reload_inherited[j])
6964 || (rld[j].in == 0 && rld[j].out == 0
6965 && ! rld[j].secondary_p)))
6966 {
6967 int regno = true_regnum (rld[j].reg_rtx);
6968
6969 if (spill_reg_order[regno] >= 0)
6970 clear_reload_reg_in_use (regno, rld[j].opnum,
6971 rld[j].when_needed, rld[j].mode);
6972 rld[j].reg_rtx = 0;
6973 reload_spill_index[j] = -1;
6974 }
6975
6976 /* Record which pseudos and which spill regs have output reloads. */
6977 for (j = 0; j < n_reloads; j++)
6978 {
6979 int r = reload_order[j];
6980
6981 i = reload_spill_index[r];
6982
6983 /* I is nonneg if this reload uses a register.
6984 If rld[r].reg_rtx is 0, this is an optional reload
6985 that we opted to ignore. */
6986 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6987 && rld[r].reg_rtx != 0)
6988 {
6989 int nregno = REGNO (rld[r].out_reg);
6990 int nr = 1;
6991
6992 if (nregno < FIRST_PSEUDO_REGISTER)
6993 nr = hard_regno_nregs[nregno][rld[r].mode];
6994
6995 while (--nr >= 0)
6996 SET_REGNO_REG_SET (&reg_has_output_reload,
6997 nregno + nr);
6998
6999 if (i >= 0)
7000 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7001
7002 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7003 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7004 || rld[r].when_needed == RELOAD_FOR_INSN);
7005 }
7006 }
7007 }
7008
7009 /* Deallocate the reload register for reload R. This is called from
7010 remove_address_replacements. */
7011
7012 void
7013 deallocate_reload_reg (int r)
7014 {
7015 int regno;
7016
7017 if (! rld[r].reg_rtx)
7018 return;
7019 regno = true_regnum (rld[r].reg_rtx);
7020 rld[r].reg_rtx = 0;
7021 if (spill_reg_order[regno] >= 0)
7022 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7023 rld[r].mode);
7024 reload_spill_index[r] = -1;
7025 }
7026 \f
7027 /* These arrays are filled by emit_reload_insns and its subroutines. */
7028 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7029 static rtx other_input_address_reload_insns = 0;
7030 static rtx other_input_reload_insns = 0;
7031 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7032 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7033 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7034 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7035 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7036 static rtx operand_reload_insns = 0;
7037 static rtx other_operand_reload_insns = 0;
7038 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7039
7040 /* Values to be put in spill_reg_store are put here first. */
7041 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7042 static HARD_REG_SET reg_reloaded_died;
7043
7044 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7045 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7046 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7047 adjusted register, and return true. Otherwise, return false. */
7048 static bool
7049 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7050 enum reg_class new_class,
7051 enum machine_mode new_mode)
7052
7053 {
7054 rtx reg;
7055
7056 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7057 {
7058 unsigned regno = REGNO (reg);
7059
7060 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7061 continue;
7062 if (GET_MODE (reg) != new_mode)
7063 {
7064 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7065 continue;
7066 if (hard_regno_nregs[regno][new_mode]
7067 > hard_regno_nregs[regno][GET_MODE (reg)])
7068 continue;
7069 reg = reload_adjust_reg_for_mode (reg, new_mode);
7070 }
7071 *reload_reg = reg;
7072 return true;
7073 }
7074 return false;
7075 }
7076
7077 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7078 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7079 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7080 adjusted register, and return true. Otherwise, return false. */
7081 static bool
7082 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7083 enum insn_code icode)
7084
7085 {
7086 enum reg_class new_class = scratch_reload_class (icode);
7087 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7088
7089 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7090 new_class, new_mode);
7091 }
7092
7093 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7094 has the number J. OLD contains the value to be used as input. */
7095
7096 static void
7097 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7098 rtx old, int j)
7099 {
7100 rtx insn = chain->insn;
7101 rtx reloadreg;
7102 rtx oldequiv_reg = 0;
7103 rtx oldequiv = 0;
7104 int special = 0;
7105 enum machine_mode mode;
7106 rtx *where;
7107
7108 /* delete_output_reload is only invoked properly if old contains
7109 the original pseudo register. Since this is replaced with a
7110 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7111 find the pseudo in RELOAD_IN_REG. */
7112 if (reload_override_in[j]
7113 && REG_P (rl->in_reg))
7114 {
7115 oldequiv = old;
7116 old = rl->in_reg;
7117 }
7118 if (oldequiv == 0)
7119 oldequiv = old;
7120 else if (REG_P (oldequiv))
7121 oldequiv_reg = oldequiv;
7122 else if (GET_CODE (oldequiv) == SUBREG)
7123 oldequiv_reg = SUBREG_REG (oldequiv);
7124
7125 reloadreg = reload_reg_rtx_for_input[j];
7126 mode = GET_MODE (reloadreg);
7127
7128 /* If we are reloading from a register that was recently stored in
7129 with an output-reload, see if we can prove there was
7130 actually no need to store the old value in it. */
7131
7132 if (optimize && REG_P (oldequiv)
7133 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7134 && spill_reg_store[REGNO (oldequiv)]
7135 && REG_P (old)
7136 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7137 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7138 rl->out_reg)))
7139 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7140
7141 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7142 OLDEQUIV. */
7143
7144 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7145 oldequiv = SUBREG_REG (oldequiv);
7146 if (GET_MODE (oldequiv) != VOIDmode
7147 && mode != GET_MODE (oldequiv))
7148 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7149
7150 /* Switch to the right place to emit the reload insns. */
7151 switch (rl->when_needed)
7152 {
7153 case RELOAD_OTHER:
7154 where = &other_input_reload_insns;
7155 break;
7156 case RELOAD_FOR_INPUT:
7157 where = &input_reload_insns[rl->opnum];
7158 break;
7159 case RELOAD_FOR_INPUT_ADDRESS:
7160 where = &input_address_reload_insns[rl->opnum];
7161 break;
7162 case RELOAD_FOR_INPADDR_ADDRESS:
7163 where = &inpaddr_address_reload_insns[rl->opnum];
7164 break;
7165 case RELOAD_FOR_OUTPUT_ADDRESS:
7166 where = &output_address_reload_insns[rl->opnum];
7167 break;
7168 case RELOAD_FOR_OUTADDR_ADDRESS:
7169 where = &outaddr_address_reload_insns[rl->opnum];
7170 break;
7171 case RELOAD_FOR_OPERAND_ADDRESS:
7172 where = &operand_reload_insns;
7173 break;
7174 case RELOAD_FOR_OPADDR_ADDR:
7175 where = &other_operand_reload_insns;
7176 break;
7177 case RELOAD_FOR_OTHER_ADDRESS:
7178 where = &other_input_address_reload_insns;
7179 break;
7180 default:
7181 gcc_unreachable ();
7182 }
7183
7184 push_to_sequence (*where);
7185
7186 /* Auto-increment addresses must be reloaded in a special way. */
7187 if (rl->out && ! rl->out_reg)
7188 {
7189 /* We are not going to bother supporting the case where a
7190 incremented register can't be copied directly from
7191 OLDEQUIV since this seems highly unlikely. */
7192 gcc_assert (rl->secondary_in_reload < 0);
7193
7194 if (reload_inherited[j])
7195 oldequiv = reloadreg;
7196
7197 old = XEXP (rl->in_reg, 0);
7198
7199 /* Prevent normal processing of this reload. */
7200 special = 1;
7201 /* Output a special code sequence for this case, and forget about
7202 spill reg information. */
7203 new_spill_reg_store[REGNO (reloadreg)] = NULL;
7204 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7205 }
7206
7207 /* If we are reloading a pseudo-register that was set by the previous
7208 insn, see if we can get rid of that pseudo-register entirely
7209 by redirecting the previous insn into our reload register. */
7210
7211 else if (optimize && REG_P (old)
7212 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7213 && dead_or_set_p (insn, old)
7214 /* This is unsafe if some other reload
7215 uses the same reg first. */
7216 && ! conflicts_with_override (reloadreg)
7217 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7218 rl->when_needed, old, rl->out, j, 0))
7219 {
7220 rtx temp = PREV_INSN (insn);
7221 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7222 temp = PREV_INSN (temp);
7223 if (temp
7224 && NONJUMP_INSN_P (temp)
7225 && GET_CODE (PATTERN (temp)) == SET
7226 && SET_DEST (PATTERN (temp)) == old
7227 /* Make sure we can access insn_operand_constraint. */
7228 && asm_noperands (PATTERN (temp)) < 0
7229 /* This is unsafe if operand occurs more than once in current
7230 insn. Perhaps some occurrences aren't reloaded. */
7231 && count_occurrences (PATTERN (insn), old, 0) == 1)
7232 {
7233 rtx old = SET_DEST (PATTERN (temp));
7234 /* Store into the reload register instead of the pseudo. */
7235 SET_DEST (PATTERN (temp)) = reloadreg;
7236
7237 /* Verify that resulting insn is valid. */
7238 extract_insn (temp);
7239 if (constrain_operands (1))
7240 {
7241 /* If the previous insn is an output reload, the source is
7242 a reload register, and its spill_reg_store entry will
7243 contain the previous destination. This is now
7244 invalid. */
7245 if (REG_P (SET_SRC (PATTERN (temp)))
7246 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7247 {
7248 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7249 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7250 }
7251
7252 /* If these are the only uses of the pseudo reg,
7253 pretend for GDB it lives in the reload reg we used. */
7254 if (REG_N_DEATHS (REGNO (old)) == 1
7255 && REG_N_SETS (REGNO (old)) == 1)
7256 {
7257 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7258 if (ira_conflicts_p)
7259 /* Inform IRA about the change. */
7260 ira_mark_allocation_change (REGNO (old));
7261 alter_reg (REGNO (old), -1, false);
7262 }
7263 special = 1;
7264
7265 /* Adjust any debug insns between temp and insn. */
7266 while ((temp = NEXT_INSN (temp)) != insn)
7267 if (DEBUG_INSN_P (temp))
7268 replace_rtx (PATTERN (temp), old, reloadreg);
7269 else
7270 gcc_assert (NOTE_P (temp));
7271 }
7272 else
7273 {
7274 SET_DEST (PATTERN (temp)) = old;
7275 }
7276 }
7277 }
7278
7279 /* We can't do that, so output an insn to load RELOADREG. */
7280
7281 /* If we have a secondary reload, pick up the secondary register
7282 and icode, if any. If OLDEQUIV and OLD are different or
7283 if this is an in-out reload, recompute whether or not we
7284 still need a secondary register and what the icode should
7285 be. If we still need a secondary register and the class or
7286 icode is different, go back to reloading from OLD if using
7287 OLDEQUIV means that we got the wrong type of register. We
7288 cannot have different class or icode due to an in-out reload
7289 because we don't make such reloads when both the input and
7290 output need secondary reload registers. */
7291
7292 if (! special && rl->secondary_in_reload >= 0)
7293 {
7294 rtx second_reload_reg = 0;
7295 rtx third_reload_reg = 0;
7296 int secondary_reload = rl->secondary_in_reload;
7297 rtx real_oldequiv = oldequiv;
7298 rtx real_old = old;
7299 rtx tmp;
7300 enum insn_code icode;
7301 enum insn_code tertiary_icode = CODE_FOR_nothing;
7302
7303 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7304 and similarly for OLD.
7305 See comments in get_secondary_reload in reload.c. */
7306 /* If it is a pseudo that cannot be replaced with its
7307 equivalent MEM, we must fall back to reload_in, which
7308 will have all the necessary substitutions registered.
7309 Likewise for a pseudo that can't be replaced with its
7310 equivalent constant.
7311
7312 Take extra care for subregs of such pseudos. Note that
7313 we cannot use reg_equiv_mem in this case because it is
7314 not in the right mode. */
7315
7316 tmp = oldequiv;
7317 if (GET_CODE (tmp) == SUBREG)
7318 tmp = SUBREG_REG (tmp);
7319 if (REG_P (tmp)
7320 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7321 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7322 || reg_equiv_constant (REGNO (tmp)) != 0))
7323 {
7324 if (! reg_equiv_mem (REGNO (tmp))
7325 || num_not_at_initial_offset
7326 || GET_CODE (oldequiv) == SUBREG)
7327 real_oldequiv = rl->in;
7328 else
7329 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7330 }
7331
7332 tmp = old;
7333 if (GET_CODE (tmp) == SUBREG)
7334 tmp = SUBREG_REG (tmp);
7335 if (REG_P (tmp)
7336 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7337 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7338 || reg_equiv_constant (REGNO (tmp)) != 0))
7339 {
7340 if (! reg_equiv_mem (REGNO (tmp))
7341 || num_not_at_initial_offset
7342 || GET_CODE (old) == SUBREG)
7343 real_old = rl->in;
7344 else
7345 real_old = reg_equiv_mem (REGNO (tmp));
7346 }
7347
7348 second_reload_reg = rld[secondary_reload].reg_rtx;
7349 if (rld[secondary_reload].secondary_in_reload >= 0)
7350 {
7351 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7352
7353 third_reload_reg = rld[tertiary_reload].reg_rtx;
7354 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7355 /* We'd have to add more code for quartary reloads. */
7356 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7357 }
7358 icode = rl->secondary_in_icode;
7359
7360 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7361 || (rl->in != 0 && rl->out != 0))
7362 {
7363 secondary_reload_info sri, sri2;
7364 enum reg_class new_class, new_t_class;
7365
7366 sri.icode = CODE_FOR_nothing;
7367 sri.prev_sri = NULL;
7368 new_class
7369 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7370 rl->rclass, mode,
7371 &sri);
7372
7373 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7374 second_reload_reg = 0;
7375 else if (new_class == NO_REGS)
7376 {
7377 if (reload_adjust_reg_for_icode (&second_reload_reg,
7378 third_reload_reg,
7379 (enum insn_code) sri.icode))
7380 {
7381 icode = (enum insn_code) sri.icode;
7382 third_reload_reg = 0;
7383 }
7384 else
7385 {
7386 oldequiv = old;
7387 real_oldequiv = real_old;
7388 }
7389 }
7390 else if (sri.icode != CODE_FOR_nothing)
7391 /* We currently lack a way to express this in reloads. */
7392 gcc_unreachable ();
7393 else
7394 {
7395 sri2.icode = CODE_FOR_nothing;
7396 sri2.prev_sri = &sri;
7397 new_t_class
7398 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7399 new_class, mode,
7400 &sri);
7401 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7402 {
7403 if (reload_adjust_reg_for_temp (&second_reload_reg,
7404 third_reload_reg,
7405 new_class, mode))
7406 {
7407 third_reload_reg = 0;
7408 tertiary_icode = (enum insn_code) sri2.icode;
7409 }
7410 else
7411 {
7412 oldequiv = old;
7413 real_oldequiv = real_old;
7414 }
7415 }
7416 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7417 {
7418 rtx intermediate = second_reload_reg;
7419
7420 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7421 new_class, mode)
7422 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7423 ((enum insn_code)
7424 sri2.icode)))
7425 {
7426 second_reload_reg = intermediate;
7427 tertiary_icode = (enum insn_code) sri2.icode;
7428 }
7429 else
7430 {
7431 oldequiv = old;
7432 real_oldequiv = real_old;
7433 }
7434 }
7435 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7436 {
7437 rtx intermediate = second_reload_reg;
7438
7439 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7440 new_class, mode)
7441 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7442 new_t_class, mode))
7443 {
7444 second_reload_reg = intermediate;
7445 tertiary_icode = (enum insn_code) sri2.icode;
7446 }
7447 else
7448 {
7449 oldequiv = old;
7450 real_oldequiv = real_old;
7451 }
7452 }
7453 else
7454 {
7455 /* This could be handled more intelligently too. */
7456 oldequiv = old;
7457 real_oldequiv = real_old;
7458 }
7459 }
7460 }
7461
7462 /* If we still need a secondary reload register, check
7463 to see if it is being used as a scratch or intermediate
7464 register and generate code appropriately. If we need
7465 a scratch register, use REAL_OLDEQUIV since the form of
7466 the insn may depend on the actual address if it is
7467 a MEM. */
7468
7469 if (second_reload_reg)
7470 {
7471 if (icode != CODE_FOR_nothing)
7472 {
7473 /* We'd have to add extra code to handle this case. */
7474 gcc_assert (!third_reload_reg);
7475
7476 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7477 second_reload_reg));
7478 special = 1;
7479 }
7480 else
7481 {
7482 /* See if we need a scratch register to load the
7483 intermediate register (a tertiary reload). */
7484 if (tertiary_icode != CODE_FOR_nothing)
7485 {
7486 emit_insn ((GEN_FCN (tertiary_icode)
7487 (second_reload_reg, real_oldequiv,
7488 third_reload_reg)));
7489 }
7490 else if (third_reload_reg)
7491 {
7492 gen_reload (third_reload_reg, real_oldequiv,
7493 rl->opnum,
7494 rl->when_needed);
7495 gen_reload (second_reload_reg, third_reload_reg,
7496 rl->opnum,
7497 rl->when_needed);
7498 }
7499 else
7500 gen_reload (second_reload_reg, real_oldequiv,
7501 rl->opnum,
7502 rl->when_needed);
7503
7504 oldequiv = second_reload_reg;
7505 }
7506 }
7507 }
7508
7509 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7510 {
7511 rtx real_oldequiv = oldequiv;
7512
7513 if ((REG_P (oldequiv)
7514 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7515 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7516 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7517 || (GET_CODE (oldequiv) == SUBREG
7518 && REG_P (SUBREG_REG (oldequiv))
7519 && (REGNO (SUBREG_REG (oldequiv))
7520 >= FIRST_PSEUDO_REGISTER)
7521 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7522 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7523 || (CONSTANT_P (oldequiv)
7524 && (targetm.preferred_reload_class (oldequiv,
7525 REGNO_REG_CLASS (REGNO (reloadreg)))
7526 == NO_REGS)))
7527 real_oldequiv = rl->in;
7528 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7529 rl->when_needed);
7530 }
7531
7532 if (cfun->can_throw_non_call_exceptions)
7533 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7534
7535 /* End this sequence. */
7536 *where = get_insns ();
7537 end_sequence ();
7538
7539 /* Update reload_override_in so that delete_address_reloads_1
7540 can see the actual register usage. */
7541 if (oldequiv_reg)
7542 reload_override_in[j] = oldequiv;
7543 }
7544
7545 /* Generate insns to for the output reload RL, which is for the insn described
7546 by CHAIN and has the number J. */
7547 static void
7548 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7549 int j)
7550 {
7551 rtx reloadreg;
7552 rtx insn = chain->insn;
7553 int special = 0;
7554 rtx old = rl->out;
7555 enum machine_mode mode;
7556 rtx p;
7557 rtx rl_reg_rtx;
7558
7559 if (rl->when_needed == RELOAD_OTHER)
7560 start_sequence ();
7561 else
7562 push_to_sequence (output_reload_insns[rl->opnum]);
7563
7564 rl_reg_rtx = reload_reg_rtx_for_output[j];
7565 mode = GET_MODE (rl_reg_rtx);
7566
7567 reloadreg = rl_reg_rtx;
7568
7569 /* If we need two reload regs, set RELOADREG to the intermediate
7570 one, since it will be stored into OLD. We might need a secondary
7571 register only for an input reload, so check again here. */
7572
7573 if (rl->secondary_out_reload >= 0)
7574 {
7575 rtx real_old = old;
7576 int secondary_reload = rl->secondary_out_reload;
7577 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7578
7579 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7580 && reg_equiv_mem (REGNO (old)) != 0)
7581 real_old = reg_equiv_mem (REGNO (old));
7582
7583 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7584 {
7585 rtx second_reloadreg = reloadreg;
7586 reloadreg = rld[secondary_reload].reg_rtx;
7587
7588 /* See if RELOADREG is to be used as a scratch register
7589 or as an intermediate register. */
7590 if (rl->secondary_out_icode != CODE_FOR_nothing)
7591 {
7592 /* We'd have to add extra code to handle this case. */
7593 gcc_assert (tertiary_reload < 0);
7594
7595 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7596 (real_old, second_reloadreg, reloadreg)));
7597 special = 1;
7598 }
7599 else
7600 {
7601 /* See if we need both a scratch and intermediate reload
7602 register. */
7603
7604 enum insn_code tertiary_icode
7605 = rld[secondary_reload].secondary_out_icode;
7606
7607 /* We'd have to add more code for quartary reloads. */
7608 gcc_assert (tertiary_reload < 0
7609 || rld[tertiary_reload].secondary_out_reload < 0);
7610
7611 if (GET_MODE (reloadreg) != mode)
7612 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7613
7614 if (tertiary_icode != CODE_FOR_nothing)
7615 {
7616 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7617
7618 /* Copy primary reload reg to secondary reload reg.
7619 (Note that these have been swapped above, then
7620 secondary reload reg to OLD using our insn.) */
7621
7622 /* If REAL_OLD is a paradoxical SUBREG, remove it
7623 and try to put the opposite SUBREG on
7624 RELOADREG. */
7625 strip_paradoxical_subreg (&real_old, &reloadreg);
7626
7627 gen_reload (reloadreg, second_reloadreg,
7628 rl->opnum, rl->when_needed);
7629 emit_insn ((GEN_FCN (tertiary_icode)
7630 (real_old, reloadreg, third_reloadreg)));
7631 special = 1;
7632 }
7633
7634 else
7635 {
7636 /* Copy between the reload regs here and then to
7637 OUT later. */
7638
7639 gen_reload (reloadreg, second_reloadreg,
7640 rl->opnum, rl->when_needed);
7641 if (tertiary_reload >= 0)
7642 {
7643 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7644
7645 gen_reload (third_reloadreg, reloadreg,
7646 rl->opnum, rl->when_needed);
7647 reloadreg = third_reloadreg;
7648 }
7649 }
7650 }
7651 }
7652 }
7653
7654 /* Output the last reload insn. */
7655 if (! special)
7656 {
7657 rtx set;
7658
7659 /* Don't output the last reload if OLD is not the dest of
7660 INSN and is in the src and is clobbered by INSN. */
7661 if (! flag_expensive_optimizations
7662 || !REG_P (old)
7663 || !(set = single_set (insn))
7664 || rtx_equal_p (old, SET_DEST (set))
7665 || !reg_mentioned_p (old, SET_SRC (set))
7666 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7667 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7668 gen_reload (old, reloadreg, rl->opnum,
7669 rl->when_needed);
7670 }
7671
7672 /* Look at all insns we emitted, just to be safe. */
7673 for (p = get_insns (); p; p = NEXT_INSN (p))
7674 if (INSN_P (p))
7675 {
7676 rtx pat = PATTERN (p);
7677
7678 /* If this output reload doesn't come from a spill reg,
7679 clear any memory of reloaded copies of the pseudo reg.
7680 If this output reload comes from a spill reg,
7681 reg_has_output_reload will make this do nothing. */
7682 note_stores (pat, forget_old_reloads_1, NULL);
7683
7684 if (reg_mentioned_p (rl_reg_rtx, pat))
7685 {
7686 rtx set = single_set (insn);
7687 if (reload_spill_index[j] < 0
7688 && set
7689 && SET_SRC (set) == rl_reg_rtx)
7690 {
7691 int src = REGNO (SET_SRC (set));
7692
7693 reload_spill_index[j] = src;
7694 SET_HARD_REG_BIT (reg_is_output_reload, src);
7695 if (find_regno_note (insn, REG_DEAD, src))
7696 SET_HARD_REG_BIT (reg_reloaded_died, src);
7697 }
7698 if (HARD_REGISTER_P (rl_reg_rtx))
7699 {
7700 int s = rl->secondary_out_reload;
7701 set = single_set (p);
7702 /* If this reload copies only to the secondary reload
7703 register, the secondary reload does the actual
7704 store. */
7705 if (s >= 0 && set == NULL_RTX)
7706 /* We can't tell what function the secondary reload
7707 has and where the actual store to the pseudo is
7708 made; leave new_spill_reg_store alone. */
7709 ;
7710 else if (s >= 0
7711 && SET_SRC (set) == rl_reg_rtx
7712 && SET_DEST (set) == rld[s].reg_rtx)
7713 {
7714 /* Usually the next instruction will be the
7715 secondary reload insn; if we can confirm
7716 that it is, setting new_spill_reg_store to
7717 that insn will allow an extra optimization. */
7718 rtx s_reg = rld[s].reg_rtx;
7719 rtx next = NEXT_INSN (p);
7720 rld[s].out = rl->out;
7721 rld[s].out_reg = rl->out_reg;
7722 set = single_set (next);
7723 if (set && SET_SRC (set) == s_reg
7724 && ! new_spill_reg_store[REGNO (s_reg)])
7725 {
7726 SET_HARD_REG_BIT (reg_is_output_reload,
7727 REGNO (s_reg));
7728 new_spill_reg_store[REGNO (s_reg)] = next;
7729 }
7730 }
7731 else
7732 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7733 }
7734 }
7735 }
7736
7737 if (rl->when_needed == RELOAD_OTHER)
7738 {
7739 emit_insn (other_output_reload_insns[rl->opnum]);
7740 other_output_reload_insns[rl->opnum] = get_insns ();
7741 }
7742 else
7743 output_reload_insns[rl->opnum] = get_insns ();
7744
7745 if (cfun->can_throw_non_call_exceptions)
7746 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7747
7748 end_sequence ();
7749 }
7750
7751 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7752 and has the number J. */
7753 static void
7754 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7755 {
7756 rtx insn = chain->insn;
7757 rtx old = (rl->in && MEM_P (rl->in)
7758 ? rl->in_reg : rl->in);
7759 rtx reg_rtx = rl->reg_rtx;
7760
7761 if (old && reg_rtx)
7762 {
7763 enum machine_mode mode;
7764
7765 /* Determine the mode to reload in.
7766 This is very tricky because we have three to choose from.
7767 There is the mode the insn operand wants (rl->inmode).
7768 There is the mode of the reload register RELOADREG.
7769 There is the intrinsic mode of the operand, which we could find
7770 by stripping some SUBREGs.
7771 It turns out that RELOADREG's mode is irrelevant:
7772 we can change that arbitrarily.
7773
7774 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7775 then the reload reg may not support QImode moves, so use SImode.
7776 If foo is in memory due to spilling a pseudo reg, this is safe,
7777 because the QImode value is in the least significant part of a
7778 slot big enough for a SImode. If foo is some other sort of
7779 memory reference, then it is impossible to reload this case,
7780 so previous passes had better make sure this never happens.
7781
7782 Then consider a one-word union which has SImode and one of its
7783 members is a float, being fetched as (SUBREG:SF union:SI).
7784 We must fetch that as SFmode because we could be loading into
7785 a float-only register. In this case OLD's mode is correct.
7786
7787 Consider an immediate integer: it has VOIDmode. Here we need
7788 to get a mode from something else.
7789
7790 In some cases, there is a fourth mode, the operand's
7791 containing mode. If the insn specifies a containing mode for
7792 this operand, it overrides all others.
7793
7794 I am not sure whether the algorithm here is always right,
7795 but it does the right things in those cases. */
7796
7797 mode = GET_MODE (old);
7798 if (mode == VOIDmode)
7799 mode = rl->inmode;
7800
7801 /* We cannot use gen_lowpart_common since it can do the wrong thing
7802 when REG_RTX has a multi-word mode. Note that REG_RTX must
7803 always be a REG here. */
7804 if (GET_MODE (reg_rtx) != mode)
7805 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7806 }
7807 reload_reg_rtx_for_input[j] = reg_rtx;
7808
7809 if (old != 0
7810 /* AUTO_INC reloads need to be handled even if inherited. We got an
7811 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7812 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7813 && ! rtx_equal_p (reg_rtx, old)
7814 && reg_rtx != 0)
7815 emit_input_reload_insns (chain, rld + j, old, j);
7816
7817 /* When inheriting a wider reload, we have a MEM in rl->in,
7818 e.g. inheriting a SImode output reload for
7819 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7820 if (optimize && reload_inherited[j] && rl->in
7821 && MEM_P (rl->in)
7822 && MEM_P (rl->in_reg)
7823 && reload_spill_index[j] >= 0
7824 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7825 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7826
7827 /* If we are reloading a register that was recently stored in with an
7828 output-reload, see if we can prove there was
7829 actually no need to store the old value in it. */
7830
7831 if (optimize
7832 && (reload_inherited[j] || reload_override_in[j])
7833 && reg_rtx
7834 && REG_P (reg_rtx)
7835 && spill_reg_store[REGNO (reg_rtx)] != 0
7836 #if 0
7837 /* There doesn't seem to be any reason to restrict this to pseudos
7838 and doing so loses in the case where we are copying from a
7839 register of the wrong class. */
7840 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7841 #endif
7842 /* The insn might have already some references to stackslots
7843 replaced by MEMs, while reload_out_reg still names the
7844 original pseudo. */
7845 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7846 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7847 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7848 }
7849
7850 /* Do output reloading for reload RL, which is for the insn described by
7851 CHAIN and has the number J.
7852 ??? At some point we need to support handling output reloads of
7853 JUMP_INSNs or insns that set cc0. */
7854 static void
7855 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7856 {
7857 rtx note, old;
7858 rtx insn = chain->insn;
7859 /* If this is an output reload that stores something that is
7860 not loaded in this same reload, see if we can eliminate a previous
7861 store. */
7862 rtx pseudo = rl->out_reg;
7863 rtx reg_rtx = rl->reg_rtx;
7864
7865 if (rl->out && reg_rtx)
7866 {
7867 enum machine_mode mode;
7868
7869 /* Determine the mode to reload in.
7870 See comments above (for input reloading). */
7871 mode = GET_MODE (rl->out);
7872 if (mode == VOIDmode)
7873 {
7874 /* VOIDmode should never happen for an output. */
7875 if (asm_noperands (PATTERN (insn)) < 0)
7876 /* It's the compiler's fault. */
7877 fatal_insn ("VOIDmode on an output", insn);
7878 error_for_asm (insn, "output operand is constant in %<asm%>");
7879 /* Prevent crash--use something we know is valid. */
7880 mode = word_mode;
7881 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7882 }
7883 if (GET_MODE (reg_rtx) != mode)
7884 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7885 }
7886 reload_reg_rtx_for_output[j] = reg_rtx;
7887
7888 if (pseudo
7889 && optimize
7890 && REG_P (pseudo)
7891 && ! rtx_equal_p (rl->in_reg, pseudo)
7892 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7893 && reg_last_reload_reg[REGNO (pseudo)])
7894 {
7895 int pseudo_no = REGNO (pseudo);
7896 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7897
7898 /* We don't need to test full validity of last_regno for
7899 inherit here; we only want to know if the store actually
7900 matches the pseudo. */
7901 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7902 && reg_reloaded_contents[last_regno] == pseudo_no
7903 && spill_reg_store[last_regno]
7904 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7905 delete_output_reload (insn, j, last_regno, reg_rtx);
7906 }
7907
7908 old = rl->out_reg;
7909 if (old == 0
7910 || reg_rtx == 0
7911 || rtx_equal_p (old, reg_rtx))
7912 return;
7913
7914 /* An output operand that dies right away does need a reload,
7915 but need not be copied from it. Show the new location in the
7916 REG_UNUSED note. */
7917 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7918 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7919 {
7920 XEXP (note, 0) = reg_rtx;
7921 return;
7922 }
7923 /* Likewise for a SUBREG of an operand that dies. */
7924 else if (GET_CODE (old) == SUBREG
7925 && REG_P (SUBREG_REG (old))
7926 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7927 SUBREG_REG (old))))
7928 {
7929 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7930 return;
7931 }
7932 else if (GET_CODE (old) == SCRATCH)
7933 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7934 but we don't want to make an output reload. */
7935 return;
7936
7937 /* If is a JUMP_INSN, we can't support output reloads yet. */
7938 gcc_assert (NONJUMP_INSN_P (insn));
7939
7940 emit_output_reload_insns (chain, rld + j, j);
7941 }
7942
7943 /* A reload copies values of MODE from register SRC to register DEST.
7944 Return true if it can be treated for inheritance purposes like a
7945 group of reloads, each one reloading a single hard register. The
7946 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7947 occupy the same number of hard registers. */
7948
7949 static bool
7950 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7951 int src ATTRIBUTE_UNUSED,
7952 enum machine_mode mode ATTRIBUTE_UNUSED)
7953 {
7954 #ifdef CANNOT_CHANGE_MODE_CLASS
7955 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7956 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7957 #else
7958 return true;
7959 #endif
7960 }
7961
7962 /* Output insns to reload values in and out of the chosen reload regs. */
7963
7964 static void
7965 emit_reload_insns (struct insn_chain *chain)
7966 {
7967 rtx insn = chain->insn;
7968
7969 int j;
7970
7971 CLEAR_HARD_REG_SET (reg_reloaded_died);
7972
7973 for (j = 0; j < reload_n_operands; j++)
7974 input_reload_insns[j] = input_address_reload_insns[j]
7975 = inpaddr_address_reload_insns[j]
7976 = output_reload_insns[j] = output_address_reload_insns[j]
7977 = outaddr_address_reload_insns[j]
7978 = other_output_reload_insns[j] = 0;
7979 other_input_address_reload_insns = 0;
7980 other_input_reload_insns = 0;
7981 operand_reload_insns = 0;
7982 other_operand_reload_insns = 0;
7983
7984 /* Dump reloads into the dump file. */
7985 if (dump_file)
7986 {
7987 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7988 debug_reload_to_stream (dump_file);
7989 }
7990
7991 /* Now output the instructions to copy the data into and out of the
7992 reload registers. Do these in the order that the reloads were reported,
7993 since reloads of base and index registers precede reloads of operands
7994 and the operands may need the base and index registers reloaded. */
7995
7996 for (j = 0; j < n_reloads; j++)
7997 {
7998 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7999 {
8000 unsigned int i;
8001
8002 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8003 new_spill_reg_store[i] = 0;
8004 }
8005
8006 do_input_reload (chain, rld + j, j);
8007 do_output_reload (chain, rld + j, j);
8008 }
8009
8010 /* Now write all the insns we made for reloads in the order expected by
8011 the allocation functions. Prior to the insn being reloaded, we write
8012 the following reloads:
8013
8014 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8015
8016 RELOAD_OTHER reloads.
8017
8018 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8019 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8020 RELOAD_FOR_INPUT reload for the operand.
8021
8022 RELOAD_FOR_OPADDR_ADDRS reloads.
8023
8024 RELOAD_FOR_OPERAND_ADDRESS reloads.
8025
8026 After the insn being reloaded, we write the following:
8027
8028 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8029 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8030 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8031 reloads for the operand. The RELOAD_OTHER output reloads are
8032 output in descending order by reload number. */
8033
8034 emit_insn_before (other_input_address_reload_insns, insn);
8035 emit_insn_before (other_input_reload_insns, insn);
8036
8037 for (j = 0; j < reload_n_operands; j++)
8038 {
8039 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8040 emit_insn_before (input_address_reload_insns[j], insn);
8041 emit_insn_before (input_reload_insns[j], insn);
8042 }
8043
8044 emit_insn_before (other_operand_reload_insns, insn);
8045 emit_insn_before (operand_reload_insns, insn);
8046
8047 for (j = 0; j < reload_n_operands; j++)
8048 {
8049 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8050 x = emit_insn_after (output_address_reload_insns[j], x);
8051 x = emit_insn_after (output_reload_insns[j], x);
8052 emit_insn_after (other_output_reload_insns[j], x);
8053 }
8054
8055 /* For all the spill regs newly reloaded in this instruction,
8056 record what they were reloaded from, so subsequent instructions
8057 can inherit the reloads.
8058
8059 Update spill_reg_store for the reloads of this insn.
8060 Copy the elements that were updated in the loop above. */
8061
8062 for (j = 0; j < n_reloads; j++)
8063 {
8064 int r = reload_order[j];
8065 int i = reload_spill_index[r];
8066
8067 /* If this is a non-inherited input reload from a pseudo, we must
8068 clear any memory of a previous store to the same pseudo. Only do
8069 something if there will not be an output reload for the pseudo
8070 being reloaded. */
8071 if (rld[r].in_reg != 0
8072 && ! (reload_inherited[r] || reload_override_in[r]))
8073 {
8074 rtx reg = rld[r].in_reg;
8075
8076 if (GET_CODE (reg) == SUBREG)
8077 reg = SUBREG_REG (reg);
8078
8079 if (REG_P (reg)
8080 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8081 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8082 {
8083 int nregno = REGNO (reg);
8084
8085 if (reg_last_reload_reg[nregno])
8086 {
8087 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8088
8089 if (reg_reloaded_contents[last_regno] == nregno)
8090 spill_reg_store[last_regno] = 0;
8091 }
8092 }
8093 }
8094
8095 /* I is nonneg if this reload used a register.
8096 If rld[r].reg_rtx is 0, this is an optional reload
8097 that we opted to ignore. */
8098
8099 if (i >= 0 && rld[r].reg_rtx != 0)
8100 {
8101 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8102 int k;
8103
8104 /* For a multi register reload, we need to check if all or part
8105 of the value lives to the end. */
8106 for (k = 0; k < nr; k++)
8107 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
8108 rld[r].when_needed))
8109 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8110
8111 /* Maybe the spill reg contains a copy of reload_out. */
8112 if (rld[r].out != 0
8113 && (REG_P (rld[r].out)
8114 || (rld[r].out_reg
8115 ? REG_P (rld[r].out_reg)
8116 /* The reload value is an auto-modification of
8117 some kind. For PRE_INC, POST_INC, PRE_DEC
8118 and POST_DEC, we record an equivalence
8119 between the reload register and the operand
8120 on the optimistic assumption that we can make
8121 the equivalence hold. reload_as_needed must
8122 then either make it hold or invalidate the
8123 equivalence.
8124
8125 PRE_MODIFY and POST_MODIFY addresses are reloaded
8126 somewhat differently, and allowing them here leads
8127 to problems. */
8128 : (GET_CODE (rld[r].out) != POST_MODIFY
8129 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8130 {
8131 rtx reg;
8132 enum machine_mode mode;
8133 int regno, nregs;
8134
8135 reg = reload_reg_rtx_for_output[r];
8136 mode = GET_MODE (reg);
8137 regno = REGNO (reg);
8138 nregs = hard_regno_nregs[regno][mode];
8139 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8140 rld[r].when_needed))
8141 {
8142 rtx out = (REG_P (rld[r].out)
8143 ? rld[r].out
8144 : rld[r].out_reg
8145 ? rld[r].out_reg
8146 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8147 int out_regno = REGNO (out);
8148 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8149 : hard_regno_nregs[out_regno][mode]);
8150 bool piecemeal;
8151
8152 spill_reg_store[regno] = new_spill_reg_store[regno];
8153 spill_reg_stored_to[regno] = out;
8154 reg_last_reload_reg[out_regno] = reg;
8155
8156 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8157 && nregs == out_nregs
8158 && inherit_piecemeal_p (out_regno, regno, mode));
8159
8160 /* If OUT_REGNO is a hard register, it may occupy more than
8161 one register. If it does, say what is in the
8162 rest of the registers assuming that both registers
8163 agree on how many words the object takes. If not,
8164 invalidate the subsequent registers. */
8165
8166 if (HARD_REGISTER_NUM_P (out_regno))
8167 for (k = 1; k < out_nregs; k++)
8168 reg_last_reload_reg[out_regno + k]
8169 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8170
8171 /* Now do the inverse operation. */
8172 for (k = 0; k < nregs; k++)
8173 {
8174 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8175 reg_reloaded_contents[regno + k]
8176 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8177 ? out_regno
8178 : out_regno + k);
8179 reg_reloaded_insn[regno + k] = insn;
8180 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8181 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8182 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8183 regno + k);
8184 else
8185 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8186 regno + k);
8187 }
8188 }
8189 }
8190 /* Maybe the spill reg contains a copy of reload_in. Only do
8191 something if there will not be an output reload for
8192 the register being reloaded. */
8193 else if (rld[r].out_reg == 0
8194 && rld[r].in != 0
8195 && ((REG_P (rld[r].in)
8196 && !HARD_REGISTER_P (rld[r].in)
8197 && !REGNO_REG_SET_P (&reg_has_output_reload,
8198 REGNO (rld[r].in)))
8199 || (REG_P (rld[r].in_reg)
8200 && !REGNO_REG_SET_P (&reg_has_output_reload,
8201 REGNO (rld[r].in_reg))))
8202 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8203 {
8204 rtx reg;
8205 enum machine_mode mode;
8206 int regno, nregs;
8207
8208 reg = reload_reg_rtx_for_input[r];
8209 mode = GET_MODE (reg);
8210 regno = REGNO (reg);
8211 nregs = hard_regno_nregs[regno][mode];
8212 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8213 rld[r].when_needed))
8214 {
8215 int in_regno;
8216 int in_nregs;
8217 rtx in;
8218 bool piecemeal;
8219
8220 if (REG_P (rld[r].in)
8221 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8222 in = rld[r].in;
8223 else if (REG_P (rld[r].in_reg))
8224 in = rld[r].in_reg;
8225 else
8226 in = XEXP (rld[r].in_reg, 0);
8227 in_regno = REGNO (in);
8228
8229 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8230 : hard_regno_nregs[in_regno][mode]);
8231
8232 reg_last_reload_reg[in_regno] = reg;
8233
8234 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8235 && nregs == in_nregs
8236 && inherit_piecemeal_p (regno, in_regno, mode));
8237
8238 if (HARD_REGISTER_NUM_P (in_regno))
8239 for (k = 1; k < in_nregs; k++)
8240 reg_last_reload_reg[in_regno + k]
8241 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8242
8243 /* Unless we inherited this reload, show we haven't
8244 recently done a store.
8245 Previous stores of inherited auto_inc expressions
8246 also have to be discarded. */
8247 if (! reload_inherited[r]
8248 || (rld[r].out && ! rld[r].out_reg))
8249 spill_reg_store[regno] = 0;
8250
8251 for (k = 0; k < nregs; k++)
8252 {
8253 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8254 reg_reloaded_contents[regno + k]
8255 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8256 ? in_regno
8257 : in_regno + k);
8258 reg_reloaded_insn[regno + k] = insn;
8259 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8260 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8261 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8262 regno + k);
8263 else
8264 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8265 regno + k);
8266 }
8267 }
8268 }
8269 }
8270
8271 /* The following if-statement was #if 0'd in 1.34 (or before...).
8272 It's reenabled in 1.35 because supposedly nothing else
8273 deals with this problem. */
8274
8275 /* If a register gets output-reloaded from a non-spill register,
8276 that invalidates any previous reloaded copy of it.
8277 But forget_old_reloads_1 won't get to see it, because
8278 it thinks only about the original insn. So invalidate it here.
8279 Also do the same thing for RELOAD_OTHER constraints where the
8280 output is discarded. */
8281 if (i < 0
8282 && ((rld[r].out != 0
8283 && (REG_P (rld[r].out)
8284 || (MEM_P (rld[r].out)
8285 && REG_P (rld[r].out_reg))))
8286 || (rld[r].out == 0 && rld[r].out_reg
8287 && REG_P (rld[r].out_reg))))
8288 {
8289 rtx out = ((rld[r].out && REG_P (rld[r].out))
8290 ? rld[r].out : rld[r].out_reg);
8291 int out_regno = REGNO (out);
8292 enum machine_mode mode = GET_MODE (out);
8293
8294 /* REG_RTX is now set or clobbered by the main instruction.
8295 As the comment above explains, forget_old_reloads_1 only
8296 sees the original instruction, and there is no guarantee
8297 that the original instruction also clobbered REG_RTX.
8298 For example, if find_reloads sees that the input side of
8299 a matched operand pair dies in this instruction, it may
8300 use the input register as the reload register.
8301
8302 Calling forget_old_reloads_1 is a waste of effort if
8303 REG_RTX is also the output register.
8304
8305 If we know that REG_RTX holds the value of a pseudo
8306 register, the code after the call will record that fact. */
8307 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8308 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8309
8310 if (!HARD_REGISTER_NUM_P (out_regno))
8311 {
8312 rtx src_reg, store_insn = NULL_RTX;
8313
8314 reg_last_reload_reg[out_regno] = 0;
8315
8316 /* If we can find a hard register that is stored, record
8317 the storing insn so that we may delete this insn with
8318 delete_output_reload. */
8319 src_reg = reload_reg_rtx_for_output[r];
8320
8321 /* If this is an optional reload, try to find the source reg
8322 from an input reload. */
8323 if (! src_reg)
8324 {
8325 rtx set = single_set (insn);
8326 if (set && SET_DEST (set) == rld[r].out)
8327 {
8328 int k;
8329
8330 src_reg = SET_SRC (set);
8331 store_insn = insn;
8332 for (k = 0; k < n_reloads; k++)
8333 {
8334 if (rld[k].in == src_reg)
8335 {
8336 src_reg = reload_reg_rtx_for_input[k];
8337 break;
8338 }
8339 }
8340 }
8341 }
8342 else
8343 store_insn = new_spill_reg_store[REGNO (src_reg)];
8344 if (src_reg && REG_P (src_reg)
8345 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8346 {
8347 int src_regno, src_nregs, k;
8348 rtx note;
8349
8350 gcc_assert (GET_MODE (src_reg) == mode);
8351 src_regno = REGNO (src_reg);
8352 src_nregs = hard_regno_nregs[src_regno][mode];
8353 /* The place where to find a death note varies with
8354 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8355 necessarily checked exactly in the code that moves
8356 notes, so just check both locations. */
8357 note = find_regno_note (insn, REG_DEAD, src_regno);
8358 if (! note && store_insn)
8359 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8360 for (k = 0; k < src_nregs; k++)
8361 {
8362 spill_reg_store[src_regno + k] = store_insn;
8363 spill_reg_stored_to[src_regno + k] = out;
8364 reg_reloaded_contents[src_regno + k] = out_regno;
8365 reg_reloaded_insn[src_regno + k] = store_insn;
8366 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8367 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8368 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8369 mode))
8370 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8371 src_regno + k);
8372 else
8373 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8374 src_regno + k);
8375 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8376 if (note)
8377 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8378 else
8379 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8380 }
8381 reg_last_reload_reg[out_regno] = src_reg;
8382 /* We have to set reg_has_output_reload here, or else
8383 forget_old_reloads_1 will clear reg_last_reload_reg
8384 right away. */
8385 SET_REGNO_REG_SET (&reg_has_output_reload,
8386 out_regno);
8387 }
8388 }
8389 else
8390 {
8391 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8392
8393 for (k = 0; k < out_nregs; k++)
8394 reg_last_reload_reg[out_regno + k] = 0;
8395 }
8396 }
8397 }
8398 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8399 }
8400 \f
8401 /* Go through the motions to emit INSN and test if it is strictly valid.
8402 Return the emitted insn if valid, else return NULL. */
8403
8404 static rtx
8405 emit_insn_if_valid_for_reload (rtx insn)
8406 {
8407 rtx last = get_last_insn ();
8408 int code;
8409
8410 insn = emit_insn (insn);
8411 code = recog_memoized (insn);
8412
8413 if (code >= 0)
8414 {
8415 extract_insn (insn);
8416 /* We want constrain operands to treat this insn strictly in its
8417 validity determination, i.e., the way it would after reload has
8418 completed. */
8419 if (constrain_operands (1))
8420 return insn;
8421 }
8422
8423 delete_insns_since (last);
8424 return NULL;
8425 }
8426
8427 /* Emit code to perform a reload from IN (which may be a reload register) to
8428 OUT (which may also be a reload register). IN or OUT is from operand
8429 OPNUM with reload type TYPE.
8430
8431 Returns first insn emitted. */
8432
8433 static rtx
8434 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8435 {
8436 rtx last = get_last_insn ();
8437 rtx tem;
8438
8439 /* If IN is a paradoxical SUBREG, remove it and try to put the
8440 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8441 if (!strip_paradoxical_subreg (&in, &out))
8442 strip_paradoxical_subreg (&out, &in);
8443
8444 /* How to do this reload can get quite tricky. Normally, we are being
8445 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8446 register that didn't get a hard register. In that case we can just
8447 call emit_move_insn.
8448
8449 We can also be asked to reload a PLUS that adds a register or a MEM to
8450 another register, constant or MEM. This can occur during frame pointer
8451 elimination and while reloading addresses. This case is handled by
8452 trying to emit a single insn to perform the add. If it is not valid,
8453 we use a two insn sequence.
8454
8455 Or we can be asked to reload an unary operand that was a fragment of
8456 an addressing mode, into a register. If it isn't recognized as-is,
8457 we try making the unop operand and the reload-register the same:
8458 (set reg:X (unop:X expr:Y))
8459 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8460
8461 Finally, we could be called to handle an 'o' constraint by putting
8462 an address into a register. In that case, we first try to do this
8463 with a named pattern of "reload_load_address". If no such pattern
8464 exists, we just emit a SET insn and hope for the best (it will normally
8465 be valid on machines that use 'o').
8466
8467 This entire process is made complex because reload will never
8468 process the insns we generate here and so we must ensure that
8469 they will fit their constraints and also by the fact that parts of
8470 IN might be being reloaded separately and replaced with spill registers.
8471 Because of this, we are, in some sense, just guessing the right approach
8472 here. The one listed above seems to work.
8473
8474 ??? At some point, this whole thing needs to be rethought. */
8475
8476 if (GET_CODE (in) == PLUS
8477 && (REG_P (XEXP (in, 0))
8478 || GET_CODE (XEXP (in, 0)) == SUBREG
8479 || MEM_P (XEXP (in, 0)))
8480 && (REG_P (XEXP (in, 1))
8481 || GET_CODE (XEXP (in, 1)) == SUBREG
8482 || CONSTANT_P (XEXP (in, 1))
8483 || MEM_P (XEXP (in, 1))))
8484 {
8485 /* We need to compute the sum of a register or a MEM and another
8486 register, constant, or MEM, and put it into the reload
8487 register. The best possible way of doing this is if the machine
8488 has a three-operand ADD insn that accepts the required operands.
8489
8490 The simplest approach is to try to generate such an insn and see if it
8491 is recognized and matches its constraints. If so, it can be used.
8492
8493 It might be better not to actually emit the insn unless it is valid,
8494 but we need to pass the insn as an operand to `recog' and
8495 `extract_insn' and it is simpler to emit and then delete the insn if
8496 not valid than to dummy things up. */
8497
8498 rtx op0, op1, tem, insn;
8499 enum insn_code code;
8500
8501 op0 = find_replacement (&XEXP (in, 0));
8502 op1 = find_replacement (&XEXP (in, 1));
8503
8504 /* Since constraint checking is strict, commutativity won't be
8505 checked, so we need to do that here to avoid spurious failure
8506 if the add instruction is two-address and the second operand
8507 of the add is the same as the reload reg, which is frequently
8508 the case. If the insn would be A = B + A, rearrange it so
8509 it will be A = A + B as constrain_operands expects. */
8510
8511 if (REG_P (XEXP (in, 1))
8512 && REGNO (out) == REGNO (XEXP (in, 1)))
8513 tem = op0, op0 = op1, op1 = tem;
8514
8515 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8516 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8517
8518 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8519 if (insn)
8520 return insn;
8521
8522 /* If that failed, we must use a conservative two-insn sequence.
8523
8524 Use a move to copy one operand into the reload register. Prefer
8525 to reload a constant, MEM or pseudo since the move patterns can
8526 handle an arbitrary operand. If OP1 is not a constant, MEM or
8527 pseudo and OP1 is not a valid operand for an add instruction, then
8528 reload OP1.
8529
8530 After reloading one of the operands into the reload register, add
8531 the reload register to the output register.
8532
8533 If there is another way to do this for a specific machine, a
8534 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8535 we emit below. */
8536
8537 code = optab_handler (add_optab, GET_MODE (out));
8538
8539 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8540 || (REG_P (op1)
8541 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8542 || (code != CODE_FOR_nothing
8543 && !insn_operand_matches (code, 2, op1)))
8544 tem = op0, op0 = op1, op1 = tem;
8545
8546 gen_reload (out, op0, opnum, type);
8547
8548 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8549 This fixes a problem on the 32K where the stack pointer cannot
8550 be used as an operand of an add insn. */
8551
8552 if (rtx_equal_p (op0, op1))
8553 op1 = out;
8554
8555 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8556 if (insn)
8557 {
8558 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8559 set_unique_reg_note (insn, REG_EQUIV, in);
8560 return insn;
8561 }
8562
8563 /* If that failed, copy the address register to the reload register.
8564 Then add the constant to the reload register. */
8565
8566 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8567 gen_reload (out, op1, opnum, type);
8568 insn = emit_insn (gen_add2_insn (out, op0));
8569 set_unique_reg_note (insn, REG_EQUIV, in);
8570 }
8571
8572 #ifdef SECONDARY_MEMORY_NEEDED
8573 /* If we need a memory location to do the move, do it that way. */
8574 else if ((REG_P (in)
8575 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8576 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8577 && (REG_P (out)
8578 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8579 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8580 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8581 REGNO_REG_CLASS (reg_or_subregno (out)),
8582 GET_MODE (out)))
8583 {
8584 /* Get the memory to use and rewrite both registers to its mode. */
8585 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8586
8587 if (GET_MODE (loc) != GET_MODE (out))
8588 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8589
8590 if (GET_MODE (loc) != GET_MODE (in))
8591 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8592
8593 gen_reload (loc, in, opnum, type);
8594 gen_reload (out, loc, opnum, type);
8595 }
8596 #endif
8597 else if (REG_P (out) && UNARY_P (in))
8598 {
8599 rtx insn;
8600 rtx op1;
8601 rtx out_moded;
8602 rtx set;
8603
8604 op1 = find_replacement (&XEXP (in, 0));
8605 if (op1 != XEXP (in, 0))
8606 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8607
8608 /* First, try a plain SET. */
8609 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8610 if (set)
8611 return set;
8612
8613 /* If that failed, move the inner operand to the reload
8614 register, and try the same unop with the inner expression
8615 replaced with the reload register. */
8616
8617 if (GET_MODE (op1) != GET_MODE (out))
8618 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8619 else
8620 out_moded = out;
8621
8622 gen_reload (out_moded, op1, opnum, type);
8623
8624 insn
8625 = gen_rtx_SET (VOIDmode, out,
8626 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8627 out_moded));
8628 insn = emit_insn_if_valid_for_reload (insn);
8629 if (insn)
8630 {
8631 set_unique_reg_note (insn, REG_EQUIV, in);
8632 return insn;
8633 }
8634
8635 fatal_insn ("failure trying to reload:", set);
8636 }
8637 /* If IN is a simple operand, use gen_move_insn. */
8638 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8639 {
8640 tem = emit_insn (gen_move_insn (out, in));
8641 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8642 mark_jump_label (in, tem, 0);
8643 }
8644
8645 #ifdef HAVE_reload_load_address
8646 else if (HAVE_reload_load_address)
8647 emit_insn (gen_reload_load_address (out, in));
8648 #endif
8649
8650 /* Otherwise, just write (set OUT IN) and hope for the best. */
8651 else
8652 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8653
8654 /* Return the first insn emitted.
8655 We can not just return get_last_insn, because there may have
8656 been multiple instructions emitted. Also note that gen_move_insn may
8657 emit more than one insn itself, so we can not assume that there is one
8658 insn emitted per emit_insn_before call. */
8659
8660 return last ? NEXT_INSN (last) : get_insns ();
8661 }
8662 \f
8663 /* Delete a previously made output-reload whose result we now believe
8664 is not needed. First we double-check.
8665
8666 INSN is the insn now being processed.
8667 LAST_RELOAD_REG is the hard register number for which we want to delete
8668 the last output reload.
8669 J is the reload-number that originally used REG. The caller has made
8670 certain that reload J doesn't use REG any longer for input.
8671 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8672
8673 static void
8674 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8675 {
8676 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8677 rtx reg = spill_reg_stored_to[last_reload_reg];
8678 int k;
8679 int n_occurrences;
8680 int n_inherited = 0;
8681 rtx i1;
8682 rtx substed;
8683 unsigned regno;
8684 int nregs;
8685
8686 /* It is possible that this reload has been only used to set another reload
8687 we eliminated earlier and thus deleted this instruction too. */
8688 if (INSN_DELETED_P (output_reload_insn))
8689 return;
8690
8691 /* Get the raw pseudo-register referred to. */
8692
8693 while (GET_CODE (reg) == SUBREG)
8694 reg = SUBREG_REG (reg);
8695 substed = reg_equiv_memory_loc (REGNO (reg));
8696
8697 /* This is unsafe if the operand occurs more often in the current
8698 insn than it is inherited. */
8699 for (k = n_reloads - 1; k >= 0; k--)
8700 {
8701 rtx reg2 = rld[k].in;
8702 if (! reg2)
8703 continue;
8704 if (MEM_P (reg2) || reload_override_in[k])
8705 reg2 = rld[k].in_reg;
8706 #ifdef AUTO_INC_DEC
8707 if (rld[k].out && ! rld[k].out_reg)
8708 reg2 = XEXP (rld[k].in_reg, 0);
8709 #endif
8710 while (GET_CODE (reg2) == SUBREG)
8711 reg2 = SUBREG_REG (reg2);
8712 if (rtx_equal_p (reg2, reg))
8713 {
8714 if (reload_inherited[k] || reload_override_in[k] || k == j)
8715 n_inherited++;
8716 else
8717 return;
8718 }
8719 }
8720 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8721 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8722 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8723 reg, 0);
8724 if (substed)
8725 n_occurrences += count_occurrences (PATTERN (insn),
8726 eliminate_regs (substed, VOIDmode,
8727 NULL_RTX), 0);
8728 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8729 {
8730 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8731 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8732 }
8733 if (n_occurrences > n_inherited)
8734 return;
8735
8736 regno = REGNO (reg);
8737 if (regno >= FIRST_PSEUDO_REGISTER)
8738 nregs = 1;
8739 else
8740 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8741
8742 /* If the pseudo-reg we are reloading is no longer referenced
8743 anywhere between the store into it and here,
8744 and we're within the same basic block, then the value can only
8745 pass through the reload reg and end up here.
8746 Otherwise, give up--return. */
8747 for (i1 = NEXT_INSN (output_reload_insn);
8748 i1 != insn; i1 = NEXT_INSN (i1))
8749 {
8750 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8751 return;
8752 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8753 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8754 {
8755 /* If this is USE in front of INSN, we only have to check that
8756 there are no more references than accounted for by inheritance. */
8757 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8758 {
8759 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8760 i1 = NEXT_INSN (i1);
8761 }
8762 if (n_occurrences <= n_inherited && i1 == insn)
8763 break;
8764 return;
8765 }
8766 }
8767
8768 /* We will be deleting the insn. Remove the spill reg information. */
8769 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8770 {
8771 spill_reg_store[last_reload_reg + k] = 0;
8772 spill_reg_stored_to[last_reload_reg + k] = 0;
8773 }
8774
8775 /* The caller has already checked that REG dies or is set in INSN.
8776 It has also checked that we are optimizing, and thus some
8777 inaccuracies in the debugging information are acceptable.
8778 So we could just delete output_reload_insn. But in some cases
8779 we can improve the debugging information without sacrificing
8780 optimization - maybe even improving the code: See if the pseudo
8781 reg has been completely replaced with reload regs. If so, delete
8782 the store insn and forget we had a stack slot for the pseudo. */
8783 if (rld[j].out != rld[j].in
8784 && REG_N_DEATHS (REGNO (reg)) == 1
8785 && REG_N_SETS (REGNO (reg)) == 1
8786 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8787 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8788 {
8789 rtx i2;
8790
8791 /* We know that it was used only between here and the beginning of
8792 the current basic block. (We also know that the last use before
8793 INSN was the output reload we are thinking of deleting, but never
8794 mind that.) Search that range; see if any ref remains. */
8795 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8796 {
8797 rtx set = single_set (i2);
8798
8799 /* Uses which just store in the pseudo don't count,
8800 since if they are the only uses, they are dead. */
8801 if (set != 0 && SET_DEST (set) == reg)
8802 continue;
8803 if (LABEL_P (i2)
8804 || JUMP_P (i2))
8805 break;
8806 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8807 && reg_mentioned_p (reg, PATTERN (i2)))
8808 {
8809 /* Some other ref remains; just delete the output reload we
8810 know to be dead. */
8811 delete_address_reloads (output_reload_insn, insn);
8812 delete_insn (output_reload_insn);
8813 return;
8814 }
8815 }
8816
8817 /* Delete the now-dead stores into this pseudo. Note that this
8818 loop also takes care of deleting output_reload_insn. */
8819 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8820 {
8821 rtx set = single_set (i2);
8822
8823 if (set != 0 && SET_DEST (set) == reg)
8824 {
8825 delete_address_reloads (i2, insn);
8826 delete_insn (i2);
8827 }
8828 if (LABEL_P (i2)
8829 || JUMP_P (i2))
8830 break;
8831 }
8832
8833 /* For the debugging info, say the pseudo lives in this reload reg. */
8834 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8835 if (ira_conflicts_p)
8836 /* Inform IRA about the change. */
8837 ira_mark_allocation_change (REGNO (reg));
8838 alter_reg (REGNO (reg), -1, false);
8839 }
8840 else
8841 {
8842 delete_address_reloads (output_reload_insn, insn);
8843 delete_insn (output_reload_insn);
8844 }
8845 }
8846
8847 /* We are going to delete DEAD_INSN. Recursively delete loads of
8848 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8849 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8850 static void
8851 delete_address_reloads (rtx dead_insn, rtx current_insn)
8852 {
8853 rtx set = single_set (dead_insn);
8854 rtx set2, dst, prev, next;
8855 if (set)
8856 {
8857 rtx dst = SET_DEST (set);
8858 if (MEM_P (dst))
8859 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8860 }
8861 /* If we deleted the store from a reloaded post_{in,de}c expression,
8862 we can delete the matching adds. */
8863 prev = PREV_INSN (dead_insn);
8864 next = NEXT_INSN (dead_insn);
8865 if (! prev || ! next)
8866 return;
8867 set = single_set (next);
8868 set2 = single_set (prev);
8869 if (! set || ! set2
8870 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8871 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8872 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8873 return;
8874 dst = SET_DEST (set);
8875 if (! rtx_equal_p (dst, SET_DEST (set2))
8876 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8877 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8878 || (INTVAL (XEXP (SET_SRC (set), 1))
8879 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8880 return;
8881 delete_related_insns (prev);
8882 delete_related_insns (next);
8883 }
8884
8885 /* Subfunction of delete_address_reloads: process registers found in X. */
8886 static void
8887 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8888 {
8889 rtx prev, set, dst, i2;
8890 int i, j;
8891 enum rtx_code code = GET_CODE (x);
8892
8893 if (code != REG)
8894 {
8895 const char *fmt = GET_RTX_FORMAT (code);
8896 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8897 {
8898 if (fmt[i] == 'e')
8899 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8900 else if (fmt[i] == 'E')
8901 {
8902 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8903 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8904 current_insn);
8905 }
8906 }
8907 return;
8908 }
8909
8910 if (spill_reg_order[REGNO (x)] < 0)
8911 return;
8912
8913 /* Scan backwards for the insn that sets x. This might be a way back due
8914 to inheritance. */
8915 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8916 {
8917 code = GET_CODE (prev);
8918 if (code == CODE_LABEL || code == JUMP_INSN)
8919 return;
8920 if (!INSN_P (prev))
8921 continue;
8922 if (reg_set_p (x, PATTERN (prev)))
8923 break;
8924 if (reg_referenced_p (x, PATTERN (prev)))
8925 return;
8926 }
8927 if (! prev || INSN_UID (prev) < reload_first_uid)
8928 return;
8929 /* Check that PREV only sets the reload register. */
8930 set = single_set (prev);
8931 if (! set)
8932 return;
8933 dst = SET_DEST (set);
8934 if (!REG_P (dst)
8935 || ! rtx_equal_p (dst, x))
8936 return;
8937 if (! reg_set_p (dst, PATTERN (dead_insn)))
8938 {
8939 /* Check if DST was used in a later insn -
8940 it might have been inherited. */
8941 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8942 {
8943 if (LABEL_P (i2))
8944 break;
8945 if (! INSN_P (i2))
8946 continue;
8947 if (reg_referenced_p (dst, PATTERN (i2)))
8948 {
8949 /* If there is a reference to the register in the current insn,
8950 it might be loaded in a non-inherited reload. If no other
8951 reload uses it, that means the register is set before
8952 referenced. */
8953 if (i2 == current_insn)
8954 {
8955 for (j = n_reloads - 1; j >= 0; j--)
8956 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8957 || reload_override_in[j] == dst)
8958 return;
8959 for (j = n_reloads - 1; j >= 0; j--)
8960 if (rld[j].in && rld[j].reg_rtx == dst)
8961 break;
8962 if (j >= 0)
8963 break;
8964 }
8965 return;
8966 }
8967 if (JUMP_P (i2))
8968 break;
8969 /* If DST is still live at CURRENT_INSN, check if it is used for
8970 any reload. Note that even if CURRENT_INSN sets DST, we still
8971 have to check the reloads. */
8972 if (i2 == current_insn)
8973 {
8974 for (j = n_reloads - 1; j >= 0; j--)
8975 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8976 || reload_override_in[j] == dst)
8977 return;
8978 /* ??? We can't finish the loop here, because dst might be
8979 allocated to a pseudo in this block if no reload in this
8980 block needs any of the classes containing DST - see
8981 spill_hard_reg. There is no easy way to tell this, so we
8982 have to scan till the end of the basic block. */
8983 }
8984 if (reg_set_p (dst, PATTERN (i2)))
8985 break;
8986 }
8987 }
8988 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8989 reg_reloaded_contents[REGNO (dst)] = -1;
8990 delete_insn (prev);
8991 }
8992 \f
8993 /* Output reload-insns to reload VALUE into RELOADREG.
8994 VALUE is an autoincrement or autodecrement RTX whose operand
8995 is a register or memory location;
8996 so reloading involves incrementing that location.
8997 IN is either identical to VALUE, or some cheaper place to reload from.
8998
8999 INC_AMOUNT is the number to increment or decrement by (always positive).
9000 This cannot be deduced from VALUE. */
9001
9002 static void
9003 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9004 {
9005 /* REG or MEM to be copied and incremented. */
9006 rtx incloc = find_replacement (&XEXP (value, 0));
9007 /* Nonzero if increment after copying. */
9008 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9009 || GET_CODE (value) == POST_MODIFY);
9010 rtx last;
9011 rtx inc;
9012 rtx add_insn;
9013 int code;
9014 rtx real_in = in == value ? incloc : in;
9015
9016 /* No hard register is equivalent to this register after
9017 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9018 we could inc/dec that register as well (maybe even using it for
9019 the source), but I'm not sure it's worth worrying about. */
9020 if (REG_P (incloc))
9021 reg_last_reload_reg[REGNO (incloc)] = 0;
9022
9023 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9024 {
9025 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9026 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9027 }
9028 else
9029 {
9030 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9031 inc_amount = -inc_amount;
9032
9033 inc = GEN_INT (inc_amount);
9034 }
9035
9036 /* If this is post-increment, first copy the location to the reload reg. */
9037 if (post && real_in != reloadreg)
9038 emit_insn (gen_move_insn (reloadreg, real_in));
9039
9040 if (in == value)
9041 {
9042 /* See if we can directly increment INCLOC. Use a method similar to
9043 that in gen_reload. */
9044
9045 last = get_last_insn ();
9046 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9047 gen_rtx_PLUS (GET_MODE (incloc),
9048 incloc, inc)));
9049
9050 code = recog_memoized (add_insn);
9051 if (code >= 0)
9052 {
9053 extract_insn (add_insn);
9054 if (constrain_operands (1))
9055 {
9056 /* If this is a pre-increment and we have incremented the value
9057 where it lives, copy the incremented value to RELOADREG to
9058 be used as an address. */
9059
9060 if (! post)
9061 emit_insn (gen_move_insn (reloadreg, incloc));
9062 return;
9063 }
9064 }
9065 delete_insns_since (last);
9066 }
9067
9068 /* If couldn't do the increment directly, must increment in RELOADREG.
9069 The way we do this depends on whether this is pre- or post-increment.
9070 For pre-increment, copy INCLOC to the reload register, increment it
9071 there, then save back. */
9072
9073 if (! post)
9074 {
9075 if (in != reloadreg)
9076 emit_insn (gen_move_insn (reloadreg, real_in));
9077 emit_insn (gen_add2_insn (reloadreg, inc));
9078 emit_insn (gen_move_insn (incloc, reloadreg));
9079 }
9080 else
9081 {
9082 /* Postincrement.
9083 Because this might be a jump insn or a compare, and because RELOADREG
9084 may not be available after the insn in an input reload, we must do
9085 the incrementation before the insn being reloaded for.
9086
9087 We have already copied IN to RELOADREG. Increment the copy in
9088 RELOADREG, save that back, then decrement RELOADREG so it has
9089 the original value. */
9090
9091 emit_insn (gen_add2_insn (reloadreg, inc));
9092 emit_insn (gen_move_insn (incloc, reloadreg));
9093 if (CONST_INT_P (inc))
9094 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9095 else
9096 emit_insn (gen_sub2_insn (reloadreg, inc));
9097 }
9098 }
9099 \f
9100 #ifdef AUTO_INC_DEC
9101 static void
9102 add_auto_inc_notes (rtx insn, rtx x)
9103 {
9104 enum rtx_code code = GET_CODE (x);
9105 const char *fmt;
9106 int i, j;
9107
9108 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9109 {
9110 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9111 return;
9112 }
9113
9114 /* Scan all the operand sub-expressions. */
9115 fmt = GET_RTX_FORMAT (code);
9116 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9117 {
9118 if (fmt[i] == 'e')
9119 add_auto_inc_notes (insn, XEXP (x, i));
9120 else if (fmt[i] == 'E')
9121 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9122 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9123 }
9124 }
9125 #endif