re PR rtl-optimization/7702 (gcc-3.2 optimization problem on a DEC alpha under OSF1)
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
47
48 /* This file contains the reload pass of the compiler, which is
49 run after register allocation has been done. It checks that
50 each insn is valid (operands required to be in registers really
51 are in registers of the proper class) and fixes up invalid ones
52 by copying values temporarily into registers for the insns
53 that need them.
54
55 The results of register allocation are described by the vector
56 reg_renumber; the insns still contain pseudo regs, but reg_renumber
57 can be used to find which hard reg, if any, a pseudo reg is in.
58
59 The technique we always use is to free up a few hard regs that are
60 called ``reload regs'', and for each place where a pseudo reg
61 must be in a hard reg, copy it temporarily into one of the reload regs.
62
63 Reload regs are allocated locally for every instruction that needs
64 reloads. When there are pseudos which are allocated to a register that
65 has been chosen as a reload reg, such pseudos must be ``spilled''.
66 This means that they go to other hard regs, or to stack slots if no other
67 available hard regs can be found. Spilling can invalidate more
68 insns, requiring additional need for reloads, so we must keep checking
69 until the process stabilizes.
70
71 For machines with different classes of registers, we must keep track
72 of the register class needed for each reload, and make sure that
73 we allocate enough reload registers of each class.
74
75 The file reload.c contains the code that checks one insn for
76 validity and reports the reloads that it needs. This file
77 is in charge of scanning the entire rtl code, accumulating the
78 reload needs, spilling, assigning reload registers to use for
79 fixing up each insn, and generating the new insns to copy values
80 into the reload registers. */
81
82 #ifndef REGISTER_MOVE_COST
83 #define REGISTER_MOVE_COST(m, x, y) 2
84 #endif
85
86 #ifndef LOCAL_REGNO
87 #define LOCAL_REGNO(REGNO) 0
88 #endif
89 \f
90 /* During reload_as_needed, element N contains a REG rtx for the hard reg
91 into which reg N has been reloaded (perhaps for a previous insn). */
92 static rtx *reg_last_reload_reg;
93
94 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
95 for an output reload that stores into reg N. */
96 static char *reg_has_output_reload;
97
98 /* Indicates which hard regs are reload-registers for an output reload
99 in the current insn. */
100 static HARD_REG_SET reg_is_output_reload;
101
102 /* Element N is the constant value to which pseudo reg N is equivalent,
103 or zero if pseudo reg N is not equivalent to a constant.
104 find_reloads looks at this in order to replace pseudo reg N
105 with the constant it stands for. */
106 rtx *reg_equiv_constant;
107
108 /* Element N is a memory location to which pseudo reg N is equivalent,
109 prior to any register elimination (such as frame pointer to stack
110 pointer). Depending on whether or not it is a valid address, this value
111 is transferred to either reg_equiv_address or reg_equiv_mem. */
112 rtx *reg_equiv_memory_loc;
113
114 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
115 This is used when the address is not valid as a memory address
116 (because its displacement is too big for the machine.) */
117 rtx *reg_equiv_address;
118
119 /* Element N is the memory slot to which pseudo reg N is equivalent,
120 or zero if pseudo reg N is not equivalent to a memory slot. */
121 rtx *reg_equiv_mem;
122
123 /* Widest width in which each pseudo reg is referred to (via subreg). */
124 static unsigned int *reg_max_ref_width;
125
126 /* Element N is the list of insns that initialized reg N from its equivalent
127 constant or memory slot. */
128 static rtx *reg_equiv_init;
129
130 /* Vector to remember old contents of reg_renumber before spilling. */
131 static short *reg_old_renumber;
132
133 /* During reload_as_needed, element N contains the last pseudo regno reloaded
134 into hard register N. If that pseudo reg occupied more than one register,
135 reg_reloaded_contents points to that pseudo for each spill register in
136 use; all of these must remain set for an inheritance to occur. */
137 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
138
139 /* During reload_as_needed, element N contains the insn for which
140 hard register N was last used. Its contents are significant only
141 when reg_reloaded_valid is set for this register. */
142 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
143
144 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
145 static HARD_REG_SET reg_reloaded_valid;
146 /* Indicate if the register was dead at the end of the reload.
147 This is only valid if reg_reloaded_contents is set and valid. */
148 static HARD_REG_SET reg_reloaded_dead;
149
150 /* Number of spill-regs so far; number of valid elements of spill_regs. */
151 static int n_spills;
152
153 /* In parallel with spill_regs, contains REG rtx's for those regs.
154 Holds the last rtx used for any given reg, or 0 if it has never
155 been used for spilling yet. This rtx is reused, provided it has
156 the proper mode. */
157 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
158
159 /* In parallel with spill_regs, contains nonzero for a spill reg
160 that was stored after the last time it was used.
161 The precise value is the insn generated to do the store. */
162 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
163
164 /* This is the register that was stored with spill_reg_store. This is a
165 copy of reload_out / reload_out_reg when the value was stored; if
166 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
167 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
168
169 /* This table is the inverse mapping of spill_regs:
170 indexed by hard reg number,
171 it contains the position of that reg in spill_regs,
172 or -1 for something that is not in spill_regs.
173
174 ?!? This is no longer accurate. */
175 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
176
177 /* This reg set indicates registers that can't be used as spill registers for
178 the currently processed insn. These are the hard registers which are live
179 during the insn, but not allocated to pseudos, as well as fixed
180 registers. */
181 static HARD_REG_SET bad_spill_regs;
182
183 /* These are the hard registers that can't be used as spill register for any
184 insn. This includes registers used for user variables and registers that
185 we can't eliminate. A register that appears in this set also can't be used
186 to retry register allocation. */
187 static HARD_REG_SET bad_spill_regs_global;
188
189 /* Describes order of use of registers for reloading
190 of spilled pseudo-registers. `n_spills' is the number of
191 elements that are actually valid; new ones are added at the end.
192
193 Both spill_regs and spill_reg_order are used on two occasions:
194 once during find_reload_regs, where they keep track of the spill registers
195 for a single insn, but also during reload_as_needed where they show all
196 the registers ever used by reload. For the latter case, the information
197 is calculated during finish_spills. */
198 static short spill_regs[FIRST_PSEUDO_REGISTER];
199
200 /* This vector of reg sets indicates, for each pseudo, which hard registers
201 may not be used for retrying global allocation because the register was
202 formerly spilled from one of them. If we allowed reallocating a pseudo to
203 a register that it was already allocated to, reload might not
204 terminate. */
205 static HARD_REG_SET *pseudo_previous_regs;
206
207 /* This vector of reg sets indicates, for each pseudo, which hard
208 registers may not be used for retrying global allocation because they
209 are used as spill registers during one of the insns in which the
210 pseudo is live. */
211 static HARD_REG_SET *pseudo_forbidden_regs;
212
213 /* All hard regs that have been used as spill registers for any insn are
214 marked in this set. */
215 static HARD_REG_SET used_spill_regs;
216
217 /* Index of last register assigned as a spill register. We allocate in
218 a round-robin fashion. */
219 static int last_spill_reg;
220
221 /* Nonzero if indirect addressing is supported on the machine; this means
222 that spilling (REG n) does not require reloading it into a register in
223 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
224 value indicates the level of indirect addressing supported, e.g., two
225 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
226 a hard register. */
227 static char spill_indirect_levels;
228
229 /* Nonzero if indirect addressing is supported when the innermost MEM is
230 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
231 which these are valid is the same as spill_indirect_levels, above. */
232 char indirect_symref_ok;
233
234 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
235 char double_reg_address_ok;
236
237 /* Record the stack slot for each spilled hard register. */
238 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
239
240 /* Width allocated so far for that stack slot. */
241 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
242
243 /* Record which pseudos needed to be spilled. */
244 static regset_head spilled_pseudos;
245
246 /* Used for communication between order_regs_for_reload and count_pseudo.
247 Used to avoid counting one pseudo twice. */
248 static regset_head pseudos_counted;
249
250 /* First uid used by insns created by reload in this function.
251 Used in find_equiv_reg. */
252 int reload_first_uid;
253
254 /* Flag set by local-alloc or global-alloc if anything is live in
255 a call-clobbered reg across calls. */
256 int caller_save_needed;
257
258 /* Set to 1 while reload_as_needed is operating.
259 Required by some machines to handle any generated moves differently. */
260 int reload_in_progress = 0;
261
262 /* These arrays record the insn_code of insns that may be needed to
263 perform input and output reloads of special objects. They provide a
264 place to pass a scratch register. */
265 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
266 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
267
268 /* This obstack is used for allocation of rtl during register elimination.
269 The allocated storage can be freed once find_reloads has processed the
270 insn. */
271 struct obstack reload_obstack;
272
273 /* Points to the beginning of the reload_obstack. All insn_chain structures
274 are allocated first. */
275 char *reload_startobj;
276
277 /* The point after all insn_chain structures. Used to quickly deallocate
278 memory allocated in copy_reloads during calculate_needs_all_insns. */
279 char *reload_firstobj;
280
281 /* This points before all local rtl generated by register elimination.
282 Used to quickly free all memory after processing one insn. */
283 static char *reload_insn_firstobj;
284
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
288
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
294
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
297 \f
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
302
303 struct elim_table
304 {
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Nonzero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
320 };
321
322 static struct elim_table *reg_eliminate = 0;
323
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static const struct elim_table_1
327 {
328 const int from;
329 const int to;
330 } reg_eliminate_1[] =
331
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
335
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
341
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
343
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If nonzero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
348
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
354
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the difference of the
358 number of the label and the first label number. We can't offset the
359 pointer itself as this can cause problems on machines with segmented
360 memory. The first table is an array of flags that records whether we
361 have yet encountered a label and the second table is an array of arrays,
362 one entry in the latter array for each elimination. */
363
364 static int first_label_num;
365 static char *offsets_known_at;
366 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
367
368 /* Number of labels in the current function. */
369
370 static int num_labels;
371 \f
372 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
373 enum machine_mode,
374 rtx));
375 static void maybe_fix_stack_asms PARAMS ((void));
376 static void copy_reloads PARAMS ((struct insn_chain *));
377 static void calculate_needs_all_insns PARAMS ((int));
378 static int find_reg PARAMS ((struct insn_chain *, int));
379 static void find_reload_regs PARAMS ((struct insn_chain *));
380 static void select_reload_regs PARAMS ((void));
381 static void delete_caller_save_insns PARAMS ((void));
382
383 static void spill_failure PARAMS ((rtx, enum reg_class));
384 static void count_spilled_pseudo PARAMS ((int, int, int));
385 static void delete_dead_insn PARAMS ((rtx));
386 static void alter_reg PARAMS ((int, int));
387 static void set_label_offsets PARAMS ((rtx, rtx, int));
388 static void check_eliminable_occurrences PARAMS ((rtx));
389 static void elimination_effects PARAMS ((rtx, enum machine_mode));
390 static int eliminate_regs_in_insn PARAMS ((rtx, int));
391 static void update_eliminable_offsets PARAMS ((void));
392 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
393 static void set_initial_elim_offsets PARAMS ((void));
394 static void verify_initial_elim_offsets PARAMS ((void));
395 static void set_initial_label_offsets PARAMS ((void));
396 static void set_offsets_for_label PARAMS ((rtx));
397 static void init_elim_table PARAMS ((void));
398 static void update_eliminables PARAMS ((HARD_REG_SET *));
399 static void spill_hard_reg PARAMS ((unsigned int, int));
400 static int finish_spills PARAMS ((int));
401 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
402 static void scan_paradoxical_subregs PARAMS ((rtx));
403 static void count_pseudo PARAMS ((int));
404 static void order_regs_for_reload PARAMS ((struct insn_chain *));
405 static void reload_as_needed PARAMS ((int));
406 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
407 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
408 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
412 enum reload_type,
413 enum machine_mode));
414 static int reload_reg_free_p PARAMS ((unsigned int, int,
415 enum reload_type));
416 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
417 enum reload_type,
418 rtx, rtx, int, int));
419 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
420 enum reload_type, rtx, rtx,
421 int, int));
422 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
423 enum reload_type));
424 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
425 int));
426 static int conflicts_with_override PARAMS ((rtx));
427 static void failed_reload PARAMS ((rtx, int));
428 static int set_reload_reg PARAMS ((int, int));
429 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
430 static void choose_reload_regs PARAMS ((struct insn_chain *));
431 static void merge_assigned_reloads PARAMS ((rtx));
432 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
433 struct reload *, rtx, int));
434 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
435 struct reload *, int));
436 static void do_input_reload PARAMS ((struct insn_chain *,
437 struct reload *, int));
438 static void do_output_reload PARAMS ((struct insn_chain *,
439 struct reload *, int));
440 static void emit_reload_insns PARAMS ((struct insn_chain *));
441 static void delete_output_reload PARAMS ((rtx, int, int));
442 static void delete_address_reloads PARAMS ((rtx, rtx));
443 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
444 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
445 static void reload_cse_regs_1 PARAMS ((rtx));
446 static int reload_cse_noop_set_p PARAMS ((rtx));
447 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
448 static int reload_cse_simplify_operands PARAMS ((rtx, rtx));
449 static void reload_combine PARAMS ((void));
450 static void reload_combine_note_use PARAMS ((rtx *, rtx));
451 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
452 static void reload_cse_move2add PARAMS ((rtx));
453 static void move2add_note_store PARAMS ((rtx, rtx, void *));
454 #ifdef AUTO_INC_DEC
455 static void add_auto_inc_notes PARAMS ((rtx, rtx));
456 #endif
457 static void copy_eh_notes PARAMS ((rtx, rtx));
458 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
459 HOST_WIDE_INT));
460 static void failed_reload PARAMS ((rtx, int));
461 static int set_reload_reg PARAMS ((int, int));
462 static void reload_cse_simplify PARAMS ((rtx, rtx));
463 void fixup_abnormal_edges PARAMS ((void));
464 extern void dump_needs PARAMS ((struct insn_chain *));
465 \f
466 /* Initialize the reload pass once per compilation. */
467
468 void
469 init_reload ()
470 {
471 int i;
472
473 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
474 Set spill_indirect_levels to the number of levels such addressing is
475 permitted, zero if it is not permitted at all. */
476
477 rtx tem
478 = gen_rtx_MEM (Pmode,
479 gen_rtx_PLUS (Pmode,
480 gen_rtx_REG (Pmode,
481 LAST_VIRTUAL_REGISTER + 1),
482 GEN_INT (4)));
483 spill_indirect_levels = 0;
484
485 while (memory_address_p (QImode, tem))
486 {
487 spill_indirect_levels++;
488 tem = gen_rtx_MEM (Pmode, tem);
489 }
490
491 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
492
493 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
494 indirect_symref_ok = memory_address_p (QImode, tem);
495
496 /* See if reg+reg is a valid (and offsettable) address. */
497
498 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
499 {
500 tem = gen_rtx_PLUS (Pmode,
501 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
502 gen_rtx_REG (Pmode, i));
503
504 /* This way, we make sure that reg+reg is an offsettable address. */
505 tem = plus_constant (tem, 4);
506
507 if (memory_address_p (QImode, tem))
508 {
509 double_reg_address_ok = 1;
510 break;
511 }
512 }
513
514 /* Initialize obstack for our rtl allocation. */
515 gcc_obstack_init (&reload_obstack);
516 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
517
518 INIT_REG_SET (&spilled_pseudos);
519 INIT_REG_SET (&pseudos_counted);
520 }
521
522 /* List of insn chains that are currently unused. */
523 static struct insn_chain *unused_insn_chains = 0;
524
525 /* Allocate an empty insn_chain structure. */
526 struct insn_chain *
527 new_insn_chain ()
528 {
529 struct insn_chain *c;
530
531 if (unused_insn_chains == 0)
532 {
533 c = (struct insn_chain *)
534 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
535 INIT_REG_SET (&c->live_throughout);
536 INIT_REG_SET (&c->dead_or_set);
537 }
538 else
539 {
540 c = unused_insn_chains;
541 unused_insn_chains = c->next;
542 }
543 c->is_caller_save_insn = 0;
544 c->need_operand_change = 0;
545 c->need_reload = 0;
546 c->need_elim = 0;
547 return c;
548 }
549
550 /* Small utility function to set all regs in hard reg set TO which are
551 allocated to pseudos in regset FROM. */
552
553 void
554 compute_use_by_pseudos (to, from)
555 HARD_REG_SET *to;
556 regset from;
557 {
558 unsigned int regno;
559
560 EXECUTE_IF_SET_IN_REG_SET
561 (from, FIRST_PSEUDO_REGISTER, regno,
562 {
563 int r = reg_renumber[regno];
564 int nregs;
565
566 if (r < 0)
567 {
568 /* reload_combine uses the information from
569 BASIC_BLOCK->global_live_at_start, which might still
570 contain registers that have not actually been allocated
571 since they have an equivalence. */
572 if (! reload_completed)
573 abort ();
574 }
575 else
576 {
577 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
578 while (nregs-- > 0)
579 SET_HARD_REG_BIT (*to, r + nregs);
580 }
581 });
582 }
583
584 /* Replace all pseudos found in LOC with their corresponding
585 equivalences. */
586
587 static void
588 replace_pseudos_in_call_usage (loc, mem_mode, usage)
589 rtx *loc;
590 enum machine_mode mem_mode;
591 rtx usage;
592 {
593 rtx x = *loc;
594 enum rtx_code code;
595 const char *fmt;
596 int i, j;
597
598 if (! x)
599 return;
600
601 code = GET_CODE (x);
602 if (code == REG)
603 {
604 unsigned int regno = REGNO (x);
605
606 if (regno < FIRST_PSEUDO_REGISTER)
607 return;
608
609 x = eliminate_regs (x, mem_mode, usage);
610 if (x != *loc)
611 {
612 *loc = x;
613 replace_pseudos_in_call_usage (loc, mem_mode, usage);
614 return;
615 }
616
617 if (reg_equiv_constant[regno])
618 *loc = reg_equiv_constant[regno];
619 else if (reg_equiv_mem[regno])
620 *loc = reg_equiv_mem[regno];
621 else if (reg_equiv_address[regno])
622 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
623 else if (GET_CODE (regno_reg_rtx[regno]) != REG
624 || REGNO (regno_reg_rtx[regno]) != regno)
625 *loc = regno_reg_rtx[regno];
626 else
627 abort ();
628
629 return;
630 }
631 else if (code == MEM)
632 {
633 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
634 return;
635 }
636
637 /* Process each of our operands recursively. */
638 fmt = GET_RTX_FORMAT (code);
639 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
640 if (*fmt == 'e')
641 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
642 else if (*fmt == 'E')
643 for (j = 0; j < XVECLEN (x, i); j++)
644 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
645 }
646
647 \f
648 /* Global variables used by reload and its subroutines. */
649
650 /* Set during calculate_needs if an insn needs register elimination. */
651 static int something_needs_elimination;
652 /* Set during calculate_needs if an insn needs an operand changed. */
653 int something_needs_operands_changed;
654
655 /* Nonzero means we couldn't get enough spill regs. */
656 static int failure;
657
658 /* Main entry point for the reload pass.
659
660 FIRST is the first insn of the function being compiled.
661
662 GLOBAL nonzero means we were called from global_alloc
663 and should attempt to reallocate any pseudoregs that we
664 displace from hard regs we will use for reloads.
665 If GLOBAL is zero, we do not have enough information to do that,
666 so any pseudo reg that is spilled must go to the stack.
667
668 Return value is nonzero if reload failed
669 and we must not do any more for this function. */
670
671 int
672 reload (first, global)
673 rtx first;
674 int global;
675 {
676 int i;
677 rtx insn;
678 struct elim_table *ep;
679 basic_block bb;
680
681 /* Make sure even insns with volatile mem refs are recognizable. */
682 init_recog ();
683
684 failure = 0;
685
686 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
687
688 /* Make sure that the last insn in the chain
689 is not something that needs reloading. */
690 emit_note (NULL, NOTE_INSN_DELETED);
691
692 /* Enable find_equiv_reg to distinguish insns made by reload. */
693 reload_first_uid = get_max_uid ();
694
695 #ifdef SECONDARY_MEMORY_NEEDED
696 /* Initialize the secondary memory table. */
697 clear_secondary_mem ();
698 #endif
699
700 /* We don't have a stack slot for any spill reg yet. */
701 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
702 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
703
704 /* Initialize the save area information for caller-save, in case some
705 are needed. */
706 init_save_areas ();
707
708 /* Compute which hard registers are now in use
709 as homes for pseudo registers.
710 This is done here rather than (eg) in global_alloc
711 because this point is reached even if not optimizing. */
712 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
713 mark_home_live (i);
714
715 /* A function that receives a nonlocal goto must save all call-saved
716 registers. */
717 if (current_function_has_nonlocal_label)
718 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
719 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
720 regs_ever_live[i] = 1;
721
722 /* Find all the pseudo registers that didn't get hard regs
723 but do have known equivalent constants or memory slots.
724 These include parameters (known equivalent to parameter slots)
725 and cse'd or loop-moved constant memory addresses.
726
727 Record constant equivalents in reg_equiv_constant
728 so they will be substituted by find_reloads.
729 Record memory equivalents in reg_mem_equiv so they can
730 be substituted eventually by altering the REG-rtx's. */
731
732 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
733 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
734 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
735 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
737 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
738 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
739 pseudo_forbidden_regs
740 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
741 pseudo_previous_regs
742 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
743
744 CLEAR_HARD_REG_SET (bad_spill_regs_global);
745
746 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
747 Also find all paradoxical subregs and find largest such for each pseudo.
748 On machines with small register classes, record hard registers that
749 are used for user variables. These can never be used for spills.
750 Also look for a "constant" REG_SETJMP. This means that all
751 caller-saved registers must be marked live. */
752
753 num_eliminable_invariants = 0;
754 for (insn = first; insn; insn = NEXT_INSN (insn))
755 {
756 rtx set = single_set (insn);
757
758 /* We may introduce USEs that we want to remove at the end, so
759 we'll mark them with QImode. Make sure there are no
760 previously-marked insns left by say regmove. */
761 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
762 && GET_MODE (insn) != VOIDmode)
763 PUT_MODE (insn, VOIDmode);
764
765 if (GET_CODE (insn) == CALL_INSN
766 && find_reg_note (insn, REG_SETJMP, NULL))
767 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
768 if (! call_used_regs[i])
769 regs_ever_live[i] = 1;
770
771 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
772 {
773 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
774 if (note
775 #ifdef LEGITIMATE_PIC_OPERAND_P
776 && (! function_invariant_p (XEXP (note, 0))
777 || ! flag_pic
778 /* A function invariant is often CONSTANT_P but may
779 include a register. We promise to only pass
780 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
781 || (CONSTANT_P (XEXP (note, 0))
782 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
783 #endif
784 )
785 {
786 rtx x = XEXP (note, 0);
787 i = REGNO (SET_DEST (set));
788 if (i > LAST_VIRTUAL_REGISTER)
789 {
790 /* It can happen that a REG_EQUIV note contains a MEM
791 that is not a legitimate memory operand. As later
792 stages of reload assume that all addresses found
793 in the reg_equiv_* arrays were originally legitimate,
794 we ignore such REG_EQUIV notes. */
795 if (memory_operand (x, VOIDmode))
796 {
797 /* Always unshare the equivalence, so we can
798 substitute into this insn without touching the
799 equivalence. */
800 reg_equiv_memory_loc[i] = copy_rtx (x);
801 }
802 else if (function_invariant_p (x))
803 {
804 if (GET_CODE (x) == PLUS)
805 {
806 /* This is PLUS of frame pointer and a constant,
807 and might be shared. Unshare it. */
808 reg_equiv_constant[i] = copy_rtx (x);
809 num_eliminable_invariants++;
810 }
811 else if (x == frame_pointer_rtx
812 || x == arg_pointer_rtx)
813 {
814 reg_equiv_constant[i] = x;
815 num_eliminable_invariants++;
816 }
817 else if (LEGITIMATE_CONSTANT_P (x))
818 reg_equiv_constant[i] = x;
819 else
820 {
821 reg_equiv_memory_loc[i]
822 = force_const_mem (GET_MODE (SET_DEST (set)), x);
823 if (!reg_equiv_memory_loc[i])
824 continue;
825 }
826 }
827 else
828 continue;
829
830 /* If this register is being made equivalent to a MEM
831 and the MEM is not SET_SRC, the equivalencing insn
832 is one with the MEM as a SET_DEST and it occurs later.
833 So don't mark this insn now. */
834 if (GET_CODE (x) != MEM
835 || rtx_equal_p (SET_SRC (set), x))
836 reg_equiv_init[i]
837 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
838 }
839 }
840 }
841
842 /* If this insn is setting a MEM from a register equivalent to it,
843 this is the equivalencing insn. */
844 else if (set && GET_CODE (SET_DEST (set)) == MEM
845 && GET_CODE (SET_SRC (set)) == REG
846 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
847 && rtx_equal_p (SET_DEST (set),
848 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
849 reg_equiv_init[REGNO (SET_SRC (set))]
850 = gen_rtx_INSN_LIST (VOIDmode, insn,
851 reg_equiv_init[REGNO (SET_SRC (set))]);
852
853 if (INSN_P (insn))
854 scan_paradoxical_subregs (PATTERN (insn));
855 }
856
857 init_elim_table ();
858
859 first_label_num = get_first_label_num ();
860 num_labels = max_label_num () - first_label_num;
861
862 /* Allocate the tables used to store offset information at labels. */
863 /* We used to use alloca here, but the size of what it would try to
864 allocate would occasionally cause it to exceed the stack limit and
865 cause a core dump. */
866 offsets_known_at = xmalloc (num_labels);
867 offsets_at
868 = (int (*)[NUM_ELIMINABLE_REGS])
869 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
870
871 /* Alter each pseudo-reg rtx to contain its hard reg number.
872 Assign stack slots to the pseudos that lack hard regs or equivalents.
873 Do not touch virtual registers. */
874
875 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
876 alter_reg (i, -1);
877
878 /* If we have some registers we think can be eliminated, scan all insns to
879 see if there is an insn that sets one of these registers to something
880 other than itself plus a constant. If so, the register cannot be
881 eliminated. Doing this scan here eliminates an extra pass through the
882 main reload loop in the most common case where register elimination
883 cannot be done. */
884 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
885 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
886 || GET_CODE (insn) == CALL_INSN)
887 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
888
889 maybe_fix_stack_asms ();
890
891 insns_need_reload = 0;
892 something_needs_elimination = 0;
893
894 /* Initialize to -1, which means take the first spill register. */
895 last_spill_reg = -1;
896
897 /* Spill any hard regs that we know we can't eliminate. */
898 CLEAR_HARD_REG_SET (used_spill_regs);
899 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
900 if (! ep->can_eliminate)
901 spill_hard_reg (ep->from, 1);
902
903 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
904 if (frame_pointer_needed)
905 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
906 #endif
907 finish_spills (global);
908
909 /* From now on, we may need to generate moves differently. We may also
910 allow modifications of insns which cause them to not be recognized.
911 Any such modifications will be cleaned up during reload itself. */
912 reload_in_progress = 1;
913
914 /* This loop scans the entire function each go-round
915 and repeats until one repetition spills no additional hard regs. */
916 for (;;)
917 {
918 int something_changed;
919 int did_spill;
920
921 HOST_WIDE_INT starting_frame_size;
922
923 /* Round size of stack frame to stack_alignment_needed. This must be done
924 here because the stack size may be a part of the offset computation
925 for register elimination, and there might have been new stack slots
926 created in the last iteration of this loop. */
927 if (cfun->stack_alignment_needed)
928 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
929
930 starting_frame_size = get_frame_size ();
931
932 set_initial_elim_offsets ();
933 set_initial_label_offsets ();
934
935 /* For each pseudo register that has an equivalent location defined,
936 try to eliminate any eliminable registers (such as the frame pointer)
937 assuming initial offsets for the replacement register, which
938 is the normal case.
939
940 If the resulting location is directly addressable, substitute
941 the MEM we just got directly for the old REG.
942
943 If it is not addressable but is a constant or the sum of a hard reg
944 and constant, it is probably not addressable because the constant is
945 out of range, in that case record the address; we will generate
946 hairy code to compute the address in a register each time it is
947 needed. Similarly if it is a hard register, but one that is not
948 valid as an address register.
949
950 If the location is not addressable, but does not have one of the
951 above forms, assign a stack slot. We have to do this to avoid the
952 potential of producing lots of reloads if, e.g., a location involves
953 a pseudo that didn't get a hard register and has an equivalent memory
954 location that also involves a pseudo that didn't get a hard register.
955
956 Perhaps at some point we will improve reload_when_needed handling
957 so this problem goes away. But that's very hairy. */
958
959 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
960 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
961 {
962 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
963
964 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
965 XEXP (x, 0)))
966 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
967 else if (CONSTANT_P (XEXP (x, 0))
968 || (GET_CODE (XEXP (x, 0)) == REG
969 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
970 || (GET_CODE (XEXP (x, 0)) == PLUS
971 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
972 && (REGNO (XEXP (XEXP (x, 0), 0))
973 < FIRST_PSEUDO_REGISTER)
974 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
975 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
976 else
977 {
978 /* Make a new stack slot. Then indicate that something
979 changed so we go back and recompute offsets for
980 eliminable registers because the allocation of memory
981 below might change some offset. reg_equiv_{mem,address}
982 will be set up for this pseudo on the next pass around
983 the loop. */
984 reg_equiv_memory_loc[i] = 0;
985 reg_equiv_init[i] = 0;
986 alter_reg (i, -1);
987 }
988 }
989
990 if (caller_save_needed)
991 setup_save_areas ();
992
993 /* If we allocated another stack slot, redo elimination bookkeeping. */
994 if (starting_frame_size != get_frame_size ())
995 continue;
996
997 if (caller_save_needed)
998 {
999 save_call_clobbered_regs ();
1000 /* That might have allocated new insn_chain structures. */
1001 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1002 }
1003
1004 calculate_needs_all_insns (global);
1005
1006 CLEAR_REG_SET (&spilled_pseudos);
1007 did_spill = 0;
1008
1009 something_changed = 0;
1010
1011 /* If we allocated any new memory locations, make another pass
1012 since it might have changed elimination offsets. */
1013 if (starting_frame_size != get_frame_size ())
1014 something_changed = 1;
1015
1016 {
1017 HARD_REG_SET to_spill;
1018 CLEAR_HARD_REG_SET (to_spill);
1019 update_eliminables (&to_spill);
1020 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1021 if (TEST_HARD_REG_BIT (to_spill, i))
1022 {
1023 spill_hard_reg (i, 1);
1024 did_spill = 1;
1025
1026 /* Regardless of the state of spills, if we previously had
1027 a register that we thought we could eliminate, but now can
1028 not eliminate, we must run another pass.
1029
1030 Consider pseudos which have an entry in reg_equiv_* which
1031 reference an eliminable register. We must make another pass
1032 to update reg_equiv_* so that we do not substitute in the
1033 old value from when we thought the elimination could be
1034 performed. */
1035 something_changed = 1;
1036 }
1037 }
1038
1039 select_reload_regs ();
1040 if (failure)
1041 goto failed;
1042
1043 if (insns_need_reload != 0 || did_spill)
1044 something_changed |= finish_spills (global);
1045
1046 if (! something_changed)
1047 break;
1048
1049 if (caller_save_needed)
1050 delete_caller_save_insns ();
1051
1052 obstack_free (&reload_obstack, reload_firstobj);
1053 }
1054
1055 /* If global-alloc was run, notify it of any register eliminations we have
1056 done. */
1057 if (global)
1058 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1059 if (ep->can_eliminate)
1060 mark_elimination (ep->from, ep->to);
1061
1062 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1063 If that insn didn't set the register (i.e., it copied the register to
1064 memory), just delete that insn instead of the equivalencing insn plus
1065 anything now dead. If we call delete_dead_insn on that insn, we may
1066 delete the insn that actually sets the register if the register dies
1067 there and that is incorrect. */
1068
1069 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1070 {
1071 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1072 {
1073 rtx list;
1074 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1075 {
1076 rtx equiv_insn = XEXP (list, 0);
1077
1078 /* If we already deleted the insn or if it may trap, we can't
1079 delete it. The latter case shouldn't happen, but can
1080 if an insn has a variable address, gets a REG_EH_REGION
1081 note added to it, and then gets converted into an load
1082 from a constant address. */
1083 if (GET_CODE (equiv_insn) == NOTE
1084 || can_throw_internal (equiv_insn))
1085 ;
1086 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1087 delete_dead_insn (equiv_insn);
1088 else
1089 {
1090 PUT_CODE (equiv_insn, NOTE);
1091 NOTE_SOURCE_FILE (equiv_insn) = 0;
1092 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1093 }
1094 }
1095 }
1096 }
1097
1098 /* Use the reload registers where necessary
1099 by generating move instructions to move the must-be-register
1100 values into or out of the reload registers. */
1101
1102 if (insns_need_reload != 0 || something_needs_elimination
1103 || something_needs_operands_changed)
1104 {
1105 HOST_WIDE_INT old_frame_size = get_frame_size ();
1106
1107 reload_as_needed (global);
1108
1109 if (old_frame_size != get_frame_size ())
1110 abort ();
1111
1112 if (num_eliminable)
1113 verify_initial_elim_offsets ();
1114 }
1115
1116 /* If we were able to eliminate the frame pointer, show that it is no
1117 longer live at the start of any basic block. If it ls live by
1118 virtue of being in a pseudo, that pseudo will be marked live
1119 and hence the frame pointer will be known to be live via that
1120 pseudo. */
1121
1122 if (! frame_pointer_needed)
1123 FOR_EACH_BB (bb)
1124 CLEAR_REGNO_REG_SET (bb->global_live_at_start,
1125 HARD_FRAME_POINTER_REGNUM);
1126
1127 /* Come here (with failure set nonzero) if we can't get enough spill regs
1128 and we decide not to abort about it. */
1129 failed:
1130
1131 CLEAR_REG_SET (&spilled_pseudos);
1132 reload_in_progress = 0;
1133
1134 /* Now eliminate all pseudo regs by modifying them into
1135 their equivalent memory references.
1136 The REG-rtx's for the pseudos are modified in place,
1137 so all insns that used to refer to them now refer to memory.
1138
1139 For a reg that has a reg_equiv_address, all those insns
1140 were changed by reloading so that no insns refer to it any longer;
1141 but the DECL_RTL of a variable decl may refer to it,
1142 and if so this causes the debugging info to mention the variable. */
1143
1144 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1145 {
1146 rtx addr = 0;
1147
1148 if (reg_equiv_mem[i])
1149 addr = XEXP (reg_equiv_mem[i], 0);
1150
1151 if (reg_equiv_address[i])
1152 addr = reg_equiv_address[i];
1153
1154 if (addr)
1155 {
1156 if (reg_renumber[i] < 0)
1157 {
1158 rtx reg = regno_reg_rtx[i];
1159
1160 REG_USERVAR_P (reg) = 0;
1161 PUT_CODE (reg, MEM);
1162 XEXP (reg, 0) = addr;
1163 if (reg_equiv_memory_loc[i])
1164 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1165 else
1166 {
1167 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1168 = MEM_SCALAR_P (reg) = 0;
1169 MEM_ATTRS (reg) = 0;
1170 }
1171 }
1172 else if (reg_equiv_mem[i])
1173 XEXP (reg_equiv_mem[i], 0) = addr;
1174 }
1175 }
1176
1177 /* We must set reload_completed now since the cleanup_subreg_operands call
1178 below will re-recognize each insn and reload may have generated insns
1179 which are only valid during and after reload. */
1180 reload_completed = 1;
1181
1182 /* Make a pass over all the insns and delete all USEs which we inserted
1183 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1184 notes. Delete all CLOBBER insns, except those that refer to the return
1185 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1186 from misarranging variable-array code, and simplify (subreg (reg))
1187 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1188 are no longer useful or accurate. Strip and regenerate REG_INC notes
1189 that may have been moved around. */
1190
1191 for (insn = first; insn; insn = NEXT_INSN (insn))
1192 if (INSN_P (insn))
1193 {
1194 rtx *pnote;
1195
1196 if (GET_CODE (insn) == CALL_INSN)
1197 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1198 VOIDmode,
1199 CALL_INSN_FUNCTION_USAGE (insn));
1200
1201 if ((GET_CODE (PATTERN (insn)) == USE
1202 /* We mark with QImode USEs introduced by reload itself. */
1203 && (GET_MODE (insn) == QImode
1204 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1205 || (GET_CODE (PATTERN (insn)) == CLOBBER
1206 && (GET_CODE (XEXP (PATTERN (insn), 0)) != MEM
1207 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1208 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1209 && XEXP (XEXP (PATTERN (insn), 0), 0)
1210 != stack_pointer_rtx))
1211 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1212 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1213 {
1214 delete_insn (insn);
1215 continue;
1216 }
1217
1218 pnote = &REG_NOTES (insn);
1219 while (*pnote != 0)
1220 {
1221 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 || REG_NOTE_KIND (*pnote) == REG_INC
1224 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1225 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1229 }
1230
1231 #ifdef AUTO_INC_DEC
1232 add_auto_inc_notes (insn, PATTERN (insn));
1233 #endif
1234
1235 /* And simplify (subreg (reg)) if it appears as an operand. */
1236 cleanup_subreg_operands (insn);
1237 }
1238
1239 /* If we are doing stack checking, give a warning if this function's
1240 frame size is larger than we expect. */
1241 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1242 {
1243 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1244 static int verbose_warned = 0;
1245
1246 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1247 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1248 size += UNITS_PER_WORD;
1249
1250 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1251 {
1252 warning ("frame size too large for reliable stack checking");
1253 if (! verbose_warned)
1254 {
1255 warning ("try reducing the number of local variables");
1256 verbose_warned = 1;
1257 }
1258 }
1259 }
1260
1261 /* Indicate that we no longer have known memory locations or constants. */
1262 if (reg_equiv_constant)
1263 free (reg_equiv_constant);
1264 reg_equiv_constant = 0;
1265 if (reg_equiv_memory_loc)
1266 free (reg_equiv_memory_loc);
1267 reg_equiv_memory_loc = 0;
1268
1269 if (offsets_known_at)
1270 free (offsets_known_at);
1271 if (offsets_at)
1272 free (offsets_at);
1273
1274 free (reg_equiv_mem);
1275 free (reg_equiv_init);
1276 free (reg_equiv_address);
1277 free (reg_max_ref_width);
1278 free (reg_old_renumber);
1279 free (pseudo_previous_regs);
1280 free (pseudo_forbidden_regs);
1281
1282 CLEAR_HARD_REG_SET (used_spill_regs);
1283 for (i = 0; i < n_spills; i++)
1284 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1285
1286 /* Free all the insn_chain structures at once. */
1287 obstack_free (&reload_obstack, reload_startobj);
1288 unused_insn_chains = 0;
1289 fixup_abnormal_edges ();
1290
1291 /* Replacing pseudos with their memory equivalents might have
1292 created shared rtx. Subsequent passes would get confused
1293 by this, so unshare everything here. */
1294 unshare_all_rtl_again (first);
1295
1296 return failure;
1297 }
1298
1299 /* Yet another special case. Unfortunately, reg-stack forces people to
1300 write incorrect clobbers in asm statements. These clobbers must not
1301 cause the register to appear in bad_spill_regs, otherwise we'll call
1302 fatal_insn later. We clear the corresponding regnos in the live
1303 register sets to avoid this.
1304 The whole thing is rather sick, I'm afraid. */
1305
1306 static void
1307 maybe_fix_stack_asms ()
1308 {
1309 #ifdef STACK_REGS
1310 const char *constraints[MAX_RECOG_OPERANDS];
1311 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1312 struct insn_chain *chain;
1313
1314 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1315 {
1316 int i, noperands;
1317 HARD_REG_SET clobbered, allowed;
1318 rtx pat;
1319
1320 if (! INSN_P (chain->insn)
1321 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1322 continue;
1323 pat = PATTERN (chain->insn);
1324 if (GET_CODE (pat) != PARALLEL)
1325 continue;
1326
1327 CLEAR_HARD_REG_SET (clobbered);
1328 CLEAR_HARD_REG_SET (allowed);
1329
1330 /* First, make a mask of all stack regs that are clobbered. */
1331 for (i = 0; i < XVECLEN (pat, 0); i++)
1332 {
1333 rtx t = XVECEXP (pat, 0, i);
1334 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1335 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1336 }
1337
1338 /* Get the operand values and constraints out of the insn. */
1339 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1340 constraints, operand_mode);
1341
1342 /* For every operand, see what registers are allowed. */
1343 for (i = 0; i < noperands; i++)
1344 {
1345 const char *p = constraints[i];
1346 /* For every alternative, we compute the class of registers allowed
1347 for reloading in CLS, and merge its contents into the reg set
1348 ALLOWED. */
1349 int cls = (int) NO_REGS;
1350
1351 for (;;)
1352 {
1353 char c = *p;
1354
1355 if (c == '\0' || c == ',' || c == '#')
1356 {
1357 /* End of one alternative - mark the regs in the current
1358 class, and reset the class. */
1359 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1360 cls = NO_REGS;
1361 p++;
1362 if (c == '#')
1363 do {
1364 c = *p++;
1365 } while (c != '\0' && c != ',');
1366 if (c == '\0')
1367 break;
1368 continue;
1369 }
1370
1371 switch (c)
1372 {
1373 case '=': case '+': case '*': case '%': case '?': case '!':
1374 case '0': case '1': case '2': case '3': case '4': case 'm':
1375 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1376 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1377 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1378 case 'P':
1379 break;
1380
1381 case 'p':
1382 cls = (int) reg_class_subunion[cls]
1383 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1384 break;
1385
1386 case 'g':
1387 case 'r':
1388 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1389 break;
1390
1391 default:
1392 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1393 cls = (int) reg_class_subunion[cls]
1394 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1395 else
1396 cls = (int) reg_class_subunion[cls]
1397 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1398 }
1399 p += CONSTRAINT_LEN (c, p);
1400 }
1401 }
1402 /* Those of the registers which are clobbered, but allowed by the
1403 constraints, must be usable as reload registers. So clear them
1404 out of the life information. */
1405 AND_HARD_REG_SET (allowed, clobbered);
1406 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1407 if (TEST_HARD_REG_BIT (allowed, i))
1408 {
1409 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1410 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1411 }
1412 }
1413
1414 #endif
1415 }
1416 \f
1417 /* Copy the global variables n_reloads and rld into the corresponding elts
1418 of CHAIN. */
1419 static void
1420 copy_reloads (chain)
1421 struct insn_chain *chain;
1422 {
1423 chain->n_reloads = n_reloads;
1424 chain->rld
1425 = (struct reload *) obstack_alloc (&reload_obstack,
1426 n_reloads * sizeof (struct reload));
1427 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1428 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1429 }
1430
1431 /* Walk the chain of insns, and determine for each whether it needs reloads
1432 and/or eliminations. Build the corresponding insns_need_reload list, and
1433 set something_needs_elimination as appropriate. */
1434 static void
1435 calculate_needs_all_insns (global)
1436 int global;
1437 {
1438 struct insn_chain **pprev_reload = &insns_need_reload;
1439 struct insn_chain *chain, *next = 0;
1440
1441 something_needs_elimination = 0;
1442
1443 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1444 for (chain = reload_insn_chain; chain != 0; chain = next)
1445 {
1446 rtx insn = chain->insn;
1447
1448 next = chain->next;
1449
1450 /* Clear out the shortcuts. */
1451 chain->n_reloads = 0;
1452 chain->need_elim = 0;
1453 chain->need_reload = 0;
1454 chain->need_operand_change = 0;
1455
1456 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1457 include REG_LABEL), we need to see what effects this has on the
1458 known offsets at labels. */
1459
1460 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1461 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1462 set_label_offsets (insn, insn, 0);
1463
1464 if (INSN_P (insn))
1465 {
1466 rtx old_body = PATTERN (insn);
1467 int old_code = INSN_CODE (insn);
1468 rtx old_notes = REG_NOTES (insn);
1469 int did_elimination = 0;
1470 int operands_changed = 0;
1471 rtx set = single_set (insn);
1472
1473 /* Skip insns that only set an equivalence. */
1474 if (set && GET_CODE (SET_DEST (set)) == REG
1475 && reg_renumber[REGNO (SET_DEST (set))] < 0
1476 && reg_equiv_constant[REGNO (SET_DEST (set))])
1477 continue;
1478
1479 /* If needed, eliminate any eliminable registers. */
1480 if (num_eliminable || num_eliminable_invariants)
1481 did_elimination = eliminate_regs_in_insn (insn, 0);
1482
1483 /* Analyze the instruction. */
1484 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1485 global, spill_reg_order);
1486
1487 /* If a no-op set needs more than one reload, this is likely
1488 to be something that needs input address reloads. We
1489 can't get rid of this cleanly later, and it is of no use
1490 anyway, so discard it now.
1491 We only do this when expensive_optimizations is enabled,
1492 since this complements reload inheritance / output
1493 reload deletion, and it can make debugging harder. */
1494 if (flag_expensive_optimizations && n_reloads > 1)
1495 {
1496 rtx set = single_set (insn);
1497 if (set
1498 && SET_SRC (set) == SET_DEST (set)
1499 && GET_CODE (SET_SRC (set)) == REG
1500 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1501 {
1502 delete_insn (insn);
1503 /* Delete it from the reload chain. */
1504 if (chain->prev)
1505 chain->prev->next = next;
1506 else
1507 reload_insn_chain = next;
1508 if (next)
1509 next->prev = chain->prev;
1510 chain->next = unused_insn_chains;
1511 unused_insn_chains = chain;
1512 continue;
1513 }
1514 }
1515 if (num_eliminable)
1516 update_eliminable_offsets ();
1517
1518 /* Remember for later shortcuts which insns had any reloads or
1519 register eliminations. */
1520 chain->need_elim = did_elimination;
1521 chain->need_reload = n_reloads > 0;
1522 chain->need_operand_change = operands_changed;
1523
1524 /* Discard any register replacements done. */
1525 if (did_elimination)
1526 {
1527 obstack_free (&reload_obstack, reload_insn_firstobj);
1528 PATTERN (insn) = old_body;
1529 INSN_CODE (insn) = old_code;
1530 REG_NOTES (insn) = old_notes;
1531 something_needs_elimination = 1;
1532 }
1533
1534 something_needs_operands_changed |= operands_changed;
1535
1536 if (n_reloads != 0)
1537 {
1538 copy_reloads (chain);
1539 *pprev_reload = chain;
1540 pprev_reload = &chain->next_need_reload;
1541 }
1542 }
1543 }
1544 *pprev_reload = 0;
1545 }
1546 \f
1547 /* Comparison function for qsort to decide which of two reloads
1548 should be handled first. *P1 and *P2 are the reload numbers. */
1549
1550 static int
1551 reload_reg_class_lower (r1p, r2p)
1552 const PTR r1p;
1553 const PTR r2p;
1554 {
1555 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1556 int t;
1557
1558 /* Consider required reloads before optional ones. */
1559 t = rld[r1].optional - rld[r2].optional;
1560 if (t != 0)
1561 return t;
1562
1563 /* Count all solitary classes before non-solitary ones. */
1564 t = ((reg_class_size[(int) rld[r2].class] == 1)
1565 - (reg_class_size[(int) rld[r1].class] == 1));
1566 if (t != 0)
1567 return t;
1568
1569 /* Aside from solitaires, consider all multi-reg groups first. */
1570 t = rld[r2].nregs - rld[r1].nregs;
1571 if (t != 0)
1572 return t;
1573
1574 /* Consider reloads in order of increasing reg-class number. */
1575 t = (int) rld[r1].class - (int) rld[r2].class;
1576 if (t != 0)
1577 return t;
1578
1579 /* If reloads are equally urgent, sort by reload number,
1580 so that the results of qsort leave nothing to chance. */
1581 return r1 - r2;
1582 }
1583 \f
1584 /* The cost of spilling each hard reg. */
1585 static int spill_cost[FIRST_PSEUDO_REGISTER];
1586
1587 /* When spilling multiple hard registers, we use SPILL_COST for the first
1588 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1589 only the first hard reg for a multi-reg pseudo. */
1590 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1591
1592 /* Update the spill cost arrays, considering that pseudo REG is live. */
1593
1594 static void
1595 count_pseudo (reg)
1596 int reg;
1597 {
1598 int freq = REG_FREQ (reg);
1599 int r = reg_renumber[reg];
1600 int nregs;
1601
1602 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1603 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1604 return;
1605
1606 SET_REGNO_REG_SET (&pseudos_counted, reg);
1607
1608 if (r < 0)
1609 abort ();
1610
1611 spill_add_cost[r] += freq;
1612
1613 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1614 while (nregs-- > 0)
1615 spill_cost[r + nregs] += freq;
1616 }
1617
1618 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1619 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1620
1621 static void
1622 order_regs_for_reload (chain)
1623 struct insn_chain *chain;
1624 {
1625 int i;
1626 HARD_REG_SET used_by_pseudos;
1627 HARD_REG_SET used_by_pseudos2;
1628
1629 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1630
1631 memset (spill_cost, 0, sizeof spill_cost);
1632 memset (spill_add_cost, 0, sizeof spill_add_cost);
1633
1634 /* Count number of uses of each hard reg by pseudo regs allocated to it
1635 and then order them by decreasing use. First exclude hard registers
1636 that are live in or across this insn. */
1637
1638 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1639 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1640 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1641 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1642
1643 /* Now find out which pseudos are allocated to it, and update
1644 hard_reg_n_uses. */
1645 CLEAR_REG_SET (&pseudos_counted);
1646
1647 EXECUTE_IF_SET_IN_REG_SET
1648 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1649 {
1650 count_pseudo (i);
1651 });
1652 EXECUTE_IF_SET_IN_REG_SET
1653 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1654 {
1655 count_pseudo (i);
1656 });
1657 CLEAR_REG_SET (&pseudos_counted);
1658 }
1659 \f
1660 /* Vector of reload-numbers showing the order in which the reloads should
1661 be processed. */
1662 static short reload_order[MAX_RELOADS];
1663
1664 /* This is used to keep track of the spill regs used in one insn. */
1665 static HARD_REG_SET used_spill_regs_local;
1666
1667 /* We decided to spill hard register SPILLED, which has a size of
1668 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1669 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1670 update SPILL_COST/SPILL_ADD_COST. */
1671
1672 static void
1673 count_spilled_pseudo (spilled, spilled_nregs, reg)
1674 int spilled, spilled_nregs, reg;
1675 {
1676 int r = reg_renumber[reg];
1677 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1678
1679 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1680 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1681 return;
1682
1683 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1684
1685 spill_add_cost[r] -= REG_FREQ (reg);
1686 while (nregs-- > 0)
1687 spill_cost[r + nregs] -= REG_FREQ (reg);
1688 }
1689
1690 /* Find reload register to use for reload number ORDER. */
1691
1692 static int
1693 find_reg (chain, order)
1694 struct insn_chain *chain;
1695 int order;
1696 {
1697 int rnum = reload_order[order];
1698 struct reload *rl = rld + rnum;
1699 int best_cost = INT_MAX;
1700 int best_reg = -1;
1701 unsigned int i, j;
1702 int k;
1703 HARD_REG_SET not_usable;
1704 HARD_REG_SET used_by_other_reload;
1705
1706 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1707 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1708 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1709
1710 CLEAR_HARD_REG_SET (used_by_other_reload);
1711 for (k = 0; k < order; k++)
1712 {
1713 int other = reload_order[k];
1714
1715 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1716 for (j = 0; j < rld[other].nregs; j++)
1717 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1718 }
1719
1720 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1721 {
1722 unsigned int regno = i;
1723
1724 if (! TEST_HARD_REG_BIT (not_usable, regno)
1725 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1726 && HARD_REGNO_MODE_OK (regno, rl->mode))
1727 {
1728 int this_cost = spill_cost[regno];
1729 int ok = 1;
1730 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1731
1732 for (j = 1; j < this_nregs; j++)
1733 {
1734 this_cost += spill_add_cost[regno + j];
1735 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1736 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1737 ok = 0;
1738 }
1739 if (! ok)
1740 continue;
1741 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1742 this_cost--;
1743 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1744 this_cost--;
1745 if (this_cost < best_cost
1746 /* Among registers with equal cost, prefer caller-saved ones, or
1747 use REG_ALLOC_ORDER if it is defined. */
1748 || (this_cost == best_cost
1749 #ifdef REG_ALLOC_ORDER
1750 && (inv_reg_alloc_order[regno]
1751 < inv_reg_alloc_order[best_reg])
1752 #else
1753 && call_used_regs[regno]
1754 && ! call_used_regs[best_reg]
1755 #endif
1756 ))
1757 {
1758 best_reg = regno;
1759 best_cost = this_cost;
1760 }
1761 }
1762 }
1763 if (best_reg == -1)
1764 return 0;
1765
1766 if (rtl_dump_file)
1767 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1768
1769 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1770 rl->regno = best_reg;
1771
1772 EXECUTE_IF_SET_IN_REG_SET
1773 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1774 {
1775 count_spilled_pseudo (best_reg, rl->nregs, j);
1776 });
1777
1778 EXECUTE_IF_SET_IN_REG_SET
1779 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1780 {
1781 count_spilled_pseudo (best_reg, rl->nregs, j);
1782 });
1783
1784 for (i = 0; i < rl->nregs; i++)
1785 {
1786 if (spill_cost[best_reg + i] != 0
1787 || spill_add_cost[best_reg + i] != 0)
1788 abort ();
1789 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1790 }
1791 return 1;
1792 }
1793
1794 /* Find more reload regs to satisfy the remaining need of an insn, which
1795 is given by CHAIN.
1796 Do it by ascending class number, since otherwise a reg
1797 might be spilled for a big class and might fail to count
1798 for a smaller class even though it belongs to that class. */
1799
1800 static void
1801 find_reload_regs (chain)
1802 struct insn_chain *chain;
1803 {
1804 int i;
1805
1806 /* In order to be certain of getting the registers we need,
1807 we must sort the reloads into order of increasing register class.
1808 Then our grabbing of reload registers will parallel the process
1809 that provided the reload registers. */
1810 for (i = 0; i < chain->n_reloads; i++)
1811 {
1812 /* Show whether this reload already has a hard reg. */
1813 if (chain->rld[i].reg_rtx)
1814 {
1815 int regno = REGNO (chain->rld[i].reg_rtx);
1816 chain->rld[i].regno = regno;
1817 chain->rld[i].nregs
1818 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1819 }
1820 else
1821 chain->rld[i].regno = -1;
1822 reload_order[i] = i;
1823 }
1824
1825 n_reloads = chain->n_reloads;
1826 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1827
1828 CLEAR_HARD_REG_SET (used_spill_regs_local);
1829
1830 if (rtl_dump_file)
1831 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1832
1833 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1834
1835 /* Compute the order of preference for hard registers to spill. */
1836
1837 order_regs_for_reload (chain);
1838
1839 for (i = 0; i < n_reloads; i++)
1840 {
1841 int r = reload_order[i];
1842
1843 /* Ignore reloads that got marked inoperative. */
1844 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1845 && ! rld[r].optional
1846 && rld[r].regno == -1)
1847 if (! find_reg (chain, i))
1848 {
1849 spill_failure (chain->insn, rld[r].class);
1850 failure = 1;
1851 return;
1852 }
1853 }
1854
1855 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1856 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1857
1858 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1859 }
1860
1861 static void
1862 select_reload_regs ()
1863 {
1864 struct insn_chain *chain;
1865
1866 /* Try to satisfy the needs for each insn. */
1867 for (chain = insns_need_reload; chain != 0;
1868 chain = chain->next_need_reload)
1869 find_reload_regs (chain);
1870 }
1871 \f
1872 /* Delete all insns that were inserted by emit_caller_save_insns during
1873 this iteration. */
1874 static void
1875 delete_caller_save_insns ()
1876 {
1877 struct insn_chain *c = reload_insn_chain;
1878
1879 while (c != 0)
1880 {
1881 while (c != 0 && c->is_caller_save_insn)
1882 {
1883 struct insn_chain *next = c->next;
1884 rtx insn = c->insn;
1885
1886 if (c == reload_insn_chain)
1887 reload_insn_chain = next;
1888 delete_insn (insn);
1889
1890 if (next)
1891 next->prev = c->prev;
1892 if (c->prev)
1893 c->prev->next = next;
1894 c->next = unused_insn_chains;
1895 unused_insn_chains = c;
1896 c = next;
1897 }
1898 if (c != 0)
1899 c = c->next;
1900 }
1901 }
1902 \f
1903 /* Handle the failure to find a register to spill.
1904 INSN should be one of the insns which needed this particular spill reg. */
1905
1906 static void
1907 spill_failure (insn, class)
1908 rtx insn;
1909 enum reg_class class;
1910 {
1911 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1912 if (asm_noperands (PATTERN (insn)) >= 0)
1913 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1914 reg_class_names[class]);
1915 else
1916 {
1917 error ("unable to find a register to spill in class `%s'",
1918 reg_class_names[class]);
1919 fatal_insn ("this is the insn:", insn);
1920 }
1921 }
1922 \f
1923 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1924 data that is dead in INSN. */
1925
1926 static void
1927 delete_dead_insn (insn)
1928 rtx insn;
1929 {
1930 rtx prev = prev_real_insn (insn);
1931 rtx prev_dest;
1932
1933 /* If the previous insn sets a register that dies in our insn, delete it
1934 too. */
1935 if (prev && GET_CODE (PATTERN (prev)) == SET
1936 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1937 && reg_mentioned_p (prev_dest, PATTERN (insn))
1938 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1939 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1940 delete_dead_insn (prev);
1941
1942 PUT_CODE (insn, NOTE);
1943 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1944 NOTE_SOURCE_FILE (insn) = 0;
1945 }
1946
1947 /* Modify the home of pseudo-reg I.
1948 The new home is present in reg_renumber[I].
1949
1950 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1951 or it may be -1, meaning there is none or it is not relevant.
1952 This is used so that all pseudos spilled from a given hard reg
1953 can share one stack slot. */
1954
1955 static void
1956 alter_reg (i, from_reg)
1957 int i;
1958 int from_reg;
1959 {
1960 /* When outputting an inline function, this can happen
1961 for a reg that isn't actually used. */
1962 if (regno_reg_rtx[i] == 0)
1963 return;
1964
1965 /* If the reg got changed to a MEM at rtl-generation time,
1966 ignore it. */
1967 if (GET_CODE (regno_reg_rtx[i]) != REG)
1968 return;
1969
1970 /* Modify the reg-rtx to contain the new hard reg
1971 number or else to contain its pseudo reg number. */
1972 REGNO (regno_reg_rtx[i])
1973 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1974
1975 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1976 allocate a stack slot for it. */
1977
1978 if (reg_renumber[i] < 0
1979 && REG_N_REFS (i) > 0
1980 && reg_equiv_constant[i] == 0
1981 && reg_equiv_memory_loc[i] == 0)
1982 {
1983 rtx x;
1984 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1985 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1986 int adjust = 0;
1987
1988 /* Each pseudo reg has an inherent size which comes from its own mode,
1989 and a total size which provides room for paradoxical subregs
1990 which refer to the pseudo reg in wider modes.
1991
1992 We can use a slot already allocated if it provides both
1993 enough inherent space and enough total space.
1994 Otherwise, we allocate a new slot, making sure that it has no less
1995 inherent space, and no less total space, then the previous slot. */
1996 if (from_reg == -1)
1997 {
1998 /* No known place to spill from => no slot to reuse. */
1999 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
2000 inherent_size == total_size ? 0 : -1);
2001 if (BYTES_BIG_ENDIAN)
2002 /* Cancel the big-endian correction done in assign_stack_local.
2003 Get the address of the beginning of the slot.
2004 This is so we can do a big-endian correction unconditionally
2005 below. */
2006 adjust = inherent_size - total_size;
2007
2008 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
2009
2010 /* Nothing can alias this slot except this pseudo. */
2011 set_mem_alias_set (x, new_alias_set ());
2012 }
2013
2014 /* Reuse a stack slot if possible. */
2015 else if (spill_stack_slot[from_reg] != 0
2016 && spill_stack_slot_width[from_reg] >= total_size
2017 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2018 >= inherent_size))
2019 x = spill_stack_slot[from_reg];
2020
2021 /* Allocate a bigger slot. */
2022 else
2023 {
2024 /* Compute maximum size needed, both for inherent size
2025 and for total size. */
2026 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2027 rtx stack_slot;
2028
2029 if (spill_stack_slot[from_reg])
2030 {
2031 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2032 > inherent_size)
2033 mode = GET_MODE (spill_stack_slot[from_reg]);
2034 if (spill_stack_slot_width[from_reg] > total_size)
2035 total_size = spill_stack_slot_width[from_reg];
2036 }
2037
2038 /* Make a slot with that size. */
2039 x = assign_stack_local (mode, total_size,
2040 inherent_size == total_size ? 0 : -1);
2041 stack_slot = x;
2042
2043 /* All pseudos mapped to this slot can alias each other. */
2044 if (spill_stack_slot[from_reg])
2045 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2046 else
2047 set_mem_alias_set (x, new_alias_set ());
2048
2049 if (BYTES_BIG_ENDIAN)
2050 {
2051 /* Cancel the big-endian correction done in assign_stack_local.
2052 Get the address of the beginning of the slot.
2053 This is so we can do a big-endian correction unconditionally
2054 below. */
2055 adjust = GET_MODE_SIZE (mode) - total_size;
2056 if (adjust)
2057 stack_slot
2058 = adjust_address_nv (x, mode_for_size (total_size
2059 * BITS_PER_UNIT,
2060 MODE_INT, 1),
2061 adjust);
2062 }
2063
2064 spill_stack_slot[from_reg] = stack_slot;
2065 spill_stack_slot_width[from_reg] = total_size;
2066 }
2067
2068 /* On a big endian machine, the "address" of the slot
2069 is the address of the low part that fits its inherent mode. */
2070 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2071 adjust += (total_size - inherent_size);
2072
2073 /* If we have any adjustment to make, or if the stack slot is the
2074 wrong mode, make a new stack slot. */
2075 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2076
2077 /* If we have a decl for the original register, set it for the
2078 memory. If this is a shared MEM, make a copy. */
2079 if (REG_EXPR (regno_reg_rtx[i])
2080 && TREE_CODE_CLASS (TREE_CODE (REG_EXPR (regno_reg_rtx[i]))) == 'd')
2081 {
2082 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2083
2084 /* We can do this only for the DECLs home pseudo, not for
2085 any copies of it, since otherwise when the stack slot
2086 is reused, nonoverlapping_memrefs_p might think they
2087 cannot overlap. */
2088 if (decl && GET_CODE (decl) == REG && REGNO (decl) == (unsigned) i)
2089 {
2090 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2091 x = copy_rtx (x);
2092
2093 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2094 }
2095 }
2096
2097 /* Save the stack slot for later. */
2098 reg_equiv_memory_loc[i] = x;
2099 }
2100 }
2101
2102 /* Mark the slots in regs_ever_live for the hard regs
2103 used by pseudo-reg number REGNO. */
2104
2105 void
2106 mark_home_live (regno)
2107 int regno;
2108 {
2109 int i, lim;
2110
2111 i = reg_renumber[regno];
2112 if (i < 0)
2113 return;
2114 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2115 while (i < lim)
2116 regs_ever_live[i++] = 1;
2117 }
2118 \f
2119 /* This function handles the tracking of elimination offsets around branches.
2120
2121 X is a piece of RTL being scanned.
2122
2123 INSN is the insn that it came from, if any.
2124
2125 INITIAL_P is nonzero if we are to set the offset to be the initial
2126 offset and zero if we are setting the offset of the label to be the
2127 current offset. */
2128
2129 static void
2130 set_label_offsets (x, insn, initial_p)
2131 rtx x;
2132 rtx insn;
2133 int initial_p;
2134 {
2135 enum rtx_code code = GET_CODE (x);
2136 rtx tem;
2137 unsigned int i;
2138 struct elim_table *p;
2139
2140 switch (code)
2141 {
2142 case LABEL_REF:
2143 if (LABEL_REF_NONLOCAL_P (x))
2144 return;
2145
2146 x = XEXP (x, 0);
2147
2148 /* ... fall through ... */
2149
2150 case CODE_LABEL:
2151 /* If we know nothing about this label, set the desired offsets. Note
2152 that this sets the offset at a label to be the offset before a label
2153 if we don't know anything about the label. This is not correct for
2154 the label after a BARRIER, but is the best guess we can make. If
2155 we guessed wrong, we will suppress an elimination that might have
2156 been possible had we been able to guess correctly. */
2157
2158 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2159 {
2160 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2161 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2162 = (initial_p ? reg_eliminate[i].initial_offset
2163 : reg_eliminate[i].offset);
2164 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2165 }
2166
2167 /* Otherwise, if this is the definition of a label and it is
2168 preceded by a BARRIER, set our offsets to the known offset of
2169 that label. */
2170
2171 else if (x == insn
2172 && (tem = prev_nonnote_insn (insn)) != 0
2173 && GET_CODE (tem) == BARRIER)
2174 set_offsets_for_label (insn);
2175 else
2176 /* If neither of the above cases is true, compare each offset
2177 with those previously recorded and suppress any eliminations
2178 where the offsets disagree. */
2179
2180 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2181 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2182 != (initial_p ? reg_eliminate[i].initial_offset
2183 : reg_eliminate[i].offset))
2184 reg_eliminate[i].can_eliminate = 0;
2185
2186 return;
2187
2188 case JUMP_INSN:
2189 set_label_offsets (PATTERN (insn), insn, initial_p);
2190
2191 /* ... fall through ... */
2192
2193 case INSN:
2194 case CALL_INSN:
2195 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2196 and hence must have all eliminations at their initial offsets. */
2197 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2198 if (REG_NOTE_KIND (tem) == REG_LABEL)
2199 set_label_offsets (XEXP (tem, 0), insn, 1);
2200 return;
2201
2202 case PARALLEL:
2203 case ADDR_VEC:
2204 case ADDR_DIFF_VEC:
2205 /* Each of the labels in the parallel or address vector must be
2206 at their initial offsets. We want the first field for PARALLEL
2207 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2208
2209 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2210 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2211 insn, initial_p);
2212 return;
2213
2214 case SET:
2215 /* We only care about setting PC. If the source is not RETURN,
2216 IF_THEN_ELSE, or a label, disable any eliminations not at
2217 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2218 isn't one of those possibilities. For branches to a label,
2219 call ourselves recursively.
2220
2221 Note that this can disable elimination unnecessarily when we have
2222 a non-local goto since it will look like a non-constant jump to
2223 someplace in the current function. This isn't a significant
2224 problem since such jumps will normally be when all elimination
2225 pairs are back to their initial offsets. */
2226
2227 if (SET_DEST (x) != pc_rtx)
2228 return;
2229
2230 switch (GET_CODE (SET_SRC (x)))
2231 {
2232 case PC:
2233 case RETURN:
2234 return;
2235
2236 case LABEL_REF:
2237 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2238 return;
2239
2240 case IF_THEN_ELSE:
2241 tem = XEXP (SET_SRC (x), 1);
2242 if (GET_CODE (tem) == LABEL_REF)
2243 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2244 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2245 break;
2246
2247 tem = XEXP (SET_SRC (x), 2);
2248 if (GET_CODE (tem) == LABEL_REF)
2249 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2250 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2251 break;
2252 return;
2253
2254 default:
2255 break;
2256 }
2257
2258 /* If we reach here, all eliminations must be at their initial
2259 offset because we are doing a jump to a variable address. */
2260 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2261 if (p->offset != p->initial_offset)
2262 p->can_eliminate = 0;
2263 break;
2264
2265 default:
2266 break;
2267 }
2268 }
2269 \f
2270 /* Scan X and replace any eliminable registers (such as fp) with a
2271 replacement (such as sp), plus an offset.
2272
2273 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2274 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2275 MEM, we are allowed to replace a sum of a register and the constant zero
2276 with the register, which we cannot do outside a MEM. In addition, we need
2277 to record the fact that a register is referenced outside a MEM.
2278
2279 If INSN is an insn, it is the insn containing X. If we replace a REG
2280 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2281 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2282 the REG is being modified.
2283
2284 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2285 That's used when we eliminate in expressions stored in notes.
2286 This means, do not set ref_outside_mem even if the reference
2287 is outside of MEMs.
2288
2289 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2290 replacements done assuming all offsets are at their initial values. If
2291 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2292 encounter, return the actual location so that find_reloads will do
2293 the proper thing. */
2294
2295 rtx
2296 eliminate_regs (x, mem_mode, insn)
2297 rtx x;
2298 enum machine_mode mem_mode;
2299 rtx insn;
2300 {
2301 enum rtx_code code = GET_CODE (x);
2302 struct elim_table *ep;
2303 int regno;
2304 rtx new;
2305 int i, j;
2306 const char *fmt;
2307 int copied = 0;
2308
2309 if (! current_function_decl)
2310 return x;
2311
2312 switch (code)
2313 {
2314 case CONST_INT:
2315 case CONST_DOUBLE:
2316 case CONST_VECTOR:
2317 case CONST:
2318 case SYMBOL_REF:
2319 case CODE_LABEL:
2320 case PC:
2321 case CC0:
2322 case ASM_INPUT:
2323 case ADDR_VEC:
2324 case ADDR_DIFF_VEC:
2325 case RETURN:
2326 return x;
2327
2328 case ADDRESSOF:
2329 /* This is only for the benefit of the debugging backends, which call
2330 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2331 removed after CSE. */
2332 new = eliminate_regs (XEXP (x, 0), 0, insn);
2333 if (GET_CODE (new) == MEM)
2334 return XEXP (new, 0);
2335 return x;
2336
2337 case REG:
2338 regno = REGNO (x);
2339
2340 /* First handle the case where we encounter a bare register that
2341 is eliminable. Replace it with a PLUS. */
2342 if (regno < FIRST_PSEUDO_REGISTER)
2343 {
2344 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2345 ep++)
2346 if (ep->from_rtx == x && ep->can_eliminate)
2347 return plus_constant (ep->to_rtx, ep->previous_offset);
2348
2349 }
2350 else if (reg_renumber && reg_renumber[regno] < 0
2351 && reg_equiv_constant && reg_equiv_constant[regno]
2352 && ! CONSTANT_P (reg_equiv_constant[regno]))
2353 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2354 mem_mode, insn);
2355 return x;
2356
2357 /* You might think handling MINUS in a manner similar to PLUS is a
2358 good idea. It is not. It has been tried multiple times and every
2359 time the change has had to have been reverted.
2360
2361 Other parts of reload know a PLUS is special (gen_reload for example)
2362 and require special code to handle code a reloaded PLUS operand.
2363
2364 Also consider backends where the flags register is clobbered by a
2365 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2366 lea instruction comes to mind). If we try to reload a MINUS, we
2367 may kill the flags register that was holding a useful value.
2368
2369 So, please before trying to handle MINUS, consider reload as a
2370 whole instead of this little section as well as the backend issues. */
2371 case PLUS:
2372 /* If this is the sum of an eliminable register and a constant, rework
2373 the sum. */
2374 if (GET_CODE (XEXP (x, 0)) == REG
2375 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2376 && CONSTANT_P (XEXP (x, 1)))
2377 {
2378 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2379 ep++)
2380 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2381 {
2382 /* The only time we want to replace a PLUS with a REG (this
2383 occurs when the constant operand of the PLUS is the negative
2384 of the offset) is when we are inside a MEM. We won't want
2385 to do so at other times because that would change the
2386 structure of the insn in a way that reload can't handle.
2387 We special-case the commonest situation in
2388 eliminate_regs_in_insn, so just replace a PLUS with a
2389 PLUS here, unless inside a MEM. */
2390 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2391 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2392 return ep->to_rtx;
2393 else
2394 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2395 plus_constant (XEXP (x, 1),
2396 ep->previous_offset));
2397 }
2398
2399 /* If the register is not eliminable, we are done since the other
2400 operand is a constant. */
2401 return x;
2402 }
2403
2404 /* If this is part of an address, we want to bring any constant to the
2405 outermost PLUS. We will do this by doing register replacement in
2406 our operands and seeing if a constant shows up in one of them.
2407
2408 Note that there is no risk of modifying the structure of the insn,
2409 since we only get called for its operands, thus we are either
2410 modifying the address inside a MEM, or something like an address
2411 operand of a load-address insn. */
2412
2413 {
2414 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2415 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2416
2417 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2418 {
2419 /* If one side is a PLUS and the other side is a pseudo that
2420 didn't get a hard register but has a reg_equiv_constant,
2421 we must replace the constant here since it may no longer
2422 be in the position of any operand. */
2423 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2424 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2425 && reg_renumber[REGNO (new1)] < 0
2426 && reg_equiv_constant != 0
2427 && reg_equiv_constant[REGNO (new1)] != 0)
2428 new1 = reg_equiv_constant[REGNO (new1)];
2429 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2430 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2431 && reg_renumber[REGNO (new0)] < 0
2432 && reg_equiv_constant[REGNO (new0)] != 0)
2433 new0 = reg_equiv_constant[REGNO (new0)];
2434
2435 new = form_sum (new0, new1);
2436
2437 /* As above, if we are not inside a MEM we do not want to
2438 turn a PLUS into something else. We might try to do so here
2439 for an addition of 0 if we aren't optimizing. */
2440 if (! mem_mode && GET_CODE (new) != PLUS)
2441 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2442 else
2443 return new;
2444 }
2445 }
2446 return x;
2447
2448 case MULT:
2449 /* If this is the product of an eliminable register and a
2450 constant, apply the distribute law and move the constant out
2451 so that we have (plus (mult ..) ..). This is needed in order
2452 to keep load-address insns valid. This case is pathological.
2453 We ignore the possibility of overflow here. */
2454 if (GET_CODE (XEXP (x, 0)) == REG
2455 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2456 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2457 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2458 ep++)
2459 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2460 {
2461 if (! mem_mode
2462 /* Refs inside notes don't count for this purpose. */
2463 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2464 || GET_CODE (insn) == INSN_LIST)))
2465 ep->ref_outside_mem = 1;
2466
2467 return
2468 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2469 ep->previous_offset * INTVAL (XEXP (x, 1)));
2470 }
2471
2472 /* ... fall through ... */
2473
2474 case CALL:
2475 case COMPARE:
2476 /* See comments before PLUS about handling MINUS. */
2477 case MINUS:
2478 case DIV: case UDIV:
2479 case MOD: case UMOD:
2480 case AND: case IOR: case XOR:
2481 case ROTATERT: case ROTATE:
2482 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2483 case NE: case EQ:
2484 case GE: case GT: case GEU: case GTU:
2485 case LE: case LT: case LEU: case LTU:
2486 {
2487 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2488 rtx new1
2489 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2490
2491 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2492 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2493 }
2494 return x;
2495
2496 case EXPR_LIST:
2497 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2498 if (XEXP (x, 0))
2499 {
2500 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2501 if (new != XEXP (x, 0))
2502 {
2503 /* If this is a REG_DEAD note, it is not valid anymore.
2504 Using the eliminated version could result in creating a
2505 REG_DEAD note for the stack or frame pointer. */
2506 if (GET_MODE (x) == REG_DEAD)
2507 return (XEXP (x, 1)
2508 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2509 : NULL_RTX);
2510
2511 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2512 }
2513 }
2514
2515 /* ... fall through ... */
2516
2517 case INSN_LIST:
2518 /* Now do eliminations in the rest of the chain. If this was
2519 an EXPR_LIST, this might result in allocating more memory than is
2520 strictly needed, but it simplifies the code. */
2521 if (XEXP (x, 1))
2522 {
2523 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2524 if (new != XEXP (x, 1))
2525 return
2526 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2527 }
2528 return x;
2529
2530 case PRE_INC:
2531 case POST_INC:
2532 case PRE_DEC:
2533 case POST_DEC:
2534 case STRICT_LOW_PART:
2535 case NEG: case NOT:
2536 case SIGN_EXTEND: case ZERO_EXTEND:
2537 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2538 case FLOAT: case FIX:
2539 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2540 case ABS:
2541 case SQRT:
2542 case FFS:
2543 case CLZ:
2544 case CTZ:
2545 case POPCOUNT:
2546 case PARITY:
2547 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2548 if (new != XEXP (x, 0))
2549 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2550 return x;
2551
2552 case SUBREG:
2553 /* Similar to above processing, but preserve SUBREG_BYTE.
2554 Convert (subreg (mem)) to (mem) if not paradoxical.
2555 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2556 pseudo didn't get a hard reg, we must replace this with the
2557 eliminated version of the memory location because push_reloads
2558 may do the replacement in certain circumstances. */
2559 if (GET_CODE (SUBREG_REG (x)) == REG
2560 && (GET_MODE_SIZE (GET_MODE (x))
2561 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2562 && reg_equiv_memory_loc != 0
2563 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2564 {
2565 new = SUBREG_REG (x);
2566 }
2567 else
2568 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2569
2570 if (new != SUBREG_REG (x))
2571 {
2572 int x_size = GET_MODE_SIZE (GET_MODE (x));
2573 int new_size = GET_MODE_SIZE (GET_MODE (new));
2574
2575 if (GET_CODE (new) == MEM
2576 && ((x_size < new_size
2577 #ifdef WORD_REGISTER_OPERATIONS
2578 /* On these machines, combine can create rtl of the form
2579 (set (subreg:m1 (reg:m2 R) 0) ...)
2580 where m1 < m2, and expects something interesting to
2581 happen to the entire word. Moreover, it will use the
2582 (reg:m2 R) later, expecting all bits to be preserved.
2583 So if the number of words is the same, preserve the
2584 subreg so that push_reloads can see it. */
2585 && ! ((x_size - 1) / UNITS_PER_WORD
2586 == (new_size -1 ) / UNITS_PER_WORD)
2587 #endif
2588 )
2589 || x_size == new_size)
2590 )
2591 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2592 else
2593 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2594 }
2595
2596 return x;
2597
2598 case MEM:
2599 /* This is only for the benefit of the debugging backends, which call
2600 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2601 removed after CSE. */
2602 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2603 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2604
2605 /* Our only special processing is to pass the mode of the MEM to our
2606 recursive call and copy the flags. While we are here, handle this
2607 case more efficiently. */
2608 return
2609 replace_equiv_address_nv (x,
2610 eliminate_regs (XEXP (x, 0),
2611 GET_MODE (x), insn));
2612
2613 case USE:
2614 /* Handle insn_list USE that a call to a pure function may generate. */
2615 new = eliminate_regs (XEXP (x, 0), 0, insn);
2616 if (new != XEXP (x, 0))
2617 return gen_rtx_USE (GET_MODE (x), new);
2618 return x;
2619
2620 case CLOBBER:
2621 case ASM_OPERANDS:
2622 case SET:
2623 abort ();
2624
2625 default:
2626 break;
2627 }
2628
2629 /* Process each of our operands recursively. If any have changed, make a
2630 copy of the rtx. */
2631 fmt = GET_RTX_FORMAT (code);
2632 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2633 {
2634 if (*fmt == 'e')
2635 {
2636 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2637 if (new != XEXP (x, i) && ! copied)
2638 {
2639 rtx new_x = rtx_alloc (code);
2640 memcpy (new_x, x,
2641 (sizeof (*new_x) - sizeof (new_x->fld)
2642 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2643 x = new_x;
2644 copied = 1;
2645 }
2646 XEXP (x, i) = new;
2647 }
2648 else if (*fmt == 'E')
2649 {
2650 int copied_vec = 0;
2651 for (j = 0; j < XVECLEN (x, i); j++)
2652 {
2653 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2654 if (new != XVECEXP (x, i, j) && ! copied_vec)
2655 {
2656 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2657 XVEC (x, i)->elem);
2658 if (! copied)
2659 {
2660 rtx new_x = rtx_alloc (code);
2661 memcpy (new_x, x,
2662 (sizeof (*new_x) - sizeof (new_x->fld)
2663 + (sizeof (new_x->fld[0])
2664 * GET_RTX_LENGTH (code))));
2665 x = new_x;
2666 copied = 1;
2667 }
2668 XVEC (x, i) = new_v;
2669 copied_vec = 1;
2670 }
2671 XVECEXP (x, i, j) = new;
2672 }
2673 }
2674 }
2675
2676 return x;
2677 }
2678
2679 /* Scan rtx X for modifications of elimination target registers. Update
2680 the table of eliminables to reflect the changed state. MEM_MODE is
2681 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2682
2683 static void
2684 elimination_effects (x, mem_mode)
2685 rtx x;
2686 enum machine_mode mem_mode;
2687
2688 {
2689 enum rtx_code code = GET_CODE (x);
2690 struct elim_table *ep;
2691 int regno;
2692 int i, j;
2693 const char *fmt;
2694
2695 switch (code)
2696 {
2697 case CONST_INT:
2698 case CONST_DOUBLE:
2699 case CONST_VECTOR:
2700 case CONST:
2701 case SYMBOL_REF:
2702 case CODE_LABEL:
2703 case PC:
2704 case CC0:
2705 case ASM_INPUT:
2706 case ADDR_VEC:
2707 case ADDR_DIFF_VEC:
2708 case RETURN:
2709 return;
2710
2711 case ADDRESSOF:
2712 abort ();
2713
2714 case REG:
2715 regno = REGNO (x);
2716
2717 /* First handle the case where we encounter a bare register that
2718 is eliminable. Replace it with a PLUS. */
2719 if (regno < FIRST_PSEUDO_REGISTER)
2720 {
2721 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2722 ep++)
2723 if (ep->from_rtx == x && ep->can_eliminate)
2724 {
2725 if (! mem_mode)
2726 ep->ref_outside_mem = 1;
2727 return;
2728 }
2729
2730 }
2731 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2732 && reg_equiv_constant[regno]
2733 && ! function_invariant_p (reg_equiv_constant[regno]))
2734 elimination_effects (reg_equiv_constant[regno], mem_mode);
2735 return;
2736
2737 case PRE_INC:
2738 case POST_INC:
2739 case PRE_DEC:
2740 case POST_DEC:
2741 case POST_MODIFY:
2742 case PRE_MODIFY:
2743 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2744 if (ep->to_rtx == XEXP (x, 0))
2745 {
2746 int size = GET_MODE_SIZE (mem_mode);
2747
2748 /* If more bytes than MEM_MODE are pushed, account for them. */
2749 #ifdef PUSH_ROUNDING
2750 if (ep->to_rtx == stack_pointer_rtx)
2751 size = PUSH_ROUNDING (size);
2752 #endif
2753 if (code == PRE_DEC || code == POST_DEC)
2754 ep->offset += size;
2755 else if (code == PRE_INC || code == POST_INC)
2756 ep->offset -= size;
2757 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2758 && GET_CODE (XEXP (x, 1)) == PLUS
2759 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2760 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2761 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2762 }
2763
2764 /* These two aren't unary operators. */
2765 if (code == POST_MODIFY || code == PRE_MODIFY)
2766 break;
2767
2768 /* Fall through to generic unary operation case. */
2769 case STRICT_LOW_PART:
2770 case NEG: case NOT:
2771 case SIGN_EXTEND: case ZERO_EXTEND:
2772 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2773 case FLOAT: case FIX:
2774 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2775 case ABS:
2776 case SQRT:
2777 case FFS:
2778 case CLZ:
2779 case CTZ:
2780 case POPCOUNT:
2781 case PARITY:
2782 elimination_effects (XEXP (x, 0), mem_mode);
2783 return;
2784
2785 case SUBREG:
2786 if (GET_CODE (SUBREG_REG (x)) == REG
2787 && (GET_MODE_SIZE (GET_MODE (x))
2788 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2789 && reg_equiv_memory_loc != 0
2790 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2791 return;
2792
2793 elimination_effects (SUBREG_REG (x), mem_mode);
2794 return;
2795
2796 case USE:
2797 /* If using a register that is the source of an eliminate we still
2798 think can be performed, note it cannot be performed since we don't
2799 know how this register is used. */
2800 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2801 if (ep->from_rtx == XEXP (x, 0))
2802 ep->can_eliminate = 0;
2803
2804 elimination_effects (XEXP (x, 0), mem_mode);
2805 return;
2806
2807 case CLOBBER:
2808 /* If clobbering a register that is the replacement register for an
2809 elimination we still think can be performed, note that it cannot
2810 be performed. Otherwise, we need not be concerned about it. */
2811 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2812 if (ep->to_rtx == XEXP (x, 0))
2813 ep->can_eliminate = 0;
2814
2815 elimination_effects (XEXP (x, 0), mem_mode);
2816 return;
2817
2818 case SET:
2819 /* Check for setting a register that we know about. */
2820 if (GET_CODE (SET_DEST (x)) == REG)
2821 {
2822 /* See if this is setting the replacement register for an
2823 elimination.
2824
2825 If DEST is the hard frame pointer, we do nothing because we
2826 assume that all assignments to the frame pointer are for
2827 non-local gotos and are being done at a time when they are valid
2828 and do not disturb anything else. Some machines want to
2829 eliminate a fake argument pointer (or even a fake frame pointer)
2830 with either the real frame or the stack pointer. Assignments to
2831 the hard frame pointer must not prevent this elimination. */
2832
2833 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2834 ep++)
2835 if (ep->to_rtx == SET_DEST (x)
2836 && SET_DEST (x) != hard_frame_pointer_rtx)
2837 {
2838 /* If it is being incremented, adjust the offset. Otherwise,
2839 this elimination can't be done. */
2840 rtx src = SET_SRC (x);
2841
2842 if (GET_CODE (src) == PLUS
2843 && XEXP (src, 0) == SET_DEST (x)
2844 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2845 ep->offset -= INTVAL (XEXP (src, 1));
2846 else
2847 ep->can_eliminate = 0;
2848 }
2849 }
2850
2851 elimination_effects (SET_DEST (x), 0);
2852 elimination_effects (SET_SRC (x), 0);
2853 return;
2854
2855 case MEM:
2856 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2857 abort ();
2858
2859 /* Our only special processing is to pass the mode of the MEM to our
2860 recursive call. */
2861 elimination_effects (XEXP (x, 0), GET_MODE (x));
2862 return;
2863
2864 default:
2865 break;
2866 }
2867
2868 fmt = GET_RTX_FORMAT (code);
2869 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2870 {
2871 if (*fmt == 'e')
2872 elimination_effects (XEXP (x, i), mem_mode);
2873 else if (*fmt == 'E')
2874 for (j = 0; j < XVECLEN (x, i); j++)
2875 elimination_effects (XVECEXP (x, i, j), mem_mode);
2876 }
2877 }
2878
2879 /* Descend through rtx X and verify that no references to eliminable registers
2880 remain. If any do remain, mark the involved register as not
2881 eliminable. */
2882
2883 static void
2884 check_eliminable_occurrences (x)
2885 rtx x;
2886 {
2887 const char *fmt;
2888 int i;
2889 enum rtx_code code;
2890
2891 if (x == 0)
2892 return;
2893
2894 code = GET_CODE (x);
2895
2896 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2897 {
2898 struct elim_table *ep;
2899
2900 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2901 if (ep->from_rtx == x && ep->can_eliminate)
2902 ep->can_eliminate = 0;
2903 return;
2904 }
2905
2906 fmt = GET_RTX_FORMAT (code);
2907 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2908 {
2909 if (*fmt == 'e')
2910 check_eliminable_occurrences (XEXP (x, i));
2911 else if (*fmt == 'E')
2912 {
2913 int j;
2914 for (j = 0; j < XVECLEN (x, i); j++)
2915 check_eliminable_occurrences (XVECEXP (x, i, j));
2916 }
2917 }
2918 }
2919 \f
2920 /* Scan INSN and eliminate all eliminable registers in it.
2921
2922 If REPLACE is nonzero, do the replacement destructively. Also
2923 delete the insn as dead it if it is setting an eliminable register.
2924
2925 If REPLACE is zero, do all our allocations in reload_obstack.
2926
2927 If no eliminations were done and this insn doesn't require any elimination
2928 processing (these are not identical conditions: it might be updating sp,
2929 but not referencing fp; this needs to be seen during reload_as_needed so
2930 that the offset between fp and sp can be taken into consideration), zero
2931 is returned. Otherwise, 1 is returned. */
2932
2933 static int
2934 eliminate_regs_in_insn (insn, replace)
2935 rtx insn;
2936 int replace;
2937 {
2938 int icode = recog_memoized (insn);
2939 rtx old_body = PATTERN (insn);
2940 int insn_is_asm = asm_noperands (old_body) >= 0;
2941 rtx old_set = single_set (insn);
2942 rtx new_body;
2943 int val = 0;
2944 int i;
2945 rtx substed_operand[MAX_RECOG_OPERANDS];
2946 rtx orig_operand[MAX_RECOG_OPERANDS];
2947 struct elim_table *ep;
2948
2949 if (! insn_is_asm && icode < 0)
2950 {
2951 if (GET_CODE (PATTERN (insn)) == USE
2952 || GET_CODE (PATTERN (insn)) == CLOBBER
2953 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2954 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2955 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2956 return 0;
2957 abort ();
2958 }
2959
2960 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2961 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2962 {
2963 /* Check for setting an eliminable register. */
2964 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2965 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2966 {
2967 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2968 /* If this is setting the frame pointer register to the
2969 hardware frame pointer register and this is an elimination
2970 that will be done (tested above), this insn is really
2971 adjusting the frame pointer downward to compensate for
2972 the adjustment done before a nonlocal goto. */
2973 if (ep->from == FRAME_POINTER_REGNUM
2974 && ep->to == HARD_FRAME_POINTER_REGNUM)
2975 {
2976 rtx base = SET_SRC (old_set);
2977 rtx base_insn = insn;
2978 int offset = 0;
2979
2980 while (base != ep->to_rtx)
2981 {
2982 rtx prev_insn, prev_set;
2983
2984 if (GET_CODE (base) == PLUS
2985 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2986 {
2987 offset += INTVAL (XEXP (base, 1));
2988 base = XEXP (base, 0);
2989 }
2990 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2991 && (prev_set = single_set (prev_insn)) != 0
2992 && rtx_equal_p (SET_DEST (prev_set), base))
2993 {
2994 base = SET_SRC (prev_set);
2995 base_insn = prev_insn;
2996 }
2997 else
2998 break;
2999 }
3000
3001 if (base == ep->to_rtx)
3002 {
3003 rtx src
3004 = plus_constant (ep->to_rtx, offset - ep->offset);
3005
3006 new_body = old_body;
3007 if (! replace)
3008 {
3009 new_body = copy_insn (old_body);
3010 if (REG_NOTES (insn))
3011 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3012 }
3013 PATTERN (insn) = new_body;
3014 old_set = single_set (insn);
3015
3016 /* First see if this insn remains valid when we
3017 make the change. If not, keep the INSN_CODE
3018 the same and let reload fit it up. */
3019 validate_change (insn, &SET_SRC (old_set), src, 1);
3020 validate_change (insn, &SET_DEST (old_set),
3021 ep->to_rtx, 1);
3022 if (! apply_change_group ())
3023 {
3024 SET_SRC (old_set) = src;
3025 SET_DEST (old_set) = ep->to_rtx;
3026 }
3027
3028 val = 1;
3029 goto done;
3030 }
3031 }
3032 #endif
3033
3034 /* In this case this insn isn't serving a useful purpose. We
3035 will delete it in reload_as_needed once we know that this
3036 elimination is, in fact, being done.
3037
3038 If REPLACE isn't set, we can't delete this insn, but needn't
3039 process it since it won't be used unless something changes. */
3040 if (replace)
3041 {
3042 delete_dead_insn (insn);
3043 return 1;
3044 }
3045 val = 1;
3046 goto done;
3047 }
3048 }
3049
3050 /* We allow one special case which happens to work on all machines we
3051 currently support: a single set with the source being a PLUS of an
3052 eliminable register and a constant. */
3053 if (old_set
3054 && GET_CODE (SET_DEST (old_set)) == REG
3055 && GET_CODE (SET_SRC (old_set)) == PLUS
3056 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3057 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3058 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3059 {
3060 rtx reg = XEXP (SET_SRC (old_set), 0);
3061 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3062
3063 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3064 if (ep->from_rtx == reg && ep->can_eliminate)
3065 {
3066 offset += ep->offset;
3067
3068 if (offset == 0)
3069 {
3070 int num_clobbers;
3071 /* We assume here that if we need a PARALLEL with
3072 CLOBBERs for this assignment, we can do with the
3073 MATCH_SCRATCHes that add_clobbers allocates.
3074 There's not much we can do if that doesn't work. */
3075 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3076 SET_DEST (old_set),
3077 ep->to_rtx);
3078 num_clobbers = 0;
3079 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3080 if (num_clobbers)
3081 {
3082 rtvec vec = rtvec_alloc (num_clobbers + 1);
3083
3084 vec->elem[0] = PATTERN (insn);
3085 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3086 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3087 }
3088 if (INSN_CODE (insn) < 0)
3089 abort ();
3090 }
3091 else
3092 {
3093 new_body = old_body;
3094 if (! replace)
3095 {
3096 new_body = copy_insn (old_body);
3097 if (REG_NOTES (insn))
3098 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3099 }
3100 PATTERN (insn) = new_body;
3101 old_set = single_set (insn);
3102
3103 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3104 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3105 }
3106 val = 1;
3107 /* This can't have an effect on elimination offsets, so skip right
3108 to the end. */
3109 goto done;
3110 }
3111 }
3112
3113 /* Determine the effects of this insn on elimination offsets. */
3114 elimination_effects (old_body, 0);
3115
3116 /* Eliminate all eliminable registers occurring in operands that
3117 can be handled by reload. */
3118 extract_insn (insn);
3119 for (i = 0; i < recog_data.n_operands; i++)
3120 {
3121 orig_operand[i] = recog_data.operand[i];
3122 substed_operand[i] = recog_data.operand[i];
3123
3124 /* For an asm statement, every operand is eliminable. */
3125 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3126 {
3127 /* Check for setting a register that we know about. */
3128 if (recog_data.operand_type[i] != OP_IN
3129 && GET_CODE (orig_operand[i]) == REG)
3130 {
3131 /* If we are assigning to a register that can be eliminated, it
3132 must be as part of a PARALLEL, since the code above handles
3133 single SETs. We must indicate that we can no longer
3134 eliminate this reg. */
3135 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3136 ep++)
3137 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3138 ep->can_eliminate = 0;
3139 }
3140
3141 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3142 replace ? insn : NULL_RTX);
3143 if (substed_operand[i] != orig_operand[i])
3144 val = 1;
3145 /* Terminate the search in check_eliminable_occurrences at
3146 this point. */
3147 *recog_data.operand_loc[i] = 0;
3148
3149 /* If an output operand changed from a REG to a MEM and INSN is an
3150 insn, write a CLOBBER insn. */
3151 if (recog_data.operand_type[i] != OP_IN
3152 && GET_CODE (orig_operand[i]) == REG
3153 && GET_CODE (substed_operand[i]) == MEM
3154 && replace)
3155 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3156 insn);
3157 }
3158 }
3159
3160 for (i = 0; i < recog_data.n_dups; i++)
3161 *recog_data.dup_loc[i]
3162 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3163
3164 /* If any eliminable remain, they aren't eliminable anymore. */
3165 check_eliminable_occurrences (old_body);
3166
3167 /* Substitute the operands; the new values are in the substed_operand
3168 array. */
3169 for (i = 0; i < recog_data.n_operands; i++)
3170 *recog_data.operand_loc[i] = substed_operand[i];
3171 for (i = 0; i < recog_data.n_dups; i++)
3172 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3173
3174 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3175 re-recognize the insn. We do this in case we had a simple addition
3176 but now can do this as a load-address. This saves an insn in this
3177 common case.
3178 If re-recognition fails, the old insn code number will still be used,
3179 and some register operands may have changed into PLUS expressions.
3180 These will be handled by find_reloads by loading them into a register
3181 again. */
3182
3183 if (val)
3184 {
3185 /* If we aren't replacing things permanently and we changed something,
3186 make another copy to ensure that all the RTL is new. Otherwise
3187 things can go wrong if find_reload swaps commutative operands
3188 and one is inside RTL that has been copied while the other is not. */
3189 new_body = old_body;
3190 if (! replace)
3191 {
3192 new_body = copy_insn (old_body);
3193 if (REG_NOTES (insn))
3194 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3195 }
3196 PATTERN (insn) = new_body;
3197
3198 /* If we had a move insn but now we don't, rerecognize it. This will
3199 cause spurious re-recognition if the old move had a PARALLEL since
3200 the new one still will, but we can't call single_set without
3201 having put NEW_BODY into the insn and the re-recognition won't
3202 hurt in this rare case. */
3203 /* ??? Why this huge if statement - why don't we just rerecognize the
3204 thing always? */
3205 if (! insn_is_asm
3206 && old_set != 0
3207 && ((GET_CODE (SET_SRC (old_set)) == REG
3208 && (GET_CODE (new_body) != SET
3209 || GET_CODE (SET_SRC (new_body)) != REG))
3210 /* If this was a load from or store to memory, compare
3211 the MEM in recog_data.operand to the one in the insn.
3212 If they are not equal, then rerecognize the insn. */
3213 || (old_set != 0
3214 && ((GET_CODE (SET_SRC (old_set)) == MEM
3215 && SET_SRC (old_set) != recog_data.operand[1])
3216 || (GET_CODE (SET_DEST (old_set)) == MEM
3217 && SET_DEST (old_set) != recog_data.operand[0])))
3218 /* If this was an add insn before, rerecognize. */
3219 || GET_CODE (SET_SRC (old_set)) == PLUS))
3220 {
3221 int new_icode = recog (PATTERN (insn), insn, 0);
3222 if (new_icode < 0)
3223 INSN_CODE (insn) = icode;
3224 }
3225 }
3226
3227 /* Restore the old body. If there were any changes to it, we made a copy
3228 of it while the changes were still in place, so we'll correctly return
3229 a modified insn below. */
3230 if (! replace)
3231 {
3232 /* Restore the old body. */
3233 for (i = 0; i < recog_data.n_operands; i++)
3234 *recog_data.operand_loc[i] = orig_operand[i];
3235 for (i = 0; i < recog_data.n_dups; i++)
3236 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3237 }
3238
3239 /* Update all elimination pairs to reflect the status after the current
3240 insn. The changes we make were determined by the earlier call to
3241 elimination_effects.
3242
3243 We also detect cases where register elimination cannot be done,
3244 namely, if a register would be both changed and referenced outside a MEM
3245 in the resulting insn since such an insn is often undefined and, even if
3246 not, we cannot know what meaning will be given to it. Note that it is
3247 valid to have a register used in an address in an insn that changes it
3248 (presumably with a pre- or post-increment or decrement).
3249
3250 If anything changes, return nonzero. */
3251
3252 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3253 {
3254 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3255 ep->can_eliminate = 0;
3256
3257 ep->ref_outside_mem = 0;
3258
3259 if (ep->previous_offset != ep->offset)
3260 val = 1;
3261 }
3262
3263 done:
3264 /* If we changed something, perform elimination in REG_NOTES. This is
3265 needed even when REPLACE is zero because a REG_DEAD note might refer
3266 to a register that we eliminate and could cause a different number
3267 of spill registers to be needed in the final reload pass than in
3268 the pre-passes. */
3269 if (val && REG_NOTES (insn) != 0)
3270 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3271
3272 return val;
3273 }
3274
3275 /* Loop through all elimination pairs.
3276 Recalculate the number not at initial offset.
3277
3278 Compute the maximum offset (minimum offset if the stack does not
3279 grow downward) for each elimination pair. */
3280
3281 static void
3282 update_eliminable_offsets ()
3283 {
3284 struct elim_table *ep;
3285
3286 num_not_at_initial_offset = 0;
3287 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3288 {
3289 ep->previous_offset = ep->offset;
3290 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3291 num_not_at_initial_offset++;
3292 }
3293 }
3294
3295 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3296 replacement we currently believe is valid, mark it as not eliminable if X
3297 modifies DEST in any way other than by adding a constant integer to it.
3298
3299 If DEST is the frame pointer, we do nothing because we assume that
3300 all assignments to the hard frame pointer are nonlocal gotos and are being
3301 done at a time when they are valid and do not disturb anything else.
3302 Some machines want to eliminate a fake argument pointer with either the
3303 frame or stack pointer. Assignments to the hard frame pointer must not
3304 prevent this elimination.
3305
3306 Called via note_stores from reload before starting its passes to scan
3307 the insns of the function. */
3308
3309 static void
3310 mark_not_eliminable (dest, x, data)
3311 rtx dest;
3312 rtx x;
3313 void *data ATTRIBUTE_UNUSED;
3314 {
3315 unsigned int i;
3316
3317 /* A SUBREG of a hard register here is just changing its mode. We should
3318 not see a SUBREG of an eliminable hard register, but check just in
3319 case. */
3320 if (GET_CODE (dest) == SUBREG)
3321 dest = SUBREG_REG (dest);
3322
3323 if (dest == hard_frame_pointer_rtx)
3324 return;
3325
3326 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3327 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3328 && (GET_CODE (x) != SET
3329 || GET_CODE (SET_SRC (x)) != PLUS
3330 || XEXP (SET_SRC (x), 0) != dest
3331 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3332 {
3333 reg_eliminate[i].can_eliminate_previous
3334 = reg_eliminate[i].can_eliminate = 0;
3335 num_eliminable--;
3336 }
3337 }
3338
3339 /* Verify that the initial elimination offsets did not change since the
3340 last call to set_initial_elim_offsets. This is used to catch cases
3341 where something illegal happened during reload_as_needed that could
3342 cause incorrect code to be generated if we did not check for it. */
3343
3344 static void
3345 verify_initial_elim_offsets ()
3346 {
3347 int t;
3348
3349 #ifdef ELIMINABLE_REGS
3350 struct elim_table *ep;
3351
3352 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3353 {
3354 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3355 if (t != ep->initial_offset)
3356 abort ();
3357 }
3358 #else
3359 INITIAL_FRAME_POINTER_OFFSET (t);
3360 if (t != reg_eliminate[0].initial_offset)
3361 abort ();
3362 #endif
3363 }
3364
3365 /* Reset all offsets on eliminable registers to their initial values. */
3366
3367 static void
3368 set_initial_elim_offsets ()
3369 {
3370 struct elim_table *ep = reg_eliminate;
3371
3372 #ifdef ELIMINABLE_REGS
3373 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3374 {
3375 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3376 ep->previous_offset = ep->offset = ep->initial_offset;
3377 }
3378 #else
3379 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3380 ep->previous_offset = ep->offset = ep->initial_offset;
3381 #endif
3382
3383 num_not_at_initial_offset = 0;
3384 }
3385
3386 /* Initialize the known label offsets.
3387 Set a known offset for each forced label to be at the initial offset
3388 of each elimination. We do this because we assume that all
3389 computed jumps occur from a location where each elimination is
3390 at its initial offset.
3391 For all other labels, show that we don't know the offsets. */
3392
3393 static void
3394 set_initial_label_offsets ()
3395 {
3396 rtx x;
3397 memset (offsets_known_at, 0, num_labels);
3398
3399 for (x = forced_labels; x; x = XEXP (x, 1))
3400 if (XEXP (x, 0))
3401 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3402 }
3403
3404 /* Set all elimination offsets to the known values for the code label given
3405 by INSN. */
3406
3407 static void
3408 set_offsets_for_label (insn)
3409 rtx insn;
3410 {
3411 unsigned int i;
3412 int label_nr = CODE_LABEL_NUMBER (insn);
3413 struct elim_table *ep;
3414
3415 num_not_at_initial_offset = 0;
3416 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3417 {
3418 ep->offset = ep->previous_offset
3419 = offsets_at[label_nr - first_label_num][i];
3420 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3421 num_not_at_initial_offset++;
3422 }
3423 }
3424
3425 /* See if anything that happened changes which eliminations are valid.
3426 For example, on the SPARC, whether or not the frame pointer can
3427 be eliminated can depend on what registers have been used. We need
3428 not check some conditions again (such as flag_omit_frame_pointer)
3429 since they can't have changed. */
3430
3431 static void
3432 update_eliminables (pset)
3433 HARD_REG_SET *pset;
3434 {
3435 int previous_frame_pointer_needed = frame_pointer_needed;
3436 struct elim_table *ep;
3437
3438 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3439 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3440 #ifdef ELIMINABLE_REGS
3441 || ! CAN_ELIMINATE (ep->from, ep->to)
3442 #endif
3443 )
3444 ep->can_eliminate = 0;
3445
3446 /* Look for the case where we have discovered that we can't replace
3447 register A with register B and that means that we will now be
3448 trying to replace register A with register C. This means we can
3449 no longer replace register C with register B and we need to disable
3450 such an elimination, if it exists. This occurs often with A == ap,
3451 B == sp, and C == fp. */
3452
3453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3454 {
3455 struct elim_table *op;
3456 int new_to = -1;
3457
3458 if (! ep->can_eliminate && ep->can_eliminate_previous)
3459 {
3460 /* Find the current elimination for ep->from, if there is a
3461 new one. */
3462 for (op = reg_eliminate;
3463 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3464 if (op->from == ep->from && op->can_eliminate)
3465 {
3466 new_to = op->to;
3467 break;
3468 }
3469
3470 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3471 disable it. */
3472 for (op = reg_eliminate;
3473 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3474 if (op->from == new_to && op->to == ep->to)
3475 op->can_eliminate = 0;
3476 }
3477 }
3478
3479 /* See if any registers that we thought we could eliminate the previous
3480 time are no longer eliminable. If so, something has changed and we
3481 must spill the register. Also, recompute the number of eliminable
3482 registers and see if the frame pointer is needed; it is if there is
3483 no elimination of the frame pointer that we can perform. */
3484
3485 frame_pointer_needed = 1;
3486 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3487 {
3488 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3489 && ep->to != HARD_FRAME_POINTER_REGNUM)
3490 frame_pointer_needed = 0;
3491
3492 if (! ep->can_eliminate && ep->can_eliminate_previous)
3493 {
3494 ep->can_eliminate_previous = 0;
3495 SET_HARD_REG_BIT (*pset, ep->from);
3496 num_eliminable--;
3497 }
3498 }
3499
3500 /* If we didn't need a frame pointer last time, but we do now, spill
3501 the hard frame pointer. */
3502 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3503 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3504 }
3505
3506 /* Initialize the table of registers to eliminate. */
3507
3508 static void
3509 init_elim_table ()
3510 {
3511 struct elim_table *ep;
3512 #ifdef ELIMINABLE_REGS
3513 const struct elim_table_1 *ep1;
3514 #endif
3515
3516 if (!reg_eliminate)
3517 reg_eliminate = (struct elim_table *)
3518 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3519
3520 /* Does this function require a frame pointer? */
3521
3522 frame_pointer_needed = (! flag_omit_frame_pointer
3523 #ifdef EXIT_IGNORE_STACK
3524 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3525 and restore sp for alloca. So we can't eliminate
3526 the frame pointer in that case. At some point,
3527 we should improve this by emitting the
3528 sp-adjusting insns for this case. */
3529 || (current_function_calls_alloca
3530 && EXIT_IGNORE_STACK)
3531 #endif
3532 || FRAME_POINTER_REQUIRED);
3533
3534 num_eliminable = 0;
3535
3536 #ifdef ELIMINABLE_REGS
3537 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3538 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3539 {
3540 ep->from = ep1->from;
3541 ep->to = ep1->to;
3542 ep->can_eliminate = ep->can_eliminate_previous
3543 = (CAN_ELIMINATE (ep->from, ep->to)
3544 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3545 }
3546 #else
3547 reg_eliminate[0].from = reg_eliminate_1[0].from;
3548 reg_eliminate[0].to = reg_eliminate_1[0].to;
3549 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3550 = ! frame_pointer_needed;
3551 #endif
3552
3553 /* Count the number of eliminable registers and build the FROM and TO
3554 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3555 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3556 We depend on this. */
3557 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3558 {
3559 num_eliminable += ep->can_eliminate;
3560 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3561 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3562 }
3563 }
3564 \f
3565 /* Kick all pseudos out of hard register REGNO.
3566
3567 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3568 because we found we can't eliminate some register. In the case, no pseudos
3569 are allowed to be in the register, even if they are only in a block that
3570 doesn't require spill registers, unlike the case when we are spilling this
3571 hard reg to produce another spill register.
3572
3573 Return nonzero if any pseudos needed to be kicked out. */
3574
3575 static void
3576 spill_hard_reg (regno, cant_eliminate)
3577 unsigned int regno;
3578 int cant_eliminate;
3579 {
3580 int i;
3581
3582 if (cant_eliminate)
3583 {
3584 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3585 regs_ever_live[regno] = 1;
3586 }
3587
3588 /* Spill every pseudo reg that was allocated to this reg
3589 or to something that overlaps this reg. */
3590
3591 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3592 if (reg_renumber[i] >= 0
3593 && (unsigned int) reg_renumber[i] <= regno
3594 && ((unsigned int) reg_renumber[i]
3595 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3596 PSEUDO_REGNO_MODE (i))
3597 > regno))
3598 SET_REGNO_REG_SET (&spilled_pseudos, i);
3599 }
3600
3601 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3602 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3603
3604 static void
3605 ior_hard_reg_set (set1, set2)
3606 HARD_REG_SET *set1, *set2;
3607 {
3608 IOR_HARD_REG_SET (*set1, *set2);
3609 }
3610
3611 /* After find_reload_regs has been run for all insn that need reloads,
3612 and/or spill_hard_regs was called, this function is used to actually
3613 spill pseudo registers and try to reallocate them. It also sets up the
3614 spill_regs array for use by choose_reload_regs. */
3615
3616 static int
3617 finish_spills (global)
3618 int global;
3619 {
3620 struct insn_chain *chain;
3621 int something_changed = 0;
3622 int i;
3623
3624 /* Build the spill_regs array for the function. */
3625 /* If there are some registers still to eliminate and one of the spill regs
3626 wasn't ever used before, additional stack space may have to be
3627 allocated to store this register. Thus, we may have changed the offset
3628 between the stack and frame pointers, so mark that something has changed.
3629
3630 One might think that we need only set VAL to 1 if this is a call-used
3631 register. However, the set of registers that must be saved by the
3632 prologue is not identical to the call-used set. For example, the
3633 register used by the call insn for the return PC is a call-used register,
3634 but must be saved by the prologue. */
3635
3636 n_spills = 0;
3637 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3638 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3639 {
3640 spill_reg_order[i] = n_spills;
3641 spill_regs[n_spills++] = i;
3642 if (num_eliminable && ! regs_ever_live[i])
3643 something_changed = 1;
3644 regs_ever_live[i] = 1;
3645 }
3646 else
3647 spill_reg_order[i] = -1;
3648
3649 EXECUTE_IF_SET_IN_REG_SET
3650 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3651 {
3652 /* Record the current hard register the pseudo is allocated to in
3653 pseudo_previous_regs so we avoid reallocating it to the same
3654 hard reg in a later pass. */
3655 if (reg_renumber[i] < 0)
3656 abort ();
3657
3658 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3659 /* Mark it as no longer having a hard register home. */
3660 reg_renumber[i] = -1;
3661 /* We will need to scan everything again. */
3662 something_changed = 1;
3663 });
3664
3665 /* Retry global register allocation if possible. */
3666 if (global)
3667 {
3668 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3669 /* For every insn that needs reloads, set the registers used as spill
3670 regs in pseudo_forbidden_regs for every pseudo live across the
3671 insn. */
3672 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3673 {
3674 EXECUTE_IF_SET_IN_REG_SET
3675 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3676 {
3677 ior_hard_reg_set (pseudo_forbidden_regs + i,
3678 &chain->used_spill_regs);
3679 });
3680 EXECUTE_IF_SET_IN_REG_SET
3681 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3682 {
3683 ior_hard_reg_set (pseudo_forbidden_regs + i,
3684 &chain->used_spill_regs);
3685 });
3686 }
3687
3688 /* Retry allocating the spilled pseudos. For each reg, merge the
3689 various reg sets that indicate which hard regs can't be used,
3690 and call retry_global_alloc.
3691 We change spill_pseudos here to only contain pseudos that did not
3692 get a new hard register. */
3693 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3694 if (reg_old_renumber[i] != reg_renumber[i])
3695 {
3696 HARD_REG_SET forbidden;
3697 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3698 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3699 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3700 retry_global_alloc (i, forbidden);
3701 if (reg_renumber[i] >= 0)
3702 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3703 }
3704 }
3705
3706 /* Fix up the register information in the insn chain.
3707 This involves deleting those of the spilled pseudos which did not get
3708 a new hard register home from the live_{before,after} sets. */
3709 for (chain = reload_insn_chain; chain; chain = chain->next)
3710 {
3711 HARD_REG_SET used_by_pseudos;
3712 HARD_REG_SET used_by_pseudos2;
3713
3714 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3715 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3716
3717 /* Mark any unallocated hard regs as available for spills. That
3718 makes inheritance work somewhat better. */
3719 if (chain->need_reload)
3720 {
3721 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3722 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3723 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3724
3725 /* Save the old value for the sanity test below. */
3726 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3727
3728 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3729 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3730 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3731 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3732
3733 /* Make sure we only enlarge the set. */
3734 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3735 abort ();
3736 ok:;
3737 }
3738 }
3739
3740 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3741 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3742 {
3743 int regno = reg_renumber[i];
3744 if (reg_old_renumber[i] == regno)
3745 continue;
3746
3747 alter_reg (i, reg_old_renumber[i]);
3748 reg_old_renumber[i] = regno;
3749 if (rtl_dump_file)
3750 {
3751 if (regno == -1)
3752 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3753 else
3754 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3755 i, reg_renumber[i]);
3756 }
3757 }
3758
3759 return something_changed;
3760 }
3761 \f
3762 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3763 Also mark any hard registers used to store user variables as
3764 forbidden from being used for spill registers. */
3765
3766 static void
3767 scan_paradoxical_subregs (x)
3768 rtx x;
3769 {
3770 int i;
3771 const char *fmt;
3772 enum rtx_code code = GET_CODE (x);
3773
3774 switch (code)
3775 {
3776 case REG:
3777 #if 0
3778 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3779 && REG_USERVAR_P (x))
3780 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3781 #endif
3782 return;
3783
3784 case CONST_INT:
3785 case CONST:
3786 case SYMBOL_REF:
3787 case LABEL_REF:
3788 case CONST_DOUBLE:
3789 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3790 case CC0:
3791 case PC:
3792 case USE:
3793 case CLOBBER:
3794 return;
3795
3796 case SUBREG:
3797 if (GET_CODE (SUBREG_REG (x)) == REG
3798 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3799 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3800 = GET_MODE_SIZE (GET_MODE (x));
3801 return;
3802
3803 default:
3804 break;
3805 }
3806
3807 fmt = GET_RTX_FORMAT (code);
3808 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3809 {
3810 if (fmt[i] == 'e')
3811 scan_paradoxical_subregs (XEXP (x, i));
3812 else if (fmt[i] == 'E')
3813 {
3814 int j;
3815 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3816 scan_paradoxical_subregs (XVECEXP (x, i, j));
3817 }
3818 }
3819 }
3820 \f
3821 /* Reload pseudo-registers into hard regs around each insn as needed.
3822 Additional register load insns are output before the insn that needs it
3823 and perhaps store insns after insns that modify the reloaded pseudo reg.
3824
3825 reg_last_reload_reg and reg_reloaded_contents keep track of
3826 which registers are already available in reload registers.
3827 We update these for the reloads that we perform,
3828 as the insns are scanned. */
3829
3830 static void
3831 reload_as_needed (live_known)
3832 int live_known;
3833 {
3834 struct insn_chain *chain;
3835 #if defined (AUTO_INC_DEC)
3836 int i;
3837 #endif
3838 rtx x;
3839
3840 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3841 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3842 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3843 reg_has_output_reload = (char *) xmalloc (max_regno);
3844 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3845
3846 set_initial_elim_offsets ();
3847
3848 for (chain = reload_insn_chain; chain; chain = chain->next)
3849 {
3850 rtx prev = 0;
3851 rtx insn = chain->insn;
3852 rtx old_next = NEXT_INSN (insn);
3853
3854 /* If we pass a label, copy the offsets from the label information
3855 into the current offsets of each elimination. */
3856 if (GET_CODE (insn) == CODE_LABEL)
3857 set_offsets_for_label (insn);
3858
3859 else if (INSN_P (insn))
3860 {
3861 rtx oldpat = copy_rtx (PATTERN (insn));
3862
3863 /* If this is a USE and CLOBBER of a MEM, ensure that any
3864 references to eliminable registers have been removed. */
3865
3866 if ((GET_CODE (PATTERN (insn)) == USE
3867 || GET_CODE (PATTERN (insn)) == CLOBBER)
3868 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3869 XEXP (XEXP (PATTERN (insn), 0), 0)
3870 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3871 GET_MODE (XEXP (PATTERN (insn), 0)),
3872 NULL_RTX);
3873
3874 /* If we need to do register elimination processing, do so.
3875 This might delete the insn, in which case we are done. */
3876 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3877 {
3878 eliminate_regs_in_insn (insn, 1);
3879 if (GET_CODE (insn) == NOTE)
3880 {
3881 update_eliminable_offsets ();
3882 continue;
3883 }
3884 }
3885
3886 /* If need_elim is nonzero but need_reload is zero, one might think
3887 that we could simply set n_reloads to 0. However, find_reloads
3888 could have done some manipulation of the insn (such as swapping
3889 commutative operands), and these manipulations are lost during
3890 the first pass for every insn that needs register elimination.
3891 So the actions of find_reloads must be redone here. */
3892
3893 if (! chain->need_elim && ! chain->need_reload
3894 && ! chain->need_operand_change)
3895 n_reloads = 0;
3896 /* First find the pseudo regs that must be reloaded for this insn.
3897 This info is returned in the tables reload_... (see reload.h).
3898 Also modify the body of INSN by substituting RELOAD
3899 rtx's for those pseudo regs. */
3900 else
3901 {
3902 memset (reg_has_output_reload, 0, max_regno);
3903 CLEAR_HARD_REG_SET (reg_is_output_reload);
3904
3905 find_reloads (insn, 1, spill_indirect_levels, live_known,
3906 spill_reg_order);
3907 }
3908
3909 if (n_reloads > 0)
3910 {
3911 rtx next = NEXT_INSN (insn);
3912 rtx p;
3913
3914 prev = PREV_INSN (insn);
3915
3916 /* Now compute which reload regs to reload them into. Perhaps
3917 reusing reload regs from previous insns, or else output
3918 load insns to reload them. Maybe output store insns too.
3919 Record the choices of reload reg in reload_reg_rtx. */
3920 choose_reload_regs (chain);
3921
3922 /* Merge any reloads that we didn't combine for fear of
3923 increasing the number of spill registers needed but now
3924 discover can be safely merged. */
3925 if (SMALL_REGISTER_CLASSES)
3926 merge_assigned_reloads (insn);
3927
3928 /* Generate the insns to reload operands into or out of
3929 their reload regs. */
3930 emit_reload_insns (chain);
3931
3932 /* Substitute the chosen reload regs from reload_reg_rtx
3933 into the insn's body (or perhaps into the bodies of other
3934 load and store insn that we just made for reloading
3935 and that we moved the structure into). */
3936 subst_reloads (insn);
3937
3938 /* If this was an ASM, make sure that all the reload insns
3939 we have generated are valid. If not, give an error
3940 and delete them. */
3941
3942 if (asm_noperands (PATTERN (insn)) >= 0)
3943 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3944 if (p != insn && INSN_P (p)
3945 && (recog_memoized (p) < 0
3946 || (extract_insn (p), ! constrain_operands (1))))
3947 {
3948 error_for_asm (insn,
3949 "`asm' operand requires impossible reload");
3950 delete_insn (p);
3951 }
3952 }
3953
3954 if (num_eliminable && chain->need_elim)
3955 update_eliminable_offsets ();
3956
3957 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3958 is no longer validly lying around to save a future reload.
3959 Note that this does not detect pseudos that were reloaded
3960 for this insn in order to be stored in
3961 (obeying register constraints). That is correct; such reload
3962 registers ARE still valid. */
3963 note_stores (oldpat, forget_old_reloads_1, NULL);
3964
3965 /* There may have been CLOBBER insns placed after INSN. So scan
3966 between INSN and NEXT and use them to forget old reloads. */
3967 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3968 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3969 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3970
3971 #ifdef AUTO_INC_DEC
3972 /* Likewise for regs altered by auto-increment in this insn.
3973 REG_INC notes have been changed by reloading:
3974 find_reloads_address_1 records substitutions for them,
3975 which have been performed by subst_reloads above. */
3976 for (i = n_reloads - 1; i >= 0; i--)
3977 {
3978 rtx in_reg = rld[i].in_reg;
3979 if (in_reg)
3980 {
3981 enum rtx_code code = GET_CODE (in_reg);
3982 /* PRE_INC / PRE_DEC will have the reload register ending up
3983 with the same value as the stack slot, but that doesn't
3984 hold true for POST_INC / POST_DEC. Either we have to
3985 convert the memory access to a true POST_INC / POST_DEC,
3986 or we can't use the reload register for inheritance. */
3987 if ((code == POST_INC || code == POST_DEC)
3988 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3989 REGNO (rld[i].reg_rtx))
3990 /* Make sure it is the inc/dec pseudo, and not
3991 some other (e.g. output operand) pseudo. */
3992 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3993 == REGNO (XEXP (in_reg, 0))))
3994
3995 {
3996 rtx reload_reg = rld[i].reg_rtx;
3997 enum machine_mode mode = GET_MODE (reload_reg);
3998 int n = 0;
3999 rtx p;
4000
4001 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4002 {
4003 /* We really want to ignore REG_INC notes here, so
4004 use PATTERN (p) as argument to reg_set_p . */
4005 if (reg_set_p (reload_reg, PATTERN (p)))
4006 break;
4007 n = count_occurrences (PATTERN (p), reload_reg, 0);
4008 if (! n)
4009 continue;
4010 if (n == 1)
4011 {
4012 n = validate_replace_rtx (reload_reg,
4013 gen_rtx (code, mode,
4014 reload_reg),
4015 p);
4016
4017 /* We must also verify that the constraints
4018 are met after the replacement. */
4019 extract_insn (p);
4020 if (n)
4021 n = constrain_operands (1);
4022 else
4023 break;
4024
4025 /* If the constraints were not met, then
4026 undo the replacement. */
4027 if (!n)
4028 {
4029 validate_replace_rtx (gen_rtx (code, mode,
4030 reload_reg),
4031 reload_reg, p);
4032 break;
4033 }
4034
4035 }
4036 break;
4037 }
4038 if (n == 1)
4039 {
4040 REG_NOTES (p)
4041 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4042 REG_NOTES (p));
4043 /* Mark this as having an output reload so that the
4044 REG_INC processing code below won't invalidate
4045 the reload for inheritance. */
4046 SET_HARD_REG_BIT (reg_is_output_reload,
4047 REGNO (reload_reg));
4048 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4049 }
4050 else
4051 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4052 NULL);
4053 }
4054 else if ((code == PRE_INC || code == PRE_DEC)
4055 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4056 REGNO (rld[i].reg_rtx))
4057 /* Make sure it is the inc/dec pseudo, and not
4058 some other (e.g. output operand) pseudo. */
4059 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4060 == REGNO (XEXP (in_reg, 0))))
4061 {
4062 SET_HARD_REG_BIT (reg_is_output_reload,
4063 REGNO (rld[i].reg_rtx));
4064 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4065 }
4066 }
4067 }
4068 /* If a pseudo that got a hard register is auto-incremented,
4069 we must purge records of copying it into pseudos without
4070 hard registers. */
4071 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4072 if (REG_NOTE_KIND (x) == REG_INC)
4073 {
4074 /* See if this pseudo reg was reloaded in this insn.
4075 If so, its last-reload info is still valid
4076 because it is based on this insn's reload. */
4077 for (i = 0; i < n_reloads; i++)
4078 if (rld[i].out == XEXP (x, 0))
4079 break;
4080
4081 if (i == n_reloads)
4082 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4083 }
4084 #endif
4085 }
4086 /* A reload reg's contents are unknown after a label. */
4087 if (GET_CODE (insn) == CODE_LABEL)
4088 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4089
4090 /* Don't assume a reload reg is still good after a call insn
4091 if it is a call-used reg. */
4092 else if (GET_CODE (insn) == CALL_INSN)
4093 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4094 }
4095
4096 /* Clean up. */
4097 free (reg_last_reload_reg);
4098 free (reg_has_output_reload);
4099 }
4100
4101 /* Discard all record of any value reloaded from X,
4102 or reloaded in X from someplace else;
4103 unless X is an output reload reg of the current insn.
4104
4105 X may be a hard reg (the reload reg)
4106 or it may be a pseudo reg that was reloaded from. */
4107
4108 static void
4109 forget_old_reloads_1 (x, ignored, data)
4110 rtx x;
4111 rtx ignored ATTRIBUTE_UNUSED;
4112 void *data ATTRIBUTE_UNUSED;
4113 {
4114 unsigned int regno;
4115 unsigned int nr;
4116
4117 /* note_stores does give us subregs of hard regs,
4118 subreg_regno_offset will abort if it is not a hard reg. */
4119 while (GET_CODE (x) == SUBREG)
4120 {
4121 /* We ignore the subreg offset when calculating the regno,
4122 because we are using the entire underlying hard register
4123 below. */
4124 x = SUBREG_REG (x);
4125 }
4126
4127 if (GET_CODE (x) != REG)
4128 return;
4129
4130 regno = REGNO (x);
4131
4132 if (regno >= FIRST_PSEUDO_REGISTER)
4133 nr = 1;
4134 else
4135 {
4136 unsigned int i;
4137
4138 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4139 /* Storing into a spilled-reg invalidates its contents.
4140 This can happen if a block-local pseudo is allocated to that reg
4141 and it wasn't spilled because this block's total need is 0.
4142 Then some insn might have an optional reload and use this reg. */
4143 for (i = 0; i < nr; i++)
4144 /* But don't do this if the reg actually serves as an output
4145 reload reg in the current instruction. */
4146 if (n_reloads == 0
4147 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4148 {
4149 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4150 spill_reg_store[regno + i] = 0;
4151 }
4152 }
4153
4154 /* Since value of X has changed,
4155 forget any value previously copied from it. */
4156
4157 while (nr-- > 0)
4158 /* But don't forget a copy if this is the output reload
4159 that establishes the copy's validity. */
4160 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4161 reg_last_reload_reg[regno + nr] = 0;
4162 }
4163 \f
4164 /* The following HARD_REG_SETs indicate when each hard register is
4165 used for a reload of various parts of the current insn. */
4166
4167 /* If reg is unavailable for all reloads. */
4168 static HARD_REG_SET reload_reg_unavailable;
4169 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4170 static HARD_REG_SET reload_reg_used;
4171 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4172 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4173 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4174 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4175 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4176 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4177 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4178 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4179 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4180 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4181 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4182 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4183 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4184 static HARD_REG_SET reload_reg_used_in_op_addr;
4185 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4186 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4187 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4188 static HARD_REG_SET reload_reg_used_in_insn;
4189 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4190 static HARD_REG_SET reload_reg_used_in_other_addr;
4191
4192 /* If reg is in use as a reload reg for any sort of reload. */
4193 static HARD_REG_SET reload_reg_used_at_all;
4194
4195 /* If reg is use as an inherited reload. We just mark the first register
4196 in the group. */
4197 static HARD_REG_SET reload_reg_used_for_inherit;
4198
4199 /* Records which hard regs are used in any way, either as explicit use or
4200 by being allocated to a pseudo during any point of the current insn. */
4201 static HARD_REG_SET reg_used_in_insn;
4202
4203 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4204 TYPE. MODE is used to indicate how many consecutive regs are
4205 actually used. */
4206
4207 static void
4208 mark_reload_reg_in_use (regno, opnum, type, mode)
4209 unsigned int regno;
4210 int opnum;
4211 enum reload_type type;
4212 enum machine_mode mode;
4213 {
4214 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4215 unsigned int i;
4216
4217 for (i = regno; i < nregs + regno; i++)
4218 {
4219 switch (type)
4220 {
4221 case RELOAD_OTHER:
4222 SET_HARD_REG_BIT (reload_reg_used, i);
4223 break;
4224
4225 case RELOAD_FOR_INPUT_ADDRESS:
4226 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4227 break;
4228
4229 case RELOAD_FOR_INPADDR_ADDRESS:
4230 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4231 break;
4232
4233 case RELOAD_FOR_OUTPUT_ADDRESS:
4234 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4235 break;
4236
4237 case RELOAD_FOR_OUTADDR_ADDRESS:
4238 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4239 break;
4240
4241 case RELOAD_FOR_OPERAND_ADDRESS:
4242 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4243 break;
4244
4245 case RELOAD_FOR_OPADDR_ADDR:
4246 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4247 break;
4248
4249 case RELOAD_FOR_OTHER_ADDRESS:
4250 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4251 break;
4252
4253 case RELOAD_FOR_INPUT:
4254 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4255 break;
4256
4257 case RELOAD_FOR_OUTPUT:
4258 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4259 break;
4260
4261 case RELOAD_FOR_INSN:
4262 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4263 break;
4264 }
4265
4266 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4267 }
4268 }
4269
4270 /* Similarly, but show REGNO is no longer in use for a reload. */
4271
4272 static void
4273 clear_reload_reg_in_use (regno, opnum, type, mode)
4274 unsigned int regno;
4275 int opnum;
4276 enum reload_type type;
4277 enum machine_mode mode;
4278 {
4279 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4280 unsigned int start_regno, end_regno, r;
4281 int i;
4282 /* A complication is that for some reload types, inheritance might
4283 allow multiple reloads of the same types to share a reload register.
4284 We set check_opnum if we have to check only reloads with the same
4285 operand number, and check_any if we have to check all reloads. */
4286 int check_opnum = 0;
4287 int check_any = 0;
4288 HARD_REG_SET *used_in_set;
4289
4290 switch (type)
4291 {
4292 case RELOAD_OTHER:
4293 used_in_set = &reload_reg_used;
4294 break;
4295
4296 case RELOAD_FOR_INPUT_ADDRESS:
4297 used_in_set = &reload_reg_used_in_input_addr[opnum];
4298 break;
4299
4300 case RELOAD_FOR_INPADDR_ADDRESS:
4301 check_opnum = 1;
4302 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4303 break;
4304
4305 case RELOAD_FOR_OUTPUT_ADDRESS:
4306 used_in_set = &reload_reg_used_in_output_addr[opnum];
4307 break;
4308
4309 case RELOAD_FOR_OUTADDR_ADDRESS:
4310 check_opnum = 1;
4311 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4312 break;
4313
4314 case RELOAD_FOR_OPERAND_ADDRESS:
4315 used_in_set = &reload_reg_used_in_op_addr;
4316 break;
4317
4318 case RELOAD_FOR_OPADDR_ADDR:
4319 check_any = 1;
4320 used_in_set = &reload_reg_used_in_op_addr_reload;
4321 break;
4322
4323 case RELOAD_FOR_OTHER_ADDRESS:
4324 used_in_set = &reload_reg_used_in_other_addr;
4325 check_any = 1;
4326 break;
4327
4328 case RELOAD_FOR_INPUT:
4329 used_in_set = &reload_reg_used_in_input[opnum];
4330 break;
4331
4332 case RELOAD_FOR_OUTPUT:
4333 used_in_set = &reload_reg_used_in_output[opnum];
4334 break;
4335
4336 case RELOAD_FOR_INSN:
4337 used_in_set = &reload_reg_used_in_insn;
4338 break;
4339 default:
4340 abort ();
4341 }
4342 /* We resolve conflicts with remaining reloads of the same type by
4343 excluding the intervals of reload registers by them from the
4344 interval of freed reload registers. Since we only keep track of
4345 one set of interval bounds, we might have to exclude somewhat
4346 more than what would be necessary if we used a HARD_REG_SET here.
4347 But this should only happen very infrequently, so there should
4348 be no reason to worry about it. */
4349
4350 start_regno = regno;
4351 end_regno = regno + nregs;
4352 if (check_opnum || check_any)
4353 {
4354 for (i = n_reloads - 1; i >= 0; i--)
4355 {
4356 if (rld[i].when_needed == type
4357 && (check_any || rld[i].opnum == opnum)
4358 && rld[i].reg_rtx)
4359 {
4360 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4361 unsigned int conflict_end
4362 = (conflict_start
4363 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4364
4365 /* If there is an overlap with the first to-be-freed register,
4366 adjust the interval start. */
4367 if (conflict_start <= start_regno && conflict_end > start_regno)
4368 start_regno = conflict_end;
4369 /* Otherwise, if there is a conflict with one of the other
4370 to-be-freed registers, adjust the interval end. */
4371 if (conflict_start > start_regno && conflict_start < end_regno)
4372 end_regno = conflict_start;
4373 }
4374 }
4375 }
4376
4377 for (r = start_regno; r < end_regno; r++)
4378 CLEAR_HARD_REG_BIT (*used_in_set, r);
4379 }
4380
4381 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4382 specified by OPNUM and TYPE. */
4383
4384 static int
4385 reload_reg_free_p (regno, opnum, type)
4386 unsigned int regno;
4387 int opnum;
4388 enum reload_type type;
4389 {
4390 int i;
4391
4392 /* In use for a RELOAD_OTHER means it's not available for anything. */
4393 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4394 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4395 return 0;
4396
4397 switch (type)
4398 {
4399 case RELOAD_OTHER:
4400 /* In use for anything means we can't use it for RELOAD_OTHER. */
4401 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4402 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4403 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4404 return 0;
4405
4406 for (i = 0; i < reload_n_operands; i++)
4407 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4408 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4409 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4410 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4411 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4412 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4413 return 0;
4414
4415 return 1;
4416
4417 case RELOAD_FOR_INPUT:
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4419 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4420 return 0;
4421
4422 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4423 return 0;
4424
4425 /* If it is used for some other input, can't use it. */
4426 for (i = 0; i < reload_n_operands; i++)
4427 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4428 return 0;
4429
4430 /* If it is used in a later operand's address, can't use it. */
4431 for (i = opnum + 1; i < reload_n_operands; i++)
4432 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4433 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4434 return 0;
4435
4436 return 1;
4437
4438 case RELOAD_FOR_INPUT_ADDRESS:
4439 /* Can't use a register if it is used for an input address for this
4440 operand or used as an input in an earlier one. */
4441 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4442 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4443 return 0;
4444
4445 for (i = 0; i < opnum; i++)
4446 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4447 return 0;
4448
4449 return 1;
4450
4451 case RELOAD_FOR_INPADDR_ADDRESS:
4452 /* Can't use a register if it is used for an input address
4453 for this operand or used as an input in an earlier
4454 one. */
4455 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4456 return 0;
4457
4458 for (i = 0; i < opnum; i++)
4459 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4460 return 0;
4461
4462 return 1;
4463
4464 case RELOAD_FOR_OUTPUT_ADDRESS:
4465 /* Can't use a register if it is used for an output address for this
4466 operand or used as an output in this or a later operand. Note
4467 that multiple output operands are emitted in reverse order, so
4468 the conflicting ones are those with lower indices. */
4469 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4470 return 0;
4471
4472 for (i = 0; i <= opnum; i++)
4473 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4474 return 0;
4475
4476 return 1;
4477
4478 case RELOAD_FOR_OUTADDR_ADDRESS:
4479 /* Can't use a register if it is used for an output address
4480 for this operand or used as an output in this or a
4481 later operand. Note that multiple output operands are
4482 emitted in reverse order, so the conflicting ones are
4483 those with lower indices. */
4484 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4485 return 0;
4486
4487 for (i = 0; i <= opnum; i++)
4488 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4489 return 0;
4490
4491 return 1;
4492
4493 case RELOAD_FOR_OPERAND_ADDRESS:
4494 for (i = 0; i < reload_n_operands; i++)
4495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4496 return 0;
4497
4498 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4499 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4500
4501 case RELOAD_FOR_OPADDR_ADDR:
4502 for (i = 0; i < reload_n_operands; i++)
4503 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4504 return 0;
4505
4506 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4507
4508 case RELOAD_FOR_OUTPUT:
4509 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4510 outputs, or an operand address for this or an earlier output.
4511 Note that multiple output operands are emitted in reverse order,
4512 so the conflicting ones are those with higher indices. */
4513 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4514 return 0;
4515
4516 for (i = 0; i < reload_n_operands; i++)
4517 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4518 return 0;
4519
4520 for (i = opnum; i < reload_n_operands; i++)
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4523 return 0;
4524
4525 return 1;
4526
4527 case RELOAD_FOR_INSN:
4528 for (i = 0; i < reload_n_operands; i++)
4529 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4530 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4531 return 0;
4532
4533 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4534 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4535
4536 case RELOAD_FOR_OTHER_ADDRESS:
4537 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4538 }
4539 abort ();
4540 }
4541
4542 /* Return 1 if the value in reload reg REGNO, as used by a reload
4543 needed for the part of the insn specified by OPNUM and TYPE,
4544 is still available in REGNO at the end of the insn.
4545
4546 We can assume that the reload reg was already tested for availability
4547 at the time it is needed, and we should not check this again,
4548 in case the reg has already been marked in use. */
4549
4550 static int
4551 reload_reg_reaches_end_p (regno, opnum, type)
4552 unsigned int regno;
4553 int opnum;
4554 enum reload_type type;
4555 {
4556 int i;
4557
4558 switch (type)
4559 {
4560 case RELOAD_OTHER:
4561 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4562 its value must reach the end. */
4563 return 1;
4564
4565 /* If this use is for part of the insn,
4566 its value reaches if no subsequent part uses the same register.
4567 Just like the above function, don't try to do this with lots
4568 of fallthroughs. */
4569
4570 case RELOAD_FOR_OTHER_ADDRESS:
4571 /* Here we check for everything else, since these don't conflict
4572 with anything else and everything comes later. */
4573
4574 for (i = 0; i < reload_n_operands; i++)
4575 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4576 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4577 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4578 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4579 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4580 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4581 return 0;
4582
4583 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4584 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4585 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4586
4587 case RELOAD_FOR_INPUT_ADDRESS:
4588 case RELOAD_FOR_INPADDR_ADDRESS:
4589 /* Similar, except that we check only for this and subsequent inputs
4590 and the address of only subsequent inputs and we do not need
4591 to check for RELOAD_OTHER objects since they are known not to
4592 conflict. */
4593
4594 for (i = opnum; i < reload_n_operands; i++)
4595 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4596 return 0;
4597
4598 for (i = opnum + 1; i < reload_n_operands; i++)
4599 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4600 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4601 return 0;
4602
4603 for (i = 0; i < reload_n_operands; i++)
4604 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4605 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4606 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4607 return 0;
4608
4609 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4610 return 0;
4611
4612 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4613 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4614 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4615
4616 case RELOAD_FOR_INPUT:
4617 /* Similar to input address, except we start at the next operand for
4618 both input and input address and we do not check for
4619 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4620 would conflict. */
4621
4622 for (i = opnum + 1; i < reload_n_operands; i++)
4623 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4624 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4625 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4626 return 0;
4627
4628 /* ... fall through ... */
4629
4630 case RELOAD_FOR_OPERAND_ADDRESS:
4631 /* Check outputs and their addresses. */
4632
4633 for (i = 0; i < reload_n_operands; i++)
4634 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4635 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4636 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4637 return 0;
4638
4639 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4640
4641 case RELOAD_FOR_OPADDR_ADDR:
4642 for (i = 0; i < reload_n_operands; i++)
4643 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4644 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4645 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4646 return 0;
4647
4648 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4649 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4650 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4651
4652 case RELOAD_FOR_INSN:
4653 /* These conflict with other outputs with RELOAD_OTHER. So
4654 we need only check for output addresses. */
4655
4656 opnum = reload_n_operands;
4657
4658 /* ... fall through ... */
4659
4660 case RELOAD_FOR_OUTPUT:
4661 case RELOAD_FOR_OUTPUT_ADDRESS:
4662 case RELOAD_FOR_OUTADDR_ADDRESS:
4663 /* We already know these can't conflict with a later output. So the
4664 only thing to check are later output addresses.
4665 Note that multiple output operands are emitted in reverse order,
4666 so the conflicting ones are those with lower indices. */
4667 for (i = 0; i < opnum; i++)
4668 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4669 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4670 return 0;
4671
4672 return 1;
4673 }
4674
4675 abort ();
4676 }
4677 \f
4678 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4679 Return 0 otherwise.
4680
4681 This function uses the same algorithm as reload_reg_free_p above. */
4682
4683 int
4684 reloads_conflict (r1, r2)
4685 int r1, r2;
4686 {
4687 enum reload_type r1_type = rld[r1].when_needed;
4688 enum reload_type r2_type = rld[r2].when_needed;
4689 int r1_opnum = rld[r1].opnum;
4690 int r2_opnum = rld[r2].opnum;
4691
4692 /* RELOAD_OTHER conflicts with everything. */
4693 if (r2_type == RELOAD_OTHER)
4694 return 1;
4695
4696 /* Otherwise, check conflicts differently for each type. */
4697
4698 switch (r1_type)
4699 {
4700 case RELOAD_FOR_INPUT:
4701 return (r2_type == RELOAD_FOR_INSN
4702 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4703 || r2_type == RELOAD_FOR_OPADDR_ADDR
4704 || r2_type == RELOAD_FOR_INPUT
4705 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4706 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4707 && r2_opnum > r1_opnum));
4708
4709 case RELOAD_FOR_INPUT_ADDRESS:
4710 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4711 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4712
4713 case RELOAD_FOR_INPADDR_ADDRESS:
4714 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4715 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4716
4717 case RELOAD_FOR_OUTPUT_ADDRESS:
4718 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4719 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4720
4721 case RELOAD_FOR_OUTADDR_ADDRESS:
4722 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4723 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4724
4725 case RELOAD_FOR_OPERAND_ADDRESS:
4726 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4727 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4728
4729 case RELOAD_FOR_OPADDR_ADDR:
4730 return (r2_type == RELOAD_FOR_INPUT
4731 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4732
4733 case RELOAD_FOR_OUTPUT:
4734 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4735 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4736 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4737 && r2_opnum >= r1_opnum));
4738
4739 case RELOAD_FOR_INSN:
4740 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4741 || r2_type == RELOAD_FOR_INSN
4742 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4743
4744 case RELOAD_FOR_OTHER_ADDRESS:
4745 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4746
4747 case RELOAD_OTHER:
4748 return 1;
4749
4750 default:
4751 abort ();
4752 }
4753 }
4754 \f
4755 /* Indexed by reload number, 1 if incoming value
4756 inherited from previous insns. */
4757 char reload_inherited[MAX_RELOADS];
4758
4759 /* For an inherited reload, this is the insn the reload was inherited from,
4760 if we know it. Otherwise, this is 0. */
4761 rtx reload_inheritance_insn[MAX_RELOADS];
4762
4763 /* If nonzero, this is a place to get the value of the reload,
4764 rather than using reload_in. */
4765 rtx reload_override_in[MAX_RELOADS];
4766
4767 /* For each reload, the hard register number of the register used,
4768 or -1 if we did not need a register for this reload. */
4769 int reload_spill_index[MAX_RELOADS];
4770
4771 /* Subroutine of free_for_value_p, used to check a single register.
4772 START_REGNO is the starting regno of the full reload register
4773 (possibly comprising multiple hard registers) that we are considering. */
4774
4775 static int
4776 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4777 reloadnum, ignore_address_reloads)
4778 int start_regno, regno;
4779 int opnum;
4780 enum reload_type type;
4781 rtx value, out;
4782 int reloadnum;
4783 int ignore_address_reloads;
4784 {
4785 int time1;
4786 /* Set if we see an input reload that must not share its reload register
4787 with any new earlyclobber, but might otherwise share the reload
4788 register with an output or input-output reload. */
4789 int check_earlyclobber = 0;
4790 int i;
4791 int copy = 0;
4792
4793 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4794 return 0;
4795
4796 if (out == const0_rtx)
4797 {
4798 copy = 1;
4799 out = NULL_RTX;
4800 }
4801
4802 /* We use some pseudo 'time' value to check if the lifetimes of the
4803 new register use would overlap with the one of a previous reload
4804 that is not read-only or uses a different value.
4805 The 'time' used doesn't have to be linear in any shape or form, just
4806 monotonic.
4807 Some reload types use different 'buckets' for each operand.
4808 So there are MAX_RECOG_OPERANDS different time values for each
4809 such reload type.
4810 We compute TIME1 as the time when the register for the prospective
4811 new reload ceases to be live, and TIME2 for each existing
4812 reload as the time when that the reload register of that reload
4813 becomes live.
4814 Where there is little to be gained by exact lifetime calculations,
4815 we just make conservative assumptions, i.e. a longer lifetime;
4816 this is done in the 'default:' cases. */
4817 switch (type)
4818 {
4819 case RELOAD_FOR_OTHER_ADDRESS:
4820 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4821 time1 = copy ? 0 : 1;
4822 break;
4823 case RELOAD_OTHER:
4824 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4825 break;
4826 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4827 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4828 respectively, to the time values for these, we get distinct time
4829 values. To get distinct time values for each operand, we have to
4830 multiply opnum by at least three. We round that up to four because
4831 multiply by four is often cheaper. */
4832 case RELOAD_FOR_INPADDR_ADDRESS:
4833 time1 = opnum * 4 + 2;
4834 break;
4835 case RELOAD_FOR_INPUT_ADDRESS:
4836 time1 = opnum * 4 + 3;
4837 break;
4838 case RELOAD_FOR_INPUT:
4839 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4840 executes (inclusive). */
4841 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4842 break;
4843 case RELOAD_FOR_OPADDR_ADDR:
4844 /* opnum * 4 + 4
4845 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4846 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4847 break;
4848 case RELOAD_FOR_OPERAND_ADDRESS:
4849 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4850 is executed. */
4851 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4852 break;
4853 case RELOAD_FOR_OUTADDR_ADDRESS:
4854 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4855 break;
4856 case RELOAD_FOR_OUTPUT_ADDRESS:
4857 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4858 break;
4859 default:
4860 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4861 }
4862
4863 for (i = 0; i < n_reloads; i++)
4864 {
4865 rtx reg = rld[i].reg_rtx;
4866 if (reg && GET_CODE (reg) == REG
4867 && ((unsigned) regno - true_regnum (reg)
4868 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4869 && i != reloadnum)
4870 {
4871 rtx other_input = rld[i].in;
4872
4873 /* If the other reload loads the same input value, that
4874 will not cause a conflict only if it's loading it into
4875 the same register. */
4876 if (true_regnum (reg) != start_regno)
4877 other_input = NULL_RTX;
4878 if (! other_input || ! rtx_equal_p (other_input, value)
4879 || rld[i].out || out)
4880 {
4881 int time2;
4882 switch (rld[i].when_needed)
4883 {
4884 case RELOAD_FOR_OTHER_ADDRESS:
4885 time2 = 0;
4886 break;
4887 case RELOAD_FOR_INPADDR_ADDRESS:
4888 /* find_reloads makes sure that a
4889 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4890 by at most one - the first -
4891 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4892 address reload is inherited, the address address reload
4893 goes away, so we can ignore this conflict. */
4894 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4895 && ignore_address_reloads
4896 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4897 Then the address address is still needed to store
4898 back the new address. */
4899 && ! rld[reloadnum].out)
4900 continue;
4901 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4902 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4903 reloads go away. */
4904 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4905 && ignore_address_reloads
4906 /* Unless we are reloading an auto_inc expression. */
4907 && ! rld[reloadnum].out)
4908 continue;
4909 time2 = rld[i].opnum * 4 + 2;
4910 break;
4911 case RELOAD_FOR_INPUT_ADDRESS:
4912 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4913 && ignore_address_reloads
4914 && ! rld[reloadnum].out)
4915 continue;
4916 time2 = rld[i].opnum * 4 + 3;
4917 break;
4918 case RELOAD_FOR_INPUT:
4919 time2 = rld[i].opnum * 4 + 4;
4920 check_earlyclobber = 1;
4921 break;
4922 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4923 == MAX_RECOG_OPERAND * 4 */
4924 case RELOAD_FOR_OPADDR_ADDR:
4925 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4926 && ignore_address_reloads
4927 && ! rld[reloadnum].out)
4928 continue;
4929 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4930 break;
4931 case RELOAD_FOR_OPERAND_ADDRESS:
4932 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4933 check_earlyclobber = 1;
4934 break;
4935 case RELOAD_FOR_INSN:
4936 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4937 break;
4938 case RELOAD_FOR_OUTPUT:
4939 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4940 instruction is executed. */
4941 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4942 break;
4943 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4944 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4945 value. */
4946 case RELOAD_FOR_OUTADDR_ADDRESS:
4947 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4948 && ignore_address_reloads
4949 && ! rld[reloadnum].out)
4950 continue;
4951 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4952 break;
4953 case RELOAD_FOR_OUTPUT_ADDRESS:
4954 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4955 break;
4956 case RELOAD_OTHER:
4957 /* If there is no conflict in the input part, handle this
4958 like an output reload. */
4959 if (! rld[i].in || rtx_equal_p (other_input, value))
4960 {
4961 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4962 /* Earlyclobbered outputs must conflict with inputs. */
4963 if (earlyclobber_operand_p (rld[i].out))
4964 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4965
4966 break;
4967 }
4968 time2 = 1;
4969 /* RELOAD_OTHER might be live beyond instruction execution,
4970 but this is not obvious when we set time2 = 1. So check
4971 here if there might be a problem with the new reload
4972 clobbering the register used by the RELOAD_OTHER. */
4973 if (out)
4974 return 0;
4975 break;
4976 default:
4977 return 0;
4978 }
4979 if ((time1 >= time2
4980 && (! rld[i].in || rld[i].out
4981 || ! rtx_equal_p (other_input, value)))
4982 || (out && rld[reloadnum].out_reg
4983 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4984 return 0;
4985 }
4986 }
4987 }
4988
4989 /* Earlyclobbered outputs must conflict with inputs. */
4990 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4991 return 0;
4992
4993 return 1;
4994 }
4995
4996 /* Return 1 if the value in reload reg REGNO, as used by a reload
4997 needed for the part of the insn specified by OPNUM and TYPE,
4998 may be used to load VALUE into it.
4999
5000 MODE is the mode in which the register is used, this is needed to
5001 determine how many hard regs to test.
5002
5003 Other read-only reloads with the same value do not conflict
5004 unless OUT is nonzero and these other reloads have to live while
5005 output reloads live.
5006 If OUT is CONST0_RTX, this is a special case: it means that the
5007 test should not be for using register REGNO as reload register, but
5008 for copying from register REGNO into the reload register.
5009
5010 RELOADNUM is the number of the reload we want to load this value for;
5011 a reload does not conflict with itself.
5012
5013 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5014 reloads that load an address for the very reload we are considering.
5015
5016 The caller has to make sure that there is no conflict with the return
5017 register. */
5018
5019 static int
5020 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
5021 ignore_address_reloads)
5022 int regno;
5023 enum machine_mode mode;
5024 int opnum;
5025 enum reload_type type;
5026 rtx value, out;
5027 int reloadnum;
5028 int ignore_address_reloads;
5029 {
5030 int nregs = HARD_REGNO_NREGS (regno, mode);
5031 while (nregs-- > 0)
5032 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5033 value, out, reloadnum,
5034 ignore_address_reloads))
5035 return 0;
5036 return 1;
5037 }
5038
5039 /* Determine whether the reload reg X overlaps any rtx'es used for
5040 overriding inheritance. Return nonzero if so. */
5041
5042 static int
5043 conflicts_with_override (x)
5044 rtx x;
5045 {
5046 int i;
5047 for (i = 0; i < n_reloads; i++)
5048 if (reload_override_in[i]
5049 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5050 return 1;
5051 return 0;
5052 }
5053 \f
5054 /* Give an error message saying we failed to find a reload for INSN,
5055 and clear out reload R. */
5056 static void
5057 failed_reload (insn, r)
5058 rtx insn;
5059 int r;
5060 {
5061 if (asm_noperands (PATTERN (insn)) < 0)
5062 /* It's the compiler's fault. */
5063 fatal_insn ("could not find a spill register", insn);
5064
5065 /* It's the user's fault; the operand's mode and constraint
5066 don't match. Disable this reload so we don't crash in final. */
5067 error_for_asm (insn,
5068 "`asm' operand constraint incompatible with operand size");
5069 rld[r].in = 0;
5070 rld[r].out = 0;
5071 rld[r].reg_rtx = 0;
5072 rld[r].optional = 1;
5073 rld[r].secondary_p = 1;
5074 }
5075
5076 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5077 for reload R. If it's valid, get an rtx for it. Return nonzero if
5078 successful. */
5079 static int
5080 set_reload_reg (i, r)
5081 int i, r;
5082 {
5083 int regno;
5084 rtx reg = spill_reg_rtx[i];
5085
5086 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5087 spill_reg_rtx[i] = reg
5088 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5089
5090 regno = true_regnum (reg);
5091
5092 /* Detect when the reload reg can't hold the reload mode.
5093 This used to be one `if', but Sequent compiler can't handle that. */
5094 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5095 {
5096 enum machine_mode test_mode = VOIDmode;
5097 if (rld[r].in)
5098 test_mode = GET_MODE (rld[r].in);
5099 /* If rld[r].in has VOIDmode, it means we will load it
5100 in whatever mode the reload reg has: to wit, rld[r].mode.
5101 We have already tested that for validity. */
5102 /* Aside from that, we need to test that the expressions
5103 to reload from or into have modes which are valid for this
5104 reload register. Otherwise the reload insns would be invalid. */
5105 if (! (rld[r].in != 0 && test_mode != VOIDmode
5106 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5107 if (! (rld[r].out != 0
5108 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5109 {
5110 /* The reg is OK. */
5111 last_spill_reg = i;
5112
5113 /* Mark as in use for this insn the reload regs we use
5114 for this. */
5115 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5116 rld[r].when_needed, rld[r].mode);
5117
5118 rld[r].reg_rtx = reg;
5119 reload_spill_index[r] = spill_regs[i];
5120 return 1;
5121 }
5122 }
5123 return 0;
5124 }
5125
5126 /* Find a spill register to use as a reload register for reload R.
5127 LAST_RELOAD is nonzero if this is the last reload for the insn being
5128 processed.
5129
5130 Set rld[R].reg_rtx to the register allocated.
5131
5132 We return 1 if successful, or 0 if we couldn't find a spill reg and
5133 we didn't change anything. */
5134
5135 static int
5136 allocate_reload_reg (chain, r, last_reload)
5137 struct insn_chain *chain ATTRIBUTE_UNUSED;
5138 int r;
5139 int last_reload;
5140 {
5141 int i, pass, count;
5142
5143 /* If we put this reload ahead, thinking it is a group,
5144 then insist on finding a group. Otherwise we can grab a
5145 reg that some other reload needs.
5146 (That can happen when we have a 68000 DATA_OR_FP_REG
5147 which is a group of data regs or one fp reg.)
5148 We need not be so restrictive if there are no more reloads
5149 for this insn.
5150
5151 ??? Really it would be nicer to have smarter handling
5152 for that kind of reg class, where a problem like this is normal.
5153 Perhaps those classes should be avoided for reloading
5154 by use of more alternatives. */
5155
5156 int force_group = rld[r].nregs > 1 && ! last_reload;
5157
5158 /* If we want a single register and haven't yet found one,
5159 take any reg in the right class and not in use.
5160 If we want a consecutive group, here is where we look for it.
5161
5162 We use two passes so we can first look for reload regs to
5163 reuse, which are already in use for other reloads in this insn,
5164 and only then use additional registers.
5165 I think that maximizing reuse is needed to make sure we don't
5166 run out of reload regs. Suppose we have three reloads, and
5167 reloads A and B can share regs. These need two regs.
5168 Suppose A and B are given different regs.
5169 That leaves none for C. */
5170 for (pass = 0; pass < 2; pass++)
5171 {
5172 /* I is the index in spill_regs.
5173 We advance it round-robin between insns to use all spill regs
5174 equally, so that inherited reloads have a chance
5175 of leapfrogging each other. */
5176
5177 i = last_spill_reg;
5178
5179 for (count = 0; count < n_spills; count++)
5180 {
5181 int class = (int) rld[r].class;
5182 int regnum;
5183
5184 i++;
5185 if (i >= n_spills)
5186 i -= n_spills;
5187 regnum = spill_regs[i];
5188
5189 if ((reload_reg_free_p (regnum, rld[r].opnum,
5190 rld[r].when_needed)
5191 || (rld[r].in
5192 /* We check reload_reg_used to make sure we
5193 don't clobber the return register. */
5194 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5195 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5196 rld[r].when_needed, rld[r].in,
5197 rld[r].out, r, 1)))
5198 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5199 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5200 /* Look first for regs to share, then for unshared. But
5201 don't share regs used for inherited reloads; they are
5202 the ones we want to preserve. */
5203 && (pass
5204 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5205 regnum)
5206 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5207 regnum))))
5208 {
5209 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5210 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5211 (on 68000) got us two FP regs. If NR is 1,
5212 we would reject both of them. */
5213 if (force_group)
5214 nr = rld[r].nregs;
5215 /* If we need only one reg, we have already won. */
5216 if (nr == 1)
5217 {
5218 /* But reject a single reg if we demand a group. */
5219 if (force_group)
5220 continue;
5221 break;
5222 }
5223 /* Otherwise check that as many consecutive regs as we need
5224 are available here. */
5225 while (nr > 1)
5226 {
5227 int regno = regnum + nr - 1;
5228 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5229 && spill_reg_order[regno] >= 0
5230 && reload_reg_free_p (regno, rld[r].opnum,
5231 rld[r].when_needed)))
5232 break;
5233 nr--;
5234 }
5235 if (nr == 1)
5236 break;
5237 }
5238 }
5239
5240 /* If we found something on pass 1, omit pass 2. */
5241 if (count < n_spills)
5242 break;
5243 }
5244
5245 /* We should have found a spill register by now. */
5246 if (count >= n_spills)
5247 return 0;
5248
5249 /* I is the index in SPILL_REG_RTX of the reload register we are to
5250 allocate. Get an rtx for it and find its register number. */
5251
5252 return set_reload_reg (i, r);
5253 }
5254 \f
5255 /* Initialize all the tables needed to allocate reload registers.
5256 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5257 is the array we use to restore the reg_rtx field for every reload. */
5258
5259 static void
5260 choose_reload_regs_init (chain, save_reload_reg_rtx)
5261 struct insn_chain *chain;
5262 rtx *save_reload_reg_rtx;
5263 {
5264 int i;
5265
5266 for (i = 0; i < n_reloads; i++)
5267 rld[i].reg_rtx = save_reload_reg_rtx[i];
5268
5269 memset (reload_inherited, 0, MAX_RELOADS);
5270 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5271 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5272
5273 CLEAR_HARD_REG_SET (reload_reg_used);
5274 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5275 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5276 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5277 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5278 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5279
5280 CLEAR_HARD_REG_SET (reg_used_in_insn);
5281 {
5282 HARD_REG_SET tmp;
5283 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5284 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5285 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5286 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5287 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5288 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5289 }
5290
5291 for (i = 0; i < reload_n_operands; i++)
5292 {
5293 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5294 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5295 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5296 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5297 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5298 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5299 }
5300
5301 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5302
5303 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5304
5305 for (i = 0; i < n_reloads; i++)
5306 /* If we have already decided to use a certain register,
5307 don't use it in another way. */
5308 if (rld[i].reg_rtx)
5309 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5310 rld[i].when_needed, rld[i].mode);
5311 }
5312
5313 /* Assign hard reg targets for the pseudo-registers we must reload
5314 into hard regs for this insn.
5315 Also output the instructions to copy them in and out of the hard regs.
5316
5317 For machines with register classes, we are responsible for
5318 finding a reload reg in the proper class. */
5319
5320 static void
5321 choose_reload_regs (chain)
5322 struct insn_chain *chain;
5323 {
5324 rtx insn = chain->insn;
5325 int i, j;
5326 unsigned int max_group_size = 1;
5327 enum reg_class group_class = NO_REGS;
5328 int pass, win, inheritance;
5329
5330 rtx save_reload_reg_rtx[MAX_RELOADS];
5331
5332 /* In order to be certain of getting the registers we need,
5333 we must sort the reloads into order of increasing register class.
5334 Then our grabbing of reload registers will parallel the process
5335 that provided the reload registers.
5336
5337 Also note whether any of the reloads wants a consecutive group of regs.
5338 If so, record the maximum size of the group desired and what
5339 register class contains all the groups needed by this insn. */
5340
5341 for (j = 0; j < n_reloads; j++)
5342 {
5343 reload_order[j] = j;
5344 reload_spill_index[j] = -1;
5345
5346 if (rld[j].nregs > 1)
5347 {
5348 max_group_size = MAX (rld[j].nregs, max_group_size);
5349 group_class
5350 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5351 }
5352
5353 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5354 }
5355
5356 if (n_reloads > 1)
5357 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5358
5359 /* If -O, try first with inheritance, then turning it off.
5360 If not -O, don't do inheritance.
5361 Using inheritance when not optimizing leads to paradoxes
5362 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5363 because one side of the comparison might be inherited. */
5364 win = 0;
5365 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5366 {
5367 choose_reload_regs_init (chain, save_reload_reg_rtx);
5368
5369 /* Process the reloads in order of preference just found.
5370 Beyond this point, subregs can be found in reload_reg_rtx.
5371
5372 This used to look for an existing reloaded home for all of the
5373 reloads, and only then perform any new reloads. But that could lose
5374 if the reloads were done out of reg-class order because a later
5375 reload with a looser constraint might have an old home in a register
5376 needed by an earlier reload with a tighter constraint.
5377
5378 To solve this, we make two passes over the reloads, in the order
5379 described above. In the first pass we try to inherit a reload
5380 from a previous insn. If there is a later reload that needs a
5381 class that is a proper subset of the class being processed, we must
5382 also allocate a spill register during the first pass.
5383
5384 Then make a second pass over the reloads to allocate any reloads
5385 that haven't been given registers yet. */
5386
5387 for (j = 0; j < n_reloads; j++)
5388 {
5389 int r = reload_order[j];
5390 rtx search_equiv = NULL_RTX;
5391
5392 /* Ignore reloads that got marked inoperative. */
5393 if (rld[r].out == 0 && rld[r].in == 0
5394 && ! rld[r].secondary_p)
5395 continue;
5396
5397 /* If find_reloads chose to use reload_in or reload_out as a reload
5398 register, we don't need to chose one. Otherwise, try even if it
5399 found one since we might save an insn if we find the value lying
5400 around.
5401 Try also when reload_in is a pseudo without a hard reg. */
5402 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5403 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5404 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5405 && GET_CODE (rld[r].in) != MEM
5406 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5407 continue;
5408
5409 #if 0 /* No longer needed for correct operation.
5410 It might give better code, or might not; worth an experiment? */
5411 /* If this is an optional reload, we can't inherit from earlier insns
5412 until we are sure that any non-optional reloads have been allocated.
5413 The following code takes advantage of the fact that optional reloads
5414 are at the end of reload_order. */
5415 if (rld[r].optional != 0)
5416 for (i = 0; i < j; i++)
5417 if ((rld[reload_order[i]].out != 0
5418 || rld[reload_order[i]].in != 0
5419 || rld[reload_order[i]].secondary_p)
5420 && ! rld[reload_order[i]].optional
5421 && rld[reload_order[i]].reg_rtx == 0)
5422 allocate_reload_reg (chain, reload_order[i], 0);
5423 #endif
5424
5425 /* First see if this pseudo is already available as reloaded
5426 for a previous insn. We cannot try to inherit for reloads
5427 that are smaller than the maximum number of registers needed
5428 for groups unless the register we would allocate cannot be used
5429 for the groups.
5430
5431 We could check here to see if this is a secondary reload for
5432 an object that is already in a register of the desired class.
5433 This would avoid the need for the secondary reload register.
5434 But this is complex because we can't easily determine what
5435 objects might want to be loaded via this reload. So let a
5436 register be allocated here. In `emit_reload_insns' we suppress
5437 one of the loads in the case described above. */
5438
5439 if (inheritance)
5440 {
5441 int byte = 0;
5442 int regno = -1;
5443 enum machine_mode mode = VOIDmode;
5444
5445 if (rld[r].in == 0)
5446 ;
5447 else if (GET_CODE (rld[r].in) == REG)
5448 {
5449 regno = REGNO (rld[r].in);
5450 mode = GET_MODE (rld[r].in);
5451 }
5452 else if (GET_CODE (rld[r].in_reg) == REG)
5453 {
5454 regno = REGNO (rld[r].in_reg);
5455 mode = GET_MODE (rld[r].in_reg);
5456 }
5457 else if (GET_CODE (rld[r].in_reg) == SUBREG
5458 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5459 {
5460 byte = SUBREG_BYTE (rld[r].in_reg);
5461 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5462 if (regno < FIRST_PSEUDO_REGISTER)
5463 regno = subreg_regno (rld[r].in_reg);
5464 mode = GET_MODE (rld[r].in_reg);
5465 }
5466 #ifdef AUTO_INC_DEC
5467 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5468 || GET_CODE (rld[r].in_reg) == PRE_DEC
5469 || GET_CODE (rld[r].in_reg) == POST_INC
5470 || GET_CODE (rld[r].in_reg) == POST_DEC)
5471 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5472 {
5473 regno = REGNO (XEXP (rld[r].in_reg, 0));
5474 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5475 rld[r].out = rld[r].in;
5476 }
5477 #endif
5478 #if 0
5479 /* This won't work, since REGNO can be a pseudo reg number.
5480 Also, it takes much more hair to keep track of all the things
5481 that can invalidate an inherited reload of part of a pseudoreg. */
5482 else if (GET_CODE (rld[r].in) == SUBREG
5483 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5484 regno = subreg_regno (rld[r].in);
5485 #endif
5486
5487 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5488 {
5489 enum reg_class class = rld[r].class, last_class;
5490 rtx last_reg = reg_last_reload_reg[regno];
5491 enum machine_mode need_mode;
5492
5493 i = REGNO (last_reg);
5494 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5495 last_class = REGNO_REG_CLASS (i);
5496
5497 if (byte == 0)
5498 need_mode = mode;
5499 else
5500 need_mode
5501 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5502 GET_MODE_CLASS (mode));
5503
5504 if (
5505 #ifdef CANNOT_CHANGE_MODE_CLASS
5506 (!REG_CANNOT_CHANGE_MODE_P (i, GET_MODE (last_reg),
5507 need_mode)
5508 ||
5509 #endif
5510 (GET_MODE_SIZE (GET_MODE (last_reg))
5511 >= GET_MODE_SIZE (need_mode))
5512 #ifdef CANNOT_CHANGE_MODE_CLASS
5513 )
5514 #endif
5515 && reg_reloaded_contents[i] == regno
5516 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5517 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5518 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5519 /* Even if we can't use this register as a reload
5520 register, we might use it for reload_override_in,
5521 if copying it to the desired class is cheap
5522 enough. */
5523 || ((REGISTER_MOVE_COST (mode, last_class, class)
5524 < MEMORY_MOVE_COST (mode, class, 1))
5525 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5526 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5527 last_reg)
5528 == NO_REGS)
5529 #endif
5530 #ifdef SECONDARY_MEMORY_NEEDED
5531 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5532 mode)
5533 #endif
5534 ))
5535
5536 && (rld[r].nregs == max_group_size
5537 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5538 i))
5539 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5540 rld[r].when_needed, rld[r].in,
5541 const0_rtx, r, 1))
5542 {
5543 /* If a group is needed, verify that all the subsequent
5544 registers still have their values intact. */
5545 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5546 int k;
5547
5548 for (k = 1; k < nr; k++)
5549 if (reg_reloaded_contents[i + k] != regno
5550 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5551 break;
5552
5553 if (k == nr)
5554 {
5555 int i1;
5556 int bad_for_class;
5557
5558 last_reg = (GET_MODE (last_reg) == mode
5559 ? last_reg : gen_rtx_REG (mode, i));
5560
5561 bad_for_class = 0;
5562 for (k = 0; k < nr; k++)
5563 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5564 i+k);
5565
5566 /* We found a register that contains the
5567 value we need. If this register is the
5568 same as an `earlyclobber' operand of the
5569 current insn, just mark it as a place to
5570 reload from since we can't use it as the
5571 reload register itself. */
5572
5573 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5574 if (reg_overlap_mentioned_for_reload_p
5575 (reg_last_reload_reg[regno],
5576 reload_earlyclobbers[i1]))
5577 break;
5578
5579 if (i1 != n_earlyclobbers
5580 || ! (free_for_value_p (i, rld[r].mode,
5581 rld[r].opnum,
5582 rld[r].when_needed, rld[r].in,
5583 rld[r].out, r, 1))
5584 /* Don't use it if we'd clobber a pseudo reg. */
5585 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5586 && rld[r].out
5587 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5588 /* Don't clobber the frame pointer. */
5589 || (i == HARD_FRAME_POINTER_REGNUM
5590 && frame_pointer_needed
5591 && rld[r].out)
5592 /* Don't really use the inherited spill reg
5593 if we need it wider than we've got it. */
5594 || (GET_MODE_SIZE (rld[r].mode)
5595 > GET_MODE_SIZE (mode))
5596 || bad_for_class
5597
5598 /* If find_reloads chose reload_out as reload
5599 register, stay with it - that leaves the
5600 inherited register for subsequent reloads. */
5601 || (rld[r].out && rld[r].reg_rtx
5602 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5603 {
5604 if (! rld[r].optional)
5605 {
5606 reload_override_in[r] = last_reg;
5607 reload_inheritance_insn[r]
5608 = reg_reloaded_insn[i];
5609 }
5610 }
5611 else
5612 {
5613 int k;
5614 /* We can use this as a reload reg. */
5615 /* Mark the register as in use for this part of
5616 the insn. */
5617 mark_reload_reg_in_use (i,
5618 rld[r].opnum,
5619 rld[r].when_needed,
5620 rld[r].mode);
5621 rld[r].reg_rtx = last_reg;
5622 reload_inherited[r] = 1;
5623 reload_inheritance_insn[r]
5624 = reg_reloaded_insn[i];
5625 reload_spill_index[r] = i;
5626 for (k = 0; k < nr; k++)
5627 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5628 i + k);
5629 }
5630 }
5631 }
5632 }
5633 }
5634
5635 /* Here's another way to see if the value is already lying around. */
5636 if (inheritance
5637 && rld[r].in != 0
5638 && ! reload_inherited[r]
5639 && rld[r].out == 0
5640 && (CONSTANT_P (rld[r].in)
5641 || GET_CODE (rld[r].in) == PLUS
5642 || GET_CODE (rld[r].in) == REG
5643 || GET_CODE (rld[r].in) == MEM)
5644 && (rld[r].nregs == max_group_size
5645 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5646 search_equiv = rld[r].in;
5647 /* If this is an output reload from a simple move insn, look
5648 if an equivalence for the input is available. */
5649 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5650 {
5651 rtx set = single_set (insn);
5652
5653 if (set
5654 && rtx_equal_p (rld[r].out, SET_DEST (set))
5655 && CONSTANT_P (SET_SRC (set)))
5656 search_equiv = SET_SRC (set);
5657 }
5658
5659 if (search_equiv)
5660 {
5661 rtx equiv
5662 = find_equiv_reg (search_equiv, insn, rld[r].class,
5663 -1, NULL, 0, rld[r].mode);
5664 int regno = 0;
5665
5666 if (equiv != 0)
5667 {
5668 if (GET_CODE (equiv) == REG)
5669 regno = REGNO (equiv);
5670 else if (GET_CODE (equiv) == SUBREG)
5671 {
5672 /* This must be a SUBREG of a hard register.
5673 Make a new REG since this might be used in an
5674 address and not all machines support SUBREGs
5675 there. */
5676 regno = subreg_regno (equiv);
5677 equiv = gen_rtx_REG (rld[r].mode, regno);
5678 }
5679 else
5680 abort ();
5681 }
5682
5683 /* If we found a spill reg, reject it unless it is free
5684 and of the desired class. */
5685 if (equiv != 0
5686 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5687 && ! free_for_value_p (regno, rld[r].mode,
5688 rld[r].opnum, rld[r].when_needed,
5689 rld[r].in, rld[r].out, r, 1))
5690 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5691 regno)))
5692 equiv = 0;
5693
5694 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5695 equiv = 0;
5696
5697 /* We found a register that contains the value we need.
5698 If this register is the same as an `earlyclobber' operand
5699 of the current insn, just mark it as a place to reload from
5700 since we can't use it as the reload register itself. */
5701
5702 if (equiv != 0)
5703 for (i = 0; i < n_earlyclobbers; i++)
5704 if (reg_overlap_mentioned_for_reload_p (equiv,
5705 reload_earlyclobbers[i]))
5706 {
5707 if (! rld[r].optional)
5708 reload_override_in[r] = equiv;
5709 equiv = 0;
5710 break;
5711 }
5712
5713 /* If the equiv register we have found is explicitly clobbered
5714 in the current insn, it depends on the reload type if we
5715 can use it, use it for reload_override_in, or not at all.
5716 In particular, we then can't use EQUIV for a
5717 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5718
5719 if (equiv != 0)
5720 {
5721 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5722 switch (rld[r].when_needed)
5723 {
5724 case RELOAD_FOR_OTHER_ADDRESS:
5725 case RELOAD_FOR_INPADDR_ADDRESS:
5726 case RELOAD_FOR_INPUT_ADDRESS:
5727 case RELOAD_FOR_OPADDR_ADDR:
5728 break;
5729 case RELOAD_OTHER:
5730 case RELOAD_FOR_INPUT:
5731 case RELOAD_FOR_OPERAND_ADDRESS:
5732 if (! rld[r].optional)
5733 reload_override_in[r] = equiv;
5734 /* Fall through. */
5735 default:
5736 equiv = 0;
5737 break;
5738 }
5739 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5740 switch (rld[r].when_needed)
5741 {
5742 case RELOAD_FOR_OTHER_ADDRESS:
5743 case RELOAD_FOR_INPADDR_ADDRESS:
5744 case RELOAD_FOR_INPUT_ADDRESS:
5745 case RELOAD_FOR_OPADDR_ADDR:
5746 case RELOAD_FOR_OPERAND_ADDRESS:
5747 case RELOAD_FOR_INPUT:
5748 break;
5749 case RELOAD_OTHER:
5750 if (! rld[r].optional)
5751 reload_override_in[r] = equiv;
5752 /* Fall through. */
5753 default:
5754 equiv = 0;
5755 break;
5756 }
5757 }
5758
5759 /* If we found an equivalent reg, say no code need be generated
5760 to load it, and use it as our reload reg. */
5761 if (equiv != 0
5762 && (regno != HARD_FRAME_POINTER_REGNUM
5763 || !frame_pointer_needed))
5764 {
5765 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5766 int k;
5767 rld[r].reg_rtx = equiv;
5768 reload_inherited[r] = 1;
5769
5770 /* If reg_reloaded_valid is not set for this register,
5771 there might be a stale spill_reg_store lying around.
5772 We must clear it, since otherwise emit_reload_insns
5773 might delete the store. */
5774 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5775 spill_reg_store[regno] = NULL_RTX;
5776 /* If any of the hard registers in EQUIV are spill
5777 registers, mark them as in use for this insn. */
5778 for (k = 0; k < nr; k++)
5779 {
5780 i = spill_reg_order[regno + k];
5781 if (i >= 0)
5782 {
5783 mark_reload_reg_in_use (regno, rld[r].opnum,
5784 rld[r].when_needed,
5785 rld[r].mode);
5786 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5787 regno + k);
5788 }
5789 }
5790 }
5791 }
5792
5793 /* If we found a register to use already, or if this is an optional
5794 reload, we are done. */
5795 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5796 continue;
5797
5798 #if 0
5799 /* No longer needed for correct operation. Might or might
5800 not give better code on the average. Want to experiment? */
5801
5802 /* See if there is a later reload that has a class different from our
5803 class that intersects our class or that requires less register
5804 than our reload. If so, we must allocate a register to this
5805 reload now, since that reload might inherit a previous reload
5806 and take the only available register in our class. Don't do this
5807 for optional reloads since they will force all previous reloads
5808 to be allocated. Also don't do this for reloads that have been
5809 turned off. */
5810
5811 for (i = j + 1; i < n_reloads; i++)
5812 {
5813 int s = reload_order[i];
5814
5815 if ((rld[s].in == 0 && rld[s].out == 0
5816 && ! rld[s].secondary_p)
5817 || rld[s].optional)
5818 continue;
5819
5820 if ((rld[s].class != rld[r].class
5821 && reg_classes_intersect_p (rld[r].class,
5822 rld[s].class))
5823 || rld[s].nregs < rld[r].nregs)
5824 break;
5825 }
5826
5827 if (i == n_reloads)
5828 continue;
5829
5830 allocate_reload_reg (chain, r, j == n_reloads - 1);
5831 #endif
5832 }
5833
5834 /* Now allocate reload registers for anything non-optional that
5835 didn't get one yet. */
5836 for (j = 0; j < n_reloads; j++)
5837 {
5838 int r = reload_order[j];
5839
5840 /* Ignore reloads that got marked inoperative. */
5841 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5842 continue;
5843
5844 /* Skip reloads that already have a register allocated or are
5845 optional. */
5846 if (rld[r].reg_rtx != 0 || rld[r].optional)
5847 continue;
5848
5849 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5850 break;
5851 }
5852
5853 /* If that loop got all the way, we have won. */
5854 if (j == n_reloads)
5855 {
5856 win = 1;
5857 break;
5858 }
5859
5860 /* Loop around and try without any inheritance. */
5861 }
5862
5863 if (! win)
5864 {
5865 /* First undo everything done by the failed attempt
5866 to allocate with inheritance. */
5867 choose_reload_regs_init (chain, save_reload_reg_rtx);
5868
5869 /* Some sanity tests to verify that the reloads found in the first
5870 pass are identical to the ones we have now. */
5871 if (chain->n_reloads != n_reloads)
5872 abort ();
5873
5874 for (i = 0; i < n_reloads; i++)
5875 {
5876 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5877 continue;
5878 if (chain->rld[i].when_needed != rld[i].when_needed)
5879 abort ();
5880 for (j = 0; j < n_spills; j++)
5881 if (spill_regs[j] == chain->rld[i].regno)
5882 if (! set_reload_reg (j, i))
5883 failed_reload (chain->insn, i);
5884 }
5885 }
5886
5887 /* If we thought we could inherit a reload, because it seemed that
5888 nothing else wanted the same reload register earlier in the insn,
5889 verify that assumption, now that all reloads have been assigned.
5890 Likewise for reloads where reload_override_in has been set. */
5891
5892 /* If doing expensive optimizations, do one preliminary pass that doesn't
5893 cancel any inheritance, but removes reloads that have been needed only
5894 for reloads that we know can be inherited. */
5895 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5896 {
5897 for (j = 0; j < n_reloads; j++)
5898 {
5899 int r = reload_order[j];
5900 rtx check_reg;
5901 if (reload_inherited[r] && rld[r].reg_rtx)
5902 check_reg = rld[r].reg_rtx;
5903 else if (reload_override_in[r]
5904 && (GET_CODE (reload_override_in[r]) == REG
5905 || GET_CODE (reload_override_in[r]) == SUBREG))
5906 check_reg = reload_override_in[r];
5907 else
5908 continue;
5909 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5910 rld[r].opnum, rld[r].when_needed, rld[r].in,
5911 (reload_inherited[r]
5912 ? rld[r].out : const0_rtx),
5913 r, 1))
5914 {
5915 if (pass)
5916 continue;
5917 reload_inherited[r] = 0;
5918 reload_override_in[r] = 0;
5919 }
5920 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5921 reload_override_in, then we do not need its related
5922 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5923 likewise for other reload types.
5924 We handle this by removing a reload when its only replacement
5925 is mentioned in reload_in of the reload we are going to inherit.
5926 A special case are auto_inc expressions; even if the input is
5927 inherited, we still need the address for the output. We can
5928 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5929 If we succeeded removing some reload and we are doing a preliminary
5930 pass just to remove such reloads, make another pass, since the
5931 removal of one reload might allow us to inherit another one. */
5932 else if (rld[r].in
5933 && rld[r].out != rld[r].in
5934 && remove_address_replacements (rld[r].in) && pass)
5935 pass = 2;
5936 }
5937 }
5938
5939 /* Now that reload_override_in is known valid,
5940 actually override reload_in. */
5941 for (j = 0; j < n_reloads; j++)
5942 if (reload_override_in[j])
5943 rld[j].in = reload_override_in[j];
5944
5945 /* If this reload won't be done because it has been canceled or is
5946 optional and not inherited, clear reload_reg_rtx so other
5947 routines (such as subst_reloads) don't get confused. */
5948 for (j = 0; j < n_reloads; j++)
5949 if (rld[j].reg_rtx != 0
5950 && ((rld[j].optional && ! reload_inherited[j])
5951 || (rld[j].in == 0 && rld[j].out == 0
5952 && ! rld[j].secondary_p)))
5953 {
5954 int regno = true_regnum (rld[j].reg_rtx);
5955
5956 if (spill_reg_order[regno] >= 0)
5957 clear_reload_reg_in_use (regno, rld[j].opnum,
5958 rld[j].when_needed, rld[j].mode);
5959 rld[j].reg_rtx = 0;
5960 reload_spill_index[j] = -1;
5961 }
5962
5963 /* Record which pseudos and which spill regs have output reloads. */
5964 for (j = 0; j < n_reloads; j++)
5965 {
5966 int r = reload_order[j];
5967
5968 i = reload_spill_index[r];
5969
5970 /* I is nonneg if this reload uses a register.
5971 If rld[r].reg_rtx is 0, this is an optional reload
5972 that we opted to ignore. */
5973 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5974 && rld[r].reg_rtx != 0)
5975 {
5976 int nregno = REGNO (rld[r].out_reg);
5977 int nr = 1;
5978
5979 if (nregno < FIRST_PSEUDO_REGISTER)
5980 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5981
5982 while (--nr >= 0)
5983 reg_has_output_reload[nregno + nr] = 1;
5984
5985 if (i >= 0)
5986 {
5987 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5988 while (--nr >= 0)
5989 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5990 }
5991
5992 if (rld[r].when_needed != RELOAD_OTHER
5993 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5994 && rld[r].when_needed != RELOAD_FOR_INSN)
5995 abort ();
5996 }
5997 }
5998 }
5999
6000 /* Deallocate the reload register for reload R. This is called from
6001 remove_address_replacements. */
6002
6003 void
6004 deallocate_reload_reg (r)
6005 int r;
6006 {
6007 int regno;
6008
6009 if (! rld[r].reg_rtx)
6010 return;
6011 regno = true_regnum (rld[r].reg_rtx);
6012 rld[r].reg_rtx = 0;
6013 if (spill_reg_order[regno] >= 0)
6014 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6015 rld[r].mode);
6016 reload_spill_index[r] = -1;
6017 }
6018 \f
6019 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6020 reloads of the same item for fear that we might not have enough reload
6021 registers. However, normally they will get the same reload register
6022 and hence actually need not be loaded twice.
6023
6024 Here we check for the most common case of this phenomenon: when we have
6025 a number of reloads for the same object, each of which were allocated
6026 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6027 reload, and is not modified in the insn itself. If we find such,
6028 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6029 This will not increase the number of spill registers needed and will
6030 prevent redundant code. */
6031
6032 static void
6033 merge_assigned_reloads (insn)
6034 rtx insn;
6035 {
6036 int i, j;
6037
6038 /* Scan all the reloads looking for ones that only load values and
6039 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6040 assigned and not modified by INSN. */
6041
6042 for (i = 0; i < n_reloads; i++)
6043 {
6044 int conflicting_input = 0;
6045 int max_input_address_opnum = -1;
6046 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6047
6048 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6049 || rld[i].out != 0 || rld[i].reg_rtx == 0
6050 || reg_set_p (rld[i].reg_rtx, insn))
6051 continue;
6052
6053 /* Look at all other reloads. Ensure that the only use of this
6054 reload_reg_rtx is in a reload that just loads the same value
6055 as we do. Note that any secondary reloads must be of the identical
6056 class since the values, modes, and result registers are the
6057 same, so we need not do anything with any secondary reloads. */
6058
6059 for (j = 0; j < n_reloads; j++)
6060 {
6061 if (i == j || rld[j].reg_rtx == 0
6062 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6063 rld[i].reg_rtx))
6064 continue;
6065
6066 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6067 && rld[j].opnum > max_input_address_opnum)
6068 max_input_address_opnum = rld[j].opnum;
6069
6070 /* If the reload regs aren't exactly the same (e.g, different modes)
6071 or if the values are different, we can't merge this reload.
6072 But if it is an input reload, we might still merge
6073 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6074
6075 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6076 || rld[j].out != 0 || rld[j].in == 0
6077 || ! rtx_equal_p (rld[i].in, rld[j].in))
6078 {
6079 if (rld[j].when_needed != RELOAD_FOR_INPUT
6080 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6081 || rld[i].opnum > rld[j].opnum)
6082 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6083 break;
6084 conflicting_input = 1;
6085 if (min_conflicting_input_opnum > rld[j].opnum)
6086 min_conflicting_input_opnum = rld[j].opnum;
6087 }
6088 }
6089
6090 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6091 we, in fact, found any matching reloads. */
6092
6093 if (j == n_reloads
6094 && max_input_address_opnum <= min_conflicting_input_opnum)
6095 {
6096 for (j = 0; j < n_reloads; j++)
6097 if (i != j && rld[j].reg_rtx != 0
6098 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6099 && (! conflicting_input
6100 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6101 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6102 {
6103 rld[i].when_needed = RELOAD_OTHER;
6104 rld[j].in = 0;
6105 reload_spill_index[j] = -1;
6106 transfer_replacements (i, j);
6107 }
6108
6109 /* If this is now RELOAD_OTHER, look for any reloads that load
6110 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6111 if they were for inputs, RELOAD_OTHER for outputs. Note that
6112 this test is equivalent to looking for reloads for this operand
6113 number. */
6114 /* We must take special care when there are two or more reloads to
6115 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6116 same value or a part of it; we must not change its type if there
6117 is a conflicting input. */
6118
6119 if (rld[i].when_needed == RELOAD_OTHER)
6120 for (j = 0; j < n_reloads; j++)
6121 if (rld[j].in != 0
6122 && rld[j].when_needed != RELOAD_OTHER
6123 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6124 && (! conflicting_input
6125 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6126 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6127 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6128 rld[i].in))
6129 {
6130 int k;
6131
6132 rld[j].when_needed
6133 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6134 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6135 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6136
6137 /* Check to see if we accidentally converted two reloads
6138 that use the same reload register to the same type.
6139 If so, the resulting code won't work, so abort. */
6140 if (rld[j].reg_rtx)
6141 for (k = 0; k < j; k++)
6142 if (rld[k].in != 0 && rld[k].reg_rtx != 0
6143 && rld[k].when_needed == rld[j].when_needed
6144 && rtx_equal_p (rld[k].reg_rtx, rld[j].reg_rtx))
6145 abort ();
6146 }
6147 }
6148 }
6149 }
6150 \f
6151 /* These arrays are filled by emit_reload_insns and its subroutines. */
6152 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6153 static rtx other_input_address_reload_insns = 0;
6154 static rtx other_input_reload_insns = 0;
6155 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6156 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6157 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6158 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6159 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6160 static rtx operand_reload_insns = 0;
6161 static rtx other_operand_reload_insns = 0;
6162 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6163
6164 /* Values to be put in spill_reg_store are put here first. */
6165 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6166 static HARD_REG_SET reg_reloaded_died;
6167
6168 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6169 has the number J. OLD contains the value to be used as input. */
6170
6171 static void
6172 emit_input_reload_insns (chain, rl, old, j)
6173 struct insn_chain *chain;
6174 struct reload *rl;
6175 rtx old;
6176 int j;
6177 {
6178 rtx insn = chain->insn;
6179 rtx reloadreg = rl->reg_rtx;
6180 rtx oldequiv_reg = 0;
6181 rtx oldequiv = 0;
6182 int special = 0;
6183 enum machine_mode mode;
6184 rtx *where;
6185
6186 /* Determine the mode to reload in.
6187 This is very tricky because we have three to choose from.
6188 There is the mode the insn operand wants (rl->inmode).
6189 There is the mode of the reload register RELOADREG.
6190 There is the intrinsic mode of the operand, which we could find
6191 by stripping some SUBREGs.
6192 It turns out that RELOADREG's mode is irrelevant:
6193 we can change that arbitrarily.
6194
6195 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6196 then the reload reg may not support QImode moves, so use SImode.
6197 If foo is in memory due to spilling a pseudo reg, this is safe,
6198 because the QImode value is in the least significant part of a
6199 slot big enough for a SImode. If foo is some other sort of
6200 memory reference, then it is impossible to reload this case,
6201 so previous passes had better make sure this never happens.
6202
6203 Then consider a one-word union which has SImode and one of its
6204 members is a float, being fetched as (SUBREG:SF union:SI).
6205 We must fetch that as SFmode because we could be loading into
6206 a float-only register. In this case OLD's mode is correct.
6207
6208 Consider an immediate integer: it has VOIDmode. Here we need
6209 to get a mode from something else.
6210
6211 In some cases, there is a fourth mode, the operand's
6212 containing mode. If the insn specifies a containing mode for
6213 this operand, it overrides all others.
6214
6215 I am not sure whether the algorithm here is always right,
6216 but it does the right things in those cases. */
6217
6218 mode = GET_MODE (old);
6219 if (mode == VOIDmode)
6220 mode = rl->inmode;
6221
6222 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6223 /* If we need a secondary register for this operation, see if
6224 the value is already in a register in that class. Don't
6225 do this if the secondary register will be used as a scratch
6226 register. */
6227
6228 if (rl->secondary_in_reload >= 0
6229 && rl->secondary_in_icode == CODE_FOR_nothing
6230 && optimize)
6231 oldequiv
6232 = find_equiv_reg (old, insn,
6233 rld[rl->secondary_in_reload].class,
6234 -1, NULL, 0, mode);
6235 #endif
6236
6237 /* If reloading from memory, see if there is a register
6238 that already holds the same value. If so, reload from there.
6239 We can pass 0 as the reload_reg_p argument because
6240 any other reload has either already been emitted,
6241 in which case find_equiv_reg will see the reload-insn,
6242 or has yet to be emitted, in which case it doesn't matter
6243 because we will use this equiv reg right away. */
6244
6245 if (oldequiv == 0 && optimize
6246 && (GET_CODE (old) == MEM
6247 || (GET_CODE (old) == REG
6248 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6249 && reg_renumber[REGNO (old)] < 0)))
6250 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6251
6252 if (oldequiv)
6253 {
6254 unsigned int regno = true_regnum (oldequiv);
6255
6256 /* Don't use OLDEQUIV if any other reload changes it at an
6257 earlier stage of this insn or at this stage. */
6258 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6259 rl->in, const0_rtx, j, 0))
6260 oldequiv = 0;
6261
6262 /* If it is no cheaper to copy from OLDEQUIV into the
6263 reload register than it would be to move from memory,
6264 don't use it. Likewise, if we need a secondary register
6265 or memory. */
6266
6267 if (oldequiv != 0
6268 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6269 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6270 rl->class)
6271 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6272 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6273 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6274 mode, oldequiv)
6275 != NO_REGS)
6276 #endif
6277 #ifdef SECONDARY_MEMORY_NEEDED
6278 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6279 rl->class,
6280 mode)
6281 #endif
6282 ))
6283 oldequiv = 0;
6284 }
6285
6286 /* delete_output_reload is only invoked properly if old contains
6287 the original pseudo register. Since this is replaced with a
6288 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6289 find the pseudo in RELOAD_IN_REG. */
6290 if (oldequiv == 0
6291 && reload_override_in[j]
6292 && GET_CODE (rl->in_reg) == REG)
6293 {
6294 oldequiv = old;
6295 old = rl->in_reg;
6296 }
6297 if (oldequiv == 0)
6298 oldequiv = old;
6299 else if (GET_CODE (oldequiv) == REG)
6300 oldequiv_reg = oldequiv;
6301 else if (GET_CODE (oldequiv) == SUBREG)
6302 oldequiv_reg = SUBREG_REG (oldequiv);
6303
6304 /* If we are reloading from a register that was recently stored in
6305 with an output-reload, see if we can prove there was
6306 actually no need to store the old value in it. */
6307
6308 if (optimize && GET_CODE (oldequiv) == REG
6309 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6310 && spill_reg_store[REGNO (oldequiv)]
6311 && GET_CODE (old) == REG
6312 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6313 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6314 rl->out_reg)))
6315 delete_output_reload (insn, j, REGNO (oldequiv));
6316
6317 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6318 then load RELOADREG from OLDEQUIV. Note that we cannot use
6319 gen_lowpart_common since it can do the wrong thing when
6320 RELOADREG has a multi-word mode. Note that RELOADREG
6321 must always be a REG here. */
6322
6323 if (GET_MODE (reloadreg) != mode)
6324 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6325 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6326 oldequiv = SUBREG_REG (oldequiv);
6327 if (GET_MODE (oldequiv) != VOIDmode
6328 && mode != GET_MODE (oldequiv))
6329 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6330
6331 /* Switch to the right place to emit the reload insns. */
6332 switch (rl->when_needed)
6333 {
6334 case RELOAD_OTHER:
6335 where = &other_input_reload_insns;
6336 break;
6337 case RELOAD_FOR_INPUT:
6338 where = &input_reload_insns[rl->opnum];
6339 break;
6340 case RELOAD_FOR_INPUT_ADDRESS:
6341 where = &input_address_reload_insns[rl->opnum];
6342 break;
6343 case RELOAD_FOR_INPADDR_ADDRESS:
6344 where = &inpaddr_address_reload_insns[rl->opnum];
6345 break;
6346 case RELOAD_FOR_OUTPUT_ADDRESS:
6347 where = &output_address_reload_insns[rl->opnum];
6348 break;
6349 case RELOAD_FOR_OUTADDR_ADDRESS:
6350 where = &outaddr_address_reload_insns[rl->opnum];
6351 break;
6352 case RELOAD_FOR_OPERAND_ADDRESS:
6353 where = &operand_reload_insns;
6354 break;
6355 case RELOAD_FOR_OPADDR_ADDR:
6356 where = &other_operand_reload_insns;
6357 break;
6358 case RELOAD_FOR_OTHER_ADDRESS:
6359 where = &other_input_address_reload_insns;
6360 break;
6361 default:
6362 abort ();
6363 }
6364
6365 push_to_sequence (*where);
6366
6367 /* Auto-increment addresses must be reloaded in a special way. */
6368 if (rl->out && ! rl->out_reg)
6369 {
6370 /* We are not going to bother supporting the case where a
6371 incremented register can't be copied directly from
6372 OLDEQUIV since this seems highly unlikely. */
6373 if (rl->secondary_in_reload >= 0)
6374 abort ();
6375
6376 if (reload_inherited[j])
6377 oldequiv = reloadreg;
6378
6379 old = XEXP (rl->in_reg, 0);
6380
6381 if (optimize && GET_CODE (oldequiv) == REG
6382 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6383 && spill_reg_store[REGNO (oldequiv)]
6384 && GET_CODE (old) == REG
6385 && (dead_or_set_p (insn,
6386 spill_reg_stored_to[REGNO (oldequiv)])
6387 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6388 old)))
6389 delete_output_reload (insn, j, REGNO (oldequiv));
6390
6391 /* Prevent normal processing of this reload. */
6392 special = 1;
6393 /* Output a special code sequence for this case. */
6394 new_spill_reg_store[REGNO (reloadreg)]
6395 = inc_for_reload (reloadreg, oldequiv, rl->out,
6396 rl->inc);
6397 }
6398
6399 /* If we are reloading a pseudo-register that was set by the previous
6400 insn, see if we can get rid of that pseudo-register entirely
6401 by redirecting the previous insn into our reload register. */
6402
6403 else if (optimize && GET_CODE (old) == REG
6404 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6405 && dead_or_set_p (insn, old)
6406 /* This is unsafe if some other reload
6407 uses the same reg first. */
6408 && ! conflicts_with_override (reloadreg)
6409 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6410 rl->when_needed, old, rl->out, j, 0))
6411 {
6412 rtx temp = PREV_INSN (insn);
6413 while (temp && GET_CODE (temp) == NOTE)
6414 temp = PREV_INSN (temp);
6415 if (temp
6416 && GET_CODE (temp) == INSN
6417 && GET_CODE (PATTERN (temp)) == SET
6418 && SET_DEST (PATTERN (temp)) == old
6419 /* Make sure we can access insn_operand_constraint. */
6420 && asm_noperands (PATTERN (temp)) < 0
6421 /* This is unsafe if operand occurs more than once in current
6422 insn. Perhaps some occurrences aren't reloaded. */
6423 && count_occurrences (PATTERN (insn), old, 0) == 1)
6424 {
6425 rtx old = SET_DEST (PATTERN (temp));
6426 /* Store into the reload register instead of the pseudo. */
6427 SET_DEST (PATTERN (temp)) = reloadreg;
6428
6429 /* Verify that resulting insn is valid. */
6430 extract_insn (temp);
6431 if (constrain_operands (1))
6432 {
6433 /* If the previous insn is an output reload, the source is
6434 a reload register, and its spill_reg_store entry will
6435 contain the previous destination. This is now
6436 invalid. */
6437 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6438 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6439 {
6440 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6441 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6442 }
6443
6444 /* If these are the only uses of the pseudo reg,
6445 pretend for GDB it lives in the reload reg we used. */
6446 if (REG_N_DEATHS (REGNO (old)) == 1
6447 && REG_N_SETS (REGNO (old)) == 1)
6448 {
6449 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6450 alter_reg (REGNO (old), -1);
6451 }
6452 special = 1;
6453 }
6454 else
6455 {
6456 SET_DEST (PATTERN (temp)) = old;
6457 }
6458 }
6459 }
6460
6461 /* We can't do that, so output an insn to load RELOADREG. */
6462
6463 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6464 /* If we have a secondary reload, pick up the secondary register
6465 and icode, if any. If OLDEQUIV and OLD are different or
6466 if this is an in-out reload, recompute whether or not we
6467 still need a secondary register and what the icode should
6468 be. If we still need a secondary register and the class or
6469 icode is different, go back to reloading from OLD if using
6470 OLDEQUIV means that we got the wrong type of register. We
6471 cannot have different class or icode due to an in-out reload
6472 because we don't make such reloads when both the input and
6473 output need secondary reload registers. */
6474
6475 if (! special && rl->secondary_in_reload >= 0)
6476 {
6477 rtx second_reload_reg = 0;
6478 int secondary_reload = rl->secondary_in_reload;
6479 rtx real_oldequiv = oldequiv;
6480 rtx real_old = old;
6481 rtx tmp;
6482 enum insn_code icode;
6483
6484 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6485 and similarly for OLD.
6486 See comments in get_secondary_reload in reload.c. */
6487 /* If it is a pseudo that cannot be replaced with its
6488 equivalent MEM, we must fall back to reload_in, which
6489 will have all the necessary substitutions registered.
6490 Likewise for a pseudo that can't be replaced with its
6491 equivalent constant.
6492
6493 Take extra care for subregs of such pseudos. Note that
6494 we cannot use reg_equiv_mem in this case because it is
6495 not in the right mode. */
6496
6497 tmp = oldequiv;
6498 if (GET_CODE (tmp) == SUBREG)
6499 tmp = SUBREG_REG (tmp);
6500 if (GET_CODE (tmp) == REG
6501 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6502 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6503 || reg_equiv_constant[REGNO (tmp)] != 0))
6504 {
6505 if (! reg_equiv_mem[REGNO (tmp)]
6506 || num_not_at_initial_offset
6507 || GET_CODE (oldequiv) == SUBREG)
6508 real_oldequiv = rl->in;
6509 else
6510 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6511 }
6512
6513 tmp = old;
6514 if (GET_CODE (tmp) == SUBREG)
6515 tmp = SUBREG_REG (tmp);
6516 if (GET_CODE (tmp) == REG
6517 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6518 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6519 || reg_equiv_constant[REGNO (tmp)] != 0))
6520 {
6521 if (! reg_equiv_mem[REGNO (tmp)]
6522 || num_not_at_initial_offset
6523 || GET_CODE (old) == SUBREG)
6524 real_old = rl->in;
6525 else
6526 real_old = reg_equiv_mem[REGNO (tmp)];
6527 }
6528
6529 second_reload_reg = rld[secondary_reload].reg_rtx;
6530 icode = rl->secondary_in_icode;
6531
6532 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6533 || (rl->in != 0 && rl->out != 0))
6534 {
6535 enum reg_class new_class
6536 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6537 mode, real_oldequiv);
6538
6539 if (new_class == NO_REGS)
6540 second_reload_reg = 0;
6541 else
6542 {
6543 enum insn_code new_icode;
6544 enum machine_mode new_mode;
6545
6546 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6547 REGNO (second_reload_reg)))
6548 oldequiv = old, real_oldequiv = real_old;
6549 else
6550 {
6551 new_icode = reload_in_optab[(int) mode];
6552 if (new_icode != CODE_FOR_nothing
6553 && ((insn_data[(int) new_icode].operand[0].predicate
6554 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6555 (reloadreg, mode)))
6556 || (insn_data[(int) new_icode].operand[1].predicate
6557 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6558 (real_oldequiv, mode)))))
6559 new_icode = CODE_FOR_nothing;
6560
6561 if (new_icode == CODE_FOR_nothing)
6562 new_mode = mode;
6563 else
6564 new_mode = insn_data[(int) new_icode].operand[2].mode;
6565
6566 if (GET_MODE (second_reload_reg) != new_mode)
6567 {
6568 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6569 new_mode))
6570 oldequiv = old, real_oldequiv = real_old;
6571 else
6572 second_reload_reg
6573 = gen_rtx_REG (new_mode,
6574 REGNO (second_reload_reg));
6575 }
6576 }
6577 }
6578 }
6579
6580 /* If we still need a secondary reload register, check
6581 to see if it is being used as a scratch or intermediate
6582 register and generate code appropriately. If we need
6583 a scratch register, use REAL_OLDEQUIV since the form of
6584 the insn may depend on the actual address if it is
6585 a MEM. */
6586
6587 if (second_reload_reg)
6588 {
6589 if (icode != CODE_FOR_nothing)
6590 {
6591 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6592 second_reload_reg));
6593 special = 1;
6594 }
6595 else
6596 {
6597 /* See if we need a scratch register to load the
6598 intermediate register (a tertiary reload). */
6599 enum insn_code tertiary_icode
6600 = rld[secondary_reload].secondary_in_icode;
6601
6602 if (tertiary_icode != CODE_FOR_nothing)
6603 {
6604 rtx third_reload_reg
6605 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6606
6607 emit_insn ((GEN_FCN (tertiary_icode)
6608 (second_reload_reg, real_oldequiv,
6609 third_reload_reg)));
6610 }
6611 else
6612 gen_reload (second_reload_reg, real_oldequiv,
6613 rl->opnum,
6614 rl->when_needed);
6615
6616 oldequiv = second_reload_reg;
6617 }
6618 }
6619 }
6620 #endif
6621
6622 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6623 {
6624 rtx real_oldequiv = oldequiv;
6625
6626 if ((GET_CODE (oldequiv) == REG
6627 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6628 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6629 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6630 || (GET_CODE (oldequiv) == SUBREG
6631 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6632 && (REGNO (SUBREG_REG (oldequiv))
6633 >= FIRST_PSEUDO_REGISTER)
6634 && ((reg_equiv_memory_loc
6635 [REGNO (SUBREG_REG (oldequiv))] != 0)
6636 || (reg_equiv_constant
6637 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6638 || (CONSTANT_P (oldequiv)
6639 && (PREFERRED_RELOAD_CLASS (oldequiv,
6640 REGNO_REG_CLASS (REGNO (reloadreg)))
6641 == NO_REGS)))
6642 real_oldequiv = rl->in;
6643 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6644 rl->when_needed);
6645 }
6646
6647 if (flag_non_call_exceptions)
6648 copy_eh_notes (insn, get_insns ());
6649
6650 /* End this sequence. */
6651 *where = get_insns ();
6652 end_sequence ();
6653
6654 /* Update reload_override_in so that delete_address_reloads_1
6655 can see the actual register usage. */
6656 if (oldequiv_reg)
6657 reload_override_in[j] = oldequiv;
6658 }
6659
6660 /* Generate insns to for the output reload RL, which is for the insn described
6661 by CHAIN and has the number J. */
6662 static void
6663 emit_output_reload_insns (chain, rl, j)
6664 struct insn_chain *chain;
6665 struct reload *rl;
6666 int j;
6667 {
6668 rtx reloadreg = rl->reg_rtx;
6669 rtx insn = chain->insn;
6670 int special = 0;
6671 rtx old = rl->out;
6672 enum machine_mode mode = GET_MODE (old);
6673 rtx p;
6674
6675 if (rl->when_needed == RELOAD_OTHER)
6676 start_sequence ();
6677 else
6678 push_to_sequence (output_reload_insns[rl->opnum]);
6679
6680 /* Determine the mode to reload in.
6681 See comments above (for input reloading). */
6682
6683 if (mode == VOIDmode)
6684 {
6685 /* VOIDmode should never happen for an output. */
6686 if (asm_noperands (PATTERN (insn)) < 0)
6687 /* It's the compiler's fault. */
6688 fatal_insn ("VOIDmode on an output", insn);
6689 error_for_asm (insn, "output operand is constant in `asm'");
6690 /* Prevent crash--use something we know is valid. */
6691 mode = word_mode;
6692 old = gen_rtx_REG (mode, REGNO (reloadreg));
6693 }
6694
6695 if (GET_MODE (reloadreg) != mode)
6696 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6697
6698 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6699
6700 /* If we need two reload regs, set RELOADREG to the intermediate
6701 one, since it will be stored into OLD. We might need a secondary
6702 register only for an input reload, so check again here. */
6703
6704 if (rl->secondary_out_reload >= 0)
6705 {
6706 rtx real_old = old;
6707
6708 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6709 && reg_equiv_mem[REGNO (old)] != 0)
6710 real_old = reg_equiv_mem[REGNO (old)];
6711
6712 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6713 mode, real_old)
6714 != NO_REGS))
6715 {
6716 rtx second_reloadreg = reloadreg;
6717 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6718
6719 /* See if RELOADREG is to be used as a scratch register
6720 or as an intermediate register. */
6721 if (rl->secondary_out_icode != CODE_FOR_nothing)
6722 {
6723 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6724 (real_old, second_reloadreg, reloadreg)));
6725 special = 1;
6726 }
6727 else
6728 {
6729 /* See if we need both a scratch and intermediate reload
6730 register. */
6731
6732 int secondary_reload = rl->secondary_out_reload;
6733 enum insn_code tertiary_icode
6734 = rld[secondary_reload].secondary_out_icode;
6735
6736 if (GET_MODE (reloadreg) != mode)
6737 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6738
6739 if (tertiary_icode != CODE_FOR_nothing)
6740 {
6741 rtx third_reloadreg
6742 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6743 rtx tem;
6744
6745 /* Copy primary reload reg to secondary reload reg.
6746 (Note that these have been swapped above, then
6747 secondary reload reg to OLD using our insn.) */
6748
6749 /* If REAL_OLD is a paradoxical SUBREG, remove it
6750 and try to put the opposite SUBREG on
6751 RELOADREG. */
6752 if (GET_CODE (real_old) == SUBREG
6753 && (GET_MODE_SIZE (GET_MODE (real_old))
6754 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6755 && 0 != (tem = gen_lowpart_common
6756 (GET_MODE (SUBREG_REG (real_old)),
6757 reloadreg)))
6758 real_old = SUBREG_REG (real_old), reloadreg = tem;
6759
6760 gen_reload (reloadreg, second_reloadreg,
6761 rl->opnum, rl->when_needed);
6762 emit_insn ((GEN_FCN (tertiary_icode)
6763 (real_old, reloadreg, third_reloadreg)));
6764 special = 1;
6765 }
6766
6767 else
6768 /* Copy between the reload regs here and then to
6769 OUT later. */
6770
6771 gen_reload (reloadreg, second_reloadreg,
6772 rl->opnum, rl->when_needed);
6773 }
6774 }
6775 }
6776 #endif
6777
6778 /* Output the last reload insn. */
6779 if (! special)
6780 {
6781 rtx set;
6782
6783 /* Don't output the last reload if OLD is not the dest of
6784 INSN and is in the src and is clobbered by INSN. */
6785 if (! flag_expensive_optimizations
6786 || GET_CODE (old) != REG
6787 || !(set = single_set (insn))
6788 || rtx_equal_p (old, SET_DEST (set))
6789 || !reg_mentioned_p (old, SET_SRC (set))
6790 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6791 gen_reload (old, reloadreg, rl->opnum,
6792 rl->when_needed);
6793 }
6794
6795 /* Look at all insns we emitted, just to be safe. */
6796 for (p = get_insns (); p; p = NEXT_INSN (p))
6797 if (INSN_P (p))
6798 {
6799 rtx pat = PATTERN (p);
6800
6801 /* If this output reload doesn't come from a spill reg,
6802 clear any memory of reloaded copies of the pseudo reg.
6803 If this output reload comes from a spill reg,
6804 reg_has_output_reload will make this do nothing. */
6805 note_stores (pat, forget_old_reloads_1, NULL);
6806
6807 if (reg_mentioned_p (rl->reg_rtx, pat))
6808 {
6809 rtx set = single_set (insn);
6810 if (reload_spill_index[j] < 0
6811 && set
6812 && SET_SRC (set) == rl->reg_rtx)
6813 {
6814 int src = REGNO (SET_SRC (set));
6815
6816 reload_spill_index[j] = src;
6817 SET_HARD_REG_BIT (reg_is_output_reload, src);
6818 if (find_regno_note (insn, REG_DEAD, src))
6819 SET_HARD_REG_BIT (reg_reloaded_died, src);
6820 }
6821 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6822 {
6823 int s = rl->secondary_out_reload;
6824 set = single_set (p);
6825 /* If this reload copies only to the secondary reload
6826 register, the secondary reload does the actual
6827 store. */
6828 if (s >= 0 && set == NULL_RTX)
6829 /* We can't tell what function the secondary reload
6830 has and where the actual store to the pseudo is
6831 made; leave new_spill_reg_store alone. */
6832 ;
6833 else if (s >= 0
6834 && SET_SRC (set) == rl->reg_rtx
6835 && SET_DEST (set) == rld[s].reg_rtx)
6836 {
6837 /* Usually the next instruction will be the
6838 secondary reload insn; if we can confirm
6839 that it is, setting new_spill_reg_store to
6840 that insn will allow an extra optimization. */
6841 rtx s_reg = rld[s].reg_rtx;
6842 rtx next = NEXT_INSN (p);
6843 rld[s].out = rl->out;
6844 rld[s].out_reg = rl->out_reg;
6845 set = single_set (next);
6846 if (set && SET_SRC (set) == s_reg
6847 && ! new_spill_reg_store[REGNO (s_reg)])
6848 {
6849 SET_HARD_REG_BIT (reg_is_output_reload,
6850 REGNO (s_reg));
6851 new_spill_reg_store[REGNO (s_reg)] = next;
6852 }
6853 }
6854 else
6855 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6856 }
6857 }
6858 }
6859
6860 if (rl->when_needed == RELOAD_OTHER)
6861 {
6862 emit_insn (other_output_reload_insns[rl->opnum]);
6863 other_output_reload_insns[rl->opnum] = get_insns ();
6864 }
6865 else
6866 output_reload_insns[rl->opnum] = get_insns ();
6867
6868 if (flag_non_call_exceptions)
6869 copy_eh_notes (insn, get_insns ());
6870
6871 end_sequence ();
6872 }
6873
6874 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6875 and has the number J. */
6876 static void
6877 do_input_reload (chain, rl, j)
6878 struct insn_chain *chain;
6879 struct reload *rl;
6880 int j;
6881 {
6882 rtx insn = chain->insn;
6883 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6884 ? rl->in_reg : rl->in);
6885
6886 if (old != 0
6887 /* AUTO_INC reloads need to be handled even if inherited. We got an
6888 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6889 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6890 && ! rtx_equal_p (rl->reg_rtx, old)
6891 && rl->reg_rtx != 0)
6892 emit_input_reload_insns (chain, rld + j, old, j);
6893
6894 /* When inheriting a wider reload, we have a MEM in rl->in,
6895 e.g. inheriting a SImode output reload for
6896 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6897 if (optimize && reload_inherited[j] && rl->in
6898 && GET_CODE (rl->in) == MEM
6899 && GET_CODE (rl->in_reg) == MEM
6900 && reload_spill_index[j] >= 0
6901 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6902 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6903
6904 /* If we are reloading a register that was recently stored in with an
6905 output-reload, see if we can prove there was
6906 actually no need to store the old value in it. */
6907
6908 if (optimize
6909 && (reload_inherited[j] || reload_override_in[j])
6910 && rl->reg_rtx
6911 && GET_CODE (rl->reg_rtx) == REG
6912 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6913 #if 0
6914 /* There doesn't seem to be any reason to restrict this to pseudos
6915 and doing so loses in the case where we are copying from a
6916 register of the wrong class. */
6917 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6918 >= FIRST_PSEUDO_REGISTER)
6919 #endif
6920 /* The insn might have already some references to stackslots
6921 replaced by MEMs, while reload_out_reg still names the
6922 original pseudo. */
6923 && (dead_or_set_p (insn,
6924 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6925 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6926 rl->out_reg)))
6927 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6928 }
6929
6930 /* Do output reloading for reload RL, which is for the insn described by
6931 CHAIN and has the number J.
6932 ??? At some point we need to support handling output reloads of
6933 JUMP_INSNs or insns that set cc0. */
6934 static void
6935 do_output_reload (chain, rl, j)
6936 struct insn_chain *chain;
6937 struct reload *rl;
6938 int j;
6939 {
6940 rtx note, old;
6941 rtx insn = chain->insn;
6942 /* If this is an output reload that stores something that is
6943 not loaded in this same reload, see if we can eliminate a previous
6944 store. */
6945 rtx pseudo = rl->out_reg;
6946
6947 if (pseudo
6948 && optimize
6949 && GET_CODE (pseudo) == REG
6950 && ! rtx_equal_p (rl->in_reg, pseudo)
6951 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6952 && reg_last_reload_reg[REGNO (pseudo)])
6953 {
6954 int pseudo_no = REGNO (pseudo);
6955 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6956
6957 /* We don't need to test full validity of last_regno for
6958 inherit here; we only want to know if the store actually
6959 matches the pseudo. */
6960 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6961 && reg_reloaded_contents[last_regno] == pseudo_no
6962 && spill_reg_store[last_regno]
6963 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6964 delete_output_reload (insn, j, last_regno);
6965 }
6966
6967 old = rl->out_reg;
6968 if (old == 0
6969 || rl->reg_rtx == old
6970 || rl->reg_rtx == 0)
6971 return;
6972
6973 /* An output operand that dies right away does need a reload,
6974 but need not be copied from it. Show the new location in the
6975 REG_UNUSED note. */
6976 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6977 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6978 {
6979 XEXP (note, 0) = rl->reg_rtx;
6980 return;
6981 }
6982 /* Likewise for a SUBREG of an operand that dies. */
6983 else if (GET_CODE (old) == SUBREG
6984 && GET_CODE (SUBREG_REG (old)) == REG
6985 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6986 SUBREG_REG (old))))
6987 {
6988 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6989 rl->reg_rtx);
6990 return;
6991 }
6992 else if (GET_CODE (old) == SCRATCH)
6993 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6994 but we don't want to make an output reload. */
6995 return;
6996
6997 /* If is a JUMP_INSN, we can't support output reloads yet. */
6998 if (GET_CODE (insn) == JUMP_INSN)
6999 abort ();
7000
7001 emit_output_reload_insns (chain, rld + j, j);
7002 }
7003
7004 /* Output insns to reload values in and out of the chosen reload regs. */
7005
7006 static void
7007 emit_reload_insns (chain)
7008 struct insn_chain *chain;
7009 {
7010 rtx insn = chain->insn;
7011
7012 int j;
7013
7014 CLEAR_HARD_REG_SET (reg_reloaded_died);
7015
7016 for (j = 0; j < reload_n_operands; j++)
7017 input_reload_insns[j] = input_address_reload_insns[j]
7018 = inpaddr_address_reload_insns[j]
7019 = output_reload_insns[j] = output_address_reload_insns[j]
7020 = outaddr_address_reload_insns[j]
7021 = other_output_reload_insns[j] = 0;
7022 other_input_address_reload_insns = 0;
7023 other_input_reload_insns = 0;
7024 operand_reload_insns = 0;
7025 other_operand_reload_insns = 0;
7026
7027 /* Dump reloads into the dump file. */
7028 if (rtl_dump_file)
7029 {
7030 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7031 debug_reload_to_stream (rtl_dump_file);
7032 }
7033
7034 /* Now output the instructions to copy the data into and out of the
7035 reload registers. Do these in the order that the reloads were reported,
7036 since reloads of base and index registers precede reloads of operands
7037 and the operands may need the base and index registers reloaded. */
7038
7039 for (j = 0; j < n_reloads; j++)
7040 {
7041 if (rld[j].reg_rtx
7042 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7043 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7044
7045 do_input_reload (chain, rld + j, j);
7046 do_output_reload (chain, rld + j, j);
7047 }
7048
7049 /* Now write all the insns we made for reloads in the order expected by
7050 the allocation functions. Prior to the insn being reloaded, we write
7051 the following reloads:
7052
7053 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7054
7055 RELOAD_OTHER reloads.
7056
7057 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7058 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7059 RELOAD_FOR_INPUT reload for the operand.
7060
7061 RELOAD_FOR_OPADDR_ADDRS reloads.
7062
7063 RELOAD_FOR_OPERAND_ADDRESS reloads.
7064
7065 After the insn being reloaded, we write the following:
7066
7067 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7068 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7069 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7070 reloads for the operand. The RELOAD_OTHER output reloads are
7071 output in descending order by reload number. */
7072
7073 emit_insn_before (other_input_address_reload_insns, insn);
7074 emit_insn_before (other_input_reload_insns, insn);
7075
7076 for (j = 0; j < reload_n_operands; j++)
7077 {
7078 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7079 emit_insn_before (input_address_reload_insns[j], insn);
7080 emit_insn_before (input_reload_insns[j], insn);
7081 }
7082
7083 emit_insn_before (other_operand_reload_insns, insn);
7084 emit_insn_before (operand_reload_insns, insn);
7085
7086 for (j = 0; j < reload_n_operands; j++)
7087 {
7088 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7089 x = emit_insn_after (output_address_reload_insns[j], x);
7090 x = emit_insn_after (output_reload_insns[j], x);
7091 emit_insn_after (other_output_reload_insns[j], x);
7092 }
7093
7094 /* For all the spill regs newly reloaded in this instruction,
7095 record what they were reloaded from, so subsequent instructions
7096 can inherit the reloads.
7097
7098 Update spill_reg_store for the reloads of this insn.
7099 Copy the elements that were updated in the loop above. */
7100
7101 for (j = 0; j < n_reloads; j++)
7102 {
7103 int r = reload_order[j];
7104 int i = reload_spill_index[r];
7105
7106 /* If this is a non-inherited input reload from a pseudo, we must
7107 clear any memory of a previous store to the same pseudo. Only do
7108 something if there will not be an output reload for the pseudo
7109 being reloaded. */
7110 if (rld[r].in_reg != 0
7111 && ! (reload_inherited[r] || reload_override_in[r]))
7112 {
7113 rtx reg = rld[r].in_reg;
7114
7115 if (GET_CODE (reg) == SUBREG)
7116 reg = SUBREG_REG (reg);
7117
7118 if (GET_CODE (reg) == REG
7119 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7120 && ! reg_has_output_reload[REGNO (reg)])
7121 {
7122 int nregno = REGNO (reg);
7123
7124 if (reg_last_reload_reg[nregno])
7125 {
7126 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7127
7128 if (reg_reloaded_contents[last_regno] == nregno)
7129 spill_reg_store[last_regno] = 0;
7130 }
7131 }
7132 }
7133
7134 /* I is nonneg if this reload used a register.
7135 If rld[r].reg_rtx is 0, this is an optional reload
7136 that we opted to ignore. */
7137
7138 if (i >= 0 && rld[r].reg_rtx != 0)
7139 {
7140 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7141 int k;
7142 int part_reaches_end = 0;
7143 int all_reaches_end = 1;
7144
7145 /* For a multi register reload, we need to check if all or part
7146 of the value lives to the end. */
7147 for (k = 0; k < nr; k++)
7148 {
7149 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7150 rld[r].when_needed))
7151 part_reaches_end = 1;
7152 else
7153 all_reaches_end = 0;
7154 }
7155
7156 /* Ignore reloads that don't reach the end of the insn in
7157 entirety. */
7158 if (all_reaches_end)
7159 {
7160 /* First, clear out memory of what used to be in this spill reg.
7161 If consecutive registers are used, clear them all. */
7162
7163 for (k = 0; k < nr; k++)
7164 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7165
7166 /* Maybe the spill reg contains a copy of reload_out. */
7167 if (rld[r].out != 0
7168 && (GET_CODE (rld[r].out) == REG
7169 #ifdef AUTO_INC_DEC
7170 || ! rld[r].out_reg
7171 #endif
7172 || GET_CODE (rld[r].out_reg) == REG))
7173 {
7174 rtx out = (GET_CODE (rld[r].out) == REG
7175 ? rld[r].out
7176 : rld[r].out_reg
7177 ? rld[r].out_reg
7178 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7179 int nregno = REGNO (out);
7180 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7181 : HARD_REGNO_NREGS (nregno,
7182 GET_MODE (rld[r].reg_rtx)));
7183
7184 spill_reg_store[i] = new_spill_reg_store[i];
7185 spill_reg_stored_to[i] = out;
7186 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7187
7188 /* If NREGNO is a hard register, it may occupy more than
7189 one register. If it does, say what is in the
7190 rest of the registers assuming that both registers
7191 agree on how many words the object takes. If not,
7192 invalidate the subsequent registers. */
7193
7194 if (nregno < FIRST_PSEUDO_REGISTER)
7195 for (k = 1; k < nnr; k++)
7196 reg_last_reload_reg[nregno + k]
7197 = (nr == nnr
7198 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7199 : 0);
7200
7201 /* Now do the inverse operation. */
7202 for (k = 0; k < nr; k++)
7203 {
7204 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7205 reg_reloaded_contents[i + k]
7206 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7207 ? nregno
7208 : nregno + k);
7209 reg_reloaded_insn[i + k] = insn;
7210 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7211 }
7212 }
7213
7214 /* Maybe the spill reg contains a copy of reload_in. Only do
7215 something if there will not be an output reload for
7216 the register being reloaded. */
7217 else if (rld[r].out_reg == 0
7218 && rld[r].in != 0
7219 && ((GET_CODE (rld[r].in) == REG
7220 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7221 && ! reg_has_output_reload[REGNO (rld[r].in)])
7222 || (GET_CODE (rld[r].in_reg) == REG
7223 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7224 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7225 {
7226 int nregno;
7227 int nnr;
7228
7229 if (GET_CODE (rld[r].in) == REG
7230 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7231 nregno = REGNO (rld[r].in);
7232 else if (GET_CODE (rld[r].in_reg) == REG)
7233 nregno = REGNO (rld[r].in_reg);
7234 else
7235 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7236
7237 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7238 : HARD_REGNO_NREGS (nregno,
7239 GET_MODE (rld[r].reg_rtx)));
7240
7241 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7242
7243 if (nregno < FIRST_PSEUDO_REGISTER)
7244 for (k = 1; k < nnr; k++)
7245 reg_last_reload_reg[nregno + k]
7246 = (nr == nnr
7247 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7248 : 0);
7249
7250 /* Unless we inherited this reload, show we haven't
7251 recently done a store.
7252 Previous stores of inherited auto_inc expressions
7253 also have to be discarded. */
7254 if (! reload_inherited[r]
7255 || (rld[r].out && ! rld[r].out_reg))
7256 spill_reg_store[i] = 0;
7257
7258 for (k = 0; k < nr; k++)
7259 {
7260 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7261 reg_reloaded_contents[i + k]
7262 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7263 ? nregno
7264 : nregno + k);
7265 reg_reloaded_insn[i + k] = insn;
7266 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7267 }
7268 }
7269 }
7270
7271 /* However, if part of the reload reaches the end, then we must
7272 invalidate the old info for the part that survives to the end. */
7273 else if (part_reaches_end)
7274 {
7275 for (k = 0; k < nr; k++)
7276 if (reload_reg_reaches_end_p (i + k,
7277 rld[r].opnum,
7278 rld[r].when_needed))
7279 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7280 }
7281 }
7282
7283 /* The following if-statement was #if 0'd in 1.34 (or before...).
7284 It's reenabled in 1.35 because supposedly nothing else
7285 deals with this problem. */
7286
7287 /* If a register gets output-reloaded from a non-spill register,
7288 that invalidates any previous reloaded copy of it.
7289 But forget_old_reloads_1 won't get to see it, because
7290 it thinks only about the original insn. So invalidate it here. */
7291 if (i < 0 && rld[r].out != 0
7292 && (GET_CODE (rld[r].out) == REG
7293 || (GET_CODE (rld[r].out) == MEM
7294 && GET_CODE (rld[r].out_reg) == REG)))
7295 {
7296 rtx out = (GET_CODE (rld[r].out) == REG
7297 ? rld[r].out : rld[r].out_reg);
7298 int nregno = REGNO (out);
7299 if (nregno >= FIRST_PSEUDO_REGISTER)
7300 {
7301 rtx src_reg, store_insn = NULL_RTX;
7302
7303 reg_last_reload_reg[nregno] = 0;
7304
7305 /* If we can find a hard register that is stored, record
7306 the storing insn so that we may delete this insn with
7307 delete_output_reload. */
7308 src_reg = rld[r].reg_rtx;
7309
7310 /* If this is an optional reload, try to find the source reg
7311 from an input reload. */
7312 if (! src_reg)
7313 {
7314 rtx set = single_set (insn);
7315 if (set && SET_DEST (set) == rld[r].out)
7316 {
7317 int k;
7318
7319 src_reg = SET_SRC (set);
7320 store_insn = insn;
7321 for (k = 0; k < n_reloads; k++)
7322 {
7323 if (rld[k].in == src_reg)
7324 {
7325 src_reg = rld[k].reg_rtx;
7326 break;
7327 }
7328 }
7329 }
7330 }
7331 else
7332 store_insn = new_spill_reg_store[REGNO (src_reg)];
7333 if (src_reg && GET_CODE (src_reg) == REG
7334 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7335 {
7336 int src_regno = REGNO (src_reg);
7337 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7338 /* The place where to find a death note varies with
7339 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7340 necessarily checked exactly in the code that moves
7341 notes, so just check both locations. */
7342 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7343 if (! note && store_insn)
7344 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7345 while (nr-- > 0)
7346 {
7347 spill_reg_store[src_regno + nr] = store_insn;
7348 spill_reg_stored_to[src_regno + nr] = out;
7349 reg_reloaded_contents[src_regno + nr] = nregno;
7350 reg_reloaded_insn[src_regno + nr] = store_insn;
7351 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7352 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7353 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7354 if (note)
7355 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7356 else
7357 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7358 }
7359 reg_last_reload_reg[nregno] = src_reg;
7360 }
7361 }
7362 else
7363 {
7364 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7365
7366 while (num_regs-- > 0)
7367 reg_last_reload_reg[nregno + num_regs] = 0;
7368 }
7369 }
7370 }
7371 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7372 }
7373 \f
7374 /* Emit code to perform a reload from IN (which may be a reload register) to
7375 OUT (which may also be a reload register). IN or OUT is from operand
7376 OPNUM with reload type TYPE.
7377
7378 Returns first insn emitted. */
7379
7380 rtx
7381 gen_reload (out, in, opnum, type)
7382 rtx out;
7383 rtx in;
7384 int opnum;
7385 enum reload_type type;
7386 {
7387 rtx last = get_last_insn ();
7388 rtx tem;
7389
7390 /* If IN is a paradoxical SUBREG, remove it and try to put the
7391 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7392 if (GET_CODE (in) == SUBREG
7393 && (GET_MODE_SIZE (GET_MODE (in))
7394 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7395 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7396 in = SUBREG_REG (in), out = tem;
7397 else if (GET_CODE (out) == SUBREG
7398 && (GET_MODE_SIZE (GET_MODE (out))
7399 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7400 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7401 out = SUBREG_REG (out), in = tem;
7402
7403 /* How to do this reload can get quite tricky. Normally, we are being
7404 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7405 register that didn't get a hard register. In that case we can just
7406 call emit_move_insn.
7407
7408 We can also be asked to reload a PLUS that adds a register or a MEM to
7409 another register, constant or MEM. This can occur during frame pointer
7410 elimination and while reloading addresses. This case is handled by
7411 trying to emit a single insn to perform the add. If it is not valid,
7412 we use a two insn sequence.
7413
7414 Finally, we could be called to handle an 'o' constraint by putting
7415 an address into a register. In that case, we first try to do this
7416 with a named pattern of "reload_load_address". If no such pattern
7417 exists, we just emit a SET insn and hope for the best (it will normally
7418 be valid on machines that use 'o').
7419
7420 This entire process is made complex because reload will never
7421 process the insns we generate here and so we must ensure that
7422 they will fit their constraints and also by the fact that parts of
7423 IN might be being reloaded separately and replaced with spill registers.
7424 Because of this, we are, in some sense, just guessing the right approach
7425 here. The one listed above seems to work.
7426
7427 ??? At some point, this whole thing needs to be rethought. */
7428
7429 if (GET_CODE (in) == PLUS
7430 && (GET_CODE (XEXP (in, 0)) == REG
7431 || GET_CODE (XEXP (in, 0)) == SUBREG
7432 || GET_CODE (XEXP (in, 0)) == MEM)
7433 && (GET_CODE (XEXP (in, 1)) == REG
7434 || GET_CODE (XEXP (in, 1)) == SUBREG
7435 || CONSTANT_P (XEXP (in, 1))
7436 || GET_CODE (XEXP (in, 1)) == MEM))
7437 {
7438 /* We need to compute the sum of a register or a MEM and another
7439 register, constant, or MEM, and put it into the reload
7440 register. The best possible way of doing this is if the machine
7441 has a three-operand ADD insn that accepts the required operands.
7442
7443 The simplest approach is to try to generate such an insn and see if it
7444 is recognized and matches its constraints. If so, it can be used.
7445
7446 It might be better not to actually emit the insn unless it is valid,
7447 but we need to pass the insn as an operand to `recog' and
7448 `extract_insn' and it is simpler to emit and then delete the insn if
7449 not valid than to dummy things up. */
7450
7451 rtx op0, op1, tem, insn;
7452 int code;
7453
7454 op0 = find_replacement (&XEXP (in, 0));
7455 op1 = find_replacement (&XEXP (in, 1));
7456
7457 /* Since constraint checking is strict, commutativity won't be
7458 checked, so we need to do that here to avoid spurious failure
7459 if the add instruction is two-address and the second operand
7460 of the add is the same as the reload reg, which is frequently
7461 the case. If the insn would be A = B + A, rearrange it so
7462 it will be A = A + B as constrain_operands expects. */
7463
7464 if (GET_CODE (XEXP (in, 1)) == REG
7465 && REGNO (out) == REGNO (XEXP (in, 1)))
7466 tem = op0, op0 = op1, op1 = tem;
7467
7468 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7469 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7470
7471 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7472 code = recog_memoized (insn);
7473
7474 if (code >= 0)
7475 {
7476 extract_insn (insn);
7477 /* We want constrain operands to treat this insn strictly in
7478 its validity determination, i.e., the way it would after reload
7479 has completed. */
7480 if (constrain_operands (1))
7481 return insn;
7482 }
7483
7484 delete_insns_since (last);
7485
7486 /* If that failed, we must use a conservative two-insn sequence.
7487
7488 Use a move to copy one operand into the reload register. Prefer
7489 to reload a constant, MEM or pseudo since the move patterns can
7490 handle an arbitrary operand. If OP1 is not a constant, MEM or
7491 pseudo and OP1 is not a valid operand for an add instruction, then
7492 reload OP1.
7493
7494 After reloading one of the operands into the reload register, add
7495 the reload register to the output register.
7496
7497 If there is another way to do this for a specific machine, a
7498 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7499 we emit below. */
7500
7501 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7502
7503 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7504 || (GET_CODE (op1) == REG
7505 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7506 || (code != CODE_FOR_nothing
7507 && ! ((*insn_data[code].operand[2].predicate)
7508 (op1, insn_data[code].operand[2].mode))))
7509 tem = op0, op0 = op1, op1 = tem;
7510
7511 gen_reload (out, op0, opnum, type);
7512
7513 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7514 This fixes a problem on the 32K where the stack pointer cannot
7515 be used as an operand of an add insn. */
7516
7517 if (rtx_equal_p (op0, op1))
7518 op1 = out;
7519
7520 insn = emit_insn (gen_add2_insn (out, op1));
7521
7522 /* If that failed, copy the address register to the reload register.
7523 Then add the constant to the reload register. */
7524
7525 code = recog_memoized (insn);
7526
7527 if (code >= 0)
7528 {
7529 extract_insn (insn);
7530 /* We want constrain operands to treat this insn strictly in
7531 its validity determination, i.e., the way it would after reload
7532 has completed. */
7533 if (constrain_operands (1))
7534 {
7535 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7536 REG_NOTES (insn)
7537 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7538 return insn;
7539 }
7540 }
7541
7542 delete_insns_since (last);
7543
7544 gen_reload (out, op1, opnum, type);
7545 insn = emit_insn (gen_add2_insn (out, op0));
7546 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7547 }
7548
7549 #ifdef SECONDARY_MEMORY_NEEDED
7550 /* If we need a memory location to do the move, do it that way. */
7551 else if ((GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
7552 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7553 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
7554 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7555 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7556 REGNO_REG_CLASS (reg_or_subregno (out)),
7557 GET_MODE (out)))
7558 {
7559 /* Get the memory to use and rewrite both registers to its mode. */
7560 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7561
7562 if (GET_MODE (loc) != GET_MODE (out))
7563 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7564
7565 if (GET_MODE (loc) != GET_MODE (in))
7566 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7567
7568 gen_reload (loc, in, opnum, type);
7569 gen_reload (out, loc, opnum, type);
7570 }
7571 #endif
7572
7573 /* If IN is a simple operand, use gen_move_insn. */
7574 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7575 emit_insn (gen_move_insn (out, in));
7576
7577 #ifdef HAVE_reload_load_address
7578 else if (HAVE_reload_load_address)
7579 emit_insn (gen_reload_load_address (out, in));
7580 #endif
7581
7582 /* Otherwise, just write (set OUT IN) and hope for the best. */
7583 else
7584 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7585
7586 /* Return the first insn emitted.
7587 We can not just return get_last_insn, because there may have
7588 been multiple instructions emitted. Also note that gen_move_insn may
7589 emit more than one insn itself, so we can not assume that there is one
7590 insn emitted per emit_insn_before call. */
7591
7592 return last ? NEXT_INSN (last) : get_insns ();
7593 }
7594 \f
7595 /* Delete a previously made output-reload whose result we now believe
7596 is not needed. First we double-check.
7597
7598 INSN is the insn now being processed.
7599 LAST_RELOAD_REG is the hard register number for which we want to delete
7600 the last output reload.
7601 J is the reload-number that originally used REG. The caller has made
7602 certain that reload J doesn't use REG any longer for input. */
7603
7604 static void
7605 delete_output_reload (insn, j, last_reload_reg)
7606 rtx insn;
7607 int j;
7608 int last_reload_reg;
7609 {
7610 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7611 rtx reg = spill_reg_stored_to[last_reload_reg];
7612 int k;
7613 int n_occurrences;
7614 int n_inherited = 0;
7615 rtx i1;
7616 rtx substed;
7617
7618 /* It is possible that this reload has been only used to set another reload
7619 we eliminated earlier and thus deleted this instruction too. */
7620 if (INSN_DELETED_P (output_reload_insn))
7621 return;
7622
7623 /* Get the raw pseudo-register referred to. */
7624
7625 while (GET_CODE (reg) == SUBREG)
7626 reg = SUBREG_REG (reg);
7627 substed = reg_equiv_memory_loc[REGNO (reg)];
7628
7629 /* This is unsafe if the operand occurs more often in the current
7630 insn than it is inherited. */
7631 for (k = n_reloads - 1; k >= 0; k--)
7632 {
7633 rtx reg2 = rld[k].in;
7634 if (! reg2)
7635 continue;
7636 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7637 reg2 = rld[k].in_reg;
7638 #ifdef AUTO_INC_DEC
7639 if (rld[k].out && ! rld[k].out_reg)
7640 reg2 = XEXP (rld[k].in_reg, 0);
7641 #endif
7642 while (GET_CODE (reg2) == SUBREG)
7643 reg2 = SUBREG_REG (reg2);
7644 if (rtx_equal_p (reg2, reg))
7645 {
7646 if (reload_inherited[k] || reload_override_in[k] || k == j)
7647 {
7648 n_inherited++;
7649 reg2 = rld[k].out_reg;
7650 if (! reg2)
7651 continue;
7652 while (GET_CODE (reg2) == SUBREG)
7653 reg2 = XEXP (reg2, 0);
7654 if (rtx_equal_p (reg2, reg))
7655 n_inherited++;
7656 }
7657 else
7658 return;
7659 }
7660 }
7661 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7662 if (substed)
7663 n_occurrences += count_occurrences (PATTERN (insn),
7664 eliminate_regs (substed, 0,
7665 NULL_RTX), 0);
7666 if (n_occurrences > n_inherited)
7667 return;
7668
7669 /* If the pseudo-reg we are reloading is no longer referenced
7670 anywhere between the store into it and here,
7671 and no jumps or labels intervene, then the value can get
7672 here through the reload reg alone.
7673 Otherwise, give up--return. */
7674 for (i1 = NEXT_INSN (output_reload_insn);
7675 i1 != insn; i1 = NEXT_INSN (i1))
7676 {
7677 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7678 return;
7679 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7680 && reg_mentioned_p (reg, PATTERN (i1)))
7681 {
7682 /* If this is USE in front of INSN, we only have to check that
7683 there are no more references than accounted for by inheritance. */
7684 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7685 {
7686 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7687 i1 = NEXT_INSN (i1);
7688 }
7689 if (n_occurrences <= n_inherited && i1 == insn)
7690 break;
7691 return;
7692 }
7693 }
7694
7695 /* We will be deleting the insn. Remove the spill reg information. */
7696 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7697 {
7698 spill_reg_store[last_reload_reg + k] = 0;
7699 spill_reg_stored_to[last_reload_reg + k] = 0;
7700 }
7701
7702 /* The caller has already checked that REG dies or is set in INSN.
7703 It has also checked that we are optimizing, and thus some
7704 inaccuracies in the debugging information are acceptable.
7705 So we could just delete output_reload_insn. But in some cases
7706 we can improve the debugging information without sacrificing
7707 optimization - maybe even improving the code: See if the pseudo
7708 reg has been completely replaced with reload regs. If so, delete
7709 the store insn and forget we had a stack slot for the pseudo. */
7710 if (rld[j].out != rld[j].in
7711 && REG_N_DEATHS (REGNO (reg)) == 1
7712 && REG_N_SETS (REGNO (reg)) == 1
7713 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7714 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7715 {
7716 rtx i2;
7717
7718 /* We know that it was used only between here and the beginning of
7719 the current basic block. (We also know that the last use before
7720 INSN was the output reload we are thinking of deleting, but never
7721 mind that.) Search that range; see if any ref remains. */
7722 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7723 {
7724 rtx set = single_set (i2);
7725
7726 /* Uses which just store in the pseudo don't count,
7727 since if they are the only uses, they are dead. */
7728 if (set != 0 && SET_DEST (set) == reg)
7729 continue;
7730 if (GET_CODE (i2) == CODE_LABEL
7731 || GET_CODE (i2) == JUMP_INSN)
7732 break;
7733 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7734 && reg_mentioned_p (reg, PATTERN (i2)))
7735 {
7736 /* Some other ref remains; just delete the output reload we
7737 know to be dead. */
7738 delete_address_reloads (output_reload_insn, insn);
7739 delete_insn (output_reload_insn);
7740 return;
7741 }
7742 }
7743
7744 /* Delete the now-dead stores into this pseudo. Note that this
7745 loop also takes care of deleting output_reload_insn. */
7746 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7747 {
7748 rtx set = single_set (i2);
7749
7750 if (set != 0 && SET_DEST (set) == reg)
7751 {
7752 delete_address_reloads (i2, insn);
7753 delete_insn (i2);
7754 }
7755 if (GET_CODE (i2) == CODE_LABEL
7756 || GET_CODE (i2) == JUMP_INSN)
7757 break;
7758 }
7759
7760 /* For the debugging info, say the pseudo lives in this reload reg. */
7761 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7762 alter_reg (REGNO (reg), -1);
7763 }
7764 else
7765 {
7766 delete_address_reloads (output_reload_insn, insn);
7767 delete_insn (output_reload_insn);
7768 }
7769 }
7770
7771 /* We are going to delete DEAD_INSN. Recursively delete loads of
7772 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7773 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7774 static void
7775 delete_address_reloads (dead_insn, current_insn)
7776 rtx dead_insn, current_insn;
7777 {
7778 rtx set = single_set (dead_insn);
7779 rtx set2, dst, prev, next;
7780 if (set)
7781 {
7782 rtx dst = SET_DEST (set);
7783 if (GET_CODE (dst) == MEM)
7784 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7785 }
7786 /* If we deleted the store from a reloaded post_{in,de}c expression,
7787 we can delete the matching adds. */
7788 prev = PREV_INSN (dead_insn);
7789 next = NEXT_INSN (dead_insn);
7790 if (! prev || ! next)
7791 return;
7792 set = single_set (next);
7793 set2 = single_set (prev);
7794 if (! set || ! set2
7795 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7796 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7797 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7798 return;
7799 dst = SET_DEST (set);
7800 if (! rtx_equal_p (dst, SET_DEST (set2))
7801 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7802 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7803 || (INTVAL (XEXP (SET_SRC (set), 1))
7804 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7805 return;
7806 delete_related_insns (prev);
7807 delete_related_insns (next);
7808 }
7809
7810 /* Subfunction of delete_address_reloads: process registers found in X. */
7811 static void
7812 delete_address_reloads_1 (dead_insn, x, current_insn)
7813 rtx dead_insn, x, current_insn;
7814 {
7815 rtx prev, set, dst, i2;
7816 int i, j;
7817 enum rtx_code code = GET_CODE (x);
7818
7819 if (code != REG)
7820 {
7821 const char *fmt = GET_RTX_FORMAT (code);
7822 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7823 {
7824 if (fmt[i] == 'e')
7825 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7826 else if (fmt[i] == 'E')
7827 {
7828 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7829 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7830 current_insn);
7831 }
7832 }
7833 return;
7834 }
7835
7836 if (spill_reg_order[REGNO (x)] < 0)
7837 return;
7838
7839 /* Scan backwards for the insn that sets x. This might be a way back due
7840 to inheritance. */
7841 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7842 {
7843 code = GET_CODE (prev);
7844 if (code == CODE_LABEL || code == JUMP_INSN)
7845 return;
7846 if (GET_RTX_CLASS (code) != 'i')
7847 continue;
7848 if (reg_set_p (x, PATTERN (prev)))
7849 break;
7850 if (reg_referenced_p (x, PATTERN (prev)))
7851 return;
7852 }
7853 if (! prev || INSN_UID (prev) < reload_first_uid)
7854 return;
7855 /* Check that PREV only sets the reload register. */
7856 set = single_set (prev);
7857 if (! set)
7858 return;
7859 dst = SET_DEST (set);
7860 if (GET_CODE (dst) != REG
7861 || ! rtx_equal_p (dst, x))
7862 return;
7863 if (! reg_set_p (dst, PATTERN (dead_insn)))
7864 {
7865 /* Check if DST was used in a later insn -
7866 it might have been inherited. */
7867 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7868 {
7869 if (GET_CODE (i2) == CODE_LABEL)
7870 break;
7871 if (! INSN_P (i2))
7872 continue;
7873 if (reg_referenced_p (dst, PATTERN (i2)))
7874 {
7875 /* If there is a reference to the register in the current insn,
7876 it might be loaded in a non-inherited reload. If no other
7877 reload uses it, that means the register is set before
7878 referenced. */
7879 if (i2 == current_insn)
7880 {
7881 for (j = n_reloads - 1; j >= 0; j--)
7882 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7883 || reload_override_in[j] == dst)
7884 return;
7885 for (j = n_reloads - 1; j >= 0; j--)
7886 if (rld[j].in && rld[j].reg_rtx == dst)
7887 break;
7888 if (j >= 0)
7889 break;
7890 }
7891 return;
7892 }
7893 if (GET_CODE (i2) == JUMP_INSN)
7894 break;
7895 /* If DST is still live at CURRENT_INSN, check if it is used for
7896 any reload. Note that even if CURRENT_INSN sets DST, we still
7897 have to check the reloads. */
7898 if (i2 == current_insn)
7899 {
7900 for (j = n_reloads - 1; j >= 0; j--)
7901 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7902 || reload_override_in[j] == dst)
7903 return;
7904 /* ??? We can't finish the loop here, because dst might be
7905 allocated to a pseudo in this block if no reload in this
7906 block needs any of the classes containing DST - see
7907 spill_hard_reg. There is no easy way to tell this, so we
7908 have to scan till the end of the basic block. */
7909 }
7910 if (reg_set_p (dst, PATTERN (i2)))
7911 break;
7912 }
7913 }
7914 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7915 reg_reloaded_contents[REGNO (dst)] = -1;
7916 delete_insn (prev);
7917 }
7918 \f
7919 /* Output reload-insns to reload VALUE into RELOADREG.
7920 VALUE is an autoincrement or autodecrement RTX whose operand
7921 is a register or memory location;
7922 so reloading involves incrementing that location.
7923 IN is either identical to VALUE, or some cheaper place to reload from.
7924
7925 INC_AMOUNT is the number to increment or decrement by (always positive).
7926 This cannot be deduced from VALUE.
7927
7928 Return the instruction that stores into RELOADREG. */
7929
7930 static rtx
7931 inc_for_reload (reloadreg, in, value, inc_amount)
7932 rtx reloadreg;
7933 rtx in, value;
7934 int inc_amount;
7935 {
7936 /* REG or MEM to be copied and incremented. */
7937 rtx incloc = XEXP (value, 0);
7938 /* Nonzero if increment after copying. */
7939 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7940 rtx last;
7941 rtx inc;
7942 rtx add_insn;
7943 int code;
7944 rtx store;
7945 rtx real_in = in == value ? XEXP (in, 0) : in;
7946
7947 /* No hard register is equivalent to this register after
7948 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7949 we could inc/dec that register as well (maybe even using it for
7950 the source), but I'm not sure it's worth worrying about. */
7951 if (GET_CODE (incloc) == REG)
7952 reg_last_reload_reg[REGNO (incloc)] = 0;
7953
7954 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7955 inc_amount = -inc_amount;
7956
7957 inc = GEN_INT (inc_amount);
7958
7959 /* If this is post-increment, first copy the location to the reload reg. */
7960 if (post && real_in != reloadreg)
7961 emit_insn (gen_move_insn (reloadreg, real_in));
7962
7963 if (in == value)
7964 {
7965 /* See if we can directly increment INCLOC. Use a method similar to
7966 that in gen_reload. */
7967
7968 last = get_last_insn ();
7969 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7970 gen_rtx_PLUS (GET_MODE (incloc),
7971 incloc, inc)));
7972
7973 code = recog_memoized (add_insn);
7974 if (code >= 0)
7975 {
7976 extract_insn (add_insn);
7977 if (constrain_operands (1))
7978 {
7979 /* If this is a pre-increment and we have incremented the value
7980 where it lives, copy the incremented value to RELOADREG to
7981 be used as an address. */
7982
7983 if (! post)
7984 emit_insn (gen_move_insn (reloadreg, incloc));
7985
7986 return add_insn;
7987 }
7988 }
7989 delete_insns_since (last);
7990 }
7991
7992 /* If couldn't do the increment directly, must increment in RELOADREG.
7993 The way we do this depends on whether this is pre- or post-increment.
7994 For pre-increment, copy INCLOC to the reload register, increment it
7995 there, then save back. */
7996
7997 if (! post)
7998 {
7999 if (in != reloadreg)
8000 emit_insn (gen_move_insn (reloadreg, real_in));
8001 emit_insn (gen_add2_insn (reloadreg, inc));
8002 store = emit_insn (gen_move_insn (incloc, reloadreg));
8003 }
8004 else
8005 {
8006 /* Postincrement.
8007 Because this might be a jump insn or a compare, and because RELOADREG
8008 may not be available after the insn in an input reload, we must do
8009 the incrementation before the insn being reloaded for.
8010
8011 We have already copied IN to RELOADREG. Increment the copy in
8012 RELOADREG, save that back, then decrement RELOADREG so it has
8013 the original value. */
8014
8015 emit_insn (gen_add2_insn (reloadreg, inc));
8016 store = emit_insn (gen_move_insn (incloc, reloadreg));
8017 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8018 }
8019
8020 return store;
8021 }
8022 \f
8023
8024 /* See whether a single set SET is a noop. */
8025 static int
8026 reload_cse_noop_set_p (set)
8027 rtx set;
8028 {
8029 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8030 }
8031
8032 /* Try to simplify INSN. */
8033 static void
8034 reload_cse_simplify (insn, testreg)
8035 rtx insn;
8036 rtx testreg;
8037 {
8038 rtx body = PATTERN (insn);
8039
8040 if (GET_CODE (body) == SET)
8041 {
8042 int count = 0;
8043
8044 /* Simplify even if we may think it is a no-op.
8045 We may think a memory load of a value smaller than WORD_SIZE
8046 is redundant because we haven't taken into account possible
8047 implicit extension. reload_cse_simplify_set() will bring
8048 this out, so it's safer to simplify before we delete. */
8049 count += reload_cse_simplify_set (body, insn);
8050
8051 if (!count && reload_cse_noop_set_p (body))
8052 {
8053 rtx value = SET_DEST (body);
8054 if (REG_P (value)
8055 && ! REG_FUNCTION_VALUE_P (value))
8056 value = 0;
8057 delete_insn_and_edges (insn);
8058 return;
8059 }
8060
8061 if (count > 0)
8062 apply_change_group ();
8063 else
8064 reload_cse_simplify_operands (insn, testreg);
8065 }
8066 else if (GET_CODE (body) == PARALLEL)
8067 {
8068 int i;
8069 int count = 0;
8070 rtx value = NULL_RTX;
8071
8072 /* If every action in a PARALLEL is a noop, we can delete
8073 the entire PARALLEL. */
8074 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8075 {
8076 rtx part = XVECEXP (body, 0, i);
8077 if (GET_CODE (part) == SET)
8078 {
8079 if (! reload_cse_noop_set_p (part))
8080 break;
8081 if (REG_P (SET_DEST (part))
8082 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
8083 {
8084 if (value)
8085 break;
8086 value = SET_DEST (part);
8087 }
8088 }
8089 else if (GET_CODE (part) != CLOBBER)
8090 break;
8091 }
8092
8093 if (i < 0)
8094 {
8095 delete_insn_and_edges (insn);
8096 /* We're done with this insn. */
8097 return;
8098 }
8099
8100 /* It's not a no-op, but we can try to simplify it. */
8101 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8102 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8103 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8104
8105 if (count > 0)
8106 apply_change_group ();
8107 else
8108 reload_cse_simplify_operands (insn, testreg);
8109 }
8110 }
8111
8112 /* Do a very simple CSE pass over the hard registers.
8113
8114 This function detects no-op moves where we happened to assign two
8115 different pseudo-registers to the same hard register, and then
8116 copied one to the other. Reload will generate a useless
8117 instruction copying a register to itself.
8118
8119 This function also detects cases where we load a value from memory
8120 into two different registers, and (if memory is more expensive than
8121 registers) changes it to simply copy the first register into the
8122 second register.
8123
8124 Another optimization is performed that scans the operands of each
8125 instruction to see whether the value is already available in a
8126 hard register. It then replaces the operand with the hard register
8127 if possible, much like an optional reload would. */
8128
8129 static void
8130 reload_cse_regs_1 (first)
8131 rtx first;
8132 {
8133 rtx insn;
8134 rtx testreg = gen_rtx_REG (VOIDmode, -1);
8135
8136 cselib_init ();
8137 init_alias_analysis ();
8138
8139 for (insn = first; insn; insn = NEXT_INSN (insn))
8140 {
8141 if (INSN_P (insn))
8142 reload_cse_simplify (insn, testreg);
8143
8144 cselib_process_insn (insn);
8145 }
8146
8147 /* Clean up. */
8148 end_alias_analysis ();
8149 cselib_finish ();
8150 }
8151
8152 /* Call cse / combine like post-reload optimization phases.
8153 FIRST is the first instruction. */
8154 void
8155 reload_cse_regs (first)
8156 rtx first;
8157 {
8158 reload_cse_regs_1 (first);
8159 reload_combine ();
8160 reload_cse_move2add (first);
8161 if (flag_expensive_optimizations)
8162 reload_cse_regs_1 (first);
8163 }
8164
8165 /* Try to simplify a single SET instruction. SET is the set pattern.
8166 INSN is the instruction it came from.
8167 This function only handles one case: if we set a register to a value
8168 which is not a register, we try to find that value in some other register
8169 and change the set into a register copy. */
8170
8171 static int
8172 reload_cse_simplify_set (set, insn)
8173 rtx set;
8174 rtx insn;
8175 {
8176 int did_change = 0;
8177 int dreg;
8178 rtx src;
8179 enum reg_class dclass;
8180 int old_cost;
8181 cselib_val *val;
8182 struct elt_loc_list *l;
8183 #ifdef LOAD_EXTEND_OP
8184 enum rtx_code extend_op = NIL;
8185 #endif
8186
8187 dreg = true_regnum (SET_DEST (set));
8188 if (dreg < 0)
8189 return 0;
8190
8191 src = SET_SRC (set);
8192 if (side_effects_p (src) || true_regnum (src) >= 0)
8193 return 0;
8194
8195 dclass = REGNO_REG_CLASS (dreg);
8196
8197 #ifdef LOAD_EXTEND_OP
8198 /* When replacing a memory with a register, we need to honor assumptions
8199 that combine made wrt the contents of sign bits. We'll do this by
8200 generating an extend instruction instead of a reg->reg copy. Thus
8201 the destination must be a register that we can widen. */
8202 if (GET_CODE (src) == MEM
8203 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8204 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8205 && GET_CODE (SET_DEST (set)) != REG)
8206 return 0;
8207 #endif
8208
8209 /* If memory loads are cheaper than register copies, don't change them. */
8210 if (GET_CODE (src) == MEM)
8211 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8212 else if (CONSTANT_P (src))
8213 old_cost = rtx_cost (src, SET);
8214 else if (GET_CODE (src) == REG)
8215 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8216 REGNO_REG_CLASS (REGNO (src)), dclass);
8217 else
8218 /* ??? */
8219 old_cost = rtx_cost (src, SET);
8220
8221 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8222 if (! val)
8223 return 0;
8224 for (l = val->locs; l; l = l->next)
8225 {
8226 rtx this_rtx = l->loc;
8227 int this_cost;
8228
8229 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8230 {
8231 #ifdef LOAD_EXTEND_OP
8232 if (extend_op != NIL)
8233 {
8234 HOST_WIDE_INT this_val;
8235
8236 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8237 constants, such as SYMBOL_REF, cannot be extended. */
8238 if (GET_CODE (this_rtx) != CONST_INT)
8239 continue;
8240
8241 this_val = INTVAL (this_rtx);
8242 switch (extend_op)
8243 {
8244 case ZERO_EXTEND:
8245 this_val &= GET_MODE_MASK (GET_MODE (src));
8246 break;
8247 case SIGN_EXTEND:
8248 /* ??? In theory we're already extended. */
8249 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8250 break;
8251 default:
8252 abort ();
8253 }
8254 this_rtx = GEN_INT (this_val);
8255 }
8256 #endif
8257 this_cost = rtx_cost (this_rtx, SET);
8258 }
8259 else if (GET_CODE (this_rtx) == REG)
8260 {
8261 #ifdef LOAD_EXTEND_OP
8262 if (extend_op != NIL)
8263 {
8264 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8265 this_cost = rtx_cost (this_rtx, SET);
8266 }
8267 else
8268 #endif
8269 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8270 REGNO_REG_CLASS (REGNO (this_rtx)),
8271 dclass);
8272 }
8273 else
8274 continue;
8275
8276 /* If equal costs, prefer registers over anything else. That
8277 tends to lead to smaller instructions on some machines. */
8278 if (this_cost < old_cost
8279 || (this_cost == old_cost
8280 && GET_CODE (this_rtx) == REG
8281 && GET_CODE (SET_SRC (set)) != REG))
8282 {
8283 #ifdef LOAD_EXTEND_OP
8284 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8285 && extend_op != NIL
8286 #ifdef CANNOT_CHANGE_MODE_CLASS
8287 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
8288 word_mode,
8289 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
8290 #endif
8291 )
8292 {
8293 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8294 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8295 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8296 }
8297 #endif
8298
8299 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8300 old_cost = this_cost, did_change = 1;
8301 }
8302 }
8303
8304 return did_change;
8305 }
8306
8307 /* Try to replace operands in INSN with equivalent values that are already
8308 in registers. This can be viewed as optional reloading.
8309
8310 For each non-register operand in the insn, see if any hard regs are
8311 known to be equivalent to that operand. Record the alternatives which
8312 can accept these hard registers. Among all alternatives, select the
8313 ones which are better or equal to the one currently matching, where
8314 "better" is in terms of '?' and '!' constraints. Among the remaining
8315 alternatives, select the one which replaces most operands with
8316 hard registers. */
8317
8318 static int
8319 reload_cse_simplify_operands (insn, testreg)
8320 rtx insn;
8321 rtx testreg;
8322 {
8323 int i, j;
8324
8325 /* For each operand, all registers that are equivalent to it. */
8326 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8327
8328 const char *constraints[MAX_RECOG_OPERANDS];
8329
8330 /* Vector recording how bad an alternative is. */
8331 int *alternative_reject;
8332 /* Vector recording how many registers can be introduced by choosing
8333 this alternative. */
8334 int *alternative_nregs;
8335 /* Array of vectors recording, for each operand and each alternative,
8336 which hard register to substitute, or -1 if the operand should be
8337 left as it is. */
8338 int *op_alt_regno[MAX_RECOG_OPERANDS];
8339 /* Array of alternatives, sorted in order of decreasing desirability. */
8340 int *alternative_order;
8341
8342 extract_insn (insn);
8343
8344 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8345 return 0;
8346
8347 /* Figure out which alternative currently matches. */
8348 if (! constrain_operands (1))
8349 fatal_insn_not_found (insn);
8350
8351 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8352 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8353 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8354 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8355 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8356
8357 /* For each operand, find out which regs are equivalent. */
8358 for (i = 0; i < recog_data.n_operands; i++)
8359 {
8360 cselib_val *v;
8361 struct elt_loc_list *l;
8362
8363 CLEAR_HARD_REG_SET (equiv_regs[i]);
8364
8365 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8366 right, so avoid the problem here. Likewise if we have a constant
8367 and the insn pattern doesn't tell us the mode we need. */
8368 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8369 || (CONSTANT_P (recog_data.operand[i])
8370 && recog_data.operand_mode[i] == VOIDmode))
8371 continue;
8372
8373 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8374 if (! v)
8375 continue;
8376
8377 for (l = v->locs; l; l = l->next)
8378 if (GET_CODE (l->loc) == REG)
8379 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8380 }
8381
8382 for (i = 0; i < recog_data.n_operands; i++)
8383 {
8384 enum machine_mode mode;
8385 int regno;
8386 const char *p;
8387
8388 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8389 for (j = 0; j < recog_data.n_alternatives; j++)
8390 op_alt_regno[i][j] = -1;
8391
8392 p = constraints[i] = recog_data.constraints[i];
8393 mode = recog_data.operand_mode[i];
8394
8395 /* Add the reject values for each alternative given by the constraints
8396 for this operand. */
8397 j = 0;
8398 while (*p != '\0')
8399 {
8400 char c = *p++;
8401 if (c == ',')
8402 j++;
8403 else if (c == '?')
8404 alternative_reject[j] += 3;
8405 else if (c == '!')
8406 alternative_reject[j] += 300;
8407 }
8408
8409 /* We won't change operands which are already registers. We
8410 also don't want to modify output operands. */
8411 regno = true_regnum (recog_data.operand[i]);
8412 if (regno >= 0
8413 || constraints[i][0] == '='
8414 || constraints[i][0] == '+')
8415 continue;
8416
8417 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8418 {
8419 int class = (int) NO_REGS;
8420
8421 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8422 continue;
8423
8424 REGNO (testreg) = regno;
8425 PUT_MODE (testreg, mode);
8426
8427 /* We found a register equal to this operand. Now look for all
8428 alternatives that can accept this register and have not been
8429 assigned a register they can use yet. */
8430 j = 0;
8431 p = constraints[i];
8432 for (;;)
8433 {
8434 char c = *p;
8435
8436 switch (c)
8437 {
8438 case '=': case '+': case '?':
8439 case '#': case '&': case '!':
8440 case '*': case '%':
8441 case '0': case '1': case '2': case '3': case '4':
8442 case '5': case '6': case '7': case '8': case '9':
8443 case 'm': case '<': case '>': case 'V': case 'o':
8444 case 'E': case 'F': case 'G': case 'H':
8445 case 's': case 'i': case 'n':
8446 case 'I': case 'J': case 'K': case 'L':
8447 case 'M': case 'N': case 'O': case 'P':
8448 case 'p': case 'X':
8449 /* These don't say anything we care about. */
8450 break;
8451
8452 case 'g': case 'r':
8453 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8454 break;
8455
8456 default:
8457 class
8458 = (reg_class_subunion
8459 [(int) class]
8460 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
8461 break;
8462
8463 case ',': case '\0':
8464 /* See if REGNO fits this alternative, and set it up as the
8465 replacement register if we don't have one for this
8466 alternative yet and the operand being replaced is not
8467 a cheap CONST_INT. */
8468 if (op_alt_regno[i][j] == -1
8469 && reg_fits_class_p (testreg, class, 0, mode)
8470 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8471 || (rtx_cost (recog_data.operand[i], SET)
8472 > rtx_cost (testreg, SET))))
8473 {
8474 alternative_nregs[j]++;
8475 op_alt_regno[i][j] = regno;
8476 }
8477 j++;
8478 break;
8479 }
8480 p += CONSTRAINT_LEN (c, p);
8481
8482 if (c == '\0')
8483 break;
8484 }
8485 }
8486 }
8487
8488 /* Record all alternatives which are better or equal to the currently
8489 matching one in the alternative_order array. */
8490 for (i = j = 0; i < recog_data.n_alternatives; i++)
8491 if (alternative_reject[i] <= alternative_reject[which_alternative])
8492 alternative_order[j++] = i;
8493 recog_data.n_alternatives = j;
8494
8495 /* Sort it. Given a small number of alternatives, a dumb algorithm
8496 won't hurt too much. */
8497 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8498 {
8499 int best = i;
8500 int best_reject = alternative_reject[alternative_order[i]];
8501 int best_nregs = alternative_nregs[alternative_order[i]];
8502 int tmp;
8503
8504 for (j = i + 1; j < recog_data.n_alternatives; j++)
8505 {
8506 int this_reject = alternative_reject[alternative_order[j]];
8507 int this_nregs = alternative_nregs[alternative_order[j]];
8508
8509 if (this_reject < best_reject
8510 || (this_reject == best_reject && this_nregs < best_nregs))
8511 {
8512 best = j;
8513 best_reject = this_reject;
8514 best_nregs = this_nregs;
8515 }
8516 }
8517
8518 tmp = alternative_order[best];
8519 alternative_order[best] = alternative_order[i];
8520 alternative_order[i] = tmp;
8521 }
8522
8523 /* Substitute the operands as determined by op_alt_regno for the best
8524 alternative. */
8525 j = alternative_order[0];
8526
8527 for (i = 0; i < recog_data.n_operands; i++)
8528 {
8529 enum machine_mode mode = recog_data.operand_mode[i];
8530 if (op_alt_regno[i][j] == -1)
8531 continue;
8532
8533 validate_change (insn, recog_data.operand_loc[i],
8534 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8535 }
8536
8537 for (i = recog_data.n_dups - 1; i >= 0; i--)
8538 {
8539 int op = recog_data.dup_num[i];
8540 enum machine_mode mode = recog_data.operand_mode[op];
8541
8542 if (op_alt_regno[op][j] == -1)
8543 continue;
8544
8545 validate_change (insn, recog_data.dup_loc[i],
8546 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8547 }
8548
8549 return apply_change_group ();
8550 }
8551 \f
8552 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8553 addressing now.
8554 This code might also be useful when reload gave up on reg+reg addressing
8555 because of clashes between the return register and INDEX_REG_CLASS. */
8556
8557 /* The maximum number of uses of a register we can keep track of to
8558 replace them with reg+reg addressing. */
8559 #define RELOAD_COMBINE_MAX_USES 6
8560
8561 /* INSN is the insn where a register has ben used, and USEP points to the
8562 location of the register within the rtl. */
8563 struct reg_use { rtx insn, *usep; };
8564
8565 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8566 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8567 indicates where it becomes live again.
8568 Otherwise, USE_INDEX is the index of the last encountered use of the
8569 register (which is first among these we have seen since we scan backwards),
8570 OFFSET contains the constant offset that is added to the register in
8571 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8572 last, of these uses.
8573 STORE_RUID is always meaningful if we only want to use a value in a
8574 register in a different place: it denotes the next insn in the insn
8575 stream (i.e. the last encountered) that sets or clobbers the register. */
8576 static struct
8577 {
8578 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8579 int use_index;
8580 rtx offset;
8581 int store_ruid;
8582 int use_ruid;
8583 } reg_state[FIRST_PSEUDO_REGISTER];
8584
8585 /* Reverse linear uid. This is increased in reload_combine while scanning
8586 the instructions from last to first. It is used to set last_label_ruid
8587 and the store_ruid / use_ruid fields in reg_state. */
8588 static int reload_combine_ruid;
8589
8590 #define LABEL_LIVE(LABEL) \
8591 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8592
8593 static void
8594 reload_combine ()
8595 {
8596 rtx insn, set;
8597 int first_index_reg = -1;
8598 int last_index_reg = 0;
8599 int i;
8600 basic_block bb;
8601 unsigned int r;
8602 int last_label_ruid;
8603 int min_labelno, n_labels;
8604 HARD_REG_SET ever_live_at_start, *label_live;
8605
8606 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8607 reload has already used it where appropriate, so there is no use in
8608 trying to generate it now. */
8609 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8610 return;
8611
8612 /* To avoid wasting too much time later searching for an index register,
8613 determine the minimum and maximum index register numbers. */
8614 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8615 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8616 {
8617 if (first_index_reg == -1)
8618 first_index_reg = r;
8619
8620 last_index_reg = r;
8621 }
8622
8623 /* If no index register is available, we can quit now. */
8624 if (first_index_reg == -1)
8625 return;
8626
8627 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8628 information is a bit fuzzy immediately after reload, but it's
8629 still good enough to determine which registers are live at a jump
8630 destination. */
8631 min_labelno = get_first_label_num ();
8632 n_labels = max_label_num () - min_labelno;
8633 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8634 CLEAR_HARD_REG_SET (ever_live_at_start);
8635
8636 FOR_EACH_BB_REVERSE (bb)
8637 {
8638 insn = bb->head;
8639 if (GET_CODE (insn) == CODE_LABEL)
8640 {
8641 HARD_REG_SET live;
8642
8643 REG_SET_TO_HARD_REG_SET (live,
8644 bb->global_live_at_start);
8645 compute_use_by_pseudos (&live,
8646 bb->global_live_at_start);
8647 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8648 IOR_HARD_REG_SET (ever_live_at_start, live);
8649 }
8650 }
8651
8652 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8653 last_label_ruid = reload_combine_ruid = 0;
8654 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8655 {
8656 reg_state[r].store_ruid = reload_combine_ruid;
8657 if (fixed_regs[r])
8658 reg_state[r].use_index = -1;
8659 else
8660 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8661 }
8662
8663 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8664 {
8665 rtx note;
8666
8667 /* We cannot do our optimization across labels. Invalidating all the use
8668 information we have would be costly, so we just note where the label
8669 is and then later disable any optimization that would cross it. */
8670 if (GET_CODE (insn) == CODE_LABEL)
8671 last_label_ruid = reload_combine_ruid;
8672 else if (GET_CODE (insn) == BARRIER)
8673 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8674 if (! fixed_regs[r])
8675 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8676
8677 if (! INSN_P (insn))
8678 continue;
8679
8680 reload_combine_ruid++;
8681
8682 /* Look for (set (REGX) (CONST_INT))
8683 (set (REGX) (PLUS (REGX) (REGY)))
8684 ...
8685 ... (MEM (REGX)) ...
8686 and convert it to
8687 (set (REGZ) (CONST_INT))
8688 ...
8689 ... (MEM (PLUS (REGZ) (REGY)))... .
8690
8691 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8692 and that we know all uses of REGX before it dies. */
8693 set = single_set (insn);
8694 if (set != NULL_RTX
8695 && GET_CODE (SET_DEST (set)) == REG
8696 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8697 GET_MODE (SET_DEST (set)))
8698 == 1)
8699 && GET_CODE (SET_SRC (set)) == PLUS
8700 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8701 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8702 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8703 {
8704 rtx reg = SET_DEST (set);
8705 rtx plus = SET_SRC (set);
8706 rtx base = XEXP (plus, 1);
8707 rtx prev = prev_nonnote_insn (insn);
8708 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8709 unsigned int regno = REGNO (reg);
8710 rtx const_reg = NULL_RTX;
8711 rtx reg_sum = NULL_RTX;
8712
8713 /* Now, we need an index register.
8714 We'll set index_reg to this index register, const_reg to the
8715 register that is to be loaded with the constant
8716 (denoted as REGZ in the substitution illustration above),
8717 and reg_sum to the register-register that we want to use to
8718 substitute uses of REG (typically in MEMs) with.
8719 First check REG and BASE for being index registers;
8720 we can use them even if they are not dead. */
8721 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8722 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8723 REGNO (base)))
8724 {
8725 const_reg = reg;
8726 reg_sum = plus;
8727 }
8728 else
8729 {
8730 /* Otherwise, look for a free index register. Since we have
8731 checked above that neiter REG nor BASE are index registers,
8732 if we find anything at all, it will be different from these
8733 two registers. */
8734 for (i = first_index_reg; i <= last_index_reg; i++)
8735 {
8736 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8737 i)
8738 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8739 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8740 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8741 {
8742 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8743
8744 const_reg = index_reg;
8745 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8746 break;
8747 }
8748 }
8749 }
8750
8751 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8752 (REGY), i.e. BASE, is not clobbered before the last use we'll
8753 create. */
8754 if (prev_set != 0
8755 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8756 && rtx_equal_p (SET_DEST (prev_set), reg)
8757 && reg_state[regno].use_index >= 0
8758 && (reg_state[REGNO (base)].store_ruid
8759 <= reg_state[regno].use_ruid)
8760 && reg_sum != 0)
8761 {
8762 int i;
8763
8764 /* Change destination register and, if necessary, the
8765 constant value in PREV, the constant loading instruction. */
8766 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8767 if (reg_state[regno].offset != const0_rtx)
8768 validate_change (prev,
8769 &SET_SRC (prev_set),
8770 GEN_INT (INTVAL (SET_SRC (prev_set))
8771 + INTVAL (reg_state[regno].offset)),
8772 1);
8773
8774 /* Now for every use of REG that we have recorded, replace REG
8775 with REG_SUM. */
8776 for (i = reg_state[regno].use_index;
8777 i < RELOAD_COMBINE_MAX_USES; i++)
8778 validate_change (reg_state[regno].reg_use[i].insn,
8779 reg_state[regno].reg_use[i].usep,
8780 /* Each change must have its own
8781 replacement. */
8782 copy_rtx (reg_sum), 1);
8783
8784 if (apply_change_group ())
8785 {
8786 rtx *np;
8787
8788 /* Delete the reg-reg addition. */
8789 delete_insn (insn);
8790
8791 if (reg_state[regno].offset != const0_rtx)
8792 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8793 are now invalid. */
8794 for (np = &REG_NOTES (prev); *np;)
8795 {
8796 if (REG_NOTE_KIND (*np) == REG_EQUAL
8797 || REG_NOTE_KIND (*np) == REG_EQUIV)
8798 *np = XEXP (*np, 1);
8799 else
8800 np = &XEXP (*np, 1);
8801 }
8802
8803 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8804 reg_state[REGNO (const_reg)].store_ruid
8805 = reload_combine_ruid;
8806 continue;
8807 }
8808 }
8809 }
8810
8811 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8812
8813 if (GET_CODE (insn) == CALL_INSN)
8814 {
8815 rtx link;
8816
8817 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8818 if (call_used_regs[r])
8819 {
8820 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8821 reg_state[r].store_ruid = reload_combine_ruid;
8822 }
8823
8824 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8825 link = XEXP (link, 1))
8826 {
8827 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8828 if (GET_CODE (usage_rtx) == REG)
8829 {
8830 unsigned int i;
8831 unsigned int start_reg = REGNO (usage_rtx);
8832 unsigned int num_regs =
8833 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8834 unsigned int end_reg = start_reg + num_regs - 1;
8835 for (i = start_reg; i <= end_reg; i++)
8836 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8837 {
8838 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8839 reg_state[i].store_ruid = reload_combine_ruid;
8840 }
8841 else
8842 reg_state[i].use_index = -1;
8843 }
8844 }
8845
8846 }
8847 else if (GET_CODE (insn) == JUMP_INSN
8848 && GET_CODE (PATTERN (insn)) != RETURN)
8849 {
8850 /* Non-spill registers might be used at the call destination in
8851 some unknown fashion, so we have to mark the unknown use. */
8852 HARD_REG_SET *live;
8853
8854 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8855 && JUMP_LABEL (insn))
8856 live = &LABEL_LIVE (JUMP_LABEL (insn));
8857 else
8858 live = &ever_live_at_start;
8859
8860 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8861 if (TEST_HARD_REG_BIT (*live, i))
8862 reg_state[i].use_index = -1;
8863 }
8864
8865 reload_combine_note_use (&PATTERN (insn), insn);
8866 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8867 {
8868 if (REG_NOTE_KIND (note) == REG_INC
8869 && GET_CODE (XEXP (note, 0)) == REG)
8870 {
8871 int regno = REGNO (XEXP (note, 0));
8872
8873 reg_state[regno].store_ruid = reload_combine_ruid;
8874 reg_state[regno].use_index = -1;
8875 }
8876 }
8877 }
8878
8879 free (label_live);
8880 }
8881
8882 /* Check if DST is a register or a subreg of a register; if it is,
8883 update reg_state[regno].store_ruid and reg_state[regno].use_index
8884 accordingly. Called via note_stores from reload_combine. */
8885
8886 static void
8887 reload_combine_note_store (dst, set, data)
8888 rtx dst, set;
8889 void *data ATTRIBUTE_UNUSED;
8890 {
8891 int regno = 0;
8892 int i;
8893 enum machine_mode mode = GET_MODE (dst);
8894
8895 if (GET_CODE (dst) == SUBREG)
8896 {
8897 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8898 GET_MODE (SUBREG_REG (dst)),
8899 SUBREG_BYTE (dst),
8900 GET_MODE (dst));
8901 dst = SUBREG_REG (dst);
8902 }
8903 if (GET_CODE (dst) != REG)
8904 return;
8905 regno += REGNO (dst);
8906
8907 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8908 careful with registers / register parts that are not full words.
8909
8910 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8911 if (GET_CODE (set) != SET
8912 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8913 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8914 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8915 {
8916 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8917 {
8918 reg_state[i].use_index = -1;
8919 reg_state[i].store_ruid = reload_combine_ruid;
8920 }
8921 }
8922 else
8923 {
8924 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8925 {
8926 reg_state[i].store_ruid = reload_combine_ruid;
8927 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8928 }
8929 }
8930 }
8931
8932 /* XP points to a piece of rtl that has to be checked for any uses of
8933 registers.
8934 *XP is the pattern of INSN, or a part of it.
8935 Called from reload_combine, and recursively by itself. */
8936 static void
8937 reload_combine_note_use (xp, insn)
8938 rtx *xp, insn;
8939 {
8940 rtx x = *xp;
8941 enum rtx_code code = x->code;
8942 const char *fmt;
8943 int i, j;
8944 rtx offset = const0_rtx; /* For the REG case below. */
8945
8946 switch (code)
8947 {
8948 case SET:
8949 if (GET_CODE (SET_DEST (x)) == REG)
8950 {
8951 reload_combine_note_use (&SET_SRC (x), insn);
8952 return;
8953 }
8954 break;
8955
8956 case USE:
8957 /* If this is the USE of a return value, we can't change it. */
8958 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8959 {
8960 /* Mark the return register as used in an unknown fashion. */
8961 rtx reg = XEXP (x, 0);
8962 int regno = REGNO (reg);
8963 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8964
8965 while (--nregs >= 0)
8966 reg_state[regno + nregs].use_index = -1;
8967 return;
8968 }
8969 break;
8970
8971 case CLOBBER:
8972 if (GET_CODE (SET_DEST (x)) == REG)
8973 {
8974 /* No spurious CLOBBERs of pseudo registers may remain. */
8975 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8976 abort ();
8977 return;
8978 }
8979 break;
8980
8981 case PLUS:
8982 /* We are interested in (plus (reg) (const_int)) . */
8983 if (GET_CODE (XEXP (x, 0)) != REG
8984 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8985 break;
8986 offset = XEXP (x, 1);
8987 x = XEXP (x, 0);
8988 /* Fall through. */
8989 case REG:
8990 {
8991 int regno = REGNO (x);
8992 int use_index;
8993 int nregs;
8994
8995 /* No spurious USEs of pseudo registers may remain. */
8996 if (regno >= FIRST_PSEUDO_REGISTER)
8997 abort ();
8998
8999 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
9000
9001 /* We can't substitute into multi-hard-reg uses. */
9002 if (nregs > 1)
9003 {
9004 while (--nregs >= 0)
9005 reg_state[regno + nregs].use_index = -1;
9006 return;
9007 }
9008
9009 /* If this register is already used in some unknown fashion, we
9010 can't do anything.
9011 If we decrement the index from zero to -1, we can't store more
9012 uses, so this register becomes used in an unknown fashion. */
9013 use_index = --reg_state[regno].use_index;
9014 if (use_index < 0)
9015 return;
9016
9017 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9018 {
9019 /* We have found another use for a register that is already
9020 used later. Check if the offsets match; if not, mark the
9021 register as used in an unknown fashion. */
9022 if (! rtx_equal_p (offset, reg_state[regno].offset))
9023 {
9024 reg_state[regno].use_index = -1;
9025 return;
9026 }
9027 }
9028 else
9029 {
9030 /* This is the first use of this register we have seen since we
9031 marked it as dead. */
9032 reg_state[regno].offset = offset;
9033 reg_state[regno].use_ruid = reload_combine_ruid;
9034 }
9035 reg_state[regno].reg_use[use_index].insn = insn;
9036 reg_state[regno].reg_use[use_index].usep = xp;
9037 return;
9038 }
9039
9040 default:
9041 break;
9042 }
9043
9044 /* Recursively process the components of X. */
9045 fmt = GET_RTX_FORMAT (code);
9046 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9047 {
9048 if (fmt[i] == 'e')
9049 reload_combine_note_use (&XEXP (x, i), insn);
9050 else if (fmt[i] == 'E')
9051 {
9052 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9053 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9054 }
9055 }
9056 }
9057 \f
9058 /* See if we can reduce the cost of a constant by replacing a move
9059 with an add. We track situations in which a register is set to a
9060 constant or to a register plus a constant. */
9061 /* We cannot do our optimization across labels. Invalidating all the
9062 information about register contents we have would be costly, so we
9063 use move2add_last_label_luid to note where the label is and then
9064 later disable any optimization that would cross it.
9065 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9066 reg_set_luid[n] is greater than last_label_luid[n] . */
9067 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9068
9069 /* If reg_base_reg[n] is negative, register n has been set to
9070 reg_offset[n] in mode reg_mode[n] .
9071 If reg_base_reg[n] is non-negative, register n has been set to the
9072 sum of reg_offset[n] and the value of register reg_base_reg[n]
9073 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9074 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9075 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9076 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9077
9078 /* move2add_luid is linearly increased while scanning the instructions
9079 from first to last. It is used to set reg_set_luid in
9080 reload_cse_move2add and move2add_note_store. */
9081 static int move2add_luid;
9082
9083 /* move2add_last_label_luid is set whenever a label is found. Labels
9084 invalidate all previously collected reg_offset data. */
9085 static int move2add_last_label_luid;
9086
9087 /* Generate a CONST_INT and force it in the range of MODE. */
9088
9089 static HOST_WIDE_INT
9090 sext_for_mode (mode, value)
9091 enum machine_mode mode;
9092 HOST_WIDE_INT value;
9093 {
9094 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9095 int width = GET_MODE_BITSIZE (mode);
9096
9097 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9098 sign extend it. */
9099 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9100 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9101 cval |= (HOST_WIDE_INT) -1 << width;
9102
9103 return cval;
9104 }
9105
9106 /* ??? We don't know how zero / sign extension is handled, hence we
9107 can't go from a narrower to a wider mode. */
9108 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9109 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9110 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9111 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9112 GET_MODE_BITSIZE (INMODE))))
9113
9114 static void
9115 reload_cse_move2add (first)
9116 rtx first;
9117 {
9118 int i;
9119 rtx insn;
9120
9121 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9122 reg_set_luid[i] = 0;
9123
9124 move2add_last_label_luid = 0;
9125 move2add_luid = 2;
9126 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9127 {
9128 rtx pat, note;
9129
9130 if (GET_CODE (insn) == CODE_LABEL)
9131 {
9132 move2add_last_label_luid = move2add_luid;
9133 /* We're going to increment move2add_luid twice after a
9134 label, so that we can use move2add_last_label_luid + 1 as
9135 the luid for constants. */
9136 move2add_luid++;
9137 continue;
9138 }
9139 if (! INSN_P (insn))
9140 continue;
9141 pat = PATTERN (insn);
9142 /* For simplicity, we only perform this optimization on
9143 straightforward SETs. */
9144 if (GET_CODE (pat) == SET
9145 && GET_CODE (SET_DEST (pat)) == REG)
9146 {
9147 rtx reg = SET_DEST (pat);
9148 int regno = REGNO (reg);
9149 rtx src = SET_SRC (pat);
9150
9151 /* Check if we have valid information on the contents of this
9152 register in the mode of REG. */
9153 if (reg_set_luid[regno] > move2add_last_label_luid
9154 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9155 {
9156 /* Try to transform (set (REGX) (CONST_INT A))
9157 ...
9158 (set (REGX) (CONST_INT B))
9159 to
9160 (set (REGX) (CONST_INT A))
9161 ...
9162 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9163
9164 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9165 {
9166 int success = 0;
9167 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9168 INTVAL (src)
9169 - reg_offset[regno]));
9170 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9171 use (set (reg) (reg)) instead.
9172 We don't delete this insn, nor do we convert it into a
9173 note, to avoid losing register notes or the return
9174 value flag. jump2 already knows how to get rid of
9175 no-op moves. */
9176 if (new_src == const0_rtx)
9177 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9178 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9179 && have_add2_insn (reg, new_src))
9180 success = validate_change (insn, &PATTERN (insn),
9181 gen_add2_insn (reg, new_src), 0);
9182 reg_set_luid[regno] = move2add_luid;
9183 reg_mode[regno] = GET_MODE (reg);
9184 reg_offset[regno] = INTVAL (src);
9185 continue;
9186 }
9187
9188 /* Try to transform (set (REGX) (REGY))
9189 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9190 ...
9191 (set (REGX) (REGY))
9192 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9193 to
9194 (REGX) (REGY))
9195 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9196 ...
9197 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9198 else if (GET_CODE (src) == REG
9199 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9200 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9201 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9202 reg_mode[REGNO (src)]))
9203 {
9204 rtx next = next_nonnote_insn (insn);
9205 rtx set = NULL_RTX;
9206 if (next)
9207 set = single_set (next);
9208 if (set
9209 && SET_DEST (set) == reg
9210 && GET_CODE (SET_SRC (set)) == PLUS
9211 && XEXP (SET_SRC (set), 0) == reg
9212 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9213 {
9214 rtx src3 = XEXP (SET_SRC (set), 1);
9215 HOST_WIDE_INT added_offset = INTVAL (src3);
9216 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9217 HOST_WIDE_INT regno_offset = reg_offset[regno];
9218 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9219 added_offset
9220 + base_offset
9221 - regno_offset));
9222 int success = 0;
9223
9224 if (new_src == const0_rtx)
9225 /* See above why we create (set (reg) (reg)) here. */
9226 success
9227 = validate_change (next, &SET_SRC (set), reg, 0);
9228 else if ((rtx_cost (new_src, PLUS)
9229 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9230 && have_add2_insn (reg, new_src))
9231 success
9232 = validate_change (next, &PATTERN (next),
9233 gen_add2_insn (reg, new_src), 0);
9234 if (success)
9235 delete_insn (insn);
9236 insn = next;
9237 reg_mode[regno] = GET_MODE (reg);
9238 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9239 added_offset
9240 + base_offset);
9241 continue;
9242 }
9243 }
9244 }
9245 }
9246
9247 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9248 {
9249 if (REG_NOTE_KIND (note) == REG_INC
9250 && GET_CODE (XEXP (note, 0)) == REG)
9251 {
9252 /* Reset the information about this register. */
9253 int regno = REGNO (XEXP (note, 0));
9254 if (regno < FIRST_PSEUDO_REGISTER)
9255 reg_set_luid[regno] = 0;
9256 }
9257 }
9258 note_stores (PATTERN (insn), move2add_note_store, NULL);
9259 /* If this is a CALL_INSN, all call used registers are stored with
9260 unknown values. */
9261 if (GET_CODE (insn) == CALL_INSN)
9262 {
9263 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9264 {
9265 if (call_used_regs[i])
9266 /* Reset the information about this register. */
9267 reg_set_luid[i] = 0;
9268 }
9269 }
9270 }
9271 }
9272
9273 /* SET is a SET or CLOBBER that sets DST.
9274 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9275 Called from reload_cse_move2add via note_stores. */
9276
9277 static void
9278 move2add_note_store (dst, set, data)
9279 rtx dst, set;
9280 void *data ATTRIBUTE_UNUSED;
9281 {
9282 unsigned int regno = 0;
9283 unsigned int i;
9284 enum machine_mode mode = GET_MODE (dst);
9285
9286 if (GET_CODE (dst) == SUBREG)
9287 {
9288 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9289 GET_MODE (SUBREG_REG (dst)),
9290 SUBREG_BYTE (dst),
9291 GET_MODE (dst));
9292 dst = SUBREG_REG (dst);
9293 }
9294
9295 /* Some targets do argument pushes without adding REG_INC notes. */
9296
9297 if (GET_CODE (dst) == MEM)
9298 {
9299 dst = XEXP (dst, 0);
9300 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9301 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9302 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9303 return;
9304 }
9305 if (GET_CODE (dst) != REG)
9306 return;
9307
9308 regno += REGNO (dst);
9309
9310 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9311 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9312 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9313 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9314 {
9315 rtx src = SET_SRC (set);
9316 rtx base_reg;
9317 HOST_WIDE_INT offset;
9318 int base_regno;
9319 /* This may be different from mode, if SET_DEST (set) is a
9320 SUBREG. */
9321 enum machine_mode dst_mode = GET_MODE (dst);
9322
9323 switch (GET_CODE (src))
9324 {
9325 case PLUS:
9326 if (GET_CODE (XEXP (src, 0)) == REG)
9327 {
9328 base_reg = XEXP (src, 0);
9329
9330 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9331 offset = INTVAL (XEXP (src, 1));
9332 else if (GET_CODE (XEXP (src, 1)) == REG
9333 && (reg_set_luid[REGNO (XEXP (src, 1))]
9334 > move2add_last_label_luid)
9335 && (MODES_OK_FOR_MOVE2ADD
9336 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9337 {
9338 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9339 offset = reg_offset[REGNO (XEXP (src, 1))];
9340 /* Maybe the first register is known to be a
9341 constant. */
9342 else if (reg_set_luid[REGNO (base_reg)]
9343 > move2add_last_label_luid
9344 && (MODES_OK_FOR_MOVE2ADD
9345 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9346 && reg_base_reg[REGNO (base_reg)] < 0)
9347 {
9348 offset = reg_offset[REGNO (base_reg)];
9349 base_reg = XEXP (src, 1);
9350 }
9351 else
9352 goto invalidate;
9353 }
9354 else
9355 goto invalidate;
9356
9357 break;
9358 }
9359
9360 goto invalidate;
9361
9362 case REG:
9363 base_reg = src;
9364 offset = 0;
9365 break;
9366
9367 case CONST_INT:
9368 /* Start tracking the register as a constant. */
9369 reg_base_reg[regno] = -1;
9370 reg_offset[regno] = INTVAL (SET_SRC (set));
9371 /* We assign the same luid to all registers set to constants. */
9372 reg_set_luid[regno] = move2add_last_label_luid + 1;
9373 reg_mode[regno] = mode;
9374 return;
9375
9376 default:
9377 invalidate:
9378 /* Invalidate the contents of the register. */
9379 reg_set_luid[regno] = 0;
9380 return;
9381 }
9382
9383 base_regno = REGNO (base_reg);
9384 /* If information about the base register is not valid, set it
9385 up as a new base register, pretending its value is known
9386 starting from the current insn. */
9387 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9388 {
9389 reg_base_reg[base_regno] = base_regno;
9390 reg_offset[base_regno] = 0;
9391 reg_set_luid[base_regno] = move2add_luid;
9392 reg_mode[base_regno] = mode;
9393 }
9394 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9395 reg_mode[base_regno]))
9396 goto invalidate;
9397
9398 reg_mode[regno] = mode;
9399
9400 /* Copy base information from our base register. */
9401 reg_set_luid[regno] = reg_set_luid[base_regno];
9402 reg_base_reg[regno] = reg_base_reg[base_regno];
9403
9404 /* Compute the sum of the offsets or constants. */
9405 reg_offset[regno] = sext_for_mode (dst_mode,
9406 offset
9407 + reg_offset[base_regno]);
9408 }
9409 else
9410 {
9411 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9412
9413 for (i = regno; i < endregno; i++)
9414 /* Reset the information about this register. */
9415 reg_set_luid[i] = 0;
9416 }
9417 }
9418
9419 #ifdef AUTO_INC_DEC
9420 static void
9421 add_auto_inc_notes (insn, x)
9422 rtx insn;
9423 rtx x;
9424 {
9425 enum rtx_code code = GET_CODE (x);
9426 const char *fmt;
9427 int i, j;
9428
9429 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9430 {
9431 REG_NOTES (insn)
9432 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9433 return;
9434 }
9435
9436 /* Scan all the operand sub-expressions. */
9437 fmt = GET_RTX_FORMAT (code);
9438 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9439 {
9440 if (fmt[i] == 'e')
9441 add_auto_inc_notes (insn, XEXP (x, i));
9442 else if (fmt[i] == 'E')
9443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9444 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9445 }
9446 }
9447 #endif
9448
9449 /* Copy EH notes from an insn to its reloads. */
9450 static void
9451 copy_eh_notes (insn, x)
9452 rtx insn;
9453 rtx x;
9454 {
9455 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9456 if (eh_note)
9457 {
9458 for (; x != 0; x = NEXT_INSN (x))
9459 {
9460 if (may_trap_p (PATTERN (x)))
9461 REG_NOTES (x)
9462 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9463 REG_NOTES (x));
9464 }
9465 }
9466 }
9467
9468 /* This is used by reload pass, that does emit some instructions after
9469 abnormal calls moving basic block end, but in fact it wants to emit
9470 them on the edge. Looks for abnormal call edges, find backward the
9471 proper call and fix the damage.
9472
9473 Similar handle instructions throwing exceptions internally. */
9474 void
9475 fixup_abnormal_edges ()
9476 {
9477 bool inserted = false;
9478 basic_block bb;
9479
9480 FOR_EACH_BB (bb)
9481 {
9482 edge e;
9483
9484 /* Look for cases we are interested in - calls or instructions causing
9485 exceptions. */
9486 for (e = bb->succ; e; e = e->succ_next)
9487 {
9488 if (e->flags & EDGE_ABNORMAL_CALL)
9489 break;
9490 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9491 == (EDGE_ABNORMAL | EDGE_EH))
9492 break;
9493 }
9494 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9495 {
9496 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9497 rtx next;
9498 for (e = bb->succ; e; e = e->succ_next)
9499 if (e->flags & EDGE_FALLTHRU)
9500 break;
9501 /* Get past the new insns generated. Allow notes, as the insns may
9502 be already deleted. */
9503 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9504 && !can_throw_internal (insn)
9505 && insn != bb->head)
9506 insn = PREV_INSN (insn);
9507 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9508 abort ();
9509 bb->end = insn;
9510 inserted = true;
9511 insn = NEXT_INSN (insn);
9512 while (insn && insn != stop)
9513 {
9514 next = NEXT_INSN (insn);
9515 if (INSN_P (insn))
9516 {
9517 delete_insn (insn);
9518
9519 /* Sometimes there's still the return value USE.
9520 If it's placed after a trapping call (i.e. that
9521 call is the last insn anyway), we have no fallthru
9522 edge. Simply delete this use and don't try to insert
9523 on the non-existent edge. */
9524 if (GET_CODE (PATTERN (insn)) != USE)
9525 {
9526 /* We're not deleting it, we're moving it. */
9527 INSN_DELETED_P (insn) = 0;
9528 PREV_INSN (insn) = NULL_RTX;
9529 NEXT_INSN (insn) = NULL_RTX;
9530
9531 insert_insn_on_edge (insn, e);
9532 }
9533 }
9534 insn = next;
9535 }
9536 }
9537 }
9538 /* We've possibly turned single trapping insn into multiple ones. */
9539 if (flag_non_call_exceptions)
9540 {
9541 sbitmap blocks;
9542 blocks = sbitmap_alloc (last_basic_block);
9543 sbitmap_ones (blocks);
9544 find_many_sub_basic_blocks (blocks);
9545 }
9546 if (inserted)
9547 commit_edge_insertions ();
9548 }