Replace call_used_reg_set with call_used_or_fixed_regs
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 class insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static class insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 poly_int64_pod initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 poly_int64_pod offset; /* Current offset between the two regs. */
270 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (class insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (class insn_chain *, int);
342 static void find_reload_regs (class insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (class insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (class insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (class insn_chain *, rtx *);
390 static void choose_reload_regs (class insn_chain *);
391 static void emit_input_reload_insns (class insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (class insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (class insn_chain *, struct reload *, int);
396 static void do_output_reload (class insn_chain *, struct reload *, int);
397 static void emit_reload_insns (class insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
455 }
456
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
459 {
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
462 }
463
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
467 }
468
469 /* List of insn chains that are currently unused. */
470 static class insn_chain *unused_insn_chains = 0;
471
472 /* Allocate an empty insn_chain structure. */
473 class insn_chain *
474 new_insn_chain (void)
475 {
476 class insn_chain *c;
477
478 if (unused_insn_chains == 0)
479 {
480 c = XOBNEW (&reload_obstack, class insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
483 }
484 else
485 {
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
488 }
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
494 }
495
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
498
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
501 {
502 unsigned int regno;
503 reg_set_iterator rsi;
504
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
506 {
507 int r = reg_renumber[regno];
508
509 if (r < 0)
510 {
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
516 }
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
519 }
520 }
521
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
524
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
527 {
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
532
533 if (! x)
534 return;
535
536 code = GET_CODE (x);
537 if (code == REG)
538 {
539 unsigned int regno = REGNO (x);
540
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
543
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
546 {
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
550 }
551
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
561 {
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
565 }
566
567 return;
568 }
569 else if (code == MEM)
570 {
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
573 }
574
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
583 }
584
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
587
588 static bool
589 has_nonexceptional_receiver (void)
590 {
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
594
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
598
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
601
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
604
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
608
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
611 {
612 bb = *--tos;
613
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
616 {
617 basic_block src = e->src;
618
619 if (!(src->flags & BB_REACHABLE))
620 {
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
623 }
624 }
625 }
626 free (worklist);
627
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
633
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
636 }
637
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
640
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
644 {
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
649
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
654 }
655
656 \f
657 /* Global variables used by reload and its subroutines. */
658
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
661
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
668
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
671
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
674
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
683 {
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
685 {
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
687 {
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
690 {
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
692
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
700 ;
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
705 }
706 }
707 }
708 }
709
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
713 {
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
718
719 if (can_throw_internal (insn))
720 return false;
721
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
724
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
726 {
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
730 }
731 return false;
732 }
733
734 /* Main entry point for the reload pass.
735
736 FIRST is the first insn of the function being compiled.
737
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
743
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
747
748 bool
749 reload (rtx_insn *first, int global)
750 {
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
756
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
759
760 failure = 0;
761
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
763
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
767
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
770
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
773
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
777
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
781
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
788
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
795
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
800
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
805
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
810
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
816
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
818
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
821
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
825
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
829
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
834
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
837
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);
847
848 maybe_fix_stack_asms ();
849
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
852
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
855
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 {
863 int from = ep->from;
864 int can_eliminate = 0;
865 do
866 {
867 can_eliminate |= ep->can_eliminate;
868 ep++;
869 }
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
873 }
874
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877
878 finish_spills (global);
879
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
884
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
888 {
889 int something_changed;
890 poly_int64 starting_frame_size;
891
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
894
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
897
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
902
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
905
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
912
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
918
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
921
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
924 {
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
927
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
942 {
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
952 }
953 }
954
955 if (caller_save_needed)
956 setup_save_areas ();
957
958 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
959 {
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
969 }
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled
972 || maybe_ne (starting_frame_size, get_frame_size ()))
973 {
974 if (update_eliminables_and_spill ())
975 finish_spills (0);
976 continue;
977 }
978
979 if (caller_save_needed)
980 {
981 save_call_clobbered_regs ();
982 /* That might have allocated new insn_chain structures. */
983 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
984 }
985
986 calculate_needs_all_insns (global);
987
988 if (! ira_conflicts_p)
989 /* Don't do it for IRA. We need this info because we don't
990 change live_throughout and dead_or_set for chains when IRA
991 is used. */
992 CLEAR_REG_SET (&spilled_pseudos);
993
994 something_changed = 0;
995
996 /* If we allocated any new memory locations, make another pass
997 since it might have changed elimination offsets. */
998 if (something_was_spilled
999 || maybe_ne (starting_frame_size, get_frame_size ()))
1000 something_changed = 1;
1001
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1008
1009 if (update_eliminables_and_spill ())
1010 {
1011 finish_spills (0);
1012 something_changed = 1;
1013 }
1014 else
1015 {
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1021 }
1022
1023 if (! something_changed)
1024 break;
1025
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1028
1029 obstack_free (&reload_obstack, reload_firstobj);
1030 }
1031
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1038
1039 remove_init_insns ();
1040
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1044
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1047 {
1048 poly_int64 old_frame_size = get_frame_size ();
1049
1050 reload_as_needed (global);
1051
1052 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1053
1054 gcc_assert (verify_initial_elim_offsets ());
1055 }
1056
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1062
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1066
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1070
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1074
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1079
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1084
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1086 {
1087 rtx addr = 0;
1088
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1091
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1094
1095 if (addr)
1096 {
1097 if (reg_renumber[i] < 0)
1098 {
1099 rtx reg = regno_reg_rtx[i];
1100
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1109 }
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1112 }
1113
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1118 {
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1122
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1131
1132 if (equiv == reg)
1133 continue;
1134
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1136 {
1137 insn = DF_REF_INSN (use);
1138
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1144
1145 if (DEBUG_BIND_INSN_P (insn))
1146 {
1147 if (!equiv)
1148 {
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1151 }
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1156 }
1157 }
1158 }
1159 }
1160
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1165
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1173
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1176 {
1177 rtx *pnote;
1178
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1182
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1195 {
1196 delete_insn (insn);
1197 continue;
1198 }
1199
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1206
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1215 {
1216 delete_insn (insn);
1217 continue;
1218 }
1219
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1222 {
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1229 }
1230
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1233
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1236
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1240 {
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1243 {
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1248 }
1249 }
1250 }
1251
1252 free (temp_pseudo_reg_arr);
1253
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1256
1257 free (reg_max_ref_mode);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1261
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1265
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1269
1270 inserted = fixup_abnormal_edges ();
1271
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1274 {
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1278 }
1279
1280 if (inserted)
1281 commit_edge_insertions ();
1282
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1287
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1295
1296 substitute_stack.release ();
1297
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1299
1300 reload_completed = !failure;
1301
1302 return need_dce;
1303 }
1304
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1311
1312 static void
1313 maybe_fix_stack_asms (void)
1314 {
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 class insn_chain *chain;
1319
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1321 {
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1325
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1332
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1335
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1338 {
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 /* CLOBBER_HIGH is only supported for LRA. */
1343 gcc_assert (GET_CODE (t) != CLOBBER_HIGH);
1344 }
1345
1346 /* Get the operand values and constraints out of the insn. */
1347 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1348 constraints, operand_mode, NULL);
1349
1350 /* For every operand, see what registers are allowed. */
1351 for (i = 0; i < noperands; i++)
1352 {
1353 const char *p = constraints[i];
1354 /* For every alternative, we compute the class of registers allowed
1355 for reloading in CLS, and merge its contents into the reg set
1356 ALLOWED. */
1357 int cls = (int) NO_REGS;
1358
1359 for (;;)
1360 {
1361 char c = *p;
1362
1363 if (c == '\0' || c == ',' || c == '#')
1364 {
1365 /* End of one alternative - mark the regs in the current
1366 class, and reset the class. */
1367 allowed |= reg_class_contents[cls];
1368 cls = NO_REGS;
1369 p++;
1370 if (c == '#')
1371 do {
1372 c = *p++;
1373 } while (c != '\0' && c != ',');
1374 if (c == '\0')
1375 break;
1376 continue;
1377 }
1378
1379 switch (c)
1380 {
1381 case 'g':
1382 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1383 break;
1384
1385 default:
1386 enum constraint_num cn = lookup_constraint (p);
1387 if (insn_extra_address_constraint (cn))
1388 cls = (int) reg_class_subunion[cls]
1389 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1390 ADDRESS, SCRATCH)];
1391 else
1392 cls = (int) reg_class_subunion[cls]
1393 [reg_class_for_constraint (cn)];
1394 break;
1395 }
1396 p += CONSTRAINT_LEN (c, p);
1397 }
1398 }
1399 /* Those of the registers which are clobbered, but allowed by the
1400 constraints, must be usable as reload registers. So clear them
1401 out of the life information. */
1402 allowed &= clobbered;
1403 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1404 if (TEST_HARD_REG_BIT (allowed, i))
1405 {
1406 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1407 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1408 }
1409 }
1410
1411 #endif
1412 }
1413 \f
1414 /* Copy the global variables n_reloads and rld into the corresponding elts
1415 of CHAIN. */
1416 static void
1417 copy_reloads (class insn_chain *chain)
1418 {
1419 chain->n_reloads = n_reloads;
1420 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1421 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1422 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 }
1424
1425 /* Walk the chain of insns, and determine for each whether it needs reloads
1426 and/or eliminations. Build the corresponding insns_need_reload list, and
1427 set something_needs_elimination as appropriate. */
1428 static void
1429 calculate_needs_all_insns (int global)
1430 {
1431 class insn_chain **pprev_reload = &insns_need_reload;
1432 class insn_chain *chain, *next = 0;
1433
1434 something_needs_elimination = 0;
1435
1436 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1437 for (chain = reload_insn_chain; chain != 0; chain = next)
1438 {
1439 rtx_insn *insn = chain->insn;
1440
1441 next = chain->next;
1442
1443 /* Clear out the shortcuts. */
1444 chain->n_reloads = 0;
1445 chain->need_elim = 0;
1446 chain->need_reload = 0;
1447 chain->need_operand_change = 0;
1448
1449 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1450 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1451 what effects this has on the known offsets at labels. */
1452
1453 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1454 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1455 set_label_offsets (insn, insn, 0);
1456
1457 if (INSN_P (insn))
1458 {
1459 rtx old_body = PATTERN (insn);
1460 int old_code = INSN_CODE (insn);
1461 rtx old_notes = REG_NOTES (insn);
1462 int did_elimination = 0;
1463 int operands_changed = 0;
1464
1465 /* Skip insns that only set an equivalence. */
1466 if (will_delete_init_insn_p (insn))
1467 continue;
1468
1469 /* If needed, eliminate any eliminable registers. */
1470 if (num_eliminable || num_eliminable_invariants)
1471 did_elimination = eliminate_regs_in_insn (insn, 0);
1472
1473 /* Analyze the instruction. */
1474 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1475 global, spill_reg_order);
1476
1477 /* If a no-op set needs more than one reload, this is likely
1478 to be something that needs input address reloads. We
1479 can't get rid of this cleanly later, and it is of no use
1480 anyway, so discard it now.
1481 We only do this when expensive_optimizations is enabled,
1482 since this complements reload inheritance / output
1483 reload deletion, and it can make debugging harder. */
1484 if (flag_expensive_optimizations && n_reloads > 1)
1485 {
1486 rtx set = single_set (insn);
1487 if (set
1488 &&
1489 ((SET_SRC (set) == SET_DEST (set)
1490 && REG_P (SET_SRC (set))
1491 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1492 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1493 && reg_renumber[REGNO (SET_SRC (set))] < 0
1494 && reg_renumber[REGNO (SET_DEST (set))] < 0
1495 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1496 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1497 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1498 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1499 {
1500 if (ira_conflicts_p)
1501 /* Inform IRA about the insn deletion. */
1502 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1503 REGNO (SET_SRC (set)));
1504 delete_insn (insn);
1505 /* Delete it from the reload chain. */
1506 if (chain->prev)
1507 chain->prev->next = next;
1508 else
1509 reload_insn_chain = next;
1510 if (next)
1511 next->prev = chain->prev;
1512 chain->next = unused_insn_chains;
1513 unused_insn_chains = chain;
1514 continue;
1515 }
1516 }
1517 if (num_eliminable)
1518 update_eliminable_offsets ();
1519
1520 /* Remember for later shortcuts which insns had any reloads or
1521 register eliminations. */
1522 chain->need_elim = did_elimination;
1523 chain->need_reload = n_reloads > 0;
1524 chain->need_operand_change = operands_changed;
1525
1526 /* Discard any register replacements done. */
1527 if (did_elimination)
1528 {
1529 obstack_free (&reload_obstack, reload_insn_firstobj);
1530 PATTERN (insn) = old_body;
1531 INSN_CODE (insn) = old_code;
1532 REG_NOTES (insn) = old_notes;
1533 something_needs_elimination = 1;
1534 }
1535
1536 something_needs_operands_changed |= operands_changed;
1537
1538 if (n_reloads != 0)
1539 {
1540 copy_reloads (chain);
1541 *pprev_reload = chain;
1542 pprev_reload = &chain->next_need_reload;
1543 }
1544 }
1545 }
1546 *pprev_reload = 0;
1547 }
1548 \f
1549 /* This function is called from the register allocator to set up estimates
1550 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1551 an invariant. The structure is similar to calculate_needs_all_insns. */
1552
1553 void
1554 calculate_elim_costs_all_insns (void)
1555 {
1556 int *reg_equiv_init_cost;
1557 basic_block bb;
1558 int i;
1559
1560 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1561 init_elim_table ();
1562 init_eliminable_invariants (get_insns (), false);
1563
1564 set_initial_elim_offsets ();
1565 set_initial_label_offsets ();
1566
1567 FOR_EACH_BB_FN (bb, cfun)
1568 {
1569 rtx_insn *insn;
1570 elim_bb = bb;
1571
1572 FOR_BB_INSNS (bb, insn)
1573 {
1574 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1575 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1576 what effects this has on the known offsets at labels. */
1577
1578 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1579 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1580 set_label_offsets (insn, insn, 0);
1581
1582 if (INSN_P (insn))
1583 {
1584 rtx set = single_set (insn);
1585
1586 /* Skip insns that only set an equivalence. */
1587 if (set && REG_P (SET_DEST (set))
1588 && reg_renumber[REGNO (SET_DEST (set))] < 0
1589 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1590 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1591 {
1592 unsigned regno = REGNO (SET_DEST (set));
1593 rtx_insn_list *init = reg_equiv_init (regno);
1594 if (init)
1595 {
1596 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1597 false, true);
1598 machine_mode mode = GET_MODE (SET_DEST (set));
1599 int cost = set_src_cost (t, mode,
1600 optimize_bb_for_speed_p (bb));
1601 int freq = REG_FREQ_FROM_BB (bb);
1602
1603 reg_equiv_init_cost[regno] = cost * freq;
1604 continue;
1605 }
1606 }
1607 /* If needed, eliminate any eliminable registers. */
1608 if (num_eliminable || num_eliminable_invariants)
1609 elimination_costs_in_insn (insn);
1610
1611 if (num_eliminable)
1612 update_eliminable_offsets ();
1613 }
1614 }
1615 }
1616 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1617 {
1618 if (reg_equiv_invariant (i))
1619 {
1620 if (reg_equiv_init (i))
1621 {
1622 int cost = reg_equiv_init_cost[i];
1623 if (dump_file)
1624 fprintf (dump_file,
1625 "Reg %d has equivalence, initial gains %d\n", i, cost);
1626 if (cost != 0)
1627 ira_adjust_equiv_reg_cost (i, cost);
1628 }
1629 else
1630 {
1631 if (dump_file)
1632 fprintf (dump_file,
1633 "Reg %d had equivalence, but can't be eliminated\n",
1634 i);
1635 ira_adjust_equiv_reg_cost (i, 0);
1636 }
1637 }
1638 }
1639
1640 free (reg_equiv_init_cost);
1641 free (offsets_known_at);
1642 free (offsets_at);
1643 offsets_at = NULL;
1644 offsets_known_at = NULL;
1645 }
1646 \f
1647 /* Comparison function for qsort to decide which of two reloads
1648 should be handled first. *P1 and *P2 are the reload numbers. */
1649
1650 static int
1651 reload_reg_class_lower (const void *r1p, const void *r2p)
1652 {
1653 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1654 int t;
1655
1656 /* Consider required reloads before optional ones. */
1657 t = rld[r1].optional - rld[r2].optional;
1658 if (t != 0)
1659 return t;
1660
1661 /* Count all solitary classes before non-solitary ones. */
1662 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1663 - (reg_class_size[(int) rld[r1].rclass] == 1));
1664 if (t != 0)
1665 return t;
1666
1667 /* Aside from solitaires, consider all multi-reg groups first. */
1668 t = rld[r2].nregs - rld[r1].nregs;
1669 if (t != 0)
1670 return t;
1671
1672 /* Consider reloads in order of increasing reg-class number. */
1673 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1674 if (t != 0)
1675 return t;
1676
1677 /* If reloads are equally urgent, sort by reload number,
1678 so that the results of qsort leave nothing to chance. */
1679 return r1 - r2;
1680 }
1681 \f
1682 /* The cost of spilling each hard reg. */
1683 static int spill_cost[FIRST_PSEUDO_REGISTER];
1684
1685 /* When spilling multiple hard registers, we use SPILL_COST for the first
1686 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1687 only the first hard reg for a multi-reg pseudo. */
1688 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1689
1690 /* Map of hard regno to pseudo regno currently occupying the hard
1691 reg. */
1692 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1693
1694 /* Update the spill cost arrays, considering that pseudo REG is live. */
1695
1696 static void
1697 count_pseudo (int reg)
1698 {
1699 int freq = REG_FREQ (reg);
1700 int r = reg_renumber[reg];
1701 int nregs;
1702
1703 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1704 if (ira_conflicts_p && r < 0)
1705 return;
1706
1707 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1708 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1709 return;
1710
1711 SET_REGNO_REG_SET (&pseudos_counted, reg);
1712
1713 gcc_assert (r >= 0);
1714
1715 spill_add_cost[r] += freq;
1716 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1717 while (nregs-- > 0)
1718 {
1719 hard_regno_to_pseudo_regno[r + nregs] = reg;
1720 spill_cost[r + nregs] += freq;
1721 }
1722 }
1723
1724 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1725 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1726
1727 static void
1728 order_regs_for_reload (class insn_chain *chain)
1729 {
1730 unsigned i;
1731 HARD_REG_SET used_by_pseudos;
1732 HARD_REG_SET used_by_pseudos2;
1733 reg_set_iterator rsi;
1734
1735 bad_spill_regs = fixed_reg_set;
1736
1737 memset (spill_cost, 0, sizeof spill_cost);
1738 memset (spill_add_cost, 0, sizeof spill_add_cost);
1739 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1740 hard_regno_to_pseudo_regno[i] = -1;
1741
1742 /* Count number of uses of each hard reg by pseudo regs allocated to it
1743 and then order them by decreasing use. First exclude hard registers
1744 that are live in or across this insn. */
1745
1746 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1747 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1748 bad_spill_regs |= used_by_pseudos;
1749 bad_spill_regs |= used_by_pseudos2;
1750
1751 /* Now find out which pseudos are allocated to it, and update
1752 hard_reg_n_uses. */
1753 CLEAR_REG_SET (&pseudos_counted);
1754
1755 EXECUTE_IF_SET_IN_REG_SET
1756 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1757 {
1758 count_pseudo (i);
1759 }
1760 EXECUTE_IF_SET_IN_REG_SET
1761 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1762 {
1763 count_pseudo (i);
1764 }
1765 CLEAR_REG_SET (&pseudos_counted);
1766 }
1767 \f
1768 /* Vector of reload-numbers showing the order in which the reloads should
1769 be processed. */
1770 static short reload_order[MAX_RELOADS];
1771
1772 /* This is used to keep track of the spill regs used in one insn. */
1773 static HARD_REG_SET used_spill_regs_local;
1774
1775 /* We decided to spill hard register SPILLED, which has a size of
1776 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1777 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1778 update SPILL_COST/SPILL_ADD_COST. */
1779
1780 static void
1781 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1782 {
1783 int freq = REG_FREQ (reg);
1784 int r = reg_renumber[reg];
1785 int nregs;
1786
1787 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1788 if (ira_conflicts_p && r < 0)
1789 return;
1790
1791 gcc_assert (r >= 0);
1792
1793 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1794
1795 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1796 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1797 return;
1798
1799 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1800
1801 spill_add_cost[r] -= freq;
1802 while (nregs-- > 0)
1803 {
1804 hard_regno_to_pseudo_regno[r + nregs] = -1;
1805 spill_cost[r + nregs] -= freq;
1806 }
1807 }
1808
1809 /* Find reload register to use for reload number ORDER. */
1810
1811 static int
1812 find_reg (class insn_chain *chain, int order)
1813 {
1814 int rnum = reload_order[order];
1815 struct reload *rl = rld + rnum;
1816 int best_cost = INT_MAX;
1817 int best_reg = -1;
1818 unsigned int i, j, n;
1819 int k;
1820 HARD_REG_SET not_usable;
1821 HARD_REG_SET used_by_other_reload;
1822 reg_set_iterator rsi;
1823 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1825
1826 not_usable = (bad_spill_regs
1827 | bad_spill_regs_global
1828 | ~reg_class_contents[rl->rclass]);
1829
1830 CLEAR_HARD_REG_SET (used_by_other_reload);
1831 for (k = 0; k < order; k++)
1832 {
1833 int other = reload_order[k];
1834
1835 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1836 for (j = 0; j < rld[other].nregs; j++)
1837 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 }
1839
1840 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1841 {
1842 #ifdef REG_ALLOC_ORDER
1843 unsigned int regno = reg_alloc_order[i];
1844 #else
1845 unsigned int regno = i;
1846 #endif
1847
1848 if (! TEST_HARD_REG_BIT (not_usable, regno)
1849 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1850 && targetm.hard_regno_mode_ok (regno, rl->mode))
1851 {
1852 int this_cost = spill_cost[regno];
1853 int ok = 1;
1854 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1855
1856 for (j = 1; j < this_nregs; j++)
1857 {
1858 this_cost += spill_add_cost[regno + j];
1859 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1860 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1861 ok = 0;
1862 }
1863 if (! ok)
1864 continue;
1865
1866 if (ira_conflicts_p)
1867 {
1868 /* Ask IRA to find a better pseudo-register for
1869 spilling. */
1870 for (n = j = 0; j < this_nregs; j++)
1871 {
1872 int r = hard_regno_to_pseudo_regno[regno + j];
1873
1874 if (r < 0)
1875 continue;
1876 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1877 regno_pseudo_regs[n++] = r;
1878 }
1879 regno_pseudo_regs[n++] = -1;
1880 if (best_reg < 0
1881 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1882 best_regno_pseudo_regs,
1883 rl->in, rl->out,
1884 chain->insn))
1885 {
1886 best_reg = regno;
1887 for (j = 0;; j++)
1888 {
1889 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1890 if (regno_pseudo_regs[j] < 0)
1891 break;
1892 }
1893 }
1894 continue;
1895 }
1896
1897 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1898 this_cost--;
1899 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1900 this_cost--;
1901 if (this_cost < best_cost
1902 /* Among registers with equal cost, prefer caller-saved ones, or
1903 use REG_ALLOC_ORDER if it is defined. */
1904 || (this_cost == best_cost
1905 #ifdef REG_ALLOC_ORDER
1906 && (inv_reg_alloc_order[regno]
1907 < inv_reg_alloc_order[best_reg])
1908 #else
1909 && call_used_regs[regno]
1910 && ! call_used_regs[best_reg]
1911 #endif
1912 ))
1913 {
1914 best_reg = regno;
1915 best_cost = this_cost;
1916 }
1917 }
1918 }
1919 if (best_reg == -1)
1920 return 0;
1921
1922 if (dump_file)
1923 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1924
1925 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1926 rl->regno = best_reg;
1927
1928 EXECUTE_IF_SET_IN_REG_SET
1929 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1930 {
1931 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 }
1933
1934 EXECUTE_IF_SET_IN_REG_SET
1935 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1936 {
1937 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 }
1939
1940 for (i = 0; i < rl->nregs; i++)
1941 {
1942 gcc_assert (spill_cost[best_reg + i] == 0);
1943 gcc_assert (spill_add_cost[best_reg + i] == 0);
1944 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1945 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1946 }
1947 return 1;
1948 }
1949
1950 /* Find more reload regs to satisfy the remaining need of an insn, which
1951 is given by CHAIN.
1952 Do it by ascending class number, since otherwise a reg
1953 might be spilled for a big class and might fail to count
1954 for a smaller class even though it belongs to that class. */
1955
1956 static void
1957 find_reload_regs (class insn_chain *chain)
1958 {
1959 int i;
1960
1961 /* In order to be certain of getting the registers we need,
1962 we must sort the reloads into order of increasing register class.
1963 Then our grabbing of reload registers will parallel the process
1964 that provided the reload registers. */
1965 for (i = 0; i < chain->n_reloads; i++)
1966 {
1967 /* Show whether this reload already has a hard reg. */
1968 if (chain->rld[i].reg_rtx)
1969 {
1970 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1971 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1972 }
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1976 }
1977
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1980
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1982
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1985
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1987
1988 /* Compute the order of preference for hard registers to spill. */
1989
1990 order_regs_for_reload (chain);
1991
1992 for (i = 0; i < n_reloads; i++)
1993 {
1994 int r = reload_order[i];
1995
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2001 {
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2007 }
2008 }
2009
2010 chain->used_spill_regs = used_spill_regs_local;
2011 used_spill_regs |= used_spill_regs_local;
2012
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2014 }
2015
2016 static void
2017 select_reload_regs (void)
2018 {
2019 class insn_chain *chain;
2020
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2025 }
2026 \f
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2031 {
2032 class insn_chain *c = reload_insn_chain;
2033
2034 while (c != 0)
2035 {
2036 while (c != 0 && c->is_caller_save_insn)
2037 {
2038 class insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2040
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2044
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2052 }
2053 if (c != 0)
2054 c = c->next;
2055 }
2056 }
2057 \f
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2060
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2063 {
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "cannot find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2069 {
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2072
2073 if (dump_file)
2074 {
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2077 }
2078 fatal_insn ("this is the insn:", insn);
2079 }
2080 }
2081 \f
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2084
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2087 {
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2090
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2093
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2105
2106 SET_INSN_DELETED (insn);
2107 }
2108
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2111
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2116
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2119 {
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2124
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2129
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2134
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2137
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2144 {
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2150 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2151 /* ??? Seems strange to derive the minimum alignment from the size,
2152 but that's the traditional behavior. For polynomial-size modes,
2153 the natural extension is to use the minimum possible size. */
2154 unsigned int min_align
2155 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2156 poly_int64 adjust = 0;
2157
2158 something_was_spilled = true;
2159
2160 if (ira_conflicts_p)
2161 {
2162 /* Mark the spill for IRA. */
2163 SET_REGNO_REG_SET (&spilled_pseudos, i);
2164 if (!dont_share_p)
2165 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2166 }
2167
2168 if (x)
2169 ;
2170
2171 /* Each pseudo reg has an inherent size which comes from its own mode,
2172 and a total size which provides room for paradoxical subregs
2173 which refer to the pseudo reg in wider modes.
2174
2175 We can use a slot already allocated if it provides both
2176 enough inherent space and enough total space.
2177 Otherwise, we allocate a new slot, making sure that it has no less
2178 inherent space, and no less total space, then the previous slot. */
2179 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2180 {
2181 rtx stack_slot;
2182
2183 /* The sizes are taken from a subreg operation, which guarantees
2184 that they're ordered. */
2185 gcc_checking_assert (ordered_p (total_size, inherent_size));
2186
2187 /* No known place to spill from => no slot to reuse. */
2188 x = assign_stack_local (mode, total_size,
2189 min_align > inherent_align
2190 || maybe_gt (total_size, inherent_size)
2191 ? -1 : 0);
2192
2193 stack_slot = x;
2194
2195 /* Cancel the big-endian correction done in assign_stack_local.
2196 Get the address of the beginning of the slot. This is so we
2197 can do a big-endian correction unconditionally below. */
2198 if (BYTES_BIG_ENDIAN)
2199 {
2200 adjust = inherent_size - total_size;
2201 if (maybe_ne (adjust, 0))
2202 {
2203 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2204 machine_mode mem_mode
2205 = int_mode_for_size (total_bits, 1).else_blk ();
2206 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2207 }
2208 }
2209
2210 if (! dont_share_p && ira_conflicts_p)
2211 /* Inform IRA about allocation a new stack slot. */
2212 ira_mark_new_stack_slot (stack_slot, i, total_size);
2213 }
2214
2215 /* Reuse a stack slot if possible. */
2216 else if (spill_stack_slot[from_reg] != 0
2217 && known_ge (spill_stack_slot_width[from_reg], total_size)
2218 && known_ge (GET_MODE_SIZE
2219 (GET_MODE (spill_stack_slot[from_reg])),
2220 inherent_size)
2221 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2222 x = spill_stack_slot[from_reg];
2223
2224 /* Allocate a bigger slot. */
2225 else
2226 {
2227 /* Compute maximum size needed, both for inherent size
2228 and for total size. */
2229 rtx stack_slot;
2230
2231 if (spill_stack_slot[from_reg])
2232 {
2233 if (partial_subreg_p (mode,
2234 GET_MODE (spill_stack_slot[from_reg])))
2235 mode = GET_MODE (spill_stack_slot[from_reg]);
2236 total_size = ordered_max (total_size,
2237 spill_stack_slot_width[from_reg]);
2238 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2239 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2240 }
2241
2242 /* The sizes are taken from a subreg operation, which guarantees
2243 that they're ordered. */
2244 gcc_checking_assert (ordered_p (total_size, inherent_size));
2245
2246 /* Make a slot with that size. */
2247 x = assign_stack_local (mode, total_size,
2248 min_align > inherent_align
2249 || maybe_gt (total_size, inherent_size)
2250 ? -1 : 0);
2251 stack_slot = x;
2252
2253 /* Cancel the big-endian correction done in assign_stack_local.
2254 Get the address of the beginning of the slot. This is so we
2255 can do a big-endian correction unconditionally below. */
2256 if (BYTES_BIG_ENDIAN)
2257 {
2258 adjust = GET_MODE_SIZE (mode) - total_size;
2259 if (maybe_ne (adjust, 0))
2260 {
2261 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2262 machine_mode mem_mode
2263 = int_mode_for_size (total_bits, 1).else_blk ();
2264 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2265 }
2266 }
2267
2268 spill_stack_slot[from_reg] = stack_slot;
2269 spill_stack_slot_width[from_reg] = total_size;
2270 }
2271
2272 /* On a big endian machine, the "address" of the slot
2273 is the address of the low part that fits its inherent mode. */
2274 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2275
2276 /* If we have any adjustment to make, or if the stack slot is the
2277 wrong mode, make a new stack slot. */
2278 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2279
2280 /* Set all of the memory attributes as appropriate for a spill. */
2281 set_mem_attrs_for_spill (x);
2282
2283 /* Save the stack slot for later. */
2284 reg_equiv_memory_loc (i) = x;
2285 }
2286 }
2287
2288 /* Mark the slots in regs_ever_live for the hard regs used by
2289 pseudo-reg number REGNO, accessed in MODE. */
2290
2291 static void
2292 mark_home_live_1 (int regno, machine_mode mode)
2293 {
2294 int i, lim;
2295
2296 i = reg_renumber[regno];
2297 if (i < 0)
2298 return;
2299 lim = end_hard_regno (mode, i);
2300 while (i < lim)
2301 df_set_regs_ever_live (i++, true);
2302 }
2303
2304 /* Mark the slots in regs_ever_live for the hard regs
2305 used by pseudo-reg number REGNO. */
2306
2307 void
2308 mark_home_live (int regno)
2309 {
2310 if (reg_renumber[regno] >= 0)
2311 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2312 }
2313 \f
2314 /* This function handles the tracking of elimination offsets around branches.
2315
2316 X is a piece of RTL being scanned.
2317
2318 INSN is the insn that it came from, if any.
2319
2320 INITIAL_P is nonzero if we are to set the offset to be the initial
2321 offset and zero if we are setting the offset of the label to be the
2322 current offset. */
2323
2324 static void
2325 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2326 {
2327 enum rtx_code code = GET_CODE (x);
2328 rtx tem;
2329 unsigned int i;
2330 struct elim_table *p;
2331
2332 switch (code)
2333 {
2334 case LABEL_REF:
2335 if (LABEL_REF_NONLOCAL_P (x))
2336 return;
2337
2338 x = label_ref_label (x);
2339
2340 /* fall through */
2341
2342 case CODE_LABEL:
2343 /* If we know nothing about this label, set the desired offsets. Note
2344 that this sets the offset at a label to be the offset before a label
2345 if we don't know anything about the label. This is not correct for
2346 the label after a BARRIER, but is the best guess we can make. If
2347 we guessed wrong, we will suppress an elimination that might have
2348 been possible had we been able to guess correctly. */
2349
2350 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2351 {
2352 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2353 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2354 = (initial_p ? reg_eliminate[i].initial_offset
2355 : reg_eliminate[i].offset);
2356 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2357 }
2358
2359 /* Otherwise, if this is the definition of a label and it is
2360 preceded by a BARRIER, set our offsets to the known offset of
2361 that label. */
2362
2363 else if (x == insn
2364 && (tem = prev_nonnote_insn (insn)) != 0
2365 && BARRIER_P (tem))
2366 set_offsets_for_label (insn);
2367 else
2368 /* If neither of the above cases is true, compare each offset
2369 with those previously recorded and suppress any eliminations
2370 where the offsets disagree. */
2371
2372 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2373 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2374 (initial_p ? reg_eliminate[i].initial_offset
2375 : reg_eliminate[i].offset)))
2376 reg_eliminate[i].can_eliminate = 0;
2377
2378 return;
2379
2380 case JUMP_TABLE_DATA:
2381 set_label_offsets (PATTERN (insn), insn, initial_p);
2382 return;
2383
2384 case JUMP_INSN:
2385 set_label_offsets (PATTERN (insn), insn, initial_p);
2386
2387 /* fall through */
2388
2389 case INSN:
2390 case CALL_INSN:
2391 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2392 to indirectly and hence must have all eliminations at their
2393 initial offsets. */
2394 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2395 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2396 set_label_offsets (XEXP (tem, 0), insn, 1);
2397 return;
2398
2399 case PARALLEL:
2400 case ADDR_VEC:
2401 case ADDR_DIFF_VEC:
2402 /* Each of the labels in the parallel or address vector must be
2403 at their initial offsets. We want the first field for PARALLEL
2404 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2405
2406 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2407 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2408 insn, initial_p);
2409 return;
2410
2411 case SET:
2412 /* We only care about setting PC. If the source is not RETURN,
2413 IF_THEN_ELSE, or a label, disable any eliminations not at
2414 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2415 isn't one of those possibilities. For branches to a label,
2416 call ourselves recursively.
2417
2418 Note that this can disable elimination unnecessarily when we have
2419 a non-local goto since it will look like a non-constant jump to
2420 someplace in the current function. This isn't a significant
2421 problem since such jumps will normally be when all elimination
2422 pairs are back to their initial offsets. */
2423
2424 if (SET_DEST (x) != pc_rtx)
2425 return;
2426
2427 switch (GET_CODE (SET_SRC (x)))
2428 {
2429 case PC:
2430 case RETURN:
2431 return;
2432
2433 case LABEL_REF:
2434 set_label_offsets (SET_SRC (x), insn, initial_p);
2435 return;
2436
2437 case IF_THEN_ELSE:
2438 tem = XEXP (SET_SRC (x), 1);
2439 if (GET_CODE (tem) == LABEL_REF)
2440 set_label_offsets (label_ref_label (tem), insn, initial_p);
2441 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2442 break;
2443
2444 tem = XEXP (SET_SRC (x), 2);
2445 if (GET_CODE (tem) == LABEL_REF)
2446 set_label_offsets (label_ref_label (tem), insn, initial_p);
2447 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2448 break;
2449 return;
2450
2451 default:
2452 break;
2453 }
2454
2455 /* If we reach here, all eliminations must be at their initial
2456 offset because we are doing a jump to a variable address. */
2457 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2458 if (maybe_ne (p->offset, p->initial_offset))
2459 p->can_eliminate = 0;
2460 break;
2461
2462 default:
2463 break;
2464 }
2465 }
2466 \f
2467 /* This function examines every reg that occurs in X and adjusts the
2468 costs for its elimination which are gathered by IRA. INSN is the
2469 insn in which X occurs. We do not recurse into MEM expressions. */
2470
2471 static void
2472 note_reg_elim_costly (const_rtx x, rtx insn)
2473 {
2474 subrtx_iterator::array_type array;
2475 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2476 {
2477 const_rtx x = *iter;
2478 if (MEM_P (x))
2479 iter.skip_subrtxes ();
2480 else if (REG_P (x)
2481 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2482 && reg_equiv_init (REGNO (x))
2483 && reg_equiv_invariant (REGNO (x)))
2484 {
2485 rtx t = reg_equiv_invariant (REGNO (x));
2486 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2487 int cost = set_src_cost (new_rtx, Pmode,
2488 optimize_bb_for_speed_p (elim_bb));
2489 int freq = REG_FREQ_FROM_BB (elim_bb);
2490
2491 if (cost != 0)
2492 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2493 }
2494 }
2495 }
2496
2497 /* Scan X and replace any eliminable registers (such as fp) with a
2498 replacement (such as sp), plus an offset.
2499
2500 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2501 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2502 MEM, we are allowed to replace a sum of a register and the constant zero
2503 with the register, which we cannot do outside a MEM. In addition, we need
2504 to record the fact that a register is referenced outside a MEM.
2505
2506 If INSN is an insn, it is the insn containing X. If we replace a REG
2507 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2508 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2509 the REG is being modified.
2510
2511 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2512 That's used when we eliminate in expressions stored in notes.
2513 This means, do not set ref_outside_mem even if the reference
2514 is outside of MEMs.
2515
2516 If FOR_COSTS is true, we are being called before reload in order to
2517 estimate the costs of keeping registers with an equivalence unallocated.
2518
2519 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2520 replacements done assuming all offsets are at their initial values. If
2521 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2522 encounter, return the actual location so that find_reloads will do
2523 the proper thing. */
2524
2525 static rtx
2526 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2527 bool may_use_invariant, bool for_costs)
2528 {
2529 enum rtx_code code = GET_CODE (x);
2530 struct elim_table *ep;
2531 int regno;
2532 rtx new_rtx;
2533 int i, j;
2534 const char *fmt;
2535 int copied = 0;
2536
2537 if (! current_function_decl)
2538 return x;
2539
2540 switch (code)
2541 {
2542 CASE_CONST_ANY:
2543 case CONST:
2544 case SYMBOL_REF:
2545 case CODE_LABEL:
2546 case PC:
2547 case CC0:
2548 case ASM_INPUT:
2549 case ADDR_VEC:
2550 case ADDR_DIFF_VEC:
2551 case RETURN:
2552 return x;
2553
2554 case REG:
2555 regno = REGNO (x);
2556
2557 /* First handle the case where we encounter a bare register that
2558 is eliminable. Replace it with a PLUS. */
2559 if (regno < FIRST_PSEUDO_REGISTER)
2560 {
2561 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2562 ep++)
2563 if (ep->from_rtx == x && ep->can_eliminate)
2564 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2565
2566 }
2567 else if (reg_renumber && reg_renumber[regno] < 0
2568 && reg_equivs
2569 && reg_equiv_invariant (regno))
2570 {
2571 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2572 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2573 mem_mode, insn, true, for_costs);
2574 /* There exists at least one use of REGNO that cannot be
2575 eliminated. Prevent the defining insn from being deleted. */
2576 reg_equiv_init (regno) = NULL;
2577 if (!for_costs)
2578 alter_reg (regno, -1, true);
2579 }
2580 return x;
2581
2582 /* You might think handling MINUS in a manner similar to PLUS is a
2583 good idea. It is not. It has been tried multiple times and every
2584 time the change has had to have been reverted.
2585
2586 Other parts of reload know a PLUS is special (gen_reload for example)
2587 and require special code to handle code a reloaded PLUS operand.
2588
2589 Also consider backends where the flags register is clobbered by a
2590 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2591 lea instruction comes to mind). If we try to reload a MINUS, we
2592 may kill the flags register that was holding a useful value.
2593
2594 So, please before trying to handle MINUS, consider reload as a
2595 whole instead of this little section as well as the backend issues. */
2596 case PLUS:
2597 /* If this is the sum of an eliminable register and a constant, rework
2598 the sum. */
2599 if (REG_P (XEXP (x, 0))
2600 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2601 && CONSTANT_P (XEXP (x, 1)))
2602 {
2603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2604 ep++)
2605 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2606 {
2607 /* The only time we want to replace a PLUS with a REG (this
2608 occurs when the constant operand of the PLUS is the negative
2609 of the offset) is when we are inside a MEM. We won't want
2610 to do so at other times because that would change the
2611 structure of the insn in a way that reload can't handle.
2612 We special-case the commonest situation in
2613 eliminate_regs_in_insn, so just replace a PLUS with a
2614 PLUS here, unless inside a MEM. */
2615 if (mem_mode != 0
2616 && CONST_INT_P (XEXP (x, 1))
2617 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2618 return ep->to_rtx;
2619 else
2620 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2621 plus_constant (Pmode, XEXP (x, 1),
2622 ep->previous_offset));
2623 }
2624
2625 /* If the register is not eliminable, we are done since the other
2626 operand is a constant. */
2627 return x;
2628 }
2629
2630 /* If this is part of an address, we want to bring any constant to the
2631 outermost PLUS. We will do this by doing register replacement in
2632 our operands and seeing if a constant shows up in one of them.
2633
2634 Note that there is no risk of modifying the structure of the insn,
2635 since we only get called for its operands, thus we are either
2636 modifying the address inside a MEM, or something like an address
2637 operand of a load-address insn. */
2638
2639 {
2640 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2641 for_costs);
2642 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2643 for_costs);
2644
2645 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2646 {
2647 /* If one side is a PLUS and the other side is a pseudo that
2648 didn't get a hard register but has a reg_equiv_constant,
2649 we must replace the constant here since it may no longer
2650 be in the position of any operand. */
2651 if (GET_CODE (new0) == PLUS && REG_P (new1)
2652 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2653 && reg_renumber[REGNO (new1)] < 0
2654 && reg_equivs
2655 && reg_equiv_constant (REGNO (new1)) != 0)
2656 new1 = reg_equiv_constant (REGNO (new1));
2657 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2658 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2659 && reg_renumber[REGNO (new0)] < 0
2660 && reg_equiv_constant (REGNO (new0)) != 0)
2661 new0 = reg_equiv_constant (REGNO (new0));
2662
2663 new_rtx = form_sum (GET_MODE (x), new0, new1);
2664
2665 /* As above, if we are not inside a MEM we do not want to
2666 turn a PLUS into something else. We might try to do so here
2667 for an addition of 0 if we aren't optimizing. */
2668 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2669 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2670 else
2671 return new_rtx;
2672 }
2673 }
2674 return x;
2675
2676 case MULT:
2677 /* If this is the product of an eliminable register and a
2678 constant, apply the distribute law and move the constant out
2679 so that we have (plus (mult ..) ..). This is needed in order
2680 to keep load-address insns valid. This case is pathological.
2681 We ignore the possibility of overflow here. */
2682 if (REG_P (XEXP (x, 0))
2683 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2684 && CONST_INT_P (XEXP (x, 1)))
2685 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2686 ep++)
2687 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2688 {
2689 if (! mem_mode
2690 /* Refs inside notes or in DEBUG_INSNs don't count for
2691 this purpose. */
2692 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2693 || GET_CODE (insn) == INSN_LIST
2694 || DEBUG_INSN_P (insn))))
2695 ep->ref_outside_mem = 1;
2696
2697 return
2698 plus_constant (Pmode,
2699 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2700 ep->previous_offset * INTVAL (XEXP (x, 1)));
2701 }
2702
2703 /* fall through */
2704
2705 case CALL:
2706 case COMPARE:
2707 /* See comments before PLUS about handling MINUS. */
2708 case MINUS:
2709 case DIV: case UDIV:
2710 case MOD: case UMOD:
2711 case AND: case IOR: case XOR:
2712 case ROTATERT: case ROTATE:
2713 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2714 case NE: case EQ:
2715 case GE: case GT: case GEU: case GTU:
2716 case LE: case LT: case LEU: case LTU:
2717 {
2718 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2719 for_costs);
2720 rtx new1 = XEXP (x, 1)
2721 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2722 for_costs) : 0;
2723
2724 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2725 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2726 }
2727 return x;
2728
2729 case EXPR_LIST:
2730 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2731 if (XEXP (x, 0))
2732 {
2733 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2734 for_costs);
2735 if (new_rtx != XEXP (x, 0))
2736 {
2737 /* If this is a REG_DEAD note, it is not valid anymore.
2738 Using the eliminated version could result in creating a
2739 REG_DEAD note for the stack or frame pointer. */
2740 if (REG_NOTE_KIND (x) == REG_DEAD)
2741 return (XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2743 for_costs)
2744 : NULL_RTX);
2745
2746 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2747 }
2748 }
2749
2750 /* fall through */
2751
2752 case INSN_LIST:
2753 case INT_LIST:
2754 /* Now do eliminations in the rest of the chain. If this was
2755 an EXPR_LIST, this might result in allocating more memory than is
2756 strictly needed, but it simplifies the code. */
2757 if (XEXP (x, 1))
2758 {
2759 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 1))
2762 return
2763 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2764 }
2765 return x;
2766
2767 case PRE_INC:
2768 case POST_INC:
2769 case PRE_DEC:
2770 case POST_DEC:
2771 /* We do not support elimination of a register that is modified.
2772 elimination_effects has already make sure that this does not
2773 happen. */
2774 return x;
2775
2776 case PRE_MODIFY:
2777 case POST_MODIFY:
2778 /* We do not support elimination of a register that is modified.
2779 elimination_effects has already make sure that this does not
2780 happen. The only remaining case we need to consider here is
2781 that the increment value may be an eliminable register. */
2782 if (GET_CODE (XEXP (x, 1)) == PLUS
2783 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2784 {
2785 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2786 insn, true, for_costs);
2787
2788 if (new_rtx != XEXP (XEXP (x, 1), 1))
2789 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2790 gen_rtx_PLUS (GET_MODE (x),
2791 XEXP (x, 0), new_rtx));
2792 }
2793 return x;
2794
2795 case STRICT_LOW_PART:
2796 case NEG: case NOT:
2797 case SIGN_EXTEND: case ZERO_EXTEND:
2798 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2799 case FLOAT: case FIX:
2800 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2801 case ABS:
2802 case SQRT:
2803 case FFS:
2804 case CLZ:
2805 case CTZ:
2806 case POPCOUNT:
2807 case PARITY:
2808 case BSWAP:
2809 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2810 for_costs);
2811 if (new_rtx != XEXP (x, 0))
2812 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2813 return x;
2814
2815 case SUBREG:
2816 /* Similar to above processing, but preserve SUBREG_BYTE.
2817 Convert (subreg (mem)) to (mem) if not paradoxical.
2818 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2819 pseudo didn't get a hard reg, we must replace this with the
2820 eliminated version of the memory location because push_reload
2821 may do the replacement in certain circumstances. */
2822 if (REG_P (SUBREG_REG (x))
2823 && !paradoxical_subreg_p (x)
2824 && reg_equivs
2825 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2826 {
2827 new_rtx = SUBREG_REG (x);
2828 }
2829 else
2830 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2831
2832 if (new_rtx != SUBREG_REG (x))
2833 {
2834 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2835 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2836
2837 if (MEM_P (new_rtx)
2838 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2839 /* On RISC machines, combine can create rtl of the form
2840 (set (subreg:m1 (reg:m2 R) 0) ...)
2841 where m1 < m2, and expects something interesting to
2842 happen to the entire word. Moreover, it will use the
2843 (reg:m2 R) later, expecting all bits to be preserved.
2844 So if the number of words is the same, preserve the
2845 subreg so that push_reload can see it. */
2846 && !(WORD_REGISTER_OPERATIONS
2847 && known_equal_after_align_down (x_size - 1,
2848 new_size - 1,
2849 UNITS_PER_WORD)))
2850 || known_eq (x_size, new_size))
2851 )
2852 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2853 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2854 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2855 else
2856 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2857 }
2858
2859 return x;
2860
2861 case MEM:
2862 /* Our only special processing is to pass the mode of the MEM to our
2863 recursive call and copy the flags. While we are here, handle this
2864 case more efficiently. */
2865
2866 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2867 for_costs);
2868 if (for_costs
2869 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2870 && !memory_address_p (GET_MODE (x), new_rtx))
2871 note_reg_elim_costly (XEXP (x, 0), insn);
2872
2873 return replace_equiv_address_nv (x, new_rtx);
2874
2875 case USE:
2876 /* Handle insn_list USE that a call to a pure function may generate. */
2877 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2878 for_costs);
2879 if (new_rtx != XEXP (x, 0))
2880 return gen_rtx_USE (GET_MODE (x), new_rtx);
2881 return x;
2882
2883 case CLOBBER:
2884 case CLOBBER_HIGH:
2885 case ASM_OPERANDS:
2886 gcc_assert (insn && DEBUG_INSN_P (insn));
2887 break;
2888
2889 case SET:
2890 gcc_unreachable ();
2891
2892 default:
2893 break;
2894 }
2895
2896 /* Process each of our operands recursively. If any have changed, make a
2897 copy of the rtx. */
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2900 {
2901 if (*fmt == 'e')
2902 {
2903 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2904 for_costs);
2905 if (new_rtx != XEXP (x, i) && ! copied)
2906 {
2907 x = shallow_copy_rtx (x);
2908 copied = 1;
2909 }
2910 XEXP (x, i) = new_rtx;
2911 }
2912 else if (*fmt == 'E')
2913 {
2914 int copied_vec = 0;
2915 for (j = 0; j < XVECLEN (x, i); j++)
2916 {
2917 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2918 for_costs);
2919 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2920 {
2921 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2922 XVEC (x, i)->elem);
2923 if (! copied)
2924 {
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2927 }
2928 XVEC (x, i) = new_v;
2929 copied_vec = 1;
2930 }
2931 XVECEXP (x, i, j) = new_rtx;
2932 }
2933 }
2934 }
2935
2936 return x;
2937 }
2938
2939 rtx
2940 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2941 {
2942 if (reg_eliminate == NULL)
2943 {
2944 gcc_assert (targetm.no_register_allocation);
2945 return x;
2946 }
2947 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2948 }
2949
2950 /* Scan rtx X for modifications of elimination target registers. Update
2951 the table of eliminables to reflect the changed state. MEM_MODE is
2952 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2953
2954 static void
2955 elimination_effects (rtx x, machine_mode mem_mode)
2956 {
2957 enum rtx_code code = GET_CODE (x);
2958 struct elim_table *ep;
2959 int regno;
2960 int i, j;
2961 const char *fmt;
2962
2963 switch (code)
2964 {
2965 CASE_CONST_ANY:
2966 case CONST:
2967 case SYMBOL_REF:
2968 case CODE_LABEL:
2969 case PC:
2970 case CC0:
2971 case ASM_INPUT:
2972 case ADDR_VEC:
2973 case ADDR_DIFF_VEC:
2974 case RETURN:
2975 return;
2976
2977 case REG:
2978 regno = REGNO (x);
2979
2980 /* First handle the case where we encounter a bare register that
2981 is eliminable. Replace it with a PLUS. */
2982 if (regno < FIRST_PSEUDO_REGISTER)
2983 {
2984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2985 ep++)
2986 if (ep->from_rtx == x && ep->can_eliminate)
2987 {
2988 if (! mem_mode)
2989 ep->ref_outside_mem = 1;
2990 return;
2991 }
2992
2993 }
2994 else if (reg_renumber[regno] < 0
2995 && reg_equivs
2996 && reg_equiv_constant (regno)
2997 && ! function_invariant_p (reg_equiv_constant (regno)))
2998 elimination_effects (reg_equiv_constant (regno), mem_mode);
2999 return;
3000
3001 case PRE_INC:
3002 case POST_INC:
3003 case PRE_DEC:
3004 case POST_DEC:
3005 case POST_MODIFY:
3006 case PRE_MODIFY:
3007 /* If we modify the source of an elimination rule, disable it. */
3008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3009 if (ep->from_rtx == XEXP (x, 0))
3010 ep->can_eliminate = 0;
3011
3012 /* If we modify the target of an elimination rule by adding a constant,
3013 update its offset. If we modify the target in any other way, we'll
3014 have to disable the rule as well. */
3015 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3016 if (ep->to_rtx == XEXP (x, 0))
3017 {
3018 poly_int64 size = GET_MODE_SIZE (mem_mode);
3019
3020 /* If more bytes than MEM_MODE are pushed, account for them. */
3021 #ifdef PUSH_ROUNDING
3022 if (ep->to_rtx == stack_pointer_rtx)
3023 size = PUSH_ROUNDING (size);
3024 #endif
3025 if (code == PRE_DEC || code == POST_DEC)
3026 ep->offset += size;
3027 else if (code == PRE_INC || code == POST_INC)
3028 ep->offset -= size;
3029 else if (code == PRE_MODIFY || code == POST_MODIFY)
3030 {
3031 if (GET_CODE (XEXP (x, 1)) == PLUS
3032 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3033 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3034 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3035 else
3036 ep->can_eliminate = 0;
3037 }
3038 }
3039
3040 /* These two aren't unary operators. */
3041 if (code == POST_MODIFY || code == PRE_MODIFY)
3042 break;
3043
3044 /* Fall through to generic unary operation case. */
3045 gcc_fallthrough ();
3046 case STRICT_LOW_PART:
3047 case NEG: case NOT:
3048 case SIGN_EXTEND: case ZERO_EXTEND:
3049 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3050 case FLOAT: case FIX:
3051 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3052 case ABS:
3053 case SQRT:
3054 case FFS:
3055 case CLZ:
3056 case CTZ:
3057 case POPCOUNT:
3058 case PARITY:
3059 case BSWAP:
3060 elimination_effects (XEXP (x, 0), mem_mode);
3061 return;
3062
3063 case SUBREG:
3064 if (REG_P (SUBREG_REG (x))
3065 && !paradoxical_subreg_p (x)
3066 && reg_equivs
3067 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3068 return;
3069
3070 elimination_effects (SUBREG_REG (x), mem_mode);
3071 return;
3072
3073 case USE:
3074 /* If using a register that is the source of an eliminate we still
3075 think can be performed, note it cannot be performed since we don't
3076 know how this register is used. */
3077 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3078 if (ep->from_rtx == XEXP (x, 0))
3079 ep->can_eliminate = 0;
3080
3081 elimination_effects (XEXP (x, 0), mem_mode);
3082 return;
3083
3084 case CLOBBER:
3085 /* If clobbering a register that is the replacement register for an
3086 elimination we still think can be performed, note that it cannot
3087 be performed. Otherwise, we need not be concerned about it. */
3088 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3089 if (ep->to_rtx == XEXP (x, 0))
3090 ep->can_eliminate = 0;
3091
3092 elimination_effects (XEXP (x, 0), mem_mode);
3093 return;
3094
3095 case CLOBBER_HIGH:
3096 /* CLOBBER_HIGH is only supported for LRA. */
3097 return;
3098
3099 case SET:
3100 /* Check for setting a register that we know about. */
3101 if (REG_P (SET_DEST (x)))
3102 {
3103 /* See if this is setting the replacement register for an
3104 elimination.
3105
3106 If DEST is the hard frame pointer, we do nothing because we
3107 assume that all assignments to the frame pointer are for
3108 non-local gotos and are being done at a time when they are valid
3109 and do not disturb anything else. Some machines want to
3110 eliminate a fake argument pointer (or even a fake frame pointer)
3111 with either the real frame or the stack pointer. Assignments to
3112 the hard frame pointer must not prevent this elimination. */
3113
3114 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3115 ep++)
3116 if (ep->to_rtx == SET_DEST (x)
3117 && SET_DEST (x) != hard_frame_pointer_rtx)
3118 {
3119 /* If it is being incremented, adjust the offset. Otherwise,
3120 this elimination can't be done. */
3121 rtx src = SET_SRC (x);
3122
3123 if (GET_CODE (src) == PLUS
3124 && XEXP (src, 0) == SET_DEST (x)
3125 && CONST_INT_P (XEXP (src, 1)))
3126 ep->offset -= INTVAL (XEXP (src, 1));
3127 else
3128 ep->can_eliminate = 0;
3129 }
3130 }
3131
3132 elimination_effects (SET_DEST (x), VOIDmode);
3133 elimination_effects (SET_SRC (x), VOIDmode);
3134 return;
3135
3136 case MEM:
3137 /* Our only special processing is to pass the mode of the MEM to our
3138 recursive call. */
3139 elimination_effects (XEXP (x, 0), GET_MODE (x));
3140 return;
3141
3142 default:
3143 break;
3144 }
3145
3146 fmt = GET_RTX_FORMAT (code);
3147 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3148 {
3149 if (*fmt == 'e')
3150 elimination_effects (XEXP (x, i), mem_mode);
3151 else if (*fmt == 'E')
3152 for (j = 0; j < XVECLEN (x, i); j++)
3153 elimination_effects (XVECEXP (x, i, j), mem_mode);
3154 }
3155 }
3156
3157 /* Descend through rtx X and verify that no references to eliminable registers
3158 remain. If any do remain, mark the involved register as not
3159 eliminable. */
3160
3161 static void
3162 check_eliminable_occurrences (rtx x)
3163 {
3164 const char *fmt;
3165 int i;
3166 enum rtx_code code;
3167
3168 if (x == 0)
3169 return;
3170
3171 code = GET_CODE (x);
3172
3173 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3174 {
3175 struct elim_table *ep;
3176
3177 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3178 if (ep->from_rtx == x)
3179 ep->can_eliminate = 0;
3180 return;
3181 }
3182
3183 fmt = GET_RTX_FORMAT (code);
3184 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3185 {
3186 if (*fmt == 'e')
3187 check_eliminable_occurrences (XEXP (x, i));
3188 else if (*fmt == 'E')
3189 {
3190 int j;
3191 for (j = 0; j < XVECLEN (x, i); j++)
3192 check_eliminable_occurrences (XVECEXP (x, i, j));
3193 }
3194 }
3195 }
3196 \f
3197 /* Scan INSN and eliminate all eliminable registers in it.
3198
3199 If REPLACE is nonzero, do the replacement destructively. Also
3200 delete the insn as dead it if it is setting an eliminable register.
3201
3202 If REPLACE is zero, do all our allocations in reload_obstack.
3203
3204 If no eliminations were done and this insn doesn't require any elimination
3205 processing (these are not identical conditions: it might be updating sp,
3206 but not referencing fp; this needs to be seen during reload_as_needed so
3207 that the offset between fp and sp can be taken into consideration), zero
3208 is returned. Otherwise, 1 is returned. */
3209
3210 static int
3211 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3212 {
3213 int icode = recog_memoized (insn);
3214 rtx old_body = PATTERN (insn);
3215 int insn_is_asm = asm_noperands (old_body) >= 0;
3216 rtx old_set = single_set (insn);
3217 rtx new_body;
3218 int val = 0;
3219 int i;
3220 rtx substed_operand[MAX_RECOG_OPERANDS];
3221 rtx orig_operand[MAX_RECOG_OPERANDS];
3222 struct elim_table *ep;
3223 rtx plus_src, plus_cst_src;
3224
3225 if (! insn_is_asm && icode < 0)
3226 {
3227 gcc_assert (DEBUG_INSN_P (insn)
3228 || GET_CODE (PATTERN (insn)) == USE
3229 || GET_CODE (PATTERN (insn)) == CLOBBER
3230 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3231 if (DEBUG_BIND_INSN_P (insn))
3232 INSN_VAR_LOCATION_LOC (insn)
3233 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3234 return 0;
3235 }
3236
3237 /* We allow one special case which happens to work on all machines we
3238 currently support: a single set with the source or a REG_EQUAL
3239 note being a PLUS of an eliminable register and a constant. */
3240 plus_src = plus_cst_src = 0;
3241 if (old_set && REG_P (SET_DEST (old_set)))
3242 {
3243 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3244 plus_src = SET_SRC (old_set);
3245 /* First see if the source is of the form (plus (...) CST). */
3246 if (plus_src
3247 && CONST_INT_P (XEXP (plus_src, 1)))
3248 plus_cst_src = plus_src;
3249 else if (REG_P (SET_SRC (old_set))
3250 || plus_src)
3251 {
3252 /* Otherwise, see if we have a REG_EQUAL note of the form
3253 (plus (...) CST). */
3254 rtx links;
3255 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3256 {
3257 if ((REG_NOTE_KIND (links) == REG_EQUAL
3258 || REG_NOTE_KIND (links) == REG_EQUIV)
3259 && GET_CODE (XEXP (links, 0)) == PLUS
3260 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3261 {
3262 plus_cst_src = XEXP (links, 0);
3263 break;
3264 }
3265 }
3266 }
3267
3268 /* Check that the first operand of the PLUS is a hard reg or
3269 the lowpart subreg of one. */
3270 if (plus_cst_src)
3271 {
3272 rtx reg = XEXP (plus_cst_src, 0);
3273 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3274 reg = SUBREG_REG (reg);
3275
3276 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3277 plus_cst_src = 0;
3278 }
3279 }
3280 if (plus_cst_src)
3281 {
3282 rtx reg = XEXP (plus_cst_src, 0);
3283 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3284
3285 if (GET_CODE (reg) == SUBREG)
3286 reg = SUBREG_REG (reg);
3287
3288 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3289 if (ep->from_rtx == reg && ep->can_eliminate)
3290 {
3291 rtx to_rtx = ep->to_rtx;
3292 offset += ep->offset;
3293 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3294
3295 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3296 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3297 to_rtx);
3298 /* If we have a nonzero offset, and the source is already
3299 a simple REG, the following transformation would
3300 increase the cost of the insn by replacing a simple REG
3301 with (plus (reg sp) CST). So try only when we already
3302 had a PLUS before. */
3303 if (known_eq (offset, 0) || plus_src)
3304 {
3305 rtx new_src = plus_constant (GET_MODE (to_rtx),
3306 to_rtx, offset);
3307
3308 new_body = old_body;
3309 if (! replace)
3310 {
3311 new_body = copy_insn (old_body);
3312 if (REG_NOTES (insn))
3313 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3314 }
3315 PATTERN (insn) = new_body;
3316 old_set = single_set (insn);
3317
3318 /* First see if this insn remains valid when we make the
3319 change. If not, try to replace the whole pattern with
3320 a simple set (this may help if the original insn was a
3321 PARALLEL that was only recognized as single_set due to
3322 REG_UNUSED notes). If this isn't valid either, keep
3323 the INSN_CODE the same and let reload fix it up. */
3324 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3325 {
3326 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3327
3328 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3329 SET_SRC (old_set) = new_src;
3330 }
3331 }
3332 else
3333 break;
3334
3335 val = 1;
3336 /* This can't have an effect on elimination offsets, so skip right
3337 to the end. */
3338 goto done;
3339 }
3340 }
3341
3342 /* Determine the effects of this insn on elimination offsets. */
3343 elimination_effects (old_body, VOIDmode);
3344
3345 /* Eliminate all eliminable registers occurring in operands that
3346 can be handled by reload. */
3347 extract_insn (insn);
3348 for (i = 0; i < recog_data.n_operands; i++)
3349 {
3350 orig_operand[i] = recog_data.operand[i];
3351 substed_operand[i] = recog_data.operand[i];
3352
3353 /* For an asm statement, every operand is eliminable. */
3354 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3355 {
3356 bool is_set_src, in_plus;
3357
3358 /* Check for setting a register that we know about. */
3359 if (recog_data.operand_type[i] != OP_IN
3360 && REG_P (orig_operand[i]))
3361 {
3362 /* If we are assigning to a register that can be eliminated, it
3363 must be as part of a PARALLEL, since the code above handles
3364 single SETs. We must indicate that we can no longer
3365 eliminate this reg. */
3366 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3367 ep++)
3368 if (ep->from_rtx == orig_operand[i])
3369 ep->can_eliminate = 0;
3370 }
3371
3372 /* Companion to the above plus substitution, we can allow
3373 invariants as the source of a plain move. */
3374 is_set_src = false;
3375 if (old_set
3376 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3377 is_set_src = true;
3378 in_plus = false;
3379 if (plus_src
3380 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3381 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3382 in_plus = true;
3383
3384 substed_operand[i]
3385 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3386 replace ? insn : NULL_RTX,
3387 is_set_src || in_plus, false);
3388 if (substed_operand[i] != orig_operand[i])
3389 val = 1;
3390 /* Terminate the search in check_eliminable_occurrences at
3391 this point. */
3392 *recog_data.operand_loc[i] = 0;
3393
3394 /* If an output operand changed from a REG to a MEM and INSN is an
3395 insn, write a CLOBBER insn. */
3396 if (recog_data.operand_type[i] != OP_IN
3397 && REG_P (orig_operand[i])
3398 && MEM_P (substed_operand[i])
3399 && replace)
3400 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3401 }
3402 }
3403
3404 for (i = 0; i < recog_data.n_dups; i++)
3405 *recog_data.dup_loc[i]
3406 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3407
3408 /* If any eliminable remain, they aren't eliminable anymore. */
3409 check_eliminable_occurrences (old_body);
3410
3411 /* Substitute the operands; the new values are in the substed_operand
3412 array. */
3413 for (i = 0; i < recog_data.n_operands; i++)
3414 *recog_data.operand_loc[i] = substed_operand[i];
3415 for (i = 0; i < recog_data.n_dups; i++)
3416 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3417
3418 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3419 re-recognize the insn. We do this in case we had a simple addition
3420 but now can do this as a load-address. This saves an insn in this
3421 common case.
3422 If re-recognition fails, the old insn code number will still be used,
3423 and some register operands may have changed into PLUS expressions.
3424 These will be handled by find_reloads by loading them into a register
3425 again. */
3426
3427 if (val)
3428 {
3429 /* If we aren't replacing things permanently and we changed something,
3430 make another copy to ensure that all the RTL is new. Otherwise
3431 things can go wrong if find_reload swaps commutative operands
3432 and one is inside RTL that has been copied while the other is not. */
3433 new_body = old_body;
3434 if (! replace)
3435 {
3436 new_body = copy_insn (old_body);
3437 if (REG_NOTES (insn))
3438 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3439 }
3440 PATTERN (insn) = new_body;
3441
3442 /* If we had a move insn but now we don't, rerecognize it. This will
3443 cause spurious re-recognition if the old move had a PARALLEL since
3444 the new one still will, but we can't call single_set without
3445 having put NEW_BODY into the insn and the re-recognition won't
3446 hurt in this rare case. */
3447 /* ??? Why this huge if statement - why don't we just rerecognize the
3448 thing always? */
3449 if (! insn_is_asm
3450 && old_set != 0
3451 && ((REG_P (SET_SRC (old_set))
3452 && (GET_CODE (new_body) != SET
3453 || !REG_P (SET_SRC (new_body))))
3454 /* If this was a load from or store to memory, compare
3455 the MEM in recog_data.operand to the one in the insn.
3456 If they are not equal, then rerecognize the insn. */
3457 || (old_set != 0
3458 && ((MEM_P (SET_SRC (old_set))
3459 && SET_SRC (old_set) != recog_data.operand[1])
3460 || (MEM_P (SET_DEST (old_set))
3461 && SET_DEST (old_set) != recog_data.operand[0])))
3462 /* If this was an add insn before, rerecognize. */
3463 || GET_CODE (SET_SRC (old_set)) == PLUS))
3464 {
3465 int new_icode = recog (PATTERN (insn), insn, 0);
3466 if (new_icode >= 0)
3467 INSN_CODE (insn) = new_icode;
3468 }
3469 }
3470
3471 /* Restore the old body. If there were any changes to it, we made a copy
3472 of it while the changes were still in place, so we'll correctly return
3473 a modified insn below. */
3474 if (! replace)
3475 {
3476 /* Restore the old body. */
3477 for (i = 0; i < recog_data.n_operands; i++)
3478 /* Restoring a top-level match_parallel would clobber the new_body
3479 we installed in the insn. */
3480 if (recog_data.operand_loc[i] != &PATTERN (insn))
3481 *recog_data.operand_loc[i] = orig_operand[i];
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3484 }
3485
3486 /* Update all elimination pairs to reflect the status after the current
3487 insn. The changes we make were determined by the earlier call to
3488 elimination_effects.
3489
3490 We also detect cases where register elimination cannot be done,
3491 namely, if a register would be both changed and referenced outside a MEM
3492 in the resulting insn since such an insn is often undefined and, even if
3493 not, we cannot know what meaning will be given to it. Note that it is
3494 valid to have a register used in an address in an insn that changes it
3495 (presumably with a pre- or post-increment or decrement).
3496
3497 If anything changes, return nonzero. */
3498
3499 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3500 {
3501 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3502 ep->can_eliminate = 0;
3503
3504 ep->ref_outside_mem = 0;
3505
3506 if (maybe_ne (ep->previous_offset, ep->offset))
3507 val = 1;
3508 }
3509
3510 done:
3511 /* If we changed something, perform elimination in REG_NOTES. This is
3512 needed even when REPLACE is zero because a REG_DEAD note might refer
3513 to a register that we eliminate and could cause a different number
3514 of spill registers to be needed in the final reload pass than in
3515 the pre-passes. */
3516 if (val && REG_NOTES (insn) != 0)
3517 REG_NOTES (insn)
3518 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3519 false);
3520
3521 return val;
3522 }
3523
3524 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3525 register allocator. INSN is the instruction we need to examine, we perform
3526 eliminations in its operands and record cases where eliminating a reg with
3527 an invariant equivalence would add extra cost. */
3528
3529 #pragma GCC diagnostic push
3530 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3531 static void
3532 elimination_costs_in_insn (rtx_insn *insn)
3533 {
3534 int icode = recog_memoized (insn);
3535 rtx old_body = PATTERN (insn);
3536 int insn_is_asm = asm_noperands (old_body) >= 0;
3537 rtx old_set = single_set (insn);
3538 int i;
3539 rtx orig_operand[MAX_RECOG_OPERANDS];
3540 rtx orig_dup[MAX_RECOG_OPERANDS];
3541 struct elim_table *ep;
3542 rtx plus_src, plus_cst_src;
3543 bool sets_reg_p;
3544
3545 if (! insn_is_asm && icode < 0)
3546 {
3547 gcc_assert (DEBUG_INSN_P (insn)
3548 || GET_CODE (PATTERN (insn)) == USE
3549 || GET_CODE (PATTERN (insn)) == CLOBBER
3550 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3551 return;
3552 }
3553
3554 if (old_set != 0 && REG_P (SET_DEST (old_set))
3555 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3556 {
3557 /* Check for setting an eliminable register. */
3558 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3559 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3560 return;
3561 }
3562
3563 /* We allow one special case which happens to work on all machines we
3564 currently support: a single set with the source or a REG_EQUAL
3565 note being a PLUS of an eliminable register and a constant. */
3566 plus_src = plus_cst_src = 0;
3567 sets_reg_p = false;
3568 if (old_set && REG_P (SET_DEST (old_set)))
3569 {
3570 sets_reg_p = true;
3571 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3572 plus_src = SET_SRC (old_set);
3573 /* First see if the source is of the form (plus (...) CST). */
3574 if (plus_src
3575 && CONST_INT_P (XEXP (plus_src, 1)))
3576 plus_cst_src = plus_src;
3577 else if (REG_P (SET_SRC (old_set))
3578 || plus_src)
3579 {
3580 /* Otherwise, see if we have a REG_EQUAL note of the form
3581 (plus (...) CST). */
3582 rtx links;
3583 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3584 {
3585 if ((REG_NOTE_KIND (links) == REG_EQUAL
3586 || REG_NOTE_KIND (links) == REG_EQUIV)
3587 && GET_CODE (XEXP (links, 0)) == PLUS
3588 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3589 {
3590 plus_cst_src = XEXP (links, 0);
3591 break;
3592 }
3593 }
3594 }
3595 }
3596
3597 /* Determine the effects of this insn on elimination offsets. */
3598 elimination_effects (old_body, VOIDmode);
3599
3600 /* Eliminate all eliminable registers occurring in operands that
3601 can be handled by reload. */
3602 extract_insn (insn);
3603 int n_dups = recog_data.n_dups;
3604 for (i = 0; i < n_dups; i++)
3605 orig_dup[i] = *recog_data.dup_loc[i];
3606
3607 int n_operands = recog_data.n_operands;
3608 for (i = 0; i < n_operands; i++)
3609 {
3610 orig_operand[i] = recog_data.operand[i];
3611
3612 /* For an asm statement, every operand is eliminable. */
3613 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3614 {
3615 bool is_set_src, in_plus;
3616
3617 /* Check for setting a register that we know about. */
3618 if (recog_data.operand_type[i] != OP_IN
3619 && REG_P (orig_operand[i]))
3620 {
3621 /* If we are assigning to a register that can be eliminated, it
3622 must be as part of a PARALLEL, since the code above handles
3623 single SETs. We must indicate that we can no longer
3624 eliminate this reg. */
3625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3626 ep++)
3627 if (ep->from_rtx == orig_operand[i])
3628 ep->can_eliminate = 0;
3629 }
3630
3631 /* Companion to the above plus substitution, we can allow
3632 invariants as the source of a plain move. */
3633 is_set_src = false;
3634 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3635 is_set_src = true;
3636 if (is_set_src && !sets_reg_p)
3637 note_reg_elim_costly (SET_SRC (old_set), insn);
3638 in_plus = false;
3639 if (plus_src && sets_reg_p
3640 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3641 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3642 in_plus = true;
3643
3644 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3645 NULL_RTX,
3646 is_set_src || in_plus, true);
3647 /* Terminate the search in check_eliminable_occurrences at
3648 this point. */
3649 *recog_data.operand_loc[i] = 0;
3650 }
3651 }
3652
3653 for (i = 0; i < n_dups; i++)
3654 *recog_data.dup_loc[i]
3655 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3656
3657 /* If any eliminable remain, they aren't eliminable anymore. */
3658 check_eliminable_occurrences (old_body);
3659
3660 /* Restore the old body. */
3661 for (i = 0; i < n_operands; i++)
3662 *recog_data.operand_loc[i] = orig_operand[i];
3663 for (i = 0; i < n_dups; i++)
3664 *recog_data.dup_loc[i] = orig_dup[i];
3665
3666 /* Update all elimination pairs to reflect the status after the current
3667 insn. The changes we make were determined by the earlier call to
3668 elimination_effects. */
3669
3670 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3671 {
3672 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3673 ep->can_eliminate = 0;
3674
3675 ep->ref_outside_mem = 0;
3676 }
3677
3678 return;
3679 }
3680 #pragma GCC diagnostic pop
3681
3682 /* Loop through all elimination pairs.
3683 Recalculate the number not at initial offset.
3684
3685 Compute the maximum offset (minimum offset if the stack does not
3686 grow downward) for each elimination pair. */
3687
3688 static void
3689 update_eliminable_offsets (void)
3690 {
3691 struct elim_table *ep;
3692
3693 num_not_at_initial_offset = 0;
3694 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3695 {
3696 ep->previous_offset = ep->offset;
3697 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3698 num_not_at_initial_offset++;
3699 }
3700 }
3701
3702 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3703 replacement we currently believe is valid, mark it as not eliminable if X
3704 modifies DEST in any way other than by adding a constant integer to it.
3705
3706 If DEST is the frame pointer, we do nothing because we assume that
3707 all assignments to the hard frame pointer are nonlocal gotos and are being
3708 done at a time when they are valid and do not disturb anything else.
3709 Some machines want to eliminate a fake argument pointer with either the
3710 frame or stack pointer. Assignments to the hard frame pointer must not
3711 prevent this elimination.
3712
3713 Called via note_stores from reload before starting its passes to scan
3714 the insns of the function. */
3715
3716 static void
3717 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3718 {
3719 unsigned int i;
3720
3721 /* A SUBREG of a hard register here is just changing its mode. We should
3722 not see a SUBREG of an eliminable hard register, but check just in
3723 case. */
3724 if (GET_CODE (dest) == SUBREG)
3725 dest = SUBREG_REG (dest);
3726
3727 if (dest == hard_frame_pointer_rtx)
3728 return;
3729
3730 /* CLOBBER_HIGH is only supported for LRA. */
3731 gcc_assert (GET_CODE (x) != CLOBBER_HIGH);
3732
3733 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3734 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3735 && (GET_CODE (x) != SET
3736 || GET_CODE (SET_SRC (x)) != PLUS
3737 || XEXP (SET_SRC (x), 0) != dest
3738 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3739 {
3740 reg_eliminate[i].can_eliminate_previous
3741 = reg_eliminate[i].can_eliminate = 0;
3742 num_eliminable--;
3743 }
3744 }
3745
3746 /* Verify that the initial elimination offsets did not change since the
3747 last call to set_initial_elim_offsets. This is used to catch cases
3748 where something illegal happened during reload_as_needed that could
3749 cause incorrect code to be generated if we did not check for it. */
3750
3751 static bool
3752 verify_initial_elim_offsets (void)
3753 {
3754 poly_int64 t;
3755 struct elim_table *ep;
3756
3757 if (!num_eliminable)
3758 return true;
3759
3760 targetm.compute_frame_layout ();
3761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3762 {
3763 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3764 if (maybe_ne (t, ep->initial_offset))
3765 return false;
3766 }
3767
3768 return true;
3769 }
3770
3771 /* Reset all offsets on eliminable registers to their initial values. */
3772
3773 static void
3774 set_initial_elim_offsets (void)
3775 {
3776 struct elim_table *ep = reg_eliminate;
3777
3778 targetm.compute_frame_layout ();
3779 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3780 {
3781 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3782 ep->previous_offset = ep->offset = ep->initial_offset;
3783 }
3784
3785 num_not_at_initial_offset = 0;
3786 }
3787
3788 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3789
3790 static void
3791 set_initial_eh_label_offset (rtx label)
3792 {
3793 set_label_offsets (label, NULL, 1);
3794 }
3795
3796 /* Initialize the known label offsets.
3797 Set a known offset for each forced label to be at the initial offset
3798 of each elimination. We do this because we assume that all
3799 computed jumps occur from a location where each elimination is
3800 at its initial offset.
3801 For all other labels, show that we don't know the offsets. */
3802
3803 static void
3804 set_initial_label_offsets (void)
3805 {
3806 memset (offsets_known_at, 0, num_labels);
3807
3808 unsigned int i;
3809 rtx_insn *insn;
3810 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3811 set_label_offsets (insn, NULL, 1);
3812
3813 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3814 if (x->insn ())
3815 set_label_offsets (x->insn (), NULL, 1);
3816
3817 for_each_eh_label (set_initial_eh_label_offset);
3818 }
3819
3820 /* Set all elimination offsets to the known values for the code label given
3821 by INSN. */
3822
3823 static void
3824 set_offsets_for_label (rtx_insn *insn)
3825 {
3826 unsigned int i;
3827 int label_nr = CODE_LABEL_NUMBER (insn);
3828 struct elim_table *ep;
3829
3830 num_not_at_initial_offset = 0;
3831 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3832 {
3833 ep->offset = ep->previous_offset
3834 = offsets_at[label_nr - first_label_num][i];
3835 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3836 num_not_at_initial_offset++;
3837 }
3838 }
3839
3840 /* See if anything that happened changes which eliminations are valid.
3841 For example, on the SPARC, whether or not the frame pointer can
3842 be eliminated can depend on what registers have been used. We need
3843 not check some conditions again (such as flag_omit_frame_pointer)
3844 since they can't have changed. */
3845
3846 static void
3847 update_eliminables (HARD_REG_SET *pset)
3848 {
3849 int previous_frame_pointer_needed = frame_pointer_needed;
3850 struct elim_table *ep;
3851
3852 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3853 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3854 && targetm.frame_pointer_required ())
3855 || ! targetm.can_eliminate (ep->from, ep->to)
3856 )
3857 ep->can_eliminate = 0;
3858
3859 /* Look for the case where we have discovered that we can't replace
3860 register A with register B and that means that we will now be
3861 trying to replace register A with register C. This means we can
3862 no longer replace register C with register B and we need to disable
3863 such an elimination, if it exists. This occurs often with A == ap,
3864 B == sp, and C == fp. */
3865
3866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3867 {
3868 struct elim_table *op;
3869 int new_to = -1;
3870
3871 if (! ep->can_eliminate && ep->can_eliminate_previous)
3872 {
3873 /* Find the current elimination for ep->from, if there is a
3874 new one. */
3875 for (op = reg_eliminate;
3876 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3877 if (op->from == ep->from && op->can_eliminate)
3878 {
3879 new_to = op->to;
3880 break;
3881 }
3882
3883 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3884 disable it. */
3885 for (op = reg_eliminate;
3886 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3887 if (op->from == new_to && op->to == ep->to)
3888 op->can_eliminate = 0;
3889 }
3890 }
3891
3892 /* See if any registers that we thought we could eliminate the previous
3893 time are no longer eliminable. If so, something has changed and we
3894 must spill the register. Also, recompute the number of eliminable
3895 registers and see if the frame pointer is needed; it is if there is
3896 no elimination of the frame pointer that we can perform. */
3897
3898 frame_pointer_needed = 1;
3899 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3900 {
3901 if (ep->can_eliminate
3902 && ep->from == FRAME_POINTER_REGNUM
3903 && ep->to != HARD_FRAME_POINTER_REGNUM
3904 && (! SUPPORTS_STACK_ALIGNMENT
3905 || ! crtl->stack_realign_needed))
3906 frame_pointer_needed = 0;
3907
3908 if (! ep->can_eliminate && ep->can_eliminate_previous)
3909 {
3910 ep->can_eliminate_previous = 0;
3911 SET_HARD_REG_BIT (*pset, ep->from);
3912 num_eliminable--;
3913 }
3914 }
3915
3916 /* If we didn't need a frame pointer last time, but we do now, spill
3917 the hard frame pointer. */
3918 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3919 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3920 }
3921
3922 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3923 Return true iff a register was spilled. */
3924
3925 static bool
3926 update_eliminables_and_spill (void)
3927 {
3928 int i;
3929 bool did_spill = false;
3930 HARD_REG_SET to_spill;
3931 CLEAR_HARD_REG_SET (to_spill);
3932 update_eliminables (&to_spill);
3933 used_spill_regs &= ~to_spill;
3934
3935 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3936 if (TEST_HARD_REG_BIT (to_spill, i))
3937 {
3938 spill_hard_reg (i, 1);
3939 did_spill = true;
3940
3941 /* Regardless of the state of spills, if we previously had
3942 a register that we thought we could eliminate, but now
3943 cannot eliminate, we must run another pass.
3944
3945 Consider pseudos which have an entry in reg_equiv_* which
3946 reference an eliminable register. We must make another pass
3947 to update reg_equiv_* so that we do not substitute in the
3948 old value from when we thought the elimination could be
3949 performed. */
3950 }
3951 return did_spill;
3952 }
3953
3954 /* Return true if X is used as the target register of an elimination. */
3955
3956 bool
3957 elimination_target_reg_p (rtx x)
3958 {
3959 struct elim_table *ep;
3960
3961 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962 if (ep->to_rtx == x && ep->can_eliminate)
3963 return true;
3964
3965 return false;
3966 }
3967
3968 /* Initialize the table of registers to eliminate.
3969 Pre-condition: global flag frame_pointer_needed has been set before
3970 calling this function. */
3971
3972 static void
3973 init_elim_table (void)
3974 {
3975 struct elim_table *ep;
3976 const struct elim_table_1 *ep1;
3977
3978 if (!reg_eliminate)
3979 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3980
3981 num_eliminable = 0;
3982
3983 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3984 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3985 {
3986 ep->from = ep1->from;
3987 ep->to = ep1->to;
3988 ep->can_eliminate = ep->can_eliminate_previous
3989 = (targetm.can_eliminate (ep->from, ep->to)
3990 && ! (ep->to == STACK_POINTER_REGNUM
3991 && frame_pointer_needed
3992 && (! SUPPORTS_STACK_ALIGNMENT
3993 || ! stack_realign_fp)));
3994 }
3995
3996 /* Count the number of eliminable registers and build the FROM and TO
3997 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3998 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3999 We depend on this. */
4000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4001 {
4002 num_eliminable += ep->can_eliminate;
4003 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4004 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4005 }
4006 }
4007
4008 /* Find all the pseudo registers that didn't get hard regs
4009 but do have known equivalent constants or memory slots.
4010 These include parameters (known equivalent to parameter slots)
4011 and cse'd or loop-moved constant memory addresses.
4012
4013 Record constant equivalents in reg_equiv_constant
4014 so they will be substituted by find_reloads.
4015 Record memory equivalents in reg_mem_equiv so they can
4016 be substituted eventually by altering the REG-rtx's. */
4017
4018 static void
4019 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4020 {
4021 int i;
4022 rtx_insn *insn;
4023
4024 grow_reg_equivs ();
4025 if (do_subregs)
4026 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4027 else
4028 reg_max_ref_mode = NULL;
4029
4030 num_eliminable_invariants = 0;
4031
4032 first_label_num = get_first_label_num ();
4033 num_labels = max_label_num () - first_label_num;
4034
4035 /* Allocate the tables used to store offset information at labels. */
4036 offsets_known_at = XNEWVEC (char, num_labels);
4037 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4038 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4039
4040 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4041 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4042 find largest such for each pseudo. FIRST is the head of the insn
4043 list. */
4044
4045 for (insn = first; insn; insn = NEXT_INSN (insn))
4046 {
4047 rtx set = single_set (insn);
4048
4049 /* We may introduce USEs that we want to remove at the end, so
4050 we'll mark them with QImode. Make sure there are no
4051 previously-marked insns left by say regmove. */
4052 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4053 && GET_MODE (insn) != VOIDmode)
4054 PUT_MODE (insn, VOIDmode);
4055
4056 if (do_subregs && NONDEBUG_INSN_P (insn))
4057 scan_paradoxical_subregs (PATTERN (insn));
4058
4059 if (set != 0 && REG_P (SET_DEST (set)))
4060 {
4061 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4062 rtx x;
4063
4064 if (! note)
4065 continue;
4066
4067 i = REGNO (SET_DEST (set));
4068 x = XEXP (note, 0);
4069
4070 if (i <= LAST_VIRTUAL_REGISTER)
4071 continue;
4072
4073 /* If flag_pic and we have constant, verify it's legitimate. */
4074 if (!CONSTANT_P (x)
4075 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4076 {
4077 /* It can happen that a REG_EQUIV note contains a MEM
4078 that is not a legitimate memory operand. As later
4079 stages of reload assume that all addresses found
4080 in the reg_equiv_* arrays were originally legitimate,
4081 we ignore such REG_EQUIV notes. */
4082 if (memory_operand (x, VOIDmode))
4083 {
4084 /* Always unshare the equivalence, so we can
4085 substitute into this insn without touching the
4086 equivalence. */
4087 reg_equiv_memory_loc (i) = copy_rtx (x);
4088 }
4089 else if (function_invariant_p (x))
4090 {
4091 machine_mode mode;
4092
4093 mode = GET_MODE (SET_DEST (set));
4094 if (GET_CODE (x) == PLUS)
4095 {
4096 /* This is PLUS of frame pointer and a constant,
4097 and might be shared. Unshare it. */
4098 reg_equiv_invariant (i) = copy_rtx (x);
4099 num_eliminable_invariants++;
4100 }
4101 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4102 {
4103 reg_equiv_invariant (i) = x;
4104 num_eliminable_invariants++;
4105 }
4106 else if (targetm.legitimate_constant_p (mode, x))
4107 reg_equiv_constant (i) = x;
4108 else
4109 {
4110 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4111 if (! reg_equiv_memory_loc (i))
4112 reg_equiv_init (i) = NULL;
4113 }
4114 }
4115 else
4116 {
4117 reg_equiv_init (i) = NULL;
4118 continue;
4119 }
4120 }
4121 else
4122 reg_equiv_init (i) = NULL;
4123 }
4124 }
4125
4126 if (dump_file)
4127 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4128 if (reg_equiv_init (i))
4129 {
4130 fprintf (dump_file, "init_insns for %u: ", i);
4131 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4132 fprintf (dump_file, "\n");
4133 }
4134 }
4135
4136 /* Indicate that we no longer have known memory locations or constants.
4137 Free all data involved in tracking these. */
4138
4139 static void
4140 free_reg_equiv (void)
4141 {
4142 int i;
4143
4144 free (offsets_known_at);
4145 free (offsets_at);
4146 offsets_at = 0;
4147 offsets_known_at = 0;
4148
4149 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4150 if (reg_equiv_alt_mem_list (i))
4151 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4152 vec_free (reg_equivs);
4153 }
4154 \f
4155 /* Kick all pseudos out of hard register REGNO.
4156
4157 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4158 because we found we can't eliminate some register. In the case, no pseudos
4159 are allowed to be in the register, even if they are only in a block that
4160 doesn't require spill registers, unlike the case when we are spilling this
4161 hard reg to produce another spill register.
4162
4163 Return nonzero if any pseudos needed to be kicked out. */
4164
4165 static void
4166 spill_hard_reg (unsigned int regno, int cant_eliminate)
4167 {
4168 int i;
4169
4170 if (cant_eliminate)
4171 {
4172 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4173 df_set_regs_ever_live (regno, true);
4174 }
4175
4176 /* Spill every pseudo reg that was allocated to this reg
4177 or to something that overlaps this reg. */
4178
4179 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4180 if (reg_renumber[i] >= 0
4181 && (unsigned int) reg_renumber[i] <= regno
4182 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4183 SET_REGNO_REG_SET (&spilled_pseudos, i);
4184 }
4185
4186 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4187 insns that need reloads, this function is used to actually spill pseudo
4188 registers and try to reallocate them. It also sets up the spill_regs
4189 array for use by choose_reload_regs.
4190
4191 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4192 that we displace from hard registers. */
4193
4194 static int
4195 finish_spills (int global)
4196 {
4197 class insn_chain *chain;
4198 int something_changed = 0;
4199 unsigned i;
4200 reg_set_iterator rsi;
4201
4202 /* Build the spill_regs array for the function. */
4203 /* If there are some registers still to eliminate and one of the spill regs
4204 wasn't ever used before, additional stack space may have to be
4205 allocated to store this register. Thus, we may have changed the offset
4206 between the stack and frame pointers, so mark that something has changed.
4207
4208 One might think that we need only set VAL to 1 if this is a call-used
4209 register. However, the set of registers that must be saved by the
4210 prologue is not identical to the call-used set. For example, the
4211 register used by the call insn for the return PC is a call-used register,
4212 but must be saved by the prologue. */
4213
4214 n_spills = 0;
4215 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4216 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4217 {
4218 spill_reg_order[i] = n_spills;
4219 spill_regs[n_spills++] = i;
4220 if (num_eliminable && ! df_regs_ever_live_p (i))
4221 something_changed = 1;
4222 df_set_regs_ever_live (i, true);
4223 }
4224 else
4225 spill_reg_order[i] = -1;
4226
4227 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4228 if (reg_renumber[i] >= 0)
4229 {
4230 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4231 /* Mark it as no longer having a hard register home. */
4232 reg_renumber[i] = -1;
4233 if (ira_conflicts_p)
4234 /* Inform IRA about the change. */
4235 ira_mark_allocation_change (i);
4236 /* We will need to scan everything again. */
4237 something_changed = 1;
4238 }
4239
4240 /* Retry global register allocation if possible. */
4241 if (global && ira_conflicts_p)
4242 {
4243 unsigned int n;
4244
4245 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4246 /* For every insn that needs reloads, set the registers used as spill
4247 regs in pseudo_forbidden_regs for every pseudo live across the
4248 insn. */
4249 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4250 {
4251 EXECUTE_IF_SET_IN_REG_SET
4252 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4253 {
4254 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4255 }
4256 EXECUTE_IF_SET_IN_REG_SET
4257 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4258 {
4259 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4260 }
4261 }
4262
4263 /* Retry allocating the pseudos spilled in IRA and the
4264 reload. For each reg, merge the various reg sets that
4265 indicate which hard regs can't be used, and call
4266 ira_reassign_pseudos. */
4267 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4268 if (reg_old_renumber[i] != reg_renumber[i])
4269 {
4270 if (reg_renumber[i] < 0)
4271 temp_pseudo_reg_arr[n++] = i;
4272 else
4273 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4274 }
4275 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4276 bad_spill_regs_global,
4277 pseudo_forbidden_regs, pseudo_previous_regs,
4278 &spilled_pseudos))
4279 something_changed = 1;
4280 }
4281 /* Fix up the register information in the insn chain.
4282 This involves deleting those of the spilled pseudos which did not get
4283 a new hard register home from the live_{before,after} sets. */
4284 for (chain = reload_insn_chain; chain; chain = chain->next)
4285 {
4286 HARD_REG_SET used_by_pseudos;
4287 HARD_REG_SET used_by_pseudos2;
4288
4289 if (! ira_conflicts_p)
4290 {
4291 /* Don't do it for IRA because IRA and the reload still can
4292 assign hard registers to the spilled pseudos on next
4293 reload iterations. */
4294 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4295 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4296 }
4297 /* Mark any unallocated hard regs as available for spills. That
4298 makes inheritance work somewhat better. */
4299 if (chain->need_reload)
4300 {
4301 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4302 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4303 used_by_pseudos |= used_by_pseudos2;
4304
4305 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4306 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4307 /* Value of chain->used_spill_regs from previous iteration
4308 may be not included in the value calculated here because
4309 of possible removing caller-saves insns (see function
4310 delete_caller_save_insns. */
4311 chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
4312 }
4313 }
4314
4315 CLEAR_REG_SET (&changed_allocation_pseudos);
4316 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4317 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4318 {
4319 int regno = reg_renumber[i];
4320 if (reg_old_renumber[i] == regno)
4321 continue;
4322
4323 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4324
4325 alter_reg (i, reg_old_renumber[i], false);
4326 reg_old_renumber[i] = regno;
4327 if (dump_file)
4328 {
4329 if (regno == -1)
4330 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4331 else
4332 fprintf (dump_file, " Register %d now in %d.\n\n",
4333 i, reg_renumber[i]);
4334 }
4335 }
4336
4337 return something_changed;
4338 }
4339 \f
4340 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4341
4342 static void
4343 scan_paradoxical_subregs (rtx x)
4344 {
4345 int i;
4346 const char *fmt;
4347 enum rtx_code code = GET_CODE (x);
4348
4349 switch (code)
4350 {
4351 case REG:
4352 case CONST:
4353 case SYMBOL_REF:
4354 case LABEL_REF:
4355 CASE_CONST_ANY:
4356 case CC0:
4357 case PC:
4358 case USE:
4359 case CLOBBER:
4360 case CLOBBER_HIGH:
4361 return;
4362
4363 case SUBREG:
4364 if (REG_P (SUBREG_REG (x)))
4365 {
4366 unsigned int regno = REGNO (SUBREG_REG (x));
4367 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4368 {
4369 reg_max_ref_mode[regno] = GET_MODE (x);
4370 mark_home_live_1 (regno, GET_MODE (x));
4371 }
4372 }
4373 return;
4374
4375 default:
4376 break;
4377 }
4378
4379 fmt = GET_RTX_FORMAT (code);
4380 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4381 {
4382 if (fmt[i] == 'e')
4383 scan_paradoxical_subregs (XEXP (x, i));
4384 else if (fmt[i] == 'E')
4385 {
4386 int j;
4387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4388 scan_paradoxical_subregs (XVECEXP (x, i, j));
4389 }
4390 }
4391 }
4392
4393 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4394 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4395 and apply the corresponding narrowing subreg to *OTHER_PTR.
4396 Return true if the operands were changed, false otherwise. */
4397
4398 static bool
4399 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4400 {
4401 rtx op, inner, other, tem;
4402
4403 op = *op_ptr;
4404 if (!paradoxical_subreg_p (op))
4405 return false;
4406 inner = SUBREG_REG (op);
4407
4408 other = *other_ptr;
4409 tem = gen_lowpart_common (GET_MODE (inner), other);
4410 if (!tem)
4411 return false;
4412
4413 /* If the lowpart operation turned a hard register into a subreg,
4414 rather than simplifying it to another hard register, then the
4415 mode change cannot be properly represented. For example, OTHER
4416 might be valid in its current mode, but not in the new one. */
4417 if (GET_CODE (tem) == SUBREG
4418 && REG_P (other)
4419 && HARD_REGISTER_P (other))
4420 return false;
4421
4422 *op_ptr = inner;
4423 *other_ptr = tem;
4424 return true;
4425 }
4426 \f
4427 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4428 examine all of the reload insns between PREV and NEXT exclusive, and
4429 annotate all that may trap. */
4430
4431 static void
4432 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4433 {
4434 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4435 if (note == NULL)
4436 return;
4437 if (!insn_could_throw_p (insn))
4438 remove_note (insn, note);
4439 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4440 }
4441
4442 /* Reload pseudo-registers into hard regs around each insn as needed.
4443 Additional register load insns are output before the insn that needs it
4444 and perhaps store insns after insns that modify the reloaded pseudo reg.
4445
4446 reg_last_reload_reg and reg_reloaded_contents keep track of
4447 which registers are already available in reload registers.
4448 We update these for the reloads that we perform,
4449 as the insns are scanned. */
4450
4451 static void
4452 reload_as_needed (int live_known)
4453 {
4454 class insn_chain *chain;
4455 #if AUTO_INC_DEC
4456 int i;
4457 #endif
4458 rtx_note *marker;
4459
4460 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4461 memset (spill_reg_store, 0, sizeof spill_reg_store);
4462 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4463 INIT_REG_SET (&reg_has_output_reload);
4464 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4465 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4466
4467 set_initial_elim_offsets ();
4468
4469 /* Generate a marker insn that we will move around. */
4470 marker = emit_note (NOTE_INSN_DELETED);
4471 unlink_insn_chain (marker, marker);
4472
4473 for (chain = reload_insn_chain; chain; chain = chain->next)
4474 {
4475 rtx_insn *prev = 0;
4476 rtx_insn *insn = chain->insn;
4477 rtx_insn *old_next = NEXT_INSN (insn);
4478 #if AUTO_INC_DEC
4479 rtx_insn *old_prev = PREV_INSN (insn);
4480 #endif
4481
4482 if (will_delete_init_insn_p (insn))
4483 continue;
4484
4485 /* If we pass a label, copy the offsets from the label information
4486 into the current offsets of each elimination. */
4487 if (LABEL_P (insn))
4488 set_offsets_for_label (insn);
4489
4490 else if (INSN_P (insn))
4491 {
4492 regset_head regs_to_forget;
4493 INIT_REG_SET (&regs_to_forget);
4494 note_stores (insn, forget_old_reloads_1, &regs_to_forget);
4495
4496 /* If this is a USE and CLOBBER of a MEM, ensure that any
4497 references to eliminable registers have been removed. */
4498
4499 if ((GET_CODE (PATTERN (insn)) == USE
4500 || GET_CODE (PATTERN (insn)) == CLOBBER)
4501 && MEM_P (XEXP (PATTERN (insn), 0)))
4502 XEXP (XEXP (PATTERN (insn), 0), 0)
4503 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4504 GET_MODE (XEXP (PATTERN (insn), 0)),
4505 NULL_RTX);
4506
4507 /* If we need to do register elimination processing, do so.
4508 This might delete the insn, in which case we are done. */
4509 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4510 {
4511 eliminate_regs_in_insn (insn, 1);
4512 if (NOTE_P (insn))
4513 {
4514 update_eliminable_offsets ();
4515 CLEAR_REG_SET (&regs_to_forget);
4516 continue;
4517 }
4518 }
4519
4520 /* If need_elim is nonzero but need_reload is zero, one might think
4521 that we could simply set n_reloads to 0. However, find_reloads
4522 could have done some manipulation of the insn (such as swapping
4523 commutative operands), and these manipulations are lost during
4524 the first pass for every insn that needs register elimination.
4525 So the actions of find_reloads must be redone here. */
4526
4527 if (! chain->need_elim && ! chain->need_reload
4528 && ! chain->need_operand_change)
4529 n_reloads = 0;
4530 /* First find the pseudo regs that must be reloaded for this insn.
4531 This info is returned in the tables reload_... (see reload.h).
4532 Also modify the body of INSN by substituting RELOAD
4533 rtx's for those pseudo regs. */
4534 else
4535 {
4536 CLEAR_REG_SET (&reg_has_output_reload);
4537 CLEAR_HARD_REG_SET (reg_is_output_reload);
4538
4539 find_reloads (insn, 1, spill_indirect_levels, live_known,
4540 spill_reg_order);
4541 }
4542
4543 if (n_reloads > 0)
4544 {
4545 rtx_insn *next = NEXT_INSN (insn);
4546
4547 /* ??? PREV can get deleted by reload inheritance.
4548 Work around this by emitting a marker note. */
4549 prev = PREV_INSN (insn);
4550 reorder_insns_nobb (marker, marker, prev);
4551
4552 /* Now compute which reload regs to reload them into. Perhaps
4553 reusing reload regs from previous insns, or else output
4554 load insns to reload them. Maybe output store insns too.
4555 Record the choices of reload reg in reload_reg_rtx. */
4556 choose_reload_regs (chain);
4557
4558 /* Generate the insns to reload operands into or out of
4559 their reload regs. */
4560 emit_reload_insns (chain);
4561
4562 /* Substitute the chosen reload regs from reload_reg_rtx
4563 into the insn's body (or perhaps into the bodies of other
4564 load and store insn that we just made for reloading
4565 and that we moved the structure into). */
4566 subst_reloads (insn);
4567
4568 prev = PREV_INSN (marker);
4569 unlink_insn_chain (marker, marker);
4570
4571 /* Adjust the exception region notes for loads and stores. */
4572 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4573 fixup_eh_region_note (insn, prev, next);
4574
4575 /* Adjust the location of REG_ARGS_SIZE. */
4576 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4577 if (p)
4578 {
4579 remove_note (insn, p);
4580 fixup_args_size_notes (prev, PREV_INSN (next),
4581 get_args_size (p));
4582 }
4583
4584 /* If this was an ASM, make sure that all the reload insns
4585 we have generated are valid. If not, give an error
4586 and delete them. */
4587 if (asm_noperands (PATTERN (insn)) >= 0)
4588 for (rtx_insn *p = NEXT_INSN (prev);
4589 p != next;
4590 p = NEXT_INSN (p))
4591 if (p != insn && INSN_P (p)
4592 && GET_CODE (PATTERN (p)) != USE
4593 && (recog_memoized (p) < 0
4594 || (extract_insn (p),
4595 !(constrain_operands (1,
4596 get_enabled_alternatives (p))))))
4597 {
4598 error_for_asm (insn,
4599 "%<asm%> operand requires "
4600 "impossible reload");
4601 delete_insn (p);
4602 }
4603 }
4604
4605 if (num_eliminable && chain->need_elim)
4606 update_eliminable_offsets ();
4607
4608 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4609 is no longer validly lying around to save a future reload.
4610 Note that this does not detect pseudos that were reloaded
4611 for this insn in order to be stored in
4612 (obeying register constraints). That is correct; such reload
4613 registers ARE still valid. */
4614 forget_marked_reloads (&regs_to_forget);
4615 CLEAR_REG_SET (&regs_to_forget);
4616
4617 /* There may have been CLOBBER insns placed after INSN. So scan
4618 between INSN and NEXT and use them to forget old reloads. */
4619 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4620 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4621 note_stores (x, forget_old_reloads_1, NULL);
4622
4623 #if AUTO_INC_DEC
4624 /* Likewise for regs altered by auto-increment in this insn.
4625 REG_INC notes have been changed by reloading:
4626 find_reloads_address_1 records substitutions for them,
4627 which have been performed by subst_reloads above. */
4628 for (i = n_reloads - 1; i >= 0; i--)
4629 {
4630 rtx in_reg = rld[i].in_reg;
4631 if (in_reg)
4632 {
4633 enum rtx_code code = GET_CODE (in_reg);
4634 /* PRE_INC / PRE_DEC will have the reload register ending up
4635 with the same value as the stack slot, but that doesn't
4636 hold true for POST_INC / POST_DEC. Either we have to
4637 convert the memory access to a true POST_INC / POST_DEC,
4638 or we can't use the reload register for inheritance. */
4639 if ((code == POST_INC || code == POST_DEC)
4640 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4641 REGNO (rld[i].reg_rtx))
4642 /* Make sure it is the inc/dec pseudo, and not
4643 some other (e.g. output operand) pseudo. */
4644 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4645 == REGNO (XEXP (in_reg, 0))))
4646
4647 {
4648 rtx reload_reg = rld[i].reg_rtx;
4649 machine_mode mode = GET_MODE (reload_reg);
4650 int n = 0;
4651 rtx_insn *p;
4652
4653 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4654 {
4655 /* We really want to ignore REG_INC notes here, so
4656 use PATTERN (p) as argument to reg_set_p . */
4657 if (reg_set_p (reload_reg, PATTERN (p)))
4658 break;
4659 n = count_occurrences (PATTERN (p), reload_reg, 0);
4660 if (! n)
4661 continue;
4662 if (n == 1)
4663 {
4664 rtx replace_reg
4665 = gen_rtx_fmt_e (code, mode, reload_reg);
4666
4667 validate_replace_rtx_group (reload_reg,
4668 replace_reg, p);
4669 n = verify_changes (0);
4670
4671 /* We must also verify that the constraints
4672 are met after the replacement. Make sure
4673 extract_insn is only called for an insn
4674 where the replacements were found to be
4675 valid so far. */
4676 if (n)
4677 {
4678 extract_insn (p);
4679 n = constrain_operands (1,
4680 get_enabled_alternatives (p));
4681 }
4682
4683 /* If the constraints were not met, then
4684 undo the replacement, else confirm it. */
4685 if (!n)
4686 cancel_changes (0);
4687 else
4688 confirm_change_group ();
4689 }
4690 break;
4691 }
4692 if (n == 1)
4693 {
4694 add_reg_note (p, REG_INC, reload_reg);
4695 /* Mark this as having an output reload so that the
4696 REG_INC processing code below won't invalidate
4697 the reload for inheritance. */
4698 SET_HARD_REG_BIT (reg_is_output_reload,
4699 REGNO (reload_reg));
4700 SET_REGNO_REG_SET (&reg_has_output_reload,
4701 REGNO (XEXP (in_reg, 0)));
4702 }
4703 else
4704 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4705 NULL);
4706 }
4707 else if ((code == PRE_INC || code == PRE_DEC)
4708 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4709 REGNO (rld[i].reg_rtx))
4710 /* Make sure it is the inc/dec pseudo, and not
4711 some other (e.g. output operand) pseudo. */
4712 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4713 == REGNO (XEXP (in_reg, 0))))
4714 {
4715 SET_HARD_REG_BIT (reg_is_output_reload,
4716 REGNO (rld[i].reg_rtx));
4717 SET_REGNO_REG_SET (&reg_has_output_reload,
4718 REGNO (XEXP (in_reg, 0)));
4719 }
4720 else if (code == PRE_INC || code == PRE_DEC
4721 || code == POST_INC || code == POST_DEC)
4722 {
4723 int in_regno = REGNO (XEXP (in_reg, 0));
4724
4725 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4726 {
4727 int in_hard_regno;
4728 bool forget_p = true;
4729
4730 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4731 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4732 in_hard_regno))
4733 {
4734 for (rtx_insn *x = (old_prev ?
4735 NEXT_INSN (old_prev) : insn);
4736 x != old_next;
4737 x = NEXT_INSN (x))
4738 if (x == reg_reloaded_insn[in_hard_regno])
4739 {
4740 forget_p = false;
4741 break;
4742 }
4743 }
4744 /* If for some reasons, we didn't set up
4745 reg_last_reload_reg in this insn,
4746 invalidate inheritance from previous
4747 insns for the incremented/decremented
4748 register. Such registers will be not in
4749 reg_has_output_reload. Invalidate it
4750 also if the corresponding element in
4751 reg_reloaded_insn is also
4752 invalidated. */
4753 if (forget_p)
4754 forget_old_reloads_1 (XEXP (in_reg, 0),
4755 NULL_RTX, NULL);
4756 }
4757 }
4758 }
4759 }
4760 /* If a pseudo that got a hard register is auto-incremented,
4761 we must purge records of copying it into pseudos without
4762 hard registers. */
4763 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4764 if (REG_NOTE_KIND (x) == REG_INC)
4765 {
4766 /* See if this pseudo reg was reloaded in this insn.
4767 If so, its last-reload info is still valid
4768 because it is based on this insn's reload. */
4769 for (i = 0; i < n_reloads; i++)
4770 if (rld[i].out == XEXP (x, 0))
4771 break;
4772
4773 if (i == n_reloads)
4774 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4775 }
4776 #endif
4777 }
4778 /* A reload reg's contents are unknown after a label. */
4779 if (LABEL_P (insn))
4780 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4781
4782 /* Don't assume a reload reg is still good after a call insn
4783 if it is a call-used reg, or if it contains a value that will
4784 be partially clobbered by the call. */
4785 else if (CALL_P (insn))
4786 {
4787 reg_reloaded_valid &= ~(call_used_or_fixed_regs
4788 | reg_reloaded_call_part_clobbered);
4789
4790 /* If this is a call to a setjmp-type function, we must not
4791 reuse any reload reg contents across the call; that will
4792 just be clobbered by other uses of the register in later
4793 code, before the longjmp. */
4794 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4795 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4796 }
4797 }
4798
4799 /* Clean up. */
4800 free (reg_last_reload_reg);
4801 CLEAR_REG_SET (&reg_has_output_reload);
4802 }
4803
4804 /* Discard all record of any value reloaded from X,
4805 or reloaded in X from someplace else;
4806 unless X is an output reload reg of the current insn.
4807
4808 X may be a hard reg (the reload reg)
4809 or it may be a pseudo reg that was reloaded from.
4810
4811 When DATA is non-NULL just mark the registers in regset
4812 to be forgotten later. */
4813
4814 static void
4815 forget_old_reloads_1 (rtx x, const_rtx setter,
4816 void *data)
4817 {
4818 unsigned int regno;
4819 unsigned int nr;
4820 regset regs = (regset) data;
4821
4822 /* note_stores does give us subregs of hard regs,
4823 subreg_regno_offset requires a hard reg. */
4824 while (GET_CODE (x) == SUBREG)
4825 {
4826 /* We ignore the subreg offset when calculating the regno,
4827 because we are using the entire underlying hard register
4828 below. */
4829 x = SUBREG_REG (x);
4830 }
4831
4832 if (!REG_P (x))
4833 return;
4834
4835 /* CLOBBER_HIGH is only supported for LRA. */
4836 gcc_assert (setter == NULL_RTX || GET_CODE (setter) != CLOBBER_HIGH);
4837
4838 regno = REGNO (x);
4839
4840 if (regno >= FIRST_PSEUDO_REGISTER)
4841 nr = 1;
4842 else
4843 {
4844 unsigned int i;
4845
4846 nr = REG_NREGS (x);
4847 /* Storing into a spilled-reg invalidates its contents.
4848 This can happen if a block-local pseudo is allocated to that reg
4849 and it wasn't spilled because this block's total need is 0.
4850 Then some insn might have an optional reload and use this reg. */
4851 if (!regs)
4852 for (i = 0; i < nr; i++)
4853 /* But don't do this if the reg actually serves as an output
4854 reload reg in the current instruction. */
4855 if (n_reloads == 0
4856 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4857 {
4858 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4859 spill_reg_store[regno + i] = 0;
4860 }
4861 }
4862
4863 if (regs)
4864 while (nr-- > 0)
4865 SET_REGNO_REG_SET (regs, regno + nr);
4866 else
4867 {
4868 /* Since value of X has changed,
4869 forget any value previously copied from it. */
4870
4871 while (nr-- > 0)
4872 /* But don't forget a copy if this is the output reload
4873 that establishes the copy's validity. */
4874 if (n_reloads == 0
4875 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4876 reg_last_reload_reg[regno + nr] = 0;
4877 }
4878 }
4879
4880 /* Forget the reloads marked in regset by previous function. */
4881 static void
4882 forget_marked_reloads (regset regs)
4883 {
4884 unsigned int reg;
4885 reg_set_iterator rsi;
4886 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4887 {
4888 if (reg < FIRST_PSEUDO_REGISTER
4889 /* But don't do this if the reg actually serves as an output
4890 reload reg in the current instruction. */
4891 && (n_reloads == 0
4892 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4893 {
4894 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4895 spill_reg_store[reg] = 0;
4896 }
4897 if (n_reloads == 0
4898 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4899 reg_last_reload_reg[reg] = 0;
4900 }
4901 }
4902 \f
4903 /* The following HARD_REG_SETs indicate when each hard register is
4904 used for a reload of various parts of the current insn. */
4905
4906 /* If reg is unavailable for all reloads. */
4907 static HARD_REG_SET reload_reg_unavailable;
4908 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4909 static HARD_REG_SET reload_reg_used;
4910 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4911 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4912 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4913 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4914 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4915 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4916 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4917 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4918 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4919 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4920 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4921 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4922 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4923 static HARD_REG_SET reload_reg_used_in_op_addr;
4924 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4925 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4926 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4927 static HARD_REG_SET reload_reg_used_in_insn;
4928 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4929 static HARD_REG_SET reload_reg_used_in_other_addr;
4930
4931 /* If reg is in use as a reload reg for any sort of reload. */
4932 static HARD_REG_SET reload_reg_used_at_all;
4933
4934 /* If reg is use as an inherited reload. We just mark the first register
4935 in the group. */
4936 static HARD_REG_SET reload_reg_used_for_inherit;
4937
4938 /* Records which hard regs are used in any way, either as explicit use or
4939 by being allocated to a pseudo during any point of the current insn. */
4940 static HARD_REG_SET reg_used_in_insn;
4941
4942 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4943 TYPE. MODE is used to indicate how many consecutive regs are
4944 actually used. */
4945
4946 static void
4947 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4948 machine_mode mode)
4949 {
4950 switch (type)
4951 {
4952 case RELOAD_OTHER:
4953 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4954 break;
4955
4956 case RELOAD_FOR_INPUT_ADDRESS:
4957 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4958 break;
4959
4960 case RELOAD_FOR_INPADDR_ADDRESS:
4961 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4962 break;
4963
4964 case RELOAD_FOR_OUTPUT_ADDRESS:
4965 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4966 break;
4967
4968 case RELOAD_FOR_OUTADDR_ADDRESS:
4969 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4970 break;
4971
4972 case RELOAD_FOR_OPERAND_ADDRESS:
4973 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4974 break;
4975
4976 case RELOAD_FOR_OPADDR_ADDR:
4977 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4978 break;
4979
4980 case RELOAD_FOR_OTHER_ADDRESS:
4981 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4982 break;
4983
4984 case RELOAD_FOR_INPUT:
4985 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4986 break;
4987
4988 case RELOAD_FOR_OUTPUT:
4989 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4990 break;
4991
4992 case RELOAD_FOR_INSN:
4993 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
4994 break;
4995 }
4996
4997 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
4998 }
4999
5000 /* Similarly, but show REGNO is no longer in use for a reload. */
5001
5002 static void
5003 clear_reload_reg_in_use (unsigned int regno, int opnum,
5004 enum reload_type type, machine_mode mode)
5005 {
5006 unsigned int nregs = hard_regno_nregs (regno, mode);
5007 unsigned int start_regno, end_regno, r;
5008 int i;
5009 /* A complication is that for some reload types, inheritance might
5010 allow multiple reloads of the same types to share a reload register.
5011 We set check_opnum if we have to check only reloads with the same
5012 operand number, and check_any if we have to check all reloads. */
5013 int check_opnum = 0;
5014 int check_any = 0;
5015 HARD_REG_SET *used_in_set;
5016
5017 switch (type)
5018 {
5019 case RELOAD_OTHER:
5020 used_in_set = &reload_reg_used;
5021 break;
5022
5023 case RELOAD_FOR_INPUT_ADDRESS:
5024 used_in_set = &reload_reg_used_in_input_addr[opnum];
5025 break;
5026
5027 case RELOAD_FOR_INPADDR_ADDRESS:
5028 check_opnum = 1;
5029 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5030 break;
5031
5032 case RELOAD_FOR_OUTPUT_ADDRESS:
5033 used_in_set = &reload_reg_used_in_output_addr[opnum];
5034 break;
5035
5036 case RELOAD_FOR_OUTADDR_ADDRESS:
5037 check_opnum = 1;
5038 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5039 break;
5040
5041 case RELOAD_FOR_OPERAND_ADDRESS:
5042 used_in_set = &reload_reg_used_in_op_addr;
5043 break;
5044
5045 case RELOAD_FOR_OPADDR_ADDR:
5046 check_any = 1;
5047 used_in_set = &reload_reg_used_in_op_addr_reload;
5048 break;
5049
5050 case RELOAD_FOR_OTHER_ADDRESS:
5051 used_in_set = &reload_reg_used_in_other_addr;
5052 check_any = 1;
5053 break;
5054
5055 case RELOAD_FOR_INPUT:
5056 used_in_set = &reload_reg_used_in_input[opnum];
5057 break;
5058
5059 case RELOAD_FOR_OUTPUT:
5060 used_in_set = &reload_reg_used_in_output[opnum];
5061 break;
5062
5063 case RELOAD_FOR_INSN:
5064 used_in_set = &reload_reg_used_in_insn;
5065 break;
5066 default:
5067 gcc_unreachable ();
5068 }
5069 /* We resolve conflicts with remaining reloads of the same type by
5070 excluding the intervals of reload registers by them from the
5071 interval of freed reload registers. Since we only keep track of
5072 one set of interval bounds, we might have to exclude somewhat
5073 more than what would be necessary if we used a HARD_REG_SET here.
5074 But this should only happen very infrequently, so there should
5075 be no reason to worry about it. */
5076
5077 start_regno = regno;
5078 end_regno = regno + nregs;
5079 if (check_opnum || check_any)
5080 {
5081 for (i = n_reloads - 1; i >= 0; i--)
5082 {
5083 if (rld[i].when_needed == type
5084 && (check_any || rld[i].opnum == opnum)
5085 && rld[i].reg_rtx)
5086 {
5087 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5088 unsigned int conflict_end
5089 = end_hard_regno (rld[i].mode, conflict_start);
5090
5091 /* If there is an overlap with the first to-be-freed register,
5092 adjust the interval start. */
5093 if (conflict_start <= start_regno && conflict_end > start_regno)
5094 start_regno = conflict_end;
5095 /* Otherwise, if there is a conflict with one of the other
5096 to-be-freed registers, adjust the interval end. */
5097 if (conflict_start > start_regno && conflict_start < end_regno)
5098 end_regno = conflict_start;
5099 }
5100 }
5101 }
5102
5103 for (r = start_regno; r < end_regno; r++)
5104 CLEAR_HARD_REG_BIT (*used_in_set, r);
5105 }
5106
5107 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5108 specified by OPNUM and TYPE. */
5109
5110 static int
5111 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5112 {
5113 int i;
5114
5115 /* In use for a RELOAD_OTHER means it's not available for anything. */
5116 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5117 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5118 return 0;
5119
5120 switch (type)
5121 {
5122 case RELOAD_OTHER:
5123 /* In use for anything means we can't use it for RELOAD_OTHER. */
5124 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5125 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5126 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5127 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5128 return 0;
5129
5130 for (i = 0; i < reload_n_operands; i++)
5131 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5132 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5133 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5134 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5135 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5136 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5137 return 0;
5138
5139 return 1;
5140
5141 case RELOAD_FOR_INPUT:
5142 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5143 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5144 return 0;
5145
5146 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5147 return 0;
5148
5149 /* If it is used for some other input, can't use it. */
5150 for (i = 0; i < reload_n_operands; i++)
5151 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5152 return 0;
5153
5154 /* If it is used in a later operand's address, can't use it. */
5155 for (i = opnum + 1; i < reload_n_operands; i++)
5156 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5157 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5158 return 0;
5159
5160 return 1;
5161
5162 case RELOAD_FOR_INPUT_ADDRESS:
5163 /* Can't use a register if it is used for an input address for this
5164 operand or used as an input in an earlier one. */
5165 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5166 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5167 return 0;
5168
5169 for (i = 0; i < opnum; i++)
5170 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5171 return 0;
5172
5173 return 1;
5174
5175 case RELOAD_FOR_INPADDR_ADDRESS:
5176 /* Can't use a register if it is used for an input address
5177 for this operand or used as an input in an earlier
5178 one. */
5179 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5180 return 0;
5181
5182 for (i = 0; i < opnum; i++)
5183 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5184 return 0;
5185
5186 return 1;
5187
5188 case RELOAD_FOR_OUTPUT_ADDRESS:
5189 /* Can't use a register if it is used for an output address for this
5190 operand or used as an output in this or a later operand. Note
5191 that multiple output operands are emitted in reverse order, so
5192 the conflicting ones are those with lower indices. */
5193 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5194 return 0;
5195
5196 for (i = 0; i <= opnum; i++)
5197 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5198 return 0;
5199
5200 return 1;
5201
5202 case RELOAD_FOR_OUTADDR_ADDRESS:
5203 /* Can't use a register if it is used for an output address
5204 for this operand or used as an output in this or a
5205 later operand. Note that multiple output operands are
5206 emitted in reverse order, so the conflicting ones are
5207 those with lower indices. */
5208 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5209 return 0;
5210
5211 for (i = 0; i <= opnum; i++)
5212 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5213 return 0;
5214
5215 return 1;
5216
5217 case RELOAD_FOR_OPERAND_ADDRESS:
5218 for (i = 0; i < reload_n_operands; i++)
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5220 return 0;
5221
5222 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5223 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5224
5225 case RELOAD_FOR_OPADDR_ADDR:
5226 for (i = 0; i < reload_n_operands; i++)
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5228 return 0;
5229
5230 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5231
5232 case RELOAD_FOR_OUTPUT:
5233 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5234 outputs, or an operand address for this or an earlier output.
5235 Note that multiple output operands are emitted in reverse order,
5236 so the conflicting ones are those with higher indices. */
5237 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5238 return 0;
5239
5240 for (i = 0; i < reload_n_operands; i++)
5241 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5242 return 0;
5243
5244 for (i = opnum; i < reload_n_operands; i++)
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5246 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5247 return 0;
5248
5249 return 1;
5250
5251 case RELOAD_FOR_INSN:
5252 for (i = 0; i < reload_n_operands; i++)
5253 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5254 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5255 return 0;
5256
5257 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5258 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5259
5260 case RELOAD_FOR_OTHER_ADDRESS:
5261 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5262
5263 default:
5264 gcc_unreachable ();
5265 }
5266 }
5267
5268 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5269 the number RELOADNUM, is still available in REGNO at the end of the insn.
5270
5271 We can assume that the reload reg was already tested for availability
5272 at the time it is needed, and we should not check this again,
5273 in case the reg has already been marked in use. */
5274
5275 static int
5276 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5277 {
5278 int opnum = rld[reloadnum].opnum;
5279 enum reload_type type = rld[reloadnum].when_needed;
5280 int i;
5281
5282 /* See if there is a reload with the same type for this operand, using
5283 the same register. This case is not handled by the code below. */
5284 for (i = reloadnum + 1; i < n_reloads; i++)
5285 {
5286 rtx reg;
5287
5288 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5289 continue;
5290 reg = rld[i].reg_rtx;
5291 if (reg == NULL_RTX)
5292 continue;
5293 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5294 return 0;
5295 }
5296
5297 switch (type)
5298 {
5299 case RELOAD_OTHER:
5300 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5301 its value must reach the end. */
5302 return 1;
5303
5304 /* If this use is for part of the insn,
5305 its value reaches if no subsequent part uses the same register.
5306 Just like the above function, don't try to do this with lots
5307 of fallthroughs. */
5308
5309 case RELOAD_FOR_OTHER_ADDRESS:
5310 /* Here we check for everything else, since these don't conflict
5311 with anything else and everything comes later. */
5312
5313 for (i = 0; i < reload_n_operands; i++)
5314 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5315 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5316 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5317 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5318 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5319 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5320 return 0;
5321
5322 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5323 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5324 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5325 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5326
5327 case RELOAD_FOR_INPUT_ADDRESS:
5328 case RELOAD_FOR_INPADDR_ADDRESS:
5329 /* Similar, except that we check only for this and subsequent inputs
5330 and the address of only subsequent inputs and we do not need
5331 to check for RELOAD_OTHER objects since they are known not to
5332 conflict. */
5333
5334 for (i = opnum; i < reload_n_operands; i++)
5335 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5336 return 0;
5337
5338 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5339 could be killed if the register is also used by reload with type
5340 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5341 if (type == RELOAD_FOR_INPADDR_ADDRESS
5342 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5343 return 0;
5344
5345 for (i = opnum + 1; i < reload_n_operands; i++)
5346 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5347 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5348 return 0;
5349
5350 for (i = 0; i < reload_n_operands; i++)
5351 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5352 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5353 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5354 return 0;
5355
5356 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5357 return 0;
5358
5359 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5360 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5361 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5362
5363 case RELOAD_FOR_INPUT:
5364 /* Similar to input address, except we start at the next operand for
5365 both input and input address and we do not check for
5366 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5367 would conflict. */
5368
5369 for (i = opnum + 1; i < reload_n_operands; i++)
5370 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5371 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5372 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5373 return 0;
5374
5375 /* ... fall through ... */
5376
5377 case RELOAD_FOR_OPERAND_ADDRESS:
5378 /* Check outputs and their addresses. */
5379
5380 for (i = 0; i < reload_n_operands; i++)
5381 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5384 return 0;
5385
5386 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5387
5388 case RELOAD_FOR_OPADDR_ADDR:
5389 for (i = 0; i < reload_n_operands; i++)
5390 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5391 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5392 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5393 return 0;
5394
5395 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5396 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5397 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5398
5399 case RELOAD_FOR_INSN:
5400 /* These conflict with other outputs with RELOAD_OTHER. So
5401 we need only check for output addresses. */
5402
5403 opnum = reload_n_operands;
5404
5405 /* fall through */
5406
5407 case RELOAD_FOR_OUTPUT:
5408 case RELOAD_FOR_OUTPUT_ADDRESS:
5409 case RELOAD_FOR_OUTADDR_ADDRESS:
5410 /* We already know these can't conflict with a later output. So the
5411 only thing to check are later output addresses.
5412 Note that multiple output operands are emitted in reverse order,
5413 so the conflicting ones are those with lower indices. */
5414 for (i = 0; i < opnum; i++)
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5417 return 0;
5418
5419 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5420 could be killed if the register is also used by reload with type
5421 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5422 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5423 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5424 return 0;
5425
5426 return 1;
5427
5428 default:
5429 gcc_unreachable ();
5430 }
5431 }
5432
5433 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5434 every register in REG. */
5435
5436 static bool
5437 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5438 {
5439 unsigned int i;
5440
5441 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5442 if (!reload_reg_reaches_end_p (i, reloadnum))
5443 return false;
5444 return true;
5445 }
5446 \f
5447
5448 /* Returns whether R1 and R2 are uniquely chained: the value of one
5449 is used by the other, and that value is not used by any other
5450 reload for this insn. This is used to partially undo the decision
5451 made in find_reloads when in the case of multiple
5452 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5453 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5454 reloads. This code tries to avoid the conflict created by that
5455 change. It might be cleaner to explicitly keep track of which
5456 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5457 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5458 this after the fact. */
5459 static bool
5460 reloads_unique_chain_p (int r1, int r2)
5461 {
5462 int i;
5463
5464 /* We only check input reloads. */
5465 if (! rld[r1].in || ! rld[r2].in)
5466 return false;
5467
5468 /* Avoid anything with output reloads. */
5469 if (rld[r1].out || rld[r2].out)
5470 return false;
5471
5472 /* "chained" means one reload is a component of the other reload,
5473 not the same as the other reload. */
5474 if (rld[r1].opnum != rld[r2].opnum
5475 || rtx_equal_p (rld[r1].in, rld[r2].in)
5476 || rld[r1].optional || rld[r2].optional
5477 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5478 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5479 return false;
5480
5481 /* The following loop assumes that r1 is the reload that feeds r2. */
5482 if (r1 > r2)
5483 std::swap (r1, r2);
5484
5485 for (i = 0; i < n_reloads; i ++)
5486 /* Look for input reloads that aren't our two */
5487 if (i != r1 && i != r2 && rld[i].in)
5488 {
5489 /* If our reload is mentioned at all, it isn't a simple chain. */
5490 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5491 return false;
5492 }
5493 return true;
5494 }
5495
5496 /* The recursive function change all occurrences of WHAT in *WHERE
5497 to REPL. */
5498 static void
5499 substitute (rtx *where, const_rtx what, rtx repl)
5500 {
5501 const char *fmt;
5502 int i;
5503 enum rtx_code code;
5504
5505 if (*where == 0)
5506 return;
5507
5508 if (*where == what || rtx_equal_p (*where, what))
5509 {
5510 /* Record the location of the changed rtx. */
5511 substitute_stack.safe_push (where);
5512 *where = repl;
5513 return;
5514 }
5515
5516 code = GET_CODE (*where);
5517 fmt = GET_RTX_FORMAT (code);
5518 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5519 {
5520 if (fmt[i] == 'E')
5521 {
5522 int j;
5523
5524 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5525 substitute (&XVECEXP (*where, i, j), what, repl);
5526 }
5527 else if (fmt[i] == 'e')
5528 substitute (&XEXP (*where, i), what, repl);
5529 }
5530 }
5531
5532 /* The function returns TRUE if chain of reload R1 and R2 (in any
5533 order) can be evaluated without usage of intermediate register for
5534 the reload containing another reload. It is important to see
5535 gen_reload to understand what the function is trying to do. As an
5536 example, let us have reload chain
5537
5538 r2: const
5539 r1: <something> + const
5540
5541 and reload R2 got reload reg HR. The function returns true if
5542 there is a correct insn HR = HR + <something>. Otherwise,
5543 gen_reload will use intermediate register (and this is the reload
5544 reg for R1) to reload <something>.
5545
5546 We need this function to find a conflict for chain reloads. In our
5547 example, if HR = HR + <something> is incorrect insn, then we cannot
5548 use HR as a reload register for R2. If we do use it then we get a
5549 wrong code:
5550
5551 HR = const
5552 HR = <something>
5553 HR = HR + HR
5554
5555 */
5556 static bool
5557 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5558 {
5559 /* Assume other cases in gen_reload are not possible for
5560 chain reloads or do need an intermediate hard registers. */
5561 bool result = true;
5562 int regno, code;
5563 rtx out, in;
5564 rtx_insn *insn;
5565 rtx_insn *last = get_last_insn ();
5566
5567 /* Make r2 a component of r1. */
5568 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5569 std::swap (r1, r2);
5570
5571 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5572 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5573 gcc_assert (regno >= 0);
5574 out = gen_rtx_REG (rld[r1].mode, regno);
5575 in = rld[r1].in;
5576 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5577
5578 /* If IN is a paradoxical SUBREG, remove it and try to put the
5579 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5580 strip_paradoxical_subreg (&in, &out);
5581
5582 if (GET_CODE (in) == PLUS
5583 && (REG_P (XEXP (in, 0))
5584 || GET_CODE (XEXP (in, 0)) == SUBREG
5585 || MEM_P (XEXP (in, 0)))
5586 && (REG_P (XEXP (in, 1))
5587 || GET_CODE (XEXP (in, 1)) == SUBREG
5588 || CONSTANT_P (XEXP (in, 1))
5589 || MEM_P (XEXP (in, 1))))
5590 {
5591 insn = emit_insn (gen_rtx_SET (out, in));
5592 code = recog_memoized (insn);
5593 result = false;
5594
5595 if (code >= 0)
5596 {
5597 extract_insn (insn);
5598 /* We want constrain operands to treat this insn strictly in
5599 its validity determination, i.e., the way it would after
5600 reload has completed. */
5601 result = constrain_operands (1, get_enabled_alternatives (insn));
5602 }
5603
5604 delete_insns_since (last);
5605 }
5606
5607 /* Restore the original value at each changed address within R1. */
5608 while (!substitute_stack.is_empty ())
5609 {
5610 rtx *where = substitute_stack.pop ();
5611 *where = rld[r2].in;
5612 }
5613
5614 return result;
5615 }
5616
5617 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5618 Return 0 otherwise.
5619
5620 This function uses the same algorithm as reload_reg_free_p above. */
5621
5622 static int
5623 reloads_conflict (int r1, int r2)
5624 {
5625 enum reload_type r1_type = rld[r1].when_needed;
5626 enum reload_type r2_type = rld[r2].when_needed;
5627 int r1_opnum = rld[r1].opnum;
5628 int r2_opnum = rld[r2].opnum;
5629
5630 /* RELOAD_OTHER conflicts with everything. */
5631 if (r2_type == RELOAD_OTHER)
5632 return 1;
5633
5634 /* Otherwise, check conflicts differently for each type. */
5635
5636 switch (r1_type)
5637 {
5638 case RELOAD_FOR_INPUT:
5639 return (r2_type == RELOAD_FOR_INSN
5640 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5641 || r2_type == RELOAD_FOR_OPADDR_ADDR
5642 || r2_type == RELOAD_FOR_INPUT
5643 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5644 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5645 && r2_opnum > r1_opnum));
5646
5647 case RELOAD_FOR_INPUT_ADDRESS:
5648 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5649 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5650
5651 case RELOAD_FOR_INPADDR_ADDRESS:
5652 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5653 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5654
5655 case RELOAD_FOR_OUTPUT_ADDRESS:
5656 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5657 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5658
5659 case RELOAD_FOR_OUTADDR_ADDRESS:
5660 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5661 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5662
5663 case RELOAD_FOR_OPERAND_ADDRESS:
5664 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5665 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5666 && (!reloads_unique_chain_p (r1, r2)
5667 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5668
5669 case RELOAD_FOR_OPADDR_ADDR:
5670 return (r2_type == RELOAD_FOR_INPUT
5671 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5672
5673 case RELOAD_FOR_OUTPUT:
5674 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5675 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5676 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5677 && r2_opnum >= r1_opnum));
5678
5679 case RELOAD_FOR_INSN:
5680 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5681 || r2_type == RELOAD_FOR_INSN
5682 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5683
5684 case RELOAD_FOR_OTHER_ADDRESS:
5685 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5686
5687 case RELOAD_OTHER:
5688 return 1;
5689
5690 default:
5691 gcc_unreachable ();
5692 }
5693 }
5694 \f
5695 /* Indexed by reload number, 1 if incoming value
5696 inherited from previous insns. */
5697 static char reload_inherited[MAX_RELOADS];
5698
5699 /* For an inherited reload, this is the insn the reload was inherited from,
5700 if we know it. Otherwise, this is 0. */
5701 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5702
5703 /* If nonzero, this is a place to get the value of the reload,
5704 rather than using reload_in. */
5705 static rtx reload_override_in[MAX_RELOADS];
5706
5707 /* For each reload, the hard register number of the register used,
5708 or -1 if we did not need a register for this reload. */
5709 static int reload_spill_index[MAX_RELOADS];
5710
5711 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5712 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5713
5714 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5715 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5716
5717 /* Subroutine of free_for_value_p, used to check a single register.
5718 START_REGNO is the starting regno of the full reload register
5719 (possibly comprising multiple hard registers) that we are considering. */
5720
5721 static int
5722 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5723 enum reload_type type, rtx value, rtx out,
5724 int reloadnum, int ignore_address_reloads)
5725 {
5726 int time1;
5727 /* Set if we see an input reload that must not share its reload register
5728 with any new earlyclobber, but might otherwise share the reload
5729 register with an output or input-output reload. */
5730 int check_earlyclobber = 0;
5731 int i;
5732 int copy = 0;
5733
5734 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5735 return 0;
5736
5737 if (out == const0_rtx)
5738 {
5739 copy = 1;
5740 out = NULL_RTX;
5741 }
5742
5743 /* We use some pseudo 'time' value to check if the lifetimes of the
5744 new register use would overlap with the one of a previous reload
5745 that is not read-only or uses a different value.
5746 The 'time' used doesn't have to be linear in any shape or form, just
5747 monotonic.
5748 Some reload types use different 'buckets' for each operand.
5749 So there are MAX_RECOG_OPERANDS different time values for each
5750 such reload type.
5751 We compute TIME1 as the time when the register for the prospective
5752 new reload ceases to be live, and TIME2 for each existing
5753 reload as the time when that the reload register of that reload
5754 becomes live.
5755 Where there is little to be gained by exact lifetime calculations,
5756 we just make conservative assumptions, i.e. a longer lifetime;
5757 this is done in the 'default:' cases. */
5758 switch (type)
5759 {
5760 case RELOAD_FOR_OTHER_ADDRESS:
5761 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5762 time1 = copy ? 0 : 1;
5763 break;
5764 case RELOAD_OTHER:
5765 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5766 break;
5767 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5768 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5769 respectively, to the time values for these, we get distinct time
5770 values. To get distinct time values for each operand, we have to
5771 multiply opnum by at least three. We round that up to four because
5772 multiply by four is often cheaper. */
5773 case RELOAD_FOR_INPADDR_ADDRESS:
5774 time1 = opnum * 4 + 2;
5775 break;
5776 case RELOAD_FOR_INPUT_ADDRESS:
5777 time1 = opnum * 4 + 3;
5778 break;
5779 case RELOAD_FOR_INPUT:
5780 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5781 executes (inclusive). */
5782 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5783 break;
5784 case RELOAD_FOR_OPADDR_ADDR:
5785 /* opnum * 4 + 4
5786 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5787 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5788 break;
5789 case RELOAD_FOR_OPERAND_ADDRESS:
5790 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5791 is executed. */
5792 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5793 break;
5794 case RELOAD_FOR_OUTADDR_ADDRESS:
5795 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5796 break;
5797 case RELOAD_FOR_OUTPUT_ADDRESS:
5798 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5799 break;
5800 default:
5801 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5802 }
5803
5804 for (i = 0; i < n_reloads; i++)
5805 {
5806 rtx reg = rld[i].reg_rtx;
5807 if (reg && REG_P (reg)
5808 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5809 && i != reloadnum)
5810 {
5811 rtx other_input = rld[i].in;
5812
5813 /* If the other reload loads the same input value, that
5814 will not cause a conflict only if it's loading it into
5815 the same register. */
5816 if (true_regnum (reg) != start_regno)
5817 other_input = NULL_RTX;
5818 if (! other_input || ! rtx_equal_p (other_input, value)
5819 || rld[i].out || out)
5820 {
5821 int time2;
5822 switch (rld[i].when_needed)
5823 {
5824 case RELOAD_FOR_OTHER_ADDRESS:
5825 time2 = 0;
5826 break;
5827 case RELOAD_FOR_INPADDR_ADDRESS:
5828 /* find_reloads makes sure that a
5829 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5830 by at most one - the first -
5831 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5832 address reload is inherited, the address address reload
5833 goes away, so we can ignore this conflict. */
5834 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5835 && ignore_address_reloads
5836 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5837 Then the address address is still needed to store
5838 back the new address. */
5839 && ! rld[reloadnum].out)
5840 continue;
5841 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5842 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5843 reloads go away. */
5844 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5845 && ignore_address_reloads
5846 /* Unless we are reloading an auto_inc expression. */
5847 && ! rld[reloadnum].out)
5848 continue;
5849 time2 = rld[i].opnum * 4 + 2;
5850 break;
5851 case RELOAD_FOR_INPUT_ADDRESS:
5852 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5853 && ignore_address_reloads
5854 && ! rld[reloadnum].out)
5855 continue;
5856 time2 = rld[i].opnum * 4 + 3;
5857 break;
5858 case RELOAD_FOR_INPUT:
5859 time2 = rld[i].opnum * 4 + 4;
5860 check_earlyclobber = 1;
5861 break;
5862 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5863 == MAX_RECOG_OPERAND * 4 */
5864 case RELOAD_FOR_OPADDR_ADDR:
5865 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5866 && ignore_address_reloads
5867 && ! rld[reloadnum].out)
5868 continue;
5869 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5870 break;
5871 case RELOAD_FOR_OPERAND_ADDRESS:
5872 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5873 check_earlyclobber = 1;
5874 break;
5875 case RELOAD_FOR_INSN:
5876 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5877 break;
5878 case RELOAD_FOR_OUTPUT:
5879 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5880 instruction is executed. */
5881 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5882 break;
5883 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5884 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5885 value. */
5886 case RELOAD_FOR_OUTADDR_ADDRESS:
5887 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5888 && ignore_address_reloads
5889 && ! rld[reloadnum].out)
5890 continue;
5891 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5892 break;
5893 case RELOAD_FOR_OUTPUT_ADDRESS:
5894 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5895 break;
5896 case RELOAD_OTHER:
5897 /* If there is no conflict in the input part, handle this
5898 like an output reload. */
5899 if (! rld[i].in || rtx_equal_p (other_input, value))
5900 {
5901 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5902 /* Earlyclobbered outputs must conflict with inputs. */
5903 if (earlyclobber_operand_p (rld[i].out))
5904 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5905
5906 break;
5907 }
5908 time2 = 1;
5909 /* RELOAD_OTHER might be live beyond instruction execution,
5910 but this is not obvious when we set time2 = 1. So check
5911 here if there might be a problem with the new reload
5912 clobbering the register used by the RELOAD_OTHER. */
5913 if (out)
5914 return 0;
5915 break;
5916 default:
5917 return 0;
5918 }
5919 if ((time1 >= time2
5920 && (! rld[i].in || rld[i].out
5921 || ! rtx_equal_p (other_input, value)))
5922 || (out && rld[reloadnum].out_reg
5923 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5924 return 0;
5925 }
5926 }
5927 }
5928
5929 /* Earlyclobbered outputs must conflict with inputs. */
5930 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5931 return 0;
5932
5933 return 1;
5934 }
5935
5936 /* Return 1 if the value in reload reg REGNO, as used by a reload
5937 needed for the part of the insn specified by OPNUM and TYPE,
5938 may be used to load VALUE into it.
5939
5940 MODE is the mode in which the register is used, this is needed to
5941 determine how many hard regs to test.
5942
5943 Other read-only reloads with the same value do not conflict
5944 unless OUT is nonzero and these other reloads have to live while
5945 output reloads live.
5946 If OUT is CONST0_RTX, this is a special case: it means that the
5947 test should not be for using register REGNO as reload register, but
5948 for copying from register REGNO into the reload register.
5949
5950 RELOADNUM is the number of the reload we want to load this value for;
5951 a reload does not conflict with itself.
5952
5953 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5954 reloads that load an address for the very reload we are considering.
5955
5956 The caller has to make sure that there is no conflict with the return
5957 register. */
5958
5959 static int
5960 free_for_value_p (int regno, machine_mode mode, int opnum,
5961 enum reload_type type, rtx value, rtx out, int reloadnum,
5962 int ignore_address_reloads)
5963 {
5964 int nregs = hard_regno_nregs (regno, mode);
5965 while (nregs-- > 0)
5966 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5967 value, out, reloadnum,
5968 ignore_address_reloads))
5969 return 0;
5970 return 1;
5971 }
5972
5973 /* Return nonzero if the rtx X is invariant over the current function. */
5974 /* ??? Actually, the places where we use this expect exactly what is
5975 tested here, and not everything that is function invariant. In
5976 particular, the frame pointer and arg pointer are special cased;
5977 pic_offset_table_rtx is not, and we must not spill these things to
5978 memory. */
5979
5980 int
5981 function_invariant_p (const_rtx x)
5982 {
5983 if (CONSTANT_P (x))
5984 return 1;
5985 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5986 return 1;
5987 if (GET_CODE (x) == PLUS
5988 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5989 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5990 return 1;
5991 return 0;
5992 }
5993
5994 /* Determine whether the reload reg X overlaps any rtx'es used for
5995 overriding inheritance. Return nonzero if so. */
5996
5997 static int
5998 conflicts_with_override (rtx x)
5999 {
6000 int i;
6001 for (i = 0; i < n_reloads; i++)
6002 if (reload_override_in[i]
6003 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6004 return 1;
6005 return 0;
6006 }
6007 \f
6008 /* Give an error message saying we failed to find a reload for INSN,
6009 and clear out reload R. */
6010 static void
6011 failed_reload (rtx_insn *insn, int r)
6012 {
6013 if (asm_noperands (PATTERN (insn)) < 0)
6014 /* It's the compiler's fault. */
6015 fatal_insn ("could not find a spill register", insn);
6016
6017 /* It's the user's fault; the operand's mode and constraint
6018 don't match. Disable this reload so we don't crash in final. */
6019 error_for_asm (insn,
6020 "%<asm%> operand constraint incompatible with operand size");
6021 rld[r].in = 0;
6022 rld[r].out = 0;
6023 rld[r].reg_rtx = 0;
6024 rld[r].optional = 1;
6025 rld[r].secondary_p = 1;
6026 }
6027
6028 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6029 for reload R. If it's valid, get an rtx for it. Return nonzero if
6030 successful. */
6031 static int
6032 set_reload_reg (int i, int r)
6033 {
6034 int regno;
6035 rtx reg = spill_reg_rtx[i];
6036
6037 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6038 spill_reg_rtx[i] = reg
6039 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6040
6041 regno = true_regnum (reg);
6042
6043 /* Detect when the reload reg can't hold the reload mode.
6044 This used to be one `if', but Sequent compiler can't handle that. */
6045 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6046 {
6047 machine_mode test_mode = VOIDmode;
6048 if (rld[r].in)
6049 test_mode = GET_MODE (rld[r].in);
6050 /* If rld[r].in has VOIDmode, it means we will load it
6051 in whatever mode the reload reg has: to wit, rld[r].mode.
6052 We have already tested that for validity. */
6053 /* Aside from that, we need to test that the expressions
6054 to reload from or into have modes which are valid for this
6055 reload register. Otherwise the reload insns would be invalid. */
6056 if (! (rld[r].in != 0 && test_mode != VOIDmode
6057 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6058 if (! (rld[r].out != 0
6059 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6060 {
6061 /* The reg is OK. */
6062 last_spill_reg = i;
6063
6064 /* Mark as in use for this insn the reload regs we use
6065 for this. */
6066 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6067 rld[r].when_needed, rld[r].mode);
6068
6069 rld[r].reg_rtx = reg;
6070 reload_spill_index[r] = spill_regs[i];
6071 return 1;
6072 }
6073 }
6074 return 0;
6075 }
6076
6077 /* Find a spill register to use as a reload register for reload R.
6078 LAST_RELOAD is nonzero if this is the last reload for the insn being
6079 processed.
6080
6081 Set rld[R].reg_rtx to the register allocated.
6082
6083 We return 1 if successful, or 0 if we couldn't find a spill reg and
6084 we didn't change anything. */
6085
6086 static int
6087 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6088 int last_reload)
6089 {
6090 int i, pass, count;
6091
6092 /* If we put this reload ahead, thinking it is a group,
6093 then insist on finding a group. Otherwise we can grab a
6094 reg that some other reload needs.
6095 (That can happen when we have a 68000 DATA_OR_FP_REG
6096 which is a group of data regs or one fp reg.)
6097 We need not be so restrictive if there are no more reloads
6098 for this insn.
6099
6100 ??? Really it would be nicer to have smarter handling
6101 for that kind of reg class, where a problem like this is normal.
6102 Perhaps those classes should be avoided for reloading
6103 by use of more alternatives. */
6104
6105 int force_group = rld[r].nregs > 1 && ! last_reload;
6106
6107 /* If we want a single register and haven't yet found one,
6108 take any reg in the right class and not in use.
6109 If we want a consecutive group, here is where we look for it.
6110
6111 We use three passes so we can first look for reload regs to
6112 reuse, which are already in use for other reloads in this insn,
6113 and only then use additional registers which are not "bad", then
6114 finally any register.
6115
6116 I think that maximizing reuse is needed to make sure we don't
6117 run out of reload regs. Suppose we have three reloads, and
6118 reloads A and B can share regs. These need two regs.
6119 Suppose A and B are given different regs.
6120 That leaves none for C. */
6121 for (pass = 0; pass < 3; pass++)
6122 {
6123 /* I is the index in spill_regs.
6124 We advance it round-robin between insns to use all spill regs
6125 equally, so that inherited reloads have a chance
6126 of leapfrogging each other. */
6127
6128 i = last_spill_reg;
6129
6130 for (count = 0; count < n_spills; count++)
6131 {
6132 int rclass = (int) rld[r].rclass;
6133 int regnum;
6134
6135 i++;
6136 if (i >= n_spills)
6137 i -= n_spills;
6138 regnum = spill_regs[i];
6139
6140 if ((reload_reg_free_p (regnum, rld[r].opnum,
6141 rld[r].when_needed)
6142 || (rld[r].in
6143 /* We check reload_reg_used to make sure we
6144 don't clobber the return register. */
6145 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6146 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6147 rld[r].when_needed, rld[r].in,
6148 rld[r].out, r, 1)))
6149 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6150 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6151 /* Look first for regs to share, then for unshared. But
6152 don't share regs used for inherited reloads; they are
6153 the ones we want to preserve. */
6154 && (pass
6155 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6156 regnum)
6157 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6158 regnum))))
6159 {
6160 int nr = hard_regno_nregs (regnum, rld[r].mode);
6161
6162 /* During the second pass we want to avoid reload registers
6163 which are "bad" for this reload. */
6164 if (pass == 1
6165 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6166 continue;
6167
6168 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6169 (on 68000) got us two FP regs. If NR is 1,
6170 we would reject both of them. */
6171 if (force_group)
6172 nr = rld[r].nregs;
6173 /* If we need only one reg, we have already won. */
6174 if (nr == 1)
6175 {
6176 /* But reject a single reg if we demand a group. */
6177 if (force_group)
6178 continue;
6179 break;
6180 }
6181 /* Otherwise check that as many consecutive regs as we need
6182 are available here. */
6183 while (nr > 1)
6184 {
6185 int regno = regnum + nr - 1;
6186 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6187 && spill_reg_order[regno] >= 0
6188 && reload_reg_free_p (regno, rld[r].opnum,
6189 rld[r].when_needed)))
6190 break;
6191 nr--;
6192 }
6193 if (nr == 1)
6194 break;
6195 }
6196 }
6197
6198 /* If we found something on the current pass, omit later passes. */
6199 if (count < n_spills)
6200 break;
6201 }
6202
6203 /* We should have found a spill register by now. */
6204 if (count >= n_spills)
6205 return 0;
6206
6207 /* I is the index in SPILL_REG_RTX of the reload register we are to
6208 allocate. Get an rtx for it and find its register number. */
6209
6210 return set_reload_reg (i, r);
6211 }
6212 \f
6213 /* Initialize all the tables needed to allocate reload registers.
6214 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6215 is the array we use to restore the reg_rtx field for every reload. */
6216
6217 static void
6218 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6219 {
6220 int i;
6221
6222 for (i = 0; i < n_reloads; i++)
6223 rld[i].reg_rtx = save_reload_reg_rtx[i];
6224
6225 memset (reload_inherited, 0, MAX_RELOADS);
6226 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6227 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6228
6229 CLEAR_HARD_REG_SET (reload_reg_used);
6230 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6231 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6232 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6233 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6235
6236 CLEAR_HARD_REG_SET (reg_used_in_insn);
6237 {
6238 HARD_REG_SET tmp;
6239 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6240 reg_used_in_insn |= tmp;
6241 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6242 reg_used_in_insn |= tmp;
6243 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6244 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6245 }
6246
6247 for (i = 0; i < reload_n_operands; i++)
6248 {
6249 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6250 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6251 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6252 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6253 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6254 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6255 }
6256
6257 reload_reg_unavailable = ~chain->used_spill_regs;
6258
6259 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6260
6261 for (i = 0; i < n_reloads; i++)
6262 /* If we have already decided to use a certain register,
6263 don't use it in another way. */
6264 if (rld[i].reg_rtx)
6265 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6266 rld[i].when_needed, rld[i].mode);
6267 }
6268
6269 /* If X is not a subreg, return it unmodified. If it is a subreg,
6270 look up whether we made a replacement for the SUBREG_REG. Return
6271 either the replacement or the SUBREG_REG. */
6272
6273 static rtx
6274 replaced_subreg (rtx x)
6275 {
6276 if (GET_CODE (x) == SUBREG)
6277 return find_replacement (&SUBREG_REG (x));
6278 return x;
6279 }
6280
6281 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6282 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6283 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6284 otherwise it is NULL. */
6285
6286 static poly_int64
6287 compute_reload_subreg_offset (machine_mode outermode,
6288 rtx subreg,
6289 machine_mode innermode)
6290 {
6291 poly_int64 outer_offset;
6292 machine_mode middlemode;
6293
6294 if (!subreg)
6295 return subreg_lowpart_offset (outermode, innermode);
6296
6297 outer_offset = SUBREG_BYTE (subreg);
6298 middlemode = GET_MODE (SUBREG_REG (subreg));
6299
6300 /* If SUBREG is paradoxical then return the normal lowpart offset
6301 for OUTERMODE and INNERMODE. Our caller has already checked
6302 that OUTERMODE fits in INNERMODE. */
6303 if (paradoxical_subreg_p (outermode, middlemode))
6304 return subreg_lowpart_offset (outermode, innermode);
6305
6306 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6307 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6308 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6309 }
6310
6311 /* Assign hard reg targets for the pseudo-registers we must reload
6312 into hard regs for this insn.
6313 Also output the instructions to copy them in and out of the hard regs.
6314
6315 For machines with register classes, we are responsible for
6316 finding a reload reg in the proper class. */
6317
6318 static void
6319 choose_reload_regs (class insn_chain *chain)
6320 {
6321 rtx_insn *insn = chain->insn;
6322 int i, j;
6323 unsigned int max_group_size = 1;
6324 enum reg_class group_class = NO_REGS;
6325 int pass, win, inheritance;
6326
6327 rtx save_reload_reg_rtx[MAX_RELOADS];
6328
6329 /* In order to be certain of getting the registers we need,
6330 we must sort the reloads into order of increasing register class.
6331 Then our grabbing of reload registers will parallel the process
6332 that provided the reload registers.
6333
6334 Also note whether any of the reloads wants a consecutive group of regs.
6335 If so, record the maximum size of the group desired and what
6336 register class contains all the groups needed by this insn. */
6337
6338 for (j = 0; j < n_reloads; j++)
6339 {
6340 reload_order[j] = j;
6341 if (rld[j].reg_rtx != NULL_RTX)
6342 {
6343 gcc_assert (REG_P (rld[j].reg_rtx)
6344 && HARD_REGISTER_P (rld[j].reg_rtx));
6345 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6346 }
6347 else
6348 reload_spill_index[j] = -1;
6349
6350 if (rld[j].nregs > 1)
6351 {
6352 max_group_size = MAX (rld[j].nregs, max_group_size);
6353 group_class
6354 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6355 }
6356
6357 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6358 }
6359
6360 if (n_reloads > 1)
6361 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6362
6363 /* If -O, try first with inheritance, then turning it off.
6364 If not -O, don't do inheritance.
6365 Using inheritance when not optimizing leads to paradoxes
6366 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6367 because one side of the comparison might be inherited. */
6368 win = 0;
6369 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6370 {
6371 choose_reload_regs_init (chain, save_reload_reg_rtx);
6372
6373 /* Process the reloads in order of preference just found.
6374 Beyond this point, subregs can be found in reload_reg_rtx.
6375
6376 This used to look for an existing reloaded home for all of the
6377 reloads, and only then perform any new reloads. But that could lose
6378 if the reloads were done out of reg-class order because a later
6379 reload with a looser constraint might have an old home in a register
6380 needed by an earlier reload with a tighter constraint.
6381
6382 To solve this, we make two passes over the reloads, in the order
6383 described above. In the first pass we try to inherit a reload
6384 from a previous insn. If there is a later reload that needs a
6385 class that is a proper subset of the class being processed, we must
6386 also allocate a spill register during the first pass.
6387
6388 Then make a second pass over the reloads to allocate any reloads
6389 that haven't been given registers yet. */
6390
6391 for (j = 0; j < n_reloads; j++)
6392 {
6393 int r = reload_order[j];
6394 rtx search_equiv = NULL_RTX;
6395
6396 /* Ignore reloads that got marked inoperative. */
6397 if (rld[r].out == 0 && rld[r].in == 0
6398 && ! rld[r].secondary_p)
6399 continue;
6400
6401 /* If find_reloads chose to use reload_in or reload_out as a reload
6402 register, we don't need to chose one. Otherwise, try even if it
6403 found one since we might save an insn if we find the value lying
6404 around.
6405 Try also when reload_in is a pseudo without a hard reg. */
6406 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6407 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6408 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6409 && !MEM_P (rld[r].in)
6410 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6411 continue;
6412
6413 #if 0 /* No longer needed for correct operation.
6414 It might give better code, or might not; worth an experiment? */
6415 /* If this is an optional reload, we can't inherit from earlier insns
6416 until we are sure that any non-optional reloads have been allocated.
6417 The following code takes advantage of the fact that optional reloads
6418 are at the end of reload_order. */
6419 if (rld[r].optional != 0)
6420 for (i = 0; i < j; i++)
6421 if ((rld[reload_order[i]].out != 0
6422 || rld[reload_order[i]].in != 0
6423 || rld[reload_order[i]].secondary_p)
6424 && ! rld[reload_order[i]].optional
6425 && rld[reload_order[i]].reg_rtx == 0)
6426 allocate_reload_reg (chain, reload_order[i], 0);
6427 #endif
6428
6429 /* First see if this pseudo is already available as reloaded
6430 for a previous insn. We cannot try to inherit for reloads
6431 that are smaller than the maximum number of registers needed
6432 for groups unless the register we would allocate cannot be used
6433 for the groups.
6434
6435 We could check here to see if this is a secondary reload for
6436 an object that is already in a register of the desired class.
6437 This would avoid the need for the secondary reload register.
6438 But this is complex because we can't easily determine what
6439 objects might want to be loaded via this reload. So let a
6440 register be allocated here. In `emit_reload_insns' we suppress
6441 one of the loads in the case described above. */
6442
6443 if (inheritance)
6444 {
6445 poly_int64 byte = 0;
6446 int regno = -1;
6447 machine_mode mode = VOIDmode;
6448 rtx subreg = NULL_RTX;
6449
6450 if (rld[r].in == 0)
6451 ;
6452 else if (REG_P (rld[r].in))
6453 {
6454 regno = REGNO (rld[r].in);
6455 mode = GET_MODE (rld[r].in);
6456 }
6457 else if (REG_P (rld[r].in_reg))
6458 {
6459 regno = REGNO (rld[r].in_reg);
6460 mode = GET_MODE (rld[r].in_reg);
6461 }
6462 else if (GET_CODE (rld[r].in_reg) == SUBREG
6463 && REG_P (SUBREG_REG (rld[r].in_reg)))
6464 {
6465 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6466 if (regno < FIRST_PSEUDO_REGISTER)
6467 regno = subreg_regno (rld[r].in_reg);
6468 else
6469 {
6470 subreg = rld[r].in_reg;
6471 byte = SUBREG_BYTE (subreg);
6472 }
6473 mode = GET_MODE (rld[r].in_reg);
6474 }
6475 #if AUTO_INC_DEC
6476 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6477 && REG_P (XEXP (rld[r].in_reg, 0)))
6478 {
6479 regno = REGNO (XEXP (rld[r].in_reg, 0));
6480 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6481 rld[r].out = rld[r].in;
6482 }
6483 #endif
6484 #if 0
6485 /* This won't work, since REGNO can be a pseudo reg number.
6486 Also, it takes much more hair to keep track of all the things
6487 that can invalidate an inherited reload of part of a pseudoreg. */
6488 else if (GET_CODE (rld[r].in) == SUBREG
6489 && REG_P (SUBREG_REG (rld[r].in)))
6490 regno = subreg_regno (rld[r].in);
6491 #endif
6492
6493 if (regno >= 0
6494 && reg_last_reload_reg[regno] != 0
6495 && (known_ge
6496 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6497 GET_MODE_SIZE (mode) + byte))
6498 /* Verify that the register it's in can be used in
6499 mode MODE. */
6500 && (REG_CAN_CHANGE_MODE_P
6501 (REGNO (reg_last_reload_reg[regno]),
6502 GET_MODE (reg_last_reload_reg[regno]),
6503 mode)))
6504 {
6505 enum reg_class rclass = rld[r].rclass, last_class;
6506 rtx last_reg = reg_last_reload_reg[regno];
6507
6508 i = REGNO (last_reg);
6509 byte = compute_reload_subreg_offset (mode,
6510 subreg,
6511 GET_MODE (last_reg));
6512 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6513 last_class = REGNO_REG_CLASS (i);
6514
6515 if (reg_reloaded_contents[i] == regno
6516 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6517 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6518 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6519 /* Even if we can't use this register as a reload
6520 register, we might use it for reload_override_in,
6521 if copying it to the desired class is cheap
6522 enough. */
6523 || ((register_move_cost (mode, last_class, rclass)
6524 < memory_move_cost (mode, rclass, true))
6525 && (secondary_reload_class (1, rclass, mode,
6526 last_reg)
6527 == NO_REGS)
6528 && !(targetm.secondary_memory_needed
6529 (mode, last_class, rclass))))
6530 && (rld[r].nregs == max_group_size
6531 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6532 i))
6533 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6534 rld[r].when_needed, rld[r].in,
6535 const0_rtx, r, 1))
6536 {
6537 /* If a group is needed, verify that all the subsequent
6538 registers still have their values intact. */
6539 int nr = hard_regno_nregs (i, rld[r].mode);
6540 int k;
6541
6542 for (k = 1; k < nr; k++)
6543 if (reg_reloaded_contents[i + k] != regno
6544 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6545 break;
6546
6547 if (k == nr)
6548 {
6549 int i1;
6550 int bad_for_class;
6551
6552 last_reg = (GET_MODE (last_reg) == mode
6553 ? last_reg : gen_rtx_REG (mode, i));
6554
6555 bad_for_class = 0;
6556 for (k = 0; k < nr; k++)
6557 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6558 i+k);
6559
6560 /* We found a register that contains the
6561 value we need. If this register is the
6562 same as an `earlyclobber' operand of the
6563 current insn, just mark it as a place to
6564 reload from since we can't use it as the
6565 reload register itself. */
6566
6567 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6568 if (reg_overlap_mentioned_for_reload_p
6569 (reg_last_reload_reg[regno],
6570 reload_earlyclobbers[i1]))
6571 break;
6572
6573 if (i1 != n_earlyclobbers
6574 || ! (free_for_value_p (i, rld[r].mode,
6575 rld[r].opnum,
6576 rld[r].when_needed, rld[r].in,
6577 rld[r].out, r, 1))
6578 /* Don't use it if we'd clobber a pseudo reg. */
6579 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6580 && rld[r].out
6581 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6582 /* Don't clobber the frame pointer. */
6583 || (i == HARD_FRAME_POINTER_REGNUM
6584 && frame_pointer_needed
6585 && rld[r].out)
6586 /* Don't really use the inherited spill reg
6587 if we need it wider than we've got it. */
6588 || paradoxical_subreg_p (rld[r].mode, mode)
6589 || bad_for_class
6590
6591 /* If find_reloads chose reload_out as reload
6592 register, stay with it - that leaves the
6593 inherited register for subsequent reloads. */
6594 || (rld[r].out && rld[r].reg_rtx
6595 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6596 {
6597 if (! rld[r].optional)
6598 {
6599 reload_override_in[r] = last_reg;
6600 reload_inheritance_insn[r]
6601 = reg_reloaded_insn[i];
6602 }
6603 }
6604 else
6605 {
6606 int k;
6607 /* We can use this as a reload reg. */
6608 /* Mark the register as in use for this part of
6609 the insn. */
6610 mark_reload_reg_in_use (i,
6611 rld[r].opnum,
6612 rld[r].when_needed,
6613 rld[r].mode);
6614 rld[r].reg_rtx = last_reg;
6615 reload_inherited[r] = 1;
6616 reload_inheritance_insn[r]
6617 = reg_reloaded_insn[i];
6618 reload_spill_index[r] = i;
6619 for (k = 0; k < nr; k++)
6620 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6621 i + k);
6622 }
6623 }
6624 }
6625 }
6626 }
6627
6628 /* Here's another way to see if the value is already lying around. */
6629 if (inheritance
6630 && rld[r].in != 0
6631 && ! reload_inherited[r]
6632 && rld[r].out == 0
6633 && (CONSTANT_P (rld[r].in)
6634 || GET_CODE (rld[r].in) == PLUS
6635 || REG_P (rld[r].in)
6636 || MEM_P (rld[r].in))
6637 && (rld[r].nregs == max_group_size
6638 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6639 search_equiv = rld[r].in;
6640
6641 if (search_equiv)
6642 {
6643 rtx equiv
6644 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6645 -1, NULL, 0, rld[r].mode);
6646 int regno = 0;
6647
6648 if (equiv != 0)
6649 {
6650 if (REG_P (equiv))
6651 regno = REGNO (equiv);
6652 else
6653 {
6654 /* This must be a SUBREG of a hard register.
6655 Make a new REG since this might be used in an
6656 address and not all machines support SUBREGs
6657 there. */
6658 gcc_assert (GET_CODE (equiv) == SUBREG);
6659 regno = subreg_regno (equiv);
6660 equiv = gen_rtx_REG (rld[r].mode, regno);
6661 /* If we choose EQUIV as the reload register, but the
6662 loop below decides to cancel the inheritance, we'll
6663 end up reloading EQUIV in rld[r].mode, not the mode
6664 it had originally. That isn't safe when EQUIV isn't
6665 available as a spill register since its value might
6666 still be live at this point. */
6667 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6668 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6669 equiv = 0;
6670 }
6671 }
6672
6673 /* If we found a spill reg, reject it unless it is free
6674 and of the desired class. */
6675 if (equiv != 0)
6676 {
6677 int regs_used = 0;
6678 int bad_for_class = 0;
6679 int max_regno = regno + rld[r].nregs;
6680
6681 for (i = regno; i < max_regno; i++)
6682 {
6683 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6684 i);
6685 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6686 i);
6687 }
6688
6689 if ((regs_used
6690 && ! free_for_value_p (regno, rld[r].mode,
6691 rld[r].opnum, rld[r].when_needed,
6692 rld[r].in, rld[r].out, r, 1))
6693 || bad_for_class)
6694 equiv = 0;
6695 }
6696
6697 if (equiv != 0
6698 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6699 equiv = 0;
6700
6701 /* We found a register that contains the value we need.
6702 If this register is the same as an `earlyclobber' operand
6703 of the current insn, just mark it as a place to reload from
6704 since we can't use it as the reload register itself. */
6705
6706 if (equiv != 0)
6707 for (i = 0; i < n_earlyclobbers; i++)
6708 if (reg_overlap_mentioned_for_reload_p (equiv,
6709 reload_earlyclobbers[i]))
6710 {
6711 if (! rld[r].optional)
6712 reload_override_in[r] = equiv;
6713 equiv = 0;
6714 break;
6715 }
6716
6717 /* If the equiv register we have found is explicitly clobbered
6718 in the current insn, it depends on the reload type if we
6719 can use it, use it for reload_override_in, or not at all.
6720 In particular, we then can't use EQUIV for a
6721 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6722
6723 if (equiv != 0)
6724 {
6725 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6726 switch (rld[r].when_needed)
6727 {
6728 case RELOAD_FOR_OTHER_ADDRESS:
6729 case RELOAD_FOR_INPADDR_ADDRESS:
6730 case RELOAD_FOR_INPUT_ADDRESS:
6731 case RELOAD_FOR_OPADDR_ADDR:
6732 break;
6733 case RELOAD_OTHER:
6734 case RELOAD_FOR_INPUT:
6735 case RELOAD_FOR_OPERAND_ADDRESS:
6736 if (! rld[r].optional)
6737 reload_override_in[r] = equiv;
6738 /* Fall through. */
6739 default:
6740 equiv = 0;
6741 break;
6742 }
6743 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6744 switch (rld[r].when_needed)
6745 {
6746 case RELOAD_FOR_OTHER_ADDRESS:
6747 case RELOAD_FOR_INPADDR_ADDRESS:
6748 case RELOAD_FOR_INPUT_ADDRESS:
6749 case RELOAD_FOR_OPADDR_ADDR:
6750 case RELOAD_FOR_OPERAND_ADDRESS:
6751 case RELOAD_FOR_INPUT:
6752 break;
6753 case RELOAD_OTHER:
6754 if (! rld[r].optional)
6755 reload_override_in[r] = equiv;
6756 /* Fall through. */
6757 default:
6758 equiv = 0;
6759 break;
6760 }
6761 }
6762
6763 /* If we found an equivalent reg, say no code need be generated
6764 to load it, and use it as our reload reg. */
6765 if (equiv != 0
6766 && (regno != HARD_FRAME_POINTER_REGNUM
6767 || !frame_pointer_needed))
6768 {
6769 int nr = hard_regno_nregs (regno, rld[r].mode);
6770 int k;
6771 rld[r].reg_rtx = equiv;
6772 reload_spill_index[r] = regno;
6773 reload_inherited[r] = 1;
6774
6775 /* If reg_reloaded_valid is not set for this register,
6776 there might be a stale spill_reg_store lying around.
6777 We must clear it, since otherwise emit_reload_insns
6778 might delete the store. */
6779 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6780 spill_reg_store[regno] = NULL;
6781 /* If any of the hard registers in EQUIV are spill
6782 registers, mark them as in use for this insn. */
6783 for (k = 0; k < nr; k++)
6784 {
6785 i = spill_reg_order[regno + k];
6786 if (i >= 0)
6787 {
6788 mark_reload_reg_in_use (regno, rld[r].opnum,
6789 rld[r].when_needed,
6790 rld[r].mode);
6791 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6792 regno + k);
6793 }
6794 }
6795 }
6796 }
6797
6798 /* If we found a register to use already, or if this is an optional
6799 reload, we are done. */
6800 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6801 continue;
6802
6803 #if 0
6804 /* No longer needed for correct operation. Might or might
6805 not give better code on the average. Want to experiment? */
6806
6807 /* See if there is a later reload that has a class different from our
6808 class that intersects our class or that requires less register
6809 than our reload. If so, we must allocate a register to this
6810 reload now, since that reload might inherit a previous reload
6811 and take the only available register in our class. Don't do this
6812 for optional reloads since they will force all previous reloads
6813 to be allocated. Also don't do this for reloads that have been
6814 turned off. */
6815
6816 for (i = j + 1; i < n_reloads; i++)
6817 {
6818 int s = reload_order[i];
6819
6820 if ((rld[s].in == 0 && rld[s].out == 0
6821 && ! rld[s].secondary_p)
6822 || rld[s].optional)
6823 continue;
6824
6825 if ((rld[s].rclass != rld[r].rclass
6826 && reg_classes_intersect_p (rld[r].rclass,
6827 rld[s].rclass))
6828 || rld[s].nregs < rld[r].nregs)
6829 break;
6830 }
6831
6832 if (i == n_reloads)
6833 continue;
6834
6835 allocate_reload_reg (chain, r, j == n_reloads - 1);
6836 #endif
6837 }
6838
6839 /* Now allocate reload registers for anything non-optional that
6840 didn't get one yet. */
6841 for (j = 0; j < n_reloads; j++)
6842 {
6843 int r = reload_order[j];
6844
6845 /* Ignore reloads that got marked inoperative. */
6846 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6847 continue;
6848
6849 /* Skip reloads that already have a register allocated or are
6850 optional. */
6851 if (rld[r].reg_rtx != 0 || rld[r].optional)
6852 continue;
6853
6854 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6855 break;
6856 }
6857
6858 /* If that loop got all the way, we have won. */
6859 if (j == n_reloads)
6860 {
6861 win = 1;
6862 break;
6863 }
6864
6865 /* Loop around and try without any inheritance. */
6866 }
6867
6868 if (! win)
6869 {
6870 /* First undo everything done by the failed attempt
6871 to allocate with inheritance. */
6872 choose_reload_regs_init (chain, save_reload_reg_rtx);
6873
6874 /* Some sanity tests to verify that the reloads found in the first
6875 pass are identical to the ones we have now. */
6876 gcc_assert (chain->n_reloads == n_reloads);
6877
6878 for (i = 0; i < n_reloads; i++)
6879 {
6880 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6881 continue;
6882 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6883 for (j = 0; j < n_spills; j++)
6884 if (spill_regs[j] == chain->rld[i].regno)
6885 if (! set_reload_reg (j, i))
6886 failed_reload (chain->insn, i);
6887 }
6888 }
6889
6890 /* If we thought we could inherit a reload, because it seemed that
6891 nothing else wanted the same reload register earlier in the insn,
6892 verify that assumption, now that all reloads have been assigned.
6893 Likewise for reloads where reload_override_in has been set. */
6894
6895 /* If doing expensive optimizations, do one preliminary pass that doesn't
6896 cancel any inheritance, but removes reloads that have been needed only
6897 for reloads that we know can be inherited. */
6898 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6899 {
6900 for (j = 0; j < n_reloads; j++)
6901 {
6902 int r = reload_order[j];
6903 rtx check_reg;
6904 rtx tem;
6905 if (reload_inherited[r] && rld[r].reg_rtx)
6906 check_reg = rld[r].reg_rtx;
6907 else if (reload_override_in[r]
6908 && (REG_P (reload_override_in[r])
6909 || GET_CODE (reload_override_in[r]) == SUBREG))
6910 check_reg = reload_override_in[r];
6911 else
6912 continue;
6913 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6914 rld[r].opnum, rld[r].when_needed, rld[r].in,
6915 (reload_inherited[r]
6916 ? rld[r].out : const0_rtx),
6917 r, 1))
6918 {
6919 if (pass)
6920 continue;
6921 reload_inherited[r] = 0;
6922 reload_override_in[r] = 0;
6923 }
6924 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6925 reload_override_in, then we do not need its related
6926 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6927 likewise for other reload types.
6928 We handle this by removing a reload when its only replacement
6929 is mentioned in reload_in of the reload we are going to inherit.
6930 A special case are auto_inc expressions; even if the input is
6931 inherited, we still need the address for the output. We can
6932 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6933 If we succeeded removing some reload and we are doing a preliminary
6934 pass just to remove such reloads, make another pass, since the
6935 removal of one reload might allow us to inherit another one. */
6936 else if (rld[r].in
6937 && rld[r].out != rld[r].in
6938 && remove_address_replacements (rld[r].in))
6939 {
6940 if (pass)
6941 pass = 2;
6942 }
6943 /* If we needed a memory location for the reload, we also have to
6944 remove its related reloads. */
6945 else if (rld[r].in
6946 && rld[r].out != rld[r].in
6947 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6948 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6949 && (targetm.secondary_memory_needed
6950 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6951 rld[r].rclass))
6952 && remove_address_replacements
6953 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6954 rld[r].when_needed)))
6955 {
6956 if (pass)
6957 pass = 2;
6958 }
6959 }
6960 }
6961
6962 /* Now that reload_override_in is known valid,
6963 actually override reload_in. */
6964 for (j = 0; j < n_reloads; j++)
6965 if (reload_override_in[j])
6966 rld[j].in = reload_override_in[j];
6967
6968 /* If this reload won't be done because it has been canceled or is
6969 optional and not inherited, clear reload_reg_rtx so other
6970 routines (such as subst_reloads) don't get confused. */
6971 for (j = 0; j < n_reloads; j++)
6972 if (rld[j].reg_rtx != 0
6973 && ((rld[j].optional && ! reload_inherited[j])
6974 || (rld[j].in == 0 && rld[j].out == 0
6975 && ! rld[j].secondary_p)))
6976 {
6977 int regno = true_regnum (rld[j].reg_rtx);
6978
6979 if (spill_reg_order[regno] >= 0)
6980 clear_reload_reg_in_use (regno, rld[j].opnum,
6981 rld[j].when_needed, rld[j].mode);
6982 rld[j].reg_rtx = 0;
6983 reload_spill_index[j] = -1;
6984 }
6985
6986 /* Record which pseudos and which spill regs have output reloads. */
6987 for (j = 0; j < n_reloads; j++)
6988 {
6989 int r = reload_order[j];
6990
6991 i = reload_spill_index[r];
6992
6993 /* I is nonneg if this reload uses a register.
6994 If rld[r].reg_rtx is 0, this is an optional reload
6995 that we opted to ignore. */
6996 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6997 && rld[r].reg_rtx != 0)
6998 {
6999 int nregno = REGNO (rld[r].out_reg);
7000 int nr = 1;
7001
7002 if (nregno < FIRST_PSEUDO_REGISTER)
7003 nr = hard_regno_nregs (nregno, rld[r].mode);
7004
7005 while (--nr >= 0)
7006 SET_REGNO_REG_SET (&reg_has_output_reload,
7007 nregno + nr);
7008
7009 if (i >= 0)
7010 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7011
7012 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7013 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7014 || rld[r].when_needed == RELOAD_FOR_INSN);
7015 }
7016 }
7017 }
7018
7019 /* Deallocate the reload register for reload R. This is called from
7020 remove_address_replacements. */
7021
7022 void
7023 deallocate_reload_reg (int r)
7024 {
7025 int regno;
7026
7027 if (! rld[r].reg_rtx)
7028 return;
7029 regno = true_regnum (rld[r].reg_rtx);
7030 rld[r].reg_rtx = 0;
7031 if (spill_reg_order[regno] >= 0)
7032 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7033 rld[r].mode);
7034 reload_spill_index[r] = -1;
7035 }
7036 \f
7037 /* These arrays are filled by emit_reload_insns and its subroutines. */
7038 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7039 static rtx_insn *other_input_address_reload_insns = 0;
7040 static rtx_insn *other_input_reload_insns = 0;
7041 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7042 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7043 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7044 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7045 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7046 static rtx_insn *operand_reload_insns = 0;
7047 static rtx_insn *other_operand_reload_insns = 0;
7048 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7049
7050 /* Values to be put in spill_reg_store are put here first. Instructions
7051 must only be placed here if the associated reload register reaches
7052 the end of the instruction's reload sequence. */
7053 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7054 static HARD_REG_SET reg_reloaded_died;
7055
7056 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7057 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7058 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7059 adjusted register, and return true. Otherwise, return false. */
7060 static bool
7061 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7062 enum reg_class new_class,
7063 machine_mode new_mode)
7064
7065 {
7066 rtx reg;
7067
7068 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7069 {
7070 unsigned regno = REGNO (reg);
7071
7072 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7073 continue;
7074 if (GET_MODE (reg) != new_mode)
7075 {
7076 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7077 continue;
7078 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7079 continue;
7080 reg = reload_adjust_reg_for_mode (reg, new_mode);
7081 }
7082 *reload_reg = reg;
7083 return true;
7084 }
7085 return false;
7086 }
7087
7088 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7089 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7090 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7091 adjusted register, and return true. Otherwise, return false. */
7092 static bool
7093 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7094 enum insn_code icode)
7095
7096 {
7097 enum reg_class new_class = scratch_reload_class (icode);
7098 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7099
7100 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7101 new_class, new_mode);
7102 }
7103
7104 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7105 has the number J. OLD contains the value to be used as input. */
7106
7107 static void
7108 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7109 rtx old, int j)
7110 {
7111 rtx_insn *insn = chain->insn;
7112 rtx reloadreg;
7113 rtx oldequiv_reg = 0;
7114 rtx oldequiv = 0;
7115 int special = 0;
7116 machine_mode mode;
7117 rtx_insn **where;
7118
7119 /* delete_output_reload is only invoked properly if old contains
7120 the original pseudo register. Since this is replaced with a
7121 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7122 find the pseudo in RELOAD_IN_REG. This is also used to
7123 determine whether a secondary reload is needed. */
7124 if (reload_override_in[j]
7125 && (REG_P (rl->in_reg)
7126 || (GET_CODE (rl->in_reg) == SUBREG
7127 && REG_P (SUBREG_REG (rl->in_reg)))))
7128 {
7129 oldequiv = old;
7130 old = rl->in_reg;
7131 }
7132 if (oldequiv == 0)
7133 oldequiv = old;
7134 else if (REG_P (oldequiv))
7135 oldequiv_reg = oldequiv;
7136 else if (GET_CODE (oldequiv) == SUBREG)
7137 oldequiv_reg = SUBREG_REG (oldequiv);
7138
7139 reloadreg = reload_reg_rtx_for_input[j];
7140 mode = GET_MODE (reloadreg);
7141
7142 /* If we are reloading from a register that was recently stored in
7143 with an output-reload, see if we can prove there was
7144 actually no need to store the old value in it. */
7145
7146 if (optimize && REG_P (oldequiv)
7147 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7148 && spill_reg_store[REGNO (oldequiv)]
7149 && REG_P (old)
7150 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7151 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7152 rl->out_reg)))
7153 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7154
7155 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7156 OLDEQUIV. */
7157
7158 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7159 oldequiv = SUBREG_REG (oldequiv);
7160 if (GET_MODE (oldequiv) != VOIDmode
7161 && mode != GET_MODE (oldequiv))
7162 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7163
7164 /* Switch to the right place to emit the reload insns. */
7165 switch (rl->when_needed)
7166 {
7167 case RELOAD_OTHER:
7168 where = &other_input_reload_insns;
7169 break;
7170 case RELOAD_FOR_INPUT:
7171 where = &input_reload_insns[rl->opnum];
7172 break;
7173 case RELOAD_FOR_INPUT_ADDRESS:
7174 where = &input_address_reload_insns[rl->opnum];
7175 break;
7176 case RELOAD_FOR_INPADDR_ADDRESS:
7177 where = &inpaddr_address_reload_insns[rl->opnum];
7178 break;
7179 case RELOAD_FOR_OUTPUT_ADDRESS:
7180 where = &output_address_reload_insns[rl->opnum];
7181 break;
7182 case RELOAD_FOR_OUTADDR_ADDRESS:
7183 where = &outaddr_address_reload_insns[rl->opnum];
7184 break;
7185 case RELOAD_FOR_OPERAND_ADDRESS:
7186 where = &operand_reload_insns;
7187 break;
7188 case RELOAD_FOR_OPADDR_ADDR:
7189 where = &other_operand_reload_insns;
7190 break;
7191 case RELOAD_FOR_OTHER_ADDRESS:
7192 where = &other_input_address_reload_insns;
7193 break;
7194 default:
7195 gcc_unreachable ();
7196 }
7197
7198 push_to_sequence (*where);
7199
7200 /* Auto-increment addresses must be reloaded in a special way. */
7201 if (rl->out && ! rl->out_reg)
7202 {
7203 /* We are not going to bother supporting the case where a
7204 incremented register can't be copied directly from
7205 OLDEQUIV since this seems highly unlikely. */
7206 gcc_assert (rl->secondary_in_reload < 0);
7207
7208 if (reload_inherited[j])
7209 oldequiv = reloadreg;
7210
7211 old = XEXP (rl->in_reg, 0);
7212
7213 /* Prevent normal processing of this reload. */
7214 special = 1;
7215 /* Output a special code sequence for this case. */
7216 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7217 }
7218
7219 /* If we are reloading a pseudo-register that was set by the previous
7220 insn, see if we can get rid of that pseudo-register entirely
7221 by redirecting the previous insn into our reload register. */
7222
7223 else if (optimize && REG_P (old)
7224 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7225 && dead_or_set_p (insn, old)
7226 /* This is unsafe if some other reload
7227 uses the same reg first. */
7228 && ! conflicts_with_override (reloadreg)
7229 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7230 rl->when_needed, old, rl->out, j, 0))
7231 {
7232 rtx_insn *temp = PREV_INSN (insn);
7233 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7234 temp = PREV_INSN (temp);
7235 if (temp
7236 && NONJUMP_INSN_P (temp)
7237 && GET_CODE (PATTERN (temp)) == SET
7238 && SET_DEST (PATTERN (temp)) == old
7239 /* Make sure we can access insn_operand_constraint. */
7240 && asm_noperands (PATTERN (temp)) < 0
7241 /* This is unsafe if operand occurs more than once in current
7242 insn. Perhaps some occurrences aren't reloaded. */
7243 && count_occurrences (PATTERN (insn), old, 0) == 1)
7244 {
7245 rtx old = SET_DEST (PATTERN (temp));
7246 /* Store into the reload register instead of the pseudo. */
7247 SET_DEST (PATTERN (temp)) = reloadreg;
7248
7249 /* Verify that resulting insn is valid.
7250
7251 Note that we have replaced the destination of TEMP with
7252 RELOADREG. If TEMP references RELOADREG within an
7253 autoincrement addressing mode, then the resulting insn
7254 is ill-formed and we must reject this optimization. */
7255 extract_insn (temp);
7256 if (constrain_operands (1, get_enabled_alternatives (temp))
7257 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7258 {
7259 /* If the previous insn is an output reload, the source is
7260 a reload register, and its spill_reg_store entry will
7261 contain the previous destination. This is now
7262 invalid. */
7263 if (REG_P (SET_SRC (PATTERN (temp)))
7264 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7265 {
7266 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7267 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7268 }
7269
7270 /* If these are the only uses of the pseudo reg,
7271 pretend for GDB it lives in the reload reg we used. */
7272 if (REG_N_DEATHS (REGNO (old)) == 1
7273 && REG_N_SETS (REGNO (old)) == 1)
7274 {
7275 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7276 if (ira_conflicts_p)
7277 /* Inform IRA about the change. */
7278 ira_mark_allocation_change (REGNO (old));
7279 alter_reg (REGNO (old), -1, false);
7280 }
7281 special = 1;
7282
7283 /* Adjust any debug insns between temp and insn. */
7284 while ((temp = NEXT_INSN (temp)) != insn)
7285 if (DEBUG_BIND_INSN_P (temp))
7286 INSN_VAR_LOCATION_LOC (temp)
7287 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7288 old, reloadreg);
7289 else
7290 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7291 }
7292 else
7293 {
7294 SET_DEST (PATTERN (temp)) = old;
7295 }
7296 }
7297 }
7298
7299 /* We can't do that, so output an insn to load RELOADREG. */
7300
7301 /* If we have a secondary reload, pick up the secondary register
7302 and icode, if any. If OLDEQUIV and OLD are different or
7303 if this is an in-out reload, recompute whether or not we
7304 still need a secondary register and what the icode should
7305 be. If we still need a secondary register and the class or
7306 icode is different, go back to reloading from OLD if using
7307 OLDEQUIV means that we got the wrong type of register. We
7308 cannot have different class or icode due to an in-out reload
7309 because we don't make such reloads when both the input and
7310 output need secondary reload registers. */
7311
7312 if (! special && rl->secondary_in_reload >= 0)
7313 {
7314 rtx second_reload_reg = 0;
7315 rtx third_reload_reg = 0;
7316 int secondary_reload = rl->secondary_in_reload;
7317 rtx real_oldequiv = oldequiv;
7318 rtx real_old = old;
7319 rtx tmp;
7320 enum insn_code icode;
7321 enum insn_code tertiary_icode = CODE_FOR_nothing;
7322
7323 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7324 and similarly for OLD.
7325 See comments in get_secondary_reload in reload.c. */
7326 /* If it is a pseudo that cannot be replaced with its
7327 equivalent MEM, we must fall back to reload_in, which
7328 will have all the necessary substitutions registered.
7329 Likewise for a pseudo that can't be replaced with its
7330 equivalent constant.
7331
7332 Take extra care for subregs of such pseudos. Note that
7333 we cannot use reg_equiv_mem in this case because it is
7334 not in the right mode. */
7335
7336 tmp = oldequiv;
7337 if (GET_CODE (tmp) == SUBREG)
7338 tmp = SUBREG_REG (tmp);
7339 if (REG_P (tmp)
7340 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7341 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7342 || reg_equiv_constant (REGNO (tmp)) != 0))
7343 {
7344 if (! reg_equiv_mem (REGNO (tmp))
7345 || num_not_at_initial_offset
7346 || GET_CODE (oldequiv) == SUBREG)
7347 real_oldequiv = rl->in;
7348 else
7349 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7350 }
7351
7352 tmp = old;
7353 if (GET_CODE (tmp) == SUBREG)
7354 tmp = SUBREG_REG (tmp);
7355 if (REG_P (tmp)
7356 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7357 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7358 || reg_equiv_constant (REGNO (tmp)) != 0))
7359 {
7360 if (! reg_equiv_mem (REGNO (tmp))
7361 || num_not_at_initial_offset
7362 || GET_CODE (old) == SUBREG)
7363 real_old = rl->in;
7364 else
7365 real_old = reg_equiv_mem (REGNO (tmp));
7366 }
7367
7368 second_reload_reg = rld[secondary_reload].reg_rtx;
7369 if (rld[secondary_reload].secondary_in_reload >= 0)
7370 {
7371 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7372
7373 third_reload_reg = rld[tertiary_reload].reg_rtx;
7374 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7375 /* We'd have to add more code for quartary reloads. */
7376 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7377 }
7378 icode = rl->secondary_in_icode;
7379
7380 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7381 || (rl->in != 0 && rl->out != 0))
7382 {
7383 secondary_reload_info sri, sri2;
7384 enum reg_class new_class, new_t_class;
7385
7386 sri.icode = CODE_FOR_nothing;
7387 sri.prev_sri = NULL;
7388 new_class
7389 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7390 rl->rclass, mode,
7391 &sri);
7392
7393 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7394 second_reload_reg = 0;
7395 else if (new_class == NO_REGS)
7396 {
7397 if (reload_adjust_reg_for_icode (&second_reload_reg,
7398 third_reload_reg,
7399 (enum insn_code) sri.icode))
7400 {
7401 icode = (enum insn_code) sri.icode;
7402 third_reload_reg = 0;
7403 }
7404 else
7405 {
7406 oldequiv = old;
7407 real_oldequiv = real_old;
7408 }
7409 }
7410 else if (sri.icode != CODE_FOR_nothing)
7411 /* We currently lack a way to express this in reloads. */
7412 gcc_unreachable ();
7413 else
7414 {
7415 sri2.icode = CODE_FOR_nothing;
7416 sri2.prev_sri = &sri;
7417 new_t_class
7418 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7419 new_class, mode,
7420 &sri);
7421 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7422 {
7423 if (reload_adjust_reg_for_temp (&second_reload_reg,
7424 third_reload_reg,
7425 new_class, mode))
7426 {
7427 third_reload_reg = 0;
7428 tertiary_icode = (enum insn_code) sri2.icode;
7429 }
7430 else
7431 {
7432 oldequiv = old;
7433 real_oldequiv = real_old;
7434 }
7435 }
7436 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7437 {
7438 rtx intermediate = second_reload_reg;
7439
7440 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7441 new_class, mode)
7442 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7443 ((enum insn_code)
7444 sri2.icode)))
7445 {
7446 second_reload_reg = intermediate;
7447 tertiary_icode = (enum insn_code) sri2.icode;
7448 }
7449 else
7450 {
7451 oldequiv = old;
7452 real_oldequiv = real_old;
7453 }
7454 }
7455 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7456 {
7457 rtx intermediate = second_reload_reg;
7458
7459 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7460 new_class, mode)
7461 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7462 new_t_class, mode))
7463 {
7464 second_reload_reg = intermediate;
7465 tertiary_icode = (enum insn_code) sri2.icode;
7466 }
7467 else
7468 {
7469 oldequiv = old;
7470 real_oldequiv = real_old;
7471 }
7472 }
7473 else
7474 {
7475 /* This could be handled more intelligently too. */
7476 oldequiv = old;
7477 real_oldequiv = real_old;
7478 }
7479 }
7480 }
7481
7482 /* If we still need a secondary reload register, check
7483 to see if it is being used as a scratch or intermediate
7484 register and generate code appropriately. If we need
7485 a scratch register, use REAL_OLDEQUIV since the form of
7486 the insn may depend on the actual address if it is
7487 a MEM. */
7488
7489 if (second_reload_reg)
7490 {
7491 if (icode != CODE_FOR_nothing)
7492 {
7493 /* We'd have to add extra code to handle this case. */
7494 gcc_assert (!third_reload_reg);
7495
7496 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7497 second_reload_reg));
7498 special = 1;
7499 }
7500 else
7501 {
7502 /* See if we need a scratch register to load the
7503 intermediate register (a tertiary reload). */
7504 if (tertiary_icode != CODE_FOR_nothing)
7505 {
7506 emit_insn ((GEN_FCN (tertiary_icode)
7507 (second_reload_reg, real_oldequiv,
7508 third_reload_reg)));
7509 }
7510 else if (third_reload_reg)
7511 {
7512 gen_reload (third_reload_reg, real_oldequiv,
7513 rl->opnum,
7514 rl->when_needed);
7515 gen_reload (second_reload_reg, third_reload_reg,
7516 rl->opnum,
7517 rl->when_needed);
7518 }
7519 else
7520 gen_reload (second_reload_reg, real_oldequiv,
7521 rl->opnum,
7522 rl->when_needed);
7523
7524 oldequiv = second_reload_reg;
7525 }
7526 }
7527 }
7528
7529 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7530 {
7531 rtx real_oldequiv = oldequiv;
7532
7533 if ((REG_P (oldequiv)
7534 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7535 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7536 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7537 || (GET_CODE (oldequiv) == SUBREG
7538 && REG_P (SUBREG_REG (oldequiv))
7539 && (REGNO (SUBREG_REG (oldequiv))
7540 >= FIRST_PSEUDO_REGISTER)
7541 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7542 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7543 || (CONSTANT_P (oldequiv)
7544 && (targetm.preferred_reload_class (oldequiv,
7545 REGNO_REG_CLASS (REGNO (reloadreg)))
7546 == NO_REGS)))
7547 real_oldequiv = rl->in;
7548 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7549 rl->when_needed);
7550 }
7551
7552 if (cfun->can_throw_non_call_exceptions)
7553 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7554
7555 /* End this sequence. */
7556 *where = get_insns ();
7557 end_sequence ();
7558
7559 /* Update reload_override_in so that delete_address_reloads_1
7560 can see the actual register usage. */
7561 if (oldequiv_reg)
7562 reload_override_in[j] = oldequiv;
7563 }
7564
7565 /* Generate insns to for the output reload RL, which is for the insn described
7566 by CHAIN and has the number J. */
7567 static void
7568 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7569 int j)
7570 {
7571 rtx reloadreg;
7572 rtx_insn *insn = chain->insn;
7573 int special = 0;
7574 rtx old = rl->out;
7575 machine_mode mode;
7576 rtx_insn *p;
7577 rtx rl_reg_rtx;
7578
7579 if (rl->when_needed == RELOAD_OTHER)
7580 start_sequence ();
7581 else
7582 push_to_sequence (output_reload_insns[rl->opnum]);
7583
7584 rl_reg_rtx = reload_reg_rtx_for_output[j];
7585 mode = GET_MODE (rl_reg_rtx);
7586
7587 reloadreg = rl_reg_rtx;
7588
7589 /* If we need two reload regs, set RELOADREG to the intermediate
7590 one, since it will be stored into OLD. We might need a secondary
7591 register only for an input reload, so check again here. */
7592
7593 if (rl->secondary_out_reload >= 0)
7594 {
7595 rtx real_old = old;
7596 int secondary_reload = rl->secondary_out_reload;
7597 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7598
7599 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7600 && reg_equiv_mem (REGNO (old)) != 0)
7601 real_old = reg_equiv_mem (REGNO (old));
7602
7603 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7604 {
7605 rtx second_reloadreg = reloadreg;
7606 reloadreg = rld[secondary_reload].reg_rtx;
7607
7608 /* See if RELOADREG is to be used as a scratch register
7609 or as an intermediate register. */
7610 if (rl->secondary_out_icode != CODE_FOR_nothing)
7611 {
7612 /* We'd have to add extra code to handle this case. */
7613 gcc_assert (tertiary_reload < 0);
7614
7615 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7616 (real_old, second_reloadreg, reloadreg)));
7617 special = 1;
7618 }
7619 else
7620 {
7621 /* See if we need both a scratch and intermediate reload
7622 register. */
7623
7624 enum insn_code tertiary_icode
7625 = rld[secondary_reload].secondary_out_icode;
7626
7627 /* We'd have to add more code for quartary reloads. */
7628 gcc_assert (tertiary_reload < 0
7629 || rld[tertiary_reload].secondary_out_reload < 0);
7630
7631 if (GET_MODE (reloadreg) != mode)
7632 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7633
7634 if (tertiary_icode != CODE_FOR_nothing)
7635 {
7636 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7637
7638 /* Copy primary reload reg to secondary reload reg.
7639 (Note that these have been swapped above, then
7640 secondary reload reg to OLD using our insn.) */
7641
7642 /* If REAL_OLD is a paradoxical SUBREG, remove it
7643 and try to put the opposite SUBREG on
7644 RELOADREG. */
7645 strip_paradoxical_subreg (&real_old, &reloadreg);
7646
7647 gen_reload (reloadreg, second_reloadreg,
7648 rl->opnum, rl->when_needed);
7649 emit_insn ((GEN_FCN (tertiary_icode)
7650 (real_old, reloadreg, third_reloadreg)));
7651 special = 1;
7652 }
7653
7654 else
7655 {
7656 /* Copy between the reload regs here and then to
7657 OUT later. */
7658
7659 gen_reload (reloadreg, second_reloadreg,
7660 rl->opnum, rl->when_needed);
7661 if (tertiary_reload >= 0)
7662 {
7663 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7664
7665 gen_reload (third_reloadreg, reloadreg,
7666 rl->opnum, rl->when_needed);
7667 reloadreg = third_reloadreg;
7668 }
7669 }
7670 }
7671 }
7672 }
7673
7674 /* Output the last reload insn. */
7675 if (! special)
7676 {
7677 rtx set;
7678
7679 /* Don't output the last reload if OLD is not the dest of
7680 INSN and is in the src and is clobbered by INSN. */
7681 if (! flag_expensive_optimizations
7682 || !REG_P (old)
7683 || !(set = single_set (insn))
7684 || rtx_equal_p (old, SET_DEST (set))
7685 || !reg_mentioned_p (old, SET_SRC (set))
7686 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7687 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7688 gen_reload (old, reloadreg, rl->opnum,
7689 rl->when_needed);
7690 }
7691
7692 /* Look at all insns we emitted, just to be safe. */
7693 for (p = get_insns (); p; p = NEXT_INSN (p))
7694 if (INSN_P (p))
7695 {
7696 rtx pat = PATTERN (p);
7697
7698 /* If this output reload doesn't come from a spill reg,
7699 clear any memory of reloaded copies of the pseudo reg.
7700 If this output reload comes from a spill reg,
7701 reg_has_output_reload will make this do nothing. */
7702 note_stores (p, forget_old_reloads_1, NULL);
7703
7704 if (reg_mentioned_p (rl_reg_rtx, pat))
7705 {
7706 rtx set = single_set (insn);
7707 if (reload_spill_index[j] < 0
7708 && set
7709 && SET_SRC (set) == rl_reg_rtx)
7710 {
7711 int src = REGNO (SET_SRC (set));
7712
7713 reload_spill_index[j] = src;
7714 SET_HARD_REG_BIT (reg_is_output_reload, src);
7715 if (find_regno_note (insn, REG_DEAD, src))
7716 SET_HARD_REG_BIT (reg_reloaded_died, src);
7717 }
7718 if (HARD_REGISTER_P (rl_reg_rtx))
7719 {
7720 int s = rl->secondary_out_reload;
7721 set = single_set (p);
7722 /* If this reload copies only to the secondary reload
7723 register, the secondary reload does the actual
7724 store. */
7725 if (s >= 0 && set == NULL_RTX)
7726 /* We can't tell what function the secondary reload
7727 has and where the actual store to the pseudo is
7728 made; leave new_spill_reg_store alone. */
7729 ;
7730 else if (s >= 0
7731 && SET_SRC (set) == rl_reg_rtx
7732 && SET_DEST (set) == rld[s].reg_rtx)
7733 {
7734 /* Usually the next instruction will be the
7735 secondary reload insn; if we can confirm
7736 that it is, setting new_spill_reg_store to
7737 that insn will allow an extra optimization. */
7738 rtx s_reg = rld[s].reg_rtx;
7739 rtx_insn *next = NEXT_INSN (p);
7740 rld[s].out = rl->out;
7741 rld[s].out_reg = rl->out_reg;
7742 set = single_set (next);
7743 if (set && SET_SRC (set) == s_reg
7744 && reload_reg_rtx_reaches_end_p (s_reg, s))
7745 {
7746 SET_HARD_REG_BIT (reg_is_output_reload,
7747 REGNO (s_reg));
7748 new_spill_reg_store[REGNO (s_reg)] = next;
7749 }
7750 }
7751 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7752 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7753 }
7754 }
7755 }
7756
7757 if (rl->when_needed == RELOAD_OTHER)
7758 {
7759 emit_insn (other_output_reload_insns[rl->opnum]);
7760 other_output_reload_insns[rl->opnum] = get_insns ();
7761 }
7762 else
7763 output_reload_insns[rl->opnum] = get_insns ();
7764
7765 if (cfun->can_throw_non_call_exceptions)
7766 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7767
7768 end_sequence ();
7769 }
7770
7771 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7772 and has the number J. */
7773 static void
7774 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7775 {
7776 rtx_insn *insn = chain->insn;
7777 rtx old = (rl->in && MEM_P (rl->in)
7778 ? rl->in_reg : rl->in);
7779 rtx reg_rtx = rl->reg_rtx;
7780
7781 if (old && reg_rtx)
7782 {
7783 machine_mode mode;
7784
7785 /* Determine the mode to reload in.
7786 This is very tricky because we have three to choose from.
7787 There is the mode the insn operand wants (rl->inmode).
7788 There is the mode of the reload register RELOADREG.
7789 There is the intrinsic mode of the operand, which we could find
7790 by stripping some SUBREGs.
7791 It turns out that RELOADREG's mode is irrelevant:
7792 we can change that arbitrarily.
7793
7794 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7795 then the reload reg may not support QImode moves, so use SImode.
7796 If foo is in memory due to spilling a pseudo reg, this is safe,
7797 because the QImode value is in the least significant part of a
7798 slot big enough for a SImode. If foo is some other sort of
7799 memory reference, then it is impossible to reload this case,
7800 so previous passes had better make sure this never happens.
7801
7802 Then consider a one-word union which has SImode and one of its
7803 members is a float, being fetched as (SUBREG:SF union:SI).
7804 We must fetch that as SFmode because we could be loading into
7805 a float-only register. In this case OLD's mode is correct.
7806
7807 Consider an immediate integer: it has VOIDmode. Here we need
7808 to get a mode from something else.
7809
7810 In some cases, there is a fourth mode, the operand's
7811 containing mode. If the insn specifies a containing mode for
7812 this operand, it overrides all others.
7813
7814 I am not sure whether the algorithm here is always right,
7815 but it does the right things in those cases. */
7816
7817 mode = GET_MODE (old);
7818 if (mode == VOIDmode)
7819 mode = rl->inmode;
7820
7821 /* We cannot use gen_lowpart_common since it can do the wrong thing
7822 when REG_RTX has a multi-word mode. Note that REG_RTX must
7823 always be a REG here. */
7824 if (GET_MODE (reg_rtx) != mode)
7825 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7826 }
7827 reload_reg_rtx_for_input[j] = reg_rtx;
7828
7829 if (old != 0
7830 /* AUTO_INC reloads need to be handled even if inherited. We got an
7831 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7832 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7833 && ! rtx_equal_p (reg_rtx, old)
7834 && reg_rtx != 0)
7835 emit_input_reload_insns (chain, rld + j, old, j);
7836
7837 /* When inheriting a wider reload, we have a MEM in rl->in,
7838 e.g. inheriting a SImode output reload for
7839 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7840 if (optimize && reload_inherited[j] && rl->in
7841 && MEM_P (rl->in)
7842 && MEM_P (rl->in_reg)
7843 && reload_spill_index[j] >= 0
7844 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7845 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7846
7847 /* If we are reloading a register that was recently stored in with an
7848 output-reload, see if we can prove there was
7849 actually no need to store the old value in it. */
7850
7851 if (optimize
7852 && (reload_inherited[j] || reload_override_in[j])
7853 && reg_rtx
7854 && REG_P (reg_rtx)
7855 && spill_reg_store[REGNO (reg_rtx)] != 0
7856 #if 0
7857 /* There doesn't seem to be any reason to restrict this to pseudos
7858 and doing so loses in the case where we are copying from a
7859 register of the wrong class. */
7860 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7861 #endif
7862 /* The insn might have already some references to stackslots
7863 replaced by MEMs, while reload_out_reg still names the
7864 original pseudo. */
7865 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7866 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7867 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7868 }
7869
7870 /* Do output reloading for reload RL, which is for the insn described by
7871 CHAIN and has the number J.
7872 ??? At some point we need to support handling output reloads of
7873 JUMP_INSNs or insns that set cc0. */
7874 static void
7875 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7876 {
7877 rtx note, old;
7878 rtx_insn *insn = chain->insn;
7879 /* If this is an output reload that stores something that is
7880 not loaded in this same reload, see if we can eliminate a previous
7881 store. */
7882 rtx pseudo = rl->out_reg;
7883 rtx reg_rtx = rl->reg_rtx;
7884
7885 if (rl->out && reg_rtx)
7886 {
7887 machine_mode mode;
7888
7889 /* Determine the mode to reload in.
7890 See comments above (for input reloading). */
7891 mode = GET_MODE (rl->out);
7892 if (mode == VOIDmode)
7893 {
7894 /* VOIDmode should never happen for an output. */
7895 if (asm_noperands (PATTERN (insn)) < 0)
7896 /* It's the compiler's fault. */
7897 fatal_insn ("VOIDmode on an output", insn);
7898 error_for_asm (insn, "output operand is constant in %<asm%>");
7899 /* Prevent crash--use something we know is valid. */
7900 mode = word_mode;
7901 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7902 }
7903 if (GET_MODE (reg_rtx) != mode)
7904 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7905 }
7906 reload_reg_rtx_for_output[j] = reg_rtx;
7907
7908 if (pseudo
7909 && optimize
7910 && REG_P (pseudo)
7911 && ! rtx_equal_p (rl->in_reg, pseudo)
7912 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7913 && reg_last_reload_reg[REGNO (pseudo)])
7914 {
7915 int pseudo_no = REGNO (pseudo);
7916 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7917
7918 /* We don't need to test full validity of last_regno for
7919 inherit here; we only want to know if the store actually
7920 matches the pseudo. */
7921 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7922 && reg_reloaded_contents[last_regno] == pseudo_no
7923 && spill_reg_store[last_regno]
7924 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7925 delete_output_reload (insn, j, last_regno, reg_rtx);
7926 }
7927
7928 old = rl->out_reg;
7929 if (old == 0
7930 || reg_rtx == 0
7931 || rtx_equal_p (old, reg_rtx))
7932 return;
7933
7934 /* An output operand that dies right away does need a reload,
7935 but need not be copied from it. Show the new location in the
7936 REG_UNUSED note. */
7937 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7938 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7939 {
7940 XEXP (note, 0) = reg_rtx;
7941 return;
7942 }
7943 /* Likewise for a SUBREG of an operand that dies. */
7944 else if (GET_CODE (old) == SUBREG
7945 && REG_P (SUBREG_REG (old))
7946 && (note = find_reg_note (insn, REG_UNUSED,
7947 SUBREG_REG (old))) != 0)
7948 {
7949 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7950 return;
7951 }
7952 else if (GET_CODE (old) == SCRATCH)
7953 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7954 but we don't want to make an output reload. */
7955 return;
7956
7957 /* If is a JUMP_INSN, we can't support output reloads yet. */
7958 gcc_assert (NONJUMP_INSN_P (insn));
7959
7960 emit_output_reload_insns (chain, rld + j, j);
7961 }
7962
7963 /* A reload copies values of MODE from register SRC to register DEST.
7964 Return true if it can be treated for inheritance purposes like a
7965 group of reloads, each one reloading a single hard register. The
7966 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7967 occupy the same number of hard registers. */
7968
7969 static bool
7970 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7971 int src ATTRIBUTE_UNUSED,
7972 machine_mode mode ATTRIBUTE_UNUSED)
7973 {
7974 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7975 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7976 }
7977
7978 /* Output insns to reload values in and out of the chosen reload regs. */
7979
7980 static void
7981 emit_reload_insns (class insn_chain *chain)
7982 {
7983 rtx_insn *insn = chain->insn;
7984
7985 int j;
7986
7987 CLEAR_HARD_REG_SET (reg_reloaded_died);
7988
7989 for (j = 0; j < reload_n_operands; j++)
7990 input_reload_insns[j] = input_address_reload_insns[j]
7991 = inpaddr_address_reload_insns[j]
7992 = output_reload_insns[j] = output_address_reload_insns[j]
7993 = outaddr_address_reload_insns[j]
7994 = other_output_reload_insns[j] = 0;
7995 other_input_address_reload_insns = 0;
7996 other_input_reload_insns = 0;
7997 operand_reload_insns = 0;
7998 other_operand_reload_insns = 0;
7999
8000 /* Dump reloads into the dump file. */
8001 if (dump_file)
8002 {
8003 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8004 debug_reload_to_stream (dump_file);
8005 }
8006
8007 for (j = 0; j < n_reloads; j++)
8008 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8009 {
8010 unsigned int i;
8011
8012 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8013 new_spill_reg_store[i] = 0;
8014 }
8015
8016 /* Now output the instructions to copy the data into and out of the
8017 reload registers. Do these in the order that the reloads were reported,
8018 since reloads of base and index registers precede reloads of operands
8019 and the operands may need the base and index registers reloaded. */
8020
8021 for (j = 0; j < n_reloads; j++)
8022 {
8023 do_input_reload (chain, rld + j, j);
8024 do_output_reload (chain, rld + j, j);
8025 }
8026
8027 /* Now write all the insns we made for reloads in the order expected by
8028 the allocation functions. Prior to the insn being reloaded, we write
8029 the following reloads:
8030
8031 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8032
8033 RELOAD_OTHER reloads.
8034
8035 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8036 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8037 RELOAD_FOR_INPUT reload for the operand.
8038
8039 RELOAD_FOR_OPADDR_ADDRS reloads.
8040
8041 RELOAD_FOR_OPERAND_ADDRESS reloads.
8042
8043 After the insn being reloaded, we write the following:
8044
8045 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8046 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8047 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8048 reloads for the operand. The RELOAD_OTHER output reloads are
8049 output in descending order by reload number. */
8050
8051 emit_insn_before (other_input_address_reload_insns, insn);
8052 emit_insn_before (other_input_reload_insns, insn);
8053
8054 for (j = 0; j < reload_n_operands; j++)
8055 {
8056 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8057 emit_insn_before (input_address_reload_insns[j], insn);
8058 emit_insn_before (input_reload_insns[j], insn);
8059 }
8060
8061 emit_insn_before (other_operand_reload_insns, insn);
8062 emit_insn_before (operand_reload_insns, insn);
8063
8064 for (j = 0; j < reload_n_operands; j++)
8065 {
8066 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8067 x = emit_insn_after (output_address_reload_insns[j], x);
8068 x = emit_insn_after (output_reload_insns[j], x);
8069 emit_insn_after (other_output_reload_insns[j], x);
8070 }
8071
8072 /* For all the spill regs newly reloaded in this instruction,
8073 record what they were reloaded from, so subsequent instructions
8074 can inherit the reloads.
8075
8076 Update spill_reg_store for the reloads of this insn.
8077 Copy the elements that were updated in the loop above. */
8078
8079 for (j = 0; j < n_reloads; j++)
8080 {
8081 int r = reload_order[j];
8082 int i = reload_spill_index[r];
8083
8084 /* If this is a non-inherited input reload from a pseudo, we must
8085 clear any memory of a previous store to the same pseudo. Only do
8086 something if there will not be an output reload for the pseudo
8087 being reloaded. */
8088 if (rld[r].in_reg != 0
8089 && ! (reload_inherited[r] || reload_override_in[r]))
8090 {
8091 rtx reg = rld[r].in_reg;
8092
8093 if (GET_CODE (reg) == SUBREG)
8094 reg = SUBREG_REG (reg);
8095
8096 if (REG_P (reg)
8097 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8098 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8099 {
8100 int nregno = REGNO (reg);
8101
8102 if (reg_last_reload_reg[nregno])
8103 {
8104 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8105
8106 if (reg_reloaded_contents[last_regno] == nregno)
8107 spill_reg_store[last_regno] = 0;
8108 }
8109 }
8110 }
8111
8112 /* I is nonneg if this reload used a register.
8113 If rld[r].reg_rtx is 0, this is an optional reload
8114 that we opted to ignore. */
8115
8116 if (i >= 0 && rld[r].reg_rtx != 0)
8117 {
8118 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8119 int k;
8120
8121 /* For a multi register reload, we need to check if all or part
8122 of the value lives to the end. */
8123 for (k = 0; k < nr; k++)
8124 if (reload_reg_reaches_end_p (i + k, r))
8125 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8126
8127 /* Maybe the spill reg contains a copy of reload_out. */
8128 if (rld[r].out != 0
8129 && (REG_P (rld[r].out)
8130 || (rld[r].out_reg
8131 ? REG_P (rld[r].out_reg)
8132 /* The reload value is an auto-modification of
8133 some kind. For PRE_INC, POST_INC, PRE_DEC
8134 and POST_DEC, we record an equivalence
8135 between the reload register and the operand
8136 on the optimistic assumption that we can make
8137 the equivalence hold. reload_as_needed must
8138 then either make it hold or invalidate the
8139 equivalence.
8140
8141 PRE_MODIFY and POST_MODIFY addresses are reloaded
8142 somewhat differently, and allowing them here leads
8143 to problems. */
8144 : (GET_CODE (rld[r].out) != POST_MODIFY
8145 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8146 {
8147 rtx reg;
8148
8149 reg = reload_reg_rtx_for_output[r];
8150 if (reload_reg_rtx_reaches_end_p (reg, r))
8151 {
8152 machine_mode mode = GET_MODE (reg);
8153 int regno = REGNO (reg);
8154 int nregs = REG_NREGS (reg);
8155 rtx out = (REG_P (rld[r].out)
8156 ? rld[r].out
8157 : rld[r].out_reg
8158 ? rld[r].out_reg
8159 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8160 int out_regno = REGNO (out);
8161 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8162 : hard_regno_nregs (out_regno, mode));
8163 bool piecemeal;
8164
8165 spill_reg_store[regno] = new_spill_reg_store[regno];
8166 spill_reg_stored_to[regno] = out;
8167 reg_last_reload_reg[out_regno] = reg;
8168
8169 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8170 && nregs == out_nregs
8171 && inherit_piecemeal_p (out_regno, regno, mode));
8172
8173 /* If OUT_REGNO is a hard register, it may occupy more than
8174 one register. If it does, say what is in the
8175 rest of the registers assuming that both registers
8176 agree on how many words the object takes. If not,
8177 invalidate the subsequent registers. */
8178
8179 if (HARD_REGISTER_NUM_P (out_regno))
8180 for (k = 1; k < out_nregs; k++)
8181 reg_last_reload_reg[out_regno + k]
8182 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8183
8184 /* Now do the inverse operation. */
8185 for (k = 0; k < nregs; k++)
8186 {
8187 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8188 reg_reloaded_contents[regno + k]
8189 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8190 ? out_regno
8191 : out_regno + k);
8192 reg_reloaded_insn[regno + k] = insn;
8193 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8194 if (targetm.hard_regno_call_part_clobbered (NULL,
8195 regno + k,
8196 mode))
8197 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8198 regno + k);
8199 else
8200 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8201 regno + k);
8202 }
8203 }
8204 }
8205 /* Maybe the spill reg contains a copy of reload_in. Only do
8206 something if there will not be an output reload for
8207 the register being reloaded. */
8208 else if (rld[r].out_reg == 0
8209 && rld[r].in != 0
8210 && ((REG_P (rld[r].in)
8211 && !HARD_REGISTER_P (rld[r].in)
8212 && !REGNO_REG_SET_P (&reg_has_output_reload,
8213 REGNO (rld[r].in)))
8214 || (REG_P (rld[r].in_reg)
8215 && !REGNO_REG_SET_P (&reg_has_output_reload,
8216 REGNO (rld[r].in_reg))))
8217 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8218 {
8219 rtx reg;
8220
8221 reg = reload_reg_rtx_for_input[r];
8222 if (reload_reg_rtx_reaches_end_p (reg, r))
8223 {
8224 machine_mode mode;
8225 int regno;
8226 int nregs;
8227 int in_regno;
8228 int in_nregs;
8229 rtx in;
8230 bool piecemeal;
8231
8232 mode = GET_MODE (reg);
8233 regno = REGNO (reg);
8234 nregs = REG_NREGS (reg);
8235 if (REG_P (rld[r].in)
8236 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8237 in = rld[r].in;
8238 else if (REG_P (rld[r].in_reg))
8239 in = rld[r].in_reg;
8240 else
8241 in = XEXP (rld[r].in_reg, 0);
8242 in_regno = REGNO (in);
8243
8244 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8245 : hard_regno_nregs (in_regno, mode));
8246
8247 reg_last_reload_reg[in_regno] = reg;
8248
8249 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8250 && nregs == in_nregs
8251 && inherit_piecemeal_p (regno, in_regno, mode));
8252
8253 if (HARD_REGISTER_NUM_P (in_regno))
8254 for (k = 1; k < in_nregs; k++)
8255 reg_last_reload_reg[in_regno + k]
8256 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8257
8258 /* Unless we inherited this reload, show we haven't
8259 recently done a store.
8260 Previous stores of inherited auto_inc expressions
8261 also have to be discarded. */
8262 if (! reload_inherited[r]
8263 || (rld[r].out && ! rld[r].out_reg))
8264 spill_reg_store[regno] = 0;
8265
8266 for (k = 0; k < nregs; k++)
8267 {
8268 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8269 reg_reloaded_contents[regno + k]
8270 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8271 ? in_regno
8272 : in_regno + k);
8273 reg_reloaded_insn[regno + k] = insn;
8274 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8275 if (targetm.hard_regno_call_part_clobbered (NULL,
8276 regno + k,
8277 mode))
8278 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8279 regno + k);
8280 else
8281 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8282 regno + k);
8283 }
8284 }
8285 }
8286 }
8287
8288 /* The following if-statement was #if 0'd in 1.34 (or before...).
8289 It's reenabled in 1.35 because supposedly nothing else
8290 deals with this problem. */
8291
8292 /* If a register gets output-reloaded from a non-spill register,
8293 that invalidates any previous reloaded copy of it.
8294 But forget_old_reloads_1 won't get to see it, because
8295 it thinks only about the original insn. So invalidate it here.
8296 Also do the same thing for RELOAD_OTHER constraints where the
8297 output is discarded. */
8298 if (i < 0
8299 && ((rld[r].out != 0
8300 && (REG_P (rld[r].out)
8301 || (MEM_P (rld[r].out)
8302 && REG_P (rld[r].out_reg))))
8303 || (rld[r].out == 0 && rld[r].out_reg
8304 && REG_P (rld[r].out_reg))))
8305 {
8306 rtx out = ((rld[r].out && REG_P (rld[r].out))
8307 ? rld[r].out : rld[r].out_reg);
8308 int out_regno = REGNO (out);
8309 machine_mode mode = GET_MODE (out);
8310
8311 /* REG_RTX is now set or clobbered by the main instruction.
8312 As the comment above explains, forget_old_reloads_1 only
8313 sees the original instruction, and there is no guarantee
8314 that the original instruction also clobbered REG_RTX.
8315 For example, if find_reloads sees that the input side of
8316 a matched operand pair dies in this instruction, it may
8317 use the input register as the reload register.
8318
8319 Calling forget_old_reloads_1 is a waste of effort if
8320 REG_RTX is also the output register.
8321
8322 If we know that REG_RTX holds the value of a pseudo
8323 register, the code after the call will record that fact. */
8324 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8325 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8326
8327 if (!HARD_REGISTER_NUM_P (out_regno))
8328 {
8329 rtx src_reg;
8330 rtx_insn *store_insn = NULL;
8331
8332 reg_last_reload_reg[out_regno] = 0;
8333
8334 /* If we can find a hard register that is stored, record
8335 the storing insn so that we may delete this insn with
8336 delete_output_reload. */
8337 src_reg = reload_reg_rtx_for_output[r];
8338
8339 if (src_reg)
8340 {
8341 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8342 store_insn = new_spill_reg_store[REGNO (src_reg)];
8343 else
8344 src_reg = NULL_RTX;
8345 }
8346 else
8347 {
8348 /* If this is an optional reload, try to find the
8349 source reg from an input reload. */
8350 rtx set = single_set (insn);
8351 if (set && SET_DEST (set) == rld[r].out)
8352 {
8353 int k;
8354
8355 src_reg = SET_SRC (set);
8356 store_insn = insn;
8357 for (k = 0; k < n_reloads; k++)
8358 {
8359 if (rld[k].in == src_reg)
8360 {
8361 src_reg = reload_reg_rtx_for_input[k];
8362 break;
8363 }
8364 }
8365 }
8366 }
8367 if (src_reg && REG_P (src_reg)
8368 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8369 {
8370 int src_regno, src_nregs, k;
8371 rtx note;
8372
8373 gcc_assert (GET_MODE (src_reg) == mode);
8374 src_regno = REGNO (src_reg);
8375 src_nregs = hard_regno_nregs (src_regno, mode);
8376 /* The place where to find a death note varies with
8377 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8378 necessarily checked exactly in the code that moves
8379 notes, so just check both locations. */
8380 note = find_regno_note (insn, REG_DEAD, src_regno);
8381 if (! note && store_insn)
8382 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8383 for (k = 0; k < src_nregs; k++)
8384 {
8385 spill_reg_store[src_regno + k] = store_insn;
8386 spill_reg_stored_to[src_regno + k] = out;
8387 reg_reloaded_contents[src_regno + k] = out_regno;
8388 reg_reloaded_insn[src_regno + k] = store_insn;
8389 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8390 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8391 if (targetm.hard_regno_call_part_clobbered
8392 (NULL, src_regno + k, mode))
8393 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8394 src_regno + k);
8395 else
8396 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8397 src_regno + k);
8398 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8399 if (note)
8400 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8401 else
8402 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8403 }
8404 reg_last_reload_reg[out_regno] = src_reg;
8405 /* We have to set reg_has_output_reload here, or else
8406 forget_old_reloads_1 will clear reg_last_reload_reg
8407 right away. */
8408 SET_REGNO_REG_SET (&reg_has_output_reload,
8409 out_regno);
8410 }
8411 }
8412 else
8413 {
8414 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8415
8416 for (k = 0; k < out_nregs; k++)
8417 reg_last_reload_reg[out_regno + k] = 0;
8418 }
8419 }
8420 }
8421 reg_reloaded_dead |= reg_reloaded_died;
8422 }
8423 \f
8424 /* Go through the motions to emit INSN and test if it is strictly valid.
8425 Return the emitted insn if valid, else return NULL. */
8426
8427 static rtx_insn *
8428 emit_insn_if_valid_for_reload (rtx pat)
8429 {
8430 rtx_insn *last = get_last_insn ();
8431 int code;
8432
8433 rtx_insn *insn = emit_insn (pat);
8434 code = recog_memoized (insn);
8435
8436 if (code >= 0)
8437 {
8438 extract_insn (insn);
8439 /* We want constrain operands to treat this insn strictly in its
8440 validity determination, i.e., the way it would after reload has
8441 completed. */
8442 if (constrain_operands (1, get_enabled_alternatives (insn)))
8443 return insn;
8444 }
8445
8446 delete_insns_since (last);
8447 return NULL;
8448 }
8449
8450 /* Emit code to perform a reload from IN (which may be a reload register) to
8451 OUT (which may also be a reload register). IN or OUT is from operand
8452 OPNUM with reload type TYPE.
8453
8454 Returns first insn emitted. */
8455
8456 static rtx_insn *
8457 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8458 {
8459 rtx_insn *last = get_last_insn ();
8460 rtx_insn *tem;
8461 rtx tem1, tem2;
8462
8463 /* If IN is a paradoxical SUBREG, remove it and try to put the
8464 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8465 if (!strip_paradoxical_subreg (&in, &out))
8466 strip_paradoxical_subreg (&out, &in);
8467
8468 /* How to do this reload can get quite tricky. Normally, we are being
8469 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8470 register that didn't get a hard register. In that case we can just
8471 call emit_move_insn.
8472
8473 We can also be asked to reload a PLUS that adds a register or a MEM to
8474 another register, constant or MEM. This can occur during frame pointer
8475 elimination and while reloading addresses. This case is handled by
8476 trying to emit a single insn to perform the add. If it is not valid,
8477 we use a two insn sequence.
8478
8479 Or we can be asked to reload an unary operand that was a fragment of
8480 an addressing mode, into a register. If it isn't recognized as-is,
8481 we try making the unop operand and the reload-register the same:
8482 (set reg:X (unop:X expr:Y))
8483 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8484
8485 Finally, we could be called to handle an 'o' constraint by putting
8486 an address into a register. In that case, we first try to do this
8487 with a named pattern of "reload_load_address". If no such pattern
8488 exists, we just emit a SET insn and hope for the best (it will normally
8489 be valid on machines that use 'o').
8490
8491 This entire process is made complex because reload will never
8492 process the insns we generate here and so we must ensure that
8493 they will fit their constraints and also by the fact that parts of
8494 IN might be being reloaded separately and replaced with spill registers.
8495 Because of this, we are, in some sense, just guessing the right approach
8496 here. The one listed above seems to work.
8497
8498 ??? At some point, this whole thing needs to be rethought. */
8499
8500 if (GET_CODE (in) == PLUS
8501 && (REG_P (XEXP (in, 0))
8502 || GET_CODE (XEXP (in, 0)) == SUBREG
8503 || MEM_P (XEXP (in, 0)))
8504 && (REG_P (XEXP (in, 1))
8505 || GET_CODE (XEXP (in, 1)) == SUBREG
8506 || CONSTANT_P (XEXP (in, 1))
8507 || MEM_P (XEXP (in, 1))))
8508 {
8509 /* We need to compute the sum of a register or a MEM and another
8510 register, constant, or MEM, and put it into the reload
8511 register. The best possible way of doing this is if the machine
8512 has a three-operand ADD insn that accepts the required operands.
8513
8514 The simplest approach is to try to generate such an insn and see if it
8515 is recognized and matches its constraints. If so, it can be used.
8516
8517 It might be better not to actually emit the insn unless it is valid,
8518 but we need to pass the insn as an operand to `recog' and
8519 `extract_insn' and it is simpler to emit and then delete the insn if
8520 not valid than to dummy things up. */
8521
8522 rtx op0, op1, tem;
8523 rtx_insn *insn;
8524 enum insn_code code;
8525
8526 op0 = find_replacement (&XEXP (in, 0));
8527 op1 = find_replacement (&XEXP (in, 1));
8528
8529 /* Since constraint checking is strict, commutativity won't be
8530 checked, so we need to do that here to avoid spurious failure
8531 if the add instruction is two-address and the second operand
8532 of the add is the same as the reload reg, which is frequently
8533 the case. If the insn would be A = B + A, rearrange it so
8534 it will be A = A + B as constrain_operands expects. */
8535
8536 if (REG_P (XEXP (in, 1))
8537 && REGNO (out) == REGNO (XEXP (in, 1)))
8538 tem = op0, op0 = op1, op1 = tem;
8539
8540 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8541 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8542
8543 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8544 if (insn)
8545 return insn;
8546
8547 /* If that failed, we must use a conservative two-insn sequence.
8548
8549 Use a move to copy one operand into the reload register. Prefer
8550 to reload a constant, MEM or pseudo since the move patterns can
8551 handle an arbitrary operand. If OP1 is not a constant, MEM or
8552 pseudo and OP1 is not a valid operand for an add instruction, then
8553 reload OP1.
8554
8555 After reloading one of the operands into the reload register, add
8556 the reload register to the output register.
8557
8558 If there is another way to do this for a specific machine, a
8559 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8560 we emit below. */
8561
8562 code = optab_handler (add_optab, GET_MODE (out));
8563
8564 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8565 || (REG_P (op1)
8566 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8567 || (code != CODE_FOR_nothing
8568 && !insn_operand_matches (code, 2, op1)))
8569 tem = op0, op0 = op1, op1 = tem;
8570
8571 gen_reload (out, op0, opnum, type);
8572
8573 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8574 This fixes a problem on the 32K where the stack pointer cannot
8575 be used as an operand of an add insn. */
8576
8577 if (rtx_equal_p (op0, op1))
8578 op1 = out;
8579
8580 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8581 if (insn)
8582 {
8583 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8584 set_dst_reg_note (insn, REG_EQUIV, in, out);
8585 return insn;
8586 }
8587
8588 /* If that failed, copy the address register to the reload register.
8589 Then add the constant to the reload register. */
8590
8591 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8592 gen_reload (out, op1, opnum, type);
8593 insn = emit_insn (gen_add2_insn (out, op0));
8594 set_dst_reg_note (insn, REG_EQUIV, in, out);
8595 }
8596
8597 /* If we need a memory location to do the move, do it that way. */
8598 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8599 (REG_P (tem1) && REG_P (tem2)))
8600 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8601 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8602 && targetm.secondary_memory_needed (GET_MODE (out),
8603 REGNO_REG_CLASS (REGNO (tem1)),
8604 REGNO_REG_CLASS (REGNO (tem2))))
8605 {
8606 /* Get the memory to use and rewrite both registers to its mode. */
8607 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8608
8609 if (GET_MODE (loc) != GET_MODE (out))
8610 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8611
8612 if (GET_MODE (loc) != GET_MODE (in))
8613 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8614
8615 gen_reload (loc, in, opnum, type);
8616 gen_reload (out, loc, opnum, type);
8617 }
8618 else if (REG_P (out) && UNARY_P (in))
8619 {
8620 rtx op1;
8621 rtx out_moded;
8622 rtx_insn *set;
8623
8624 op1 = find_replacement (&XEXP (in, 0));
8625 if (op1 != XEXP (in, 0))
8626 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8627
8628 /* First, try a plain SET. */
8629 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8630 if (set)
8631 return set;
8632
8633 /* If that failed, move the inner operand to the reload
8634 register, and try the same unop with the inner expression
8635 replaced with the reload register. */
8636
8637 if (GET_MODE (op1) != GET_MODE (out))
8638 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8639 else
8640 out_moded = out;
8641
8642 gen_reload (out_moded, op1, opnum, type);
8643
8644 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8645 out_moded));
8646 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8647 if (insn)
8648 {
8649 set_unique_reg_note (insn, REG_EQUIV, in);
8650 return insn;
8651 }
8652
8653 fatal_insn ("failure trying to reload:", set);
8654 }
8655 /* If IN is a simple operand, use gen_move_insn. */
8656 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8657 {
8658 tem = emit_insn (gen_move_insn (out, in));
8659 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8660 mark_jump_label (in, tem, 0);
8661 }
8662
8663 else if (targetm.have_reload_load_address ())
8664 emit_insn (targetm.gen_reload_load_address (out, in));
8665
8666 /* Otherwise, just write (set OUT IN) and hope for the best. */
8667 else
8668 emit_insn (gen_rtx_SET (out, in));
8669
8670 /* Return the first insn emitted.
8671 We cannot just return get_last_insn, because there may have
8672 been multiple instructions emitted. Also note that gen_move_insn may
8673 emit more than one insn itself, so we cannot assume that there is one
8674 insn emitted per emit_insn_before call. */
8675
8676 return last ? NEXT_INSN (last) : get_insns ();
8677 }
8678 \f
8679 /* Delete a previously made output-reload whose result we now believe
8680 is not needed. First we double-check.
8681
8682 INSN is the insn now being processed.
8683 LAST_RELOAD_REG is the hard register number for which we want to delete
8684 the last output reload.
8685 J is the reload-number that originally used REG. The caller has made
8686 certain that reload J doesn't use REG any longer for input.
8687 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8688
8689 static void
8690 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8691 rtx new_reload_reg)
8692 {
8693 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8694 rtx reg = spill_reg_stored_to[last_reload_reg];
8695 int k;
8696 int n_occurrences;
8697 int n_inherited = 0;
8698 rtx substed;
8699 unsigned regno;
8700 int nregs;
8701
8702 /* It is possible that this reload has been only used to set another reload
8703 we eliminated earlier and thus deleted this instruction too. */
8704 if (output_reload_insn->deleted ())
8705 return;
8706
8707 /* Get the raw pseudo-register referred to. */
8708
8709 while (GET_CODE (reg) == SUBREG)
8710 reg = SUBREG_REG (reg);
8711 substed = reg_equiv_memory_loc (REGNO (reg));
8712
8713 /* This is unsafe if the operand occurs more often in the current
8714 insn than it is inherited. */
8715 for (k = n_reloads - 1; k >= 0; k--)
8716 {
8717 rtx reg2 = rld[k].in;
8718 if (! reg2)
8719 continue;
8720 if (MEM_P (reg2) || reload_override_in[k])
8721 reg2 = rld[k].in_reg;
8722
8723 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8724 reg2 = XEXP (rld[k].in_reg, 0);
8725
8726 while (GET_CODE (reg2) == SUBREG)
8727 reg2 = SUBREG_REG (reg2);
8728 if (rtx_equal_p (reg2, reg))
8729 {
8730 if (reload_inherited[k] || reload_override_in[k] || k == j)
8731 n_inherited++;
8732 else
8733 return;
8734 }
8735 }
8736 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8737 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8738 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8739 reg, 0);
8740 if (substed)
8741 n_occurrences += count_occurrences (PATTERN (insn),
8742 eliminate_regs (substed, VOIDmode,
8743 NULL_RTX), 0);
8744 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8745 {
8746 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8747 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8748 }
8749 if (n_occurrences > n_inherited)
8750 return;
8751
8752 regno = REGNO (reg);
8753 nregs = REG_NREGS (reg);
8754
8755 /* If the pseudo-reg we are reloading is no longer referenced
8756 anywhere between the store into it and here,
8757 and we're within the same basic block, then the value can only
8758 pass through the reload reg and end up here.
8759 Otherwise, give up--return. */
8760 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8761 i1 != insn; i1 = NEXT_INSN (i1))
8762 {
8763 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8764 return;
8765 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8766 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8767 {
8768 /* If this is USE in front of INSN, we only have to check that
8769 there are no more references than accounted for by inheritance. */
8770 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8771 {
8772 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8773 i1 = NEXT_INSN (i1);
8774 }
8775 if (n_occurrences <= n_inherited && i1 == insn)
8776 break;
8777 return;
8778 }
8779 }
8780
8781 /* We will be deleting the insn. Remove the spill reg information. */
8782 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8783 {
8784 spill_reg_store[last_reload_reg + k] = 0;
8785 spill_reg_stored_to[last_reload_reg + k] = 0;
8786 }
8787
8788 /* The caller has already checked that REG dies or is set in INSN.
8789 It has also checked that we are optimizing, and thus some
8790 inaccuracies in the debugging information are acceptable.
8791 So we could just delete output_reload_insn. But in some cases
8792 we can improve the debugging information without sacrificing
8793 optimization - maybe even improving the code: See if the pseudo
8794 reg has been completely replaced with reload regs. If so, delete
8795 the store insn and forget we had a stack slot for the pseudo. */
8796 if (rld[j].out != rld[j].in
8797 && REG_N_DEATHS (REGNO (reg)) == 1
8798 && REG_N_SETS (REGNO (reg)) == 1
8799 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8800 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8801 {
8802 rtx_insn *i2;
8803
8804 /* We know that it was used only between here and the beginning of
8805 the current basic block. (We also know that the last use before
8806 INSN was the output reload we are thinking of deleting, but never
8807 mind that.) Search that range; see if any ref remains. */
8808 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8809 {
8810 rtx set = single_set (i2);
8811
8812 /* Uses which just store in the pseudo don't count,
8813 since if they are the only uses, they are dead. */
8814 if (set != 0 && SET_DEST (set) == reg)
8815 continue;
8816 if (LABEL_P (i2) || JUMP_P (i2))
8817 break;
8818 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8819 && reg_mentioned_p (reg, PATTERN (i2)))
8820 {
8821 /* Some other ref remains; just delete the output reload we
8822 know to be dead. */
8823 delete_address_reloads (output_reload_insn, insn);
8824 delete_insn (output_reload_insn);
8825 return;
8826 }
8827 }
8828
8829 /* Delete the now-dead stores into this pseudo. Note that this
8830 loop also takes care of deleting output_reload_insn. */
8831 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8832 {
8833 rtx set = single_set (i2);
8834
8835 if (set != 0 && SET_DEST (set) == reg)
8836 {
8837 delete_address_reloads (i2, insn);
8838 delete_insn (i2);
8839 }
8840 if (LABEL_P (i2) || JUMP_P (i2))
8841 break;
8842 }
8843
8844 /* For the debugging info, say the pseudo lives in this reload reg. */
8845 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8846 if (ira_conflicts_p)
8847 /* Inform IRA about the change. */
8848 ira_mark_allocation_change (REGNO (reg));
8849 alter_reg (REGNO (reg), -1, false);
8850 }
8851 else
8852 {
8853 delete_address_reloads (output_reload_insn, insn);
8854 delete_insn (output_reload_insn);
8855 }
8856 }
8857
8858 /* We are going to delete DEAD_INSN. Recursively delete loads of
8859 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8860 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8861 static void
8862 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8863 {
8864 rtx set = single_set (dead_insn);
8865 rtx set2, dst;
8866 rtx_insn *prev, *next;
8867 if (set)
8868 {
8869 rtx dst = SET_DEST (set);
8870 if (MEM_P (dst))
8871 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8872 }
8873 /* If we deleted the store from a reloaded post_{in,de}c expression,
8874 we can delete the matching adds. */
8875 prev = PREV_INSN (dead_insn);
8876 next = NEXT_INSN (dead_insn);
8877 if (! prev || ! next)
8878 return;
8879 set = single_set (next);
8880 set2 = single_set (prev);
8881 if (! set || ! set2
8882 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8883 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8884 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8885 return;
8886 dst = SET_DEST (set);
8887 if (! rtx_equal_p (dst, SET_DEST (set2))
8888 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8889 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8890 || (INTVAL (XEXP (SET_SRC (set), 1))
8891 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8892 return;
8893 delete_related_insns (prev);
8894 delete_related_insns (next);
8895 }
8896
8897 /* Subfunction of delete_address_reloads: process registers found in X. */
8898 static void
8899 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8900 {
8901 rtx_insn *prev, *i2;
8902 rtx set, dst;
8903 int i, j;
8904 enum rtx_code code = GET_CODE (x);
8905
8906 if (code != REG)
8907 {
8908 const char *fmt = GET_RTX_FORMAT (code);
8909 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8910 {
8911 if (fmt[i] == 'e')
8912 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8913 else if (fmt[i] == 'E')
8914 {
8915 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8916 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8917 current_insn);
8918 }
8919 }
8920 return;
8921 }
8922
8923 if (spill_reg_order[REGNO (x)] < 0)
8924 return;
8925
8926 /* Scan backwards for the insn that sets x. This might be a way back due
8927 to inheritance. */
8928 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8929 {
8930 code = GET_CODE (prev);
8931 if (code == CODE_LABEL || code == JUMP_INSN)
8932 return;
8933 if (!INSN_P (prev))
8934 continue;
8935 if (reg_set_p (x, PATTERN (prev)))
8936 break;
8937 if (reg_referenced_p (x, PATTERN (prev)))
8938 return;
8939 }
8940 if (! prev || INSN_UID (prev) < reload_first_uid)
8941 return;
8942 /* Check that PREV only sets the reload register. */
8943 set = single_set (prev);
8944 if (! set)
8945 return;
8946 dst = SET_DEST (set);
8947 if (!REG_P (dst)
8948 || ! rtx_equal_p (dst, x))
8949 return;
8950 if (! reg_set_p (dst, PATTERN (dead_insn)))
8951 {
8952 /* Check if DST was used in a later insn -
8953 it might have been inherited. */
8954 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8955 {
8956 if (LABEL_P (i2))
8957 break;
8958 if (! INSN_P (i2))
8959 continue;
8960 if (reg_referenced_p (dst, PATTERN (i2)))
8961 {
8962 /* If there is a reference to the register in the current insn,
8963 it might be loaded in a non-inherited reload. If no other
8964 reload uses it, that means the register is set before
8965 referenced. */
8966 if (i2 == current_insn)
8967 {
8968 for (j = n_reloads - 1; j >= 0; j--)
8969 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8970 || reload_override_in[j] == dst)
8971 return;
8972 for (j = n_reloads - 1; j >= 0; j--)
8973 if (rld[j].in && rld[j].reg_rtx == dst)
8974 break;
8975 if (j >= 0)
8976 break;
8977 }
8978 return;
8979 }
8980 if (JUMP_P (i2))
8981 break;
8982 /* If DST is still live at CURRENT_INSN, check if it is used for
8983 any reload. Note that even if CURRENT_INSN sets DST, we still
8984 have to check the reloads. */
8985 if (i2 == current_insn)
8986 {
8987 for (j = n_reloads - 1; j >= 0; j--)
8988 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8989 || reload_override_in[j] == dst)
8990 return;
8991 /* ??? We can't finish the loop here, because dst might be
8992 allocated to a pseudo in this block if no reload in this
8993 block needs any of the classes containing DST - see
8994 spill_hard_reg. There is no easy way to tell this, so we
8995 have to scan till the end of the basic block. */
8996 }
8997 if (reg_set_p (dst, PATTERN (i2)))
8998 break;
8999 }
9000 }
9001 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9002 reg_reloaded_contents[REGNO (dst)] = -1;
9003 delete_insn (prev);
9004 }
9005 \f
9006 /* Output reload-insns to reload VALUE into RELOADREG.
9007 VALUE is an autoincrement or autodecrement RTX whose operand
9008 is a register or memory location;
9009 so reloading involves incrementing that location.
9010 IN is either identical to VALUE, or some cheaper place to reload from.
9011
9012 INC_AMOUNT is the number to increment or decrement by (always positive).
9013 This cannot be deduced from VALUE. */
9014
9015 static void
9016 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9017 {
9018 /* REG or MEM to be copied and incremented. */
9019 rtx incloc = find_replacement (&XEXP (value, 0));
9020 /* Nonzero if increment after copying. */
9021 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9022 || GET_CODE (value) == POST_MODIFY);
9023 rtx_insn *last;
9024 rtx inc;
9025 rtx_insn *add_insn;
9026 int code;
9027 rtx real_in = in == value ? incloc : in;
9028
9029 /* No hard register is equivalent to this register after
9030 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9031 we could inc/dec that register as well (maybe even using it for
9032 the source), but I'm not sure it's worth worrying about. */
9033 if (REG_P (incloc))
9034 reg_last_reload_reg[REGNO (incloc)] = 0;
9035
9036 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9037 {
9038 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9039 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9040 }
9041 else
9042 {
9043 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9044 inc_amount = -inc_amount;
9045
9046 inc = gen_int_mode (inc_amount, Pmode);
9047 }
9048
9049 /* If this is post-increment, first copy the location to the reload reg. */
9050 if (post && real_in != reloadreg)
9051 emit_insn (gen_move_insn (reloadreg, real_in));
9052
9053 if (in == value)
9054 {
9055 /* See if we can directly increment INCLOC. Use a method similar to
9056 that in gen_reload. */
9057
9058 last = get_last_insn ();
9059 add_insn = emit_insn (gen_rtx_SET (incloc,
9060 gen_rtx_PLUS (GET_MODE (incloc),
9061 incloc, inc)));
9062
9063 code = recog_memoized (add_insn);
9064 if (code >= 0)
9065 {
9066 extract_insn (add_insn);
9067 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9068 {
9069 /* If this is a pre-increment and we have incremented the value
9070 where it lives, copy the incremented value to RELOADREG to
9071 be used as an address. */
9072
9073 if (! post)
9074 emit_insn (gen_move_insn (reloadreg, incloc));
9075 return;
9076 }
9077 }
9078 delete_insns_since (last);
9079 }
9080
9081 /* If couldn't do the increment directly, must increment in RELOADREG.
9082 The way we do this depends on whether this is pre- or post-increment.
9083 For pre-increment, copy INCLOC to the reload register, increment it
9084 there, then save back. */
9085
9086 if (! post)
9087 {
9088 if (in != reloadreg)
9089 emit_insn (gen_move_insn (reloadreg, real_in));
9090 emit_insn (gen_add2_insn (reloadreg, inc));
9091 emit_insn (gen_move_insn (incloc, reloadreg));
9092 }
9093 else
9094 {
9095 /* Postincrement.
9096 Because this might be a jump insn or a compare, and because RELOADREG
9097 may not be available after the insn in an input reload, we must do
9098 the incrementation before the insn being reloaded for.
9099
9100 We have already copied IN to RELOADREG. Increment the copy in
9101 RELOADREG, save that back, then decrement RELOADREG so it has
9102 the original value. */
9103
9104 emit_insn (gen_add2_insn (reloadreg, inc));
9105 emit_insn (gen_move_insn (incloc, reloadreg));
9106 if (CONST_INT_P (inc))
9107 emit_insn (gen_add2_insn (reloadreg,
9108 gen_int_mode (-INTVAL (inc),
9109 GET_MODE (reloadreg))));
9110 else
9111 emit_insn (gen_sub2_insn (reloadreg, inc));
9112 }
9113 }
9114 \f
9115 static void
9116 add_auto_inc_notes (rtx_insn *insn, rtx x)
9117 {
9118 enum rtx_code code = GET_CODE (x);
9119 const char *fmt;
9120 int i, j;
9121
9122 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9123 {
9124 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9125 return;
9126 }
9127
9128 /* Scan all the operand sub-expressions. */
9129 fmt = GET_RTX_FORMAT (code);
9130 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9131 {
9132 if (fmt[i] == 'e')
9133 add_auto_inc_notes (insn, XEXP (x, i));
9134 else if (fmt[i] == 'E')
9135 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9136 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9137 }
9138 }