re PR middle-end/48770 (wrong code with -O -fprofile-arcs -fPIC -fno-dce -fno-forward...
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl-error.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "ggc.h"
34 #include "flags.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "regs.h"
39 #include "addresses.h"
40 #include "basic-block.h"
41 #include "df.h"
42 #include "reload.h"
43 #include "recog.h"
44 #include "output.h"
45 #include "except.h"
46 #include "tree.h"
47 #include "ira.h"
48 #include "target.h"
49 #include "emit-rtl.h"
50
51 /* This file contains the reload pass of the compiler, which is
52 run after register allocation has been done. It checks that
53 each insn is valid (operands required to be in registers really
54 are in registers of the proper class) and fixes up invalid ones
55 by copying values temporarily into registers for the insns
56 that need them.
57
58 The results of register allocation are described by the vector
59 reg_renumber; the insns still contain pseudo regs, but reg_renumber
60 can be used to find which hard reg, if any, a pseudo reg is in.
61
62 The technique we always use is to free up a few hard regs that are
63 called ``reload regs'', and for each place where a pseudo reg
64 must be in a hard reg, copy it temporarily into one of the reload regs.
65
66 Reload regs are allocated locally for every instruction that needs
67 reloads. When there are pseudos which are allocated to a register that
68 has been chosen as a reload reg, such pseudos must be ``spilled''.
69 This means that they go to other hard regs, or to stack slots if no other
70 available hard regs can be found. Spilling can invalidate more
71 insns, requiring additional need for reloads, so we must keep checking
72 until the process stabilizes.
73
74 For machines with different classes of registers, we must keep track
75 of the register class needed for each reload, and make sure that
76 we allocate enough reload registers of each class.
77
78 The file reload.c contains the code that checks one insn for
79 validity and reports the reloads that it needs. This file
80 is in charge of scanning the entire rtl code, accumulating the
81 reload needs, spilling, assigning reload registers to use for
82 fixing up each insn, and generating the new insns to copy values
83 into the reload registers. */
84 \f
85 struct target_reload default_target_reload;
86 #if SWITCHABLE_TARGET
87 struct target_reload *this_target_reload = &default_target_reload;
88 #endif
89
90 #define spill_indirect_levels \
91 (this_target_reload->x_spill_indirect_levels)
92
93 /* During reload_as_needed, element N contains a REG rtx for the hard reg
94 into which reg N has been reloaded (perhaps for a previous insn). */
95 static rtx *reg_last_reload_reg;
96
97 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
98 for an output reload that stores into reg N. */
99 static regset_head reg_has_output_reload;
100
101 /* Indicates which hard regs are reload-registers for an output reload
102 in the current insn. */
103 static HARD_REG_SET reg_is_output_reload;
104
105 /* Widest width in which each pseudo reg is referred to (via subreg). */
106 static unsigned int *reg_max_ref_width;
107
108 /* Vector to remember old contents of reg_renumber before spilling. */
109 static short *reg_old_renumber;
110
111 /* During reload_as_needed, element N contains the last pseudo regno reloaded
112 into hard register N. If that pseudo reg occupied more than one register,
113 reg_reloaded_contents points to that pseudo for each spill register in
114 use; all of these must remain set for an inheritance to occur. */
115 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
116
117 /* During reload_as_needed, element N contains the insn for which
118 hard register N was last used. Its contents are significant only
119 when reg_reloaded_valid is set for this register. */
120 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
121
122 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
123 static HARD_REG_SET reg_reloaded_valid;
124 /* Indicate if the register was dead at the end of the reload.
125 This is only valid if reg_reloaded_contents is set and valid. */
126 static HARD_REG_SET reg_reloaded_dead;
127
128 /* Indicate whether the register's current value is one that is not
129 safe to retain across a call, even for registers that are normally
130 call-saved. This is only meaningful for members of reg_reloaded_valid. */
131 static HARD_REG_SET reg_reloaded_call_part_clobbered;
132
133 /* Number of spill-regs so far; number of valid elements of spill_regs. */
134 static int n_spills;
135
136 /* In parallel with spill_regs, contains REG rtx's for those regs.
137 Holds the last rtx used for any given reg, or 0 if it has never
138 been used for spilling yet. This rtx is reused, provided it has
139 the proper mode. */
140 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
141
142 /* In parallel with spill_regs, contains nonzero for a spill reg
143 that was stored after the last time it was used.
144 The precise value is the insn generated to do the store. */
145 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
146
147 /* This is the register that was stored with spill_reg_store. This is a
148 copy of reload_out / reload_out_reg when the value was stored; if
149 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
150 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
151
152 /* This table is the inverse mapping of spill_regs:
153 indexed by hard reg number,
154 it contains the position of that reg in spill_regs,
155 or -1 for something that is not in spill_regs.
156
157 ?!? This is no longer accurate. */
158 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
159
160 /* This reg set indicates registers that can't be used as spill registers for
161 the currently processed insn. These are the hard registers which are live
162 during the insn, but not allocated to pseudos, as well as fixed
163 registers. */
164 static HARD_REG_SET bad_spill_regs;
165
166 /* These are the hard registers that can't be used as spill register for any
167 insn. This includes registers used for user variables and registers that
168 we can't eliminate. A register that appears in this set also can't be used
169 to retry register allocation. */
170 static HARD_REG_SET bad_spill_regs_global;
171
172 /* Describes order of use of registers for reloading
173 of spilled pseudo-registers. `n_spills' is the number of
174 elements that are actually valid; new ones are added at the end.
175
176 Both spill_regs and spill_reg_order are used on two occasions:
177 once during find_reload_regs, where they keep track of the spill registers
178 for a single insn, but also during reload_as_needed where they show all
179 the registers ever used by reload. For the latter case, the information
180 is calculated during finish_spills. */
181 static short spill_regs[FIRST_PSEUDO_REGISTER];
182
183 /* This vector of reg sets indicates, for each pseudo, which hard registers
184 may not be used for retrying global allocation because the register was
185 formerly spilled from one of them. If we allowed reallocating a pseudo to
186 a register that it was already allocated to, reload might not
187 terminate. */
188 static HARD_REG_SET *pseudo_previous_regs;
189
190 /* This vector of reg sets indicates, for each pseudo, which hard
191 registers may not be used for retrying global allocation because they
192 are used as spill registers during one of the insns in which the
193 pseudo is live. */
194 static HARD_REG_SET *pseudo_forbidden_regs;
195
196 /* All hard regs that have been used as spill registers for any insn are
197 marked in this set. */
198 static HARD_REG_SET used_spill_regs;
199
200 /* Index of last register assigned as a spill register. We allocate in
201 a round-robin fashion. */
202 static int last_spill_reg;
203
204 /* Record the stack slot for each spilled hard register. */
205 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
206
207 /* Width allocated so far for that stack slot. */
208 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
209
210 /* Record which pseudos needed to be spilled. */
211 static regset_head spilled_pseudos;
212
213 /* Record which pseudos changed their allocation in finish_spills. */
214 static regset_head changed_allocation_pseudos;
215
216 /* Used for communication between order_regs_for_reload and count_pseudo.
217 Used to avoid counting one pseudo twice. */
218 static regset_head pseudos_counted;
219
220 /* First uid used by insns created by reload in this function.
221 Used in find_equiv_reg. */
222 int reload_first_uid;
223
224 /* Flag set by local-alloc or global-alloc if anything is live in
225 a call-clobbered reg across calls. */
226 int caller_save_needed;
227
228 /* Set to 1 while reload_as_needed is operating.
229 Required by some machines to handle any generated moves differently. */
230 int reload_in_progress = 0;
231
232 /* This obstack is used for allocation of rtl during register elimination.
233 The allocated storage can be freed once find_reloads has processed the
234 insn. */
235 static struct obstack reload_obstack;
236
237 /* Points to the beginning of the reload_obstack. All insn_chain structures
238 are allocated first. */
239 static char *reload_startobj;
240
241 /* The point after all insn_chain structures. Used to quickly deallocate
242 memory allocated in copy_reloads during calculate_needs_all_insns. */
243 static char *reload_firstobj;
244
245 /* This points before all local rtl generated by register elimination.
246 Used to quickly free all memory after processing one insn. */
247 static char *reload_insn_firstobj;
248
249 /* List of insn_chain instructions, one for every insn that reload needs to
250 examine. */
251 struct insn_chain *reload_insn_chain;
252
253 /* TRUE if we potentially left dead insns in the insn stream and want to
254 run DCE immediately after reload, FALSE otherwise. */
255 static bool need_dce;
256
257 /* List of all insns needing reloads. */
258 static struct insn_chain *insns_need_reload;
259 \f
260 /* This structure is used to record information about register eliminations.
261 Each array entry describes one possible way of eliminating a register
262 in favor of another. If there is more than one way of eliminating a
263 particular register, the most preferred should be specified first. */
264
265 struct elim_table
266 {
267 int from; /* Register number to be eliminated. */
268 int to; /* Register number used as replacement. */
269 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
270 int can_eliminate; /* Nonzero if this elimination can be done. */
271 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
272 target hook in previous scan over insns
273 made by reload. */
274 HOST_WIDE_INT offset; /* Current offset between the two regs. */
275 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
276 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
277 rtx from_rtx; /* REG rtx for the register to be eliminated.
278 We cannot simply compare the number since
279 we might then spuriously replace a hard
280 register corresponding to a pseudo
281 assigned to the reg to be eliminated. */
282 rtx to_rtx; /* REG rtx for the replacement. */
283 };
284
285 static struct elim_table *reg_eliminate = 0;
286
287 /* This is an intermediate structure to initialize the table. It has
288 exactly the members provided by ELIMINABLE_REGS. */
289 static const struct elim_table_1
290 {
291 const int from;
292 const int to;
293 } reg_eliminate_1[] =
294
295 /* If a set of eliminable registers was specified, define the table from it.
296 Otherwise, default to the normal case of the frame pointer being
297 replaced by the stack pointer. */
298
299 #ifdef ELIMINABLE_REGS
300 ELIMINABLE_REGS;
301 #else
302 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
303 #endif
304
305 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
306
307 /* Record the number of pending eliminations that have an offset not equal
308 to their initial offset. If nonzero, we use a new copy of each
309 replacement result in any insns encountered. */
310 int num_not_at_initial_offset;
311
312 /* Count the number of registers that we may be able to eliminate. */
313 static int num_eliminable;
314 /* And the number of registers that are equivalent to a constant that
315 can be eliminated to frame_pointer / arg_pointer + constant. */
316 static int num_eliminable_invariants;
317
318 /* For each label, we record the offset of each elimination. If we reach
319 a label by more than one path and an offset differs, we cannot do the
320 elimination. This information is indexed by the difference of the
321 number of the label and the first label number. We can't offset the
322 pointer itself as this can cause problems on machines with segmented
323 memory. The first table is an array of flags that records whether we
324 have yet encountered a label and the second table is an array of arrays,
325 one entry in the latter array for each elimination. */
326
327 static int first_label_num;
328 static char *offsets_known_at;
329 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
330
331 VEC(reg_equivs_t,gc) *reg_equivs;
332
333 /* Stack of addresses where an rtx has been changed. We can undo the
334 changes by popping items off the stack and restoring the original
335 value at each location.
336
337 We use this simplistic undo capability rather than copy_rtx as copy_rtx
338 will not make a deep copy of a normally sharable rtx, such as
339 (const (plus (symbol_ref) (const_int))). If such an expression appears
340 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
341 rtx expression would be changed. See PR 42431. */
342
343 typedef rtx *rtx_p;
344 DEF_VEC_P(rtx_p);
345 DEF_VEC_ALLOC_P(rtx_p,heap);
346 static VEC(rtx_p,heap) *substitute_stack;
347
348 /* Number of labels in the current function. */
349
350 static int num_labels;
351 \f
352 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
353 static void maybe_fix_stack_asms (void);
354 static void copy_reloads (struct insn_chain *);
355 static void calculate_needs_all_insns (int);
356 static int find_reg (struct insn_chain *, int);
357 static void find_reload_regs (struct insn_chain *);
358 static void select_reload_regs (void);
359 static void delete_caller_save_insns (void);
360
361 static void spill_failure (rtx, enum reg_class);
362 static void count_spilled_pseudo (int, int, int);
363 static void delete_dead_insn (rtx);
364 static void alter_reg (int, int, bool);
365 static void set_label_offsets (rtx, rtx, int);
366 static void check_eliminable_occurrences (rtx);
367 static void elimination_effects (rtx, enum machine_mode);
368 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
369 static int eliminate_regs_in_insn (rtx, int);
370 static void update_eliminable_offsets (void);
371 static void mark_not_eliminable (rtx, const_rtx, void *);
372 static void set_initial_elim_offsets (void);
373 static bool verify_initial_elim_offsets (void);
374 static void set_initial_label_offsets (void);
375 static void set_offsets_for_label (rtx);
376 static void init_eliminable_invariants (rtx, bool);
377 static void init_elim_table (void);
378 static void free_reg_equiv (void);
379 static void update_eliminables (HARD_REG_SET *);
380 static void elimination_costs_in_insn (rtx);
381 static void spill_hard_reg (unsigned int, int);
382 static int finish_spills (int);
383 static void scan_paradoxical_subregs (rtx);
384 static void count_pseudo (int);
385 static void order_regs_for_reload (struct insn_chain *);
386 static void reload_as_needed (int);
387 static void forget_old_reloads_1 (rtx, const_rtx, void *);
388 static void forget_marked_reloads (regset);
389 static int reload_reg_class_lower (const void *, const void *);
390 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
393 enum machine_mode);
394 static int reload_reg_free_p (unsigned int, int, enum reload_type);
395 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
398 rtx, rtx, int, int);
399 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
400 static int allocate_reload_reg (struct insn_chain *, int, int);
401 static int conflicts_with_override (rtx);
402 static void failed_reload (rtx, int);
403 static int set_reload_reg (int, int);
404 static void choose_reload_regs_init (struct insn_chain *, rtx *);
405 static void choose_reload_regs (struct insn_chain *);
406 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
407 rtx, int);
408 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
409 int);
410 static void do_input_reload (struct insn_chain *, struct reload *, int);
411 static void do_output_reload (struct insn_chain *, struct reload *, int);
412 static void emit_reload_insns (struct insn_chain *);
413 static void delete_output_reload (rtx, int, int, rtx);
414 static void delete_address_reloads (rtx, rtx);
415 static void delete_address_reloads_1 (rtx, rtx, rtx);
416 static void inc_for_reload (rtx, rtx, rtx, int);
417 #ifdef AUTO_INC_DEC
418 static void add_auto_inc_notes (rtx, rtx);
419 #endif
420 static void substitute (rtx *, const_rtx, rtx);
421 static bool gen_reload_chain_without_interm_reg_p (int, int);
422 static int reloads_conflict (int, int);
423 static rtx gen_reload (rtx, rtx, int, enum reload_type);
424 static rtx emit_insn_if_valid_for_reload (rtx);
425 \f
426 /* Initialize the reload pass. This is called at the beginning of compilation
427 and may be called again if the target is reinitialized. */
428
429 void
430 init_reload (void)
431 {
432 int i;
433
434 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
435 Set spill_indirect_levels to the number of levels such addressing is
436 permitted, zero if it is not permitted at all. */
437
438 rtx tem
439 = gen_rtx_MEM (Pmode,
440 gen_rtx_PLUS (Pmode,
441 gen_rtx_REG (Pmode,
442 LAST_VIRTUAL_REGISTER + 1),
443 GEN_INT (4)));
444 spill_indirect_levels = 0;
445
446 while (memory_address_p (QImode, tem))
447 {
448 spill_indirect_levels++;
449 tem = gen_rtx_MEM (Pmode, tem);
450 }
451
452 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
453
454 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
455 indirect_symref_ok = memory_address_p (QImode, tem);
456
457 /* See if reg+reg is a valid (and offsettable) address. */
458
459 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
460 {
461 tem = gen_rtx_PLUS (Pmode,
462 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
463 gen_rtx_REG (Pmode, i));
464
465 /* This way, we make sure that reg+reg is an offsettable address. */
466 tem = plus_constant (tem, 4);
467
468 if (memory_address_p (QImode, tem))
469 {
470 double_reg_address_ok = 1;
471 break;
472 }
473 }
474
475 /* Initialize obstack for our rtl allocation. */
476 gcc_obstack_init (&reload_obstack);
477 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
478
479 INIT_REG_SET (&spilled_pseudos);
480 INIT_REG_SET (&changed_allocation_pseudos);
481 INIT_REG_SET (&pseudos_counted);
482 }
483
484 /* List of insn chains that are currently unused. */
485 static struct insn_chain *unused_insn_chains = 0;
486
487 /* Allocate an empty insn_chain structure. */
488 struct insn_chain *
489 new_insn_chain (void)
490 {
491 struct insn_chain *c;
492
493 if (unused_insn_chains == 0)
494 {
495 c = XOBNEW (&reload_obstack, struct insn_chain);
496 INIT_REG_SET (&c->live_throughout);
497 INIT_REG_SET (&c->dead_or_set);
498 }
499 else
500 {
501 c = unused_insn_chains;
502 unused_insn_chains = c->next;
503 }
504 c->is_caller_save_insn = 0;
505 c->need_operand_change = 0;
506 c->need_reload = 0;
507 c->need_elim = 0;
508 return c;
509 }
510
511 /* Small utility function to set all regs in hard reg set TO which are
512 allocated to pseudos in regset FROM. */
513
514 void
515 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
516 {
517 unsigned int regno;
518 reg_set_iterator rsi;
519
520 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
521 {
522 int r = reg_renumber[regno];
523
524 if (r < 0)
525 {
526 /* reload_combine uses the information from DF_LIVE_IN,
527 which might still contain registers that have not
528 actually been allocated since they have an
529 equivalence. */
530 gcc_assert (ira_conflicts_p || reload_completed);
531 }
532 else
533 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
534 }
535 }
536
537 /* Replace all pseudos found in LOC with their corresponding
538 equivalences. */
539
540 static void
541 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
542 {
543 rtx x = *loc;
544 enum rtx_code code;
545 const char *fmt;
546 int i, j;
547
548 if (! x)
549 return;
550
551 code = GET_CODE (x);
552 if (code == REG)
553 {
554 unsigned int regno = REGNO (x);
555
556 if (regno < FIRST_PSEUDO_REGISTER)
557 return;
558
559 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
560 if (x != *loc)
561 {
562 *loc = x;
563 replace_pseudos_in (loc, mem_mode, usage);
564 return;
565 }
566
567 if (reg_equiv_constant (regno))
568 *loc = reg_equiv_constant (regno);
569 else if (reg_equiv_invariant (regno))
570 *loc = reg_equiv_invariant (regno);
571 else if (reg_equiv_mem (regno))
572 *loc = reg_equiv_mem (regno);
573 else if (reg_equiv_address (regno))
574 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
575 else
576 {
577 gcc_assert (!REG_P (regno_reg_rtx[regno])
578 || REGNO (regno_reg_rtx[regno]) != regno);
579 *loc = regno_reg_rtx[regno];
580 }
581
582 return;
583 }
584 else if (code == MEM)
585 {
586 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
587 return;
588 }
589
590 /* Process each of our operands recursively. */
591 fmt = GET_RTX_FORMAT (code);
592 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
593 if (*fmt == 'e')
594 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
595 else if (*fmt == 'E')
596 for (j = 0; j < XVECLEN (x, i); j++)
597 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
598 }
599
600 /* Determine if the current function has an exception receiver block
601 that reaches the exit block via non-exceptional edges */
602
603 static bool
604 has_nonexceptional_receiver (void)
605 {
606 edge e;
607 edge_iterator ei;
608 basic_block *tos, *worklist, bb;
609
610 /* If we're not optimizing, then just err on the safe side. */
611 if (!optimize)
612 return true;
613
614 /* First determine which blocks can reach exit via normal paths. */
615 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
616
617 FOR_EACH_BB (bb)
618 bb->flags &= ~BB_REACHABLE;
619
620 /* Place the exit block on our worklist. */
621 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
622 *tos++ = EXIT_BLOCK_PTR;
623
624 /* Iterate: find everything reachable from what we've already seen. */
625 while (tos != worklist)
626 {
627 bb = *--tos;
628
629 FOR_EACH_EDGE (e, ei, bb->preds)
630 if (!(e->flags & EDGE_ABNORMAL))
631 {
632 basic_block src = e->src;
633
634 if (!(src->flags & BB_REACHABLE))
635 {
636 src->flags |= BB_REACHABLE;
637 *tos++ = src;
638 }
639 }
640 }
641 free (worklist);
642
643 /* Now see if there's a reachable block with an exceptional incoming
644 edge. */
645 FOR_EACH_BB (bb)
646 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
647 return true;
648
649 /* No exceptional block reached exit unexceptionally. */
650 return false;
651 }
652
653 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
654 zero elements) to MAX_REG_NUM elements.
655
656 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
657 void
658 grow_reg_equivs (void)
659 {
660 int old_size = VEC_length (reg_equivs_t, reg_equivs);
661 int max_regno = max_reg_num ();
662 int i;
663
664 VEC_reserve (reg_equivs_t, gc, reg_equivs, max_regno);
665 for (i = old_size; i < max_regno; i++)
666 {
667 VEC_quick_insert (reg_equivs_t, reg_equivs, i, 0);
668 memset (VEC_index (reg_equivs_t, reg_equivs, i), 0, sizeof (reg_equivs_t));
669 }
670
671 }
672
673 \f
674 /* Global variables used by reload and its subroutines. */
675
676 /* The current basic block while in calculate_elim_costs_all_insns. */
677 static basic_block elim_bb;
678
679 /* Set during calculate_needs if an insn needs register elimination. */
680 static int something_needs_elimination;
681 /* Set during calculate_needs if an insn needs an operand changed. */
682 static int something_needs_operands_changed;
683 /* Set by alter_regs if we spilled a register to the stack. */
684 static bool something_was_spilled;
685
686 /* Nonzero means we couldn't get enough spill regs. */
687 static int failure;
688
689 /* Temporary array of pseudo-register number. */
690 static int *temp_pseudo_reg_arr;
691
692 /* Main entry point for the reload pass.
693
694 FIRST is the first insn of the function being compiled.
695
696 GLOBAL nonzero means we were called from global_alloc
697 and should attempt to reallocate any pseudoregs that we
698 displace from hard regs we will use for reloads.
699 If GLOBAL is zero, we do not have enough information to do that,
700 so any pseudo reg that is spilled must go to the stack.
701
702 Return value is TRUE if reload likely left dead insns in the
703 stream and a DCE pass should be run to elimiante them. Else the
704 return value is FALSE. */
705
706 bool
707 reload (rtx first, int global)
708 {
709 int i, n;
710 rtx insn;
711 struct elim_table *ep;
712 basic_block bb;
713 bool inserted;
714
715 /* Make sure even insns with volatile mem refs are recognizable. */
716 init_recog ();
717
718 failure = 0;
719
720 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
721
722 /* Make sure that the last insn in the chain
723 is not something that needs reloading. */
724 emit_note (NOTE_INSN_DELETED);
725
726 /* Enable find_equiv_reg to distinguish insns made by reload. */
727 reload_first_uid = get_max_uid ();
728
729 #ifdef SECONDARY_MEMORY_NEEDED
730 /* Initialize the secondary memory table. */
731 clear_secondary_mem ();
732 #endif
733
734 /* We don't have a stack slot for any spill reg yet. */
735 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
736 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
737
738 /* Initialize the save area information for caller-save, in case some
739 are needed. */
740 init_save_areas ();
741
742 /* Compute which hard registers are now in use
743 as homes for pseudo registers.
744 This is done here rather than (eg) in global_alloc
745 because this point is reached even if not optimizing. */
746 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
747 mark_home_live (i);
748
749 /* A function that has a nonlocal label that can reach the exit
750 block via non-exceptional paths must save all call-saved
751 registers. */
752 if (cfun->has_nonlocal_label
753 && has_nonexceptional_receiver ())
754 crtl->saves_all_registers = 1;
755
756 if (crtl->saves_all_registers)
757 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
758 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
759 df_set_regs_ever_live (i, true);
760
761 /* Find all the pseudo registers that didn't get hard regs
762 but do have known equivalent constants or memory slots.
763 These include parameters (known equivalent to parameter slots)
764 and cse'd or loop-moved constant memory addresses.
765
766 Record constant equivalents in reg_equiv_constant
767 so they will be substituted by find_reloads.
768 Record memory equivalents in reg_mem_equiv so they can
769 be substituted eventually by altering the REG-rtx's. */
770
771 grow_reg_equivs ();
772 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
773 reg_old_renumber = XCNEWVEC (short, max_regno);
774 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
775 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
776 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
777
778 CLEAR_HARD_REG_SET (bad_spill_regs_global);
779
780 init_eliminable_invariants (first, true);
781 init_elim_table ();
782
783 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
784 stack slots to the pseudos that lack hard regs or equivalents.
785 Do not touch virtual registers. */
786
787 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
788 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
789 temp_pseudo_reg_arr[n++] = i;
790
791 if (ira_conflicts_p)
792 /* Ask IRA to order pseudo-registers for better stack slot
793 sharing. */
794 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
795
796 for (i = 0; i < n; i++)
797 alter_reg (temp_pseudo_reg_arr[i], -1, false);
798
799 /* If we have some registers we think can be eliminated, scan all insns to
800 see if there is an insn that sets one of these registers to something
801 other than itself plus a constant. If so, the register cannot be
802 eliminated. Doing this scan here eliminates an extra pass through the
803 main reload loop in the most common case where register elimination
804 cannot be done. */
805 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
806 if (INSN_P (insn))
807 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
808
809 maybe_fix_stack_asms ();
810
811 insns_need_reload = 0;
812 something_needs_elimination = 0;
813
814 /* Initialize to -1, which means take the first spill register. */
815 last_spill_reg = -1;
816
817 /* Spill any hard regs that we know we can't eliminate. */
818 CLEAR_HARD_REG_SET (used_spill_regs);
819 /* There can be multiple ways to eliminate a register;
820 they should be listed adjacently.
821 Elimination for any register fails only if all possible ways fail. */
822 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
823 {
824 int from = ep->from;
825 int can_eliminate = 0;
826 do
827 {
828 can_eliminate |= ep->can_eliminate;
829 ep++;
830 }
831 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
832 if (! can_eliminate)
833 spill_hard_reg (from, 1);
834 }
835
836 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
837 if (frame_pointer_needed)
838 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
839 #endif
840 finish_spills (global);
841
842 /* From now on, we may need to generate moves differently. We may also
843 allow modifications of insns which cause them to not be recognized.
844 Any such modifications will be cleaned up during reload itself. */
845 reload_in_progress = 1;
846
847 /* This loop scans the entire function each go-round
848 and repeats until one repetition spills no additional hard regs. */
849 for (;;)
850 {
851 int something_changed;
852 int did_spill;
853 HOST_WIDE_INT starting_frame_size;
854
855 starting_frame_size = get_frame_size ();
856 something_was_spilled = false;
857
858 set_initial_elim_offsets ();
859 set_initial_label_offsets ();
860
861 /* For each pseudo register that has an equivalent location defined,
862 try to eliminate any eliminable registers (such as the frame pointer)
863 assuming initial offsets for the replacement register, which
864 is the normal case.
865
866 If the resulting location is directly addressable, substitute
867 the MEM we just got directly for the old REG.
868
869 If it is not addressable but is a constant or the sum of a hard reg
870 and constant, it is probably not addressable because the constant is
871 out of range, in that case record the address; we will generate
872 hairy code to compute the address in a register each time it is
873 needed. Similarly if it is a hard register, but one that is not
874 valid as an address register.
875
876 If the location is not addressable, but does not have one of the
877 above forms, assign a stack slot. We have to do this to avoid the
878 potential of producing lots of reloads if, e.g., a location involves
879 a pseudo that didn't get a hard register and has an equivalent memory
880 location that also involves a pseudo that didn't get a hard register.
881
882 Perhaps at some point we will improve reload_when_needed handling
883 so this problem goes away. But that's very hairy. */
884
885 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
886 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
887 {
888 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
889 NULL_RTX);
890
891 if (strict_memory_address_addr_space_p
892 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
893 MEM_ADDR_SPACE (x)))
894 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
895 else if (CONSTANT_P (XEXP (x, 0))
896 || (REG_P (XEXP (x, 0))
897 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
898 || (GET_CODE (XEXP (x, 0)) == PLUS
899 && REG_P (XEXP (XEXP (x, 0), 0))
900 && (REGNO (XEXP (XEXP (x, 0), 0))
901 < FIRST_PSEUDO_REGISTER)
902 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
903 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
904 else
905 {
906 /* Make a new stack slot. Then indicate that something
907 changed so we go back and recompute offsets for
908 eliminable registers because the allocation of memory
909 below might change some offset. reg_equiv_{mem,address}
910 will be set up for this pseudo on the next pass around
911 the loop. */
912 reg_equiv_memory_loc (i) = 0;
913 reg_equiv_init (i) = 0;
914 alter_reg (i, -1, true);
915 }
916 }
917
918 if (caller_save_needed)
919 setup_save_areas ();
920
921 /* If we allocated another stack slot, redo elimination bookkeeping. */
922 if (something_was_spilled || starting_frame_size != get_frame_size ())
923 continue;
924 if (starting_frame_size && crtl->stack_alignment_needed)
925 {
926 /* If we have a stack frame, we must align it now. The
927 stack size may be a part of the offset computation for
928 register elimination. So if this changes the stack size,
929 then repeat the elimination bookkeeping. We don't
930 realign when there is no stack, as that will cause a
931 stack frame when none is needed should
932 STARTING_FRAME_OFFSET not be already aligned to
933 STACK_BOUNDARY. */
934 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
935 if (starting_frame_size != get_frame_size ())
936 continue;
937 }
938
939 if (caller_save_needed)
940 {
941 save_call_clobbered_regs ();
942 /* That might have allocated new insn_chain structures. */
943 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
944 }
945
946 calculate_needs_all_insns (global);
947
948 if (! ira_conflicts_p)
949 /* Don't do it for IRA. We need this info because we don't
950 change live_throughout and dead_or_set for chains when IRA
951 is used. */
952 CLEAR_REG_SET (&spilled_pseudos);
953
954 did_spill = 0;
955
956 something_changed = 0;
957
958 /* If we allocated any new memory locations, make another pass
959 since it might have changed elimination offsets. */
960 if (something_was_spilled || starting_frame_size != get_frame_size ())
961 something_changed = 1;
962
963 /* Even if the frame size remained the same, we might still have
964 changed elimination offsets, e.g. if find_reloads called
965 force_const_mem requiring the back end to allocate a constant
966 pool base register that needs to be saved on the stack. */
967 else if (!verify_initial_elim_offsets ())
968 something_changed = 1;
969
970 {
971 HARD_REG_SET to_spill;
972 CLEAR_HARD_REG_SET (to_spill);
973 update_eliminables (&to_spill);
974 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
975
976 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
977 if (TEST_HARD_REG_BIT (to_spill, i))
978 {
979 spill_hard_reg (i, 1);
980 did_spill = 1;
981
982 /* Regardless of the state of spills, if we previously had
983 a register that we thought we could eliminate, but now can
984 not eliminate, we must run another pass.
985
986 Consider pseudos which have an entry in reg_equiv_* which
987 reference an eliminable register. We must make another pass
988 to update reg_equiv_* so that we do not substitute in the
989 old value from when we thought the elimination could be
990 performed. */
991 something_changed = 1;
992 }
993 }
994
995 select_reload_regs ();
996 if (failure)
997 goto failed;
998
999 if (insns_need_reload != 0 || did_spill)
1000 something_changed |= finish_spills (global);
1001
1002 if (! something_changed)
1003 break;
1004
1005 if (caller_save_needed)
1006 delete_caller_save_insns ();
1007
1008 obstack_free (&reload_obstack, reload_firstobj);
1009 }
1010
1011 /* If global-alloc was run, notify it of any register eliminations we have
1012 done. */
1013 if (global)
1014 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1015 if (ep->can_eliminate)
1016 mark_elimination (ep->from, ep->to);
1017
1018 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1019 If that insn didn't set the register (i.e., it copied the register to
1020 memory), just delete that insn instead of the equivalencing insn plus
1021 anything now dead. If we call delete_dead_insn on that insn, we may
1022 delete the insn that actually sets the register if the register dies
1023 there and that is incorrect. */
1024
1025 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1026 {
1027 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1028 {
1029 rtx list;
1030 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1031 {
1032 rtx equiv_insn = XEXP (list, 0);
1033
1034 /* If we already deleted the insn or if it may trap, we can't
1035 delete it. The latter case shouldn't happen, but can
1036 if an insn has a variable address, gets a REG_EH_REGION
1037 note added to it, and then gets converted into a load
1038 from a constant address. */
1039 if (NOTE_P (equiv_insn)
1040 || can_throw_internal (equiv_insn))
1041 ;
1042 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1043 delete_dead_insn (equiv_insn);
1044 else
1045 SET_INSN_DELETED (equiv_insn);
1046 }
1047 }
1048 }
1049
1050 /* Use the reload registers where necessary
1051 by generating move instructions to move the must-be-register
1052 values into or out of the reload registers. */
1053
1054 if (insns_need_reload != 0 || something_needs_elimination
1055 || something_needs_operands_changed)
1056 {
1057 HOST_WIDE_INT old_frame_size = get_frame_size ();
1058
1059 reload_as_needed (global);
1060
1061 gcc_assert (old_frame_size == get_frame_size ());
1062
1063 gcc_assert (verify_initial_elim_offsets ());
1064 }
1065
1066 /* If we were able to eliminate the frame pointer, show that it is no
1067 longer live at the start of any basic block. If it ls live by
1068 virtue of being in a pseudo, that pseudo will be marked live
1069 and hence the frame pointer will be known to be live via that
1070 pseudo. */
1071
1072 if (! frame_pointer_needed)
1073 FOR_EACH_BB (bb)
1074 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1075
1076 /* Come here (with failure set nonzero) if we can't get enough spill
1077 regs. */
1078 failed:
1079
1080 CLEAR_REG_SET (&changed_allocation_pseudos);
1081 CLEAR_REG_SET (&spilled_pseudos);
1082 reload_in_progress = 0;
1083
1084 /* Now eliminate all pseudo regs by modifying them into
1085 their equivalent memory references.
1086 The REG-rtx's for the pseudos are modified in place,
1087 so all insns that used to refer to them now refer to memory.
1088
1089 For a reg that has a reg_equiv_address, all those insns
1090 were changed by reloading so that no insns refer to it any longer;
1091 but the DECL_RTL of a variable decl may refer to it,
1092 and if so this causes the debugging info to mention the variable. */
1093
1094 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1095 {
1096 rtx addr = 0;
1097
1098 if (reg_equiv_mem (i))
1099 addr = XEXP (reg_equiv_mem (i), 0);
1100
1101 if (reg_equiv_address (i))
1102 addr = reg_equiv_address (i);
1103
1104 if (addr)
1105 {
1106 if (reg_renumber[i] < 0)
1107 {
1108 rtx reg = regno_reg_rtx[i];
1109
1110 REG_USERVAR_P (reg) = 0;
1111 PUT_CODE (reg, MEM);
1112 XEXP (reg, 0) = addr;
1113 if (reg_equiv_memory_loc (i))
1114 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1115 else
1116 {
1117 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1118 MEM_ATTRS (reg) = 0;
1119 }
1120 MEM_NOTRAP_P (reg) = 1;
1121 }
1122 else if (reg_equiv_mem (i))
1123 XEXP (reg_equiv_mem (i), 0) = addr;
1124 }
1125
1126 /* We don't want complex addressing modes in debug insns
1127 if simpler ones will do, so delegitimize equivalences
1128 in debug insns. */
1129 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1130 {
1131 rtx reg = regno_reg_rtx[i];
1132 rtx equiv = 0;
1133 df_ref use, next;
1134
1135 if (reg_equiv_constant (i))
1136 equiv = reg_equiv_constant (i);
1137 else if (reg_equiv_invariant (i))
1138 equiv = reg_equiv_invariant (i);
1139 else if (reg && MEM_P (reg))
1140 equiv = targetm.delegitimize_address (reg);
1141 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1142 equiv = reg;
1143
1144 if (equiv == reg)
1145 continue;
1146
1147 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1148 {
1149 insn = DF_REF_INSN (use);
1150
1151 /* Make sure the next ref is for a different instruction,
1152 so that we're not affected by the rescan. */
1153 next = DF_REF_NEXT_REG (use);
1154 while (next && DF_REF_INSN (next) == insn)
1155 next = DF_REF_NEXT_REG (next);
1156
1157 if (DEBUG_INSN_P (insn))
1158 {
1159 if (!equiv)
1160 {
1161 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1162 df_insn_rescan_debug_internal (insn);
1163 }
1164 else
1165 INSN_VAR_LOCATION_LOC (insn)
1166 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1167 reg, equiv);
1168 }
1169 }
1170 }
1171 }
1172
1173 /* We must set reload_completed now since the cleanup_subreg_operands call
1174 below will re-recognize each insn and reload may have generated insns
1175 which are only valid during and after reload. */
1176 reload_completed = 1;
1177
1178 /* Make a pass over all the insns and delete all USEs which we inserted
1179 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1180 notes. Delete all CLOBBER insns, except those that refer to the return
1181 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1182 from misarranging variable-array code, and simplify (subreg (reg))
1183 operands. Strip and regenerate REG_INC notes that may have been moved
1184 around. */
1185
1186 for (insn = first; insn; insn = NEXT_INSN (insn))
1187 if (INSN_P (insn))
1188 {
1189 rtx *pnote;
1190
1191 if (CALL_P (insn))
1192 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1193 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1194
1195 if ((GET_CODE (PATTERN (insn)) == USE
1196 /* We mark with QImode USEs introduced by reload itself. */
1197 && (GET_MODE (insn) == QImode
1198 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1199 || (GET_CODE (PATTERN (insn)) == CLOBBER
1200 && (!MEM_P (XEXP (PATTERN (insn), 0))
1201 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1202 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1203 && XEXP (XEXP (PATTERN (insn), 0), 0)
1204 != stack_pointer_rtx))
1205 && (!REG_P (XEXP (PATTERN (insn), 0))
1206 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1207 {
1208 delete_insn (insn);
1209 continue;
1210 }
1211
1212 /* Some CLOBBERs may survive until here and still reference unassigned
1213 pseudos with const equivalent, which may in turn cause ICE in later
1214 passes if the reference remains in place. */
1215 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1216 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1217 VOIDmode, PATTERN (insn));
1218
1219 /* Discard obvious no-ops, even without -O. This optimization
1220 is fast and doesn't interfere with debugging. */
1221 if (NONJUMP_INSN_P (insn)
1222 && GET_CODE (PATTERN (insn)) == SET
1223 && REG_P (SET_SRC (PATTERN (insn)))
1224 && REG_P (SET_DEST (PATTERN (insn)))
1225 && (REGNO (SET_SRC (PATTERN (insn)))
1226 == REGNO (SET_DEST (PATTERN (insn)))))
1227 {
1228 delete_insn (insn);
1229 continue;
1230 }
1231
1232 pnote = &REG_NOTES (insn);
1233 while (*pnote != 0)
1234 {
1235 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1236 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1237 || REG_NOTE_KIND (*pnote) == REG_INC)
1238 *pnote = XEXP (*pnote, 1);
1239 else
1240 pnote = &XEXP (*pnote, 1);
1241 }
1242
1243 #ifdef AUTO_INC_DEC
1244 add_auto_inc_notes (insn, PATTERN (insn));
1245 #endif
1246
1247 /* Simplify (subreg (reg)) if it appears as an operand. */
1248 cleanup_subreg_operands (insn);
1249
1250 /* Clean up invalid ASMs so that they don't confuse later passes.
1251 See PR 21299. */
1252 if (asm_noperands (PATTERN (insn)) >= 0)
1253 {
1254 extract_insn (insn);
1255 if (!constrain_operands (1))
1256 {
1257 error_for_asm (insn,
1258 "%<asm%> operand has impossible constraints");
1259 delete_insn (insn);
1260 continue;
1261 }
1262 }
1263 }
1264
1265 /* If we are doing generic stack checking, give a warning if this
1266 function's frame size is larger than we expect. */
1267 if (flag_stack_check == GENERIC_STACK_CHECK)
1268 {
1269 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1270 static int verbose_warned = 0;
1271
1272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1273 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1274 size += UNITS_PER_WORD;
1275
1276 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1277 {
1278 warning (0, "frame size too large for reliable stack checking");
1279 if (! verbose_warned)
1280 {
1281 warning (0, "try reducing the number of local variables");
1282 verbose_warned = 1;
1283 }
1284 }
1285 }
1286
1287 free (temp_pseudo_reg_arr);
1288
1289 /* Indicate that we no longer have known memory locations or constants. */
1290 free_reg_equiv ();
1291
1292 free (reg_max_ref_width);
1293 free (reg_old_renumber);
1294 free (pseudo_previous_regs);
1295 free (pseudo_forbidden_regs);
1296
1297 CLEAR_HARD_REG_SET (used_spill_regs);
1298 for (i = 0; i < n_spills; i++)
1299 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1300
1301 /* Free all the insn_chain structures at once. */
1302 obstack_free (&reload_obstack, reload_startobj);
1303 unused_insn_chains = 0;
1304
1305 inserted = fixup_abnormal_edges ();
1306
1307 /* We've possibly turned single trapping insn into multiple ones. */
1308 if (cfun->can_throw_non_call_exceptions)
1309 {
1310 sbitmap blocks;
1311 blocks = sbitmap_alloc (last_basic_block);
1312 sbitmap_ones (blocks);
1313 find_many_sub_basic_blocks (blocks);
1314 sbitmap_free (blocks);
1315 }
1316
1317 if (inserted)
1318 commit_edge_insertions ();
1319
1320 /* Replacing pseudos with their memory equivalents might have
1321 created shared rtx. Subsequent passes would get confused
1322 by this, so unshare everything here. */
1323 unshare_all_rtl_again (first);
1324
1325 #ifdef STACK_BOUNDARY
1326 /* init_emit has set the alignment of the hard frame pointer
1327 to STACK_BOUNDARY. It is very likely no longer valid if
1328 the hard frame pointer was used for register allocation. */
1329 if (!frame_pointer_needed)
1330 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1331 #endif
1332
1333 VEC_free (rtx_p, heap, substitute_stack);
1334
1335 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1336
1337 reload_completed = !failure;
1338
1339 return need_dce;
1340 }
1341
1342 /* Yet another special case. Unfortunately, reg-stack forces people to
1343 write incorrect clobbers in asm statements. These clobbers must not
1344 cause the register to appear in bad_spill_regs, otherwise we'll call
1345 fatal_insn later. We clear the corresponding regnos in the live
1346 register sets to avoid this.
1347 The whole thing is rather sick, I'm afraid. */
1348
1349 static void
1350 maybe_fix_stack_asms (void)
1351 {
1352 #ifdef STACK_REGS
1353 const char *constraints[MAX_RECOG_OPERANDS];
1354 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1355 struct insn_chain *chain;
1356
1357 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1358 {
1359 int i, noperands;
1360 HARD_REG_SET clobbered, allowed;
1361 rtx pat;
1362
1363 if (! INSN_P (chain->insn)
1364 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1365 continue;
1366 pat = PATTERN (chain->insn);
1367 if (GET_CODE (pat) != PARALLEL)
1368 continue;
1369
1370 CLEAR_HARD_REG_SET (clobbered);
1371 CLEAR_HARD_REG_SET (allowed);
1372
1373 /* First, make a mask of all stack regs that are clobbered. */
1374 for (i = 0; i < XVECLEN (pat, 0); i++)
1375 {
1376 rtx t = XVECEXP (pat, 0, i);
1377 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1378 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1379 }
1380
1381 /* Get the operand values and constraints out of the insn. */
1382 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1383 constraints, operand_mode, NULL);
1384
1385 /* For every operand, see what registers are allowed. */
1386 for (i = 0; i < noperands; i++)
1387 {
1388 const char *p = constraints[i];
1389 /* For every alternative, we compute the class of registers allowed
1390 for reloading in CLS, and merge its contents into the reg set
1391 ALLOWED. */
1392 int cls = (int) NO_REGS;
1393
1394 for (;;)
1395 {
1396 char c = *p;
1397
1398 if (c == '\0' || c == ',' || c == '#')
1399 {
1400 /* End of one alternative - mark the regs in the current
1401 class, and reset the class. */
1402 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1403 cls = NO_REGS;
1404 p++;
1405 if (c == '#')
1406 do {
1407 c = *p++;
1408 } while (c != '\0' && c != ',');
1409 if (c == '\0')
1410 break;
1411 continue;
1412 }
1413
1414 switch (c)
1415 {
1416 case '=': case '+': case '*': case '%': case '?': case '!':
1417 case '0': case '1': case '2': case '3': case '4': case '<':
1418 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1419 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1420 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1421 case TARGET_MEM_CONSTRAINT:
1422 break;
1423
1424 case 'p':
1425 cls = (int) reg_class_subunion[cls]
1426 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1427 break;
1428
1429 case 'g':
1430 case 'r':
1431 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1432 break;
1433
1434 default:
1435 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1436 cls = (int) reg_class_subunion[cls]
1437 [(int) base_reg_class (VOIDmode, ADDRESS, SCRATCH)];
1438 else
1439 cls = (int) reg_class_subunion[cls]
1440 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1441 }
1442 p += CONSTRAINT_LEN (c, p);
1443 }
1444 }
1445 /* Those of the registers which are clobbered, but allowed by the
1446 constraints, must be usable as reload registers. So clear them
1447 out of the life information. */
1448 AND_HARD_REG_SET (allowed, clobbered);
1449 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1450 if (TEST_HARD_REG_BIT (allowed, i))
1451 {
1452 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1453 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1454 }
1455 }
1456
1457 #endif
1458 }
1459 \f
1460 /* Copy the global variables n_reloads and rld into the corresponding elts
1461 of CHAIN. */
1462 static void
1463 copy_reloads (struct insn_chain *chain)
1464 {
1465 chain->n_reloads = n_reloads;
1466 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1467 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1468 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1469 }
1470
1471 /* Walk the chain of insns, and determine for each whether it needs reloads
1472 and/or eliminations. Build the corresponding insns_need_reload list, and
1473 set something_needs_elimination as appropriate. */
1474 static void
1475 calculate_needs_all_insns (int global)
1476 {
1477 struct insn_chain **pprev_reload = &insns_need_reload;
1478 struct insn_chain *chain, *next = 0;
1479
1480 something_needs_elimination = 0;
1481
1482 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1483 for (chain = reload_insn_chain; chain != 0; chain = next)
1484 {
1485 rtx insn = chain->insn;
1486
1487 next = chain->next;
1488
1489 /* Clear out the shortcuts. */
1490 chain->n_reloads = 0;
1491 chain->need_elim = 0;
1492 chain->need_reload = 0;
1493 chain->need_operand_change = 0;
1494
1495 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1496 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1497 what effects this has on the known offsets at labels. */
1498
1499 if (LABEL_P (insn) || JUMP_P (insn)
1500 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1501 set_label_offsets (insn, insn, 0);
1502
1503 if (INSN_P (insn))
1504 {
1505 rtx old_body = PATTERN (insn);
1506 int old_code = INSN_CODE (insn);
1507 rtx old_notes = REG_NOTES (insn);
1508 int did_elimination = 0;
1509 int operands_changed = 0;
1510 rtx set = single_set (insn);
1511
1512 /* Skip insns that only set an equivalence. */
1513 if (set && REG_P (SET_DEST (set))
1514 && reg_renumber[REGNO (SET_DEST (set))] < 0
1515 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1516 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1517 && reg_equiv_init (REGNO (SET_DEST (set))))
1518 continue;
1519
1520 /* If needed, eliminate any eliminable registers. */
1521 if (num_eliminable || num_eliminable_invariants)
1522 did_elimination = eliminate_regs_in_insn (insn, 0);
1523
1524 /* Analyze the instruction. */
1525 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1526 global, spill_reg_order);
1527
1528 /* If a no-op set needs more than one reload, this is likely
1529 to be something that needs input address reloads. We
1530 can't get rid of this cleanly later, and it is of no use
1531 anyway, so discard it now.
1532 We only do this when expensive_optimizations is enabled,
1533 since this complements reload inheritance / output
1534 reload deletion, and it can make debugging harder. */
1535 if (flag_expensive_optimizations && n_reloads > 1)
1536 {
1537 rtx set = single_set (insn);
1538 if (set
1539 &&
1540 ((SET_SRC (set) == SET_DEST (set)
1541 && REG_P (SET_SRC (set))
1542 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1543 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1544 && reg_renumber[REGNO (SET_SRC (set))] < 0
1545 && reg_renumber[REGNO (SET_DEST (set))] < 0
1546 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1547 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1548 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1549 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1550 {
1551 if (ira_conflicts_p)
1552 /* Inform IRA about the insn deletion. */
1553 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1554 REGNO (SET_SRC (set)));
1555 delete_insn (insn);
1556 /* Delete it from the reload chain. */
1557 if (chain->prev)
1558 chain->prev->next = next;
1559 else
1560 reload_insn_chain = next;
1561 if (next)
1562 next->prev = chain->prev;
1563 chain->next = unused_insn_chains;
1564 unused_insn_chains = chain;
1565 continue;
1566 }
1567 }
1568 if (num_eliminable)
1569 update_eliminable_offsets ();
1570
1571 /* Remember for later shortcuts which insns had any reloads or
1572 register eliminations. */
1573 chain->need_elim = did_elimination;
1574 chain->need_reload = n_reloads > 0;
1575 chain->need_operand_change = operands_changed;
1576
1577 /* Discard any register replacements done. */
1578 if (did_elimination)
1579 {
1580 obstack_free (&reload_obstack, reload_insn_firstobj);
1581 PATTERN (insn) = old_body;
1582 INSN_CODE (insn) = old_code;
1583 REG_NOTES (insn) = old_notes;
1584 something_needs_elimination = 1;
1585 }
1586
1587 something_needs_operands_changed |= operands_changed;
1588
1589 if (n_reloads != 0)
1590 {
1591 copy_reloads (chain);
1592 *pprev_reload = chain;
1593 pprev_reload = &chain->next_need_reload;
1594 }
1595 }
1596 }
1597 *pprev_reload = 0;
1598 }
1599 \f
1600 /* This function is called from the register allocator to set up estimates
1601 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1602 an invariant. The structure is similar to calculate_needs_all_insns. */
1603
1604 void
1605 calculate_elim_costs_all_insns (void)
1606 {
1607 int *reg_equiv_init_cost;
1608 basic_block bb;
1609 int i;
1610
1611 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1612 init_elim_table ();
1613 init_eliminable_invariants (get_insns (), false);
1614
1615 set_initial_elim_offsets ();
1616 set_initial_label_offsets ();
1617
1618 FOR_EACH_BB (bb)
1619 {
1620 rtx insn;
1621 elim_bb = bb;
1622
1623 FOR_BB_INSNS (bb, insn)
1624 {
1625 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1626 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1627 what effects this has on the known offsets at labels. */
1628
1629 if (LABEL_P (insn) || JUMP_P (insn)
1630 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1631 set_label_offsets (insn, insn, 0);
1632
1633 if (INSN_P (insn))
1634 {
1635 rtx set = single_set (insn);
1636
1637 /* Skip insns that only set an equivalence. */
1638 if (set && REG_P (SET_DEST (set))
1639 && reg_renumber[REGNO (SET_DEST (set))] < 0
1640 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1641 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1642 {
1643 unsigned regno = REGNO (SET_DEST (set));
1644 rtx init = reg_equiv_init (regno);
1645 if (init)
1646 {
1647 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1648 false, true);
1649 int cost = rtx_cost (t, SET,
1650 optimize_bb_for_speed_p (bb));
1651 int freq = REG_FREQ_FROM_BB (bb);
1652
1653 reg_equiv_init_cost[regno] = cost * freq;
1654 continue;
1655 }
1656 }
1657 /* If needed, eliminate any eliminable registers. */
1658 if (num_eliminable || num_eliminable_invariants)
1659 elimination_costs_in_insn (insn);
1660
1661 if (num_eliminable)
1662 update_eliminable_offsets ();
1663 }
1664 }
1665 }
1666 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1667 {
1668 if (reg_equiv_invariant (i))
1669 {
1670 if (reg_equiv_init (i))
1671 {
1672 int cost = reg_equiv_init_cost[i];
1673 if (dump_file)
1674 fprintf (dump_file,
1675 "Reg %d has equivalence, initial gains %d\n", i, cost);
1676 if (cost != 0)
1677 ira_adjust_equiv_reg_cost (i, cost);
1678 }
1679 else
1680 {
1681 if (dump_file)
1682 fprintf (dump_file,
1683 "Reg %d had equivalence, but can't be eliminated\n",
1684 i);
1685 ira_adjust_equiv_reg_cost (i, 0);
1686 }
1687 }
1688 }
1689
1690 free (reg_equiv_init_cost);
1691 }
1692 \f
1693 /* Comparison function for qsort to decide which of two reloads
1694 should be handled first. *P1 and *P2 are the reload numbers. */
1695
1696 static int
1697 reload_reg_class_lower (const void *r1p, const void *r2p)
1698 {
1699 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1700 int t;
1701
1702 /* Consider required reloads before optional ones. */
1703 t = rld[r1].optional - rld[r2].optional;
1704 if (t != 0)
1705 return t;
1706
1707 /* Count all solitary classes before non-solitary ones. */
1708 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1709 - (reg_class_size[(int) rld[r1].rclass] == 1));
1710 if (t != 0)
1711 return t;
1712
1713 /* Aside from solitaires, consider all multi-reg groups first. */
1714 t = rld[r2].nregs - rld[r1].nregs;
1715 if (t != 0)
1716 return t;
1717
1718 /* Consider reloads in order of increasing reg-class number. */
1719 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1720 if (t != 0)
1721 return t;
1722
1723 /* If reloads are equally urgent, sort by reload number,
1724 so that the results of qsort leave nothing to chance. */
1725 return r1 - r2;
1726 }
1727 \f
1728 /* The cost of spilling each hard reg. */
1729 static int spill_cost[FIRST_PSEUDO_REGISTER];
1730
1731 /* When spilling multiple hard registers, we use SPILL_COST for the first
1732 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1733 only the first hard reg for a multi-reg pseudo. */
1734 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1735
1736 /* Map of hard regno to pseudo regno currently occupying the hard
1737 reg. */
1738 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1739
1740 /* Update the spill cost arrays, considering that pseudo REG is live. */
1741
1742 static void
1743 count_pseudo (int reg)
1744 {
1745 int freq = REG_FREQ (reg);
1746 int r = reg_renumber[reg];
1747 int nregs;
1748
1749 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1750 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1751 /* Ignore spilled pseudo-registers which can be here only if IRA
1752 is used. */
1753 || (ira_conflicts_p && r < 0))
1754 return;
1755
1756 SET_REGNO_REG_SET (&pseudos_counted, reg);
1757
1758 gcc_assert (r >= 0);
1759
1760 spill_add_cost[r] += freq;
1761 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1762 while (nregs-- > 0)
1763 {
1764 hard_regno_to_pseudo_regno[r + nregs] = reg;
1765 spill_cost[r + nregs] += freq;
1766 }
1767 }
1768
1769 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1770 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1771
1772 static void
1773 order_regs_for_reload (struct insn_chain *chain)
1774 {
1775 unsigned i;
1776 HARD_REG_SET used_by_pseudos;
1777 HARD_REG_SET used_by_pseudos2;
1778 reg_set_iterator rsi;
1779
1780 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1781
1782 memset (spill_cost, 0, sizeof spill_cost);
1783 memset (spill_add_cost, 0, sizeof spill_add_cost);
1784 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1785 hard_regno_to_pseudo_regno[i] = -1;
1786
1787 /* Count number of uses of each hard reg by pseudo regs allocated to it
1788 and then order them by decreasing use. First exclude hard registers
1789 that are live in or across this insn. */
1790
1791 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1792 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1793 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1794 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1795
1796 /* Now find out which pseudos are allocated to it, and update
1797 hard_reg_n_uses. */
1798 CLEAR_REG_SET (&pseudos_counted);
1799
1800 EXECUTE_IF_SET_IN_REG_SET
1801 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1802 {
1803 count_pseudo (i);
1804 }
1805 EXECUTE_IF_SET_IN_REG_SET
1806 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1807 {
1808 count_pseudo (i);
1809 }
1810 CLEAR_REG_SET (&pseudos_counted);
1811 }
1812 \f
1813 /* Vector of reload-numbers showing the order in which the reloads should
1814 be processed. */
1815 static short reload_order[MAX_RELOADS];
1816
1817 /* This is used to keep track of the spill regs used in one insn. */
1818 static HARD_REG_SET used_spill_regs_local;
1819
1820 /* We decided to spill hard register SPILLED, which has a size of
1821 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1822 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1823 update SPILL_COST/SPILL_ADD_COST. */
1824
1825 static void
1826 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1827 {
1828 int freq = REG_FREQ (reg);
1829 int r = reg_renumber[reg];
1830 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1831
1832 /* Ignore spilled pseudo-registers which can be here only if IRA is
1833 used. */
1834 if ((ira_conflicts_p && r < 0)
1835 || REGNO_REG_SET_P (&spilled_pseudos, reg)
1836 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1837 return;
1838
1839 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1840
1841 spill_add_cost[r] -= freq;
1842 while (nregs-- > 0)
1843 {
1844 hard_regno_to_pseudo_regno[r + nregs] = -1;
1845 spill_cost[r + nregs] -= freq;
1846 }
1847 }
1848
1849 /* Find reload register to use for reload number ORDER. */
1850
1851 static int
1852 find_reg (struct insn_chain *chain, int order)
1853 {
1854 int rnum = reload_order[order];
1855 struct reload *rl = rld + rnum;
1856 int best_cost = INT_MAX;
1857 int best_reg = -1;
1858 unsigned int i, j, n;
1859 int k;
1860 HARD_REG_SET not_usable;
1861 HARD_REG_SET used_by_other_reload;
1862 reg_set_iterator rsi;
1863 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1864 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1865
1866 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1867 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1868 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1869
1870 CLEAR_HARD_REG_SET (used_by_other_reload);
1871 for (k = 0; k < order; k++)
1872 {
1873 int other = reload_order[k];
1874
1875 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1876 for (j = 0; j < rld[other].nregs; j++)
1877 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1878 }
1879
1880 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1881 {
1882 #ifdef REG_ALLOC_ORDER
1883 unsigned int regno = reg_alloc_order[i];
1884 #else
1885 unsigned int regno = i;
1886 #endif
1887
1888 if (! TEST_HARD_REG_BIT (not_usable, regno)
1889 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1890 && HARD_REGNO_MODE_OK (regno, rl->mode))
1891 {
1892 int this_cost = spill_cost[regno];
1893 int ok = 1;
1894 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1895
1896 for (j = 1; j < this_nregs; j++)
1897 {
1898 this_cost += spill_add_cost[regno + j];
1899 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1900 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1901 ok = 0;
1902 }
1903 if (! ok)
1904 continue;
1905
1906 if (ira_conflicts_p)
1907 {
1908 /* Ask IRA to find a better pseudo-register for
1909 spilling. */
1910 for (n = j = 0; j < this_nregs; j++)
1911 {
1912 int r = hard_regno_to_pseudo_regno[regno + j];
1913
1914 if (r < 0)
1915 continue;
1916 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1917 regno_pseudo_regs[n++] = r;
1918 }
1919 regno_pseudo_regs[n++] = -1;
1920 if (best_reg < 0
1921 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1922 best_regno_pseudo_regs,
1923 rl->in, rl->out,
1924 chain->insn))
1925 {
1926 best_reg = regno;
1927 for (j = 0;; j++)
1928 {
1929 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1930 if (regno_pseudo_regs[j] < 0)
1931 break;
1932 }
1933 }
1934 continue;
1935 }
1936
1937 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1938 this_cost--;
1939 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1940 this_cost--;
1941 if (this_cost < best_cost
1942 /* Among registers with equal cost, prefer caller-saved ones, or
1943 use REG_ALLOC_ORDER if it is defined. */
1944 || (this_cost == best_cost
1945 #ifdef REG_ALLOC_ORDER
1946 && (inv_reg_alloc_order[regno]
1947 < inv_reg_alloc_order[best_reg])
1948 #else
1949 && call_used_regs[regno]
1950 && ! call_used_regs[best_reg]
1951 #endif
1952 ))
1953 {
1954 best_reg = regno;
1955 best_cost = this_cost;
1956 }
1957 }
1958 }
1959 if (best_reg == -1)
1960 return 0;
1961
1962 if (dump_file)
1963 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1964
1965 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1966 rl->regno = best_reg;
1967
1968 EXECUTE_IF_SET_IN_REG_SET
1969 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1970 {
1971 count_spilled_pseudo (best_reg, rl->nregs, j);
1972 }
1973
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1976 {
1977 count_spilled_pseudo (best_reg, rl->nregs, j);
1978 }
1979
1980 for (i = 0; i < rl->nregs; i++)
1981 {
1982 gcc_assert (spill_cost[best_reg + i] == 0);
1983 gcc_assert (spill_add_cost[best_reg + i] == 0);
1984 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1985 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1986 }
1987 return 1;
1988 }
1989
1990 /* Find more reload regs to satisfy the remaining need of an insn, which
1991 is given by CHAIN.
1992 Do it by ascending class number, since otherwise a reg
1993 might be spilled for a big class and might fail to count
1994 for a smaller class even though it belongs to that class. */
1995
1996 static void
1997 find_reload_regs (struct insn_chain *chain)
1998 {
1999 int i;
2000
2001 /* In order to be certain of getting the registers we need,
2002 we must sort the reloads into order of increasing register class.
2003 Then our grabbing of reload registers will parallel the process
2004 that provided the reload registers. */
2005 for (i = 0; i < chain->n_reloads; i++)
2006 {
2007 /* Show whether this reload already has a hard reg. */
2008 if (chain->rld[i].reg_rtx)
2009 {
2010 int regno = REGNO (chain->rld[i].reg_rtx);
2011 chain->rld[i].regno = regno;
2012 chain->rld[i].nregs
2013 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2014 }
2015 else
2016 chain->rld[i].regno = -1;
2017 reload_order[i] = i;
2018 }
2019
2020 n_reloads = chain->n_reloads;
2021 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2022
2023 CLEAR_HARD_REG_SET (used_spill_regs_local);
2024
2025 if (dump_file)
2026 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2027
2028 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2029
2030 /* Compute the order of preference for hard registers to spill. */
2031
2032 order_regs_for_reload (chain);
2033
2034 for (i = 0; i < n_reloads; i++)
2035 {
2036 int r = reload_order[i];
2037
2038 /* Ignore reloads that got marked inoperative. */
2039 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2040 && ! rld[r].optional
2041 && rld[r].regno == -1)
2042 if (! find_reg (chain, i))
2043 {
2044 if (dump_file)
2045 fprintf (dump_file, "reload failure for reload %d\n", r);
2046 spill_failure (chain->insn, rld[r].rclass);
2047 failure = 1;
2048 return;
2049 }
2050 }
2051
2052 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2053 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2054
2055 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2056 }
2057
2058 static void
2059 select_reload_regs (void)
2060 {
2061 struct insn_chain *chain;
2062
2063 /* Try to satisfy the needs for each insn. */
2064 for (chain = insns_need_reload; chain != 0;
2065 chain = chain->next_need_reload)
2066 find_reload_regs (chain);
2067 }
2068 \f
2069 /* Delete all insns that were inserted by emit_caller_save_insns during
2070 this iteration. */
2071 static void
2072 delete_caller_save_insns (void)
2073 {
2074 struct insn_chain *c = reload_insn_chain;
2075
2076 while (c != 0)
2077 {
2078 while (c != 0 && c->is_caller_save_insn)
2079 {
2080 struct insn_chain *next = c->next;
2081 rtx insn = c->insn;
2082
2083 if (c == reload_insn_chain)
2084 reload_insn_chain = next;
2085 delete_insn (insn);
2086
2087 if (next)
2088 next->prev = c->prev;
2089 if (c->prev)
2090 c->prev->next = next;
2091 c->next = unused_insn_chains;
2092 unused_insn_chains = c;
2093 c = next;
2094 }
2095 if (c != 0)
2096 c = c->next;
2097 }
2098 }
2099 \f
2100 /* Handle the failure to find a register to spill.
2101 INSN should be one of the insns which needed this particular spill reg. */
2102
2103 static void
2104 spill_failure (rtx insn, enum reg_class rclass)
2105 {
2106 if (asm_noperands (PATTERN (insn)) >= 0)
2107 error_for_asm (insn, "can%'t find a register in class %qs while "
2108 "reloading %<asm%>",
2109 reg_class_names[rclass]);
2110 else
2111 {
2112 error ("unable to find a register to spill in class %qs",
2113 reg_class_names[rclass]);
2114
2115 if (dump_file)
2116 {
2117 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2118 debug_reload_to_stream (dump_file);
2119 }
2120 fatal_insn ("this is the insn:", insn);
2121 }
2122 }
2123 \f
2124 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2125 data that is dead in INSN. */
2126
2127 static void
2128 delete_dead_insn (rtx insn)
2129 {
2130 rtx prev = prev_active_insn (insn);
2131 rtx prev_dest;
2132
2133 /* If the previous insn sets a register that dies in our insn make
2134 a note that we want to run DCE immediately after reload.
2135
2136 We used to delete the previous insn & recurse, but that's wrong for
2137 block local equivalences. Instead of trying to figure out the exact
2138 circumstances where we can delete the potentially dead insns, just
2139 let DCE do the job. */
2140 if (prev && GET_CODE (PATTERN (prev)) == SET
2141 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2142 && reg_mentioned_p (prev_dest, PATTERN (insn))
2143 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2144 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2145 need_dce = 1;
2146
2147 SET_INSN_DELETED (insn);
2148 }
2149
2150 /* Modify the home of pseudo-reg I.
2151 The new home is present in reg_renumber[I].
2152
2153 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2154 or it may be -1, meaning there is none or it is not relevant.
2155 This is used so that all pseudos spilled from a given hard reg
2156 can share one stack slot. */
2157
2158 static void
2159 alter_reg (int i, int from_reg, bool dont_share_p)
2160 {
2161 /* When outputting an inline function, this can happen
2162 for a reg that isn't actually used. */
2163 if (regno_reg_rtx[i] == 0)
2164 return;
2165
2166 /* If the reg got changed to a MEM at rtl-generation time,
2167 ignore it. */
2168 if (!REG_P (regno_reg_rtx[i]))
2169 return;
2170
2171 /* Modify the reg-rtx to contain the new hard reg
2172 number or else to contain its pseudo reg number. */
2173 SET_REGNO (regno_reg_rtx[i],
2174 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2175
2176 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2177 allocate a stack slot for it. */
2178
2179 if (reg_renumber[i] < 0
2180 && REG_N_REFS (i) > 0
2181 && reg_equiv_constant (i) == 0
2182 && (reg_equiv_invariant (i) == 0
2183 || reg_equiv_init (i) == 0)
2184 && reg_equiv_memory_loc (i) == 0)
2185 {
2186 rtx x = NULL_RTX;
2187 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2188 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2189 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2190 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2191 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2192 int adjust = 0;
2193
2194 something_was_spilled = true;
2195
2196 if (ira_conflicts_p)
2197 {
2198 /* Mark the spill for IRA. */
2199 SET_REGNO_REG_SET (&spilled_pseudos, i);
2200 if (!dont_share_p)
2201 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2202 }
2203
2204 if (x)
2205 ;
2206
2207 /* Each pseudo reg has an inherent size which comes from its own mode,
2208 and a total size which provides room for paradoxical subregs
2209 which refer to the pseudo reg in wider modes.
2210
2211 We can use a slot already allocated if it provides both
2212 enough inherent space and enough total space.
2213 Otherwise, we allocate a new slot, making sure that it has no less
2214 inherent space, and no less total space, then the previous slot. */
2215 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2216 {
2217 rtx stack_slot;
2218
2219 /* No known place to spill from => no slot to reuse. */
2220 x = assign_stack_local (mode, total_size,
2221 min_align > inherent_align
2222 || total_size > inherent_size ? -1 : 0);
2223
2224 stack_slot = x;
2225
2226 /* Cancel the big-endian correction done in assign_stack_local.
2227 Get the address of the beginning of the slot. This is so we
2228 can do a big-endian correction unconditionally below. */
2229 if (BYTES_BIG_ENDIAN)
2230 {
2231 adjust = inherent_size - total_size;
2232 if (adjust)
2233 stack_slot
2234 = adjust_address_nv (x, mode_for_size (total_size
2235 * BITS_PER_UNIT,
2236 MODE_INT, 1),
2237 adjust);
2238 }
2239
2240 if (! dont_share_p && ira_conflicts_p)
2241 /* Inform IRA about allocation a new stack slot. */
2242 ira_mark_new_stack_slot (stack_slot, i, total_size);
2243 }
2244
2245 /* Reuse a stack slot if possible. */
2246 else if (spill_stack_slot[from_reg] != 0
2247 && spill_stack_slot_width[from_reg] >= total_size
2248 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2249 >= inherent_size)
2250 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2251 x = spill_stack_slot[from_reg];
2252
2253 /* Allocate a bigger slot. */
2254 else
2255 {
2256 /* Compute maximum size needed, both for inherent size
2257 and for total size. */
2258 rtx stack_slot;
2259
2260 if (spill_stack_slot[from_reg])
2261 {
2262 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2263 > inherent_size)
2264 mode = GET_MODE (spill_stack_slot[from_reg]);
2265 if (spill_stack_slot_width[from_reg] > total_size)
2266 total_size = spill_stack_slot_width[from_reg];
2267 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2268 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2269 }
2270
2271 /* Make a slot with that size. */
2272 x = assign_stack_local (mode, total_size,
2273 min_align > inherent_align
2274 || total_size > inherent_size ? -1 : 0);
2275 stack_slot = x;
2276
2277 /* Cancel the big-endian correction done in assign_stack_local.
2278 Get the address of the beginning of the slot. This is so we
2279 can do a big-endian correction unconditionally below. */
2280 if (BYTES_BIG_ENDIAN)
2281 {
2282 adjust = GET_MODE_SIZE (mode) - total_size;
2283 if (adjust)
2284 stack_slot
2285 = adjust_address_nv (x, mode_for_size (total_size
2286 * BITS_PER_UNIT,
2287 MODE_INT, 1),
2288 adjust);
2289 }
2290
2291 spill_stack_slot[from_reg] = stack_slot;
2292 spill_stack_slot_width[from_reg] = total_size;
2293 }
2294
2295 /* On a big endian machine, the "address" of the slot
2296 is the address of the low part that fits its inherent mode. */
2297 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2298 adjust += (total_size - inherent_size);
2299
2300 /* If we have any adjustment to make, or if the stack slot is the
2301 wrong mode, make a new stack slot. */
2302 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2303
2304 /* Set all of the memory attributes as appropriate for a spill. */
2305 set_mem_attrs_for_spill (x);
2306
2307 /* Save the stack slot for later. */
2308 reg_equiv_memory_loc (i) = x;
2309 }
2310 }
2311
2312 /* Mark the slots in regs_ever_live for the hard regs used by
2313 pseudo-reg number REGNO, accessed in MODE. */
2314
2315 static void
2316 mark_home_live_1 (int regno, enum machine_mode mode)
2317 {
2318 int i, lim;
2319
2320 i = reg_renumber[regno];
2321 if (i < 0)
2322 return;
2323 lim = end_hard_regno (mode, i);
2324 while (i < lim)
2325 df_set_regs_ever_live(i++, true);
2326 }
2327
2328 /* Mark the slots in regs_ever_live for the hard regs
2329 used by pseudo-reg number REGNO. */
2330
2331 void
2332 mark_home_live (int regno)
2333 {
2334 if (reg_renumber[regno] >= 0)
2335 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2336 }
2337 \f
2338 /* This function handles the tracking of elimination offsets around branches.
2339
2340 X is a piece of RTL being scanned.
2341
2342 INSN is the insn that it came from, if any.
2343
2344 INITIAL_P is nonzero if we are to set the offset to be the initial
2345 offset and zero if we are setting the offset of the label to be the
2346 current offset. */
2347
2348 static void
2349 set_label_offsets (rtx x, rtx insn, int initial_p)
2350 {
2351 enum rtx_code code = GET_CODE (x);
2352 rtx tem;
2353 unsigned int i;
2354 struct elim_table *p;
2355
2356 switch (code)
2357 {
2358 case LABEL_REF:
2359 if (LABEL_REF_NONLOCAL_P (x))
2360 return;
2361
2362 x = XEXP (x, 0);
2363
2364 /* ... fall through ... */
2365
2366 case CODE_LABEL:
2367 /* If we know nothing about this label, set the desired offsets. Note
2368 that this sets the offset at a label to be the offset before a label
2369 if we don't know anything about the label. This is not correct for
2370 the label after a BARRIER, but is the best guess we can make. If
2371 we guessed wrong, we will suppress an elimination that might have
2372 been possible had we been able to guess correctly. */
2373
2374 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2375 {
2376 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2377 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2378 = (initial_p ? reg_eliminate[i].initial_offset
2379 : reg_eliminate[i].offset);
2380 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2381 }
2382
2383 /* Otherwise, if this is the definition of a label and it is
2384 preceded by a BARRIER, set our offsets to the known offset of
2385 that label. */
2386
2387 else if (x == insn
2388 && (tem = prev_nonnote_insn (insn)) != 0
2389 && BARRIER_P (tem))
2390 set_offsets_for_label (insn);
2391 else
2392 /* If neither of the above cases is true, compare each offset
2393 with those previously recorded and suppress any eliminations
2394 where the offsets disagree. */
2395
2396 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2397 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2398 != (initial_p ? reg_eliminate[i].initial_offset
2399 : reg_eliminate[i].offset))
2400 reg_eliminate[i].can_eliminate = 0;
2401
2402 return;
2403
2404 case JUMP_INSN:
2405 set_label_offsets (PATTERN (insn), insn, initial_p);
2406
2407 /* ... fall through ... */
2408
2409 case INSN:
2410 case CALL_INSN:
2411 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2412 to indirectly and hence must have all eliminations at their
2413 initial offsets. */
2414 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2415 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2416 set_label_offsets (XEXP (tem, 0), insn, 1);
2417 return;
2418
2419 case PARALLEL:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 /* Each of the labels in the parallel or address vector must be
2423 at their initial offsets. We want the first field for PARALLEL
2424 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2425
2426 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2427 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2428 insn, initial_p);
2429 return;
2430
2431 case SET:
2432 /* We only care about setting PC. If the source is not RETURN,
2433 IF_THEN_ELSE, or a label, disable any eliminations not at
2434 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2435 isn't one of those possibilities. For branches to a label,
2436 call ourselves recursively.
2437
2438 Note that this can disable elimination unnecessarily when we have
2439 a non-local goto since it will look like a non-constant jump to
2440 someplace in the current function. This isn't a significant
2441 problem since such jumps will normally be when all elimination
2442 pairs are back to their initial offsets. */
2443
2444 if (SET_DEST (x) != pc_rtx)
2445 return;
2446
2447 switch (GET_CODE (SET_SRC (x)))
2448 {
2449 case PC:
2450 case RETURN:
2451 return;
2452
2453 case LABEL_REF:
2454 set_label_offsets (SET_SRC (x), insn, initial_p);
2455 return;
2456
2457 case IF_THEN_ELSE:
2458 tem = XEXP (SET_SRC (x), 1);
2459 if (GET_CODE (tem) == LABEL_REF)
2460 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2461 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2462 break;
2463
2464 tem = XEXP (SET_SRC (x), 2);
2465 if (GET_CODE (tem) == LABEL_REF)
2466 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2467 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2468 break;
2469 return;
2470
2471 default:
2472 break;
2473 }
2474
2475 /* If we reach here, all eliminations must be at their initial
2476 offset because we are doing a jump to a variable address. */
2477 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2478 if (p->offset != p->initial_offset)
2479 p->can_eliminate = 0;
2480 break;
2481
2482 default:
2483 break;
2484 }
2485 }
2486 \f
2487 /* Called through for_each_rtx, this function examines every reg that occurs
2488 in PX and adjusts the costs for its elimination which are gathered by IRA.
2489 DATA is the insn in which PX occurs. We do not recurse into MEM
2490 expressions. */
2491
2492 static int
2493 note_reg_elim_costly (rtx *px, void *data)
2494 {
2495 rtx insn = (rtx)data;
2496 rtx x = *px;
2497
2498 if (MEM_P (x))
2499 return -1;
2500
2501 if (REG_P (x)
2502 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2503 && reg_equiv_init (REGNO (x))
2504 && reg_equiv_invariant (REGNO (x)))
2505 {
2506 rtx t = reg_equiv_invariant (REGNO (x));
2507 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2508 int cost = rtx_cost (new_rtx, SET, optimize_bb_for_speed_p (elim_bb));
2509 int freq = REG_FREQ_FROM_BB (elim_bb);
2510
2511 if (cost != 0)
2512 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2513 }
2514 return 0;
2515 }
2516
2517 /* Scan X and replace any eliminable registers (such as fp) with a
2518 replacement (such as sp), plus an offset.
2519
2520 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2521 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2522 MEM, we are allowed to replace a sum of a register and the constant zero
2523 with the register, which we cannot do outside a MEM. In addition, we need
2524 to record the fact that a register is referenced outside a MEM.
2525
2526 If INSN is an insn, it is the insn containing X. If we replace a REG
2527 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2528 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2529 the REG is being modified.
2530
2531 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2532 That's used when we eliminate in expressions stored in notes.
2533 This means, do not set ref_outside_mem even if the reference
2534 is outside of MEMs.
2535
2536 If FOR_COSTS is true, we are being called before reload in order to
2537 estimate the costs of keeping registers with an equivalence unallocated.
2538
2539 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2540 replacements done assuming all offsets are at their initial values. If
2541 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2542 encounter, return the actual location so that find_reloads will do
2543 the proper thing. */
2544
2545 static rtx
2546 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2547 bool may_use_invariant, bool for_costs)
2548 {
2549 enum rtx_code code = GET_CODE (x);
2550 struct elim_table *ep;
2551 int regno;
2552 rtx new_rtx;
2553 int i, j;
2554 const char *fmt;
2555 int copied = 0;
2556
2557 if (! current_function_decl)
2558 return x;
2559
2560 switch (code)
2561 {
2562 case CONST_INT:
2563 case CONST_DOUBLE:
2564 case CONST_FIXED:
2565 case CONST_VECTOR:
2566 case CONST:
2567 case SYMBOL_REF:
2568 case CODE_LABEL:
2569 case PC:
2570 case CC0:
2571 case ASM_INPUT:
2572 case ADDR_VEC:
2573 case ADDR_DIFF_VEC:
2574 case RETURN:
2575 return x;
2576
2577 case REG:
2578 regno = REGNO (x);
2579
2580 /* First handle the case where we encounter a bare register that
2581 is eliminable. Replace it with a PLUS. */
2582 if (regno < FIRST_PSEUDO_REGISTER)
2583 {
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == x && ep->can_eliminate)
2587 return plus_constant (ep->to_rtx, ep->previous_offset);
2588
2589 }
2590 else if (reg_renumber && reg_renumber[regno] < 0
2591 && reg_equivs
2592 && reg_equiv_invariant (regno))
2593 {
2594 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2595 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2596 mem_mode, insn, true, for_costs);
2597 /* There exists at least one use of REGNO that cannot be
2598 eliminated. Prevent the defining insn from being deleted. */
2599 reg_equiv_init (regno) = NULL_RTX;
2600 if (!for_costs)
2601 alter_reg (regno, -1, true);
2602 }
2603 return x;
2604
2605 /* You might think handling MINUS in a manner similar to PLUS is a
2606 good idea. It is not. It has been tried multiple times and every
2607 time the change has had to have been reverted.
2608
2609 Other parts of reload know a PLUS is special (gen_reload for example)
2610 and require special code to handle code a reloaded PLUS operand.
2611
2612 Also consider backends where the flags register is clobbered by a
2613 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2614 lea instruction comes to mind). If we try to reload a MINUS, we
2615 may kill the flags register that was holding a useful value.
2616
2617 So, please before trying to handle MINUS, consider reload as a
2618 whole instead of this little section as well as the backend issues. */
2619 case PLUS:
2620 /* If this is the sum of an eliminable register and a constant, rework
2621 the sum. */
2622 if (REG_P (XEXP (x, 0))
2623 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2624 && CONSTANT_P (XEXP (x, 1)))
2625 {
2626 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2627 ep++)
2628 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2629 {
2630 /* The only time we want to replace a PLUS with a REG (this
2631 occurs when the constant operand of the PLUS is the negative
2632 of the offset) is when we are inside a MEM. We won't want
2633 to do so at other times because that would change the
2634 structure of the insn in a way that reload can't handle.
2635 We special-case the commonest situation in
2636 eliminate_regs_in_insn, so just replace a PLUS with a
2637 PLUS here, unless inside a MEM. */
2638 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2639 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2640 return ep->to_rtx;
2641 else
2642 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2643 plus_constant (XEXP (x, 1),
2644 ep->previous_offset));
2645 }
2646
2647 /* If the register is not eliminable, we are done since the other
2648 operand is a constant. */
2649 return x;
2650 }
2651
2652 /* If this is part of an address, we want to bring any constant to the
2653 outermost PLUS. We will do this by doing register replacement in
2654 our operands and seeing if a constant shows up in one of them.
2655
2656 Note that there is no risk of modifying the structure of the insn,
2657 since we only get called for its operands, thus we are either
2658 modifying the address inside a MEM, or something like an address
2659 operand of a load-address insn. */
2660
2661 {
2662 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2663 for_costs);
2664 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2665 for_costs);
2666
2667 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2668 {
2669 /* If one side is a PLUS and the other side is a pseudo that
2670 didn't get a hard register but has a reg_equiv_constant,
2671 we must replace the constant here since it may no longer
2672 be in the position of any operand. */
2673 if (GET_CODE (new0) == PLUS && REG_P (new1)
2674 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2675 && reg_renumber[REGNO (new1)] < 0
2676 && reg_equivs
2677 && reg_equiv_constant (REGNO (new1)) != 0)
2678 new1 = reg_equiv_constant (REGNO (new1));
2679 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2680 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2681 && reg_renumber[REGNO (new0)] < 0
2682 && reg_equiv_constant (REGNO (new0)) != 0)
2683 new0 = reg_equiv_constant (REGNO (new0));
2684
2685 new_rtx = form_sum (GET_MODE (x), new0, new1);
2686
2687 /* As above, if we are not inside a MEM we do not want to
2688 turn a PLUS into something else. We might try to do so here
2689 for an addition of 0 if we aren't optimizing. */
2690 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2691 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2692 else
2693 return new_rtx;
2694 }
2695 }
2696 return x;
2697
2698 case MULT:
2699 /* If this is the product of an eliminable register and a
2700 constant, apply the distribute law and move the constant out
2701 so that we have (plus (mult ..) ..). This is needed in order
2702 to keep load-address insns valid. This case is pathological.
2703 We ignore the possibility of overflow here. */
2704 if (REG_P (XEXP (x, 0))
2705 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2706 && CONST_INT_P (XEXP (x, 1)))
2707 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2708 ep++)
2709 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2710 {
2711 if (! mem_mode
2712 /* Refs inside notes or in DEBUG_INSNs don't count for
2713 this purpose. */
2714 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2715 || GET_CODE (insn) == INSN_LIST
2716 || DEBUG_INSN_P (insn))))
2717 ep->ref_outside_mem = 1;
2718
2719 return
2720 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2722 }
2723
2724 /* ... fall through ... */
2725
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2738 {
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2744
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2747 }
2748 return x;
2749
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2753 {
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2757 {
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2766
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2768 }
2769 }
2770
2771 /* ... fall through ... */
2772
2773 case INSN_LIST:
2774 /* Now do eliminations in the rest of the chain. If this was
2775 an EXPR_LIST, this might result in allocating more memory than is
2776 strictly needed, but it simplifies the code. */
2777 if (XEXP (x, 1))
2778 {
2779 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2780 for_costs);
2781 if (new_rtx != XEXP (x, 1))
2782 return
2783 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2784 }
2785 return x;
2786
2787 case PRE_INC:
2788 case POST_INC:
2789 case PRE_DEC:
2790 case POST_DEC:
2791 /* We do not support elimination of a register that is modified.
2792 elimination_effects has already make sure that this does not
2793 happen. */
2794 return x;
2795
2796 case PRE_MODIFY:
2797 case POST_MODIFY:
2798 /* We do not support elimination of a register that is modified.
2799 elimination_effects has already make sure that this does not
2800 happen. The only remaining case we need to consider here is
2801 that the increment value may be an eliminable register. */
2802 if (GET_CODE (XEXP (x, 1)) == PLUS
2803 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2804 {
2805 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2806 insn, true, for_costs);
2807
2808 if (new_rtx != XEXP (XEXP (x, 1), 1))
2809 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2810 gen_rtx_PLUS (GET_MODE (x),
2811 XEXP (x, 0), new_rtx));
2812 }
2813 return x;
2814
2815 case STRICT_LOW_PART:
2816 case NEG: case NOT:
2817 case SIGN_EXTEND: case ZERO_EXTEND:
2818 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2819 case FLOAT: case FIX:
2820 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2821 case ABS:
2822 case SQRT:
2823 case FFS:
2824 case CLZ:
2825 case CTZ:
2826 case POPCOUNT:
2827 case PARITY:
2828 case BSWAP:
2829 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2830 for_costs);
2831 if (new_rtx != XEXP (x, 0))
2832 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2833 return x;
2834
2835 case SUBREG:
2836 /* Similar to above processing, but preserve SUBREG_BYTE.
2837 Convert (subreg (mem)) to (mem) if not paradoxical.
2838 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2839 pseudo didn't get a hard reg, we must replace this with the
2840 eliminated version of the memory location because push_reload
2841 may do the replacement in certain circumstances. */
2842 if (REG_P (SUBREG_REG (x))
2843 && (GET_MODE_SIZE (GET_MODE (x))
2844 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2845 && reg_equivs
2846 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 {
2848 new_rtx = SUBREG_REG (x);
2849 }
2850 else
2851 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852
2853 if (new_rtx != SUBREG_REG (x))
2854 {
2855 int x_size = GET_MODE_SIZE (GET_MODE (x));
2856 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857
2858 if (MEM_P (new_rtx)
2859 && ((x_size < new_size
2860 #ifdef WORD_REGISTER_OPERATIONS
2861 /* On these machines, combine can create rtl of the form
2862 (set (subreg:m1 (reg:m2 R) 0) ...)
2863 where m1 < m2, and expects something interesting to
2864 happen to the entire word. Moreover, it will use the
2865 (reg:m2 R) later, expecting all bits to be preserved.
2866 So if the number of words is the same, preserve the
2867 subreg so that push_reload can see it. */
2868 && ! ((x_size - 1) / UNITS_PER_WORD
2869 == (new_size -1 ) / UNITS_PER_WORD)
2870 #endif
2871 )
2872 || x_size == new_size)
2873 )
2874 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2875 else
2876 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2877 }
2878
2879 return x;
2880
2881 case MEM:
2882 /* Our only special processing is to pass the mode of the MEM to our
2883 recursive call and copy the flags. While we are here, handle this
2884 case more efficiently. */
2885
2886 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2887 for_costs);
2888 if (for_costs
2889 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2890 && !memory_address_p (GET_MODE (x), new_rtx))
2891 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2892
2893 return replace_equiv_address_nv (x, new_rtx);
2894
2895 case USE:
2896 /* Handle insn_list USE that a call to a pure function may generate. */
2897 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2898 for_costs);
2899 if (new_rtx != XEXP (x, 0))
2900 return gen_rtx_USE (GET_MODE (x), new_rtx);
2901 return x;
2902
2903 case CLOBBER:
2904 case ASM_OPERANDS:
2905 gcc_assert (insn && DEBUG_INSN_P (insn));
2906 break;
2907
2908 case SET:
2909 gcc_unreachable ();
2910
2911 default:
2912 break;
2913 }
2914
2915 /* Process each of our operands recursively. If any have changed, make a
2916 copy of the rtx. */
2917 fmt = GET_RTX_FORMAT (code);
2918 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 {
2920 if (*fmt == 'e')
2921 {
2922 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2923 for_costs);
2924 if (new_rtx != XEXP (x, i) && ! copied)
2925 {
2926 x = shallow_copy_rtx (x);
2927 copied = 1;
2928 }
2929 XEXP (x, i) = new_rtx;
2930 }
2931 else if (*fmt == 'E')
2932 {
2933 int copied_vec = 0;
2934 for (j = 0; j < XVECLEN (x, i); j++)
2935 {
2936 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2937 for_costs);
2938 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 {
2940 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2941 XVEC (x, i)->elem);
2942 if (! copied)
2943 {
2944 x = shallow_copy_rtx (x);
2945 copied = 1;
2946 }
2947 XVEC (x, i) = new_v;
2948 copied_vec = 1;
2949 }
2950 XVECEXP (x, i, j) = new_rtx;
2951 }
2952 }
2953 }
2954
2955 return x;
2956 }
2957
2958 rtx
2959 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 {
2961 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2962 }
2963
2964 /* Scan rtx X for modifications of elimination target registers. Update
2965 the table of eliminables to reflect the changed state. MEM_MODE is
2966 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967
2968 static void
2969 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 {
2971 enum rtx_code code = GET_CODE (x);
2972 struct elim_table *ep;
2973 int regno;
2974 int i, j;
2975 const char *fmt;
2976
2977 switch (code)
2978 {
2979 case CONST_INT:
2980 case CONST_DOUBLE:
2981 case CONST_FIXED:
2982 case CONST_VECTOR:
2983 case CONST:
2984 case SYMBOL_REF:
2985 case CODE_LABEL:
2986 case PC:
2987 case CC0:
2988 case ASM_INPUT:
2989 case ADDR_VEC:
2990 case ADDR_DIFF_VEC:
2991 case RETURN:
2992 return;
2993
2994 case REG:
2995 regno = REGNO (x);
2996
2997 /* First handle the case where we encounter a bare register that
2998 is eliminable. Replace it with a PLUS. */
2999 if (regno < FIRST_PSEUDO_REGISTER)
3000 {
3001 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3002 ep++)
3003 if (ep->from_rtx == x && ep->can_eliminate)
3004 {
3005 if (! mem_mode)
3006 ep->ref_outside_mem = 1;
3007 return;
3008 }
3009
3010 }
3011 else if (reg_renumber[regno] < 0
3012 && reg_equivs != 0
3013 && reg_equiv_constant (regno)
3014 && ! function_invariant_p (reg_equiv_constant (regno)))
3015 elimination_effects (reg_equiv_constant (regno), mem_mode);
3016 return;
3017
3018 case PRE_INC:
3019 case POST_INC:
3020 case PRE_DEC:
3021 case POST_DEC:
3022 case POST_MODIFY:
3023 case PRE_MODIFY:
3024 /* If we modify the source of an elimination rule, disable it. */
3025 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3026 if (ep->from_rtx == XEXP (x, 0))
3027 ep->can_eliminate = 0;
3028
3029 /* If we modify the target of an elimination rule by adding a constant,
3030 update its offset. If we modify the target in any other way, we'll
3031 have to disable the rule as well. */
3032 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3033 if (ep->to_rtx == XEXP (x, 0))
3034 {
3035 int size = GET_MODE_SIZE (mem_mode);
3036
3037 /* If more bytes than MEM_MODE are pushed, account for them. */
3038 #ifdef PUSH_ROUNDING
3039 if (ep->to_rtx == stack_pointer_rtx)
3040 size = PUSH_ROUNDING (size);
3041 #endif
3042 if (code == PRE_DEC || code == POST_DEC)
3043 ep->offset += size;
3044 else if (code == PRE_INC || code == POST_INC)
3045 ep->offset -= size;
3046 else if (code == PRE_MODIFY || code == POST_MODIFY)
3047 {
3048 if (GET_CODE (XEXP (x, 1)) == PLUS
3049 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3050 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3051 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3052 else
3053 ep->can_eliminate = 0;
3054 }
3055 }
3056
3057 /* These two aren't unary operators. */
3058 if (code == POST_MODIFY || code == PRE_MODIFY)
3059 break;
3060
3061 /* Fall through to generic unary operation case. */
3062 case STRICT_LOW_PART:
3063 case NEG: case NOT:
3064 case SIGN_EXTEND: case ZERO_EXTEND:
3065 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3066 case FLOAT: case FIX:
3067 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3068 case ABS:
3069 case SQRT:
3070 case FFS:
3071 case CLZ:
3072 case CTZ:
3073 case POPCOUNT:
3074 case PARITY:
3075 case BSWAP:
3076 elimination_effects (XEXP (x, 0), mem_mode);
3077 return;
3078
3079 case SUBREG:
3080 if (REG_P (SUBREG_REG (x))
3081 && (GET_MODE_SIZE (GET_MODE (x))
3082 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3083 && reg_equivs != 0
3084 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3085 return;
3086
3087 elimination_effects (SUBREG_REG (x), mem_mode);
3088 return;
3089
3090 case USE:
3091 /* If using a register that is the source of an eliminate we still
3092 think can be performed, note it cannot be performed since we don't
3093 know how this register is used. */
3094 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3095 if (ep->from_rtx == XEXP (x, 0))
3096 ep->can_eliminate = 0;
3097
3098 elimination_effects (XEXP (x, 0), mem_mode);
3099 return;
3100
3101 case CLOBBER:
3102 /* If clobbering a register that is the replacement register for an
3103 elimination we still think can be performed, note that it cannot
3104 be performed. Otherwise, we need not be concerned about it. */
3105 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3106 if (ep->to_rtx == XEXP (x, 0))
3107 ep->can_eliminate = 0;
3108
3109 elimination_effects (XEXP (x, 0), mem_mode);
3110 return;
3111
3112 case SET:
3113 /* Check for setting a register that we know about. */
3114 if (REG_P (SET_DEST (x)))
3115 {
3116 /* See if this is setting the replacement register for an
3117 elimination.
3118
3119 If DEST is the hard frame pointer, we do nothing because we
3120 assume that all assignments to the frame pointer are for
3121 non-local gotos and are being done at a time when they are valid
3122 and do not disturb anything else. Some machines want to
3123 eliminate a fake argument pointer (or even a fake frame pointer)
3124 with either the real frame or the stack pointer. Assignments to
3125 the hard frame pointer must not prevent this elimination. */
3126
3127 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3128 ep++)
3129 if (ep->to_rtx == SET_DEST (x)
3130 && SET_DEST (x) != hard_frame_pointer_rtx)
3131 {
3132 /* If it is being incremented, adjust the offset. Otherwise,
3133 this elimination can't be done. */
3134 rtx src = SET_SRC (x);
3135
3136 if (GET_CODE (src) == PLUS
3137 && XEXP (src, 0) == SET_DEST (x)
3138 && CONST_INT_P (XEXP (src, 1)))
3139 ep->offset -= INTVAL (XEXP (src, 1));
3140 else
3141 ep->can_eliminate = 0;
3142 }
3143 }
3144
3145 elimination_effects (SET_DEST (x), VOIDmode);
3146 elimination_effects (SET_SRC (x), VOIDmode);
3147 return;
3148
3149 case MEM:
3150 /* Our only special processing is to pass the mode of the MEM to our
3151 recursive call. */
3152 elimination_effects (XEXP (x, 0), GET_MODE (x));
3153 return;
3154
3155 default:
3156 break;
3157 }
3158
3159 fmt = GET_RTX_FORMAT (code);
3160 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3161 {
3162 if (*fmt == 'e')
3163 elimination_effects (XEXP (x, i), mem_mode);
3164 else if (*fmt == 'E')
3165 for (j = 0; j < XVECLEN (x, i); j++)
3166 elimination_effects (XVECEXP (x, i, j), mem_mode);
3167 }
3168 }
3169
3170 /* Descend through rtx X and verify that no references to eliminable registers
3171 remain. If any do remain, mark the involved register as not
3172 eliminable. */
3173
3174 static void
3175 check_eliminable_occurrences (rtx x)
3176 {
3177 const char *fmt;
3178 int i;
3179 enum rtx_code code;
3180
3181 if (x == 0)
3182 return;
3183
3184 code = GET_CODE (x);
3185
3186 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3187 {
3188 struct elim_table *ep;
3189
3190 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3191 if (ep->from_rtx == x)
3192 ep->can_eliminate = 0;
3193 return;
3194 }
3195
3196 fmt = GET_RTX_FORMAT (code);
3197 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3198 {
3199 if (*fmt == 'e')
3200 check_eliminable_occurrences (XEXP (x, i));
3201 else if (*fmt == 'E')
3202 {
3203 int j;
3204 for (j = 0; j < XVECLEN (x, i); j++)
3205 check_eliminable_occurrences (XVECEXP (x, i, j));
3206 }
3207 }
3208 }
3209 \f
3210 /* Scan INSN and eliminate all eliminable registers in it.
3211
3212 If REPLACE is nonzero, do the replacement destructively. Also
3213 delete the insn as dead it if it is setting an eliminable register.
3214
3215 If REPLACE is zero, do all our allocations in reload_obstack.
3216
3217 If no eliminations were done and this insn doesn't require any elimination
3218 processing (these are not identical conditions: it might be updating sp,
3219 but not referencing fp; this needs to be seen during reload_as_needed so
3220 that the offset between fp and sp can be taken into consideration), zero
3221 is returned. Otherwise, 1 is returned. */
3222
3223 static int
3224 eliminate_regs_in_insn (rtx insn, int replace)
3225 {
3226 int icode = recog_memoized (insn);
3227 rtx old_body = PATTERN (insn);
3228 int insn_is_asm = asm_noperands (old_body) >= 0;
3229 rtx old_set = single_set (insn);
3230 rtx new_body;
3231 int val = 0;
3232 int i;
3233 rtx substed_operand[MAX_RECOG_OPERANDS];
3234 rtx orig_operand[MAX_RECOG_OPERANDS];
3235 struct elim_table *ep;
3236 rtx plus_src, plus_cst_src;
3237
3238 if (! insn_is_asm && icode < 0)
3239 {
3240 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3241 || GET_CODE (PATTERN (insn)) == CLOBBER
3242 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3243 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3244 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3245 || DEBUG_INSN_P (insn));
3246 if (DEBUG_INSN_P (insn))
3247 INSN_VAR_LOCATION_LOC (insn)
3248 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3249 return 0;
3250 }
3251
3252 if (old_set != 0 && REG_P (SET_DEST (old_set))
3253 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3254 {
3255 /* Check for setting an eliminable register. */
3256 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3257 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3258 {
3259 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3260 /* If this is setting the frame pointer register to the
3261 hardware frame pointer register and this is an elimination
3262 that will be done (tested above), this insn is really
3263 adjusting the frame pointer downward to compensate for
3264 the adjustment done before a nonlocal goto. */
3265 if (ep->from == FRAME_POINTER_REGNUM
3266 && ep->to == HARD_FRAME_POINTER_REGNUM)
3267 {
3268 rtx base = SET_SRC (old_set);
3269 rtx base_insn = insn;
3270 HOST_WIDE_INT offset = 0;
3271
3272 while (base != ep->to_rtx)
3273 {
3274 rtx prev_insn, prev_set;
3275
3276 if (GET_CODE (base) == PLUS
3277 && CONST_INT_P (XEXP (base, 1)))
3278 {
3279 offset += INTVAL (XEXP (base, 1));
3280 base = XEXP (base, 0);
3281 }
3282 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3283 && (prev_set = single_set (prev_insn)) != 0
3284 && rtx_equal_p (SET_DEST (prev_set), base))
3285 {
3286 base = SET_SRC (prev_set);
3287 base_insn = prev_insn;
3288 }
3289 else
3290 break;
3291 }
3292
3293 if (base == ep->to_rtx)
3294 {
3295 rtx src
3296 = plus_constant (ep->to_rtx, offset - ep->offset);
3297
3298 new_body = old_body;
3299 if (! replace)
3300 {
3301 new_body = copy_insn (old_body);
3302 if (REG_NOTES (insn))
3303 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3304 }
3305 PATTERN (insn) = new_body;
3306 old_set = single_set (insn);
3307
3308 /* First see if this insn remains valid when we
3309 make the change. If not, keep the INSN_CODE
3310 the same and let reload fit it up. */
3311 validate_change (insn, &SET_SRC (old_set), src, 1);
3312 validate_change (insn, &SET_DEST (old_set),
3313 ep->to_rtx, 1);
3314 if (! apply_change_group ())
3315 {
3316 SET_SRC (old_set) = src;
3317 SET_DEST (old_set) = ep->to_rtx;
3318 }
3319
3320 val = 1;
3321 goto done;
3322 }
3323 }
3324 #endif
3325
3326 /* In this case this insn isn't serving a useful purpose. We
3327 will delete it in reload_as_needed once we know that this
3328 elimination is, in fact, being done.
3329
3330 If REPLACE isn't set, we can't delete this insn, but needn't
3331 process it since it won't be used unless something changes. */
3332 if (replace)
3333 {
3334 delete_dead_insn (insn);
3335 return 1;
3336 }
3337 val = 1;
3338 goto done;
3339 }
3340 }
3341
3342 /* We allow one special case which happens to work on all machines we
3343 currently support: a single set with the source or a REG_EQUAL
3344 note being a PLUS of an eliminable register and a constant. */
3345 plus_src = plus_cst_src = 0;
3346 if (old_set && REG_P (SET_DEST (old_set)))
3347 {
3348 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3349 plus_src = SET_SRC (old_set);
3350 /* First see if the source is of the form (plus (...) CST). */
3351 if (plus_src
3352 && CONST_INT_P (XEXP (plus_src, 1)))
3353 plus_cst_src = plus_src;
3354 else if (REG_P (SET_SRC (old_set))
3355 || plus_src)
3356 {
3357 /* Otherwise, see if we have a REG_EQUAL note of the form
3358 (plus (...) CST). */
3359 rtx links;
3360 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3361 {
3362 if ((REG_NOTE_KIND (links) == REG_EQUAL
3363 || REG_NOTE_KIND (links) == REG_EQUIV)
3364 && GET_CODE (XEXP (links, 0)) == PLUS
3365 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3366 {
3367 plus_cst_src = XEXP (links, 0);
3368 break;
3369 }
3370 }
3371 }
3372
3373 /* Check that the first operand of the PLUS is a hard reg or
3374 the lowpart subreg of one. */
3375 if (plus_cst_src)
3376 {
3377 rtx reg = XEXP (plus_cst_src, 0);
3378 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3379 reg = SUBREG_REG (reg);
3380
3381 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3382 plus_cst_src = 0;
3383 }
3384 }
3385 if (plus_cst_src)
3386 {
3387 rtx reg = XEXP (plus_cst_src, 0);
3388 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3389
3390 if (GET_CODE (reg) == SUBREG)
3391 reg = SUBREG_REG (reg);
3392
3393 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3394 if (ep->from_rtx == reg && ep->can_eliminate)
3395 {
3396 rtx to_rtx = ep->to_rtx;
3397 offset += ep->offset;
3398 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3399
3400 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3401 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3402 to_rtx);
3403 /* If we have a nonzero offset, and the source is already
3404 a simple REG, the following transformation would
3405 increase the cost of the insn by replacing a simple REG
3406 with (plus (reg sp) CST). So try only when we already
3407 had a PLUS before. */
3408 if (offset == 0 || plus_src)
3409 {
3410 rtx new_src = plus_constant (to_rtx, offset);
3411
3412 new_body = old_body;
3413 if (! replace)
3414 {
3415 new_body = copy_insn (old_body);
3416 if (REG_NOTES (insn))
3417 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3418 }
3419 PATTERN (insn) = new_body;
3420 old_set = single_set (insn);
3421
3422 /* First see if this insn remains valid when we make the
3423 change. If not, try to replace the whole pattern with
3424 a simple set (this may help if the original insn was a
3425 PARALLEL that was only recognized as single_set due to
3426 REG_UNUSED notes). If this isn't valid either, keep
3427 the INSN_CODE the same and let reload fix it up. */
3428 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3429 {
3430 rtx new_pat = gen_rtx_SET (VOIDmode,
3431 SET_DEST (old_set), new_src);
3432
3433 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3434 SET_SRC (old_set) = new_src;
3435 }
3436 }
3437 else
3438 break;
3439
3440 val = 1;
3441 /* This can't have an effect on elimination offsets, so skip right
3442 to the end. */
3443 goto done;
3444 }
3445 }
3446
3447 /* Determine the effects of this insn on elimination offsets. */
3448 elimination_effects (old_body, VOIDmode);
3449
3450 /* Eliminate all eliminable registers occurring in operands that
3451 can be handled by reload. */
3452 extract_insn (insn);
3453 for (i = 0; i < recog_data.n_operands; i++)
3454 {
3455 orig_operand[i] = recog_data.operand[i];
3456 substed_operand[i] = recog_data.operand[i];
3457
3458 /* For an asm statement, every operand is eliminable. */
3459 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3460 {
3461 bool is_set_src, in_plus;
3462
3463 /* Check for setting a register that we know about. */
3464 if (recog_data.operand_type[i] != OP_IN
3465 && REG_P (orig_operand[i]))
3466 {
3467 /* If we are assigning to a register that can be eliminated, it
3468 must be as part of a PARALLEL, since the code above handles
3469 single SETs. We must indicate that we can no longer
3470 eliminate this reg. */
3471 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3472 ep++)
3473 if (ep->from_rtx == orig_operand[i])
3474 ep->can_eliminate = 0;
3475 }
3476
3477 /* Companion to the above plus substitution, we can allow
3478 invariants as the source of a plain move. */
3479 is_set_src = false;
3480 if (old_set
3481 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3482 is_set_src = true;
3483 in_plus = false;
3484 if (plus_src
3485 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3486 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3487 in_plus = true;
3488
3489 substed_operand[i]
3490 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3491 replace ? insn : NULL_RTX,
3492 is_set_src || in_plus, false);
3493 if (substed_operand[i] != orig_operand[i])
3494 val = 1;
3495 /* Terminate the search in check_eliminable_occurrences at
3496 this point. */
3497 *recog_data.operand_loc[i] = 0;
3498
3499 /* If an output operand changed from a REG to a MEM and INSN is an
3500 insn, write a CLOBBER insn. */
3501 if (recog_data.operand_type[i] != OP_IN
3502 && REG_P (orig_operand[i])
3503 && MEM_P (substed_operand[i])
3504 && replace)
3505 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3506 }
3507 }
3508
3509 for (i = 0; i < recog_data.n_dups; i++)
3510 *recog_data.dup_loc[i]
3511 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3512
3513 /* If any eliminable remain, they aren't eliminable anymore. */
3514 check_eliminable_occurrences (old_body);
3515
3516 /* Substitute the operands; the new values are in the substed_operand
3517 array. */
3518 for (i = 0; i < recog_data.n_operands; i++)
3519 *recog_data.operand_loc[i] = substed_operand[i];
3520 for (i = 0; i < recog_data.n_dups; i++)
3521 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3522
3523 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3524 re-recognize the insn. We do this in case we had a simple addition
3525 but now can do this as a load-address. This saves an insn in this
3526 common case.
3527 If re-recognition fails, the old insn code number will still be used,
3528 and some register operands may have changed into PLUS expressions.
3529 These will be handled by find_reloads by loading them into a register
3530 again. */
3531
3532 if (val)
3533 {
3534 /* If we aren't replacing things permanently and we changed something,
3535 make another copy to ensure that all the RTL is new. Otherwise
3536 things can go wrong if find_reload swaps commutative operands
3537 and one is inside RTL that has been copied while the other is not. */
3538 new_body = old_body;
3539 if (! replace)
3540 {
3541 new_body = copy_insn (old_body);
3542 if (REG_NOTES (insn))
3543 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3544 }
3545 PATTERN (insn) = new_body;
3546
3547 /* If we had a move insn but now we don't, rerecognize it. This will
3548 cause spurious re-recognition if the old move had a PARALLEL since
3549 the new one still will, but we can't call single_set without
3550 having put NEW_BODY into the insn and the re-recognition won't
3551 hurt in this rare case. */
3552 /* ??? Why this huge if statement - why don't we just rerecognize the
3553 thing always? */
3554 if (! insn_is_asm
3555 && old_set != 0
3556 && ((REG_P (SET_SRC (old_set))
3557 && (GET_CODE (new_body) != SET
3558 || !REG_P (SET_SRC (new_body))))
3559 /* If this was a load from or store to memory, compare
3560 the MEM in recog_data.operand to the one in the insn.
3561 If they are not equal, then rerecognize the insn. */
3562 || (old_set != 0
3563 && ((MEM_P (SET_SRC (old_set))
3564 && SET_SRC (old_set) != recog_data.operand[1])
3565 || (MEM_P (SET_DEST (old_set))
3566 && SET_DEST (old_set) != recog_data.operand[0])))
3567 /* If this was an add insn before, rerecognize. */
3568 || GET_CODE (SET_SRC (old_set)) == PLUS))
3569 {
3570 int new_icode = recog (PATTERN (insn), insn, 0);
3571 if (new_icode >= 0)
3572 INSN_CODE (insn) = new_icode;
3573 }
3574 }
3575
3576 /* Restore the old body. If there were any changes to it, we made a copy
3577 of it while the changes were still in place, so we'll correctly return
3578 a modified insn below. */
3579 if (! replace)
3580 {
3581 /* Restore the old body. */
3582 for (i = 0; i < recog_data.n_operands; i++)
3583 /* Restoring a top-level match_parallel would clobber the new_body
3584 we installed in the insn. */
3585 if (recog_data.operand_loc[i] != &PATTERN (insn))
3586 *recog_data.operand_loc[i] = orig_operand[i];
3587 for (i = 0; i < recog_data.n_dups; i++)
3588 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3589 }
3590
3591 /* Update all elimination pairs to reflect the status after the current
3592 insn. The changes we make were determined by the earlier call to
3593 elimination_effects.
3594
3595 We also detect cases where register elimination cannot be done,
3596 namely, if a register would be both changed and referenced outside a MEM
3597 in the resulting insn since such an insn is often undefined and, even if
3598 not, we cannot know what meaning will be given to it. Note that it is
3599 valid to have a register used in an address in an insn that changes it
3600 (presumably with a pre- or post-increment or decrement).
3601
3602 If anything changes, return nonzero. */
3603
3604 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3605 {
3606 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3607 ep->can_eliminate = 0;
3608
3609 ep->ref_outside_mem = 0;
3610
3611 if (ep->previous_offset != ep->offset)
3612 val = 1;
3613 }
3614
3615 done:
3616 /* If we changed something, perform elimination in REG_NOTES. This is
3617 needed even when REPLACE is zero because a REG_DEAD note might refer
3618 to a register that we eliminate and could cause a different number
3619 of spill registers to be needed in the final reload pass than in
3620 the pre-passes. */
3621 if (val && REG_NOTES (insn) != 0)
3622 REG_NOTES (insn)
3623 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3624 false);
3625
3626 return val;
3627 }
3628
3629 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3630 register allocator. INSN is the instruction we need to examine, we perform
3631 eliminations in its operands and record cases where eliminating a reg with
3632 an invariant equivalence would add extra cost. */
3633
3634 static void
3635 elimination_costs_in_insn (rtx insn)
3636 {
3637 int icode = recog_memoized (insn);
3638 rtx old_body = PATTERN (insn);
3639 int insn_is_asm = asm_noperands (old_body) >= 0;
3640 rtx old_set = single_set (insn);
3641 int i;
3642 rtx orig_operand[MAX_RECOG_OPERANDS];
3643 rtx orig_dup[MAX_RECOG_OPERANDS];
3644 struct elim_table *ep;
3645 rtx plus_src, plus_cst_src;
3646 bool sets_reg_p;
3647
3648 if (! insn_is_asm && icode < 0)
3649 {
3650 gcc_assert (GET_CODE (PATTERN (insn)) == USE
3651 || GET_CODE (PATTERN (insn)) == CLOBBER
3652 || GET_CODE (PATTERN (insn)) == ADDR_VEC
3653 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
3654 || GET_CODE (PATTERN (insn)) == ASM_INPUT
3655 || DEBUG_INSN_P (insn));
3656 return;
3657 }
3658
3659 if (old_set != 0 && REG_P (SET_DEST (old_set))
3660 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3661 {
3662 /* Check for setting an eliminable register. */
3663 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3664 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3665 return;
3666 }
3667
3668 /* We allow one special case which happens to work on all machines we
3669 currently support: a single set with the source or a REG_EQUAL
3670 note being a PLUS of an eliminable register and a constant. */
3671 plus_src = plus_cst_src = 0;
3672 sets_reg_p = false;
3673 if (old_set && REG_P (SET_DEST (old_set)))
3674 {
3675 sets_reg_p = true;
3676 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3677 plus_src = SET_SRC (old_set);
3678 /* First see if the source is of the form (plus (...) CST). */
3679 if (plus_src
3680 && CONST_INT_P (XEXP (plus_src, 1)))
3681 plus_cst_src = plus_src;
3682 else if (REG_P (SET_SRC (old_set))
3683 || plus_src)
3684 {
3685 /* Otherwise, see if we have a REG_EQUAL note of the form
3686 (plus (...) CST). */
3687 rtx links;
3688 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3689 {
3690 if ((REG_NOTE_KIND (links) == REG_EQUAL
3691 || REG_NOTE_KIND (links) == REG_EQUIV)
3692 && GET_CODE (XEXP (links, 0)) == PLUS
3693 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3694 {
3695 plus_cst_src = XEXP (links, 0);
3696 break;
3697 }
3698 }
3699 }
3700 }
3701
3702 /* Determine the effects of this insn on elimination offsets. */
3703 elimination_effects (old_body, VOIDmode);
3704
3705 /* Eliminate all eliminable registers occurring in operands that
3706 can be handled by reload. */
3707 extract_insn (insn);
3708 for (i = 0; i < recog_data.n_dups; i++)
3709 orig_dup[i] = *recog_data.dup_loc[i];
3710
3711 for (i = 0; i < recog_data.n_operands; i++)
3712 {
3713 orig_operand[i] = recog_data.operand[i];
3714
3715 /* For an asm statement, every operand is eliminable. */
3716 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3717 {
3718 bool is_set_src, in_plus;
3719
3720 /* Check for setting a register that we know about. */
3721 if (recog_data.operand_type[i] != OP_IN
3722 && REG_P (orig_operand[i]))
3723 {
3724 /* If we are assigning to a register that can be eliminated, it
3725 must be as part of a PARALLEL, since the code above handles
3726 single SETs. We must indicate that we can no longer
3727 eliminate this reg. */
3728 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3729 ep++)
3730 if (ep->from_rtx == orig_operand[i])
3731 ep->can_eliminate = 0;
3732 }
3733
3734 /* Companion to the above plus substitution, we can allow
3735 invariants as the source of a plain move. */
3736 is_set_src = false;
3737 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3738 is_set_src = true;
3739 if (is_set_src && !sets_reg_p)
3740 note_reg_elim_costly (&SET_SRC (old_set), insn);
3741 in_plus = false;
3742 if (plus_src && sets_reg_p
3743 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3744 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3745 in_plus = true;
3746
3747 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3748 NULL_RTX,
3749 is_set_src || in_plus, true);
3750 /* Terminate the search in check_eliminable_occurrences at
3751 this point. */
3752 *recog_data.operand_loc[i] = 0;
3753 }
3754 }
3755
3756 for (i = 0; i < recog_data.n_dups; i++)
3757 *recog_data.dup_loc[i]
3758 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3759
3760 /* If any eliminable remain, they aren't eliminable anymore. */
3761 check_eliminable_occurrences (old_body);
3762
3763 /* Restore the old body. */
3764 for (i = 0; i < recog_data.n_operands; i++)
3765 *recog_data.operand_loc[i] = orig_operand[i];
3766 for (i = 0; i < recog_data.n_dups; i++)
3767 *recog_data.dup_loc[i] = orig_dup[i];
3768
3769 /* Update all elimination pairs to reflect the status after the current
3770 insn. The changes we make were determined by the earlier call to
3771 elimination_effects. */
3772
3773 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3774 {
3775 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3776 ep->can_eliminate = 0;
3777
3778 ep->ref_outside_mem = 0;
3779 }
3780
3781 return;
3782 }
3783
3784 /* Loop through all elimination pairs.
3785 Recalculate the number not at initial offset.
3786
3787 Compute the maximum offset (minimum offset if the stack does not
3788 grow downward) for each elimination pair. */
3789
3790 static void
3791 update_eliminable_offsets (void)
3792 {
3793 struct elim_table *ep;
3794
3795 num_not_at_initial_offset = 0;
3796 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3797 {
3798 ep->previous_offset = ep->offset;
3799 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3800 num_not_at_initial_offset++;
3801 }
3802 }
3803
3804 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3805 replacement we currently believe is valid, mark it as not eliminable if X
3806 modifies DEST in any way other than by adding a constant integer to it.
3807
3808 If DEST is the frame pointer, we do nothing because we assume that
3809 all assignments to the hard frame pointer are nonlocal gotos and are being
3810 done at a time when they are valid and do not disturb anything else.
3811 Some machines want to eliminate a fake argument pointer with either the
3812 frame or stack pointer. Assignments to the hard frame pointer must not
3813 prevent this elimination.
3814
3815 Called via note_stores from reload before starting its passes to scan
3816 the insns of the function. */
3817
3818 static void
3819 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3820 {
3821 unsigned int i;
3822
3823 /* A SUBREG of a hard register here is just changing its mode. We should
3824 not see a SUBREG of an eliminable hard register, but check just in
3825 case. */
3826 if (GET_CODE (dest) == SUBREG)
3827 dest = SUBREG_REG (dest);
3828
3829 if (dest == hard_frame_pointer_rtx)
3830 return;
3831
3832 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3833 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3834 && (GET_CODE (x) != SET
3835 || GET_CODE (SET_SRC (x)) != PLUS
3836 || XEXP (SET_SRC (x), 0) != dest
3837 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3838 {
3839 reg_eliminate[i].can_eliminate_previous
3840 = reg_eliminate[i].can_eliminate = 0;
3841 num_eliminable--;
3842 }
3843 }
3844
3845 /* Verify that the initial elimination offsets did not change since the
3846 last call to set_initial_elim_offsets. This is used to catch cases
3847 where something illegal happened during reload_as_needed that could
3848 cause incorrect code to be generated if we did not check for it. */
3849
3850 static bool
3851 verify_initial_elim_offsets (void)
3852 {
3853 HOST_WIDE_INT t;
3854
3855 if (!num_eliminable)
3856 return true;
3857
3858 #ifdef ELIMINABLE_REGS
3859 {
3860 struct elim_table *ep;
3861
3862 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3863 {
3864 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3865 if (t != ep->initial_offset)
3866 return false;
3867 }
3868 }
3869 #else
3870 INITIAL_FRAME_POINTER_OFFSET (t);
3871 if (t != reg_eliminate[0].initial_offset)
3872 return false;
3873 #endif
3874
3875 return true;
3876 }
3877
3878 /* Reset all offsets on eliminable registers to their initial values. */
3879
3880 static void
3881 set_initial_elim_offsets (void)
3882 {
3883 struct elim_table *ep = reg_eliminate;
3884
3885 #ifdef ELIMINABLE_REGS
3886 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3887 {
3888 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3889 ep->previous_offset = ep->offset = ep->initial_offset;
3890 }
3891 #else
3892 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3893 ep->previous_offset = ep->offset = ep->initial_offset;
3894 #endif
3895
3896 num_not_at_initial_offset = 0;
3897 }
3898
3899 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3900
3901 static void
3902 set_initial_eh_label_offset (rtx label)
3903 {
3904 set_label_offsets (label, NULL_RTX, 1);
3905 }
3906
3907 /* Initialize the known label offsets.
3908 Set a known offset for each forced label to be at the initial offset
3909 of each elimination. We do this because we assume that all
3910 computed jumps occur from a location where each elimination is
3911 at its initial offset.
3912 For all other labels, show that we don't know the offsets. */
3913
3914 static void
3915 set_initial_label_offsets (void)
3916 {
3917 rtx x;
3918 memset (offsets_known_at, 0, num_labels);
3919
3920 for (x = forced_labels; x; x = XEXP (x, 1))
3921 if (XEXP (x, 0))
3922 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3923
3924 for_each_eh_label (set_initial_eh_label_offset);
3925 }
3926
3927 /* Set all elimination offsets to the known values for the code label given
3928 by INSN. */
3929
3930 static void
3931 set_offsets_for_label (rtx insn)
3932 {
3933 unsigned int i;
3934 int label_nr = CODE_LABEL_NUMBER (insn);
3935 struct elim_table *ep;
3936
3937 num_not_at_initial_offset = 0;
3938 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3939 {
3940 ep->offset = ep->previous_offset
3941 = offsets_at[label_nr - first_label_num][i];
3942 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3943 num_not_at_initial_offset++;
3944 }
3945 }
3946
3947 /* See if anything that happened changes which eliminations are valid.
3948 For example, on the SPARC, whether or not the frame pointer can
3949 be eliminated can depend on what registers have been used. We need
3950 not check some conditions again (such as flag_omit_frame_pointer)
3951 since they can't have changed. */
3952
3953 static void
3954 update_eliminables (HARD_REG_SET *pset)
3955 {
3956 int previous_frame_pointer_needed = frame_pointer_needed;
3957 struct elim_table *ep;
3958
3959 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3960 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3961 && targetm.frame_pointer_required ())
3962 #ifdef ELIMINABLE_REGS
3963 || ! targetm.can_eliminate (ep->from, ep->to)
3964 #endif
3965 )
3966 ep->can_eliminate = 0;
3967
3968 /* Look for the case where we have discovered that we can't replace
3969 register A with register B and that means that we will now be
3970 trying to replace register A with register C. This means we can
3971 no longer replace register C with register B and we need to disable
3972 such an elimination, if it exists. This occurs often with A == ap,
3973 B == sp, and C == fp. */
3974
3975 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3976 {
3977 struct elim_table *op;
3978 int new_to = -1;
3979
3980 if (! ep->can_eliminate && ep->can_eliminate_previous)
3981 {
3982 /* Find the current elimination for ep->from, if there is a
3983 new one. */
3984 for (op = reg_eliminate;
3985 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3986 if (op->from == ep->from && op->can_eliminate)
3987 {
3988 new_to = op->to;
3989 break;
3990 }
3991
3992 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3993 disable it. */
3994 for (op = reg_eliminate;
3995 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3996 if (op->from == new_to && op->to == ep->to)
3997 op->can_eliminate = 0;
3998 }
3999 }
4000
4001 /* See if any registers that we thought we could eliminate the previous
4002 time are no longer eliminable. If so, something has changed and we
4003 must spill the register. Also, recompute the number of eliminable
4004 registers and see if the frame pointer is needed; it is if there is
4005 no elimination of the frame pointer that we can perform. */
4006
4007 frame_pointer_needed = 1;
4008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4009 {
4010 if (ep->can_eliminate
4011 && ep->from == FRAME_POINTER_REGNUM
4012 && ep->to != HARD_FRAME_POINTER_REGNUM
4013 && (! SUPPORTS_STACK_ALIGNMENT
4014 || ! crtl->stack_realign_needed))
4015 frame_pointer_needed = 0;
4016
4017 if (! ep->can_eliminate && ep->can_eliminate_previous)
4018 {
4019 ep->can_eliminate_previous = 0;
4020 SET_HARD_REG_BIT (*pset, ep->from);
4021 num_eliminable--;
4022 }
4023 }
4024
4025 /* If we didn't need a frame pointer last time, but we do now, spill
4026 the hard frame pointer. */
4027 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4028 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4029 }
4030
4031 /* Return true if X is used as the target register of an elimination. */
4032
4033 bool
4034 elimination_target_reg_p (rtx x)
4035 {
4036 struct elim_table *ep;
4037
4038 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4039 if (ep->to_rtx == x && ep->can_eliminate)
4040 return true;
4041
4042 return false;
4043 }
4044
4045 /* Initialize the table of registers to eliminate.
4046 Pre-condition: global flag frame_pointer_needed has been set before
4047 calling this function. */
4048
4049 static void
4050 init_elim_table (void)
4051 {
4052 struct elim_table *ep;
4053 #ifdef ELIMINABLE_REGS
4054 const struct elim_table_1 *ep1;
4055 #endif
4056
4057 if (!reg_eliminate)
4058 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4059
4060 num_eliminable = 0;
4061
4062 #ifdef ELIMINABLE_REGS
4063 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4064 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4065 {
4066 ep->from = ep1->from;
4067 ep->to = ep1->to;
4068 ep->can_eliminate = ep->can_eliminate_previous
4069 = (targetm.can_eliminate (ep->from, ep->to)
4070 && ! (ep->to == STACK_POINTER_REGNUM
4071 && frame_pointer_needed
4072 && (! SUPPORTS_STACK_ALIGNMENT
4073 || ! stack_realign_fp)));
4074 }
4075 #else
4076 reg_eliminate[0].from = reg_eliminate_1[0].from;
4077 reg_eliminate[0].to = reg_eliminate_1[0].to;
4078 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4079 = ! frame_pointer_needed;
4080 #endif
4081
4082 /* Count the number of eliminable registers and build the FROM and TO
4083 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4084 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4085 We depend on this. */
4086 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4087 {
4088 num_eliminable += ep->can_eliminate;
4089 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4090 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4091 }
4092 }
4093
4094 /* Find all the pseudo registers that didn't get hard regs
4095 but do have known equivalent constants or memory slots.
4096 These include parameters (known equivalent to parameter slots)
4097 and cse'd or loop-moved constant memory addresses.
4098
4099 Record constant equivalents in reg_equiv_constant
4100 so they will be substituted by find_reloads.
4101 Record memory equivalents in reg_mem_equiv so they can
4102 be substituted eventually by altering the REG-rtx's. */
4103
4104 static void
4105 init_eliminable_invariants (rtx first, bool do_subregs)
4106 {
4107 int i;
4108 rtx insn;
4109
4110 grow_reg_equivs ();
4111 if (do_subregs)
4112 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4113 else
4114 reg_max_ref_width = NULL;
4115
4116 num_eliminable_invariants = 0;
4117
4118 first_label_num = get_first_label_num ();
4119 num_labels = max_label_num () - first_label_num;
4120
4121 /* Allocate the tables used to store offset information at labels. */
4122 offsets_known_at = XNEWVEC (char, num_labels);
4123 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4124
4125 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4126 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4127 find largest such for each pseudo. FIRST is the head of the insn
4128 list. */
4129
4130 for (insn = first; insn; insn = NEXT_INSN (insn))
4131 {
4132 rtx set = single_set (insn);
4133
4134 /* We may introduce USEs that we want to remove at the end, so
4135 we'll mark them with QImode. Make sure there are no
4136 previously-marked insns left by say regmove. */
4137 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4138 && GET_MODE (insn) != VOIDmode)
4139 PUT_MODE (insn, VOIDmode);
4140
4141 if (do_subregs && NONDEBUG_INSN_P (insn))
4142 scan_paradoxical_subregs (PATTERN (insn));
4143
4144 if (set != 0 && REG_P (SET_DEST (set)))
4145 {
4146 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4147 rtx x;
4148
4149 if (! note)
4150 continue;
4151
4152 i = REGNO (SET_DEST (set));
4153 x = XEXP (note, 0);
4154
4155 if (i <= LAST_VIRTUAL_REGISTER)
4156 continue;
4157
4158 /* If flag_pic and we have constant, verify it's legitimate. */
4159 if (!CONSTANT_P (x)
4160 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4161 {
4162 /* It can happen that a REG_EQUIV note contains a MEM
4163 that is not a legitimate memory operand. As later
4164 stages of reload assume that all addresses found
4165 in the reg_equiv_* arrays were originally legitimate,
4166 we ignore such REG_EQUIV notes. */
4167 if (memory_operand (x, VOIDmode))
4168 {
4169 /* Always unshare the equivalence, so we can
4170 substitute into this insn without touching the
4171 equivalence. */
4172 reg_equiv_memory_loc (i) = copy_rtx (x);
4173 }
4174 else if (function_invariant_p (x))
4175 {
4176 enum machine_mode mode;
4177
4178 mode = GET_MODE (SET_DEST (set));
4179 if (GET_CODE (x) == PLUS)
4180 {
4181 /* This is PLUS of frame pointer and a constant,
4182 and might be shared. Unshare it. */
4183 reg_equiv_invariant (i) = copy_rtx (x);
4184 num_eliminable_invariants++;
4185 }
4186 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4187 {
4188 reg_equiv_invariant (i) = x;
4189 num_eliminable_invariants++;
4190 }
4191 else if (targetm.legitimate_constant_p (mode, x))
4192 reg_equiv_constant (i) = x;
4193 else
4194 {
4195 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4196 if (! reg_equiv_memory_loc (i))
4197 reg_equiv_init (i) = NULL_RTX;
4198 }
4199 }
4200 else
4201 {
4202 reg_equiv_init (i) = NULL_RTX;
4203 continue;
4204 }
4205 }
4206 else
4207 reg_equiv_init (i) = NULL_RTX;
4208 }
4209 }
4210
4211 if (dump_file)
4212 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4213 if (reg_equiv_init (i))
4214 {
4215 fprintf (dump_file, "init_insns for %u: ", i);
4216 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4217 fprintf (dump_file, "\n");
4218 }
4219 }
4220
4221 /* Indicate that we no longer have known memory locations or constants.
4222 Free all data involved in tracking these. */
4223
4224 static void
4225 free_reg_equiv (void)
4226 {
4227 int i;
4228
4229
4230 free (offsets_known_at);
4231 free (offsets_at);
4232 offsets_at = 0;
4233 offsets_known_at = 0;
4234
4235 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4236 if (reg_equiv_alt_mem_list (i))
4237 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4238 VEC_free (reg_equivs_t, gc, reg_equivs);
4239 reg_equivs = NULL;
4240
4241 }
4242 \f
4243 /* Kick all pseudos out of hard register REGNO.
4244
4245 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4246 because we found we can't eliminate some register. In the case, no pseudos
4247 are allowed to be in the register, even if they are only in a block that
4248 doesn't require spill registers, unlike the case when we are spilling this
4249 hard reg to produce another spill register.
4250
4251 Return nonzero if any pseudos needed to be kicked out. */
4252
4253 static void
4254 spill_hard_reg (unsigned int regno, int cant_eliminate)
4255 {
4256 int i;
4257
4258 if (cant_eliminate)
4259 {
4260 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4261 df_set_regs_ever_live (regno, true);
4262 }
4263
4264 /* Spill every pseudo reg that was allocated to this reg
4265 or to something that overlaps this reg. */
4266
4267 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4268 if (reg_renumber[i] >= 0
4269 && (unsigned int) reg_renumber[i] <= regno
4270 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4271 SET_REGNO_REG_SET (&spilled_pseudos, i);
4272 }
4273
4274 /* After find_reload_regs has been run for all insn that need reloads,
4275 and/or spill_hard_regs was called, this function is used to actually
4276 spill pseudo registers and try to reallocate them. It also sets up the
4277 spill_regs array for use by choose_reload_regs. */
4278
4279 static int
4280 finish_spills (int global)
4281 {
4282 struct insn_chain *chain;
4283 int something_changed = 0;
4284 unsigned i;
4285 reg_set_iterator rsi;
4286
4287 /* Build the spill_regs array for the function. */
4288 /* If there are some registers still to eliminate and one of the spill regs
4289 wasn't ever used before, additional stack space may have to be
4290 allocated to store this register. Thus, we may have changed the offset
4291 between the stack and frame pointers, so mark that something has changed.
4292
4293 One might think that we need only set VAL to 1 if this is a call-used
4294 register. However, the set of registers that must be saved by the
4295 prologue is not identical to the call-used set. For example, the
4296 register used by the call insn for the return PC is a call-used register,
4297 but must be saved by the prologue. */
4298
4299 n_spills = 0;
4300 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4301 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4302 {
4303 spill_reg_order[i] = n_spills;
4304 spill_regs[n_spills++] = i;
4305 if (num_eliminable && ! df_regs_ever_live_p (i))
4306 something_changed = 1;
4307 df_set_regs_ever_live (i, true);
4308 }
4309 else
4310 spill_reg_order[i] = -1;
4311
4312 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4313 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4314 {
4315 /* Record the current hard register the pseudo is allocated to
4316 in pseudo_previous_regs so we avoid reallocating it to the
4317 same hard reg in a later pass. */
4318 gcc_assert (reg_renumber[i] >= 0);
4319
4320 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4321 /* Mark it as no longer having a hard register home. */
4322 reg_renumber[i] = -1;
4323 if (ira_conflicts_p)
4324 /* Inform IRA about the change. */
4325 ira_mark_allocation_change (i);
4326 /* We will need to scan everything again. */
4327 something_changed = 1;
4328 }
4329
4330 /* Retry global register allocation if possible. */
4331 if (global && ira_conflicts_p)
4332 {
4333 unsigned int n;
4334
4335 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4336 /* For every insn that needs reloads, set the registers used as spill
4337 regs in pseudo_forbidden_regs for every pseudo live across the
4338 insn. */
4339 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4340 {
4341 EXECUTE_IF_SET_IN_REG_SET
4342 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4343 {
4344 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4345 chain->used_spill_regs);
4346 }
4347 EXECUTE_IF_SET_IN_REG_SET
4348 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4349 {
4350 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4351 chain->used_spill_regs);
4352 }
4353 }
4354
4355 /* Retry allocating the pseudos spilled in IRA and the
4356 reload. For each reg, merge the various reg sets that
4357 indicate which hard regs can't be used, and call
4358 ira_reassign_pseudos. */
4359 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4360 if (reg_old_renumber[i] != reg_renumber[i])
4361 {
4362 if (reg_renumber[i] < 0)
4363 temp_pseudo_reg_arr[n++] = i;
4364 else
4365 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4366 }
4367 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4368 bad_spill_regs_global,
4369 pseudo_forbidden_regs, pseudo_previous_regs,
4370 &spilled_pseudos))
4371 something_changed = 1;
4372 }
4373 /* Fix up the register information in the insn chain.
4374 This involves deleting those of the spilled pseudos which did not get
4375 a new hard register home from the live_{before,after} sets. */
4376 for (chain = reload_insn_chain; chain; chain = chain->next)
4377 {
4378 HARD_REG_SET used_by_pseudos;
4379 HARD_REG_SET used_by_pseudos2;
4380
4381 if (! ira_conflicts_p)
4382 {
4383 /* Don't do it for IRA because IRA and the reload still can
4384 assign hard registers to the spilled pseudos on next
4385 reload iterations. */
4386 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4387 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4388 }
4389 /* Mark any unallocated hard regs as available for spills. That
4390 makes inheritance work somewhat better. */
4391 if (chain->need_reload)
4392 {
4393 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4394 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4395 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4396
4397 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4398 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4399 /* Value of chain->used_spill_regs from previous iteration
4400 may be not included in the value calculated here because
4401 of possible removing caller-saves insns (see function
4402 delete_caller_save_insns. */
4403 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4404 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4405 }
4406 }
4407
4408 CLEAR_REG_SET (&changed_allocation_pseudos);
4409 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4410 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4411 {
4412 int regno = reg_renumber[i];
4413 if (reg_old_renumber[i] == regno)
4414 continue;
4415
4416 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4417
4418 alter_reg (i, reg_old_renumber[i], false);
4419 reg_old_renumber[i] = regno;
4420 if (dump_file)
4421 {
4422 if (regno == -1)
4423 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4424 else
4425 fprintf (dump_file, " Register %d now in %d.\n\n",
4426 i, reg_renumber[i]);
4427 }
4428 }
4429
4430 return something_changed;
4431 }
4432 \f
4433 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4434
4435 static void
4436 scan_paradoxical_subregs (rtx x)
4437 {
4438 int i;
4439 const char *fmt;
4440 enum rtx_code code = GET_CODE (x);
4441
4442 switch (code)
4443 {
4444 case REG:
4445 case CONST_INT:
4446 case CONST:
4447 case SYMBOL_REF:
4448 case LABEL_REF:
4449 case CONST_DOUBLE:
4450 case CONST_FIXED:
4451 case CONST_VECTOR: /* shouldn't happen, but just in case. */
4452 case CC0:
4453 case PC:
4454 case USE:
4455 case CLOBBER:
4456 return;
4457
4458 case SUBREG:
4459 if (REG_P (SUBREG_REG (x))
4460 && (GET_MODE_SIZE (GET_MODE (x))
4461 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4462 {
4463 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4464 = GET_MODE_SIZE (GET_MODE (x));
4465 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4466 }
4467 return;
4468
4469 default:
4470 break;
4471 }
4472
4473 fmt = GET_RTX_FORMAT (code);
4474 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4475 {
4476 if (fmt[i] == 'e')
4477 scan_paradoxical_subregs (XEXP (x, i));
4478 else if (fmt[i] == 'E')
4479 {
4480 int j;
4481 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4482 scan_paradoxical_subregs (XVECEXP (x, i, j));
4483 }
4484 }
4485 }
4486
4487 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4488 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4489 and apply the corresponding narrowing subreg to *OTHER_PTR.
4490 Return true if the operands were changed, false otherwise. */
4491
4492 static bool
4493 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4494 {
4495 rtx op, inner, other, tem;
4496
4497 op = *op_ptr;
4498 if (GET_CODE (op) != SUBREG)
4499 return false;
4500
4501 inner = SUBREG_REG (op);
4502 if (GET_MODE_SIZE (GET_MODE (op)) <= GET_MODE_SIZE (GET_MODE (inner)))
4503 return false;
4504
4505 other = *other_ptr;
4506 tem = gen_lowpart_common (GET_MODE (inner), other);
4507 if (!tem)
4508 return false;
4509
4510 /* If the lowpart operation turned a hard register into a subreg,
4511 rather than simplifying it to another hard register, then the
4512 mode change cannot be properly represented. For example, OTHER
4513 might be valid in its current mode, but not in the new one. */
4514 if (GET_CODE (tem) == SUBREG
4515 && REG_P (other)
4516 && HARD_REGISTER_P (other))
4517 return false;
4518
4519 *op_ptr = inner;
4520 *other_ptr = tem;
4521 return true;
4522 }
4523 \f
4524 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4525 examine all of the reload insns between PREV and NEXT exclusive, and
4526 annotate all that may trap. */
4527
4528 static void
4529 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4530 {
4531 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4532 if (note == NULL)
4533 return;
4534 if (!insn_could_throw_p (insn))
4535 remove_note (insn, note);
4536 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4537 }
4538
4539 /* Reload pseudo-registers into hard regs around each insn as needed.
4540 Additional register load insns are output before the insn that needs it
4541 and perhaps store insns after insns that modify the reloaded pseudo reg.
4542
4543 reg_last_reload_reg and reg_reloaded_contents keep track of
4544 which registers are already available in reload registers.
4545 We update these for the reloads that we perform,
4546 as the insns are scanned. */
4547
4548 static void
4549 reload_as_needed (int live_known)
4550 {
4551 struct insn_chain *chain;
4552 #if defined (AUTO_INC_DEC)
4553 int i;
4554 #endif
4555 rtx x;
4556
4557 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4558 memset (spill_reg_store, 0, sizeof spill_reg_store);
4559 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4560 INIT_REG_SET (&reg_has_output_reload);
4561 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4562 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4563
4564 set_initial_elim_offsets ();
4565
4566 for (chain = reload_insn_chain; chain; chain = chain->next)
4567 {
4568 rtx prev = 0;
4569 rtx insn = chain->insn;
4570 rtx old_next = NEXT_INSN (insn);
4571 #ifdef AUTO_INC_DEC
4572 rtx old_prev = PREV_INSN (insn);
4573 #endif
4574
4575 /* If we pass a label, copy the offsets from the label information
4576 into the current offsets of each elimination. */
4577 if (LABEL_P (insn))
4578 set_offsets_for_label (insn);
4579
4580 else if (INSN_P (insn))
4581 {
4582 regset_head regs_to_forget;
4583 INIT_REG_SET (&regs_to_forget);
4584 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4585
4586 /* If this is a USE and CLOBBER of a MEM, ensure that any
4587 references to eliminable registers have been removed. */
4588
4589 if ((GET_CODE (PATTERN (insn)) == USE
4590 || GET_CODE (PATTERN (insn)) == CLOBBER)
4591 && MEM_P (XEXP (PATTERN (insn), 0)))
4592 XEXP (XEXP (PATTERN (insn), 0), 0)
4593 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4594 GET_MODE (XEXP (PATTERN (insn), 0)),
4595 NULL_RTX);
4596
4597 /* If we need to do register elimination processing, do so.
4598 This might delete the insn, in which case we are done. */
4599 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4600 {
4601 eliminate_regs_in_insn (insn, 1);
4602 if (NOTE_P (insn))
4603 {
4604 update_eliminable_offsets ();
4605 CLEAR_REG_SET (&regs_to_forget);
4606 continue;
4607 }
4608 }
4609
4610 /* If need_elim is nonzero but need_reload is zero, one might think
4611 that we could simply set n_reloads to 0. However, find_reloads
4612 could have done some manipulation of the insn (such as swapping
4613 commutative operands), and these manipulations are lost during
4614 the first pass for every insn that needs register elimination.
4615 So the actions of find_reloads must be redone here. */
4616
4617 if (! chain->need_elim && ! chain->need_reload
4618 && ! chain->need_operand_change)
4619 n_reloads = 0;
4620 /* First find the pseudo regs that must be reloaded for this insn.
4621 This info is returned in the tables reload_... (see reload.h).
4622 Also modify the body of INSN by substituting RELOAD
4623 rtx's for those pseudo regs. */
4624 else
4625 {
4626 CLEAR_REG_SET (&reg_has_output_reload);
4627 CLEAR_HARD_REG_SET (reg_is_output_reload);
4628
4629 find_reloads (insn, 1, spill_indirect_levels, live_known,
4630 spill_reg_order);
4631 }
4632
4633 if (n_reloads > 0)
4634 {
4635 rtx next = NEXT_INSN (insn);
4636 rtx p;
4637
4638 prev = PREV_INSN (insn);
4639
4640 /* Now compute which reload regs to reload them into. Perhaps
4641 reusing reload regs from previous insns, or else output
4642 load insns to reload them. Maybe output store insns too.
4643 Record the choices of reload reg in reload_reg_rtx. */
4644 choose_reload_regs (chain);
4645
4646 /* Generate the insns to reload operands into or out of
4647 their reload regs. */
4648 emit_reload_insns (chain);
4649
4650 /* Substitute the chosen reload regs from reload_reg_rtx
4651 into the insn's body (or perhaps into the bodies of other
4652 load and store insn that we just made for reloading
4653 and that we moved the structure into). */
4654 subst_reloads (insn);
4655
4656 /* Adjust the exception region notes for loads and stores. */
4657 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4658 fixup_eh_region_note (insn, prev, next);
4659
4660 /* If this was an ASM, make sure that all the reload insns
4661 we have generated are valid. If not, give an error
4662 and delete them. */
4663 if (asm_noperands (PATTERN (insn)) >= 0)
4664 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4665 if (p != insn && INSN_P (p)
4666 && GET_CODE (PATTERN (p)) != USE
4667 && (recog_memoized (p) < 0
4668 || (extract_insn (p), ! constrain_operands (1))))
4669 {
4670 error_for_asm (insn,
4671 "%<asm%> operand requires "
4672 "impossible reload");
4673 delete_insn (p);
4674 }
4675 }
4676
4677 if (num_eliminable && chain->need_elim)
4678 update_eliminable_offsets ();
4679
4680 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4681 is no longer validly lying around to save a future reload.
4682 Note that this does not detect pseudos that were reloaded
4683 for this insn in order to be stored in
4684 (obeying register constraints). That is correct; such reload
4685 registers ARE still valid. */
4686 forget_marked_reloads (&regs_to_forget);
4687 CLEAR_REG_SET (&regs_to_forget);
4688
4689 /* There may have been CLOBBER insns placed after INSN. So scan
4690 between INSN and NEXT and use them to forget old reloads. */
4691 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4692 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4693 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4694
4695 #ifdef AUTO_INC_DEC
4696 /* Likewise for regs altered by auto-increment in this insn.
4697 REG_INC notes have been changed by reloading:
4698 find_reloads_address_1 records substitutions for them,
4699 which have been performed by subst_reloads above. */
4700 for (i = n_reloads - 1; i >= 0; i--)
4701 {
4702 rtx in_reg = rld[i].in_reg;
4703 if (in_reg)
4704 {
4705 enum rtx_code code = GET_CODE (in_reg);
4706 /* PRE_INC / PRE_DEC will have the reload register ending up
4707 with the same value as the stack slot, but that doesn't
4708 hold true for POST_INC / POST_DEC. Either we have to
4709 convert the memory access to a true POST_INC / POST_DEC,
4710 or we can't use the reload register for inheritance. */
4711 if ((code == POST_INC || code == POST_DEC)
4712 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4713 REGNO (rld[i].reg_rtx))
4714 /* Make sure it is the inc/dec pseudo, and not
4715 some other (e.g. output operand) pseudo. */
4716 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4717 == REGNO (XEXP (in_reg, 0))))
4718
4719 {
4720 rtx reload_reg = rld[i].reg_rtx;
4721 enum machine_mode mode = GET_MODE (reload_reg);
4722 int n = 0;
4723 rtx p;
4724
4725 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4726 {
4727 /* We really want to ignore REG_INC notes here, so
4728 use PATTERN (p) as argument to reg_set_p . */
4729 if (reg_set_p (reload_reg, PATTERN (p)))
4730 break;
4731 n = count_occurrences (PATTERN (p), reload_reg, 0);
4732 if (! n)
4733 continue;
4734 if (n == 1)
4735 {
4736 rtx replace_reg
4737 = gen_rtx_fmt_e (code, mode, reload_reg);
4738
4739 validate_replace_rtx_group (reload_reg,
4740 replace_reg, p);
4741 n = verify_changes (0);
4742
4743 /* We must also verify that the constraints
4744 are met after the replacement. Make sure
4745 extract_insn is only called for an insn
4746 where the replacements were found to be
4747 valid so far. */
4748 if (n)
4749 {
4750 extract_insn (p);
4751 n = constrain_operands (1);
4752 }
4753
4754 /* If the constraints were not met, then
4755 undo the replacement, else confirm it. */
4756 if (!n)
4757 cancel_changes (0);
4758 else
4759 confirm_change_group ();
4760 }
4761 break;
4762 }
4763 if (n == 1)
4764 {
4765 add_reg_note (p, REG_INC, reload_reg);
4766 /* Mark this as having an output reload so that the
4767 REG_INC processing code below won't invalidate
4768 the reload for inheritance. */
4769 SET_HARD_REG_BIT (reg_is_output_reload,
4770 REGNO (reload_reg));
4771 SET_REGNO_REG_SET (&reg_has_output_reload,
4772 REGNO (XEXP (in_reg, 0)));
4773 }
4774 else
4775 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4776 NULL);
4777 }
4778 else if ((code == PRE_INC || code == PRE_DEC)
4779 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4780 REGNO (rld[i].reg_rtx))
4781 /* Make sure it is the inc/dec pseudo, and not
4782 some other (e.g. output operand) pseudo. */
4783 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4784 == REGNO (XEXP (in_reg, 0))))
4785 {
4786 SET_HARD_REG_BIT (reg_is_output_reload,
4787 REGNO (rld[i].reg_rtx));
4788 SET_REGNO_REG_SET (&reg_has_output_reload,
4789 REGNO (XEXP (in_reg, 0)));
4790 }
4791 else if (code == PRE_INC || code == PRE_DEC
4792 || code == POST_INC || code == POST_DEC)
4793 {
4794 int in_regno = REGNO (XEXP (in_reg, 0));
4795
4796 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4797 {
4798 int in_hard_regno;
4799 bool forget_p = true;
4800
4801 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4802 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4803 in_hard_regno))
4804 {
4805 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4806 x != old_next;
4807 x = NEXT_INSN (x))
4808 if (x == reg_reloaded_insn[in_hard_regno])
4809 {
4810 forget_p = false;
4811 break;
4812 }
4813 }
4814 /* If for some reasons, we didn't set up
4815 reg_last_reload_reg in this insn,
4816 invalidate inheritance from previous
4817 insns for the incremented/decremented
4818 register. Such registers will be not in
4819 reg_has_output_reload. Invalidate it
4820 also if the corresponding element in
4821 reg_reloaded_insn is also
4822 invalidated. */
4823 if (forget_p)
4824 forget_old_reloads_1 (XEXP (in_reg, 0),
4825 NULL_RTX, NULL);
4826 }
4827 }
4828 }
4829 }
4830 /* If a pseudo that got a hard register is auto-incremented,
4831 we must purge records of copying it into pseudos without
4832 hard registers. */
4833 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4834 if (REG_NOTE_KIND (x) == REG_INC)
4835 {
4836 /* See if this pseudo reg was reloaded in this insn.
4837 If so, its last-reload info is still valid
4838 because it is based on this insn's reload. */
4839 for (i = 0; i < n_reloads; i++)
4840 if (rld[i].out == XEXP (x, 0))
4841 break;
4842
4843 if (i == n_reloads)
4844 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4845 }
4846 #endif
4847 }
4848 /* A reload reg's contents are unknown after a label. */
4849 if (LABEL_P (insn))
4850 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4851
4852 /* Don't assume a reload reg is still good after a call insn
4853 if it is a call-used reg, or if it contains a value that will
4854 be partially clobbered by the call. */
4855 else if (CALL_P (insn))
4856 {
4857 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4858 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4859
4860 /* If this is a call to a setjmp-type function, we must not
4861 reuse any reload reg contents across the call; that will
4862 just be clobbered by other uses of the register in later
4863 code, before the longjmp. */
4864 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4865 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4866 }
4867 }
4868
4869 /* Clean up. */
4870 free (reg_last_reload_reg);
4871 CLEAR_REG_SET (&reg_has_output_reload);
4872 }
4873
4874 /* Discard all record of any value reloaded from X,
4875 or reloaded in X from someplace else;
4876 unless X is an output reload reg of the current insn.
4877
4878 X may be a hard reg (the reload reg)
4879 or it may be a pseudo reg that was reloaded from.
4880
4881 When DATA is non-NULL just mark the registers in regset
4882 to be forgotten later. */
4883
4884 static void
4885 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4886 void *data)
4887 {
4888 unsigned int regno;
4889 unsigned int nr;
4890 regset regs = (regset) data;
4891
4892 /* note_stores does give us subregs of hard regs,
4893 subreg_regno_offset requires a hard reg. */
4894 while (GET_CODE (x) == SUBREG)
4895 {
4896 /* We ignore the subreg offset when calculating the regno,
4897 because we are using the entire underlying hard register
4898 below. */
4899 x = SUBREG_REG (x);
4900 }
4901
4902 if (!REG_P (x))
4903 return;
4904
4905 regno = REGNO (x);
4906
4907 if (regno >= FIRST_PSEUDO_REGISTER)
4908 nr = 1;
4909 else
4910 {
4911 unsigned int i;
4912
4913 nr = hard_regno_nregs[regno][GET_MODE (x)];
4914 /* Storing into a spilled-reg invalidates its contents.
4915 This can happen if a block-local pseudo is allocated to that reg
4916 and it wasn't spilled because this block's total need is 0.
4917 Then some insn might have an optional reload and use this reg. */
4918 if (!regs)
4919 for (i = 0; i < nr; i++)
4920 /* But don't do this if the reg actually serves as an output
4921 reload reg in the current instruction. */
4922 if (n_reloads == 0
4923 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4924 {
4925 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4926 spill_reg_store[regno + i] = 0;
4927 }
4928 }
4929
4930 if (regs)
4931 while (nr-- > 0)
4932 SET_REGNO_REG_SET (regs, regno + nr);
4933 else
4934 {
4935 /* Since value of X has changed,
4936 forget any value previously copied from it. */
4937
4938 while (nr-- > 0)
4939 /* But don't forget a copy if this is the output reload
4940 that establishes the copy's validity. */
4941 if (n_reloads == 0
4942 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4943 reg_last_reload_reg[regno + nr] = 0;
4944 }
4945 }
4946
4947 /* Forget the reloads marked in regset by previous function. */
4948 static void
4949 forget_marked_reloads (regset regs)
4950 {
4951 unsigned int reg;
4952 reg_set_iterator rsi;
4953 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4954 {
4955 if (reg < FIRST_PSEUDO_REGISTER
4956 /* But don't do this if the reg actually serves as an output
4957 reload reg in the current instruction. */
4958 && (n_reloads == 0
4959 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4960 {
4961 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4962 spill_reg_store[reg] = 0;
4963 }
4964 if (n_reloads == 0
4965 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4966 reg_last_reload_reg[reg] = 0;
4967 }
4968 }
4969 \f
4970 /* The following HARD_REG_SETs indicate when each hard register is
4971 used for a reload of various parts of the current insn. */
4972
4973 /* If reg is unavailable for all reloads. */
4974 static HARD_REG_SET reload_reg_unavailable;
4975 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4976 static HARD_REG_SET reload_reg_used;
4977 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4986 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4987 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4988 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4989 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4990 static HARD_REG_SET reload_reg_used_in_op_addr;
4991 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4992 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4993 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4994 static HARD_REG_SET reload_reg_used_in_insn;
4995 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4996 static HARD_REG_SET reload_reg_used_in_other_addr;
4997
4998 /* If reg is in use as a reload reg for any sort of reload. */
4999 static HARD_REG_SET reload_reg_used_at_all;
5000
5001 /* If reg is use as an inherited reload. We just mark the first register
5002 in the group. */
5003 static HARD_REG_SET reload_reg_used_for_inherit;
5004
5005 /* Records which hard regs are used in any way, either as explicit use or
5006 by being allocated to a pseudo during any point of the current insn. */
5007 static HARD_REG_SET reg_used_in_insn;
5008
5009 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5010 TYPE. MODE is used to indicate how many consecutive regs are
5011 actually used. */
5012
5013 static void
5014 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5015 enum machine_mode mode)
5016 {
5017 switch (type)
5018 {
5019 case RELOAD_OTHER:
5020 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5021 break;
5022
5023 case RELOAD_FOR_INPUT_ADDRESS:
5024 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5025 break;
5026
5027 case RELOAD_FOR_INPADDR_ADDRESS:
5028 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5029 break;
5030
5031 case RELOAD_FOR_OUTPUT_ADDRESS:
5032 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5033 break;
5034
5035 case RELOAD_FOR_OUTADDR_ADDRESS:
5036 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5037 break;
5038
5039 case RELOAD_FOR_OPERAND_ADDRESS:
5040 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5041 break;
5042
5043 case RELOAD_FOR_OPADDR_ADDR:
5044 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5045 break;
5046
5047 case RELOAD_FOR_OTHER_ADDRESS:
5048 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5049 break;
5050
5051 case RELOAD_FOR_INPUT:
5052 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5053 break;
5054
5055 case RELOAD_FOR_OUTPUT:
5056 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5057 break;
5058
5059 case RELOAD_FOR_INSN:
5060 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5061 break;
5062 }
5063
5064 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5065 }
5066
5067 /* Similarly, but show REGNO is no longer in use for a reload. */
5068
5069 static void
5070 clear_reload_reg_in_use (unsigned int regno, int opnum,
5071 enum reload_type type, enum machine_mode mode)
5072 {
5073 unsigned int nregs = hard_regno_nregs[regno][mode];
5074 unsigned int start_regno, end_regno, r;
5075 int i;
5076 /* A complication is that for some reload types, inheritance might
5077 allow multiple reloads of the same types to share a reload register.
5078 We set check_opnum if we have to check only reloads with the same
5079 operand number, and check_any if we have to check all reloads. */
5080 int check_opnum = 0;
5081 int check_any = 0;
5082 HARD_REG_SET *used_in_set;
5083
5084 switch (type)
5085 {
5086 case RELOAD_OTHER:
5087 used_in_set = &reload_reg_used;
5088 break;
5089
5090 case RELOAD_FOR_INPUT_ADDRESS:
5091 used_in_set = &reload_reg_used_in_input_addr[opnum];
5092 break;
5093
5094 case RELOAD_FOR_INPADDR_ADDRESS:
5095 check_opnum = 1;
5096 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5097 break;
5098
5099 case RELOAD_FOR_OUTPUT_ADDRESS:
5100 used_in_set = &reload_reg_used_in_output_addr[opnum];
5101 break;
5102
5103 case RELOAD_FOR_OUTADDR_ADDRESS:
5104 check_opnum = 1;
5105 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5106 break;
5107
5108 case RELOAD_FOR_OPERAND_ADDRESS:
5109 used_in_set = &reload_reg_used_in_op_addr;
5110 break;
5111
5112 case RELOAD_FOR_OPADDR_ADDR:
5113 check_any = 1;
5114 used_in_set = &reload_reg_used_in_op_addr_reload;
5115 break;
5116
5117 case RELOAD_FOR_OTHER_ADDRESS:
5118 used_in_set = &reload_reg_used_in_other_addr;
5119 check_any = 1;
5120 break;
5121
5122 case RELOAD_FOR_INPUT:
5123 used_in_set = &reload_reg_used_in_input[opnum];
5124 break;
5125
5126 case RELOAD_FOR_OUTPUT:
5127 used_in_set = &reload_reg_used_in_output[opnum];
5128 break;
5129
5130 case RELOAD_FOR_INSN:
5131 used_in_set = &reload_reg_used_in_insn;
5132 break;
5133 default:
5134 gcc_unreachable ();
5135 }
5136 /* We resolve conflicts with remaining reloads of the same type by
5137 excluding the intervals of reload registers by them from the
5138 interval of freed reload registers. Since we only keep track of
5139 one set of interval bounds, we might have to exclude somewhat
5140 more than what would be necessary if we used a HARD_REG_SET here.
5141 But this should only happen very infrequently, so there should
5142 be no reason to worry about it. */
5143
5144 start_regno = regno;
5145 end_regno = regno + nregs;
5146 if (check_opnum || check_any)
5147 {
5148 for (i = n_reloads - 1; i >= 0; i--)
5149 {
5150 if (rld[i].when_needed == type
5151 && (check_any || rld[i].opnum == opnum)
5152 && rld[i].reg_rtx)
5153 {
5154 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5155 unsigned int conflict_end
5156 = end_hard_regno (rld[i].mode, conflict_start);
5157
5158 /* If there is an overlap with the first to-be-freed register,
5159 adjust the interval start. */
5160 if (conflict_start <= start_regno && conflict_end > start_regno)
5161 start_regno = conflict_end;
5162 /* Otherwise, if there is a conflict with one of the other
5163 to-be-freed registers, adjust the interval end. */
5164 if (conflict_start > start_regno && conflict_start < end_regno)
5165 end_regno = conflict_start;
5166 }
5167 }
5168 }
5169
5170 for (r = start_regno; r < end_regno; r++)
5171 CLEAR_HARD_REG_BIT (*used_in_set, r);
5172 }
5173
5174 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5175 specified by OPNUM and TYPE. */
5176
5177 static int
5178 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5179 {
5180 int i;
5181
5182 /* In use for a RELOAD_OTHER means it's not available for anything. */
5183 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5184 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5185 return 0;
5186
5187 switch (type)
5188 {
5189 case RELOAD_OTHER:
5190 /* In use for anything means we can't use it for RELOAD_OTHER. */
5191 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5192 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5193 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5194 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5195 return 0;
5196
5197 for (i = 0; i < reload_n_operands; i++)
5198 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5201 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5202 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5203 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5204 return 0;
5205
5206 return 1;
5207
5208 case RELOAD_FOR_INPUT:
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5210 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5211 return 0;
5212
5213 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5214 return 0;
5215
5216 /* If it is used for some other input, can't use it. */
5217 for (i = 0; i < reload_n_operands; i++)
5218 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5219 return 0;
5220
5221 /* If it is used in a later operand's address, can't use it. */
5222 for (i = opnum + 1; i < reload_n_operands; i++)
5223 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5224 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5225 return 0;
5226
5227 return 1;
5228
5229 case RELOAD_FOR_INPUT_ADDRESS:
5230 /* Can't use a register if it is used for an input address for this
5231 operand or used as an input in an earlier one. */
5232 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5233 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5234 return 0;
5235
5236 for (i = 0; i < opnum; i++)
5237 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5238 return 0;
5239
5240 return 1;
5241
5242 case RELOAD_FOR_INPADDR_ADDRESS:
5243 /* Can't use a register if it is used for an input address
5244 for this operand or used as an input in an earlier
5245 one. */
5246 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5247 return 0;
5248
5249 for (i = 0; i < opnum; i++)
5250 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5251 return 0;
5252
5253 return 1;
5254
5255 case RELOAD_FOR_OUTPUT_ADDRESS:
5256 /* Can't use a register if it is used for an output address for this
5257 operand or used as an output in this or a later operand. Note
5258 that multiple output operands are emitted in reverse order, so
5259 the conflicting ones are those with lower indices. */
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5261 return 0;
5262
5263 for (i = 0; i <= opnum; i++)
5264 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5265 return 0;
5266
5267 return 1;
5268
5269 case RELOAD_FOR_OUTADDR_ADDRESS:
5270 /* Can't use a register if it is used for an output address
5271 for this operand or used as an output in this or a
5272 later operand. Note that multiple output operands are
5273 emitted in reverse order, so the conflicting ones are
5274 those with lower indices. */
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5276 return 0;
5277
5278 for (i = 0; i <= opnum; i++)
5279 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5280 return 0;
5281
5282 return 1;
5283
5284 case RELOAD_FOR_OPERAND_ADDRESS:
5285 for (i = 0; i < reload_n_operands; i++)
5286 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5287 return 0;
5288
5289 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5290 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5291
5292 case RELOAD_FOR_OPADDR_ADDR:
5293 for (i = 0; i < reload_n_operands; i++)
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5295 return 0;
5296
5297 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5298
5299 case RELOAD_FOR_OUTPUT:
5300 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5301 outputs, or an operand address for this or an earlier output.
5302 Note that multiple output operands are emitted in reverse order,
5303 so the conflicting ones are those with higher indices. */
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5305 return 0;
5306
5307 for (i = 0; i < reload_n_operands; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5309 return 0;
5310
5311 for (i = opnum; i < reload_n_operands; i++)
5312 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5313 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5314 return 0;
5315
5316 return 1;
5317
5318 case RELOAD_FOR_INSN:
5319 for (i = 0; i < reload_n_operands; i++)
5320 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5321 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5322 return 0;
5323
5324 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5325 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5326
5327 case RELOAD_FOR_OTHER_ADDRESS:
5328 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5329
5330 default:
5331 gcc_unreachable ();
5332 }
5333 }
5334
5335 /* Return 1 if the value in reload reg REGNO, as used by a reload
5336 needed for the part of the insn specified by OPNUM and TYPE,
5337 is still available in REGNO at the end of the insn.
5338
5339 We can assume that the reload reg was already tested for availability
5340 at the time it is needed, and we should not check this again,
5341 in case the reg has already been marked in use. */
5342
5343 static int
5344 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
5345 {
5346 int i;
5347
5348 switch (type)
5349 {
5350 case RELOAD_OTHER:
5351 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5352 its value must reach the end. */
5353 return 1;
5354
5355 /* If this use is for part of the insn,
5356 its value reaches if no subsequent part uses the same register.
5357 Just like the above function, don't try to do this with lots
5358 of fallthroughs. */
5359
5360 case RELOAD_FOR_OTHER_ADDRESS:
5361 /* Here we check for everything else, since these don't conflict
5362 with anything else and everything comes later. */
5363
5364 for (i = 0; i < reload_n_operands; i++)
5365 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5366 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5367 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5368 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5369 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5370 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5371 return 0;
5372
5373 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5374 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5375 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5376 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5377
5378 case RELOAD_FOR_INPUT_ADDRESS:
5379 case RELOAD_FOR_INPADDR_ADDRESS:
5380 /* Similar, except that we check only for this and subsequent inputs
5381 and the address of only subsequent inputs and we do not need
5382 to check for RELOAD_OTHER objects since they are known not to
5383 conflict. */
5384
5385 for (i = opnum; i < reload_n_operands; i++)
5386 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5387 return 0;
5388
5389 for (i = opnum + 1; i < reload_n_operands; i++)
5390 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5391 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5392 return 0;
5393
5394 for (i = 0; i < reload_n_operands; i++)
5395 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5396 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5398 return 0;
5399
5400 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5401 return 0;
5402
5403 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5404 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5405 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5406
5407 case RELOAD_FOR_INPUT:
5408 /* Similar to input address, except we start at the next operand for
5409 both input and input address and we do not check for
5410 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5411 would conflict. */
5412
5413 for (i = opnum + 1; i < reload_n_operands; i++)
5414 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5415 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5417 return 0;
5418
5419 /* ... fall through ... */
5420
5421 case RELOAD_FOR_OPERAND_ADDRESS:
5422 /* Check outputs and their addresses. */
5423
5424 for (i = 0; i < reload_n_operands; i++)
5425 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5426 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5427 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5428 return 0;
5429
5430 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5431
5432 case RELOAD_FOR_OPADDR_ADDR:
5433 for (i = 0; i < reload_n_operands; i++)
5434 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5437 return 0;
5438
5439 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5440 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5441 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5442
5443 case RELOAD_FOR_INSN:
5444 /* These conflict with other outputs with RELOAD_OTHER. So
5445 we need only check for output addresses. */
5446
5447 opnum = reload_n_operands;
5448
5449 /* ... fall through ... */
5450
5451 case RELOAD_FOR_OUTPUT:
5452 case RELOAD_FOR_OUTPUT_ADDRESS:
5453 case RELOAD_FOR_OUTADDR_ADDRESS:
5454 /* We already know these can't conflict with a later output. So the
5455 only thing to check are later output addresses.
5456 Note that multiple output operands are emitted in reverse order,
5457 so the conflicting ones are those with lower indices. */
5458 for (i = 0; i < opnum; i++)
5459 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5461 return 0;
5462
5463 return 1;
5464
5465 default:
5466 gcc_unreachable ();
5467 }
5468 }
5469
5470 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5471 every register in the range [REGNO, REGNO + NREGS). */
5472
5473 static bool
5474 reload_regs_reach_end_p (unsigned int regno, int nregs,
5475 int opnum, enum reload_type type)
5476 {
5477 int i;
5478
5479 for (i = 0; i < nregs; i++)
5480 if (!reload_reg_reaches_end_p (regno + i, opnum, type))
5481 return false;
5482 return true;
5483 }
5484 \f
5485
5486 /* Returns whether R1 and R2 are uniquely chained: the value of one
5487 is used by the other, and that value is not used by any other
5488 reload for this insn. This is used to partially undo the decision
5489 made in find_reloads when in the case of multiple
5490 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5491 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5492 reloads. This code tries to avoid the conflict created by that
5493 change. It might be cleaner to explicitly keep track of which
5494 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5495 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5496 this after the fact. */
5497 static bool
5498 reloads_unique_chain_p (int r1, int r2)
5499 {
5500 int i;
5501
5502 /* We only check input reloads. */
5503 if (! rld[r1].in || ! rld[r2].in)
5504 return false;
5505
5506 /* Avoid anything with output reloads. */
5507 if (rld[r1].out || rld[r2].out)
5508 return false;
5509
5510 /* "chained" means one reload is a component of the other reload,
5511 not the same as the other reload. */
5512 if (rld[r1].opnum != rld[r2].opnum
5513 || rtx_equal_p (rld[r1].in, rld[r2].in)
5514 || rld[r1].optional || rld[r2].optional
5515 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5516 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5517 return false;
5518
5519 for (i = 0; i < n_reloads; i ++)
5520 /* Look for input reloads that aren't our two */
5521 if (i != r1 && i != r2 && rld[i].in)
5522 {
5523 /* If our reload is mentioned at all, it isn't a simple chain. */
5524 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5525 return false;
5526 }
5527 return true;
5528 }
5529
5530 /* The recursive function change all occurrences of WHAT in *WHERE
5531 to REPL. */
5532 static void
5533 substitute (rtx *where, const_rtx what, rtx repl)
5534 {
5535 const char *fmt;
5536 int i;
5537 enum rtx_code code;
5538
5539 if (*where == 0)
5540 return;
5541
5542 if (*where == what || rtx_equal_p (*where, what))
5543 {
5544 /* Record the location of the changed rtx. */
5545 VEC_safe_push (rtx_p, heap, substitute_stack, where);
5546 *where = repl;
5547 return;
5548 }
5549
5550 code = GET_CODE (*where);
5551 fmt = GET_RTX_FORMAT (code);
5552 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5553 {
5554 if (fmt[i] == 'E')
5555 {
5556 int j;
5557
5558 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5559 substitute (&XVECEXP (*where, i, j), what, repl);
5560 }
5561 else if (fmt[i] == 'e')
5562 substitute (&XEXP (*where, i), what, repl);
5563 }
5564 }
5565
5566 /* The function returns TRUE if chain of reload R1 and R2 (in any
5567 order) can be evaluated without usage of intermediate register for
5568 the reload containing another reload. It is important to see
5569 gen_reload to understand what the function is trying to do. As an
5570 example, let us have reload chain
5571
5572 r2: const
5573 r1: <something> + const
5574
5575 and reload R2 got reload reg HR. The function returns true if
5576 there is a correct insn HR = HR + <something>. Otherwise,
5577 gen_reload will use intermediate register (and this is the reload
5578 reg for R1) to reload <something>.
5579
5580 We need this function to find a conflict for chain reloads. In our
5581 example, if HR = HR + <something> is incorrect insn, then we cannot
5582 use HR as a reload register for R2. If we do use it then we get a
5583 wrong code:
5584
5585 HR = const
5586 HR = <something>
5587 HR = HR + HR
5588
5589 */
5590 static bool
5591 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5592 {
5593 /* Assume other cases in gen_reload are not possible for
5594 chain reloads or do need an intermediate hard registers. */
5595 bool result = true;
5596 int regno, n, code;
5597 rtx out, in, insn;
5598 rtx last = get_last_insn ();
5599
5600 /* Make r2 a component of r1. */
5601 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5602 {
5603 n = r1;
5604 r1 = r2;
5605 r2 = n;
5606 }
5607 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5608 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5609 gcc_assert (regno >= 0);
5610 out = gen_rtx_REG (rld[r1].mode, regno);
5611 in = rld[r1].in;
5612 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5613
5614 /* If IN is a paradoxical SUBREG, remove it and try to put the
5615 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5616 strip_paradoxical_subreg (&in, &out);
5617
5618 if (GET_CODE (in) == PLUS
5619 && (REG_P (XEXP (in, 0))
5620 || GET_CODE (XEXP (in, 0)) == SUBREG
5621 || MEM_P (XEXP (in, 0)))
5622 && (REG_P (XEXP (in, 1))
5623 || GET_CODE (XEXP (in, 1)) == SUBREG
5624 || CONSTANT_P (XEXP (in, 1))
5625 || MEM_P (XEXP (in, 1))))
5626 {
5627 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5628 code = recog_memoized (insn);
5629 result = false;
5630
5631 if (code >= 0)
5632 {
5633 extract_insn (insn);
5634 /* We want constrain operands to treat this insn strictly in
5635 its validity determination, i.e., the way it would after
5636 reload has completed. */
5637 result = constrain_operands (1);
5638 }
5639
5640 delete_insns_since (last);
5641 }
5642
5643 /* Restore the original value at each changed address within R1. */
5644 while (!VEC_empty (rtx_p, substitute_stack))
5645 {
5646 rtx *where = VEC_pop (rtx_p, substitute_stack);
5647 *where = rld[r2].in;
5648 }
5649
5650 return result;
5651 }
5652
5653 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5654 Return 0 otherwise.
5655
5656 This function uses the same algorithm as reload_reg_free_p above. */
5657
5658 static int
5659 reloads_conflict (int r1, int r2)
5660 {
5661 enum reload_type r1_type = rld[r1].when_needed;
5662 enum reload_type r2_type = rld[r2].when_needed;
5663 int r1_opnum = rld[r1].opnum;
5664 int r2_opnum = rld[r2].opnum;
5665
5666 /* RELOAD_OTHER conflicts with everything. */
5667 if (r2_type == RELOAD_OTHER)
5668 return 1;
5669
5670 /* Otherwise, check conflicts differently for each type. */
5671
5672 switch (r1_type)
5673 {
5674 case RELOAD_FOR_INPUT:
5675 return (r2_type == RELOAD_FOR_INSN
5676 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5677 || r2_type == RELOAD_FOR_OPADDR_ADDR
5678 || r2_type == RELOAD_FOR_INPUT
5679 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5680 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5681 && r2_opnum > r1_opnum));
5682
5683 case RELOAD_FOR_INPUT_ADDRESS:
5684 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5685 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5686
5687 case RELOAD_FOR_INPADDR_ADDRESS:
5688 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5689 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5690
5691 case RELOAD_FOR_OUTPUT_ADDRESS:
5692 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5693 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5694
5695 case RELOAD_FOR_OUTADDR_ADDRESS:
5696 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5697 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5698
5699 case RELOAD_FOR_OPERAND_ADDRESS:
5700 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5701 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5702 && (!reloads_unique_chain_p (r1, r2)
5703 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5704
5705 case RELOAD_FOR_OPADDR_ADDR:
5706 return (r2_type == RELOAD_FOR_INPUT
5707 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5708
5709 case RELOAD_FOR_OUTPUT:
5710 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5711 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5712 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5713 && r2_opnum >= r1_opnum));
5714
5715 case RELOAD_FOR_INSN:
5716 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5717 || r2_type == RELOAD_FOR_INSN
5718 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5719
5720 case RELOAD_FOR_OTHER_ADDRESS:
5721 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5722
5723 case RELOAD_OTHER:
5724 return 1;
5725
5726 default:
5727 gcc_unreachable ();
5728 }
5729 }
5730 \f
5731 /* Indexed by reload number, 1 if incoming value
5732 inherited from previous insns. */
5733 static char reload_inherited[MAX_RELOADS];
5734
5735 /* For an inherited reload, this is the insn the reload was inherited from,
5736 if we know it. Otherwise, this is 0. */
5737 static rtx reload_inheritance_insn[MAX_RELOADS];
5738
5739 /* If nonzero, this is a place to get the value of the reload,
5740 rather than using reload_in. */
5741 static rtx reload_override_in[MAX_RELOADS];
5742
5743 /* For each reload, the hard register number of the register used,
5744 or -1 if we did not need a register for this reload. */
5745 static int reload_spill_index[MAX_RELOADS];
5746
5747 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5748 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5749
5750 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5751 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5752
5753 /* Subroutine of free_for_value_p, used to check a single register.
5754 START_REGNO is the starting regno of the full reload register
5755 (possibly comprising multiple hard registers) that we are considering. */
5756
5757 static int
5758 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5759 enum reload_type type, rtx value, rtx out,
5760 int reloadnum, int ignore_address_reloads)
5761 {
5762 int time1;
5763 /* Set if we see an input reload that must not share its reload register
5764 with any new earlyclobber, but might otherwise share the reload
5765 register with an output or input-output reload. */
5766 int check_earlyclobber = 0;
5767 int i;
5768 int copy = 0;
5769
5770 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5771 return 0;
5772
5773 if (out == const0_rtx)
5774 {
5775 copy = 1;
5776 out = NULL_RTX;
5777 }
5778
5779 /* We use some pseudo 'time' value to check if the lifetimes of the
5780 new register use would overlap with the one of a previous reload
5781 that is not read-only or uses a different value.
5782 The 'time' used doesn't have to be linear in any shape or form, just
5783 monotonic.
5784 Some reload types use different 'buckets' for each operand.
5785 So there are MAX_RECOG_OPERANDS different time values for each
5786 such reload type.
5787 We compute TIME1 as the time when the register for the prospective
5788 new reload ceases to be live, and TIME2 for each existing
5789 reload as the time when that the reload register of that reload
5790 becomes live.
5791 Where there is little to be gained by exact lifetime calculations,
5792 we just make conservative assumptions, i.e. a longer lifetime;
5793 this is done in the 'default:' cases. */
5794 switch (type)
5795 {
5796 case RELOAD_FOR_OTHER_ADDRESS:
5797 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5798 time1 = copy ? 0 : 1;
5799 break;
5800 case RELOAD_OTHER:
5801 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5802 break;
5803 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5804 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5805 respectively, to the time values for these, we get distinct time
5806 values. To get distinct time values for each operand, we have to
5807 multiply opnum by at least three. We round that up to four because
5808 multiply by four is often cheaper. */
5809 case RELOAD_FOR_INPADDR_ADDRESS:
5810 time1 = opnum * 4 + 2;
5811 break;
5812 case RELOAD_FOR_INPUT_ADDRESS:
5813 time1 = opnum * 4 + 3;
5814 break;
5815 case RELOAD_FOR_INPUT:
5816 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5817 executes (inclusive). */
5818 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5819 break;
5820 case RELOAD_FOR_OPADDR_ADDR:
5821 /* opnum * 4 + 4
5822 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5823 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5824 break;
5825 case RELOAD_FOR_OPERAND_ADDRESS:
5826 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5827 is executed. */
5828 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5829 break;
5830 case RELOAD_FOR_OUTADDR_ADDRESS:
5831 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5832 break;
5833 case RELOAD_FOR_OUTPUT_ADDRESS:
5834 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5835 break;
5836 default:
5837 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5838 }
5839
5840 for (i = 0; i < n_reloads; i++)
5841 {
5842 rtx reg = rld[i].reg_rtx;
5843 if (reg && REG_P (reg)
5844 && ((unsigned) regno - true_regnum (reg)
5845 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5846 && i != reloadnum)
5847 {
5848 rtx other_input = rld[i].in;
5849
5850 /* If the other reload loads the same input value, that
5851 will not cause a conflict only if it's loading it into
5852 the same register. */
5853 if (true_regnum (reg) != start_regno)
5854 other_input = NULL_RTX;
5855 if (! other_input || ! rtx_equal_p (other_input, value)
5856 || rld[i].out || out)
5857 {
5858 int time2;
5859 switch (rld[i].when_needed)
5860 {
5861 case RELOAD_FOR_OTHER_ADDRESS:
5862 time2 = 0;
5863 break;
5864 case RELOAD_FOR_INPADDR_ADDRESS:
5865 /* find_reloads makes sure that a
5866 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5867 by at most one - the first -
5868 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5869 address reload is inherited, the address address reload
5870 goes away, so we can ignore this conflict. */
5871 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5872 && ignore_address_reloads
5873 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5874 Then the address address is still needed to store
5875 back the new address. */
5876 && ! rld[reloadnum].out)
5877 continue;
5878 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5879 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5880 reloads go away. */
5881 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5882 && ignore_address_reloads
5883 /* Unless we are reloading an auto_inc expression. */
5884 && ! rld[reloadnum].out)
5885 continue;
5886 time2 = rld[i].opnum * 4 + 2;
5887 break;
5888 case RELOAD_FOR_INPUT_ADDRESS:
5889 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5890 && ignore_address_reloads
5891 && ! rld[reloadnum].out)
5892 continue;
5893 time2 = rld[i].opnum * 4 + 3;
5894 break;
5895 case RELOAD_FOR_INPUT:
5896 time2 = rld[i].opnum * 4 + 4;
5897 check_earlyclobber = 1;
5898 break;
5899 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5900 == MAX_RECOG_OPERAND * 4 */
5901 case RELOAD_FOR_OPADDR_ADDR:
5902 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5903 && ignore_address_reloads
5904 && ! rld[reloadnum].out)
5905 continue;
5906 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5907 break;
5908 case RELOAD_FOR_OPERAND_ADDRESS:
5909 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5910 check_earlyclobber = 1;
5911 break;
5912 case RELOAD_FOR_INSN:
5913 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5914 break;
5915 case RELOAD_FOR_OUTPUT:
5916 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5917 instruction is executed. */
5918 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5919 break;
5920 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5921 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5922 value. */
5923 case RELOAD_FOR_OUTADDR_ADDRESS:
5924 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5925 && ignore_address_reloads
5926 && ! rld[reloadnum].out)
5927 continue;
5928 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5929 break;
5930 case RELOAD_FOR_OUTPUT_ADDRESS:
5931 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5932 break;
5933 case RELOAD_OTHER:
5934 /* If there is no conflict in the input part, handle this
5935 like an output reload. */
5936 if (! rld[i].in || rtx_equal_p (other_input, value))
5937 {
5938 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5939 /* Earlyclobbered outputs must conflict with inputs. */
5940 if (earlyclobber_operand_p (rld[i].out))
5941 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5942
5943 break;
5944 }
5945 time2 = 1;
5946 /* RELOAD_OTHER might be live beyond instruction execution,
5947 but this is not obvious when we set time2 = 1. So check
5948 here if there might be a problem with the new reload
5949 clobbering the register used by the RELOAD_OTHER. */
5950 if (out)
5951 return 0;
5952 break;
5953 default:
5954 return 0;
5955 }
5956 if ((time1 >= time2
5957 && (! rld[i].in || rld[i].out
5958 || ! rtx_equal_p (other_input, value)))
5959 || (out && rld[reloadnum].out_reg
5960 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5961 return 0;
5962 }
5963 }
5964 }
5965
5966 /* Earlyclobbered outputs must conflict with inputs. */
5967 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5968 return 0;
5969
5970 return 1;
5971 }
5972
5973 /* Return 1 if the value in reload reg REGNO, as used by a reload
5974 needed for the part of the insn specified by OPNUM and TYPE,
5975 may be used to load VALUE into it.
5976
5977 MODE is the mode in which the register is used, this is needed to
5978 determine how many hard regs to test.
5979
5980 Other read-only reloads with the same value do not conflict
5981 unless OUT is nonzero and these other reloads have to live while
5982 output reloads live.
5983 If OUT is CONST0_RTX, this is a special case: it means that the
5984 test should not be for using register REGNO as reload register, but
5985 for copying from register REGNO into the reload register.
5986
5987 RELOADNUM is the number of the reload we want to load this value for;
5988 a reload does not conflict with itself.
5989
5990 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5991 reloads that load an address for the very reload we are considering.
5992
5993 The caller has to make sure that there is no conflict with the return
5994 register. */
5995
5996 static int
5997 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5998 enum reload_type type, rtx value, rtx out, int reloadnum,
5999 int ignore_address_reloads)
6000 {
6001 int nregs = hard_regno_nregs[regno][mode];
6002 while (nregs-- > 0)
6003 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6004 value, out, reloadnum,
6005 ignore_address_reloads))
6006 return 0;
6007 return 1;
6008 }
6009
6010 /* Return nonzero if the rtx X is invariant over the current function. */
6011 /* ??? Actually, the places where we use this expect exactly what is
6012 tested here, and not everything that is function invariant. In
6013 particular, the frame pointer and arg pointer are special cased;
6014 pic_offset_table_rtx is not, and we must not spill these things to
6015 memory. */
6016
6017 int
6018 function_invariant_p (const_rtx x)
6019 {
6020 if (CONSTANT_P (x))
6021 return 1;
6022 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6023 return 1;
6024 if (GET_CODE (x) == PLUS
6025 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6026 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6027 return 1;
6028 return 0;
6029 }
6030
6031 /* Determine whether the reload reg X overlaps any rtx'es used for
6032 overriding inheritance. Return nonzero if so. */
6033
6034 static int
6035 conflicts_with_override (rtx x)
6036 {
6037 int i;
6038 for (i = 0; i < n_reloads; i++)
6039 if (reload_override_in[i]
6040 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6041 return 1;
6042 return 0;
6043 }
6044 \f
6045 /* Give an error message saying we failed to find a reload for INSN,
6046 and clear out reload R. */
6047 static void
6048 failed_reload (rtx insn, int r)
6049 {
6050 if (asm_noperands (PATTERN (insn)) < 0)
6051 /* It's the compiler's fault. */
6052 fatal_insn ("could not find a spill register", insn);
6053
6054 /* It's the user's fault; the operand's mode and constraint
6055 don't match. Disable this reload so we don't crash in final. */
6056 error_for_asm (insn,
6057 "%<asm%> operand constraint incompatible with operand size");
6058 rld[r].in = 0;
6059 rld[r].out = 0;
6060 rld[r].reg_rtx = 0;
6061 rld[r].optional = 1;
6062 rld[r].secondary_p = 1;
6063 }
6064
6065 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6066 for reload R. If it's valid, get an rtx for it. Return nonzero if
6067 successful. */
6068 static int
6069 set_reload_reg (int i, int r)
6070 {
6071 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6072 parameter. */
6073 int regno ATTRIBUTE_UNUSED;
6074 rtx reg = spill_reg_rtx[i];
6075
6076 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6077 spill_reg_rtx[i] = reg
6078 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6079
6080 regno = true_regnum (reg);
6081
6082 /* Detect when the reload reg can't hold the reload mode.
6083 This used to be one `if', but Sequent compiler can't handle that. */
6084 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6085 {
6086 enum machine_mode test_mode = VOIDmode;
6087 if (rld[r].in)
6088 test_mode = GET_MODE (rld[r].in);
6089 /* If rld[r].in has VOIDmode, it means we will load it
6090 in whatever mode the reload reg has: to wit, rld[r].mode.
6091 We have already tested that for validity. */
6092 /* Aside from that, we need to test that the expressions
6093 to reload from or into have modes which are valid for this
6094 reload register. Otherwise the reload insns would be invalid. */
6095 if (! (rld[r].in != 0 && test_mode != VOIDmode
6096 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6097 if (! (rld[r].out != 0
6098 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6099 {
6100 /* The reg is OK. */
6101 last_spill_reg = i;
6102
6103 /* Mark as in use for this insn the reload regs we use
6104 for this. */
6105 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6106 rld[r].when_needed, rld[r].mode);
6107
6108 rld[r].reg_rtx = reg;
6109 reload_spill_index[r] = spill_regs[i];
6110 return 1;
6111 }
6112 }
6113 return 0;
6114 }
6115
6116 /* Find a spill register to use as a reload register for reload R.
6117 LAST_RELOAD is nonzero if this is the last reload for the insn being
6118 processed.
6119
6120 Set rld[R].reg_rtx to the register allocated.
6121
6122 We return 1 if successful, or 0 if we couldn't find a spill reg and
6123 we didn't change anything. */
6124
6125 static int
6126 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6127 int last_reload)
6128 {
6129 int i, pass, count;
6130
6131 /* If we put this reload ahead, thinking it is a group,
6132 then insist on finding a group. Otherwise we can grab a
6133 reg that some other reload needs.
6134 (That can happen when we have a 68000 DATA_OR_FP_REG
6135 which is a group of data regs or one fp reg.)
6136 We need not be so restrictive if there are no more reloads
6137 for this insn.
6138
6139 ??? Really it would be nicer to have smarter handling
6140 for that kind of reg class, where a problem like this is normal.
6141 Perhaps those classes should be avoided for reloading
6142 by use of more alternatives. */
6143
6144 int force_group = rld[r].nregs > 1 && ! last_reload;
6145
6146 /* If we want a single register and haven't yet found one,
6147 take any reg in the right class and not in use.
6148 If we want a consecutive group, here is where we look for it.
6149
6150 We use three passes so we can first look for reload regs to
6151 reuse, which are already in use for other reloads in this insn,
6152 and only then use additional registers which are not "bad", then
6153 finally any register.
6154
6155 I think that maximizing reuse is needed to make sure we don't
6156 run out of reload regs. Suppose we have three reloads, and
6157 reloads A and B can share regs. These need two regs.
6158 Suppose A and B are given different regs.
6159 That leaves none for C. */
6160 for (pass = 0; pass < 3; pass++)
6161 {
6162 /* I is the index in spill_regs.
6163 We advance it round-robin between insns to use all spill regs
6164 equally, so that inherited reloads have a chance
6165 of leapfrogging each other. */
6166
6167 i = last_spill_reg;
6168
6169 for (count = 0; count < n_spills; count++)
6170 {
6171 int rclass = (int) rld[r].rclass;
6172 int regnum;
6173
6174 i++;
6175 if (i >= n_spills)
6176 i -= n_spills;
6177 regnum = spill_regs[i];
6178
6179 if ((reload_reg_free_p (regnum, rld[r].opnum,
6180 rld[r].when_needed)
6181 || (rld[r].in
6182 /* We check reload_reg_used to make sure we
6183 don't clobber the return register. */
6184 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6185 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6186 rld[r].when_needed, rld[r].in,
6187 rld[r].out, r, 1)))
6188 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6189 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6190 /* Look first for regs to share, then for unshared. But
6191 don't share regs used for inherited reloads; they are
6192 the ones we want to preserve. */
6193 && (pass
6194 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6195 regnum)
6196 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6197 regnum))))
6198 {
6199 int nr = hard_regno_nregs[regnum][rld[r].mode];
6200
6201 /* During the second pass we want to avoid reload registers
6202 which are "bad" for this reload. */
6203 if (pass == 1
6204 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6205 continue;
6206
6207 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6208 (on 68000) got us two FP regs. If NR is 1,
6209 we would reject both of them. */
6210 if (force_group)
6211 nr = rld[r].nregs;
6212 /* If we need only one reg, we have already won. */
6213 if (nr == 1)
6214 {
6215 /* But reject a single reg if we demand a group. */
6216 if (force_group)
6217 continue;
6218 break;
6219 }
6220 /* Otherwise check that as many consecutive regs as we need
6221 are available here. */
6222 while (nr > 1)
6223 {
6224 int regno = regnum + nr - 1;
6225 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6226 && spill_reg_order[regno] >= 0
6227 && reload_reg_free_p (regno, rld[r].opnum,
6228 rld[r].when_needed)))
6229 break;
6230 nr--;
6231 }
6232 if (nr == 1)
6233 break;
6234 }
6235 }
6236
6237 /* If we found something on the current pass, omit later passes. */
6238 if (count < n_spills)
6239 break;
6240 }
6241
6242 /* We should have found a spill register by now. */
6243 if (count >= n_spills)
6244 return 0;
6245
6246 /* I is the index in SPILL_REG_RTX of the reload register we are to
6247 allocate. Get an rtx for it and find its register number. */
6248
6249 return set_reload_reg (i, r);
6250 }
6251 \f
6252 /* Initialize all the tables needed to allocate reload registers.
6253 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6254 is the array we use to restore the reg_rtx field for every reload. */
6255
6256 static void
6257 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6258 {
6259 int i;
6260
6261 for (i = 0; i < n_reloads; i++)
6262 rld[i].reg_rtx = save_reload_reg_rtx[i];
6263
6264 memset (reload_inherited, 0, MAX_RELOADS);
6265 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6266 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6267
6268 CLEAR_HARD_REG_SET (reload_reg_used);
6269 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6270 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6271 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6272 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6273 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6274
6275 CLEAR_HARD_REG_SET (reg_used_in_insn);
6276 {
6277 HARD_REG_SET tmp;
6278 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6279 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6280 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6281 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6282 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6283 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6284 }
6285
6286 for (i = 0; i < reload_n_operands; i++)
6287 {
6288 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6289 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6290 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6291 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6292 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6293 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6294 }
6295
6296 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6297
6298 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6299
6300 for (i = 0; i < n_reloads; i++)
6301 /* If we have already decided to use a certain register,
6302 don't use it in another way. */
6303 if (rld[i].reg_rtx)
6304 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6305 rld[i].when_needed, rld[i].mode);
6306 }
6307
6308 /* Assign hard reg targets for the pseudo-registers we must reload
6309 into hard regs for this insn.
6310 Also output the instructions to copy them in and out of the hard regs.
6311
6312 For machines with register classes, we are responsible for
6313 finding a reload reg in the proper class. */
6314
6315 static void
6316 choose_reload_regs (struct insn_chain *chain)
6317 {
6318 rtx insn = chain->insn;
6319 int i, j;
6320 unsigned int max_group_size = 1;
6321 enum reg_class group_class = NO_REGS;
6322 int pass, win, inheritance;
6323
6324 rtx save_reload_reg_rtx[MAX_RELOADS];
6325
6326 /* In order to be certain of getting the registers we need,
6327 we must sort the reloads into order of increasing register class.
6328 Then our grabbing of reload registers will parallel the process
6329 that provided the reload registers.
6330
6331 Also note whether any of the reloads wants a consecutive group of regs.
6332 If so, record the maximum size of the group desired and what
6333 register class contains all the groups needed by this insn. */
6334
6335 for (j = 0; j < n_reloads; j++)
6336 {
6337 reload_order[j] = j;
6338 if (rld[j].reg_rtx != NULL_RTX)
6339 {
6340 gcc_assert (REG_P (rld[j].reg_rtx)
6341 && HARD_REGISTER_P (rld[j].reg_rtx));
6342 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6343 }
6344 else
6345 reload_spill_index[j] = -1;
6346
6347 if (rld[j].nregs > 1)
6348 {
6349 max_group_size = MAX (rld[j].nregs, max_group_size);
6350 group_class
6351 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6352 }
6353
6354 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6355 }
6356
6357 if (n_reloads > 1)
6358 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6359
6360 /* If -O, try first with inheritance, then turning it off.
6361 If not -O, don't do inheritance.
6362 Using inheritance when not optimizing leads to paradoxes
6363 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6364 because one side of the comparison might be inherited. */
6365 win = 0;
6366 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6367 {
6368 choose_reload_regs_init (chain, save_reload_reg_rtx);
6369
6370 /* Process the reloads in order of preference just found.
6371 Beyond this point, subregs can be found in reload_reg_rtx.
6372
6373 This used to look for an existing reloaded home for all of the
6374 reloads, and only then perform any new reloads. But that could lose
6375 if the reloads were done out of reg-class order because a later
6376 reload with a looser constraint might have an old home in a register
6377 needed by an earlier reload with a tighter constraint.
6378
6379 To solve this, we make two passes over the reloads, in the order
6380 described above. In the first pass we try to inherit a reload
6381 from a previous insn. If there is a later reload that needs a
6382 class that is a proper subset of the class being processed, we must
6383 also allocate a spill register during the first pass.
6384
6385 Then make a second pass over the reloads to allocate any reloads
6386 that haven't been given registers yet. */
6387
6388 for (j = 0; j < n_reloads; j++)
6389 {
6390 int r = reload_order[j];
6391 rtx search_equiv = NULL_RTX;
6392
6393 /* Ignore reloads that got marked inoperative. */
6394 if (rld[r].out == 0 && rld[r].in == 0
6395 && ! rld[r].secondary_p)
6396 continue;
6397
6398 /* If find_reloads chose to use reload_in or reload_out as a reload
6399 register, we don't need to chose one. Otherwise, try even if it
6400 found one since we might save an insn if we find the value lying
6401 around.
6402 Try also when reload_in is a pseudo without a hard reg. */
6403 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6404 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6405 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6406 && !MEM_P (rld[r].in)
6407 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6408 continue;
6409
6410 #if 0 /* No longer needed for correct operation.
6411 It might give better code, or might not; worth an experiment? */
6412 /* If this is an optional reload, we can't inherit from earlier insns
6413 until we are sure that any non-optional reloads have been allocated.
6414 The following code takes advantage of the fact that optional reloads
6415 are at the end of reload_order. */
6416 if (rld[r].optional != 0)
6417 for (i = 0; i < j; i++)
6418 if ((rld[reload_order[i]].out != 0
6419 || rld[reload_order[i]].in != 0
6420 || rld[reload_order[i]].secondary_p)
6421 && ! rld[reload_order[i]].optional
6422 && rld[reload_order[i]].reg_rtx == 0)
6423 allocate_reload_reg (chain, reload_order[i], 0);
6424 #endif
6425
6426 /* First see if this pseudo is already available as reloaded
6427 for a previous insn. We cannot try to inherit for reloads
6428 that are smaller than the maximum number of registers needed
6429 for groups unless the register we would allocate cannot be used
6430 for the groups.
6431
6432 We could check here to see if this is a secondary reload for
6433 an object that is already in a register of the desired class.
6434 This would avoid the need for the secondary reload register.
6435 But this is complex because we can't easily determine what
6436 objects might want to be loaded via this reload. So let a
6437 register be allocated here. In `emit_reload_insns' we suppress
6438 one of the loads in the case described above. */
6439
6440 if (inheritance)
6441 {
6442 int byte = 0;
6443 int regno = -1;
6444 enum machine_mode mode = VOIDmode;
6445
6446 if (rld[r].in == 0)
6447 ;
6448 else if (REG_P (rld[r].in))
6449 {
6450 regno = REGNO (rld[r].in);
6451 mode = GET_MODE (rld[r].in);
6452 }
6453 else if (REG_P (rld[r].in_reg))
6454 {
6455 regno = REGNO (rld[r].in_reg);
6456 mode = GET_MODE (rld[r].in_reg);
6457 }
6458 else if (GET_CODE (rld[r].in_reg) == SUBREG
6459 && REG_P (SUBREG_REG (rld[r].in_reg)))
6460 {
6461 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6462 if (regno < FIRST_PSEUDO_REGISTER)
6463 regno = subreg_regno (rld[r].in_reg);
6464 else
6465 byte = SUBREG_BYTE (rld[r].in_reg);
6466 mode = GET_MODE (rld[r].in_reg);
6467 }
6468 #ifdef AUTO_INC_DEC
6469 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6470 && REG_P (XEXP (rld[r].in_reg, 0)))
6471 {
6472 regno = REGNO (XEXP (rld[r].in_reg, 0));
6473 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6474 rld[r].out = rld[r].in;
6475 }
6476 #endif
6477 #if 0
6478 /* This won't work, since REGNO can be a pseudo reg number.
6479 Also, it takes much more hair to keep track of all the things
6480 that can invalidate an inherited reload of part of a pseudoreg. */
6481 else if (GET_CODE (rld[r].in) == SUBREG
6482 && REG_P (SUBREG_REG (rld[r].in)))
6483 regno = subreg_regno (rld[r].in);
6484 #endif
6485
6486 if (regno >= 0
6487 && reg_last_reload_reg[regno] != 0
6488 #ifdef CANNOT_CHANGE_MODE_CLASS
6489 /* Verify that the register it's in can be used in
6490 mode MODE. */
6491 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6492 GET_MODE (reg_last_reload_reg[regno]),
6493 mode)
6494 #endif
6495 )
6496 {
6497 enum reg_class rclass = rld[r].rclass, last_class;
6498 rtx last_reg = reg_last_reload_reg[regno];
6499 enum machine_mode need_mode;
6500
6501 i = REGNO (last_reg);
6502 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6503 last_class = REGNO_REG_CLASS (i);
6504
6505 if (byte == 0)
6506 need_mode = mode;
6507 else
6508 need_mode
6509 = smallest_mode_for_size
6510 (GET_MODE_BITSIZE (mode) + byte * BITS_PER_UNIT,
6511 GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
6512 ? MODE_INT : GET_MODE_CLASS (mode));
6513
6514 if ((GET_MODE_SIZE (GET_MODE (last_reg))
6515 >= GET_MODE_SIZE (need_mode))
6516 && reg_reloaded_contents[i] == regno
6517 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6518 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6519 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6520 /* Even if we can't use this register as a reload
6521 register, we might use it for reload_override_in,
6522 if copying it to the desired class is cheap
6523 enough. */
6524 || ((register_move_cost (mode, last_class, rclass)
6525 < memory_move_cost (mode, rclass, true))
6526 && (secondary_reload_class (1, rclass, mode,
6527 last_reg)
6528 == NO_REGS)
6529 #ifdef SECONDARY_MEMORY_NEEDED
6530 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6531 mode)
6532 #endif
6533 ))
6534
6535 && (rld[r].nregs == max_group_size
6536 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6537 i))
6538 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6539 rld[r].when_needed, rld[r].in,
6540 const0_rtx, r, 1))
6541 {
6542 /* If a group is needed, verify that all the subsequent
6543 registers still have their values intact. */
6544 int nr = hard_regno_nregs[i][rld[r].mode];
6545 int k;
6546
6547 for (k = 1; k < nr; k++)
6548 if (reg_reloaded_contents[i + k] != regno
6549 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6550 break;
6551
6552 if (k == nr)
6553 {
6554 int i1;
6555 int bad_for_class;
6556
6557 last_reg = (GET_MODE (last_reg) == mode
6558 ? last_reg : gen_rtx_REG (mode, i));
6559
6560 bad_for_class = 0;
6561 for (k = 0; k < nr; k++)
6562 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6563 i+k);
6564
6565 /* We found a register that contains the
6566 value we need. If this register is the
6567 same as an `earlyclobber' operand of the
6568 current insn, just mark it as a place to
6569 reload from since we can't use it as the
6570 reload register itself. */
6571
6572 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6573 if (reg_overlap_mentioned_for_reload_p
6574 (reg_last_reload_reg[regno],
6575 reload_earlyclobbers[i1]))
6576 break;
6577
6578 if (i1 != n_earlyclobbers
6579 || ! (free_for_value_p (i, rld[r].mode,
6580 rld[r].opnum,
6581 rld[r].when_needed, rld[r].in,
6582 rld[r].out, r, 1))
6583 /* Don't use it if we'd clobber a pseudo reg. */
6584 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6585 && rld[r].out
6586 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6587 /* Don't clobber the frame pointer. */
6588 || (i == HARD_FRAME_POINTER_REGNUM
6589 && frame_pointer_needed
6590 && rld[r].out)
6591 /* Don't really use the inherited spill reg
6592 if we need it wider than we've got it. */
6593 || (GET_MODE_SIZE (rld[r].mode)
6594 > GET_MODE_SIZE (mode))
6595 || bad_for_class
6596
6597 /* If find_reloads chose reload_out as reload
6598 register, stay with it - that leaves the
6599 inherited register for subsequent reloads. */
6600 || (rld[r].out && rld[r].reg_rtx
6601 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6602 {
6603 if (! rld[r].optional)
6604 {
6605 reload_override_in[r] = last_reg;
6606 reload_inheritance_insn[r]
6607 = reg_reloaded_insn[i];
6608 }
6609 }
6610 else
6611 {
6612 int k;
6613 /* We can use this as a reload reg. */
6614 /* Mark the register as in use for this part of
6615 the insn. */
6616 mark_reload_reg_in_use (i,
6617 rld[r].opnum,
6618 rld[r].when_needed,
6619 rld[r].mode);
6620 rld[r].reg_rtx = last_reg;
6621 reload_inherited[r] = 1;
6622 reload_inheritance_insn[r]
6623 = reg_reloaded_insn[i];
6624 reload_spill_index[r] = i;
6625 for (k = 0; k < nr; k++)
6626 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6627 i + k);
6628 }
6629 }
6630 }
6631 }
6632 }
6633
6634 /* Here's another way to see if the value is already lying around. */
6635 if (inheritance
6636 && rld[r].in != 0
6637 && ! reload_inherited[r]
6638 && rld[r].out == 0
6639 && (CONSTANT_P (rld[r].in)
6640 || GET_CODE (rld[r].in) == PLUS
6641 || REG_P (rld[r].in)
6642 || MEM_P (rld[r].in))
6643 && (rld[r].nregs == max_group_size
6644 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6645 search_equiv = rld[r].in;
6646
6647 if (search_equiv)
6648 {
6649 rtx equiv
6650 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6651 -1, NULL, 0, rld[r].mode);
6652 int regno = 0;
6653
6654 if (equiv != 0)
6655 {
6656 if (REG_P (equiv))
6657 regno = REGNO (equiv);
6658 else
6659 {
6660 /* This must be a SUBREG of a hard register.
6661 Make a new REG since this might be used in an
6662 address and not all machines support SUBREGs
6663 there. */
6664 gcc_assert (GET_CODE (equiv) == SUBREG);
6665 regno = subreg_regno (equiv);
6666 equiv = gen_rtx_REG (rld[r].mode, regno);
6667 /* If we choose EQUIV as the reload register, but the
6668 loop below decides to cancel the inheritance, we'll
6669 end up reloading EQUIV in rld[r].mode, not the mode
6670 it had originally. That isn't safe when EQUIV isn't
6671 available as a spill register since its value might
6672 still be live at this point. */
6673 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6674 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6675 equiv = 0;
6676 }
6677 }
6678
6679 /* If we found a spill reg, reject it unless it is free
6680 and of the desired class. */
6681 if (equiv != 0)
6682 {
6683 int regs_used = 0;
6684 int bad_for_class = 0;
6685 int max_regno = regno + rld[r].nregs;
6686
6687 for (i = regno; i < max_regno; i++)
6688 {
6689 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6690 i);
6691 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6692 i);
6693 }
6694
6695 if ((regs_used
6696 && ! free_for_value_p (regno, rld[r].mode,
6697 rld[r].opnum, rld[r].when_needed,
6698 rld[r].in, rld[r].out, r, 1))
6699 || bad_for_class)
6700 equiv = 0;
6701 }
6702
6703 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6704 equiv = 0;
6705
6706 /* We found a register that contains the value we need.
6707 If this register is the same as an `earlyclobber' operand
6708 of the current insn, just mark it as a place to reload from
6709 since we can't use it as the reload register itself. */
6710
6711 if (equiv != 0)
6712 for (i = 0; i < n_earlyclobbers; i++)
6713 if (reg_overlap_mentioned_for_reload_p (equiv,
6714 reload_earlyclobbers[i]))
6715 {
6716 if (! rld[r].optional)
6717 reload_override_in[r] = equiv;
6718 equiv = 0;
6719 break;
6720 }
6721
6722 /* If the equiv register we have found is explicitly clobbered
6723 in the current insn, it depends on the reload type if we
6724 can use it, use it for reload_override_in, or not at all.
6725 In particular, we then can't use EQUIV for a
6726 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6727
6728 if (equiv != 0)
6729 {
6730 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6731 switch (rld[r].when_needed)
6732 {
6733 case RELOAD_FOR_OTHER_ADDRESS:
6734 case RELOAD_FOR_INPADDR_ADDRESS:
6735 case RELOAD_FOR_INPUT_ADDRESS:
6736 case RELOAD_FOR_OPADDR_ADDR:
6737 break;
6738 case RELOAD_OTHER:
6739 case RELOAD_FOR_INPUT:
6740 case RELOAD_FOR_OPERAND_ADDRESS:
6741 if (! rld[r].optional)
6742 reload_override_in[r] = equiv;
6743 /* Fall through. */
6744 default:
6745 equiv = 0;
6746 break;
6747 }
6748 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6749 switch (rld[r].when_needed)
6750 {
6751 case RELOAD_FOR_OTHER_ADDRESS:
6752 case RELOAD_FOR_INPADDR_ADDRESS:
6753 case RELOAD_FOR_INPUT_ADDRESS:
6754 case RELOAD_FOR_OPADDR_ADDR:
6755 case RELOAD_FOR_OPERAND_ADDRESS:
6756 case RELOAD_FOR_INPUT:
6757 break;
6758 case RELOAD_OTHER:
6759 if (! rld[r].optional)
6760 reload_override_in[r] = equiv;
6761 /* Fall through. */
6762 default:
6763 equiv = 0;
6764 break;
6765 }
6766 }
6767
6768 /* If we found an equivalent reg, say no code need be generated
6769 to load it, and use it as our reload reg. */
6770 if (equiv != 0
6771 && (regno != HARD_FRAME_POINTER_REGNUM
6772 || !frame_pointer_needed))
6773 {
6774 int nr = hard_regno_nregs[regno][rld[r].mode];
6775 int k;
6776 rld[r].reg_rtx = equiv;
6777 reload_spill_index[r] = regno;
6778 reload_inherited[r] = 1;
6779
6780 /* If reg_reloaded_valid is not set for this register,
6781 there might be a stale spill_reg_store lying around.
6782 We must clear it, since otherwise emit_reload_insns
6783 might delete the store. */
6784 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6785 spill_reg_store[regno] = NULL_RTX;
6786 /* If any of the hard registers in EQUIV are spill
6787 registers, mark them as in use for this insn. */
6788 for (k = 0; k < nr; k++)
6789 {
6790 i = spill_reg_order[regno + k];
6791 if (i >= 0)
6792 {
6793 mark_reload_reg_in_use (regno, rld[r].opnum,
6794 rld[r].when_needed,
6795 rld[r].mode);
6796 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6797 regno + k);
6798 }
6799 }
6800 }
6801 }
6802
6803 /* If we found a register to use already, or if this is an optional
6804 reload, we are done. */
6805 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6806 continue;
6807
6808 #if 0
6809 /* No longer needed for correct operation. Might or might
6810 not give better code on the average. Want to experiment? */
6811
6812 /* See if there is a later reload that has a class different from our
6813 class that intersects our class or that requires less register
6814 than our reload. If so, we must allocate a register to this
6815 reload now, since that reload might inherit a previous reload
6816 and take the only available register in our class. Don't do this
6817 for optional reloads since they will force all previous reloads
6818 to be allocated. Also don't do this for reloads that have been
6819 turned off. */
6820
6821 for (i = j + 1; i < n_reloads; i++)
6822 {
6823 int s = reload_order[i];
6824
6825 if ((rld[s].in == 0 && rld[s].out == 0
6826 && ! rld[s].secondary_p)
6827 || rld[s].optional)
6828 continue;
6829
6830 if ((rld[s].rclass != rld[r].rclass
6831 && reg_classes_intersect_p (rld[r].rclass,
6832 rld[s].rclass))
6833 || rld[s].nregs < rld[r].nregs)
6834 break;
6835 }
6836
6837 if (i == n_reloads)
6838 continue;
6839
6840 allocate_reload_reg (chain, r, j == n_reloads - 1);
6841 #endif
6842 }
6843
6844 /* Now allocate reload registers for anything non-optional that
6845 didn't get one yet. */
6846 for (j = 0; j < n_reloads; j++)
6847 {
6848 int r = reload_order[j];
6849
6850 /* Ignore reloads that got marked inoperative. */
6851 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6852 continue;
6853
6854 /* Skip reloads that already have a register allocated or are
6855 optional. */
6856 if (rld[r].reg_rtx != 0 || rld[r].optional)
6857 continue;
6858
6859 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6860 break;
6861 }
6862
6863 /* If that loop got all the way, we have won. */
6864 if (j == n_reloads)
6865 {
6866 win = 1;
6867 break;
6868 }
6869
6870 /* Loop around and try without any inheritance. */
6871 }
6872
6873 if (! win)
6874 {
6875 /* First undo everything done by the failed attempt
6876 to allocate with inheritance. */
6877 choose_reload_regs_init (chain, save_reload_reg_rtx);
6878
6879 /* Some sanity tests to verify that the reloads found in the first
6880 pass are identical to the ones we have now. */
6881 gcc_assert (chain->n_reloads == n_reloads);
6882
6883 for (i = 0; i < n_reloads; i++)
6884 {
6885 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6886 continue;
6887 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6888 for (j = 0; j < n_spills; j++)
6889 if (spill_regs[j] == chain->rld[i].regno)
6890 if (! set_reload_reg (j, i))
6891 failed_reload (chain->insn, i);
6892 }
6893 }
6894
6895 /* If we thought we could inherit a reload, because it seemed that
6896 nothing else wanted the same reload register earlier in the insn,
6897 verify that assumption, now that all reloads have been assigned.
6898 Likewise for reloads where reload_override_in has been set. */
6899
6900 /* If doing expensive optimizations, do one preliminary pass that doesn't
6901 cancel any inheritance, but removes reloads that have been needed only
6902 for reloads that we know can be inherited. */
6903 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6904 {
6905 for (j = 0; j < n_reloads; j++)
6906 {
6907 int r = reload_order[j];
6908 rtx check_reg;
6909 if (reload_inherited[r] && rld[r].reg_rtx)
6910 check_reg = rld[r].reg_rtx;
6911 else if (reload_override_in[r]
6912 && (REG_P (reload_override_in[r])
6913 || GET_CODE (reload_override_in[r]) == SUBREG))
6914 check_reg = reload_override_in[r];
6915 else
6916 continue;
6917 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6918 rld[r].opnum, rld[r].when_needed, rld[r].in,
6919 (reload_inherited[r]
6920 ? rld[r].out : const0_rtx),
6921 r, 1))
6922 {
6923 if (pass)
6924 continue;
6925 reload_inherited[r] = 0;
6926 reload_override_in[r] = 0;
6927 }
6928 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6929 reload_override_in, then we do not need its related
6930 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6931 likewise for other reload types.
6932 We handle this by removing a reload when its only replacement
6933 is mentioned in reload_in of the reload we are going to inherit.
6934 A special case are auto_inc expressions; even if the input is
6935 inherited, we still need the address for the output. We can
6936 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6937 If we succeeded removing some reload and we are doing a preliminary
6938 pass just to remove such reloads, make another pass, since the
6939 removal of one reload might allow us to inherit another one. */
6940 else if (rld[r].in
6941 && rld[r].out != rld[r].in
6942 && remove_address_replacements (rld[r].in) && pass)
6943 pass = 2;
6944 }
6945 }
6946
6947 /* Now that reload_override_in is known valid,
6948 actually override reload_in. */
6949 for (j = 0; j < n_reloads; j++)
6950 if (reload_override_in[j])
6951 rld[j].in = reload_override_in[j];
6952
6953 /* If this reload won't be done because it has been canceled or is
6954 optional and not inherited, clear reload_reg_rtx so other
6955 routines (such as subst_reloads) don't get confused. */
6956 for (j = 0; j < n_reloads; j++)
6957 if (rld[j].reg_rtx != 0
6958 && ((rld[j].optional && ! reload_inherited[j])
6959 || (rld[j].in == 0 && rld[j].out == 0
6960 && ! rld[j].secondary_p)))
6961 {
6962 int regno = true_regnum (rld[j].reg_rtx);
6963
6964 if (spill_reg_order[regno] >= 0)
6965 clear_reload_reg_in_use (regno, rld[j].opnum,
6966 rld[j].when_needed, rld[j].mode);
6967 rld[j].reg_rtx = 0;
6968 reload_spill_index[j] = -1;
6969 }
6970
6971 /* Record which pseudos and which spill regs have output reloads. */
6972 for (j = 0; j < n_reloads; j++)
6973 {
6974 int r = reload_order[j];
6975
6976 i = reload_spill_index[r];
6977
6978 /* I is nonneg if this reload uses a register.
6979 If rld[r].reg_rtx is 0, this is an optional reload
6980 that we opted to ignore. */
6981 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6982 && rld[r].reg_rtx != 0)
6983 {
6984 int nregno = REGNO (rld[r].out_reg);
6985 int nr = 1;
6986
6987 if (nregno < FIRST_PSEUDO_REGISTER)
6988 nr = hard_regno_nregs[nregno][rld[r].mode];
6989
6990 while (--nr >= 0)
6991 SET_REGNO_REG_SET (&reg_has_output_reload,
6992 nregno + nr);
6993
6994 if (i >= 0)
6995 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6996
6997 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6998 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6999 || rld[r].when_needed == RELOAD_FOR_INSN);
7000 }
7001 }
7002 }
7003
7004 /* Deallocate the reload register for reload R. This is called from
7005 remove_address_replacements. */
7006
7007 void
7008 deallocate_reload_reg (int r)
7009 {
7010 int regno;
7011
7012 if (! rld[r].reg_rtx)
7013 return;
7014 regno = true_regnum (rld[r].reg_rtx);
7015 rld[r].reg_rtx = 0;
7016 if (spill_reg_order[regno] >= 0)
7017 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7018 rld[r].mode);
7019 reload_spill_index[r] = -1;
7020 }
7021 \f
7022 /* These arrays are filled by emit_reload_insns and its subroutines. */
7023 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7024 static rtx other_input_address_reload_insns = 0;
7025 static rtx other_input_reload_insns = 0;
7026 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7027 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7028 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7029 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7030 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7031 static rtx operand_reload_insns = 0;
7032 static rtx other_operand_reload_insns = 0;
7033 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7034
7035 /* Values to be put in spill_reg_store are put here first. */
7036 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7037 static HARD_REG_SET reg_reloaded_died;
7038
7039 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7040 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7041 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7042 adjusted register, and return true. Otherwise, return false. */
7043 static bool
7044 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7045 enum reg_class new_class,
7046 enum machine_mode new_mode)
7047
7048 {
7049 rtx reg;
7050
7051 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7052 {
7053 unsigned regno = REGNO (reg);
7054
7055 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7056 continue;
7057 if (GET_MODE (reg) != new_mode)
7058 {
7059 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7060 continue;
7061 if (hard_regno_nregs[regno][new_mode]
7062 > hard_regno_nregs[regno][GET_MODE (reg)])
7063 continue;
7064 reg = reload_adjust_reg_for_mode (reg, new_mode);
7065 }
7066 *reload_reg = reg;
7067 return true;
7068 }
7069 return false;
7070 }
7071
7072 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7073 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7074 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7075 adjusted register, and return true. Otherwise, return false. */
7076 static bool
7077 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7078 enum insn_code icode)
7079
7080 {
7081 enum reg_class new_class = scratch_reload_class (icode);
7082 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7083
7084 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7085 new_class, new_mode);
7086 }
7087
7088 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7089 has the number J. OLD contains the value to be used as input. */
7090
7091 static void
7092 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7093 rtx old, int j)
7094 {
7095 rtx insn = chain->insn;
7096 rtx reloadreg;
7097 rtx oldequiv_reg = 0;
7098 rtx oldequiv = 0;
7099 int special = 0;
7100 enum machine_mode mode;
7101 rtx *where;
7102
7103 /* delete_output_reload is only invoked properly if old contains
7104 the original pseudo register. Since this is replaced with a
7105 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7106 find the pseudo in RELOAD_IN_REG. */
7107 if (reload_override_in[j]
7108 && REG_P (rl->in_reg))
7109 {
7110 oldequiv = old;
7111 old = rl->in_reg;
7112 }
7113 if (oldequiv == 0)
7114 oldequiv = old;
7115 else if (REG_P (oldequiv))
7116 oldequiv_reg = oldequiv;
7117 else if (GET_CODE (oldequiv) == SUBREG)
7118 oldequiv_reg = SUBREG_REG (oldequiv);
7119
7120 reloadreg = reload_reg_rtx_for_input[j];
7121 mode = GET_MODE (reloadreg);
7122
7123 /* If we are reloading from a register that was recently stored in
7124 with an output-reload, see if we can prove there was
7125 actually no need to store the old value in it. */
7126
7127 if (optimize && REG_P (oldequiv)
7128 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7129 && spill_reg_store[REGNO (oldequiv)]
7130 && REG_P (old)
7131 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7132 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7133 rl->out_reg)))
7134 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7135
7136 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7137 OLDEQUIV. */
7138
7139 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7140 oldequiv = SUBREG_REG (oldequiv);
7141 if (GET_MODE (oldequiv) != VOIDmode
7142 && mode != GET_MODE (oldequiv))
7143 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7144
7145 /* Switch to the right place to emit the reload insns. */
7146 switch (rl->when_needed)
7147 {
7148 case RELOAD_OTHER:
7149 where = &other_input_reload_insns;
7150 break;
7151 case RELOAD_FOR_INPUT:
7152 where = &input_reload_insns[rl->opnum];
7153 break;
7154 case RELOAD_FOR_INPUT_ADDRESS:
7155 where = &input_address_reload_insns[rl->opnum];
7156 break;
7157 case RELOAD_FOR_INPADDR_ADDRESS:
7158 where = &inpaddr_address_reload_insns[rl->opnum];
7159 break;
7160 case RELOAD_FOR_OUTPUT_ADDRESS:
7161 where = &output_address_reload_insns[rl->opnum];
7162 break;
7163 case RELOAD_FOR_OUTADDR_ADDRESS:
7164 where = &outaddr_address_reload_insns[rl->opnum];
7165 break;
7166 case RELOAD_FOR_OPERAND_ADDRESS:
7167 where = &operand_reload_insns;
7168 break;
7169 case RELOAD_FOR_OPADDR_ADDR:
7170 where = &other_operand_reload_insns;
7171 break;
7172 case RELOAD_FOR_OTHER_ADDRESS:
7173 where = &other_input_address_reload_insns;
7174 break;
7175 default:
7176 gcc_unreachable ();
7177 }
7178
7179 push_to_sequence (*where);
7180
7181 /* Auto-increment addresses must be reloaded in a special way. */
7182 if (rl->out && ! rl->out_reg)
7183 {
7184 /* We are not going to bother supporting the case where a
7185 incremented register can't be copied directly from
7186 OLDEQUIV since this seems highly unlikely. */
7187 gcc_assert (rl->secondary_in_reload < 0);
7188
7189 if (reload_inherited[j])
7190 oldequiv = reloadreg;
7191
7192 old = XEXP (rl->in_reg, 0);
7193
7194 /* Prevent normal processing of this reload. */
7195 special = 1;
7196 /* Output a special code sequence for this case, and forget about
7197 spill reg information. */
7198 new_spill_reg_store[REGNO (reloadreg)] = NULL;
7199 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7200 }
7201
7202 /* If we are reloading a pseudo-register that was set by the previous
7203 insn, see if we can get rid of that pseudo-register entirely
7204 by redirecting the previous insn into our reload register. */
7205
7206 else if (optimize && REG_P (old)
7207 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7208 && dead_or_set_p (insn, old)
7209 /* This is unsafe if some other reload
7210 uses the same reg first. */
7211 && ! conflicts_with_override (reloadreg)
7212 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7213 rl->when_needed, old, rl->out, j, 0))
7214 {
7215 rtx temp = PREV_INSN (insn);
7216 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7217 temp = PREV_INSN (temp);
7218 if (temp
7219 && NONJUMP_INSN_P (temp)
7220 && GET_CODE (PATTERN (temp)) == SET
7221 && SET_DEST (PATTERN (temp)) == old
7222 /* Make sure we can access insn_operand_constraint. */
7223 && asm_noperands (PATTERN (temp)) < 0
7224 /* This is unsafe if operand occurs more than once in current
7225 insn. Perhaps some occurrences aren't reloaded. */
7226 && count_occurrences (PATTERN (insn), old, 0) == 1)
7227 {
7228 rtx old = SET_DEST (PATTERN (temp));
7229 /* Store into the reload register instead of the pseudo. */
7230 SET_DEST (PATTERN (temp)) = reloadreg;
7231
7232 /* Verify that resulting insn is valid. */
7233 extract_insn (temp);
7234 if (constrain_operands (1))
7235 {
7236 /* If the previous insn is an output reload, the source is
7237 a reload register, and its spill_reg_store entry will
7238 contain the previous destination. This is now
7239 invalid. */
7240 if (REG_P (SET_SRC (PATTERN (temp)))
7241 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7242 {
7243 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7244 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7245 }
7246
7247 /* If these are the only uses of the pseudo reg,
7248 pretend for GDB it lives in the reload reg we used. */
7249 if (REG_N_DEATHS (REGNO (old)) == 1
7250 && REG_N_SETS (REGNO (old)) == 1)
7251 {
7252 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7253 if (ira_conflicts_p)
7254 /* Inform IRA about the change. */
7255 ira_mark_allocation_change (REGNO (old));
7256 alter_reg (REGNO (old), -1, false);
7257 }
7258 special = 1;
7259
7260 /* Adjust any debug insns between temp and insn. */
7261 while ((temp = NEXT_INSN (temp)) != insn)
7262 if (DEBUG_INSN_P (temp))
7263 replace_rtx (PATTERN (temp), old, reloadreg);
7264 else
7265 gcc_assert (NOTE_P (temp));
7266 }
7267 else
7268 {
7269 SET_DEST (PATTERN (temp)) = old;
7270 }
7271 }
7272 }
7273
7274 /* We can't do that, so output an insn to load RELOADREG. */
7275
7276 /* If we have a secondary reload, pick up the secondary register
7277 and icode, if any. If OLDEQUIV and OLD are different or
7278 if this is an in-out reload, recompute whether or not we
7279 still need a secondary register and what the icode should
7280 be. If we still need a secondary register and the class or
7281 icode is different, go back to reloading from OLD if using
7282 OLDEQUIV means that we got the wrong type of register. We
7283 cannot have different class or icode due to an in-out reload
7284 because we don't make such reloads when both the input and
7285 output need secondary reload registers. */
7286
7287 if (! special && rl->secondary_in_reload >= 0)
7288 {
7289 rtx second_reload_reg = 0;
7290 rtx third_reload_reg = 0;
7291 int secondary_reload = rl->secondary_in_reload;
7292 rtx real_oldequiv = oldequiv;
7293 rtx real_old = old;
7294 rtx tmp;
7295 enum insn_code icode;
7296 enum insn_code tertiary_icode = CODE_FOR_nothing;
7297
7298 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7299 and similarly for OLD.
7300 See comments in get_secondary_reload in reload.c. */
7301 /* If it is a pseudo that cannot be replaced with its
7302 equivalent MEM, we must fall back to reload_in, which
7303 will have all the necessary substitutions registered.
7304 Likewise for a pseudo that can't be replaced with its
7305 equivalent constant.
7306
7307 Take extra care for subregs of such pseudos. Note that
7308 we cannot use reg_equiv_mem in this case because it is
7309 not in the right mode. */
7310
7311 tmp = oldequiv;
7312 if (GET_CODE (tmp) == SUBREG)
7313 tmp = SUBREG_REG (tmp);
7314 if (REG_P (tmp)
7315 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7316 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7317 || reg_equiv_constant (REGNO (tmp)) != 0))
7318 {
7319 if (! reg_equiv_mem (REGNO (tmp))
7320 || num_not_at_initial_offset
7321 || GET_CODE (oldequiv) == SUBREG)
7322 real_oldequiv = rl->in;
7323 else
7324 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7325 }
7326
7327 tmp = old;
7328 if (GET_CODE (tmp) == SUBREG)
7329 tmp = SUBREG_REG (tmp);
7330 if (REG_P (tmp)
7331 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7332 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7333 || reg_equiv_constant (REGNO (tmp)) != 0))
7334 {
7335 if (! reg_equiv_mem (REGNO (tmp))
7336 || num_not_at_initial_offset
7337 || GET_CODE (old) == SUBREG)
7338 real_old = rl->in;
7339 else
7340 real_old = reg_equiv_mem (REGNO (tmp));
7341 }
7342
7343 second_reload_reg = rld[secondary_reload].reg_rtx;
7344 if (rld[secondary_reload].secondary_in_reload >= 0)
7345 {
7346 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7347
7348 third_reload_reg = rld[tertiary_reload].reg_rtx;
7349 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7350 /* We'd have to add more code for quartary reloads. */
7351 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7352 }
7353 icode = rl->secondary_in_icode;
7354
7355 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7356 || (rl->in != 0 && rl->out != 0))
7357 {
7358 secondary_reload_info sri, sri2;
7359 enum reg_class new_class, new_t_class;
7360
7361 sri.icode = CODE_FOR_nothing;
7362 sri.prev_sri = NULL;
7363 new_class
7364 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7365 rl->rclass, mode,
7366 &sri);
7367
7368 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7369 second_reload_reg = 0;
7370 else if (new_class == NO_REGS)
7371 {
7372 if (reload_adjust_reg_for_icode (&second_reload_reg,
7373 third_reload_reg,
7374 (enum insn_code) sri.icode))
7375 {
7376 icode = (enum insn_code) sri.icode;
7377 third_reload_reg = 0;
7378 }
7379 else
7380 {
7381 oldequiv = old;
7382 real_oldequiv = real_old;
7383 }
7384 }
7385 else if (sri.icode != CODE_FOR_nothing)
7386 /* We currently lack a way to express this in reloads. */
7387 gcc_unreachable ();
7388 else
7389 {
7390 sri2.icode = CODE_FOR_nothing;
7391 sri2.prev_sri = &sri;
7392 new_t_class
7393 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7394 new_class, mode,
7395 &sri);
7396 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7397 {
7398 if (reload_adjust_reg_for_temp (&second_reload_reg,
7399 third_reload_reg,
7400 new_class, mode))
7401 {
7402 third_reload_reg = 0;
7403 tertiary_icode = (enum insn_code) sri2.icode;
7404 }
7405 else
7406 {
7407 oldequiv = old;
7408 real_oldequiv = real_old;
7409 }
7410 }
7411 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7412 {
7413 rtx intermediate = second_reload_reg;
7414
7415 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7416 new_class, mode)
7417 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7418 ((enum insn_code)
7419 sri2.icode)))
7420 {
7421 second_reload_reg = intermediate;
7422 tertiary_icode = (enum insn_code) sri2.icode;
7423 }
7424 else
7425 {
7426 oldequiv = old;
7427 real_oldequiv = real_old;
7428 }
7429 }
7430 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7431 {
7432 rtx intermediate = second_reload_reg;
7433
7434 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7435 new_class, mode)
7436 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7437 new_t_class, mode))
7438 {
7439 second_reload_reg = intermediate;
7440 tertiary_icode = (enum insn_code) sri2.icode;
7441 }
7442 else
7443 {
7444 oldequiv = old;
7445 real_oldequiv = real_old;
7446 }
7447 }
7448 else
7449 {
7450 /* This could be handled more intelligently too. */
7451 oldequiv = old;
7452 real_oldequiv = real_old;
7453 }
7454 }
7455 }
7456
7457 /* If we still need a secondary reload register, check
7458 to see if it is being used as a scratch or intermediate
7459 register and generate code appropriately. If we need
7460 a scratch register, use REAL_OLDEQUIV since the form of
7461 the insn may depend on the actual address if it is
7462 a MEM. */
7463
7464 if (second_reload_reg)
7465 {
7466 if (icode != CODE_FOR_nothing)
7467 {
7468 /* We'd have to add extra code to handle this case. */
7469 gcc_assert (!third_reload_reg);
7470
7471 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7472 second_reload_reg));
7473 special = 1;
7474 }
7475 else
7476 {
7477 /* See if we need a scratch register to load the
7478 intermediate register (a tertiary reload). */
7479 if (tertiary_icode != CODE_FOR_nothing)
7480 {
7481 emit_insn ((GEN_FCN (tertiary_icode)
7482 (second_reload_reg, real_oldequiv,
7483 third_reload_reg)));
7484 }
7485 else if (third_reload_reg)
7486 {
7487 gen_reload (third_reload_reg, real_oldequiv,
7488 rl->opnum,
7489 rl->when_needed);
7490 gen_reload (second_reload_reg, third_reload_reg,
7491 rl->opnum,
7492 rl->when_needed);
7493 }
7494 else
7495 gen_reload (second_reload_reg, real_oldequiv,
7496 rl->opnum,
7497 rl->when_needed);
7498
7499 oldequiv = second_reload_reg;
7500 }
7501 }
7502 }
7503
7504 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7505 {
7506 rtx real_oldequiv = oldequiv;
7507
7508 if ((REG_P (oldequiv)
7509 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7510 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7511 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7512 || (GET_CODE (oldequiv) == SUBREG
7513 && REG_P (SUBREG_REG (oldequiv))
7514 && (REGNO (SUBREG_REG (oldequiv))
7515 >= FIRST_PSEUDO_REGISTER)
7516 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7517 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7518 || (CONSTANT_P (oldequiv)
7519 && (targetm.preferred_reload_class (oldequiv,
7520 REGNO_REG_CLASS (REGNO (reloadreg)))
7521 == NO_REGS)))
7522 real_oldequiv = rl->in;
7523 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7524 rl->when_needed);
7525 }
7526
7527 if (cfun->can_throw_non_call_exceptions)
7528 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7529
7530 /* End this sequence. */
7531 *where = get_insns ();
7532 end_sequence ();
7533
7534 /* Update reload_override_in so that delete_address_reloads_1
7535 can see the actual register usage. */
7536 if (oldequiv_reg)
7537 reload_override_in[j] = oldequiv;
7538 }
7539
7540 /* Generate insns to for the output reload RL, which is for the insn described
7541 by CHAIN and has the number J. */
7542 static void
7543 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7544 int j)
7545 {
7546 rtx reloadreg;
7547 rtx insn = chain->insn;
7548 int special = 0;
7549 rtx old = rl->out;
7550 enum machine_mode mode;
7551 rtx p;
7552 rtx rl_reg_rtx;
7553
7554 if (rl->when_needed == RELOAD_OTHER)
7555 start_sequence ();
7556 else
7557 push_to_sequence (output_reload_insns[rl->opnum]);
7558
7559 rl_reg_rtx = reload_reg_rtx_for_output[j];
7560 mode = GET_MODE (rl_reg_rtx);
7561
7562 reloadreg = rl_reg_rtx;
7563
7564 /* If we need two reload regs, set RELOADREG to the intermediate
7565 one, since it will be stored into OLD. We might need a secondary
7566 register only for an input reload, so check again here. */
7567
7568 if (rl->secondary_out_reload >= 0)
7569 {
7570 rtx real_old = old;
7571 int secondary_reload = rl->secondary_out_reload;
7572 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7573
7574 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7575 && reg_equiv_mem (REGNO (old)) != 0)
7576 real_old = reg_equiv_mem (REGNO (old));
7577
7578 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7579 {
7580 rtx second_reloadreg = reloadreg;
7581 reloadreg = rld[secondary_reload].reg_rtx;
7582
7583 /* See if RELOADREG is to be used as a scratch register
7584 or as an intermediate register. */
7585 if (rl->secondary_out_icode != CODE_FOR_nothing)
7586 {
7587 /* We'd have to add extra code to handle this case. */
7588 gcc_assert (tertiary_reload < 0);
7589
7590 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7591 (real_old, second_reloadreg, reloadreg)));
7592 special = 1;
7593 }
7594 else
7595 {
7596 /* See if we need both a scratch and intermediate reload
7597 register. */
7598
7599 enum insn_code tertiary_icode
7600 = rld[secondary_reload].secondary_out_icode;
7601
7602 /* We'd have to add more code for quartary reloads. */
7603 gcc_assert (tertiary_reload < 0
7604 || rld[tertiary_reload].secondary_out_reload < 0);
7605
7606 if (GET_MODE (reloadreg) != mode)
7607 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7608
7609 if (tertiary_icode != CODE_FOR_nothing)
7610 {
7611 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7612
7613 /* Copy primary reload reg to secondary reload reg.
7614 (Note that these have been swapped above, then
7615 secondary reload reg to OLD using our insn.) */
7616
7617 /* If REAL_OLD is a paradoxical SUBREG, remove it
7618 and try to put the opposite SUBREG on
7619 RELOADREG. */
7620 strip_paradoxical_subreg (&real_old, &reloadreg);
7621
7622 gen_reload (reloadreg, second_reloadreg,
7623 rl->opnum, rl->when_needed);
7624 emit_insn ((GEN_FCN (tertiary_icode)
7625 (real_old, reloadreg, third_reloadreg)));
7626 special = 1;
7627 }
7628
7629 else
7630 {
7631 /* Copy between the reload regs here and then to
7632 OUT later. */
7633
7634 gen_reload (reloadreg, second_reloadreg,
7635 rl->opnum, rl->when_needed);
7636 if (tertiary_reload >= 0)
7637 {
7638 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7639
7640 gen_reload (third_reloadreg, reloadreg,
7641 rl->opnum, rl->when_needed);
7642 reloadreg = third_reloadreg;
7643 }
7644 }
7645 }
7646 }
7647 }
7648
7649 /* Output the last reload insn. */
7650 if (! special)
7651 {
7652 rtx set;
7653
7654 /* Don't output the last reload if OLD is not the dest of
7655 INSN and is in the src and is clobbered by INSN. */
7656 if (! flag_expensive_optimizations
7657 || !REG_P (old)
7658 || !(set = single_set (insn))
7659 || rtx_equal_p (old, SET_DEST (set))
7660 || !reg_mentioned_p (old, SET_SRC (set))
7661 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7662 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7663 gen_reload (old, reloadreg, rl->opnum,
7664 rl->when_needed);
7665 }
7666
7667 /* Look at all insns we emitted, just to be safe. */
7668 for (p = get_insns (); p; p = NEXT_INSN (p))
7669 if (INSN_P (p))
7670 {
7671 rtx pat = PATTERN (p);
7672
7673 /* If this output reload doesn't come from a spill reg,
7674 clear any memory of reloaded copies of the pseudo reg.
7675 If this output reload comes from a spill reg,
7676 reg_has_output_reload will make this do nothing. */
7677 note_stores (pat, forget_old_reloads_1, NULL);
7678
7679 if (reg_mentioned_p (rl_reg_rtx, pat))
7680 {
7681 rtx set = single_set (insn);
7682 if (reload_spill_index[j] < 0
7683 && set
7684 && SET_SRC (set) == rl_reg_rtx)
7685 {
7686 int src = REGNO (SET_SRC (set));
7687
7688 reload_spill_index[j] = src;
7689 SET_HARD_REG_BIT (reg_is_output_reload, src);
7690 if (find_regno_note (insn, REG_DEAD, src))
7691 SET_HARD_REG_BIT (reg_reloaded_died, src);
7692 }
7693 if (HARD_REGISTER_P (rl_reg_rtx))
7694 {
7695 int s = rl->secondary_out_reload;
7696 set = single_set (p);
7697 /* If this reload copies only to the secondary reload
7698 register, the secondary reload does the actual
7699 store. */
7700 if (s >= 0 && set == NULL_RTX)
7701 /* We can't tell what function the secondary reload
7702 has and where the actual store to the pseudo is
7703 made; leave new_spill_reg_store alone. */
7704 ;
7705 else if (s >= 0
7706 && SET_SRC (set) == rl_reg_rtx
7707 && SET_DEST (set) == rld[s].reg_rtx)
7708 {
7709 /* Usually the next instruction will be the
7710 secondary reload insn; if we can confirm
7711 that it is, setting new_spill_reg_store to
7712 that insn will allow an extra optimization. */
7713 rtx s_reg = rld[s].reg_rtx;
7714 rtx next = NEXT_INSN (p);
7715 rld[s].out = rl->out;
7716 rld[s].out_reg = rl->out_reg;
7717 set = single_set (next);
7718 if (set && SET_SRC (set) == s_reg
7719 && ! new_spill_reg_store[REGNO (s_reg)])
7720 {
7721 SET_HARD_REG_BIT (reg_is_output_reload,
7722 REGNO (s_reg));
7723 new_spill_reg_store[REGNO (s_reg)] = next;
7724 }
7725 }
7726 else
7727 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7728 }
7729 }
7730 }
7731
7732 if (rl->when_needed == RELOAD_OTHER)
7733 {
7734 emit_insn (other_output_reload_insns[rl->opnum]);
7735 other_output_reload_insns[rl->opnum] = get_insns ();
7736 }
7737 else
7738 output_reload_insns[rl->opnum] = get_insns ();
7739
7740 if (cfun->can_throw_non_call_exceptions)
7741 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7742
7743 end_sequence ();
7744 }
7745
7746 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7747 and has the number J. */
7748 static void
7749 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7750 {
7751 rtx insn = chain->insn;
7752 rtx old = (rl->in && MEM_P (rl->in)
7753 ? rl->in_reg : rl->in);
7754 rtx reg_rtx = rl->reg_rtx;
7755
7756 if (old && reg_rtx)
7757 {
7758 enum machine_mode mode;
7759
7760 /* Determine the mode to reload in.
7761 This is very tricky because we have three to choose from.
7762 There is the mode the insn operand wants (rl->inmode).
7763 There is the mode of the reload register RELOADREG.
7764 There is the intrinsic mode of the operand, which we could find
7765 by stripping some SUBREGs.
7766 It turns out that RELOADREG's mode is irrelevant:
7767 we can change that arbitrarily.
7768
7769 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7770 then the reload reg may not support QImode moves, so use SImode.
7771 If foo is in memory due to spilling a pseudo reg, this is safe,
7772 because the QImode value is in the least significant part of a
7773 slot big enough for a SImode. If foo is some other sort of
7774 memory reference, then it is impossible to reload this case,
7775 so previous passes had better make sure this never happens.
7776
7777 Then consider a one-word union which has SImode and one of its
7778 members is a float, being fetched as (SUBREG:SF union:SI).
7779 We must fetch that as SFmode because we could be loading into
7780 a float-only register. In this case OLD's mode is correct.
7781
7782 Consider an immediate integer: it has VOIDmode. Here we need
7783 to get a mode from something else.
7784
7785 In some cases, there is a fourth mode, the operand's
7786 containing mode. If the insn specifies a containing mode for
7787 this operand, it overrides all others.
7788
7789 I am not sure whether the algorithm here is always right,
7790 but it does the right things in those cases. */
7791
7792 mode = GET_MODE (old);
7793 if (mode == VOIDmode)
7794 mode = rl->inmode;
7795
7796 /* We cannot use gen_lowpart_common since it can do the wrong thing
7797 when REG_RTX has a multi-word mode. Note that REG_RTX must
7798 always be a REG here. */
7799 if (GET_MODE (reg_rtx) != mode)
7800 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7801 }
7802 reload_reg_rtx_for_input[j] = reg_rtx;
7803
7804 if (old != 0
7805 /* AUTO_INC reloads need to be handled even if inherited. We got an
7806 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7807 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7808 && ! rtx_equal_p (reg_rtx, old)
7809 && reg_rtx != 0)
7810 emit_input_reload_insns (chain, rld + j, old, j);
7811
7812 /* When inheriting a wider reload, we have a MEM in rl->in,
7813 e.g. inheriting a SImode output reload for
7814 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7815 if (optimize && reload_inherited[j] && rl->in
7816 && MEM_P (rl->in)
7817 && MEM_P (rl->in_reg)
7818 && reload_spill_index[j] >= 0
7819 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7820 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7821
7822 /* If we are reloading a register that was recently stored in with an
7823 output-reload, see if we can prove there was
7824 actually no need to store the old value in it. */
7825
7826 if (optimize
7827 && (reload_inherited[j] || reload_override_in[j])
7828 && reg_rtx
7829 && REG_P (reg_rtx)
7830 && spill_reg_store[REGNO (reg_rtx)] != 0
7831 #if 0
7832 /* There doesn't seem to be any reason to restrict this to pseudos
7833 and doing so loses in the case where we are copying from a
7834 register of the wrong class. */
7835 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7836 #endif
7837 /* The insn might have already some references to stackslots
7838 replaced by MEMs, while reload_out_reg still names the
7839 original pseudo. */
7840 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7841 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7842 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7843 }
7844
7845 /* Do output reloading for reload RL, which is for the insn described by
7846 CHAIN and has the number J.
7847 ??? At some point we need to support handling output reloads of
7848 JUMP_INSNs or insns that set cc0. */
7849 static void
7850 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7851 {
7852 rtx note, old;
7853 rtx insn = chain->insn;
7854 /* If this is an output reload that stores something that is
7855 not loaded in this same reload, see if we can eliminate a previous
7856 store. */
7857 rtx pseudo = rl->out_reg;
7858 rtx reg_rtx = rl->reg_rtx;
7859
7860 if (rl->out && reg_rtx)
7861 {
7862 enum machine_mode mode;
7863
7864 /* Determine the mode to reload in.
7865 See comments above (for input reloading). */
7866 mode = GET_MODE (rl->out);
7867 if (mode == VOIDmode)
7868 {
7869 /* VOIDmode should never happen for an output. */
7870 if (asm_noperands (PATTERN (insn)) < 0)
7871 /* It's the compiler's fault. */
7872 fatal_insn ("VOIDmode on an output", insn);
7873 error_for_asm (insn, "output operand is constant in %<asm%>");
7874 /* Prevent crash--use something we know is valid. */
7875 mode = word_mode;
7876 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7877 }
7878 if (GET_MODE (reg_rtx) != mode)
7879 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7880 }
7881 reload_reg_rtx_for_output[j] = reg_rtx;
7882
7883 if (pseudo
7884 && optimize
7885 && REG_P (pseudo)
7886 && ! rtx_equal_p (rl->in_reg, pseudo)
7887 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7888 && reg_last_reload_reg[REGNO (pseudo)])
7889 {
7890 int pseudo_no = REGNO (pseudo);
7891 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7892
7893 /* We don't need to test full validity of last_regno for
7894 inherit here; we only want to know if the store actually
7895 matches the pseudo. */
7896 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7897 && reg_reloaded_contents[last_regno] == pseudo_no
7898 && spill_reg_store[last_regno]
7899 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7900 delete_output_reload (insn, j, last_regno, reg_rtx);
7901 }
7902
7903 old = rl->out_reg;
7904 if (old == 0
7905 || reg_rtx == 0
7906 || rtx_equal_p (old, reg_rtx))
7907 return;
7908
7909 /* An output operand that dies right away does need a reload,
7910 but need not be copied from it. Show the new location in the
7911 REG_UNUSED note. */
7912 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7913 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7914 {
7915 XEXP (note, 0) = reg_rtx;
7916 return;
7917 }
7918 /* Likewise for a SUBREG of an operand that dies. */
7919 else if (GET_CODE (old) == SUBREG
7920 && REG_P (SUBREG_REG (old))
7921 && 0 != (note = find_reg_note (insn, REG_UNUSED,
7922 SUBREG_REG (old))))
7923 {
7924 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7925 return;
7926 }
7927 else if (GET_CODE (old) == SCRATCH)
7928 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7929 but we don't want to make an output reload. */
7930 return;
7931
7932 /* If is a JUMP_INSN, we can't support output reloads yet. */
7933 gcc_assert (NONJUMP_INSN_P (insn));
7934
7935 emit_output_reload_insns (chain, rld + j, j);
7936 }
7937
7938 /* A reload copies values of MODE from register SRC to register DEST.
7939 Return true if it can be treated for inheritance purposes like a
7940 group of reloads, each one reloading a single hard register. The
7941 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7942 occupy the same number of hard registers. */
7943
7944 static bool
7945 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7946 int src ATTRIBUTE_UNUSED,
7947 enum machine_mode mode ATTRIBUTE_UNUSED)
7948 {
7949 #ifdef CANNOT_CHANGE_MODE_CLASS
7950 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7951 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7952 #else
7953 return true;
7954 #endif
7955 }
7956
7957 /* Output insns to reload values in and out of the chosen reload regs. */
7958
7959 static void
7960 emit_reload_insns (struct insn_chain *chain)
7961 {
7962 rtx insn = chain->insn;
7963
7964 int j;
7965
7966 CLEAR_HARD_REG_SET (reg_reloaded_died);
7967
7968 for (j = 0; j < reload_n_operands; j++)
7969 input_reload_insns[j] = input_address_reload_insns[j]
7970 = inpaddr_address_reload_insns[j]
7971 = output_reload_insns[j] = output_address_reload_insns[j]
7972 = outaddr_address_reload_insns[j]
7973 = other_output_reload_insns[j] = 0;
7974 other_input_address_reload_insns = 0;
7975 other_input_reload_insns = 0;
7976 operand_reload_insns = 0;
7977 other_operand_reload_insns = 0;
7978
7979 /* Dump reloads into the dump file. */
7980 if (dump_file)
7981 {
7982 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7983 debug_reload_to_stream (dump_file);
7984 }
7985
7986 /* Now output the instructions to copy the data into and out of the
7987 reload registers. Do these in the order that the reloads were reported,
7988 since reloads of base and index registers precede reloads of operands
7989 and the operands may need the base and index registers reloaded. */
7990
7991 for (j = 0; j < n_reloads; j++)
7992 {
7993 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7994 {
7995 unsigned int i;
7996
7997 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7998 new_spill_reg_store[i] = 0;
7999 }
8000
8001 do_input_reload (chain, rld + j, j);
8002 do_output_reload (chain, rld + j, j);
8003 }
8004
8005 /* Now write all the insns we made for reloads in the order expected by
8006 the allocation functions. Prior to the insn being reloaded, we write
8007 the following reloads:
8008
8009 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8010
8011 RELOAD_OTHER reloads.
8012
8013 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8014 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8015 RELOAD_FOR_INPUT reload for the operand.
8016
8017 RELOAD_FOR_OPADDR_ADDRS reloads.
8018
8019 RELOAD_FOR_OPERAND_ADDRESS reloads.
8020
8021 After the insn being reloaded, we write the following:
8022
8023 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8024 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8025 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8026 reloads for the operand. The RELOAD_OTHER output reloads are
8027 output in descending order by reload number. */
8028
8029 emit_insn_before (other_input_address_reload_insns, insn);
8030 emit_insn_before (other_input_reload_insns, insn);
8031
8032 for (j = 0; j < reload_n_operands; j++)
8033 {
8034 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8035 emit_insn_before (input_address_reload_insns[j], insn);
8036 emit_insn_before (input_reload_insns[j], insn);
8037 }
8038
8039 emit_insn_before (other_operand_reload_insns, insn);
8040 emit_insn_before (operand_reload_insns, insn);
8041
8042 for (j = 0; j < reload_n_operands; j++)
8043 {
8044 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8045 x = emit_insn_after (output_address_reload_insns[j], x);
8046 x = emit_insn_after (output_reload_insns[j], x);
8047 emit_insn_after (other_output_reload_insns[j], x);
8048 }
8049
8050 /* For all the spill regs newly reloaded in this instruction,
8051 record what they were reloaded from, so subsequent instructions
8052 can inherit the reloads.
8053
8054 Update spill_reg_store for the reloads of this insn.
8055 Copy the elements that were updated in the loop above. */
8056
8057 for (j = 0; j < n_reloads; j++)
8058 {
8059 int r = reload_order[j];
8060 int i = reload_spill_index[r];
8061
8062 /* If this is a non-inherited input reload from a pseudo, we must
8063 clear any memory of a previous store to the same pseudo. Only do
8064 something if there will not be an output reload for the pseudo
8065 being reloaded. */
8066 if (rld[r].in_reg != 0
8067 && ! (reload_inherited[r] || reload_override_in[r]))
8068 {
8069 rtx reg = rld[r].in_reg;
8070
8071 if (GET_CODE (reg) == SUBREG)
8072 reg = SUBREG_REG (reg);
8073
8074 if (REG_P (reg)
8075 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8076 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8077 {
8078 int nregno = REGNO (reg);
8079
8080 if (reg_last_reload_reg[nregno])
8081 {
8082 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8083
8084 if (reg_reloaded_contents[last_regno] == nregno)
8085 spill_reg_store[last_regno] = 0;
8086 }
8087 }
8088 }
8089
8090 /* I is nonneg if this reload used a register.
8091 If rld[r].reg_rtx is 0, this is an optional reload
8092 that we opted to ignore. */
8093
8094 if (i >= 0 && rld[r].reg_rtx != 0)
8095 {
8096 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8097 int k;
8098
8099 /* For a multi register reload, we need to check if all or part
8100 of the value lives to the end. */
8101 for (k = 0; k < nr; k++)
8102 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
8103 rld[r].when_needed))
8104 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8105
8106 /* Maybe the spill reg contains a copy of reload_out. */
8107 if (rld[r].out != 0
8108 && (REG_P (rld[r].out)
8109 || (rld[r].out_reg
8110 ? REG_P (rld[r].out_reg)
8111 /* The reload value is an auto-modification of
8112 some kind. For PRE_INC, POST_INC, PRE_DEC
8113 and POST_DEC, we record an equivalence
8114 between the reload register and the operand
8115 on the optimistic assumption that we can make
8116 the equivalence hold. reload_as_needed must
8117 then either make it hold or invalidate the
8118 equivalence.
8119
8120 PRE_MODIFY and POST_MODIFY addresses are reloaded
8121 somewhat differently, and allowing them here leads
8122 to problems. */
8123 : (GET_CODE (rld[r].out) != POST_MODIFY
8124 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8125 {
8126 rtx reg;
8127 enum machine_mode mode;
8128 int regno, nregs;
8129
8130 reg = reload_reg_rtx_for_output[r];
8131 mode = GET_MODE (reg);
8132 regno = REGNO (reg);
8133 nregs = hard_regno_nregs[regno][mode];
8134 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8135 rld[r].when_needed))
8136 {
8137 rtx out = (REG_P (rld[r].out)
8138 ? rld[r].out
8139 : rld[r].out_reg
8140 ? rld[r].out_reg
8141 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8142 int out_regno = REGNO (out);
8143 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8144 : hard_regno_nregs[out_regno][mode]);
8145 bool piecemeal;
8146
8147 spill_reg_store[regno] = new_spill_reg_store[regno];
8148 spill_reg_stored_to[regno] = out;
8149 reg_last_reload_reg[out_regno] = reg;
8150
8151 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8152 && nregs == out_nregs
8153 && inherit_piecemeal_p (out_regno, regno, mode));
8154
8155 /* If OUT_REGNO is a hard register, it may occupy more than
8156 one register. If it does, say what is in the
8157 rest of the registers assuming that both registers
8158 agree on how many words the object takes. If not,
8159 invalidate the subsequent registers. */
8160
8161 if (HARD_REGISTER_NUM_P (out_regno))
8162 for (k = 1; k < out_nregs; k++)
8163 reg_last_reload_reg[out_regno + k]
8164 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8165
8166 /* Now do the inverse operation. */
8167 for (k = 0; k < nregs; k++)
8168 {
8169 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8170 reg_reloaded_contents[regno + k]
8171 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8172 ? out_regno
8173 : out_regno + k);
8174 reg_reloaded_insn[regno + k] = insn;
8175 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8176 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8177 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8178 regno + k);
8179 else
8180 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8181 regno + k);
8182 }
8183 }
8184 }
8185 /* Maybe the spill reg contains a copy of reload_in. Only do
8186 something if there will not be an output reload for
8187 the register being reloaded. */
8188 else if (rld[r].out_reg == 0
8189 && rld[r].in != 0
8190 && ((REG_P (rld[r].in)
8191 && !HARD_REGISTER_P (rld[r].in)
8192 && !REGNO_REG_SET_P (&reg_has_output_reload,
8193 REGNO (rld[r].in)))
8194 || (REG_P (rld[r].in_reg)
8195 && !REGNO_REG_SET_P (&reg_has_output_reload,
8196 REGNO (rld[r].in_reg))))
8197 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8198 {
8199 rtx reg;
8200 enum machine_mode mode;
8201 int regno, nregs;
8202
8203 reg = reload_reg_rtx_for_input[r];
8204 mode = GET_MODE (reg);
8205 regno = REGNO (reg);
8206 nregs = hard_regno_nregs[regno][mode];
8207 if (reload_regs_reach_end_p (regno, nregs, rld[r].opnum,
8208 rld[r].when_needed))
8209 {
8210 int in_regno;
8211 int in_nregs;
8212 rtx in;
8213 bool piecemeal;
8214
8215 if (REG_P (rld[r].in)
8216 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8217 in = rld[r].in;
8218 else if (REG_P (rld[r].in_reg))
8219 in = rld[r].in_reg;
8220 else
8221 in = XEXP (rld[r].in_reg, 0);
8222 in_regno = REGNO (in);
8223
8224 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8225 : hard_regno_nregs[in_regno][mode]);
8226
8227 reg_last_reload_reg[in_regno] = reg;
8228
8229 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8230 && nregs == in_nregs
8231 && inherit_piecemeal_p (regno, in_regno, mode));
8232
8233 if (HARD_REGISTER_NUM_P (in_regno))
8234 for (k = 1; k < in_nregs; k++)
8235 reg_last_reload_reg[in_regno + k]
8236 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8237
8238 /* Unless we inherited this reload, show we haven't
8239 recently done a store.
8240 Previous stores of inherited auto_inc expressions
8241 also have to be discarded. */
8242 if (! reload_inherited[r]
8243 || (rld[r].out && ! rld[r].out_reg))
8244 spill_reg_store[regno] = 0;
8245
8246 for (k = 0; k < nregs; k++)
8247 {
8248 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8249 reg_reloaded_contents[regno + k]
8250 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8251 ? in_regno
8252 : in_regno + k);
8253 reg_reloaded_insn[regno + k] = insn;
8254 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8255 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8256 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8257 regno + k);
8258 else
8259 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8260 regno + k);
8261 }
8262 }
8263 }
8264 }
8265
8266 /* The following if-statement was #if 0'd in 1.34 (or before...).
8267 It's reenabled in 1.35 because supposedly nothing else
8268 deals with this problem. */
8269
8270 /* If a register gets output-reloaded from a non-spill register,
8271 that invalidates any previous reloaded copy of it.
8272 But forget_old_reloads_1 won't get to see it, because
8273 it thinks only about the original insn. So invalidate it here.
8274 Also do the same thing for RELOAD_OTHER constraints where the
8275 output is discarded. */
8276 if (i < 0
8277 && ((rld[r].out != 0
8278 && (REG_P (rld[r].out)
8279 || (MEM_P (rld[r].out)
8280 && REG_P (rld[r].out_reg))))
8281 || (rld[r].out == 0 && rld[r].out_reg
8282 && REG_P (rld[r].out_reg))))
8283 {
8284 rtx out = ((rld[r].out && REG_P (rld[r].out))
8285 ? rld[r].out : rld[r].out_reg);
8286 int out_regno = REGNO (out);
8287 enum machine_mode mode = GET_MODE (out);
8288
8289 /* REG_RTX is now set or clobbered by the main instruction.
8290 As the comment above explains, forget_old_reloads_1 only
8291 sees the original instruction, and there is no guarantee
8292 that the original instruction also clobbered REG_RTX.
8293 For example, if find_reloads sees that the input side of
8294 a matched operand pair dies in this instruction, it may
8295 use the input register as the reload register.
8296
8297 Calling forget_old_reloads_1 is a waste of effort if
8298 REG_RTX is also the output register.
8299
8300 If we know that REG_RTX holds the value of a pseudo
8301 register, the code after the call will record that fact. */
8302 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8303 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8304
8305 if (!HARD_REGISTER_NUM_P (out_regno))
8306 {
8307 rtx src_reg, store_insn = NULL_RTX;
8308
8309 reg_last_reload_reg[out_regno] = 0;
8310
8311 /* If we can find a hard register that is stored, record
8312 the storing insn so that we may delete this insn with
8313 delete_output_reload. */
8314 src_reg = reload_reg_rtx_for_output[r];
8315
8316 /* If this is an optional reload, try to find the source reg
8317 from an input reload. */
8318 if (! src_reg)
8319 {
8320 rtx set = single_set (insn);
8321 if (set && SET_DEST (set) == rld[r].out)
8322 {
8323 int k;
8324
8325 src_reg = SET_SRC (set);
8326 store_insn = insn;
8327 for (k = 0; k < n_reloads; k++)
8328 {
8329 if (rld[k].in == src_reg)
8330 {
8331 src_reg = reload_reg_rtx_for_input[k];
8332 break;
8333 }
8334 }
8335 }
8336 }
8337 else
8338 store_insn = new_spill_reg_store[REGNO (src_reg)];
8339 if (src_reg && REG_P (src_reg)
8340 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8341 {
8342 int src_regno, src_nregs, k;
8343 rtx note;
8344
8345 gcc_assert (GET_MODE (src_reg) == mode);
8346 src_regno = REGNO (src_reg);
8347 src_nregs = hard_regno_nregs[src_regno][mode];
8348 /* The place where to find a death note varies with
8349 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8350 necessarily checked exactly in the code that moves
8351 notes, so just check both locations. */
8352 note = find_regno_note (insn, REG_DEAD, src_regno);
8353 if (! note && store_insn)
8354 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8355 for (k = 0; k < src_nregs; k++)
8356 {
8357 spill_reg_store[src_regno + k] = store_insn;
8358 spill_reg_stored_to[src_regno + k] = out;
8359 reg_reloaded_contents[src_regno + k] = out_regno;
8360 reg_reloaded_insn[src_regno + k] = store_insn;
8361 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8362 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8363 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8364 mode))
8365 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8366 src_regno + k);
8367 else
8368 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8369 src_regno + k);
8370 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8371 if (note)
8372 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8373 else
8374 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8375 }
8376 reg_last_reload_reg[out_regno] = src_reg;
8377 /* We have to set reg_has_output_reload here, or else
8378 forget_old_reloads_1 will clear reg_last_reload_reg
8379 right away. */
8380 SET_REGNO_REG_SET (&reg_has_output_reload,
8381 out_regno);
8382 }
8383 }
8384 else
8385 {
8386 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8387
8388 for (k = 0; k < out_nregs; k++)
8389 reg_last_reload_reg[out_regno + k] = 0;
8390 }
8391 }
8392 }
8393 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8394 }
8395 \f
8396 /* Go through the motions to emit INSN and test if it is strictly valid.
8397 Return the emitted insn if valid, else return NULL. */
8398
8399 static rtx
8400 emit_insn_if_valid_for_reload (rtx insn)
8401 {
8402 rtx last = get_last_insn ();
8403 int code;
8404
8405 insn = emit_insn (insn);
8406 code = recog_memoized (insn);
8407
8408 if (code >= 0)
8409 {
8410 extract_insn (insn);
8411 /* We want constrain operands to treat this insn strictly in its
8412 validity determination, i.e., the way it would after reload has
8413 completed. */
8414 if (constrain_operands (1))
8415 return insn;
8416 }
8417
8418 delete_insns_since (last);
8419 return NULL;
8420 }
8421
8422 /* Emit code to perform a reload from IN (which may be a reload register) to
8423 OUT (which may also be a reload register). IN or OUT is from operand
8424 OPNUM with reload type TYPE.
8425
8426 Returns first insn emitted. */
8427
8428 static rtx
8429 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8430 {
8431 rtx last = get_last_insn ();
8432 rtx tem;
8433
8434 /* If IN is a paradoxical SUBREG, remove it and try to put the
8435 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8436 if (!strip_paradoxical_subreg (&in, &out))
8437 strip_paradoxical_subreg (&out, &in);
8438
8439 /* How to do this reload can get quite tricky. Normally, we are being
8440 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8441 register that didn't get a hard register. In that case we can just
8442 call emit_move_insn.
8443
8444 We can also be asked to reload a PLUS that adds a register or a MEM to
8445 another register, constant or MEM. This can occur during frame pointer
8446 elimination and while reloading addresses. This case is handled by
8447 trying to emit a single insn to perform the add. If it is not valid,
8448 we use a two insn sequence.
8449
8450 Or we can be asked to reload an unary operand that was a fragment of
8451 an addressing mode, into a register. If it isn't recognized as-is,
8452 we try making the unop operand and the reload-register the same:
8453 (set reg:X (unop:X expr:Y))
8454 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8455
8456 Finally, we could be called to handle an 'o' constraint by putting
8457 an address into a register. In that case, we first try to do this
8458 with a named pattern of "reload_load_address". If no such pattern
8459 exists, we just emit a SET insn and hope for the best (it will normally
8460 be valid on machines that use 'o').
8461
8462 This entire process is made complex because reload will never
8463 process the insns we generate here and so we must ensure that
8464 they will fit their constraints and also by the fact that parts of
8465 IN might be being reloaded separately and replaced with spill registers.
8466 Because of this, we are, in some sense, just guessing the right approach
8467 here. The one listed above seems to work.
8468
8469 ??? At some point, this whole thing needs to be rethought. */
8470
8471 if (GET_CODE (in) == PLUS
8472 && (REG_P (XEXP (in, 0))
8473 || GET_CODE (XEXP (in, 0)) == SUBREG
8474 || MEM_P (XEXP (in, 0)))
8475 && (REG_P (XEXP (in, 1))
8476 || GET_CODE (XEXP (in, 1)) == SUBREG
8477 || CONSTANT_P (XEXP (in, 1))
8478 || MEM_P (XEXP (in, 1))))
8479 {
8480 /* We need to compute the sum of a register or a MEM and another
8481 register, constant, or MEM, and put it into the reload
8482 register. The best possible way of doing this is if the machine
8483 has a three-operand ADD insn that accepts the required operands.
8484
8485 The simplest approach is to try to generate such an insn and see if it
8486 is recognized and matches its constraints. If so, it can be used.
8487
8488 It might be better not to actually emit the insn unless it is valid,
8489 but we need to pass the insn as an operand to `recog' and
8490 `extract_insn' and it is simpler to emit and then delete the insn if
8491 not valid than to dummy things up. */
8492
8493 rtx op0, op1, tem, insn;
8494 enum insn_code code;
8495
8496 op0 = find_replacement (&XEXP (in, 0));
8497 op1 = find_replacement (&XEXP (in, 1));
8498
8499 /* Since constraint checking is strict, commutativity won't be
8500 checked, so we need to do that here to avoid spurious failure
8501 if the add instruction is two-address and the second operand
8502 of the add is the same as the reload reg, which is frequently
8503 the case. If the insn would be A = B + A, rearrange it so
8504 it will be A = A + B as constrain_operands expects. */
8505
8506 if (REG_P (XEXP (in, 1))
8507 && REGNO (out) == REGNO (XEXP (in, 1)))
8508 tem = op0, op0 = op1, op1 = tem;
8509
8510 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8511 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8512
8513 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8514 if (insn)
8515 return insn;
8516
8517 /* If that failed, we must use a conservative two-insn sequence.
8518
8519 Use a move to copy one operand into the reload register. Prefer
8520 to reload a constant, MEM or pseudo since the move patterns can
8521 handle an arbitrary operand. If OP1 is not a constant, MEM or
8522 pseudo and OP1 is not a valid operand for an add instruction, then
8523 reload OP1.
8524
8525 After reloading one of the operands into the reload register, add
8526 the reload register to the output register.
8527
8528 If there is another way to do this for a specific machine, a
8529 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8530 we emit below. */
8531
8532 code = optab_handler (add_optab, GET_MODE (out));
8533
8534 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8535 || (REG_P (op1)
8536 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8537 || (code != CODE_FOR_nothing
8538 && !insn_operand_matches (code, 2, op1)))
8539 tem = op0, op0 = op1, op1 = tem;
8540
8541 gen_reload (out, op0, opnum, type);
8542
8543 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8544 This fixes a problem on the 32K where the stack pointer cannot
8545 be used as an operand of an add insn. */
8546
8547 if (rtx_equal_p (op0, op1))
8548 op1 = out;
8549
8550 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8551 if (insn)
8552 {
8553 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8554 set_unique_reg_note (insn, REG_EQUIV, in);
8555 return insn;
8556 }
8557
8558 /* If that failed, copy the address register to the reload register.
8559 Then add the constant to the reload register. */
8560
8561 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8562 gen_reload (out, op1, opnum, type);
8563 insn = emit_insn (gen_add2_insn (out, op0));
8564 set_unique_reg_note (insn, REG_EQUIV, in);
8565 }
8566
8567 #ifdef SECONDARY_MEMORY_NEEDED
8568 /* If we need a memory location to do the move, do it that way. */
8569 else if ((REG_P (in)
8570 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
8571 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
8572 && (REG_P (out)
8573 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
8574 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
8575 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
8576 REGNO_REG_CLASS (reg_or_subregno (out)),
8577 GET_MODE (out)))
8578 {
8579 /* Get the memory to use and rewrite both registers to its mode. */
8580 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8581
8582 if (GET_MODE (loc) != GET_MODE (out))
8583 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
8584
8585 if (GET_MODE (loc) != GET_MODE (in))
8586 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
8587
8588 gen_reload (loc, in, opnum, type);
8589 gen_reload (out, loc, opnum, type);
8590 }
8591 #endif
8592 else if (REG_P (out) && UNARY_P (in))
8593 {
8594 rtx insn;
8595 rtx op1;
8596 rtx out_moded;
8597 rtx set;
8598
8599 op1 = find_replacement (&XEXP (in, 0));
8600 if (op1 != XEXP (in, 0))
8601 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8602
8603 /* First, try a plain SET. */
8604 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8605 if (set)
8606 return set;
8607
8608 /* If that failed, move the inner operand to the reload
8609 register, and try the same unop with the inner expression
8610 replaced with the reload register. */
8611
8612 if (GET_MODE (op1) != GET_MODE (out))
8613 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8614 else
8615 out_moded = out;
8616
8617 gen_reload (out_moded, op1, opnum, type);
8618
8619 insn
8620 = gen_rtx_SET (VOIDmode, out,
8621 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8622 out_moded));
8623 insn = emit_insn_if_valid_for_reload (insn);
8624 if (insn)
8625 {
8626 set_unique_reg_note (insn, REG_EQUIV, in);
8627 return insn;
8628 }
8629
8630 fatal_insn ("failure trying to reload:", set);
8631 }
8632 /* If IN is a simple operand, use gen_move_insn. */
8633 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8634 {
8635 tem = emit_insn (gen_move_insn (out, in));
8636 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8637 mark_jump_label (in, tem, 0);
8638 }
8639
8640 #ifdef HAVE_reload_load_address
8641 else if (HAVE_reload_load_address)
8642 emit_insn (gen_reload_load_address (out, in));
8643 #endif
8644
8645 /* Otherwise, just write (set OUT IN) and hope for the best. */
8646 else
8647 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8648
8649 /* Return the first insn emitted.
8650 We can not just return get_last_insn, because there may have
8651 been multiple instructions emitted. Also note that gen_move_insn may
8652 emit more than one insn itself, so we can not assume that there is one
8653 insn emitted per emit_insn_before call. */
8654
8655 return last ? NEXT_INSN (last) : get_insns ();
8656 }
8657 \f
8658 /* Delete a previously made output-reload whose result we now believe
8659 is not needed. First we double-check.
8660
8661 INSN is the insn now being processed.
8662 LAST_RELOAD_REG is the hard register number for which we want to delete
8663 the last output reload.
8664 J is the reload-number that originally used REG. The caller has made
8665 certain that reload J doesn't use REG any longer for input.
8666 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8667
8668 static void
8669 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8670 {
8671 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8672 rtx reg = spill_reg_stored_to[last_reload_reg];
8673 int k;
8674 int n_occurrences;
8675 int n_inherited = 0;
8676 rtx i1;
8677 rtx substed;
8678 unsigned regno;
8679 int nregs;
8680
8681 /* It is possible that this reload has been only used to set another reload
8682 we eliminated earlier and thus deleted this instruction too. */
8683 if (INSN_DELETED_P (output_reload_insn))
8684 return;
8685
8686 /* Get the raw pseudo-register referred to. */
8687
8688 while (GET_CODE (reg) == SUBREG)
8689 reg = SUBREG_REG (reg);
8690 substed = reg_equiv_memory_loc (REGNO (reg));
8691
8692 /* This is unsafe if the operand occurs more often in the current
8693 insn than it is inherited. */
8694 for (k = n_reloads - 1; k >= 0; k--)
8695 {
8696 rtx reg2 = rld[k].in;
8697 if (! reg2)
8698 continue;
8699 if (MEM_P (reg2) || reload_override_in[k])
8700 reg2 = rld[k].in_reg;
8701 #ifdef AUTO_INC_DEC
8702 if (rld[k].out && ! rld[k].out_reg)
8703 reg2 = XEXP (rld[k].in_reg, 0);
8704 #endif
8705 while (GET_CODE (reg2) == SUBREG)
8706 reg2 = SUBREG_REG (reg2);
8707 if (rtx_equal_p (reg2, reg))
8708 {
8709 if (reload_inherited[k] || reload_override_in[k] || k == j)
8710 n_inherited++;
8711 else
8712 return;
8713 }
8714 }
8715 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8716 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8717 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8718 reg, 0);
8719 if (substed)
8720 n_occurrences += count_occurrences (PATTERN (insn),
8721 eliminate_regs (substed, VOIDmode,
8722 NULL_RTX), 0);
8723 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8724 {
8725 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8726 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8727 }
8728 if (n_occurrences > n_inherited)
8729 return;
8730
8731 regno = REGNO (reg);
8732 if (regno >= FIRST_PSEUDO_REGISTER)
8733 nregs = 1;
8734 else
8735 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8736
8737 /* If the pseudo-reg we are reloading is no longer referenced
8738 anywhere between the store into it and here,
8739 and we're within the same basic block, then the value can only
8740 pass through the reload reg and end up here.
8741 Otherwise, give up--return. */
8742 for (i1 = NEXT_INSN (output_reload_insn);
8743 i1 != insn; i1 = NEXT_INSN (i1))
8744 {
8745 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8746 return;
8747 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8748 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8749 {
8750 /* If this is USE in front of INSN, we only have to check that
8751 there are no more references than accounted for by inheritance. */
8752 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8753 {
8754 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8755 i1 = NEXT_INSN (i1);
8756 }
8757 if (n_occurrences <= n_inherited && i1 == insn)
8758 break;
8759 return;
8760 }
8761 }
8762
8763 /* We will be deleting the insn. Remove the spill reg information. */
8764 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8765 {
8766 spill_reg_store[last_reload_reg + k] = 0;
8767 spill_reg_stored_to[last_reload_reg + k] = 0;
8768 }
8769
8770 /* The caller has already checked that REG dies or is set in INSN.
8771 It has also checked that we are optimizing, and thus some
8772 inaccuracies in the debugging information are acceptable.
8773 So we could just delete output_reload_insn. But in some cases
8774 we can improve the debugging information without sacrificing
8775 optimization - maybe even improving the code: See if the pseudo
8776 reg has been completely replaced with reload regs. If so, delete
8777 the store insn and forget we had a stack slot for the pseudo. */
8778 if (rld[j].out != rld[j].in
8779 && REG_N_DEATHS (REGNO (reg)) == 1
8780 && REG_N_SETS (REGNO (reg)) == 1
8781 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8782 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8783 {
8784 rtx i2;
8785
8786 /* We know that it was used only between here and the beginning of
8787 the current basic block. (We also know that the last use before
8788 INSN was the output reload we are thinking of deleting, but never
8789 mind that.) Search that range; see if any ref remains. */
8790 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8791 {
8792 rtx set = single_set (i2);
8793
8794 /* Uses which just store in the pseudo don't count,
8795 since if they are the only uses, they are dead. */
8796 if (set != 0 && SET_DEST (set) == reg)
8797 continue;
8798 if (LABEL_P (i2)
8799 || JUMP_P (i2))
8800 break;
8801 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8802 && reg_mentioned_p (reg, PATTERN (i2)))
8803 {
8804 /* Some other ref remains; just delete the output reload we
8805 know to be dead. */
8806 delete_address_reloads (output_reload_insn, insn);
8807 delete_insn (output_reload_insn);
8808 return;
8809 }
8810 }
8811
8812 /* Delete the now-dead stores into this pseudo. Note that this
8813 loop also takes care of deleting output_reload_insn. */
8814 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8815 {
8816 rtx set = single_set (i2);
8817
8818 if (set != 0 && SET_DEST (set) == reg)
8819 {
8820 delete_address_reloads (i2, insn);
8821 delete_insn (i2);
8822 }
8823 if (LABEL_P (i2)
8824 || JUMP_P (i2))
8825 break;
8826 }
8827
8828 /* For the debugging info, say the pseudo lives in this reload reg. */
8829 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8830 if (ira_conflicts_p)
8831 /* Inform IRA about the change. */
8832 ira_mark_allocation_change (REGNO (reg));
8833 alter_reg (REGNO (reg), -1, false);
8834 }
8835 else
8836 {
8837 delete_address_reloads (output_reload_insn, insn);
8838 delete_insn (output_reload_insn);
8839 }
8840 }
8841
8842 /* We are going to delete DEAD_INSN. Recursively delete loads of
8843 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8844 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8845 static void
8846 delete_address_reloads (rtx dead_insn, rtx current_insn)
8847 {
8848 rtx set = single_set (dead_insn);
8849 rtx set2, dst, prev, next;
8850 if (set)
8851 {
8852 rtx dst = SET_DEST (set);
8853 if (MEM_P (dst))
8854 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8855 }
8856 /* If we deleted the store from a reloaded post_{in,de}c expression,
8857 we can delete the matching adds. */
8858 prev = PREV_INSN (dead_insn);
8859 next = NEXT_INSN (dead_insn);
8860 if (! prev || ! next)
8861 return;
8862 set = single_set (next);
8863 set2 = single_set (prev);
8864 if (! set || ! set2
8865 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8866 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8867 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8868 return;
8869 dst = SET_DEST (set);
8870 if (! rtx_equal_p (dst, SET_DEST (set2))
8871 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8872 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8873 || (INTVAL (XEXP (SET_SRC (set), 1))
8874 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8875 return;
8876 delete_related_insns (prev);
8877 delete_related_insns (next);
8878 }
8879
8880 /* Subfunction of delete_address_reloads: process registers found in X. */
8881 static void
8882 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8883 {
8884 rtx prev, set, dst, i2;
8885 int i, j;
8886 enum rtx_code code = GET_CODE (x);
8887
8888 if (code != REG)
8889 {
8890 const char *fmt = GET_RTX_FORMAT (code);
8891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8892 {
8893 if (fmt[i] == 'e')
8894 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8895 else if (fmt[i] == 'E')
8896 {
8897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8898 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8899 current_insn);
8900 }
8901 }
8902 return;
8903 }
8904
8905 if (spill_reg_order[REGNO (x)] < 0)
8906 return;
8907
8908 /* Scan backwards for the insn that sets x. This might be a way back due
8909 to inheritance. */
8910 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8911 {
8912 code = GET_CODE (prev);
8913 if (code == CODE_LABEL || code == JUMP_INSN)
8914 return;
8915 if (!INSN_P (prev))
8916 continue;
8917 if (reg_set_p (x, PATTERN (prev)))
8918 break;
8919 if (reg_referenced_p (x, PATTERN (prev)))
8920 return;
8921 }
8922 if (! prev || INSN_UID (prev) < reload_first_uid)
8923 return;
8924 /* Check that PREV only sets the reload register. */
8925 set = single_set (prev);
8926 if (! set)
8927 return;
8928 dst = SET_DEST (set);
8929 if (!REG_P (dst)
8930 || ! rtx_equal_p (dst, x))
8931 return;
8932 if (! reg_set_p (dst, PATTERN (dead_insn)))
8933 {
8934 /* Check if DST was used in a later insn -
8935 it might have been inherited. */
8936 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8937 {
8938 if (LABEL_P (i2))
8939 break;
8940 if (! INSN_P (i2))
8941 continue;
8942 if (reg_referenced_p (dst, PATTERN (i2)))
8943 {
8944 /* If there is a reference to the register in the current insn,
8945 it might be loaded in a non-inherited reload. If no other
8946 reload uses it, that means the register is set before
8947 referenced. */
8948 if (i2 == current_insn)
8949 {
8950 for (j = n_reloads - 1; j >= 0; j--)
8951 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8952 || reload_override_in[j] == dst)
8953 return;
8954 for (j = n_reloads - 1; j >= 0; j--)
8955 if (rld[j].in && rld[j].reg_rtx == dst)
8956 break;
8957 if (j >= 0)
8958 break;
8959 }
8960 return;
8961 }
8962 if (JUMP_P (i2))
8963 break;
8964 /* If DST is still live at CURRENT_INSN, check if it is used for
8965 any reload. Note that even if CURRENT_INSN sets DST, we still
8966 have to check the reloads. */
8967 if (i2 == current_insn)
8968 {
8969 for (j = n_reloads - 1; j >= 0; j--)
8970 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8971 || reload_override_in[j] == dst)
8972 return;
8973 /* ??? We can't finish the loop here, because dst might be
8974 allocated to a pseudo in this block if no reload in this
8975 block needs any of the classes containing DST - see
8976 spill_hard_reg. There is no easy way to tell this, so we
8977 have to scan till the end of the basic block. */
8978 }
8979 if (reg_set_p (dst, PATTERN (i2)))
8980 break;
8981 }
8982 }
8983 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8984 reg_reloaded_contents[REGNO (dst)] = -1;
8985 delete_insn (prev);
8986 }
8987 \f
8988 /* Output reload-insns to reload VALUE into RELOADREG.
8989 VALUE is an autoincrement or autodecrement RTX whose operand
8990 is a register or memory location;
8991 so reloading involves incrementing that location.
8992 IN is either identical to VALUE, or some cheaper place to reload from.
8993
8994 INC_AMOUNT is the number to increment or decrement by (always positive).
8995 This cannot be deduced from VALUE. */
8996
8997 static void
8998 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
8999 {
9000 /* REG or MEM to be copied and incremented. */
9001 rtx incloc = find_replacement (&XEXP (value, 0));
9002 /* Nonzero if increment after copying. */
9003 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9004 || GET_CODE (value) == POST_MODIFY);
9005 rtx last;
9006 rtx inc;
9007 rtx add_insn;
9008 int code;
9009 rtx real_in = in == value ? incloc : in;
9010
9011 /* No hard register is equivalent to this register after
9012 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9013 we could inc/dec that register as well (maybe even using it for
9014 the source), but I'm not sure it's worth worrying about. */
9015 if (REG_P (incloc))
9016 reg_last_reload_reg[REGNO (incloc)] = 0;
9017
9018 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9019 {
9020 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9021 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9022 }
9023 else
9024 {
9025 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9026 inc_amount = -inc_amount;
9027
9028 inc = GEN_INT (inc_amount);
9029 }
9030
9031 /* If this is post-increment, first copy the location to the reload reg. */
9032 if (post && real_in != reloadreg)
9033 emit_insn (gen_move_insn (reloadreg, real_in));
9034
9035 if (in == value)
9036 {
9037 /* See if we can directly increment INCLOC. Use a method similar to
9038 that in gen_reload. */
9039
9040 last = get_last_insn ();
9041 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9042 gen_rtx_PLUS (GET_MODE (incloc),
9043 incloc, inc)));
9044
9045 code = recog_memoized (add_insn);
9046 if (code >= 0)
9047 {
9048 extract_insn (add_insn);
9049 if (constrain_operands (1))
9050 {
9051 /* If this is a pre-increment and we have incremented the value
9052 where it lives, copy the incremented value to RELOADREG to
9053 be used as an address. */
9054
9055 if (! post)
9056 emit_insn (gen_move_insn (reloadreg, incloc));
9057 return;
9058 }
9059 }
9060 delete_insns_since (last);
9061 }
9062
9063 /* If couldn't do the increment directly, must increment in RELOADREG.
9064 The way we do this depends on whether this is pre- or post-increment.
9065 For pre-increment, copy INCLOC to the reload register, increment it
9066 there, then save back. */
9067
9068 if (! post)
9069 {
9070 if (in != reloadreg)
9071 emit_insn (gen_move_insn (reloadreg, real_in));
9072 emit_insn (gen_add2_insn (reloadreg, inc));
9073 emit_insn (gen_move_insn (incloc, reloadreg));
9074 }
9075 else
9076 {
9077 /* Postincrement.
9078 Because this might be a jump insn or a compare, and because RELOADREG
9079 may not be available after the insn in an input reload, we must do
9080 the incrementation before the insn being reloaded for.
9081
9082 We have already copied IN to RELOADREG. Increment the copy in
9083 RELOADREG, save that back, then decrement RELOADREG so it has
9084 the original value. */
9085
9086 emit_insn (gen_add2_insn (reloadreg, inc));
9087 emit_insn (gen_move_insn (incloc, reloadreg));
9088 if (CONST_INT_P (inc))
9089 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-INTVAL (inc))));
9090 else
9091 emit_insn (gen_sub2_insn (reloadreg, inc));
9092 }
9093 }
9094 \f
9095 #ifdef AUTO_INC_DEC
9096 static void
9097 add_auto_inc_notes (rtx insn, rtx x)
9098 {
9099 enum rtx_code code = GET_CODE (x);
9100 const char *fmt;
9101 int i, j;
9102
9103 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9104 {
9105 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9106 return;
9107 }
9108
9109 /* Scan all the operand sub-expressions. */
9110 fmt = GET_RTX_FORMAT (code);
9111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9112 {
9113 if (fmt[i] == 'e')
9114 add_auto_inc_notes (insn, XEXP (x, i));
9115 else if (fmt[i] == 'E')
9116 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9117 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9118 }
9119 }
9120 #endif