Fix a miscompilation where a reload reg is reused after it has been clobbered.
[gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48
49 /* This file contains the reload pass of the compiler, which is
50 run after register allocation has been done. It checks that
51 each insn is valid (operands required to be in registers really
52 are in registers of the proper class) and fixes up invalid ones
53 by copying values temporarily into registers for the insns
54 that need them.
55
56 The results of register allocation are described by the vector
57 reg_renumber; the insns still contain pseudo regs, but reg_renumber
58 can be used to find which hard reg, if any, a pseudo reg is in.
59
60 The technique we always use is to free up a few hard regs that are
61 called ``reload regs'', and for each place where a pseudo reg
62 must be in a hard reg, copy it temporarily into one of the reload regs.
63
64 Reload regs are allocated locally for every instruction that needs
65 reloads. When there are pseudos which are allocated to a register that
66 has been chosen as a reload reg, such pseudos must be ``spilled''.
67 This means that they go to other hard regs, or to stack slots if no other
68 available hard regs can be found. Spilling can invalidate more
69 insns, requiring additional need for reloads, so we must keep checking
70 until the process stabilizes.
71
72 For machines with different classes of registers, we must keep track
73 of the register class needed for each reload, and make sure that
74 we allocate enough reload registers of each class.
75
76 The file reload.c contains the code that checks one insn for
77 validity and reports the reloads that it needs. This file
78 is in charge of scanning the entire rtl code, accumulating the
79 reload needs, spilling, assigning reload registers to use for
80 fixing up each insn, and generating the new insns to copy values
81 into the reload registers. */
82 \f
83 struct target_reload default_target_reload;
84 #if SWITCHABLE_TARGET
85 struct target_reload *this_target_reload = &default_target_reload;
86 #endif
87
88 #define spill_indirect_levels \
89 (this_target_reload->x_spill_indirect_levels)
90
91 /* During reload_as_needed, element N contains a REG rtx for the hard reg
92 into which reg N has been reloaded (perhaps for a previous insn). */
93 static rtx *reg_last_reload_reg;
94
95 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
96 for an output reload that stores into reg N. */
97 static regset_head reg_has_output_reload;
98
99 /* Indicates which hard regs are reload-registers for an output reload
100 in the current insn. */
101 static HARD_REG_SET reg_is_output_reload;
102
103 /* Widest width in which each pseudo reg is referred to (via subreg). */
104 static unsigned int *reg_max_ref_width;
105
106 /* Vector to remember old contents of reg_renumber before spilling. */
107 static short *reg_old_renumber;
108
109 /* During reload_as_needed, element N contains the last pseudo regno reloaded
110 into hard register N. If that pseudo reg occupied more than one register,
111 reg_reloaded_contents points to that pseudo for each spill register in
112 use; all of these must remain set for an inheritance to occur. */
113 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
114
115 /* During reload_as_needed, element N contains the insn for which
116 hard register N was last used. Its contents are significant only
117 when reg_reloaded_valid is set for this register. */
118 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
119
120 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
121 static HARD_REG_SET reg_reloaded_valid;
122 /* Indicate if the register was dead at the end of the reload.
123 This is only valid if reg_reloaded_contents is set and valid. */
124 static HARD_REG_SET reg_reloaded_dead;
125
126 /* Indicate whether the register's current value is one that is not
127 safe to retain across a call, even for registers that are normally
128 call-saved. This is only meaningful for members of reg_reloaded_valid. */
129 static HARD_REG_SET reg_reloaded_call_part_clobbered;
130
131 /* Number of spill-regs so far; number of valid elements of spill_regs. */
132 static int n_spills;
133
134 /* In parallel with spill_regs, contains REG rtx's for those regs.
135 Holds the last rtx used for any given reg, or 0 if it has never
136 been used for spilling yet. This rtx is reused, provided it has
137 the proper mode. */
138 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
139
140 /* In parallel with spill_regs, contains nonzero for a spill reg
141 that was stored after the last time it was used.
142 The precise value is the insn generated to do the store. */
143 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
144
145 /* This is the register that was stored with spill_reg_store. This is a
146 copy of reload_out / reload_out_reg when the value was stored; if
147 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
148 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
149
150 /* This table is the inverse mapping of spill_regs:
151 indexed by hard reg number,
152 it contains the position of that reg in spill_regs,
153 or -1 for something that is not in spill_regs.
154
155 ?!? This is no longer accurate. */
156 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
157
158 /* This reg set indicates registers that can't be used as spill registers for
159 the currently processed insn. These are the hard registers which are live
160 during the insn, but not allocated to pseudos, as well as fixed
161 registers. */
162 static HARD_REG_SET bad_spill_regs;
163
164 /* These are the hard registers that can't be used as spill register for any
165 insn. This includes registers used for user variables and registers that
166 we can't eliminate. A register that appears in this set also can't be used
167 to retry register allocation. */
168 static HARD_REG_SET bad_spill_regs_global;
169
170 /* Describes order of use of registers for reloading
171 of spilled pseudo-registers. `n_spills' is the number of
172 elements that are actually valid; new ones are added at the end.
173
174 Both spill_regs and spill_reg_order are used on two occasions:
175 once during find_reload_regs, where they keep track of the spill registers
176 for a single insn, but also during reload_as_needed where they show all
177 the registers ever used by reload. For the latter case, the information
178 is calculated during finish_spills. */
179 static short spill_regs[FIRST_PSEUDO_REGISTER];
180
181 /* This vector of reg sets indicates, for each pseudo, which hard registers
182 may not be used for retrying global allocation because the register was
183 formerly spilled from one of them. If we allowed reallocating a pseudo to
184 a register that it was already allocated to, reload might not
185 terminate. */
186 static HARD_REG_SET *pseudo_previous_regs;
187
188 /* This vector of reg sets indicates, for each pseudo, which hard
189 registers may not be used for retrying global allocation because they
190 are used as spill registers during one of the insns in which the
191 pseudo is live. */
192 static HARD_REG_SET *pseudo_forbidden_regs;
193
194 /* All hard regs that have been used as spill registers for any insn are
195 marked in this set. */
196 static HARD_REG_SET used_spill_regs;
197
198 /* Index of last register assigned as a spill register. We allocate in
199 a round-robin fashion. */
200 static int last_spill_reg;
201
202 /* Record the stack slot for each spilled hard register. */
203 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
204
205 /* Width allocated so far for that stack slot. */
206 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
207
208 /* Record which pseudos needed to be spilled. */
209 static regset_head spilled_pseudos;
210
211 /* Record which pseudos changed their allocation in finish_spills. */
212 static regset_head changed_allocation_pseudos;
213
214 /* Used for communication between order_regs_for_reload and count_pseudo.
215 Used to avoid counting one pseudo twice. */
216 static regset_head pseudos_counted;
217
218 /* First uid used by insns created by reload in this function.
219 Used in find_equiv_reg. */
220 int reload_first_uid;
221
222 /* Flag set by local-alloc or global-alloc if anything is live in
223 a call-clobbered reg across calls. */
224 int caller_save_needed;
225
226 /* Set to 1 while reload_as_needed is operating.
227 Required by some machines to handle any generated moves differently. */
228 int reload_in_progress = 0;
229
230 /* This obstack is used for allocation of rtl during register elimination.
231 The allocated storage can be freed once find_reloads has processed the
232 insn. */
233 static struct obstack reload_obstack;
234
235 /* Points to the beginning of the reload_obstack. All insn_chain structures
236 are allocated first. */
237 static char *reload_startobj;
238
239 /* The point after all insn_chain structures. Used to quickly deallocate
240 memory allocated in copy_reloads during calculate_needs_all_insns. */
241 static char *reload_firstobj;
242
243 /* This points before all local rtl generated by register elimination.
244 Used to quickly free all memory after processing one insn. */
245 static char *reload_insn_firstobj;
246
247 /* List of insn_chain instructions, one for every insn that reload needs to
248 examine. */
249 struct insn_chain *reload_insn_chain;
250
251 /* TRUE if we potentially left dead insns in the insn stream and want to
252 run DCE immediately after reload, FALSE otherwise. */
253 static bool need_dce;
254
255 /* List of all insns needing reloads. */
256 static struct insn_chain *insns_need_reload;
257 \f
258 /* This structure is used to record information about register eliminations.
259 Each array entry describes one possible way of eliminating a register
260 in favor of another. If there is more than one way of eliminating a
261 particular register, the most preferred should be specified first. */
262
263 struct elim_table
264 {
265 int from; /* Register number to be eliminated. */
266 int to; /* Register number used as replacement. */
267 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
268 int can_eliminate; /* Nonzero if this elimination can be done. */
269 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
270 target hook in previous scan over insns
271 made by reload. */
272 HOST_WIDE_INT offset; /* Current offset between the two regs. */
273 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
274 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
275 rtx from_rtx; /* REG rtx for the register to be eliminated.
276 We cannot simply compare the number since
277 we might then spuriously replace a hard
278 register corresponding to a pseudo
279 assigned to the reg to be eliminated. */
280 rtx to_rtx; /* REG rtx for the replacement. */
281 };
282
283 static struct elim_table *reg_eliminate = 0;
284
285 /* This is an intermediate structure to initialize the table. It has
286 exactly the members provided by ELIMINABLE_REGS. */
287 static const struct elim_table_1
288 {
289 const int from;
290 const int to;
291 } reg_eliminate_1[] =
292
293 /* If a set of eliminable registers was specified, define the table from it.
294 Otherwise, default to the normal case of the frame pointer being
295 replaced by the stack pointer. */
296
297 #ifdef ELIMINABLE_REGS
298 ELIMINABLE_REGS;
299 #else
300 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
301 #endif
302
303 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
304
305 /* Record the number of pending eliminations that have an offset not equal
306 to their initial offset. If nonzero, we use a new copy of each
307 replacement result in any insns encountered. */
308 int num_not_at_initial_offset;
309
310 /* Count the number of registers that we may be able to eliminate. */
311 static int num_eliminable;
312 /* And the number of registers that are equivalent to a constant that
313 can be eliminated to frame_pointer / arg_pointer + constant. */
314 static int num_eliminable_invariants;
315
316 /* For each label, we record the offset of each elimination. If we reach
317 a label by more than one path and an offset differs, we cannot do the
318 elimination. This information is indexed by the difference of the
319 number of the label and the first label number. We can't offset the
320 pointer itself as this can cause problems on machines with segmented
321 memory. The first table is an array of flags that records whether we
322 have yet encountered a label and the second table is an array of arrays,
323 one entry in the latter array for each elimination. */
324
325 static int first_label_num;
326 static char *offsets_known_at;
327 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
328
329 vec<reg_equivs_t, va_gc> *reg_equivs;
330
331 /* Stack of addresses where an rtx has been changed. We can undo the
332 changes by popping items off the stack and restoring the original
333 value at each location.
334
335 We use this simplistic undo capability rather than copy_rtx as copy_rtx
336 will not make a deep copy of a normally sharable rtx, such as
337 (const (plus (symbol_ref) (const_int))). If such an expression appears
338 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
339 rtx expression would be changed. See PR 42431. */
340
341 typedef rtx *rtx_p;
342 static vec<rtx_p> substitute_stack;
343
344 /* Number of labels in the current function. */
345
346 static int num_labels;
347 \f
348 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
349 static void maybe_fix_stack_asms (void);
350 static void copy_reloads (struct insn_chain *);
351 static void calculate_needs_all_insns (int);
352 static int find_reg (struct insn_chain *, int);
353 static void find_reload_regs (struct insn_chain *);
354 static void select_reload_regs (void);
355 static void delete_caller_save_insns (void);
356
357 static void spill_failure (rtx, enum reg_class);
358 static void count_spilled_pseudo (int, int, int);
359 static void delete_dead_insn (rtx);
360 static void alter_reg (int, int, bool);
361 static void set_label_offsets (rtx, rtx, int);
362 static void check_eliminable_occurrences (rtx);
363 static void elimination_effects (rtx, enum machine_mode);
364 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
365 static int eliminate_regs_in_insn (rtx, int);
366 static void update_eliminable_offsets (void);
367 static void mark_not_eliminable (rtx, const_rtx, void *);
368 static void set_initial_elim_offsets (void);
369 static bool verify_initial_elim_offsets (void);
370 static void set_initial_label_offsets (void);
371 static void set_offsets_for_label (rtx);
372 static void init_eliminable_invariants (rtx, bool);
373 static void init_elim_table (void);
374 static void free_reg_equiv (void);
375 static void update_eliminables (HARD_REG_SET *);
376 static void elimination_costs_in_insn (rtx);
377 static void spill_hard_reg (unsigned int, int);
378 static int finish_spills (int);
379 static void scan_paradoxical_subregs (rtx);
380 static void count_pseudo (int);
381 static void order_regs_for_reload (struct insn_chain *);
382 static void reload_as_needed (int);
383 static void forget_old_reloads_1 (rtx, const_rtx, void *);
384 static void forget_marked_reloads (regset);
385 static int reload_reg_class_lower (const void *, const void *);
386 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
387 enum machine_mode);
388 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static int reload_reg_free_p (unsigned int, int, enum reload_type);
391 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
392 rtx, rtx, int, int);
393 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int allocate_reload_reg (struct insn_chain *, int, int);
396 static int conflicts_with_override (rtx);
397 static void failed_reload (rtx, int);
398 static int set_reload_reg (int, int);
399 static void choose_reload_regs_init (struct insn_chain *, rtx *);
400 static void choose_reload_regs (struct insn_chain *);
401 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
402 rtx, int);
403 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
404 int);
405 static void do_input_reload (struct insn_chain *, struct reload *, int);
406 static void do_output_reload (struct insn_chain *, struct reload *, int);
407 static void emit_reload_insns (struct insn_chain *);
408 static void delete_output_reload (rtx, int, int, rtx);
409 static void delete_address_reloads (rtx, rtx);
410 static void delete_address_reloads_1 (rtx, rtx, rtx);
411 static void inc_for_reload (rtx, rtx, rtx, int);
412 #ifdef AUTO_INC_DEC
413 static void add_auto_inc_notes (rtx, rtx);
414 #endif
415 static void substitute (rtx *, const_rtx, rtx);
416 static bool gen_reload_chain_without_interm_reg_p (int, int);
417 static int reloads_conflict (int, int);
418 static rtx gen_reload (rtx, rtx, int, enum reload_type);
419 static rtx emit_insn_if_valid_for_reload (rtx);
420 \f
421 /* Initialize the reload pass. This is called at the beginning of compilation
422 and may be called again if the target is reinitialized. */
423
424 void
425 init_reload (void)
426 {
427 int i;
428
429 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
430 Set spill_indirect_levels to the number of levels such addressing is
431 permitted, zero if it is not permitted at all. */
432
433 rtx tem
434 = gen_rtx_MEM (Pmode,
435 gen_rtx_PLUS (Pmode,
436 gen_rtx_REG (Pmode,
437 LAST_VIRTUAL_REGISTER + 1),
438 gen_int_mode (4, Pmode)));
439 spill_indirect_levels = 0;
440
441 while (memory_address_p (QImode, tem))
442 {
443 spill_indirect_levels++;
444 tem = gen_rtx_MEM (Pmode, tem);
445 }
446
447 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
448
449 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
450 indirect_symref_ok = memory_address_p (QImode, tem);
451
452 /* See if reg+reg is a valid (and offsettable) address. */
453
454 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
455 {
456 tem = gen_rtx_PLUS (Pmode,
457 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
458 gen_rtx_REG (Pmode, i));
459
460 /* This way, we make sure that reg+reg is an offsettable address. */
461 tem = plus_constant (Pmode, tem, 4);
462
463 if (memory_address_p (QImode, tem))
464 {
465 double_reg_address_ok = 1;
466 break;
467 }
468 }
469
470 /* Initialize obstack for our rtl allocation. */
471 if (reload_startobj == NULL)
472 {
473 gcc_obstack_init (&reload_obstack);
474 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
475 }
476
477 INIT_REG_SET (&spilled_pseudos);
478 INIT_REG_SET (&changed_allocation_pseudos);
479 INIT_REG_SET (&pseudos_counted);
480 }
481
482 /* List of insn chains that are currently unused. */
483 static struct insn_chain *unused_insn_chains = 0;
484
485 /* Allocate an empty insn_chain structure. */
486 struct insn_chain *
487 new_insn_chain (void)
488 {
489 struct insn_chain *c;
490
491 if (unused_insn_chains == 0)
492 {
493 c = XOBNEW (&reload_obstack, struct insn_chain);
494 INIT_REG_SET (&c->live_throughout);
495 INIT_REG_SET (&c->dead_or_set);
496 }
497 else
498 {
499 c = unused_insn_chains;
500 unused_insn_chains = c->next;
501 }
502 c->is_caller_save_insn = 0;
503 c->need_operand_change = 0;
504 c->need_reload = 0;
505 c->need_elim = 0;
506 return c;
507 }
508
509 /* Small utility function to set all regs in hard reg set TO which are
510 allocated to pseudos in regset FROM. */
511
512 void
513 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
514 {
515 unsigned int regno;
516 reg_set_iterator rsi;
517
518 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
519 {
520 int r = reg_renumber[regno];
521
522 if (r < 0)
523 {
524 /* reload_combine uses the information from DF_LIVE_IN,
525 which might still contain registers that have not
526 actually been allocated since they have an
527 equivalence. */
528 gcc_assert (ira_conflicts_p || reload_completed);
529 }
530 else
531 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
532 }
533 }
534
535 /* Replace all pseudos found in LOC with their corresponding
536 equivalences. */
537
538 static void
539 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
540 {
541 rtx x = *loc;
542 enum rtx_code code;
543 const char *fmt;
544 int i, j;
545
546 if (! x)
547 return;
548
549 code = GET_CODE (x);
550 if (code == REG)
551 {
552 unsigned int regno = REGNO (x);
553
554 if (regno < FIRST_PSEUDO_REGISTER)
555 return;
556
557 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
558 if (x != *loc)
559 {
560 *loc = x;
561 replace_pseudos_in (loc, mem_mode, usage);
562 return;
563 }
564
565 if (reg_equiv_constant (regno))
566 *loc = reg_equiv_constant (regno);
567 else if (reg_equiv_invariant (regno))
568 *loc = reg_equiv_invariant (regno);
569 else if (reg_equiv_mem (regno))
570 *loc = reg_equiv_mem (regno);
571 else if (reg_equiv_address (regno))
572 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
573 else
574 {
575 gcc_assert (!REG_P (regno_reg_rtx[regno])
576 || REGNO (regno_reg_rtx[regno]) != regno);
577 *loc = regno_reg_rtx[regno];
578 }
579
580 return;
581 }
582 else if (code == MEM)
583 {
584 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
585 return;
586 }
587
588 /* Process each of our operands recursively. */
589 fmt = GET_RTX_FORMAT (code);
590 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
591 if (*fmt == 'e')
592 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
593 else if (*fmt == 'E')
594 for (j = 0; j < XVECLEN (x, i); j++)
595 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
596 }
597
598 /* Determine if the current function has an exception receiver block
599 that reaches the exit block via non-exceptional edges */
600
601 static bool
602 has_nonexceptional_receiver (void)
603 {
604 edge e;
605 edge_iterator ei;
606 basic_block *tos, *worklist, bb;
607
608 /* If we're not optimizing, then just err on the safe side. */
609 if (!optimize)
610 return true;
611
612 /* First determine which blocks can reach exit via normal paths. */
613 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
614
615 FOR_EACH_BB (bb)
616 bb->flags &= ~BB_REACHABLE;
617
618 /* Place the exit block on our worklist. */
619 EXIT_BLOCK_PTR->flags |= BB_REACHABLE;
620 *tos++ = EXIT_BLOCK_PTR;
621
622 /* Iterate: find everything reachable from what we've already seen. */
623 while (tos != worklist)
624 {
625 bb = *--tos;
626
627 FOR_EACH_EDGE (e, ei, bb->preds)
628 if (!(e->flags & EDGE_ABNORMAL))
629 {
630 basic_block src = e->src;
631
632 if (!(src->flags & BB_REACHABLE))
633 {
634 src->flags |= BB_REACHABLE;
635 *tos++ = src;
636 }
637 }
638 }
639 free (worklist);
640
641 /* Now see if there's a reachable block with an exceptional incoming
642 edge. */
643 FOR_EACH_BB (bb)
644 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
645 return true;
646
647 /* No exceptional block reached exit unexceptionally. */
648 return false;
649 }
650
651 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
652 zero elements) to MAX_REG_NUM elements.
653
654 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
655 void
656 grow_reg_equivs (void)
657 {
658 int old_size = vec_safe_length (reg_equivs);
659 int max_regno = max_reg_num ();
660 int i;
661 reg_equivs_t ze;
662
663 memset (&ze, 0, sizeof (reg_equivs_t));
664 vec_safe_reserve (reg_equivs, max_regno);
665 for (i = old_size; i < max_regno; i++)
666 reg_equivs->quick_insert (i, ze);
667 }
668
669 \f
670 /* Global variables used by reload and its subroutines. */
671
672 /* The current basic block while in calculate_elim_costs_all_insns. */
673 static basic_block elim_bb;
674
675 /* Set during calculate_needs if an insn needs register elimination. */
676 static int something_needs_elimination;
677 /* Set during calculate_needs if an insn needs an operand changed. */
678 static int something_needs_operands_changed;
679 /* Set by alter_regs if we spilled a register to the stack. */
680 static bool something_was_spilled;
681
682 /* Nonzero means we couldn't get enough spill regs. */
683 static int failure;
684
685 /* Temporary array of pseudo-register number. */
686 static int *temp_pseudo_reg_arr;
687
688 /* Main entry point for the reload pass.
689
690 FIRST is the first insn of the function being compiled.
691
692 GLOBAL nonzero means we were called from global_alloc
693 and should attempt to reallocate any pseudoregs that we
694 displace from hard regs we will use for reloads.
695 If GLOBAL is zero, we do not have enough information to do that,
696 so any pseudo reg that is spilled must go to the stack.
697
698 Return value is TRUE if reload likely left dead insns in the
699 stream and a DCE pass should be run to elimiante them. Else the
700 return value is FALSE. */
701
702 bool
703 reload (rtx first, int global)
704 {
705 int i, n;
706 rtx insn;
707 struct elim_table *ep;
708 basic_block bb;
709 bool inserted;
710
711 /* Make sure even insns with volatile mem refs are recognizable. */
712 init_recog ();
713
714 failure = 0;
715
716 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
717
718 /* Make sure that the last insn in the chain
719 is not something that needs reloading. */
720 emit_note (NOTE_INSN_DELETED);
721
722 /* Enable find_equiv_reg to distinguish insns made by reload. */
723 reload_first_uid = get_max_uid ();
724
725 #ifdef SECONDARY_MEMORY_NEEDED
726 /* Initialize the secondary memory table. */
727 clear_secondary_mem ();
728 #endif
729
730 /* We don't have a stack slot for any spill reg yet. */
731 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
732 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
733
734 /* Initialize the save area information for caller-save, in case some
735 are needed. */
736 init_save_areas ();
737
738 /* Compute which hard registers are now in use
739 as homes for pseudo registers.
740 This is done here rather than (eg) in global_alloc
741 because this point is reached even if not optimizing. */
742 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
743 mark_home_live (i);
744
745 /* A function that has a nonlocal label that can reach the exit
746 block via non-exceptional paths must save all call-saved
747 registers. */
748 if (cfun->has_nonlocal_label
749 && has_nonexceptional_receiver ())
750 crtl->saves_all_registers = 1;
751
752 if (crtl->saves_all_registers)
753 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
754 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
755 df_set_regs_ever_live (i, true);
756
757 /* Find all the pseudo registers that didn't get hard regs
758 but do have known equivalent constants or memory slots.
759 These include parameters (known equivalent to parameter slots)
760 and cse'd or loop-moved constant memory addresses.
761
762 Record constant equivalents in reg_equiv_constant
763 so they will be substituted by find_reloads.
764 Record memory equivalents in reg_mem_equiv so they can
765 be substituted eventually by altering the REG-rtx's. */
766
767 grow_reg_equivs ();
768 reg_old_renumber = XCNEWVEC (short, max_regno);
769 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
770 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
771 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
772
773 CLEAR_HARD_REG_SET (bad_spill_regs_global);
774
775 init_eliminable_invariants (first, true);
776 init_elim_table ();
777
778 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
779 stack slots to the pseudos that lack hard regs or equivalents.
780 Do not touch virtual registers. */
781
782 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
783 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
784 temp_pseudo_reg_arr[n++] = i;
785
786 if (ira_conflicts_p)
787 /* Ask IRA to order pseudo-registers for better stack slot
788 sharing. */
789 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
790
791 for (i = 0; i < n; i++)
792 alter_reg (temp_pseudo_reg_arr[i], -1, false);
793
794 /* If we have some registers we think can be eliminated, scan all insns to
795 see if there is an insn that sets one of these registers to something
796 other than itself plus a constant. If so, the register cannot be
797 eliminated. Doing this scan here eliminates an extra pass through the
798 main reload loop in the most common case where register elimination
799 cannot be done. */
800 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
801 if (INSN_P (insn))
802 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
803
804 maybe_fix_stack_asms ();
805
806 insns_need_reload = 0;
807 something_needs_elimination = 0;
808
809 /* Initialize to -1, which means take the first spill register. */
810 last_spill_reg = -1;
811
812 /* Spill any hard regs that we know we can't eliminate. */
813 CLEAR_HARD_REG_SET (used_spill_regs);
814 /* There can be multiple ways to eliminate a register;
815 they should be listed adjacently.
816 Elimination for any register fails only if all possible ways fail. */
817 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
818 {
819 int from = ep->from;
820 int can_eliminate = 0;
821 do
822 {
823 can_eliminate |= ep->can_eliminate;
824 ep++;
825 }
826 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
827 if (! can_eliminate)
828 spill_hard_reg (from, 1);
829 }
830
831 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
832 if (frame_pointer_needed)
833 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
834 #endif
835 finish_spills (global);
836
837 /* From now on, we may need to generate moves differently. We may also
838 allow modifications of insns which cause them to not be recognized.
839 Any such modifications will be cleaned up during reload itself. */
840 reload_in_progress = 1;
841
842 /* This loop scans the entire function each go-round
843 and repeats until one repetition spills no additional hard regs. */
844 for (;;)
845 {
846 int something_changed;
847 int did_spill;
848 HOST_WIDE_INT starting_frame_size;
849
850 starting_frame_size = get_frame_size ();
851 something_was_spilled = false;
852
853 set_initial_elim_offsets ();
854 set_initial_label_offsets ();
855
856 /* For each pseudo register that has an equivalent location defined,
857 try to eliminate any eliminable registers (such as the frame pointer)
858 assuming initial offsets for the replacement register, which
859 is the normal case.
860
861 If the resulting location is directly addressable, substitute
862 the MEM we just got directly for the old REG.
863
864 If it is not addressable but is a constant or the sum of a hard reg
865 and constant, it is probably not addressable because the constant is
866 out of range, in that case record the address; we will generate
867 hairy code to compute the address in a register each time it is
868 needed. Similarly if it is a hard register, but one that is not
869 valid as an address register.
870
871 If the location is not addressable, but does not have one of the
872 above forms, assign a stack slot. We have to do this to avoid the
873 potential of producing lots of reloads if, e.g., a location involves
874 a pseudo that didn't get a hard register and has an equivalent memory
875 location that also involves a pseudo that didn't get a hard register.
876
877 Perhaps at some point we will improve reload_when_needed handling
878 so this problem goes away. But that's very hairy. */
879
880 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
881 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
882 {
883 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
884 NULL_RTX);
885
886 if (strict_memory_address_addr_space_p
887 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
888 MEM_ADDR_SPACE (x)))
889 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
890 else if (CONSTANT_P (XEXP (x, 0))
891 || (REG_P (XEXP (x, 0))
892 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
893 || (GET_CODE (XEXP (x, 0)) == PLUS
894 && REG_P (XEXP (XEXP (x, 0), 0))
895 && (REGNO (XEXP (XEXP (x, 0), 0))
896 < FIRST_PSEUDO_REGISTER)
897 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
898 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
899 else
900 {
901 /* Make a new stack slot. Then indicate that something
902 changed so we go back and recompute offsets for
903 eliminable registers because the allocation of memory
904 below might change some offset. reg_equiv_{mem,address}
905 will be set up for this pseudo on the next pass around
906 the loop. */
907 reg_equiv_memory_loc (i) = 0;
908 reg_equiv_init (i) = 0;
909 alter_reg (i, -1, true);
910 }
911 }
912
913 if (caller_save_needed)
914 setup_save_areas ();
915
916 /* If we allocated another stack slot, redo elimination bookkeeping. */
917 if (something_was_spilled || starting_frame_size != get_frame_size ())
918 continue;
919 if (starting_frame_size && crtl->stack_alignment_needed)
920 {
921 /* If we have a stack frame, we must align it now. The
922 stack size may be a part of the offset computation for
923 register elimination. So if this changes the stack size,
924 then repeat the elimination bookkeeping. We don't
925 realign when there is no stack, as that will cause a
926 stack frame when none is needed should
927 STARTING_FRAME_OFFSET not be already aligned to
928 STACK_BOUNDARY. */
929 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
930 if (starting_frame_size != get_frame_size ())
931 continue;
932 }
933
934 if (caller_save_needed)
935 {
936 save_call_clobbered_regs ();
937 /* That might have allocated new insn_chain structures. */
938 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
939 }
940
941 calculate_needs_all_insns (global);
942
943 if (! ira_conflicts_p)
944 /* Don't do it for IRA. We need this info because we don't
945 change live_throughout and dead_or_set for chains when IRA
946 is used. */
947 CLEAR_REG_SET (&spilled_pseudos);
948
949 did_spill = 0;
950
951 something_changed = 0;
952
953 /* If we allocated any new memory locations, make another pass
954 since it might have changed elimination offsets. */
955 if (something_was_spilled || starting_frame_size != get_frame_size ())
956 something_changed = 1;
957
958 /* Even if the frame size remained the same, we might still have
959 changed elimination offsets, e.g. if find_reloads called
960 force_const_mem requiring the back end to allocate a constant
961 pool base register that needs to be saved on the stack. */
962 else if (!verify_initial_elim_offsets ())
963 something_changed = 1;
964
965 {
966 HARD_REG_SET to_spill;
967 CLEAR_HARD_REG_SET (to_spill);
968 update_eliminables (&to_spill);
969 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
970
971 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
972 if (TEST_HARD_REG_BIT (to_spill, i))
973 {
974 spill_hard_reg (i, 1);
975 did_spill = 1;
976
977 /* Regardless of the state of spills, if we previously had
978 a register that we thought we could eliminate, but now can
979 not eliminate, we must run another pass.
980
981 Consider pseudos which have an entry in reg_equiv_* which
982 reference an eliminable register. We must make another pass
983 to update reg_equiv_* so that we do not substitute in the
984 old value from when we thought the elimination could be
985 performed. */
986 something_changed = 1;
987 }
988 }
989
990 select_reload_regs ();
991 if (failure)
992 goto failed;
993
994 if (insns_need_reload != 0 || did_spill)
995 something_changed |= finish_spills (global);
996
997 if (! something_changed)
998 break;
999
1000 if (caller_save_needed)
1001 delete_caller_save_insns ();
1002
1003 obstack_free (&reload_obstack, reload_firstobj);
1004 }
1005
1006 /* If global-alloc was run, notify it of any register eliminations we have
1007 done. */
1008 if (global)
1009 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1010 if (ep->can_eliminate)
1011 mark_elimination (ep->from, ep->to);
1012
1013 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1014 If that insn didn't set the register (i.e., it copied the register to
1015 memory), just delete that insn instead of the equivalencing insn plus
1016 anything now dead. If we call delete_dead_insn on that insn, we may
1017 delete the insn that actually sets the register if the register dies
1018 there and that is incorrect. */
1019
1020 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1021 {
1022 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
1023 {
1024 rtx list;
1025 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
1026 {
1027 rtx equiv_insn = XEXP (list, 0);
1028
1029 /* If we already deleted the insn or if it may trap, we can't
1030 delete it. The latter case shouldn't happen, but can
1031 if an insn has a variable address, gets a REG_EH_REGION
1032 note added to it, and then gets converted into a load
1033 from a constant address. */
1034 if (NOTE_P (equiv_insn)
1035 || can_throw_internal (equiv_insn))
1036 ;
1037 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1038 delete_dead_insn (equiv_insn);
1039 else
1040 SET_INSN_DELETED (equiv_insn);
1041 }
1042 }
1043 }
1044
1045 /* Use the reload registers where necessary
1046 by generating move instructions to move the must-be-register
1047 values into or out of the reload registers. */
1048
1049 if (insns_need_reload != 0 || something_needs_elimination
1050 || something_needs_operands_changed)
1051 {
1052 HOST_WIDE_INT old_frame_size = get_frame_size ();
1053
1054 reload_as_needed (global);
1055
1056 gcc_assert (old_frame_size == get_frame_size ());
1057
1058 gcc_assert (verify_initial_elim_offsets ());
1059 }
1060
1061 /* If we were able to eliminate the frame pointer, show that it is no
1062 longer live at the start of any basic block. If it ls live by
1063 virtue of being in a pseudo, that pseudo will be marked live
1064 and hence the frame pointer will be known to be live via that
1065 pseudo. */
1066
1067 if (! frame_pointer_needed)
1068 FOR_EACH_BB (bb)
1069 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1070
1071 /* Come here (with failure set nonzero) if we can't get enough spill
1072 regs. */
1073 failed:
1074
1075 CLEAR_REG_SET (&changed_allocation_pseudos);
1076 CLEAR_REG_SET (&spilled_pseudos);
1077 reload_in_progress = 0;
1078
1079 /* Now eliminate all pseudo regs by modifying them into
1080 their equivalent memory references.
1081 The REG-rtx's for the pseudos are modified in place,
1082 so all insns that used to refer to them now refer to memory.
1083
1084 For a reg that has a reg_equiv_address, all those insns
1085 were changed by reloading so that no insns refer to it any longer;
1086 but the DECL_RTL of a variable decl may refer to it,
1087 and if so this causes the debugging info to mention the variable. */
1088
1089 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1090 {
1091 rtx addr = 0;
1092
1093 if (reg_equiv_mem (i))
1094 addr = XEXP (reg_equiv_mem (i), 0);
1095
1096 if (reg_equiv_address (i))
1097 addr = reg_equiv_address (i);
1098
1099 if (addr)
1100 {
1101 if (reg_renumber[i] < 0)
1102 {
1103 rtx reg = regno_reg_rtx[i];
1104
1105 REG_USERVAR_P (reg) = 0;
1106 PUT_CODE (reg, MEM);
1107 XEXP (reg, 0) = addr;
1108 if (reg_equiv_memory_loc (i))
1109 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1110 else
1111 MEM_ATTRS (reg) = 0;
1112 MEM_NOTRAP_P (reg) = 1;
1113 }
1114 else if (reg_equiv_mem (i))
1115 XEXP (reg_equiv_mem (i), 0) = addr;
1116 }
1117
1118 /* We don't want complex addressing modes in debug insns
1119 if simpler ones will do, so delegitimize equivalences
1120 in debug insns. */
1121 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1122 {
1123 rtx reg = regno_reg_rtx[i];
1124 rtx equiv = 0;
1125 df_ref use, next;
1126
1127 if (reg_equiv_constant (i))
1128 equiv = reg_equiv_constant (i);
1129 else if (reg_equiv_invariant (i))
1130 equiv = reg_equiv_invariant (i);
1131 else if (reg && MEM_P (reg))
1132 equiv = targetm.delegitimize_address (reg);
1133 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1134 equiv = reg;
1135
1136 if (equiv == reg)
1137 continue;
1138
1139 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1140 {
1141 insn = DF_REF_INSN (use);
1142
1143 /* Make sure the next ref is for a different instruction,
1144 so that we're not affected by the rescan. */
1145 next = DF_REF_NEXT_REG (use);
1146 while (next && DF_REF_INSN (next) == insn)
1147 next = DF_REF_NEXT_REG (next);
1148
1149 if (DEBUG_INSN_P (insn))
1150 {
1151 if (!equiv)
1152 {
1153 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1154 df_insn_rescan_debug_internal (insn);
1155 }
1156 else
1157 INSN_VAR_LOCATION_LOC (insn)
1158 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1159 reg, equiv);
1160 }
1161 }
1162 }
1163 }
1164
1165 /* We must set reload_completed now since the cleanup_subreg_operands call
1166 below will re-recognize each insn and reload may have generated insns
1167 which are only valid during and after reload. */
1168 reload_completed = 1;
1169
1170 /* Make a pass over all the insns and delete all USEs which we inserted
1171 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1172 notes. Delete all CLOBBER insns, except those that refer to the return
1173 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1174 from misarranging variable-array code, and simplify (subreg (reg))
1175 operands. Strip and regenerate REG_INC notes that may have been moved
1176 around. */
1177
1178 for (insn = first; insn; insn = NEXT_INSN (insn))
1179 if (INSN_P (insn))
1180 {
1181 rtx *pnote;
1182
1183 if (CALL_P (insn))
1184 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1185 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1186
1187 if ((GET_CODE (PATTERN (insn)) == USE
1188 /* We mark with QImode USEs introduced by reload itself. */
1189 && (GET_MODE (insn) == QImode
1190 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1191 || (GET_CODE (PATTERN (insn)) == CLOBBER
1192 && (!MEM_P (XEXP (PATTERN (insn), 0))
1193 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1194 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1195 && XEXP (XEXP (PATTERN (insn), 0), 0)
1196 != stack_pointer_rtx))
1197 && (!REG_P (XEXP (PATTERN (insn), 0))
1198 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1199 {
1200 delete_insn (insn);
1201 continue;
1202 }
1203
1204 /* Some CLOBBERs may survive until here and still reference unassigned
1205 pseudos with const equivalent, which may in turn cause ICE in later
1206 passes if the reference remains in place. */
1207 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1208 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1209 VOIDmode, PATTERN (insn));
1210
1211 /* Discard obvious no-ops, even without -O. This optimization
1212 is fast and doesn't interfere with debugging. */
1213 if (NONJUMP_INSN_P (insn)
1214 && GET_CODE (PATTERN (insn)) == SET
1215 && REG_P (SET_SRC (PATTERN (insn)))
1216 && REG_P (SET_DEST (PATTERN (insn)))
1217 && (REGNO (SET_SRC (PATTERN (insn)))
1218 == REGNO (SET_DEST (PATTERN (insn)))))
1219 {
1220 delete_insn (insn);
1221 continue;
1222 }
1223
1224 pnote = &REG_NOTES (insn);
1225 while (*pnote != 0)
1226 {
1227 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1228 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1229 || REG_NOTE_KIND (*pnote) == REG_INC)
1230 *pnote = XEXP (*pnote, 1);
1231 else
1232 pnote = &XEXP (*pnote, 1);
1233 }
1234
1235 #ifdef AUTO_INC_DEC
1236 add_auto_inc_notes (insn, PATTERN (insn));
1237 #endif
1238
1239 /* Simplify (subreg (reg)) if it appears as an operand. */
1240 cleanup_subreg_operands (insn);
1241
1242 /* Clean up invalid ASMs so that they don't confuse later passes.
1243 See PR 21299. */
1244 if (asm_noperands (PATTERN (insn)) >= 0)
1245 {
1246 extract_insn (insn);
1247 if (!constrain_operands (1))
1248 {
1249 error_for_asm (insn,
1250 "%<asm%> operand has impossible constraints");
1251 delete_insn (insn);
1252 continue;
1253 }
1254 }
1255 }
1256
1257 /* If we are doing generic stack checking, give a warning if this
1258 function's frame size is larger than we expect. */
1259 if (flag_stack_check == GENERIC_STACK_CHECK)
1260 {
1261 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1262 static int verbose_warned = 0;
1263
1264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1265 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1266 size += UNITS_PER_WORD;
1267
1268 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1269 {
1270 warning (0, "frame size too large for reliable stack checking");
1271 if (! verbose_warned)
1272 {
1273 warning (0, "try reducing the number of local variables");
1274 verbose_warned = 1;
1275 }
1276 }
1277 }
1278
1279 free (temp_pseudo_reg_arr);
1280
1281 /* Indicate that we no longer have known memory locations or constants. */
1282 free_reg_equiv ();
1283
1284 free (reg_max_ref_width);
1285 free (reg_old_renumber);
1286 free (pseudo_previous_regs);
1287 free (pseudo_forbidden_regs);
1288
1289 CLEAR_HARD_REG_SET (used_spill_regs);
1290 for (i = 0; i < n_spills; i++)
1291 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1292
1293 /* Free all the insn_chain structures at once. */
1294 obstack_free (&reload_obstack, reload_startobj);
1295 unused_insn_chains = 0;
1296
1297 inserted = fixup_abnormal_edges ();
1298
1299 /* We've possibly turned single trapping insn into multiple ones. */
1300 if (cfun->can_throw_non_call_exceptions)
1301 {
1302 sbitmap blocks;
1303 blocks = sbitmap_alloc (last_basic_block);
1304 bitmap_ones (blocks);
1305 find_many_sub_basic_blocks (blocks);
1306 sbitmap_free (blocks);
1307 }
1308
1309 if (inserted)
1310 commit_edge_insertions ();
1311
1312 /* Replacing pseudos with their memory equivalents might have
1313 created shared rtx. Subsequent passes would get confused
1314 by this, so unshare everything here. */
1315 unshare_all_rtl_again (first);
1316
1317 #ifdef STACK_BOUNDARY
1318 /* init_emit has set the alignment of the hard frame pointer
1319 to STACK_BOUNDARY. It is very likely no longer valid if
1320 the hard frame pointer was used for register allocation. */
1321 if (!frame_pointer_needed)
1322 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1323 #endif
1324
1325 substitute_stack.release ();
1326
1327 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1328
1329 reload_completed = !failure;
1330
1331 return need_dce;
1332 }
1333
1334 /* Yet another special case. Unfortunately, reg-stack forces people to
1335 write incorrect clobbers in asm statements. These clobbers must not
1336 cause the register to appear in bad_spill_regs, otherwise we'll call
1337 fatal_insn later. We clear the corresponding regnos in the live
1338 register sets to avoid this.
1339 The whole thing is rather sick, I'm afraid. */
1340
1341 static void
1342 maybe_fix_stack_asms (void)
1343 {
1344 #ifdef STACK_REGS
1345 const char *constraints[MAX_RECOG_OPERANDS];
1346 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1347 struct insn_chain *chain;
1348
1349 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1350 {
1351 int i, noperands;
1352 HARD_REG_SET clobbered, allowed;
1353 rtx pat;
1354
1355 if (! INSN_P (chain->insn)
1356 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1357 continue;
1358 pat = PATTERN (chain->insn);
1359 if (GET_CODE (pat) != PARALLEL)
1360 continue;
1361
1362 CLEAR_HARD_REG_SET (clobbered);
1363 CLEAR_HARD_REG_SET (allowed);
1364
1365 /* First, make a mask of all stack regs that are clobbered. */
1366 for (i = 0; i < XVECLEN (pat, 0); i++)
1367 {
1368 rtx t = XVECEXP (pat, 0, i);
1369 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1370 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1371 }
1372
1373 /* Get the operand values and constraints out of the insn. */
1374 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1375 constraints, operand_mode, NULL);
1376
1377 /* For every operand, see what registers are allowed. */
1378 for (i = 0; i < noperands; i++)
1379 {
1380 const char *p = constraints[i];
1381 /* For every alternative, we compute the class of registers allowed
1382 for reloading in CLS, and merge its contents into the reg set
1383 ALLOWED. */
1384 int cls = (int) NO_REGS;
1385
1386 for (;;)
1387 {
1388 char c = *p;
1389
1390 if (c == '\0' || c == ',' || c == '#')
1391 {
1392 /* End of one alternative - mark the regs in the current
1393 class, and reset the class. */
1394 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1395 cls = NO_REGS;
1396 p++;
1397 if (c == '#')
1398 do {
1399 c = *p++;
1400 } while (c != '\0' && c != ',');
1401 if (c == '\0')
1402 break;
1403 continue;
1404 }
1405
1406 switch (c)
1407 {
1408 case '=': case '+': case '*': case '%': case '?': case '!':
1409 case '0': case '1': case '2': case '3': case '4': case '<':
1410 case '>': case 'V': case 'o': case '&': case 'E': case 'F':
1411 case 's': case 'i': case 'n': case 'X': case 'I': case 'J':
1412 case 'K': case 'L': case 'M': case 'N': case 'O': case 'P':
1413 case TARGET_MEM_CONSTRAINT:
1414 break;
1415
1416 case 'p':
1417 cls = (int) reg_class_subunion[cls]
1418 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1419 ADDRESS, SCRATCH)];
1420 break;
1421
1422 case 'g':
1423 case 'r':
1424 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1425 break;
1426
1427 default:
1428 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1429 cls = (int) reg_class_subunion[cls]
1430 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1431 ADDRESS, SCRATCH)];
1432 else
1433 cls = (int) reg_class_subunion[cls]
1434 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1435 }
1436 p += CONSTRAINT_LEN (c, p);
1437 }
1438 }
1439 /* Those of the registers which are clobbered, but allowed by the
1440 constraints, must be usable as reload registers. So clear them
1441 out of the life information. */
1442 AND_HARD_REG_SET (allowed, clobbered);
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 if (TEST_HARD_REG_BIT (allowed, i))
1445 {
1446 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1447 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1448 }
1449 }
1450
1451 #endif
1452 }
1453 \f
1454 /* Copy the global variables n_reloads and rld into the corresponding elts
1455 of CHAIN. */
1456 static void
1457 copy_reloads (struct insn_chain *chain)
1458 {
1459 chain->n_reloads = n_reloads;
1460 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1461 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1462 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1463 }
1464
1465 /* Walk the chain of insns, and determine for each whether it needs reloads
1466 and/or eliminations. Build the corresponding insns_need_reload list, and
1467 set something_needs_elimination as appropriate. */
1468 static void
1469 calculate_needs_all_insns (int global)
1470 {
1471 struct insn_chain **pprev_reload = &insns_need_reload;
1472 struct insn_chain *chain, *next = 0;
1473
1474 something_needs_elimination = 0;
1475
1476 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1477 for (chain = reload_insn_chain; chain != 0; chain = next)
1478 {
1479 rtx insn = chain->insn;
1480
1481 next = chain->next;
1482
1483 /* Clear out the shortcuts. */
1484 chain->n_reloads = 0;
1485 chain->need_elim = 0;
1486 chain->need_reload = 0;
1487 chain->need_operand_change = 0;
1488
1489 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1490 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1491 what effects this has on the known offsets at labels. */
1492
1493 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1494 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1495 set_label_offsets (insn, insn, 0);
1496
1497 if (INSN_P (insn))
1498 {
1499 rtx old_body = PATTERN (insn);
1500 int old_code = INSN_CODE (insn);
1501 rtx old_notes = REG_NOTES (insn);
1502 int did_elimination = 0;
1503 int operands_changed = 0;
1504 rtx set = single_set (insn);
1505
1506 /* Skip insns that only set an equivalence. */
1507 if (set && REG_P (SET_DEST (set))
1508 && reg_renumber[REGNO (SET_DEST (set))] < 0
1509 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1510 || (reg_equiv_invariant (REGNO (SET_DEST (set)))))
1511 && reg_equiv_init (REGNO (SET_DEST (set))))
1512 continue;
1513
1514 /* If needed, eliminate any eliminable registers. */
1515 if (num_eliminable || num_eliminable_invariants)
1516 did_elimination = eliminate_regs_in_insn (insn, 0);
1517
1518 /* Analyze the instruction. */
1519 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1520 global, spill_reg_order);
1521
1522 /* If a no-op set needs more than one reload, this is likely
1523 to be something that needs input address reloads. We
1524 can't get rid of this cleanly later, and it is of no use
1525 anyway, so discard it now.
1526 We only do this when expensive_optimizations is enabled,
1527 since this complements reload inheritance / output
1528 reload deletion, and it can make debugging harder. */
1529 if (flag_expensive_optimizations && n_reloads > 1)
1530 {
1531 rtx set = single_set (insn);
1532 if (set
1533 &&
1534 ((SET_SRC (set) == SET_DEST (set)
1535 && REG_P (SET_SRC (set))
1536 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1537 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1538 && reg_renumber[REGNO (SET_SRC (set))] < 0
1539 && reg_renumber[REGNO (SET_DEST (set))] < 0
1540 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1541 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1542 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1543 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1544 {
1545 if (ira_conflicts_p)
1546 /* Inform IRA about the insn deletion. */
1547 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1548 REGNO (SET_SRC (set)));
1549 delete_insn (insn);
1550 /* Delete it from the reload chain. */
1551 if (chain->prev)
1552 chain->prev->next = next;
1553 else
1554 reload_insn_chain = next;
1555 if (next)
1556 next->prev = chain->prev;
1557 chain->next = unused_insn_chains;
1558 unused_insn_chains = chain;
1559 continue;
1560 }
1561 }
1562 if (num_eliminable)
1563 update_eliminable_offsets ();
1564
1565 /* Remember for later shortcuts which insns had any reloads or
1566 register eliminations. */
1567 chain->need_elim = did_elimination;
1568 chain->need_reload = n_reloads > 0;
1569 chain->need_operand_change = operands_changed;
1570
1571 /* Discard any register replacements done. */
1572 if (did_elimination)
1573 {
1574 obstack_free (&reload_obstack, reload_insn_firstobj);
1575 PATTERN (insn) = old_body;
1576 INSN_CODE (insn) = old_code;
1577 REG_NOTES (insn) = old_notes;
1578 something_needs_elimination = 1;
1579 }
1580
1581 something_needs_operands_changed |= operands_changed;
1582
1583 if (n_reloads != 0)
1584 {
1585 copy_reloads (chain);
1586 *pprev_reload = chain;
1587 pprev_reload = &chain->next_need_reload;
1588 }
1589 }
1590 }
1591 *pprev_reload = 0;
1592 }
1593 \f
1594 /* This function is called from the register allocator to set up estimates
1595 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1596 an invariant. The structure is similar to calculate_needs_all_insns. */
1597
1598 void
1599 calculate_elim_costs_all_insns (void)
1600 {
1601 int *reg_equiv_init_cost;
1602 basic_block bb;
1603 int i;
1604
1605 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1606 init_elim_table ();
1607 init_eliminable_invariants (get_insns (), false);
1608
1609 set_initial_elim_offsets ();
1610 set_initial_label_offsets ();
1611
1612 FOR_EACH_BB (bb)
1613 {
1614 rtx insn;
1615 elim_bb = bb;
1616
1617 FOR_BB_INSNS (bb, insn)
1618 {
1619 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1620 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1621 what effects this has on the known offsets at labels. */
1622
1623 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1624 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1625 set_label_offsets (insn, insn, 0);
1626
1627 if (INSN_P (insn))
1628 {
1629 rtx set = single_set (insn);
1630
1631 /* Skip insns that only set an equivalence. */
1632 if (set && REG_P (SET_DEST (set))
1633 && reg_renumber[REGNO (SET_DEST (set))] < 0
1634 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1635 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1636 {
1637 unsigned regno = REGNO (SET_DEST (set));
1638 rtx init = reg_equiv_init (regno);
1639 if (init)
1640 {
1641 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1642 false, true);
1643 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1644 int freq = REG_FREQ_FROM_BB (bb);
1645
1646 reg_equiv_init_cost[regno] = cost * freq;
1647 continue;
1648 }
1649 }
1650 /* If needed, eliminate any eliminable registers. */
1651 if (num_eliminable || num_eliminable_invariants)
1652 elimination_costs_in_insn (insn);
1653
1654 if (num_eliminable)
1655 update_eliminable_offsets ();
1656 }
1657 }
1658 }
1659 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1660 {
1661 if (reg_equiv_invariant (i))
1662 {
1663 if (reg_equiv_init (i))
1664 {
1665 int cost = reg_equiv_init_cost[i];
1666 if (dump_file)
1667 fprintf (dump_file,
1668 "Reg %d has equivalence, initial gains %d\n", i, cost);
1669 if (cost != 0)
1670 ira_adjust_equiv_reg_cost (i, cost);
1671 }
1672 else
1673 {
1674 if (dump_file)
1675 fprintf (dump_file,
1676 "Reg %d had equivalence, but can't be eliminated\n",
1677 i);
1678 ira_adjust_equiv_reg_cost (i, 0);
1679 }
1680 }
1681 }
1682
1683 free (reg_equiv_init_cost);
1684 free (offsets_known_at);
1685 free (offsets_at);
1686 offsets_at = NULL;
1687 offsets_known_at = NULL;
1688 }
1689 \f
1690 /* Comparison function for qsort to decide which of two reloads
1691 should be handled first. *P1 and *P2 are the reload numbers. */
1692
1693 static int
1694 reload_reg_class_lower (const void *r1p, const void *r2p)
1695 {
1696 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1697 int t;
1698
1699 /* Consider required reloads before optional ones. */
1700 t = rld[r1].optional - rld[r2].optional;
1701 if (t != 0)
1702 return t;
1703
1704 /* Count all solitary classes before non-solitary ones. */
1705 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1706 - (reg_class_size[(int) rld[r1].rclass] == 1));
1707 if (t != 0)
1708 return t;
1709
1710 /* Aside from solitaires, consider all multi-reg groups first. */
1711 t = rld[r2].nregs - rld[r1].nregs;
1712 if (t != 0)
1713 return t;
1714
1715 /* Consider reloads in order of increasing reg-class number. */
1716 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1717 if (t != 0)
1718 return t;
1719
1720 /* If reloads are equally urgent, sort by reload number,
1721 so that the results of qsort leave nothing to chance. */
1722 return r1 - r2;
1723 }
1724 \f
1725 /* The cost of spilling each hard reg. */
1726 static int spill_cost[FIRST_PSEUDO_REGISTER];
1727
1728 /* When spilling multiple hard registers, we use SPILL_COST for the first
1729 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1730 only the first hard reg for a multi-reg pseudo. */
1731 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1732
1733 /* Map of hard regno to pseudo regno currently occupying the hard
1734 reg. */
1735 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1736
1737 /* Update the spill cost arrays, considering that pseudo REG is live. */
1738
1739 static void
1740 count_pseudo (int reg)
1741 {
1742 int freq = REG_FREQ (reg);
1743 int r = reg_renumber[reg];
1744 int nregs;
1745
1746 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1747 if (ira_conflicts_p && r < 0)
1748 return;
1749
1750 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1751 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1752 return;
1753
1754 SET_REGNO_REG_SET (&pseudos_counted, reg);
1755
1756 gcc_assert (r >= 0);
1757
1758 spill_add_cost[r] += freq;
1759 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1760 while (nregs-- > 0)
1761 {
1762 hard_regno_to_pseudo_regno[r + nregs] = reg;
1763 spill_cost[r + nregs] += freq;
1764 }
1765 }
1766
1767 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1768 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1769
1770 static void
1771 order_regs_for_reload (struct insn_chain *chain)
1772 {
1773 unsigned i;
1774 HARD_REG_SET used_by_pseudos;
1775 HARD_REG_SET used_by_pseudos2;
1776 reg_set_iterator rsi;
1777
1778 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1779
1780 memset (spill_cost, 0, sizeof spill_cost);
1781 memset (spill_add_cost, 0, sizeof spill_add_cost);
1782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783 hard_regno_to_pseudo_regno[i] = -1;
1784
1785 /* Count number of uses of each hard reg by pseudo regs allocated to it
1786 and then order them by decreasing use. First exclude hard registers
1787 that are live in or across this insn. */
1788
1789 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1790 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1791 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1792 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1793
1794 /* Now find out which pseudos are allocated to it, and update
1795 hard_reg_n_uses. */
1796 CLEAR_REG_SET (&pseudos_counted);
1797
1798 EXECUTE_IF_SET_IN_REG_SET
1799 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1800 {
1801 count_pseudo (i);
1802 }
1803 EXECUTE_IF_SET_IN_REG_SET
1804 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1805 {
1806 count_pseudo (i);
1807 }
1808 CLEAR_REG_SET (&pseudos_counted);
1809 }
1810 \f
1811 /* Vector of reload-numbers showing the order in which the reloads should
1812 be processed. */
1813 static short reload_order[MAX_RELOADS];
1814
1815 /* This is used to keep track of the spill regs used in one insn. */
1816 static HARD_REG_SET used_spill_regs_local;
1817
1818 /* We decided to spill hard register SPILLED, which has a size of
1819 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1820 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1821 update SPILL_COST/SPILL_ADD_COST. */
1822
1823 static void
1824 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1825 {
1826 int freq = REG_FREQ (reg);
1827 int r = reg_renumber[reg];
1828 int nregs;
1829
1830 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1831 if (ira_conflicts_p && r < 0)
1832 return;
1833
1834 gcc_assert (r >= 0);
1835
1836 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1837
1838 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1839 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1840 return;
1841
1842 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1843
1844 spill_add_cost[r] -= freq;
1845 while (nregs-- > 0)
1846 {
1847 hard_regno_to_pseudo_regno[r + nregs] = -1;
1848 spill_cost[r + nregs] -= freq;
1849 }
1850 }
1851
1852 /* Find reload register to use for reload number ORDER. */
1853
1854 static int
1855 find_reg (struct insn_chain *chain, int order)
1856 {
1857 int rnum = reload_order[order];
1858 struct reload *rl = rld + rnum;
1859 int best_cost = INT_MAX;
1860 int best_reg = -1;
1861 unsigned int i, j, n;
1862 int k;
1863 HARD_REG_SET not_usable;
1864 HARD_REG_SET used_by_other_reload;
1865 reg_set_iterator rsi;
1866 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1867 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1868
1869 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1870 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1871 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1872
1873 CLEAR_HARD_REG_SET (used_by_other_reload);
1874 for (k = 0; k < order; k++)
1875 {
1876 int other = reload_order[k];
1877
1878 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1879 for (j = 0; j < rld[other].nregs; j++)
1880 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1881 }
1882
1883 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1884 {
1885 #ifdef REG_ALLOC_ORDER
1886 unsigned int regno = reg_alloc_order[i];
1887 #else
1888 unsigned int regno = i;
1889 #endif
1890
1891 if (! TEST_HARD_REG_BIT (not_usable, regno)
1892 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1893 && HARD_REGNO_MODE_OK (regno, rl->mode))
1894 {
1895 int this_cost = spill_cost[regno];
1896 int ok = 1;
1897 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1898
1899 for (j = 1; j < this_nregs; j++)
1900 {
1901 this_cost += spill_add_cost[regno + j];
1902 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1903 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1904 ok = 0;
1905 }
1906 if (! ok)
1907 continue;
1908
1909 if (ira_conflicts_p)
1910 {
1911 /* Ask IRA to find a better pseudo-register for
1912 spilling. */
1913 for (n = j = 0; j < this_nregs; j++)
1914 {
1915 int r = hard_regno_to_pseudo_regno[regno + j];
1916
1917 if (r < 0)
1918 continue;
1919 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1920 regno_pseudo_regs[n++] = r;
1921 }
1922 regno_pseudo_regs[n++] = -1;
1923 if (best_reg < 0
1924 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1925 best_regno_pseudo_regs,
1926 rl->in, rl->out,
1927 chain->insn))
1928 {
1929 best_reg = regno;
1930 for (j = 0;; j++)
1931 {
1932 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1933 if (regno_pseudo_regs[j] < 0)
1934 break;
1935 }
1936 }
1937 continue;
1938 }
1939
1940 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1941 this_cost--;
1942 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1943 this_cost--;
1944 if (this_cost < best_cost
1945 /* Among registers with equal cost, prefer caller-saved ones, or
1946 use REG_ALLOC_ORDER if it is defined. */
1947 || (this_cost == best_cost
1948 #ifdef REG_ALLOC_ORDER
1949 && (inv_reg_alloc_order[regno]
1950 < inv_reg_alloc_order[best_reg])
1951 #else
1952 && call_used_regs[regno]
1953 && ! call_used_regs[best_reg]
1954 #endif
1955 ))
1956 {
1957 best_reg = regno;
1958 best_cost = this_cost;
1959 }
1960 }
1961 }
1962 if (best_reg == -1)
1963 return 0;
1964
1965 if (dump_file)
1966 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1967
1968 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1969 rl->regno = best_reg;
1970
1971 EXECUTE_IF_SET_IN_REG_SET
1972 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1973 {
1974 count_spilled_pseudo (best_reg, rl->nregs, j);
1975 }
1976
1977 EXECUTE_IF_SET_IN_REG_SET
1978 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1979 {
1980 count_spilled_pseudo (best_reg, rl->nregs, j);
1981 }
1982
1983 for (i = 0; i < rl->nregs; i++)
1984 {
1985 gcc_assert (spill_cost[best_reg + i] == 0);
1986 gcc_assert (spill_add_cost[best_reg + i] == 0);
1987 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1988 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1989 }
1990 return 1;
1991 }
1992
1993 /* Find more reload regs to satisfy the remaining need of an insn, which
1994 is given by CHAIN.
1995 Do it by ascending class number, since otherwise a reg
1996 might be spilled for a big class and might fail to count
1997 for a smaller class even though it belongs to that class. */
1998
1999 static void
2000 find_reload_regs (struct insn_chain *chain)
2001 {
2002 int i;
2003
2004 /* In order to be certain of getting the registers we need,
2005 we must sort the reloads into order of increasing register class.
2006 Then our grabbing of reload registers will parallel the process
2007 that provided the reload registers. */
2008 for (i = 0; i < chain->n_reloads; i++)
2009 {
2010 /* Show whether this reload already has a hard reg. */
2011 if (chain->rld[i].reg_rtx)
2012 {
2013 int regno = REGNO (chain->rld[i].reg_rtx);
2014 chain->rld[i].regno = regno;
2015 chain->rld[i].nregs
2016 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2017 }
2018 else
2019 chain->rld[i].regno = -1;
2020 reload_order[i] = i;
2021 }
2022
2023 n_reloads = chain->n_reloads;
2024 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2025
2026 CLEAR_HARD_REG_SET (used_spill_regs_local);
2027
2028 if (dump_file)
2029 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2030
2031 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2032
2033 /* Compute the order of preference for hard registers to spill. */
2034
2035 order_regs_for_reload (chain);
2036
2037 for (i = 0; i < n_reloads; i++)
2038 {
2039 int r = reload_order[i];
2040
2041 /* Ignore reloads that got marked inoperative. */
2042 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2043 && ! rld[r].optional
2044 && rld[r].regno == -1)
2045 if (! find_reg (chain, i))
2046 {
2047 if (dump_file)
2048 fprintf (dump_file, "reload failure for reload %d\n", r);
2049 spill_failure (chain->insn, rld[r].rclass);
2050 failure = 1;
2051 return;
2052 }
2053 }
2054
2055 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2056 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2057
2058 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2059 }
2060
2061 static void
2062 select_reload_regs (void)
2063 {
2064 struct insn_chain *chain;
2065
2066 /* Try to satisfy the needs for each insn. */
2067 for (chain = insns_need_reload; chain != 0;
2068 chain = chain->next_need_reload)
2069 find_reload_regs (chain);
2070 }
2071 \f
2072 /* Delete all insns that were inserted by emit_caller_save_insns during
2073 this iteration. */
2074 static void
2075 delete_caller_save_insns (void)
2076 {
2077 struct insn_chain *c = reload_insn_chain;
2078
2079 while (c != 0)
2080 {
2081 while (c != 0 && c->is_caller_save_insn)
2082 {
2083 struct insn_chain *next = c->next;
2084 rtx insn = c->insn;
2085
2086 if (c == reload_insn_chain)
2087 reload_insn_chain = next;
2088 delete_insn (insn);
2089
2090 if (next)
2091 next->prev = c->prev;
2092 if (c->prev)
2093 c->prev->next = next;
2094 c->next = unused_insn_chains;
2095 unused_insn_chains = c;
2096 c = next;
2097 }
2098 if (c != 0)
2099 c = c->next;
2100 }
2101 }
2102 \f
2103 /* Handle the failure to find a register to spill.
2104 INSN should be one of the insns which needed this particular spill reg. */
2105
2106 static void
2107 spill_failure (rtx insn, enum reg_class rclass)
2108 {
2109 if (asm_noperands (PATTERN (insn)) >= 0)
2110 error_for_asm (insn, "can%'t find a register in class %qs while "
2111 "reloading %<asm%>",
2112 reg_class_names[rclass]);
2113 else
2114 {
2115 error ("unable to find a register to spill in class %qs",
2116 reg_class_names[rclass]);
2117
2118 if (dump_file)
2119 {
2120 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2121 debug_reload_to_stream (dump_file);
2122 }
2123 fatal_insn ("this is the insn:", insn);
2124 }
2125 }
2126 \f
2127 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2128 data that is dead in INSN. */
2129
2130 static void
2131 delete_dead_insn (rtx insn)
2132 {
2133 rtx prev = prev_active_insn (insn);
2134 rtx prev_dest;
2135
2136 /* If the previous insn sets a register that dies in our insn make
2137 a note that we want to run DCE immediately after reload.
2138
2139 We used to delete the previous insn & recurse, but that's wrong for
2140 block local equivalences. Instead of trying to figure out the exact
2141 circumstances where we can delete the potentially dead insns, just
2142 let DCE do the job. */
2143 if (prev && GET_CODE (PATTERN (prev)) == SET
2144 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2145 && reg_mentioned_p (prev_dest, PATTERN (insn))
2146 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2147 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2148 need_dce = 1;
2149
2150 SET_INSN_DELETED (insn);
2151 }
2152
2153 /* Modify the home of pseudo-reg I.
2154 The new home is present in reg_renumber[I].
2155
2156 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2157 or it may be -1, meaning there is none or it is not relevant.
2158 This is used so that all pseudos spilled from a given hard reg
2159 can share one stack slot. */
2160
2161 static void
2162 alter_reg (int i, int from_reg, bool dont_share_p)
2163 {
2164 /* When outputting an inline function, this can happen
2165 for a reg that isn't actually used. */
2166 if (regno_reg_rtx[i] == 0)
2167 return;
2168
2169 /* If the reg got changed to a MEM at rtl-generation time,
2170 ignore it. */
2171 if (!REG_P (regno_reg_rtx[i]))
2172 return;
2173
2174 /* Modify the reg-rtx to contain the new hard reg
2175 number or else to contain its pseudo reg number. */
2176 SET_REGNO (regno_reg_rtx[i],
2177 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2178
2179 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2180 allocate a stack slot for it. */
2181
2182 if (reg_renumber[i] < 0
2183 && REG_N_REFS (i) > 0
2184 && reg_equiv_constant (i) == 0
2185 && (reg_equiv_invariant (i) == 0
2186 || reg_equiv_init (i) == 0)
2187 && reg_equiv_memory_loc (i) == 0)
2188 {
2189 rtx x = NULL_RTX;
2190 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2191 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2192 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2193 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2194 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2195 int adjust = 0;
2196
2197 something_was_spilled = true;
2198
2199 if (ira_conflicts_p)
2200 {
2201 /* Mark the spill for IRA. */
2202 SET_REGNO_REG_SET (&spilled_pseudos, i);
2203 if (!dont_share_p)
2204 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2205 }
2206
2207 if (x)
2208 ;
2209
2210 /* Each pseudo reg has an inherent size which comes from its own mode,
2211 and a total size which provides room for paradoxical subregs
2212 which refer to the pseudo reg in wider modes.
2213
2214 We can use a slot already allocated if it provides both
2215 enough inherent space and enough total space.
2216 Otherwise, we allocate a new slot, making sure that it has no less
2217 inherent space, and no less total space, then the previous slot. */
2218 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2219 {
2220 rtx stack_slot;
2221
2222 /* No known place to spill from => no slot to reuse. */
2223 x = assign_stack_local (mode, total_size,
2224 min_align > inherent_align
2225 || total_size > inherent_size ? -1 : 0);
2226
2227 stack_slot = x;
2228
2229 /* Cancel the big-endian correction done in assign_stack_local.
2230 Get the address of the beginning of the slot. This is so we
2231 can do a big-endian correction unconditionally below. */
2232 if (BYTES_BIG_ENDIAN)
2233 {
2234 adjust = inherent_size - total_size;
2235 if (adjust)
2236 stack_slot
2237 = adjust_address_nv (x, mode_for_size (total_size
2238 * BITS_PER_UNIT,
2239 MODE_INT, 1),
2240 adjust);
2241 }
2242
2243 if (! dont_share_p && ira_conflicts_p)
2244 /* Inform IRA about allocation a new stack slot. */
2245 ira_mark_new_stack_slot (stack_slot, i, total_size);
2246 }
2247
2248 /* Reuse a stack slot if possible. */
2249 else if (spill_stack_slot[from_reg] != 0
2250 && spill_stack_slot_width[from_reg] >= total_size
2251 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2252 >= inherent_size)
2253 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2254 x = spill_stack_slot[from_reg];
2255
2256 /* Allocate a bigger slot. */
2257 else
2258 {
2259 /* Compute maximum size needed, both for inherent size
2260 and for total size. */
2261 rtx stack_slot;
2262
2263 if (spill_stack_slot[from_reg])
2264 {
2265 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2266 > inherent_size)
2267 mode = GET_MODE (spill_stack_slot[from_reg]);
2268 if (spill_stack_slot_width[from_reg] > total_size)
2269 total_size = spill_stack_slot_width[from_reg];
2270 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2271 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2272 }
2273
2274 /* Make a slot with that size. */
2275 x = assign_stack_local (mode, total_size,
2276 min_align > inherent_align
2277 || total_size > inherent_size ? -1 : 0);
2278 stack_slot = x;
2279
2280 /* Cancel the big-endian correction done in assign_stack_local.
2281 Get the address of the beginning of the slot. This is so we
2282 can do a big-endian correction unconditionally below. */
2283 if (BYTES_BIG_ENDIAN)
2284 {
2285 adjust = GET_MODE_SIZE (mode) - total_size;
2286 if (adjust)
2287 stack_slot
2288 = adjust_address_nv (x, mode_for_size (total_size
2289 * BITS_PER_UNIT,
2290 MODE_INT, 1),
2291 adjust);
2292 }
2293
2294 spill_stack_slot[from_reg] = stack_slot;
2295 spill_stack_slot_width[from_reg] = total_size;
2296 }
2297
2298 /* On a big endian machine, the "address" of the slot
2299 is the address of the low part that fits its inherent mode. */
2300 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2301 adjust += (total_size - inherent_size);
2302
2303 /* If we have any adjustment to make, or if the stack slot is the
2304 wrong mode, make a new stack slot. */
2305 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2306
2307 /* Set all of the memory attributes as appropriate for a spill. */
2308 set_mem_attrs_for_spill (x);
2309
2310 /* Save the stack slot for later. */
2311 reg_equiv_memory_loc (i) = x;
2312 }
2313 }
2314
2315 /* Mark the slots in regs_ever_live for the hard regs used by
2316 pseudo-reg number REGNO, accessed in MODE. */
2317
2318 static void
2319 mark_home_live_1 (int regno, enum machine_mode mode)
2320 {
2321 int i, lim;
2322
2323 i = reg_renumber[regno];
2324 if (i < 0)
2325 return;
2326 lim = end_hard_regno (mode, i);
2327 while (i < lim)
2328 df_set_regs_ever_live (i++, true);
2329 }
2330
2331 /* Mark the slots in regs_ever_live for the hard regs
2332 used by pseudo-reg number REGNO. */
2333
2334 void
2335 mark_home_live (int regno)
2336 {
2337 if (reg_renumber[regno] >= 0)
2338 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2339 }
2340 \f
2341 /* This function handles the tracking of elimination offsets around branches.
2342
2343 X is a piece of RTL being scanned.
2344
2345 INSN is the insn that it came from, if any.
2346
2347 INITIAL_P is nonzero if we are to set the offset to be the initial
2348 offset and zero if we are setting the offset of the label to be the
2349 current offset. */
2350
2351 static void
2352 set_label_offsets (rtx x, rtx insn, int initial_p)
2353 {
2354 enum rtx_code code = GET_CODE (x);
2355 rtx tem;
2356 unsigned int i;
2357 struct elim_table *p;
2358
2359 switch (code)
2360 {
2361 case LABEL_REF:
2362 if (LABEL_REF_NONLOCAL_P (x))
2363 return;
2364
2365 x = XEXP (x, 0);
2366
2367 /* ... fall through ... */
2368
2369 case CODE_LABEL:
2370 /* If we know nothing about this label, set the desired offsets. Note
2371 that this sets the offset at a label to be the offset before a label
2372 if we don't know anything about the label. This is not correct for
2373 the label after a BARRIER, but is the best guess we can make. If
2374 we guessed wrong, we will suppress an elimination that might have
2375 been possible had we been able to guess correctly. */
2376
2377 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2378 {
2379 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2380 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2381 = (initial_p ? reg_eliminate[i].initial_offset
2382 : reg_eliminate[i].offset);
2383 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2384 }
2385
2386 /* Otherwise, if this is the definition of a label and it is
2387 preceded by a BARRIER, set our offsets to the known offset of
2388 that label. */
2389
2390 else if (x == insn
2391 && (tem = prev_nonnote_insn (insn)) != 0
2392 && BARRIER_P (tem))
2393 set_offsets_for_label (insn);
2394 else
2395 /* If neither of the above cases is true, compare each offset
2396 with those previously recorded and suppress any eliminations
2397 where the offsets disagree. */
2398
2399 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2400 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2401 != (initial_p ? reg_eliminate[i].initial_offset
2402 : reg_eliminate[i].offset))
2403 reg_eliminate[i].can_eliminate = 0;
2404
2405 return;
2406
2407 case JUMP_TABLE_DATA:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2409 return;
2410
2411 case JUMP_INSN:
2412 set_label_offsets (PATTERN (insn), insn, initial_p);
2413
2414 /* ... fall through ... */
2415
2416 case INSN:
2417 case CALL_INSN:
2418 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2419 to indirectly and hence must have all eliminations at their
2420 initial offsets. */
2421 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2422 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2423 set_label_offsets (XEXP (tem, 0), insn, 1);
2424 return;
2425
2426 case PARALLEL:
2427 case ADDR_VEC:
2428 case ADDR_DIFF_VEC:
2429 /* Each of the labels in the parallel or address vector must be
2430 at their initial offsets. We want the first field for PARALLEL
2431 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2432
2433 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2434 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2435 insn, initial_p);
2436 return;
2437
2438 case SET:
2439 /* We only care about setting PC. If the source is not RETURN,
2440 IF_THEN_ELSE, or a label, disable any eliminations not at
2441 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2442 isn't one of those possibilities. For branches to a label,
2443 call ourselves recursively.
2444
2445 Note that this can disable elimination unnecessarily when we have
2446 a non-local goto since it will look like a non-constant jump to
2447 someplace in the current function. This isn't a significant
2448 problem since such jumps will normally be when all elimination
2449 pairs are back to their initial offsets. */
2450
2451 if (SET_DEST (x) != pc_rtx)
2452 return;
2453
2454 switch (GET_CODE (SET_SRC (x)))
2455 {
2456 case PC:
2457 case RETURN:
2458 return;
2459
2460 case LABEL_REF:
2461 set_label_offsets (SET_SRC (x), insn, initial_p);
2462 return;
2463
2464 case IF_THEN_ELSE:
2465 tem = XEXP (SET_SRC (x), 1);
2466 if (GET_CODE (tem) == LABEL_REF)
2467 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2468 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2469 break;
2470
2471 tem = XEXP (SET_SRC (x), 2);
2472 if (GET_CODE (tem) == LABEL_REF)
2473 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2474 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2475 break;
2476 return;
2477
2478 default:
2479 break;
2480 }
2481
2482 /* If we reach here, all eliminations must be at their initial
2483 offset because we are doing a jump to a variable address. */
2484 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2485 if (p->offset != p->initial_offset)
2486 p->can_eliminate = 0;
2487 break;
2488
2489 default:
2490 break;
2491 }
2492 }
2493 \f
2494 /* Called through for_each_rtx, this function examines every reg that occurs
2495 in PX and adjusts the costs for its elimination which are gathered by IRA.
2496 DATA is the insn in which PX occurs. We do not recurse into MEM
2497 expressions. */
2498
2499 static int
2500 note_reg_elim_costly (rtx *px, void *data)
2501 {
2502 rtx insn = (rtx)data;
2503 rtx x = *px;
2504
2505 if (MEM_P (x))
2506 return -1;
2507
2508 if (REG_P (x)
2509 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2510 && reg_equiv_init (REGNO (x))
2511 && reg_equiv_invariant (REGNO (x)))
2512 {
2513 rtx t = reg_equiv_invariant (REGNO (x));
2514 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2515 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2516 int freq = REG_FREQ_FROM_BB (elim_bb);
2517
2518 if (cost != 0)
2519 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2520 }
2521 return 0;
2522 }
2523
2524 /* Scan X and replace any eliminable registers (such as fp) with a
2525 replacement (such as sp), plus an offset.
2526
2527 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2528 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2529 MEM, we are allowed to replace a sum of a register and the constant zero
2530 with the register, which we cannot do outside a MEM. In addition, we need
2531 to record the fact that a register is referenced outside a MEM.
2532
2533 If INSN is an insn, it is the insn containing X. If we replace a REG
2534 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2535 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2536 the REG is being modified.
2537
2538 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2539 That's used when we eliminate in expressions stored in notes.
2540 This means, do not set ref_outside_mem even if the reference
2541 is outside of MEMs.
2542
2543 If FOR_COSTS is true, we are being called before reload in order to
2544 estimate the costs of keeping registers with an equivalence unallocated.
2545
2546 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2547 replacements done assuming all offsets are at their initial values. If
2548 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2549 encounter, return the actual location so that find_reloads will do
2550 the proper thing. */
2551
2552 static rtx
2553 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2554 bool may_use_invariant, bool for_costs)
2555 {
2556 enum rtx_code code = GET_CODE (x);
2557 struct elim_table *ep;
2558 int regno;
2559 rtx new_rtx;
2560 int i, j;
2561 const char *fmt;
2562 int copied = 0;
2563
2564 if (! current_function_decl)
2565 return x;
2566
2567 switch (code)
2568 {
2569 CASE_CONST_ANY:
2570 case CONST:
2571 case SYMBOL_REF:
2572 case CODE_LABEL:
2573 case PC:
2574 case CC0:
2575 case ASM_INPUT:
2576 case ADDR_VEC:
2577 case ADDR_DIFF_VEC:
2578 case RETURN:
2579 return x;
2580
2581 case REG:
2582 regno = REGNO (x);
2583
2584 /* First handle the case where we encounter a bare register that
2585 is eliminable. Replace it with a PLUS. */
2586 if (regno < FIRST_PSEUDO_REGISTER)
2587 {
2588 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2589 ep++)
2590 if (ep->from_rtx == x && ep->can_eliminate)
2591 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2592
2593 }
2594 else if (reg_renumber && reg_renumber[regno] < 0
2595 && reg_equivs
2596 && reg_equiv_invariant (regno))
2597 {
2598 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2599 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2600 mem_mode, insn, true, for_costs);
2601 /* There exists at least one use of REGNO that cannot be
2602 eliminated. Prevent the defining insn from being deleted. */
2603 reg_equiv_init (regno) = NULL_RTX;
2604 if (!for_costs)
2605 alter_reg (regno, -1, true);
2606 }
2607 return x;
2608
2609 /* You might think handling MINUS in a manner similar to PLUS is a
2610 good idea. It is not. It has been tried multiple times and every
2611 time the change has had to have been reverted.
2612
2613 Other parts of reload know a PLUS is special (gen_reload for example)
2614 and require special code to handle code a reloaded PLUS operand.
2615
2616 Also consider backends where the flags register is clobbered by a
2617 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2618 lea instruction comes to mind). If we try to reload a MINUS, we
2619 may kill the flags register that was holding a useful value.
2620
2621 So, please before trying to handle MINUS, consider reload as a
2622 whole instead of this little section as well as the backend issues. */
2623 case PLUS:
2624 /* If this is the sum of an eliminable register and a constant, rework
2625 the sum. */
2626 if (REG_P (XEXP (x, 0))
2627 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2628 && CONSTANT_P (XEXP (x, 1)))
2629 {
2630 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2631 ep++)
2632 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2633 {
2634 /* The only time we want to replace a PLUS with a REG (this
2635 occurs when the constant operand of the PLUS is the negative
2636 of the offset) is when we are inside a MEM. We won't want
2637 to do so at other times because that would change the
2638 structure of the insn in a way that reload can't handle.
2639 We special-case the commonest situation in
2640 eliminate_regs_in_insn, so just replace a PLUS with a
2641 PLUS here, unless inside a MEM. */
2642 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2643 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2644 return ep->to_rtx;
2645 else
2646 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2647 plus_constant (Pmode, XEXP (x, 1),
2648 ep->previous_offset));
2649 }
2650
2651 /* If the register is not eliminable, we are done since the other
2652 operand is a constant. */
2653 return x;
2654 }
2655
2656 /* If this is part of an address, we want to bring any constant to the
2657 outermost PLUS. We will do this by doing register replacement in
2658 our operands and seeing if a constant shows up in one of them.
2659
2660 Note that there is no risk of modifying the structure of the insn,
2661 since we only get called for its operands, thus we are either
2662 modifying the address inside a MEM, or something like an address
2663 operand of a load-address insn. */
2664
2665 {
2666 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2667 for_costs);
2668 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2669 for_costs);
2670
2671 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2672 {
2673 /* If one side is a PLUS and the other side is a pseudo that
2674 didn't get a hard register but has a reg_equiv_constant,
2675 we must replace the constant here since it may no longer
2676 be in the position of any operand. */
2677 if (GET_CODE (new0) == PLUS && REG_P (new1)
2678 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2679 && reg_renumber[REGNO (new1)] < 0
2680 && reg_equivs
2681 && reg_equiv_constant (REGNO (new1)) != 0)
2682 new1 = reg_equiv_constant (REGNO (new1));
2683 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2684 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2685 && reg_renumber[REGNO (new0)] < 0
2686 && reg_equiv_constant (REGNO (new0)) != 0)
2687 new0 = reg_equiv_constant (REGNO (new0));
2688
2689 new_rtx = form_sum (GET_MODE (x), new0, new1);
2690
2691 /* As above, if we are not inside a MEM we do not want to
2692 turn a PLUS into something else. We might try to do so here
2693 for an addition of 0 if we aren't optimizing. */
2694 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2695 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2696 else
2697 return new_rtx;
2698 }
2699 }
2700 return x;
2701
2702 case MULT:
2703 /* If this is the product of an eliminable register and a
2704 constant, apply the distribute law and move the constant out
2705 so that we have (plus (mult ..) ..). This is needed in order
2706 to keep load-address insns valid. This case is pathological.
2707 We ignore the possibility of overflow here. */
2708 if (REG_P (XEXP (x, 0))
2709 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2710 && CONST_INT_P (XEXP (x, 1)))
2711 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2712 ep++)
2713 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2714 {
2715 if (! mem_mode
2716 /* Refs inside notes or in DEBUG_INSNs don't count for
2717 this purpose. */
2718 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2719 || GET_CODE (insn) == INSN_LIST
2720 || DEBUG_INSN_P (insn))))
2721 ep->ref_outside_mem = 1;
2722
2723 return
2724 plus_constant (Pmode,
2725 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2726 ep->previous_offset * INTVAL (XEXP (x, 1)));
2727 }
2728
2729 /* ... fall through ... */
2730
2731 case CALL:
2732 case COMPARE:
2733 /* See comments before PLUS about handling MINUS. */
2734 case MINUS:
2735 case DIV: case UDIV:
2736 case MOD: case UMOD:
2737 case AND: case IOR: case XOR:
2738 case ROTATERT: case ROTATE:
2739 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2740 case NE: case EQ:
2741 case GE: case GT: case GEU: case GTU:
2742 case LE: case LT: case LEU: case LTU:
2743 {
2744 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2745 for_costs);
2746 rtx new1 = XEXP (x, 1)
2747 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2748 for_costs) : 0;
2749
2750 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2751 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2752 }
2753 return x;
2754
2755 case EXPR_LIST:
2756 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2757 if (XEXP (x, 0))
2758 {
2759 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 0))
2762 {
2763 /* If this is a REG_DEAD note, it is not valid anymore.
2764 Using the eliminated version could result in creating a
2765 REG_DEAD note for the stack or frame pointer. */
2766 if (REG_NOTE_KIND (x) == REG_DEAD)
2767 return (XEXP (x, 1)
2768 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2769 for_costs)
2770 : NULL_RTX);
2771
2772 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2773 }
2774 }
2775
2776 /* ... fall through ... */
2777
2778 case INSN_LIST:
2779 case INT_LIST:
2780 /* Now do eliminations in the rest of the chain. If this was
2781 an EXPR_LIST, this might result in allocating more memory than is
2782 strictly needed, but it simplifies the code. */
2783 if (XEXP (x, 1))
2784 {
2785 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2786 for_costs);
2787 if (new_rtx != XEXP (x, 1))
2788 return
2789 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2790 }
2791 return x;
2792
2793 case PRE_INC:
2794 case POST_INC:
2795 case PRE_DEC:
2796 case POST_DEC:
2797 /* We do not support elimination of a register that is modified.
2798 elimination_effects has already make sure that this does not
2799 happen. */
2800 return x;
2801
2802 case PRE_MODIFY:
2803 case POST_MODIFY:
2804 /* We do not support elimination of a register that is modified.
2805 elimination_effects has already make sure that this does not
2806 happen. The only remaining case we need to consider here is
2807 that the increment value may be an eliminable register. */
2808 if (GET_CODE (XEXP (x, 1)) == PLUS
2809 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2810 {
2811 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2812 insn, true, for_costs);
2813
2814 if (new_rtx != XEXP (XEXP (x, 1), 1))
2815 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2816 gen_rtx_PLUS (GET_MODE (x),
2817 XEXP (x, 0), new_rtx));
2818 }
2819 return x;
2820
2821 case STRICT_LOW_PART:
2822 case NEG: case NOT:
2823 case SIGN_EXTEND: case ZERO_EXTEND:
2824 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2825 case FLOAT: case FIX:
2826 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2827 case ABS:
2828 case SQRT:
2829 case FFS:
2830 case CLZ:
2831 case CTZ:
2832 case POPCOUNT:
2833 case PARITY:
2834 case BSWAP:
2835 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2836 for_costs);
2837 if (new_rtx != XEXP (x, 0))
2838 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2839 return x;
2840
2841 case SUBREG:
2842 /* Similar to above processing, but preserve SUBREG_BYTE.
2843 Convert (subreg (mem)) to (mem) if not paradoxical.
2844 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2845 pseudo didn't get a hard reg, we must replace this with the
2846 eliminated version of the memory location because push_reload
2847 may do the replacement in certain circumstances. */
2848 if (REG_P (SUBREG_REG (x))
2849 && !paradoxical_subreg_p (x)
2850 && reg_equivs
2851 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2852 {
2853 new_rtx = SUBREG_REG (x);
2854 }
2855 else
2856 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2857
2858 if (new_rtx != SUBREG_REG (x))
2859 {
2860 int x_size = GET_MODE_SIZE (GET_MODE (x));
2861 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2862
2863 if (MEM_P (new_rtx)
2864 && ((x_size < new_size
2865 #ifdef WORD_REGISTER_OPERATIONS
2866 /* On these machines, combine can create rtl of the form
2867 (set (subreg:m1 (reg:m2 R) 0) ...)
2868 where m1 < m2, and expects something interesting to
2869 happen to the entire word. Moreover, it will use the
2870 (reg:m2 R) later, expecting all bits to be preserved.
2871 So if the number of words is the same, preserve the
2872 subreg so that push_reload can see it. */
2873 && ! ((x_size - 1) / UNITS_PER_WORD
2874 == (new_size -1 ) / UNITS_PER_WORD)
2875 #endif
2876 )
2877 || x_size == new_size)
2878 )
2879 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2880 else
2881 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2882 }
2883
2884 return x;
2885
2886 case MEM:
2887 /* Our only special processing is to pass the mode of the MEM to our
2888 recursive call and copy the flags. While we are here, handle this
2889 case more efficiently. */
2890
2891 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2892 for_costs);
2893 if (for_costs
2894 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2895 && !memory_address_p (GET_MODE (x), new_rtx))
2896 for_each_rtx (&XEXP (x, 0), note_reg_elim_costly, insn);
2897
2898 return replace_equiv_address_nv (x, new_rtx);
2899
2900 case USE:
2901 /* Handle insn_list USE that a call to a pure function may generate. */
2902 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2903 for_costs);
2904 if (new_rtx != XEXP (x, 0))
2905 return gen_rtx_USE (GET_MODE (x), new_rtx);
2906 return x;
2907
2908 case CLOBBER:
2909 case ASM_OPERANDS:
2910 gcc_assert (insn && DEBUG_INSN_P (insn));
2911 break;
2912
2913 case SET:
2914 gcc_unreachable ();
2915
2916 default:
2917 break;
2918 }
2919
2920 /* Process each of our operands recursively. If any have changed, make a
2921 copy of the rtx. */
2922 fmt = GET_RTX_FORMAT (code);
2923 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2924 {
2925 if (*fmt == 'e')
2926 {
2927 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2928 for_costs);
2929 if (new_rtx != XEXP (x, i) && ! copied)
2930 {
2931 x = shallow_copy_rtx (x);
2932 copied = 1;
2933 }
2934 XEXP (x, i) = new_rtx;
2935 }
2936 else if (*fmt == 'E')
2937 {
2938 int copied_vec = 0;
2939 for (j = 0; j < XVECLEN (x, i); j++)
2940 {
2941 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2942 for_costs);
2943 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2944 {
2945 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2946 XVEC (x, i)->elem);
2947 if (! copied)
2948 {
2949 x = shallow_copy_rtx (x);
2950 copied = 1;
2951 }
2952 XVEC (x, i) = new_v;
2953 copied_vec = 1;
2954 }
2955 XVECEXP (x, i, j) = new_rtx;
2956 }
2957 }
2958 }
2959
2960 return x;
2961 }
2962
2963 rtx
2964 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2965 {
2966 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2967 }
2968
2969 /* Scan rtx X for modifications of elimination target registers. Update
2970 the table of eliminables to reflect the changed state. MEM_MODE is
2971 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2972
2973 static void
2974 elimination_effects (rtx x, enum machine_mode mem_mode)
2975 {
2976 enum rtx_code code = GET_CODE (x);
2977 struct elim_table *ep;
2978 int regno;
2979 int i, j;
2980 const char *fmt;
2981
2982 switch (code)
2983 {
2984 CASE_CONST_ANY:
2985 case CONST:
2986 case SYMBOL_REF:
2987 case CODE_LABEL:
2988 case PC:
2989 case CC0:
2990 case ASM_INPUT:
2991 case ADDR_VEC:
2992 case ADDR_DIFF_VEC:
2993 case RETURN:
2994 return;
2995
2996 case REG:
2997 regno = REGNO (x);
2998
2999 /* First handle the case where we encounter a bare register that
3000 is eliminable. Replace it with a PLUS. */
3001 if (regno < FIRST_PSEUDO_REGISTER)
3002 {
3003 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3004 ep++)
3005 if (ep->from_rtx == x && ep->can_eliminate)
3006 {
3007 if (! mem_mode)
3008 ep->ref_outside_mem = 1;
3009 return;
3010 }
3011
3012 }
3013 else if (reg_renumber[regno] < 0
3014 && reg_equivs
3015 && reg_equiv_constant (regno)
3016 && ! function_invariant_p (reg_equiv_constant (regno)))
3017 elimination_effects (reg_equiv_constant (regno), mem_mode);
3018 return;
3019
3020 case PRE_INC:
3021 case POST_INC:
3022 case PRE_DEC:
3023 case POST_DEC:
3024 case POST_MODIFY:
3025 case PRE_MODIFY:
3026 /* If we modify the source of an elimination rule, disable it. */
3027 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3028 if (ep->from_rtx == XEXP (x, 0))
3029 ep->can_eliminate = 0;
3030
3031 /* If we modify the target of an elimination rule by adding a constant,
3032 update its offset. If we modify the target in any other way, we'll
3033 have to disable the rule as well. */
3034 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3035 if (ep->to_rtx == XEXP (x, 0))
3036 {
3037 int size = GET_MODE_SIZE (mem_mode);
3038
3039 /* If more bytes than MEM_MODE are pushed, account for them. */
3040 #ifdef PUSH_ROUNDING
3041 if (ep->to_rtx == stack_pointer_rtx)
3042 size = PUSH_ROUNDING (size);
3043 #endif
3044 if (code == PRE_DEC || code == POST_DEC)
3045 ep->offset += size;
3046 else if (code == PRE_INC || code == POST_INC)
3047 ep->offset -= size;
3048 else if (code == PRE_MODIFY || code == POST_MODIFY)
3049 {
3050 if (GET_CODE (XEXP (x, 1)) == PLUS
3051 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3052 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3053 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3054 else
3055 ep->can_eliminate = 0;
3056 }
3057 }
3058
3059 /* These two aren't unary operators. */
3060 if (code == POST_MODIFY || code == PRE_MODIFY)
3061 break;
3062
3063 /* Fall through to generic unary operation case. */
3064 case STRICT_LOW_PART:
3065 case NEG: case NOT:
3066 case SIGN_EXTEND: case ZERO_EXTEND:
3067 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3068 case FLOAT: case FIX:
3069 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3070 case ABS:
3071 case SQRT:
3072 case FFS:
3073 case CLZ:
3074 case CTZ:
3075 case POPCOUNT:
3076 case PARITY:
3077 case BSWAP:
3078 elimination_effects (XEXP (x, 0), mem_mode);
3079 return;
3080
3081 case SUBREG:
3082 if (REG_P (SUBREG_REG (x))
3083 && (GET_MODE_SIZE (GET_MODE (x))
3084 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3085 && reg_equivs
3086 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3087 return;
3088
3089 elimination_effects (SUBREG_REG (x), mem_mode);
3090 return;
3091
3092 case USE:
3093 /* If using a register that is the source of an eliminate we still
3094 think can be performed, note it cannot be performed since we don't
3095 know how this register is used. */
3096 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3097 if (ep->from_rtx == XEXP (x, 0))
3098 ep->can_eliminate = 0;
3099
3100 elimination_effects (XEXP (x, 0), mem_mode);
3101 return;
3102
3103 case CLOBBER:
3104 /* If clobbering a register that is the replacement register for an
3105 elimination we still think can be performed, note that it cannot
3106 be performed. Otherwise, we need not be concerned about it. */
3107 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3108 if (ep->to_rtx == XEXP (x, 0))
3109 ep->can_eliminate = 0;
3110
3111 elimination_effects (XEXP (x, 0), mem_mode);
3112 return;
3113
3114 case SET:
3115 /* Check for setting a register that we know about. */
3116 if (REG_P (SET_DEST (x)))
3117 {
3118 /* See if this is setting the replacement register for an
3119 elimination.
3120
3121 If DEST is the hard frame pointer, we do nothing because we
3122 assume that all assignments to the frame pointer are for
3123 non-local gotos and are being done at a time when they are valid
3124 and do not disturb anything else. Some machines want to
3125 eliminate a fake argument pointer (or even a fake frame pointer)
3126 with either the real frame or the stack pointer. Assignments to
3127 the hard frame pointer must not prevent this elimination. */
3128
3129 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3130 ep++)
3131 if (ep->to_rtx == SET_DEST (x)
3132 && SET_DEST (x) != hard_frame_pointer_rtx)
3133 {
3134 /* If it is being incremented, adjust the offset. Otherwise,
3135 this elimination can't be done. */
3136 rtx src = SET_SRC (x);
3137
3138 if (GET_CODE (src) == PLUS
3139 && XEXP (src, 0) == SET_DEST (x)
3140 && CONST_INT_P (XEXP (src, 1)))
3141 ep->offset -= INTVAL (XEXP (src, 1));
3142 else
3143 ep->can_eliminate = 0;
3144 }
3145 }
3146
3147 elimination_effects (SET_DEST (x), VOIDmode);
3148 elimination_effects (SET_SRC (x), VOIDmode);
3149 return;
3150
3151 case MEM:
3152 /* Our only special processing is to pass the mode of the MEM to our
3153 recursive call. */
3154 elimination_effects (XEXP (x, 0), GET_MODE (x));
3155 return;
3156
3157 default:
3158 break;
3159 }
3160
3161 fmt = GET_RTX_FORMAT (code);
3162 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3163 {
3164 if (*fmt == 'e')
3165 elimination_effects (XEXP (x, i), mem_mode);
3166 else if (*fmt == 'E')
3167 for (j = 0; j < XVECLEN (x, i); j++)
3168 elimination_effects (XVECEXP (x, i, j), mem_mode);
3169 }
3170 }
3171
3172 /* Descend through rtx X and verify that no references to eliminable registers
3173 remain. If any do remain, mark the involved register as not
3174 eliminable. */
3175
3176 static void
3177 check_eliminable_occurrences (rtx x)
3178 {
3179 const char *fmt;
3180 int i;
3181 enum rtx_code code;
3182
3183 if (x == 0)
3184 return;
3185
3186 code = GET_CODE (x);
3187
3188 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3189 {
3190 struct elim_table *ep;
3191
3192 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3193 if (ep->from_rtx == x)
3194 ep->can_eliminate = 0;
3195 return;
3196 }
3197
3198 fmt = GET_RTX_FORMAT (code);
3199 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3200 {
3201 if (*fmt == 'e')
3202 check_eliminable_occurrences (XEXP (x, i));
3203 else if (*fmt == 'E')
3204 {
3205 int j;
3206 for (j = 0; j < XVECLEN (x, i); j++)
3207 check_eliminable_occurrences (XVECEXP (x, i, j));
3208 }
3209 }
3210 }
3211 \f
3212 /* Scan INSN and eliminate all eliminable registers in it.
3213
3214 If REPLACE is nonzero, do the replacement destructively. Also
3215 delete the insn as dead it if it is setting an eliminable register.
3216
3217 If REPLACE is zero, do all our allocations in reload_obstack.
3218
3219 If no eliminations were done and this insn doesn't require any elimination
3220 processing (these are not identical conditions: it might be updating sp,
3221 but not referencing fp; this needs to be seen during reload_as_needed so
3222 that the offset between fp and sp can be taken into consideration), zero
3223 is returned. Otherwise, 1 is returned. */
3224
3225 static int
3226 eliminate_regs_in_insn (rtx insn, int replace)
3227 {
3228 int icode = recog_memoized (insn);
3229 rtx old_body = PATTERN (insn);
3230 int insn_is_asm = asm_noperands (old_body) >= 0;
3231 rtx old_set = single_set (insn);
3232 rtx new_body;
3233 int val = 0;
3234 int i;
3235 rtx substed_operand[MAX_RECOG_OPERANDS];
3236 rtx orig_operand[MAX_RECOG_OPERANDS];
3237 struct elim_table *ep;
3238 rtx plus_src, plus_cst_src;
3239
3240 if (! insn_is_asm && icode < 0)
3241 {
3242 gcc_assert (DEBUG_INSN_P (insn)
3243 || GET_CODE (PATTERN (insn)) == USE
3244 || GET_CODE (PATTERN (insn)) == CLOBBER
3245 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3246 if (DEBUG_INSN_P (insn))
3247 INSN_VAR_LOCATION_LOC (insn)
3248 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3249 return 0;
3250 }
3251
3252 if (old_set != 0 && REG_P (SET_DEST (old_set))
3253 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3254 {
3255 /* Check for setting an eliminable register. */
3256 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3257 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3258 {
3259 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3260 /* If this is setting the frame pointer register to the
3261 hardware frame pointer register and this is an elimination
3262 that will be done (tested above), this insn is really
3263 adjusting the frame pointer downward to compensate for
3264 the adjustment done before a nonlocal goto. */
3265 if (ep->from == FRAME_POINTER_REGNUM
3266 && ep->to == HARD_FRAME_POINTER_REGNUM)
3267 {
3268 rtx base = SET_SRC (old_set);
3269 rtx base_insn = insn;
3270 HOST_WIDE_INT offset = 0;
3271
3272 while (base != ep->to_rtx)
3273 {
3274 rtx prev_insn, prev_set;
3275
3276 if (GET_CODE (base) == PLUS
3277 && CONST_INT_P (XEXP (base, 1)))
3278 {
3279 offset += INTVAL (XEXP (base, 1));
3280 base = XEXP (base, 0);
3281 }
3282 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3283 && (prev_set = single_set (prev_insn)) != 0
3284 && rtx_equal_p (SET_DEST (prev_set), base))
3285 {
3286 base = SET_SRC (prev_set);
3287 base_insn = prev_insn;
3288 }
3289 else
3290 break;
3291 }
3292
3293 if (base == ep->to_rtx)
3294 {
3295 rtx src = plus_constant (Pmode, ep->to_rtx,
3296 offset - ep->offset);
3297
3298 new_body = old_body;
3299 if (! replace)
3300 {
3301 new_body = copy_insn (old_body);
3302 if (REG_NOTES (insn))
3303 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3304 }
3305 PATTERN (insn) = new_body;
3306 old_set = single_set (insn);
3307
3308 /* First see if this insn remains valid when we
3309 make the change. If not, keep the INSN_CODE
3310 the same and let reload fit it up. */
3311 validate_change (insn, &SET_SRC (old_set), src, 1);
3312 validate_change (insn, &SET_DEST (old_set),
3313 ep->to_rtx, 1);
3314 if (! apply_change_group ())
3315 {
3316 SET_SRC (old_set) = src;
3317 SET_DEST (old_set) = ep->to_rtx;
3318 }
3319
3320 val = 1;
3321 goto done;
3322 }
3323 }
3324 #endif
3325
3326 /* In this case this insn isn't serving a useful purpose. We
3327 will delete it in reload_as_needed once we know that this
3328 elimination is, in fact, being done.
3329
3330 If REPLACE isn't set, we can't delete this insn, but needn't
3331 process it since it won't be used unless something changes. */
3332 if (replace)
3333 {
3334 delete_dead_insn (insn);
3335 return 1;
3336 }
3337 val = 1;
3338 goto done;
3339 }
3340 }
3341
3342 /* We allow one special case which happens to work on all machines we
3343 currently support: a single set with the source or a REG_EQUAL
3344 note being a PLUS of an eliminable register and a constant. */
3345 plus_src = plus_cst_src = 0;
3346 if (old_set && REG_P (SET_DEST (old_set)))
3347 {
3348 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3349 plus_src = SET_SRC (old_set);
3350 /* First see if the source is of the form (plus (...) CST). */
3351 if (plus_src
3352 && CONST_INT_P (XEXP (plus_src, 1)))
3353 plus_cst_src = plus_src;
3354 else if (REG_P (SET_SRC (old_set))
3355 || plus_src)
3356 {
3357 /* Otherwise, see if we have a REG_EQUAL note of the form
3358 (plus (...) CST). */
3359 rtx links;
3360 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3361 {
3362 if ((REG_NOTE_KIND (links) == REG_EQUAL
3363 || REG_NOTE_KIND (links) == REG_EQUIV)
3364 && GET_CODE (XEXP (links, 0)) == PLUS
3365 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3366 {
3367 plus_cst_src = XEXP (links, 0);
3368 break;
3369 }
3370 }
3371 }
3372
3373 /* Check that the first operand of the PLUS is a hard reg or
3374 the lowpart subreg of one. */
3375 if (plus_cst_src)
3376 {
3377 rtx reg = XEXP (plus_cst_src, 0);
3378 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3379 reg = SUBREG_REG (reg);
3380
3381 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3382 plus_cst_src = 0;
3383 }
3384 }
3385 if (plus_cst_src)
3386 {
3387 rtx reg = XEXP (plus_cst_src, 0);
3388 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3389
3390 if (GET_CODE (reg) == SUBREG)
3391 reg = SUBREG_REG (reg);
3392
3393 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3394 if (ep->from_rtx == reg && ep->can_eliminate)
3395 {
3396 rtx to_rtx = ep->to_rtx;
3397 offset += ep->offset;
3398 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3399
3400 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3401 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3402 to_rtx);
3403 /* If we have a nonzero offset, and the source is already
3404 a simple REG, the following transformation would
3405 increase the cost of the insn by replacing a simple REG
3406 with (plus (reg sp) CST). So try only when we already
3407 had a PLUS before. */
3408 if (offset == 0 || plus_src)
3409 {
3410 rtx new_src = plus_constant (GET_MODE (to_rtx),
3411 to_rtx, offset);
3412
3413 new_body = old_body;
3414 if (! replace)
3415 {
3416 new_body = copy_insn (old_body);
3417 if (REG_NOTES (insn))
3418 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3419 }
3420 PATTERN (insn) = new_body;
3421 old_set = single_set (insn);
3422
3423 /* First see if this insn remains valid when we make the
3424 change. If not, try to replace the whole pattern with
3425 a simple set (this may help if the original insn was a
3426 PARALLEL that was only recognized as single_set due to
3427 REG_UNUSED notes). If this isn't valid either, keep
3428 the INSN_CODE the same and let reload fix it up. */
3429 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3430 {
3431 rtx new_pat = gen_rtx_SET (VOIDmode,
3432 SET_DEST (old_set), new_src);
3433
3434 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3435 SET_SRC (old_set) = new_src;
3436 }
3437 }
3438 else
3439 break;
3440
3441 val = 1;
3442 /* This can't have an effect on elimination offsets, so skip right
3443 to the end. */
3444 goto done;
3445 }
3446 }
3447
3448 /* Determine the effects of this insn on elimination offsets. */
3449 elimination_effects (old_body, VOIDmode);
3450
3451 /* Eliminate all eliminable registers occurring in operands that
3452 can be handled by reload. */
3453 extract_insn (insn);
3454 for (i = 0; i < recog_data.n_operands; i++)
3455 {
3456 orig_operand[i] = recog_data.operand[i];
3457 substed_operand[i] = recog_data.operand[i];
3458
3459 /* For an asm statement, every operand is eliminable. */
3460 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3461 {
3462 bool is_set_src, in_plus;
3463
3464 /* Check for setting a register that we know about. */
3465 if (recog_data.operand_type[i] != OP_IN
3466 && REG_P (orig_operand[i]))
3467 {
3468 /* If we are assigning to a register that can be eliminated, it
3469 must be as part of a PARALLEL, since the code above handles
3470 single SETs. We must indicate that we can no longer
3471 eliminate this reg. */
3472 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3473 ep++)
3474 if (ep->from_rtx == orig_operand[i])
3475 ep->can_eliminate = 0;
3476 }
3477
3478 /* Companion to the above plus substitution, we can allow
3479 invariants as the source of a plain move. */
3480 is_set_src = false;
3481 if (old_set
3482 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3483 is_set_src = true;
3484 in_plus = false;
3485 if (plus_src
3486 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3487 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3488 in_plus = true;
3489
3490 substed_operand[i]
3491 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3492 replace ? insn : NULL_RTX,
3493 is_set_src || in_plus, false);
3494 if (substed_operand[i] != orig_operand[i])
3495 val = 1;
3496 /* Terminate the search in check_eliminable_occurrences at
3497 this point. */
3498 *recog_data.operand_loc[i] = 0;
3499
3500 /* If an output operand changed from a REG to a MEM and INSN is an
3501 insn, write a CLOBBER insn. */
3502 if (recog_data.operand_type[i] != OP_IN
3503 && REG_P (orig_operand[i])
3504 && MEM_P (substed_operand[i])
3505 && replace)
3506 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3507 }
3508 }
3509
3510 for (i = 0; i < recog_data.n_dups; i++)
3511 *recog_data.dup_loc[i]
3512 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3513
3514 /* If any eliminable remain, they aren't eliminable anymore. */
3515 check_eliminable_occurrences (old_body);
3516
3517 /* Substitute the operands; the new values are in the substed_operand
3518 array. */
3519 for (i = 0; i < recog_data.n_operands; i++)
3520 *recog_data.operand_loc[i] = substed_operand[i];
3521 for (i = 0; i < recog_data.n_dups; i++)
3522 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3523
3524 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3525 re-recognize the insn. We do this in case we had a simple addition
3526 but now can do this as a load-address. This saves an insn in this
3527 common case.
3528 If re-recognition fails, the old insn code number will still be used,
3529 and some register operands may have changed into PLUS expressions.
3530 These will be handled by find_reloads by loading them into a register
3531 again. */
3532
3533 if (val)
3534 {
3535 /* If we aren't replacing things permanently and we changed something,
3536 make another copy to ensure that all the RTL is new. Otherwise
3537 things can go wrong if find_reload swaps commutative operands
3538 and one is inside RTL that has been copied while the other is not. */
3539 new_body = old_body;
3540 if (! replace)
3541 {
3542 new_body = copy_insn (old_body);
3543 if (REG_NOTES (insn))
3544 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3545 }
3546 PATTERN (insn) = new_body;
3547
3548 /* If we had a move insn but now we don't, rerecognize it. This will
3549 cause spurious re-recognition if the old move had a PARALLEL since
3550 the new one still will, but we can't call single_set without
3551 having put NEW_BODY into the insn and the re-recognition won't
3552 hurt in this rare case. */
3553 /* ??? Why this huge if statement - why don't we just rerecognize the
3554 thing always? */
3555 if (! insn_is_asm
3556 && old_set != 0
3557 && ((REG_P (SET_SRC (old_set))
3558 && (GET_CODE (new_body) != SET
3559 || !REG_P (SET_SRC (new_body))))
3560 /* If this was a load from or store to memory, compare
3561 the MEM in recog_data.operand to the one in the insn.
3562 If they are not equal, then rerecognize the insn. */
3563 || (old_set != 0
3564 && ((MEM_P (SET_SRC (old_set))
3565 && SET_SRC (old_set) != recog_data.operand[1])
3566 || (MEM_P (SET_DEST (old_set))
3567 && SET_DEST (old_set) != recog_data.operand[0])))
3568 /* If this was an add insn before, rerecognize. */
3569 || GET_CODE (SET_SRC (old_set)) == PLUS))
3570 {
3571 int new_icode = recog (PATTERN (insn), insn, 0);
3572 if (new_icode >= 0)
3573 INSN_CODE (insn) = new_icode;
3574 }
3575 }
3576
3577 /* Restore the old body. If there were any changes to it, we made a copy
3578 of it while the changes were still in place, so we'll correctly return
3579 a modified insn below. */
3580 if (! replace)
3581 {
3582 /* Restore the old body. */
3583 for (i = 0; i < recog_data.n_operands; i++)
3584 /* Restoring a top-level match_parallel would clobber the new_body
3585 we installed in the insn. */
3586 if (recog_data.operand_loc[i] != &PATTERN (insn))
3587 *recog_data.operand_loc[i] = orig_operand[i];
3588 for (i = 0; i < recog_data.n_dups; i++)
3589 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3590 }
3591
3592 /* Update all elimination pairs to reflect the status after the current
3593 insn. The changes we make were determined by the earlier call to
3594 elimination_effects.
3595
3596 We also detect cases where register elimination cannot be done,
3597 namely, if a register would be both changed and referenced outside a MEM
3598 in the resulting insn since such an insn is often undefined and, even if
3599 not, we cannot know what meaning will be given to it. Note that it is
3600 valid to have a register used in an address in an insn that changes it
3601 (presumably with a pre- or post-increment or decrement).
3602
3603 If anything changes, return nonzero. */
3604
3605 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3606 {
3607 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3608 ep->can_eliminate = 0;
3609
3610 ep->ref_outside_mem = 0;
3611
3612 if (ep->previous_offset != ep->offset)
3613 val = 1;
3614 }
3615
3616 done:
3617 /* If we changed something, perform elimination in REG_NOTES. This is
3618 needed even when REPLACE is zero because a REG_DEAD note might refer
3619 to a register that we eliminate and could cause a different number
3620 of spill registers to be needed in the final reload pass than in
3621 the pre-passes. */
3622 if (val && REG_NOTES (insn) != 0)
3623 REG_NOTES (insn)
3624 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3625 false);
3626
3627 return val;
3628 }
3629
3630 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3631 register allocator. INSN is the instruction we need to examine, we perform
3632 eliminations in its operands and record cases where eliminating a reg with
3633 an invariant equivalence would add extra cost. */
3634
3635 static void
3636 elimination_costs_in_insn (rtx insn)
3637 {
3638 int icode = recog_memoized (insn);
3639 rtx old_body = PATTERN (insn);
3640 int insn_is_asm = asm_noperands (old_body) >= 0;
3641 rtx old_set = single_set (insn);
3642 int i;
3643 rtx orig_operand[MAX_RECOG_OPERANDS];
3644 rtx orig_dup[MAX_RECOG_OPERANDS];
3645 struct elim_table *ep;
3646 rtx plus_src, plus_cst_src;
3647 bool sets_reg_p;
3648
3649 if (! insn_is_asm && icode < 0)
3650 {
3651 gcc_assert (DEBUG_INSN_P (insn)
3652 || GET_CODE (PATTERN (insn)) == USE
3653 || GET_CODE (PATTERN (insn)) == CLOBBER
3654 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3655 return;
3656 }
3657
3658 if (old_set != 0 && REG_P (SET_DEST (old_set))
3659 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3660 {
3661 /* Check for setting an eliminable register. */
3662 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3663 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3664 return;
3665 }
3666
3667 /* We allow one special case which happens to work on all machines we
3668 currently support: a single set with the source or a REG_EQUAL
3669 note being a PLUS of an eliminable register and a constant. */
3670 plus_src = plus_cst_src = 0;
3671 sets_reg_p = false;
3672 if (old_set && REG_P (SET_DEST (old_set)))
3673 {
3674 sets_reg_p = true;
3675 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3676 plus_src = SET_SRC (old_set);
3677 /* First see if the source is of the form (plus (...) CST). */
3678 if (plus_src
3679 && CONST_INT_P (XEXP (plus_src, 1)))
3680 plus_cst_src = plus_src;
3681 else if (REG_P (SET_SRC (old_set))
3682 || plus_src)
3683 {
3684 /* Otherwise, see if we have a REG_EQUAL note of the form
3685 (plus (...) CST). */
3686 rtx links;
3687 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3688 {
3689 if ((REG_NOTE_KIND (links) == REG_EQUAL
3690 || REG_NOTE_KIND (links) == REG_EQUIV)
3691 && GET_CODE (XEXP (links, 0)) == PLUS
3692 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3693 {
3694 plus_cst_src = XEXP (links, 0);
3695 break;
3696 }
3697 }
3698 }
3699 }
3700
3701 /* Determine the effects of this insn on elimination offsets. */
3702 elimination_effects (old_body, VOIDmode);
3703
3704 /* Eliminate all eliminable registers occurring in operands that
3705 can be handled by reload. */
3706 extract_insn (insn);
3707 for (i = 0; i < recog_data.n_dups; i++)
3708 orig_dup[i] = *recog_data.dup_loc[i];
3709
3710 for (i = 0; i < recog_data.n_operands; i++)
3711 {
3712 orig_operand[i] = recog_data.operand[i];
3713
3714 /* For an asm statement, every operand is eliminable. */
3715 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3716 {
3717 bool is_set_src, in_plus;
3718
3719 /* Check for setting a register that we know about. */
3720 if (recog_data.operand_type[i] != OP_IN
3721 && REG_P (orig_operand[i]))
3722 {
3723 /* If we are assigning to a register that can be eliminated, it
3724 must be as part of a PARALLEL, since the code above handles
3725 single SETs. We must indicate that we can no longer
3726 eliminate this reg. */
3727 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3728 ep++)
3729 if (ep->from_rtx == orig_operand[i])
3730 ep->can_eliminate = 0;
3731 }
3732
3733 /* Companion to the above plus substitution, we can allow
3734 invariants as the source of a plain move. */
3735 is_set_src = false;
3736 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3737 is_set_src = true;
3738 if (is_set_src && !sets_reg_p)
3739 note_reg_elim_costly (&SET_SRC (old_set), insn);
3740 in_plus = false;
3741 if (plus_src && sets_reg_p
3742 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3743 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3744 in_plus = true;
3745
3746 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3747 NULL_RTX,
3748 is_set_src || in_plus, true);
3749 /* Terminate the search in check_eliminable_occurrences at
3750 this point. */
3751 *recog_data.operand_loc[i] = 0;
3752 }
3753 }
3754
3755 for (i = 0; i < recog_data.n_dups; i++)
3756 *recog_data.dup_loc[i]
3757 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3758
3759 /* If any eliminable remain, they aren't eliminable anymore. */
3760 check_eliminable_occurrences (old_body);
3761
3762 /* Restore the old body. */
3763 for (i = 0; i < recog_data.n_operands; i++)
3764 *recog_data.operand_loc[i] = orig_operand[i];
3765 for (i = 0; i < recog_data.n_dups; i++)
3766 *recog_data.dup_loc[i] = orig_dup[i];
3767
3768 /* Update all elimination pairs to reflect the status after the current
3769 insn. The changes we make were determined by the earlier call to
3770 elimination_effects. */
3771
3772 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3773 {
3774 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3775 ep->can_eliminate = 0;
3776
3777 ep->ref_outside_mem = 0;
3778 }
3779
3780 return;
3781 }
3782
3783 /* Loop through all elimination pairs.
3784 Recalculate the number not at initial offset.
3785
3786 Compute the maximum offset (minimum offset if the stack does not
3787 grow downward) for each elimination pair. */
3788
3789 static void
3790 update_eliminable_offsets (void)
3791 {
3792 struct elim_table *ep;
3793
3794 num_not_at_initial_offset = 0;
3795 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3796 {
3797 ep->previous_offset = ep->offset;
3798 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3799 num_not_at_initial_offset++;
3800 }
3801 }
3802
3803 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3804 replacement we currently believe is valid, mark it as not eliminable if X
3805 modifies DEST in any way other than by adding a constant integer to it.
3806
3807 If DEST is the frame pointer, we do nothing because we assume that
3808 all assignments to the hard frame pointer are nonlocal gotos and are being
3809 done at a time when they are valid and do not disturb anything else.
3810 Some machines want to eliminate a fake argument pointer with either the
3811 frame or stack pointer. Assignments to the hard frame pointer must not
3812 prevent this elimination.
3813
3814 Called via note_stores from reload before starting its passes to scan
3815 the insns of the function. */
3816
3817 static void
3818 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3819 {
3820 unsigned int i;
3821
3822 /* A SUBREG of a hard register here is just changing its mode. We should
3823 not see a SUBREG of an eliminable hard register, but check just in
3824 case. */
3825 if (GET_CODE (dest) == SUBREG)
3826 dest = SUBREG_REG (dest);
3827
3828 if (dest == hard_frame_pointer_rtx)
3829 return;
3830
3831 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3832 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3833 && (GET_CODE (x) != SET
3834 || GET_CODE (SET_SRC (x)) != PLUS
3835 || XEXP (SET_SRC (x), 0) != dest
3836 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3837 {
3838 reg_eliminate[i].can_eliminate_previous
3839 = reg_eliminate[i].can_eliminate = 0;
3840 num_eliminable--;
3841 }
3842 }
3843
3844 /* Verify that the initial elimination offsets did not change since the
3845 last call to set_initial_elim_offsets. This is used to catch cases
3846 where something illegal happened during reload_as_needed that could
3847 cause incorrect code to be generated if we did not check for it. */
3848
3849 static bool
3850 verify_initial_elim_offsets (void)
3851 {
3852 HOST_WIDE_INT t;
3853
3854 if (!num_eliminable)
3855 return true;
3856
3857 #ifdef ELIMINABLE_REGS
3858 {
3859 struct elim_table *ep;
3860
3861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3862 {
3863 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3864 if (t != ep->initial_offset)
3865 return false;
3866 }
3867 }
3868 #else
3869 INITIAL_FRAME_POINTER_OFFSET (t);
3870 if (t != reg_eliminate[0].initial_offset)
3871 return false;
3872 #endif
3873
3874 return true;
3875 }
3876
3877 /* Reset all offsets on eliminable registers to their initial values. */
3878
3879 static void
3880 set_initial_elim_offsets (void)
3881 {
3882 struct elim_table *ep = reg_eliminate;
3883
3884 #ifdef ELIMINABLE_REGS
3885 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3886 {
3887 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 }
3890 #else
3891 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3892 ep->previous_offset = ep->offset = ep->initial_offset;
3893 #endif
3894
3895 num_not_at_initial_offset = 0;
3896 }
3897
3898 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3899
3900 static void
3901 set_initial_eh_label_offset (rtx label)
3902 {
3903 set_label_offsets (label, NULL_RTX, 1);
3904 }
3905
3906 /* Initialize the known label offsets.
3907 Set a known offset for each forced label to be at the initial offset
3908 of each elimination. We do this because we assume that all
3909 computed jumps occur from a location where each elimination is
3910 at its initial offset.
3911 For all other labels, show that we don't know the offsets. */
3912
3913 static void
3914 set_initial_label_offsets (void)
3915 {
3916 rtx x;
3917 memset (offsets_known_at, 0, num_labels);
3918
3919 for (x = forced_labels; x; x = XEXP (x, 1))
3920 if (XEXP (x, 0))
3921 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3922
3923 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
3924 if (XEXP (x, 0))
3925 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3926
3927 for_each_eh_label (set_initial_eh_label_offset);
3928 }
3929
3930 /* Set all elimination offsets to the known values for the code label given
3931 by INSN. */
3932
3933 static void
3934 set_offsets_for_label (rtx insn)
3935 {
3936 unsigned int i;
3937 int label_nr = CODE_LABEL_NUMBER (insn);
3938 struct elim_table *ep;
3939
3940 num_not_at_initial_offset = 0;
3941 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3942 {
3943 ep->offset = ep->previous_offset
3944 = offsets_at[label_nr - first_label_num][i];
3945 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3946 num_not_at_initial_offset++;
3947 }
3948 }
3949
3950 /* See if anything that happened changes which eliminations are valid.
3951 For example, on the SPARC, whether or not the frame pointer can
3952 be eliminated can depend on what registers have been used. We need
3953 not check some conditions again (such as flag_omit_frame_pointer)
3954 since they can't have changed. */
3955
3956 static void
3957 update_eliminables (HARD_REG_SET *pset)
3958 {
3959 int previous_frame_pointer_needed = frame_pointer_needed;
3960 struct elim_table *ep;
3961
3962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3963 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3964 && targetm.frame_pointer_required ())
3965 #ifdef ELIMINABLE_REGS
3966 || ! targetm.can_eliminate (ep->from, ep->to)
3967 #endif
3968 )
3969 ep->can_eliminate = 0;
3970
3971 /* Look for the case where we have discovered that we can't replace
3972 register A with register B and that means that we will now be
3973 trying to replace register A with register C. This means we can
3974 no longer replace register C with register B and we need to disable
3975 such an elimination, if it exists. This occurs often with A == ap,
3976 B == sp, and C == fp. */
3977
3978 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3979 {
3980 struct elim_table *op;
3981 int new_to = -1;
3982
3983 if (! ep->can_eliminate && ep->can_eliminate_previous)
3984 {
3985 /* Find the current elimination for ep->from, if there is a
3986 new one. */
3987 for (op = reg_eliminate;
3988 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3989 if (op->from == ep->from && op->can_eliminate)
3990 {
3991 new_to = op->to;
3992 break;
3993 }
3994
3995 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3996 disable it. */
3997 for (op = reg_eliminate;
3998 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3999 if (op->from == new_to && op->to == ep->to)
4000 op->can_eliminate = 0;
4001 }
4002 }
4003
4004 /* See if any registers that we thought we could eliminate the previous
4005 time are no longer eliminable. If so, something has changed and we
4006 must spill the register. Also, recompute the number of eliminable
4007 registers and see if the frame pointer is needed; it is if there is
4008 no elimination of the frame pointer that we can perform. */
4009
4010 frame_pointer_needed = 1;
4011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4012 {
4013 if (ep->can_eliminate
4014 && ep->from == FRAME_POINTER_REGNUM
4015 && ep->to != HARD_FRAME_POINTER_REGNUM
4016 && (! SUPPORTS_STACK_ALIGNMENT
4017 || ! crtl->stack_realign_needed))
4018 frame_pointer_needed = 0;
4019
4020 if (! ep->can_eliminate && ep->can_eliminate_previous)
4021 {
4022 ep->can_eliminate_previous = 0;
4023 SET_HARD_REG_BIT (*pset, ep->from);
4024 num_eliminable--;
4025 }
4026 }
4027
4028 /* If we didn't need a frame pointer last time, but we do now, spill
4029 the hard frame pointer. */
4030 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4031 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4032 }
4033
4034 /* Return true if X is used as the target register of an elimination. */
4035
4036 bool
4037 elimination_target_reg_p (rtx x)
4038 {
4039 struct elim_table *ep;
4040
4041 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4042 if (ep->to_rtx == x && ep->can_eliminate)
4043 return true;
4044
4045 return false;
4046 }
4047
4048 /* Initialize the table of registers to eliminate.
4049 Pre-condition: global flag frame_pointer_needed has been set before
4050 calling this function. */
4051
4052 static void
4053 init_elim_table (void)
4054 {
4055 struct elim_table *ep;
4056 #ifdef ELIMINABLE_REGS
4057 const struct elim_table_1 *ep1;
4058 #endif
4059
4060 if (!reg_eliminate)
4061 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4062
4063 num_eliminable = 0;
4064
4065 #ifdef ELIMINABLE_REGS
4066 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4067 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4068 {
4069 ep->from = ep1->from;
4070 ep->to = ep1->to;
4071 ep->can_eliminate = ep->can_eliminate_previous
4072 = (targetm.can_eliminate (ep->from, ep->to)
4073 && ! (ep->to == STACK_POINTER_REGNUM
4074 && frame_pointer_needed
4075 && (! SUPPORTS_STACK_ALIGNMENT
4076 || ! stack_realign_fp)));
4077 }
4078 #else
4079 reg_eliminate[0].from = reg_eliminate_1[0].from;
4080 reg_eliminate[0].to = reg_eliminate_1[0].to;
4081 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4082 = ! frame_pointer_needed;
4083 #endif
4084
4085 /* Count the number of eliminable registers and build the FROM and TO
4086 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4087 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4088 We depend on this. */
4089 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4090 {
4091 num_eliminable += ep->can_eliminate;
4092 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4093 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4094 }
4095 }
4096
4097 /* Find all the pseudo registers that didn't get hard regs
4098 but do have known equivalent constants or memory slots.
4099 These include parameters (known equivalent to parameter slots)
4100 and cse'd or loop-moved constant memory addresses.
4101
4102 Record constant equivalents in reg_equiv_constant
4103 so they will be substituted by find_reloads.
4104 Record memory equivalents in reg_mem_equiv so they can
4105 be substituted eventually by altering the REG-rtx's. */
4106
4107 static void
4108 init_eliminable_invariants (rtx first, bool do_subregs)
4109 {
4110 int i;
4111 rtx insn;
4112
4113 grow_reg_equivs ();
4114 if (do_subregs)
4115 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4116 else
4117 reg_max_ref_width = NULL;
4118
4119 num_eliminable_invariants = 0;
4120
4121 first_label_num = get_first_label_num ();
4122 num_labels = max_label_num () - first_label_num;
4123
4124 /* Allocate the tables used to store offset information at labels. */
4125 offsets_known_at = XNEWVEC (char, num_labels);
4126 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4127
4128 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4129 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4130 find largest such for each pseudo. FIRST is the head of the insn
4131 list. */
4132
4133 for (insn = first; insn; insn = NEXT_INSN (insn))
4134 {
4135 rtx set = single_set (insn);
4136
4137 /* We may introduce USEs that we want to remove at the end, so
4138 we'll mark them with QImode. Make sure there are no
4139 previously-marked insns left by say regmove. */
4140 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4141 && GET_MODE (insn) != VOIDmode)
4142 PUT_MODE (insn, VOIDmode);
4143
4144 if (do_subregs && NONDEBUG_INSN_P (insn))
4145 scan_paradoxical_subregs (PATTERN (insn));
4146
4147 if (set != 0 && REG_P (SET_DEST (set)))
4148 {
4149 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4150 rtx x;
4151
4152 if (! note)
4153 continue;
4154
4155 i = REGNO (SET_DEST (set));
4156 x = XEXP (note, 0);
4157
4158 if (i <= LAST_VIRTUAL_REGISTER)
4159 continue;
4160
4161 /* If flag_pic and we have constant, verify it's legitimate. */
4162 if (!CONSTANT_P (x)
4163 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4164 {
4165 /* It can happen that a REG_EQUIV note contains a MEM
4166 that is not a legitimate memory operand. As later
4167 stages of reload assume that all addresses found
4168 in the reg_equiv_* arrays were originally legitimate,
4169 we ignore such REG_EQUIV notes. */
4170 if (memory_operand (x, VOIDmode))
4171 {
4172 /* Always unshare the equivalence, so we can
4173 substitute into this insn without touching the
4174 equivalence. */
4175 reg_equiv_memory_loc (i) = copy_rtx (x);
4176 }
4177 else if (function_invariant_p (x))
4178 {
4179 enum machine_mode mode;
4180
4181 mode = GET_MODE (SET_DEST (set));
4182 if (GET_CODE (x) == PLUS)
4183 {
4184 /* This is PLUS of frame pointer and a constant,
4185 and might be shared. Unshare it. */
4186 reg_equiv_invariant (i) = copy_rtx (x);
4187 num_eliminable_invariants++;
4188 }
4189 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4190 {
4191 reg_equiv_invariant (i) = x;
4192 num_eliminable_invariants++;
4193 }
4194 else if (targetm.legitimate_constant_p (mode, x))
4195 reg_equiv_constant (i) = x;
4196 else
4197 {
4198 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4199 if (! reg_equiv_memory_loc (i))
4200 reg_equiv_init (i) = NULL_RTX;
4201 }
4202 }
4203 else
4204 {
4205 reg_equiv_init (i) = NULL_RTX;
4206 continue;
4207 }
4208 }
4209 else
4210 reg_equiv_init (i) = NULL_RTX;
4211 }
4212 }
4213
4214 if (dump_file)
4215 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4216 if (reg_equiv_init (i))
4217 {
4218 fprintf (dump_file, "init_insns for %u: ", i);
4219 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4220 fprintf (dump_file, "\n");
4221 }
4222 }
4223
4224 /* Indicate that we no longer have known memory locations or constants.
4225 Free all data involved in tracking these. */
4226
4227 static void
4228 free_reg_equiv (void)
4229 {
4230 int i;
4231
4232 free (offsets_known_at);
4233 free (offsets_at);
4234 offsets_at = 0;
4235 offsets_known_at = 0;
4236
4237 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4238 if (reg_equiv_alt_mem_list (i))
4239 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4240 vec_free (reg_equivs);
4241 }
4242 \f
4243 /* Kick all pseudos out of hard register REGNO.
4244
4245 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4246 because we found we can't eliminate some register. In the case, no pseudos
4247 are allowed to be in the register, even if they are only in a block that
4248 doesn't require spill registers, unlike the case when we are spilling this
4249 hard reg to produce another spill register.
4250
4251 Return nonzero if any pseudos needed to be kicked out. */
4252
4253 static void
4254 spill_hard_reg (unsigned int regno, int cant_eliminate)
4255 {
4256 int i;
4257
4258 if (cant_eliminate)
4259 {
4260 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4261 df_set_regs_ever_live (regno, true);
4262 }
4263
4264 /* Spill every pseudo reg that was allocated to this reg
4265 or to something that overlaps this reg. */
4266
4267 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4268 if (reg_renumber[i] >= 0
4269 && (unsigned int) reg_renumber[i] <= regno
4270 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4271 SET_REGNO_REG_SET (&spilled_pseudos, i);
4272 }
4273
4274 /* After find_reload_regs has been run for all insn that need reloads,
4275 and/or spill_hard_regs was called, this function is used to actually
4276 spill pseudo registers and try to reallocate them. It also sets up the
4277 spill_regs array for use by choose_reload_regs. */
4278
4279 static int
4280 finish_spills (int global)
4281 {
4282 struct insn_chain *chain;
4283 int something_changed = 0;
4284 unsigned i;
4285 reg_set_iterator rsi;
4286
4287 /* Build the spill_regs array for the function. */
4288 /* If there are some registers still to eliminate and one of the spill regs
4289 wasn't ever used before, additional stack space may have to be
4290 allocated to store this register. Thus, we may have changed the offset
4291 between the stack and frame pointers, so mark that something has changed.
4292
4293 One might think that we need only set VAL to 1 if this is a call-used
4294 register. However, the set of registers that must be saved by the
4295 prologue is not identical to the call-used set. For example, the
4296 register used by the call insn for the return PC is a call-used register,
4297 but must be saved by the prologue. */
4298
4299 n_spills = 0;
4300 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4301 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4302 {
4303 spill_reg_order[i] = n_spills;
4304 spill_regs[n_spills++] = i;
4305 if (num_eliminable && ! df_regs_ever_live_p (i))
4306 something_changed = 1;
4307 df_set_regs_ever_live (i, true);
4308 }
4309 else
4310 spill_reg_order[i] = -1;
4311
4312 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4313 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4314 {
4315 /* Record the current hard register the pseudo is allocated to
4316 in pseudo_previous_regs so we avoid reallocating it to the
4317 same hard reg in a later pass. */
4318 gcc_assert (reg_renumber[i] >= 0);
4319
4320 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4321 /* Mark it as no longer having a hard register home. */
4322 reg_renumber[i] = -1;
4323 if (ira_conflicts_p)
4324 /* Inform IRA about the change. */
4325 ira_mark_allocation_change (i);
4326 /* We will need to scan everything again. */
4327 something_changed = 1;
4328 }
4329
4330 /* Retry global register allocation if possible. */
4331 if (global && ira_conflicts_p)
4332 {
4333 unsigned int n;
4334
4335 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4336 /* For every insn that needs reloads, set the registers used as spill
4337 regs in pseudo_forbidden_regs for every pseudo live across the
4338 insn. */
4339 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4340 {
4341 EXECUTE_IF_SET_IN_REG_SET
4342 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4343 {
4344 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4345 chain->used_spill_regs);
4346 }
4347 EXECUTE_IF_SET_IN_REG_SET
4348 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4349 {
4350 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4351 chain->used_spill_regs);
4352 }
4353 }
4354
4355 /* Retry allocating the pseudos spilled in IRA and the
4356 reload. For each reg, merge the various reg sets that
4357 indicate which hard regs can't be used, and call
4358 ira_reassign_pseudos. */
4359 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4360 if (reg_old_renumber[i] != reg_renumber[i])
4361 {
4362 if (reg_renumber[i] < 0)
4363 temp_pseudo_reg_arr[n++] = i;
4364 else
4365 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4366 }
4367 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4368 bad_spill_regs_global,
4369 pseudo_forbidden_regs, pseudo_previous_regs,
4370 &spilled_pseudos))
4371 something_changed = 1;
4372 }
4373 /* Fix up the register information in the insn chain.
4374 This involves deleting those of the spilled pseudos which did not get
4375 a new hard register home from the live_{before,after} sets. */
4376 for (chain = reload_insn_chain; chain; chain = chain->next)
4377 {
4378 HARD_REG_SET used_by_pseudos;
4379 HARD_REG_SET used_by_pseudos2;
4380
4381 if (! ira_conflicts_p)
4382 {
4383 /* Don't do it for IRA because IRA and the reload still can
4384 assign hard registers to the spilled pseudos on next
4385 reload iterations. */
4386 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4387 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4388 }
4389 /* Mark any unallocated hard regs as available for spills. That
4390 makes inheritance work somewhat better. */
4391 if (chain->need_reload)
4392 {
4393 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4394 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4395 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4396
4397 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4398 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4399 /* Value of chain->used_spill_regs from previous iteration
4400 may be not included in the value calculated here because
4401 of possible removing caller-saves insns (see function
4402 delete_caller_save_insns. */
4403 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4404 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4405 }
4406 }
4407
4408 CLEAR_REG_SET (&changed_allocation_pseudos);
4409 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4410 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4411 {
4412 int regno = reg_renumber[i];
4413 if (reg_old_renumber[i] == regno)
4414 continue;
4415
4416 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4417
4418 alter_reg (i, reg_old_renumber[i], false);
4419 reg_old_renumber[i] = regno;
4420 if (dump_file)
4421 {
4422 if (regno == -1)
4423 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4424 else
4425 fprintf (dump_file, " Register %d now in %d.\n\n",
4426 i, reg_renumber[i]);
4427 }
4428 }
4429
4430 return something_changed;
4431 }
4432 \f
4433 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4434
4435 static void
4436 scan_paradoxical_subregs (rtx x)
4437 {
4438 int i;
4439 const char *fmt;
4440 enum rtx_code code = GET_CODE (x);
4441
4442 switch (code)
4443 {
4444 case REG:
4445 case CONST:
4446 case SYMBOL_REF:
4447 case LABEL_REF:
4448 CASE_CONST_ANY:
4449 case CC0:
4450 case PC:
4451 case USE:
4452 case CLOBBER:
4453 return;
4454
4455 case SUBREG:
4456 if (REG_P (SUBREG_REG (x))
4457 && (GET_MODE_SIZE (GET_MODE (x))
4458 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4459 {
4460 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4461 = GET_MODE_SIZE (GET_MODE (x));
4462 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4463 }
4464 return;
4465
4466 default:
4467 break;
4468 }
4469
4470 fmt = GET_RTX_FORMAT (code);
4471 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4472 {
4473 if (fmt[i] == 'e')
4474 scan_paradoxical_subregs (XEXP (x, i));
4475 else if (fmt[i] == 'E')
4476 {
4477 int j;
4478 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4479 scan_paradoxical_subregs (XVECEXP (x, i, j));
4480 }
4481 }
4482 }
4483
4484 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4485 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4486 and apply the corresponding narrowing subreg to *OTHER_PTR.
4487 Return true if the operands were changed, false otherwise. */
4488
4489 static bool
4490 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4491 {
4492 rtx op, inner, other, tem;
4493
4494 op = *op_ptr;
4495 if (!paradoxical_subreg_p (op))
4496 return false;
4497 inner = SUBREG_REG (op);
4498
4499 other = *other_ptr;
4500 tem = gen_lowpart_common (GET_MODE (inner), other);
4501 if (!tem)
4502 return false;
4503
4504 /* If the lowpart operation turned a hard register into a subreg,
4505 rather than simplifying it to another hard register, then the
4506 mode change cannot be properly represented. For example, OTHER
4507 might be valid in its current mode, but not in the new one. */
4508 if (GET_CODE (tem) == SUBREG
4509 && REG_P (other)
4510 && HARD_REGISTER_P (other))
4511 return false;
4512
4513 *op_ptr = inner;
4514 *other_ptr = tem;
4515 return true;
4516 }
4517 \f
4518 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4519 examine all of the reload insns between PREV and NEXT exclusive, and
4520 annotate all that may trap. */
4521
4522 static void
4523 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
4524 {
4525 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4526 if (note == NULL)
4527 return;
4528 if (!insn_could_throw_p (insn))
4529 remove_note (insn, note);
4530 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4531 }
4532
4533 /* Reload pseudo-registers into hard regs around each insn as needed.
4534 Additional register load insns are output before the insn that needs it
4535 and perhaps store insns after insns that modify the reloaded pseudo reg.
4536
4537 reg_last_reload_reg and reg_reloaded_contents keep track of
4538 which registers are already available in reload registers.
4539 We update these for the reloads that we perform,
4540 as the insns are scanned. */
4541
4542 static void
4543 reload_as_needed (int live_known)
4544 {
4545 struct insn_chain *chain;
4546 #if defined (AUTO_INC_DEC)
4547 int i;
4548 #endif
4549 rtx x, marker;
4550
4551 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4552 memset (spill_reg_store, 0, sizeof spill_reg_store);
4553 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4554 INIT_REG_SET (&reg_has_output_reload);
4555 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4556 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4557
4558 set_initial_elim_offsets ();
4559
4560 /* Generate a marker insn that we will move around. */
4561 marker = emit_note (NOTE_INSN_DELETED);
4562 unlink_insn_chain (marker, marker);
4563
4564 for (chain = reload_insn_chain; chain; chain = chain->next)
4565 {
4566 rtx prev = 0;
4567 rtx insn = chain->insn;
4568 rtx old_next = NEXT_INSN (insn);
4569 #ifdef AUTO_INC_DEC
4570 rtx old_prev = PREV_INSN (insn);
4571 #endif
4572
4573 /* If we pass a label, copy the offsets from the label information
4574 into the current offsets of each elimination. */
4575 if (LABEL_P (insn))
4576 set_offsets_for_label (insn);
4577
4578 else if (INSN_P (insn))
4579 {
4580 regset_head regs_to_forget;
4581 INIT_REG_SET (&regs_to_forget);
4582 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4583
4584 /* If this is a USE and CLOBBER of a MEM, ensure that any
4585 references to eliminable registers have been removed. */
4586
4587 if ((GET_CODE (PATTERN (insn)) == USE
4588 || GET_CODE (PATTERN (insn)) == CLOBBER)
4589 && MEM_P (XEXP (PATTERN (insn), 0)))
4590 XEXP (XEXP (PATTERN (insn), 0), 0)
4591 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4592 GET_MODE (XEXP (PATTERN (insn), 0)),
4593 NULL_RTX);
4594
4595 /* If we need to do register elimination processing, do so.
4596 This might delete the insn, in which case we are done. */
4597 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4598 {
4599 eliminate_regs_in_insn (insn, 1);
4600 if (NOTE_P (insn))
4601 {
4602 update_eliminable_offsets ();
4603 CLEAR_REG_SET (&regs_to_forget);
4604 continue;
4605 }
4606 }
4607
4608 /* If need_elim is nonzero but need_reload is zero, one might think
4609 that we could simply set n_reloads to 0. However, find_reloads
4610 could have done some manipulation of the insn (such as swapping
4611 commutative operands), and these manipulations are lost during
4612 the first pass for every insn that needs register elimination.
4613 So the actions of find_reloads must be redone here. */
4614
4615 if (! chain->need_elim && ! chain->need_reload
4616 && ! chain->need_operand_change)
4617 n_reloads = 0;
4618 /* First find the pseudo regs that must be reloaded for this insn.
4619 This info is returned in the tables reload_... (see reload.h).
4620 Also modify the body of INSN by substituting RELOAD
4621 rtx's for those pseudo regs. */
4622 else
4623 {
4624 CLEAR_REG_SET (&reg_has_output_reload);
4625 CLEAR_HARD_REG_SET (reg_is_output_reload);
4626
4627 find_reloads (insn, 1, spill_indirect_levels, live_known,
4628 spill_reg_order);
4629 }
4630
4631 if (n_reloads > 0)
4632 {
4633 rtx next = NEXT_INSN (insn);
4634 rtx p;
4635
4636 /* ??? PREV can get deleted by reload inheritance.
4637 Work around this by emitting a marker note. */
4638 prev = PREV_INSN (insn);
4639 reorder_insns_nobb (marker, marker, prev);
4640
4641 /* Now compute which reload regs to reload them into. Perhaps
4642 reusing reload regs from previous insns, or else output
4643 load insns to reload them. Maybe output store insns too.
4644 Record the choices of reload reg in reload_reg_rtx. */
4645 choose_reload_regs (chain);
4646
4647 /* Generate the insns to reload operands into or out of
4648 their reload regs. */
4649 emit_reload_insns (chain);
4650
4651 /* Substitute the chosen reload regs from reload_reg_rtx
4652 into the insn's body (or perhaps into the bodies of other
4653 load and store insn that we just made for reloading
4654 and that we moved the structure into). */
4655 subst_reloads (insn);
4656
4657 prev = PREV_INSN (marker);
4658 unlink_insn_chain (marker, marker);
4659
4660 /* Adjust the exception region notes for loads and stores. */
4661 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4662 fixup_eh_region_note (insn, prev, next);
4663
4664 /* Adjust the location of REG_ARGS_SIZE. */
4665 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4666 if (p)
4667 {
4668 remove_note (insn, p);
4669 fixup_args_size_notes (prev, PREV_INSN (next),
4670 INTVAL (XEXP (p, 0)));
4671 }
4672
4673 /* If this was an ASM, make sure that all the reload insns
4674 we have generated are valid. If not, give an error
4675 and delete them. */
4676 if (asm_noperands (PATTERN (insn)) >= 0)
4677 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4678 if (p != insn && INSN_P (p)
4679 && GET_CODE (PATTERN (p)) != USE
4680 && (recog_memoized (p) < 0
4681 || (extract_insn (p), ! constrain_operands (1))))
4682 {
4683 error_for_asm (insn,
4684 "%<asm%> operand requires "
4685 "impossible reload");
4686 delete_insn (p);
4687 }
4688 }
4689
4690 if (num_eliminable && chain->need_elim)
4691 update_eliminable_offsets ();
4692
4693 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4694 is no longer validly lying around to save a future reload.
4695 Note that this does not detect pseudos that were reloaded
4696 for this insn in order to be stored in
4697 (obeying register constraints). That is correct; such reload
4698 registers ARE still valid. */
4699 forget_marked_reloads (&regs_to_forget);
4700 CLEAR_REG_SET (&regs_to_forget);
4701
4702 /* There may have been CLOBBER insns placed after INSN. So scan
4703 between INSN and NEXT and use them to forget old reloads. */
4704 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4705 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4706 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4707
4708 #ifdef AUTO_INC_DEC
4709 /* Likewise for regs altered by auto-increment in this insn.
4710 REG_INC notes have been changed by reloading:
4711 find_reloads_address_1 records substitutions for them,
4712 which have been performed by subst_reloads above. */
4713 for (i = n_reloads - 1; i >= 0; i--)
4714 {
4715 rtx in_reg = rld[i].in_reg;
4716 if (in_reg)
4717 {
4718 enum rtx_code code = GET_CODE (in_reg);
4719 /* PRE_INC / PRE_DEC will have the reload register ending up
4720 with the same value as the stack slot, but that doesn't
4721 hold true for POST_INC / POST_DEC. Either we have to
4722 convert the memory access to a true POST_INC / POST_DEC,
4723 or we can't use the reload register for inheritance. */
4724 if ((code == POST_INC || code == POST_DEC)
4725 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4726 REGNO (rld[i].reg_rtx))
4727 /* Make sure it is the inc/dec pseudo, and not
4728 some other (e.g. output operand) pseudo. */
4729 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4730 == REGNO (XEXP (in_reg, 0))))
4731
4732 {
4733 rtx reload_reg = rld[i].reg_rtx;
4734 enum machine_mode mode = GET_MODE (reload_reg);
4735 int n = 0;
4736 rtx p;
4737
4738 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4739 {
4740 /* We really want to ignore REG_INC notes here, so
4741 use PATTERN (p) as argument to reg_set_p . */
4742 if (reg_set_p (reload_reg, PATTERN (p)))
4743 break;
4744 n = count_occurrences (PATTERN (p), reload_reg, 0);
4745 if (! n)
4746 continue;
4747 if (n == 1)
4748 {
4749 rtx replace_reg
4750 = gen_rtx_fmt_e (code, mode, reload_reg);
4751
4752 validate_replace_rtx_group (reload_reg,
4753 replace_reg, p);
4754 n = verify_changes (0);
4755
4756 /* We must also verify that the constraints
4757 are met after the replacement. Make sure
4758 extract_insn is only called for an insn
4759 where the replacements were found to be
4760 valid so far. */
4761 if (n)
4762 {
4763 extract_insn (p);
4764 n = constrain_operands (1);
4765 }
4766
4767 /* If the constraints were not met, then
4768 undo the replacement, else confirm it. */
4769 if (!n)
4770 cancel_changes (0);
4771 else
4772 confirm_change_group ();
4773 }
4774 break;
4775 }
4776 if (n == 1)
4777 {
4778 add_reg_note (p, REG_INC, reload_reg);
4779 /* Mark this as having an output reload so that the
4780 REG_INC processing code below won't invalidate
4781 the reload for inheritance. */
4782 SET_HARD_REG_BIT (reg_is_output_reload,
4783 REGNO (reload_reg));
4784 SET_REGNO_REG_SET (&reg_has_output_reload,
4785 REGNO (XEXP (in_reg, 0)));
4786 }
4787 else
4788 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4789 NULL);
4790 }
4791 else if ((code == PRE_INC || code == PRE_DEC)
4792 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4793 REGNO (rld[i].reg_rtx))
4794 /* Make sure it is the inc/dec pseudo, and not
4795 some other (e.g. output operand) pseudo. */
4796 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4797 == REGNO (XEXP (in_reg, 0))))
4798 {
4799 SET_HARD_REG_BIT (reg_is_output_reload,
4800 REGNO (rld[i].reg_rtx));
4801 SET_REGNO_REG_SET (&reg_has_output_reload,
4802 REGNO (XEXP (in_reg, 0)));
4803 }
4804 else if (code == PRE_INC || code == PRE_DEC
4805 || code == POST_INC || code == POST_DEC)
4806 {
4807 int in_regno = REGNO (XEXP (in_reg, 0));
4808
4809 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4810 {
4811 int in_hard_regno;
4812 bool forget_p = true;
4813
4814 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4815 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4816 in_hard_regno))
4817 {
4818 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4819 x != old_next;
4820 x = NEXT_INSN (x))
4821 if (x == reg_reloaded_insn[in_hard_regno])
4822 {
4823 forget_p = false;
4824 break;
4825 }
4826 }
4827 /* If for some reasons, we didn't set up
4828 reg_last_reload_reg in this insn,
4829 invalidate inheritance from previous
4830 insns for the incremented/decremented
4831 register. Such registers will be not in
4832 reg_has_output_reload. Invalidate it
4833 also if the corresponding element in
4834 reg_reloaded_insn is also
4835 invalidated. */
4836 if (forget_p)
4837 forget_old_reloads_1 (XEXP (in_reg, 0),
4838 NULL_RTX, NULL);
4839 }
4840 }
4841 }
4842 }
4843 /* If a pseudo that got a hard register is auto-incremented,
4844 we must purge records of copying it into pseudos without
4845 hard registers. */
4846 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4847 if (REG_NOTE_KIND (x) == REG_INC)
4848 {
4849 /* See if this pseudo reg was reloaded in this insn.
4850 If so, its last-reload info is still valid
4851 because it is based on this insn's reload. */
4852 for (i = 0; i < n_reloads; i++)
4853 if (rld[i].out == XEXP (x, 0))
4854 break;
4855
4856 if (i == n_reloads)
4857 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4858 }
4859 #endif
4860 }
4861 /* A reload reg's contents are unknown after a label. */
4862 if (LABEL_P (insn))
4863 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4864
4865 /* Don't assume a reload reg is still good after a call insn
4866 if it is a call-used reg, or if it contains a value that will
4867 be partially clobbered by the call. */
4868 else if (CALL_P (insn))
4869 {
4870 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4871 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4872
4873 /* If this is a call to a setjmp-type function, we must not
4874 reuse any reload reg contents across the call; that will
4875 just be clobbered by other uses of the register in later
4876 code, before the longjmp. */
4877 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4878 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4879 }
4880 }
4881
4882 /* Clean up. */
4883 free (reg_last_reload_reg);
4884 CLEAR_REG_SET (&reg_has_output_reload);
4885 }
4886
4887 /* Discard all record of any value reloaded from X,
4888 or reloaded in X from someplace else;
4889 unless X is an output reload reg of the current insn.
4890
4891 X may be a hard reg (the reload reg)
4892 or it may be a pseudo reg that was reloaded from.
4893
4894 When DATA is non-NULL just mark the registers in regset
4895 to be forgotten later. */
4896
4897 static void
4898 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4899 void *data)
4900 {
4901 unsigned int regno;
4902 unsigned int nr;
4903 regset regs = (regset) data;
4904
4905 /* note_stores does give us subregs of hard regs,
4906 subreg_regno_offset requires a hard reg. */
4907 while (GET_CODE (x) == SUBREG)
4908 {
4909 /* We ignore the subreg offset when calculating the regno,
4910 because we are using the entire underlying hard register
4911 below. */
4912 x = SUBREG_REG (x);
4913 }
4914
4915 if (!REG_P (x))
4916 return;
4917
4918 regno = REGNO (x);
4919
4920 if (regno >= FIRST_PSEUDO_REGISTER)
4921 nr = 1;
4922 else
4923 {
4924 unsigned int i;
4925
4926 nr = hard_regno_nregs[regno][GET_MODE (x)];
4927 /* Storing into a spilled-reg invalidates its contents.
4928 This can happen if a block-local pseudo is allocated to that reg
4929 and it wasn't spilled because this block's total need is 0.
4930 Then some insn might have an optional reload and use this reg. */
4931 if (!regs)
4932 for (i = 0; i < nr; i++)
4933 /* But don't do this if the reg actually serves as an output
4934 reload reg in the current instruction. */
4935 if (n_reloads == 0
4936 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4937 {
4938 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4939 spill_reg_store[regno + i] = 0;
4940 }
4941 }
4942
4943 if (regs)
4944 while (nr-- > 0)
4945 SET_REGNO_REG_SET (regs, regno + nr);
4946 else
4947 {
4948 /* Since value of X has changed,
4949 forget any value previously copied from it. */
4950
4951 while (nr-- > 0)
4952 /* But don't forget a copy if this is the output reload
4953 that establishes the copy's validity. */
4954 if (n_reloads == 0
4955 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4956 reg_last_reload_reg[regno + nr] = 0;
4957 }
4958 }
4959
4960 /* Forget the reloads marked in regset by previous function. */
4961 static void
4962 forget_marked_reloads (regset regs)
4963 {
4964 unsigned int reg;
4965 reg_set_iterator rsi;
4966 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4967 {
4968 if (reg < FIRST_PSEUDO_REGISTER
4969 /* But don't do this if the reg actually serves as an output
4970 reload reg in the current instruction. */
4971 && (n_reloads == 0
4972 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4973 {
4974 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4975 spill_reg_store[reg] = 0;
4976 }
4977 if (n_reloads == 0
4978 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4979 reg_last_reload_reg[reg] = 0;
4980 }
4981 }
4982 \f
4983 /* The following HARD_REG_SETs indicate when each hard register is
4984 used for a reload of various parts of the current insn. */
4985
4986 /* If reg is unavailable for all reloads. */
4987 static HARD_REG_SET reload_reg_unavailable;
4988 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4989 static HARD_REG_SET reload_reg_used;
4990 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4991 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4992 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4993 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4994 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4995 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4996 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4997 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4998 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4999 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5000 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5001 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5002 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5003 static HARD_REG_SET reload_reg_used_in_op_addr;
5004 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5005 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5006 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5007 static HARD_REG_SET reload_reg_used_in_insn;
5008 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5009 static HARD_REG_SET reload_reg_used_in_other_addr;
5010
5011 /* If reg is in use as a reload reg for any sort of reload. */
5012 static HARD_REG_SET reload_reg_used_at_all;
5013
5014 /* If reg is use as an inherited reload. We just mark the first register
5015 in the group. */
5016 static HARD_REG_SET reload_reg_used_for_inherit;
5017
5018 /* Records which hard regs are used in any way, either as explicit use or
5019 by being allocated to a pseudo during any point of the current insn. */
5020 static HARD_REG_SET reg_used_in_insn;
5021
5022 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5023 TYPE. MODE is used to indicate how many consecutive regs are
5024 actually used. */
5025
5026 static void
5027 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5028 enum machine_mode mode)
5029 {
5030 switch (type)
5031 {
5032 case RELOAD_OTHER:
5033 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5034 break;
5035
5036 case RELOAD_FOR_INPUT_ADDRESS:
5037 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5038 break;
5039
5040 case RELOAD_FOR_INPADDR_ADDRESS:
5041 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5042 break;
5043
5044 case RELOAD_FOR_OUTPUT_ADDRESS:
5045 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5046 break;
5047
5048 case RELOAD_FOR_OUTADDR_ADDRESS:
5049 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5050 break;
5051
5052 case RELOAD_FOR_OPERAND_ADDRESS:
5053 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5054 break;
5055
5056 case RELOAD_FOR_OPADDR_ADDR:
5057 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5058 break;
5059
5060 case RELOAD_FOR_OTHER_ADDRESS:
5061 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5062 break;
5063
5064 case RELOAD_FOR_INPUT:
5065 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5066 break;
5067
5068 case RELOAD_FOR_OUTPUT:
5069 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5070 break;
5071
5072 case RELOAD_FOR_INSN:
5073 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5074 break;
5075 }
5076
5077 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5078 }
5079
5080 /* Similarly, but show REGNO is no longer in use for a reload. */
5081
5082 static void
5083 clear_reload_reg_in_use (unsigned int regno, int opnum,
5084 enum reload_type type, enum machine_mode mode)
5085 {
5086 unsigned int nregs = hard_regno_nregs[regno][mode];
5087 unsigned int start_regno, end_regno, r;
5088 int i;
5089 /* A complication is that for some reload types, inheritance might
5090 allow multiple reloads of the same types to share a reload register.
5091 We set check_opnum if we have to check only reloads with the same
5092 operand number, and check_any if we have to check all reloads. */
5093 int check_opnum = 0;
5094 int check_any = 0;
5095 HARD_REG_SET *used_in_set;
5096
5097 switch (type)
5098 {
5099 case RELOAD_OTHER:
5100 used_in_set = &reload_reg_used;
5101 break;
5102
5103 case RELOAD_FOR_INPUT_ADDRESS:
5104 used_in_set = &reload_reg_used_in_input_addr[opnum];
5105 break;
5106
5107 case RELOAD_FOR_INPADDR_ADDRESS:
5108 check_opnum = 1;
5109 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5110 break;
5111
5112 case RELOAD_FOR_OUTPUT_ADDRESS:
5113 used_in_set = &reload_reg_used_in_output_addr[opnum];
5114 break;
5115
5116 case RELOAD_FOR_OUTADDR_ADDRESS:
5117 check_opnum = 1;
5118 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5119 break;
5120
5121 case RELOAD_FOR_OPERAND_ADDRESS:
5122 used_in_set = &reload_reg_used_in_op_addr;
5123 break;
5124
5125 case RELOAD_FOR_OPADDR_ADDR:
5126 check_any = 1;
5127 used_in_set = &reload_reg_used_in_op_addr_reload;
5128 break;
5129
5130 case RELOAD_FOR_OTHER_ADDRESS:
5131 used_in_set = &reload_reg_used_in_other_addr;
5132 check_any = 1;
5133 break;
5134
5135 case RELOAD_FOR_INPUT:
5136 used_in_set = &reload_reg_used_in_input[opnum];
5137 break;
5138
5139 case RELOAD_FOR_OUTPUT:
5140 used_in_set = &reload_reg_used_in_output[opnum];
5141 break;
5142
5143 case RELOAD_FOR_INSN:
5144 used_in_set = &reload_reg_used_in_insn;
5145 break;
5146 default:
5147 gcc_unreachable ();
5148 }
5149 /* We resolve conflicts with remaining reloads of the same type by
5150 excluding the intervals of reload registers by them from the
5151 interval of freed reload registers. Since we only keep track of
5152 one set of interval bounds, we might have to exclude somewhat
5153 more than what would be necessary if we used a HARD_REG_SET here.
5154 But this should only happen very infrequently, so there should
5155 be no reason to worry about it. */
5156
5157 start_regno = regno;
5158 end_regno = regno + nregs;
5159 if (check_opnum || check_any)
5160 {
5161 for (i = n_reloads - 1; i >= 0; i--)
5162 {
5163 if (rld[i].when_needed == type
5164 && (check_any || rld[i].opnum == opnum)
5165 && rld[i].reg_rtx)
5166 {
5167 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5168 unsigned int conflict_end
5169 = end_hard_regno (rld[i].mode, conflict_start);
5170
5171 /* If there is an overlap with the first to-be-freed register,
5172 adjust the interval start. */
5173 if (conflict_start <= start_regno && conflict_end > start_regno)
5174 start_regno = conflict_end;
5175 /* Otherwise, if there is a conflict with one of the other
5176 to-be-freed registers, adjust the interval end. */
5177 if (conflict_start > start_regno && conflict_start < end_regno)
5178 end_regno = conflict_start;
5179 }
5180 }
5181 }
5182
5183 for (r = start_regno; r < end_regno; r++)
5184 CLEAR_HARD_REG_BIT (*used_in_set, r);
5185 }
5186
5187 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5188 specified by OPNUM and TYPE. */
5189
5190 static int
5191 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5192 {
5193 int i;
5194
5195 /* In use for a RELOAD_OTHER means it's not available for anything. */
5196 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5197 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5198 return 0;
5199
5200 switch (type)
5201 {
5202 case RELOAD_OTHER:
5203 /* In use for anything means we can't use it for RELOAD_OTHER. */
5204 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5205 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5206 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5207 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5208 return 0;
5209
5210 for (i = 0; i < reload_n_operands; i++)
5211 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5212 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5213 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5214 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5215 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5216 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5217 return 0;
5218
5219 return 1;
5220
5221 case RELOAD_FOR_INPUT:
5222 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5223 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5224 return 0;
5225
5226 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5227 return 0;
5228
5229 /* If it is used for some other input, can't use it. */
5230 for (i = 0; i < reload_n_operands; i++)
5231 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5232 return 0;
5233
5234 /* If it is used in a later operand's address, can't use it. */
5235 for (i = opnum + 1; i < reload_n_operands; i++)
5236 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5237 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5238 return 0;
5239
5240 return 1;
5241
5242 case RELOAD_FOR_INPUT_ADDRESS:
5243 /* Can't use a register if it is used for an input address for this
5244 operand or used as an input in an earlier one. */
5245 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5246 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5247 return 0;
5248
5249 for (i = 0; i < opnum; i++)
5250 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5251 return 0;
5252
5253 return 1;
5254
5255 case RELOAD_FOR_INPADDR_ADDRESS:
5256 /* Can't use a register if it is used for an input address
5257 for this operand or used as an input in an earlier
5258 one. */
5259 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5260 return 0;
5261
5262 for (i = 0; i < opnum; i++)
5263 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5264 return 0;
5265
5266 return 1;
5267
5268 case RELOAD_FOR_OUTPUT_ADDRESS:
5269 /* Can't use a register if it is used for an output address for this
5270 operand or used as an output in this or a later operand. Note
5271 that multiple output operands are emitted in reverse order, so
5272 the conflicting ones are those with lower indices. */
5273 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5274 return 0;
5275
5276 for (i = 0; i <= opnum; i++)
5277 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5278 return 0;
5279
5280 return 1;
5281
5282 case RELOAD_FOR_OUTADDR_ADDRESS:
5283 /* Can't use a register if it is used for an output address
5284 for this operand or used as an output in this or a
5285 later operand. Note that multiple output operands are
5286 emitted in reverse order, so the conflicting ones are
5287 those with lower indices. */
5288 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5289 return 0;
5290
5291 for (i = 0; i <= opnum; i++)
5292 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5293 return 0;
5294
5295 return 1;
5296
5297 case RELOAD_FOR_OPERAND_ADDRESS:
5298 for (i = 0; i < reload_n_operands; i++)
5299 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5300 return 0;
5301
5302 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5303 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5304
5305 case RELOAD_FOR_OPADDR_ADDR:
5306 for (i = 0; i < reload_n_operands; i++)
5307 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5308 return 0;
5309
5310 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5311
5312 case RELOAD_FOR_OUTPUT:
5313 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5314 outputs, or an operand address for this or an earlier output.
5315 Note that multiple output operands are emitted in reverse order,
5316 so the conflicting ones are those with higher indices. */
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5318 return 0;
5319
5320 for (i = 0; i < reload_n_operands; i++)
5321 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5322 return 0;
5323
5324 for (i = opnum; i < reload_n_operands; i++)
5325 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5326 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5327 return 0;
5328
5329 return 1;
5330
5331 case RELOAD_FOR_INSN:
5332 for (i = 0; i < reload_n_operands; i++)
5333 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5334 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5335 return 0;
5336
5337 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5338 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5339
5340 case RELOAD_FOR_OTHER_ADDRESS:
5341 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5342
5343 default:
5344 gcc_unreachable ();
5345 }
5346 }
5347
5348 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5349 the number RELOADNUM, is still available in REGNO at the end of the insn.
5350
5351 We can assume that the reload reg was already tested for availability
5352 at the time it is needed, and we should not check this again,
5353 in case the reg has already been marked in use. */
5354
5355 static int
5356 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5357 {
5358 int opnum = rld[reloadnum].opnum;
5359 enum reload_type type = rld[reloadnum].when_needed;
5360 int i;
5361
5362 /* See if there is a reload with the same type for this operand, using
5363 the same register. This case is not handled by the code below. */
5364 for (i = reloadnum + 1; i < n_reloads; i++)
5365 {
5366 rtx reg;
5367 int nregs;
5368
5369 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5370 continue;
5371 reg = rld[i].reg_rtx;
5372 if (reg == NULL_RTX)
5373 continue;
5374 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5375 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5376 return 0;
5377 }
5378
5379 switch (type)
5380 {
5381 case RELOAD_OTHER:
5382 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5383 its value must reach the end. */
5384 return 1;
5385
5386 /* If this use is for part of the insn,
5387 its value reaches if no subsequent part uses the same register.
5388 Just like the above function, don't try to do this with lots
5389 of fallthroughs. */
5390
5391 case RELOAD_FOR_OTHER_ADDRESS:
5392 /* Here we check for everything else, since these don't conflict
5393 with anything else and everything comes later. */
5394
5395 for (i = 0; i < reload_n_operands; i++)
5396 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5397 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5398 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5399 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5400 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5401 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5402 return 0;
5403
5404 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5405 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5406 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5407 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5408
5409 case RELOAD_FOR_INPUT_ADDRESS:
5410 case RELOAD_FOR_INPADDR_ADDRESS:
5411 /* Similar, except that we check only for this and subsequent inputs
5412 and the address of only subsequent inputs and we do not need
5413 to check for RELOAD_OTHER objects since they are known not to
5414 conflict. */
5415
5416 for (i = opnum; i < reload_n_operands; i++)
5417 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5418 return 0;
5419
5420 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5421 could be killed if the register is also used by reload with type
5422 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5423 if (type == RELOAD_FOR_INPADDR_ADDRESS
5424 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5425 return 0;
5426
5427 for (i = opnum + 1; i < reload_n_operands; i++)
5428 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5429 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5430 return 0;
5431
5432 for (i = 0; i < reload_n_operands; i++)
5433 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5434 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5436 return 0;
5437
5438 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5439 return 0;
5440
5441 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5442 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5443 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5444
5445 case RELOAD_FOR_INPUT:
5446 /* Similar to input address, except we start at the next operand for
5447 both input and input address and we do not check for
5448 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5449 would conflict. */
5450
5451 for (i = opnum + 1; i < reload_n_operands; i++)
5452 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5453 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5454 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5455 return 0;
5456
5457 /* ... fall through ... */
5458
5459 case RELOAD_FOR_OPERAND_ADDRESS:
5460 /* Check outputs and their addresses. */
5461
5462 for (i = 0; i < reload_n_operands; i++)
5463 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5464 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5465 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5466 return 0;
5467
5468 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5469
5470 case RELOAD_FOR_OPADDR_ADDR:
5471 for (i = 0; i < reload_n_operands; i++)
5472 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5473 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5474 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5475 return 0;
5476
5477 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5478 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5479 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5480
5481 case RELOAD_FOR_INSN:
5482 /* These conflict with other outputs with RELOAD_OTHER. So
5483 we need only check for output addresses. */
5484
5485 opnum = reload_n_operands;
5486
5487 /* ... fall through ... */
5488
5489 case RELOAD_FOR_OUTPUT:
5490 case RELOAD_FOR_OUTPUT_ADDRESS:
5491 case RELOAD_FOR_OUTADDR_ADDRESS:
5492 /* We already know these can't conflict with a later output. So the
5493 only thing to check are later output addresses.
5494 Note that multiple output operands are emitted in reverse order,
5495 so the conflicting ones are those with lower indices. */
5496 for (i = 0; i < opnum; i++)
5497 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5498 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5499 return 0;
5500
5501 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5502 could be killed if the register is also used by reload with type
5503 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5504 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5505 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5506 return 0;
5507
5508 return 1;
5509
5510 default:
5511 gcc_unreachable ();
5512 }
5513 }
5514
5515 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5516 every register in REG. */
5517
5518 static bool
5519 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5520 {
5521 unsigned int i;
5522
5523 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5524 if (!reload_reg_reaches_end_p (i, reloadnum))
5525 return false;
5526 return true;
5527 }
5528 \f
5529
5530 /* Returns whether R1 and R2 are uniquely chained: the value of one
5531 is used by the other, and that value is not used by any other
5532 reload for this insn. This is used to partially undo the decision
5533 made in find_reloads when in the case of multiple
5534 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5535 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5536 reloads. This code tries to avoid the conflict created by that
5537 change. It might be cleaner to explicitly keep track of which
5538 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5539 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5540 this after the fact. */
5541 static bool
5542 reloads_unique_chain_p (int r1, int r2)
5543 {
5544 int i;
5545
5546 /* We only check input reloads. */
5547 if (! rld[r1].in || ! rld[r2].in)
5548 return false;
5549
5550 /* Avoid anything with output reloads. */
5551 if (rld[r1].out || rld[r2].out)
5552 return false;
5553
5554 /* "chained" means one reload is a component of the other reload,
5555 not the same as the other reload. */
5556 if (rld[r1].opnum != rld[r2].opnum
5557 || rtx_equal_p (rld[r1].in, rld[r2].in)
5558 || rld[r1].optional || rld[r2].optional
5559 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5560 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5561 return false;
5562
5563 /* The following loop assumes that r1 is the reload that feeds r2. */
5564 if (r1 > r2)
5565 {
5566 int tmp = r2;
5567 r2 = r1;
5568 r1 = tmp;
5569 }
5570
5571 for (i = 0; i < n_reloads; i ++)
5572 /* Look for input reloads that aren't our two */
5573 if (i != r1 && i != r2 && rld[i].in)
5574 {
5575 /* If our reload is mentioned at all, it isn't a simple chain. */
5576 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5577 return false;
5578 }
5579 return true;
5580 }
5581
5582 /* The recursive function change all occurrences of WHAT in *WHERE
5583 to REPL. */
5584 static void
5585 substitute (rtx *where, const_rtx what, rtx repl)
5586 {
5587 const char *fmt;
5588 int i;
5589 enum rtx_code code;
5590
5591 if (*where == 0)
5592 return;
5593
5594 if (*where == what || rtx_equal_p (*where, what))
5595 {
5596 /* Record the location of the changed rtx. */
5597 substitute_stack.safe_push (where);
5598 *where = repl;
5599 return;
5600 }
5601
5602 code = GET_CODE (*where);
5603 fmt = GET_RTX_FORMAT (code);
5604 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5605 {
5606 if (fmt[i] == 'E')
5607 {
5608 int j;
5609
5610 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5611 substitute (&XVECEXP (*where, i, j), what, repl);
5612 }
5613 else if (fmt[i] == 'e')
5614 substitute (&XEXP (*where, i), what, repl);
5615 }
5616 }
5617
5618 /* The function returns TRUE if chain of reload R1 and R2 (in any
5619 order) can be evaluated without usage of intermediate register for
5620 the reload containing another reload. It is important to see
5621 gen_reload to understand what the function is trying to do. As an
5622 example, let us have reload chain
5623
5624 r2: const
5625 r1: <something> + const
5626
5627 and reload R2 got reload reg HR. The function returns true if
5628 there is a correct insn HR = HR + <something>. Otherwise,
5629 gen_reload will use intermediate register (and this is the reload
5630 reg for R1) to reload <something>.
5631
5632 We need this function to find a conflict for chain reloads. In our
5633 example, if HR = HR + <something> is incorrect insn, then we cannot
5634 use HR as a reload register for R2. If we do use it then we get a
5635 wrong code:
5636
5637 HR = const
5638 HR = <something>
5639 HR = HR + HR
5640
5641 */
5642 static bool
5643 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5644 {
5645 /* Assume other cases in gen_reload are not possible for
5646 chain reloads or do need an intermediate hard registers. */
5647 bool result = true;
5648 int regno, n, code;
5649 rtx out, in, insn;
5650 rtx last = get_last_insn ();
5651
5652 /* Make r2 a component of r1. */
5653 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5654 {
5655 n = r1;
5656 r1 = r2;
5657 r2 = n;
5658 }
5659 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5660 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5661 gcc_assert (regno >= 0);
5662 out = gen_rtx_REG (rld[r1].mode, regno);
5663 in = rld[r1].in;
5664 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5665
5666 /* If IN is a paradoxical SUBREG, remove it and try to put the
5667 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5668 strip_paradoxical_subreg (&in, &out);
5669
5670 if (GET_CODE (in) == PLUS
5671 && (REG_P (XEXP (in, 0))
5672 || GET_CODE (XEXP (in, 0)) == SUBREG
5673 || MEM_P (XEXP (in, 0)))
5674 && (REG_P (XEXP (in, 1))
5675 || GET_CODE (XEXP (in, 1)) == SUBREG
5676 || CONSTANT_P (XEXP (in, 1))
5677 || MEM_P (XEXP (in, 1))))
5678 {
5679 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5680 code = recog_memoized (insn);
5681 result = false;
5682
5683 if (code >= 0)
5684 {
5685 extract_insn (insn);
5686 /* We want constrain operands to treat this insn strictly in
5687 its validity determination, i.e., the way it would after
5688 reload has completed. */
5689 result = constrain_operands (1);
5690 }
5691
5692 delete_insns_since (last);
5693 }
5694
5695 /* Restore the original value at each changed address within R1. */
5696 while (!substitute_stack.is_empty ())
5697 {
5698 rtx *where = substitute_stack.pop ();
5699 *where = rld[r2].in;
5700 }
5701
5702 return result;
5703 }
5704
5705 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5706 Return 0 otherwise.
5707
5708 This function uses the same algorithm as reload_reg_free_p above. */
5709
5710 static int
5711 reloads_conflict (int r1, int r2)
5712 {
5713 enum reload_type r1_type = rld[r1].when_needed;
5714 enum reload_type r2_type = rld[r2].when_needed;
5715 int r1_opnum = rld[r1].opnum;
5716 int r2_opnum = rld[r2].opnum;
5717
5718 /* RELOAD_OTHER conflicts with everything. */
5719 if (r2_type == RELOAD_OTHER)
5720 return 1;
5721
5722 /* Otherwise, check conflicts differently for each type. */
5723
5724 switch (r1_type)
5725 {
5726 case RELOAD_FOR_INPUT:
5727 return (r2_type == RELOAD_FOR_INSN
5728 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5729 || r2_type == RELOAD_FOR_OPADDR_ADDR
5730 || r2_type == RELOAD_FOR_INPUT
5731 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5732 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5733 && r2_opnum > r1_opnum));
5734
5735 case RELOAD_FOR_INPUT_ADDRESS:
5736 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5737 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5738
5739 case RELOAD_FOR_INPADDR_ADDRESS:
5740 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5741 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5742
5743 case RELOAD_FOR_OUTPUT_ADDRESS:
5744 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5745 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5746
5747 case RELOAD_FOR_OUTADDR_ADDRESS:
5748 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5749 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5750
5751 case RELOAD_FOR_OPERAND_ADDRESS:
5752 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5753 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5754 && (!reloads_unique_chain_p (r1, r2)
5755 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5756
5757 case RELOAD_FOR_OPADDR_ADDR:
5758 return (r2_type == RELOAD_FOR_INPUT
5759 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5760
5761 case RELOAD_FOR_OUTPUT:
5762 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5763 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5764 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5765 && r2_opnum >= r1_opnum));
5766
5767 case RELOAD_FOR_INSN:
5768 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5769 || r2_type == RELOAD_FOR_INSN
5770 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5771
5772 case RELOAD_FOR_OTHER_ADDRESS:
5773 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5774
5775 case RELOAD_OTHER:
5776 return 1;
5777
5778 default:
5779 gcc_unreachable ();
5780 }
5781 }
5782 \f
5783 /* Indexed by reload number, 1 if incoming value
5784 inherited from previous insns. */
5785 static char reload_inherited[MAX_RELOADS];
5786
5787 /* For an inherited reload, this is the insn the reload was inherited from,
5788 if we know it. Otherwise, this is 0. */
5789 static rtx reload_inheritance_insn[MAX_RELOADS];
5790
5791 /* If nonzero, this is a place to get the value of the reload,
5792 rather than using reload_in. */
5793 static rtx reload_override_in[MAX_RELOADS];
5794
5795 /* For each reload, the hard register number of the register used,
5796 or -1 if we did not need a register for this reload. */
5797 static int reload_spill_index[MAX_RELOADS];
5798
5799 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5800 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5801
5802 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5803 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5804
5805 /* Subroutine of free_for_value_p, used to check a single register.
5806 START_REGNO is the starting regno of the full reload register
5807 (possibly comprising multiple hard registers) that we are considering. */
5808
5809 static int
5810 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5811 enum reload_type type, rtx value, rtx out,
5812 int reloadnum, int ignore_address_reloads)
5813 {
5814 int time1;
5815 /* Set if we see an input reload that must not share its reload register
5816 with any new earlyclobber, but might otherwise share the reload
5817 register with an output or input-output reload. */
5818 int check_earlyclobber = 0;
5819 int i;
5820 int copy = 0;
5821
5822 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5823 return 0;
5824
5825 if (out == const0_rtx)
5826 {
5827 copy = 1;
5828 out = NULL_RTX;
5829 }
5830
5831 /* We use some pseudo 'time' value to check if the lifetimes of the
5832 new register use would overlap with the one of a previous reload
5833 that is not read-only or uses a different value.
5834 The 'time' used doesn't have to be linear in any shape or form, just
5835 monotonic.
5836 Some reload types use different 'buckets' for each operand.
5837 So there are MAX_RECOG_OPERANDS different time values for each
5838 such reload type.
5839 We compute TIME1 as the time when the register for the prospective
5840 new reload ceases to be live, and TIME2 for each existing
5841 reload as the time when that the reload register of that reload
5842 becomes live.
5843 Where there is little to be gained by exact lifetime calculations,
5844 we just make conservative assumptions, i.e. a longer lifetime;
5845 this is done in the 'default:' cases. */
5846 switch (type)
5847 {
5848 case RELOAD_FOR_OTHER_ADDRESS:
5849 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5850 time1 = copy ? 0 : 1;
5851 break;
5852 case RELOAD_OTHER:
5853 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5854 break;
5855 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5856 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5857 respectively, to the time values for these, we get distinct time
5858 values. To get distinct time values for each operand, we have to
5859 multiply opnum by at least three. We round that up to four because
5860 multiply by four is often cheaper. */
5861 case RELOAD_FOR_INPADDR_ADDRESS:
5862 time1 = opnum * 4 + 2;
5863 break;
5864 case RELOAD_FOR_INPUT_ADDRESS:
5865 time1 = opnum * 4 + 3;
5866 break;
5867 case RELOAD_FOR_INPUT:
5868 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5869 executes (inclusive). */
5870 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5871 break;
5872 case RELOAD_FOR_OPADDR_ADDR:
5873 /* opnum * 4 + 4
5874 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5875 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5876 break;
5877 case RELOAD_FOR_OPERAND_ADDRESS:
5878 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5879 is executed. */
5880 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5881 break;
5882 case RELOAD_FOR_OUTADDR_ADDRESS:
5883 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5884 break;
5885 case RELOAD_FOR_OUTPUT_ADDRESS:
5886 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5887 break;
5888 default:
5889 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5890 }
5891
5892 for (i = 0; i < n_reloads; i++)
5893 {
5894 rtx reg = rld[i].reg_rtx;
5895 if (reg && REG_P (reg)
5896 && ((unsigned) regno - true_regnum (reg)
5897 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5898 && i != reloadnum)
5899 {
5900 rtx other_input = rld[i].in;
5901
5902 /* If the other reload loads the same input value, that
5903 will not cause a conflict only if it's loading it into
5904 the same register. */
5905 if (true_regnum (reg) != start_regno)
5906 other_input = NULL_RTX;
5907 if (! other_input || ! rtx_equal_p (other_input, value)
5908 || rld[i].out || out)
5909 {
5910 int time2;
5911 switch (rld[i].when_needed)
5912 {
5913 case RELOAD_FOR_OTHER_ADDRESS:
5914 time2 = 0;
5915 break;
5916 case RELOAD_FOR_INPADDR_ADDRESS:
5917 /* find_reloads makes sure that a
5918 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5919 by at most one - the first -
5920 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5921 address reload is inherited, the address address reload
5922 goes away, so we can ignore this conflict. */
5923 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5924 && ignore_address_reloads
5925 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5926 Then the address address is still needed to store
5927 back the new address. */
5928 && ! rld[reloadnum].out)
5929 continue;
5930 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5931 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5932 reloads go away. */
5933 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5934 && ignore_address_reloads
5935 /* Unless we are reloading an auto_inc expression. */
5936 && ! rld[reloadnum].out)
5937 continue;
5938 time2 = rld[i].opnum * 4 + 2;
5939 break;
5940 case RELOAD_FOR_INPUT_ADDRESS:
5941 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5942 && ignore_address_reloads
5943 && ! rld[reloadnum].out)
5944 continue;
5945 time2 = rld[i].opnum * 4 + 3;
5946 break;
5947 case RELOAD_FOR_INPUT:
5948 time2 = rld[i].opnum * 4 + 4;
5949 check_earlyclobber = 1;
5950 break;
5951 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5952 == MAX_RECOG_OPERAND * 4 */
5953 case RELOAD_FOR_OPADDR_ADDR:
5954 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5955 && ignore_address_reloads
5956 && ! rld[reloadnum].out)
5957 continue;
5958 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5959 break;
5960 case RELOAD_FOR_OPERAND_ADDRESS:
5961 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5962 check_earlyclobber = 1;
5963 break;
5964 case RELOAD_FOR_INSN:
5965 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5966 break;
5967 case RELOAD_FOR_OUTPUT:
5968 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5969 instruction is executed. */
5970 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5971 break;
5972 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5973 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5974 value. */
5975 case RELOAD_FOR_OUTADDR_ADDRESS:
5976 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5977 && ignore_address_reloads
5978 && ! rld[reloadnum].out)
5979 continue;
5980 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5981 break;
5982 case RELOAD_FOR_OUTPUT_ADDRESS:
5983 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5984 break;
5985 case RELOAD_OTHER:
5986 /* If there is no conflict in the input part, handle this
5987 like an output reload. */
5988 if (! rld[i].in || rtx_equal_p (other_input, value))
5989 {
5990 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5991 /* Earlyclobbered outputs must conflict with inputs. */
5992 if (earlyclobber_operand_p (rld[i].out))
5993 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5994
5995 break;
5996 }
5997 time2 = 1;
5998 /* RELOAD_OTHER might be live beyond instruction execution,
5999 but this is not obvious when we set time2 = 1. So check
6000 here if there might be a problem with the new reload
6001 clobbering the register used by the RELOAD_OTHER. */
6002 if (out)
6003 return 0;
6004 break;
6005 default:
6006 return 0;
6007 }
6008 if ((time1 >= time2
6009 && (! rld[i].in || rld[i].out
6010 || ! rtx_equal_p (other_input, value)))
6011 || (out && rld[reloadnum].out_reg
6012 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6013 return 0;
6014 }
6015 }
6016 }
6017
6018 /* Earlyclobbered outputs must conflict with inputs. */
6019 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6020 return 0;
6021
6022 return 1;
6023 }
6024
6025 /* Return 1 if the value in reload reg REGNO, as used by a reload
6026 needed for the part of the insn specified by OPNUM and TYPE,
6027 may be used to load VALUE into it.
6028
6029 MODE is the mode in which the register is used, this is needed to
6030 determine how many hard regs to test.
6031
6032 Other read-only reloads with the same value do not conflict
6033 unless OUT is nonzero and these other reloads have to live while
6034 output reloads live.
6035 If OUT is CONST0_RTX, this is a special case: it means that the
6036 test should not be for using register REGNO as reload register, but
6037 for copying from register REGNO into the reload register.
6038
6039 RELOADNUM is the number of the reload we want to load this value for;
6040 a reload does not conflict with itself.
6041
6042 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6043 reloads that load an address for the very reload we are considering.
6044
6045 The caller has to make sure that there is no conflict with the return
6046 register. */
6047
6048 static int
6049 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6050 enum reload_type type, rtx value, rtx out, int reloadnum,
6051 int ignore_address_reloads)
6052 {
6053 int nregs = hard_regno_nregs[regno][mode];
6054 while (nregs-- > 0)
6055 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6056 value, out, reloadnum,
6057 ignore_address_reloads))
6058 return 0;
6059 return 1;
6060 }
6061
6062 /* Return nonzero if the rtx X is invariant over the current function. */
6063 /* ??? Actually, the places where we use this expect exactly what is
6064 tested here, and not everything that is function invariant. In
6065 particular, the frame pointer and arg pointer are special cased;
6066 pic_offset_table_rtx is not, and we must not spill these things to
6067 memory. */
6068
6069 int
6070 function_invariant_p (const_rtx x)
6071 {
6072 if (CONSTANT_P (x))
6073 return 1;
6074 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6075 return 1;
6076 if (GET_CODE (x) == PLUS
6077 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6078 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6079 return 1;
6080 return 0;
6081 }
6082
6083 /* Determine whether the reload reg X overlaps any rtx'es used for
6084 overriding inheritance. Return nonzero if so. */
6085
6086 static int
6087 conflicts_with_override (rtx x)
6088 {
6089 int i;
6090 for (i = 0; i < n_reloads; i++)
6091 if (reload_override_in[i]
6092 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6093 return 1;
6094 return 0;
6095 }
6096 \f
6097 /* Give an error message saying we failed to find a reload for INSN,
6098 and clear out reload R. */
6099 static void
6100 failed_reload (rtx insn, int r)
6101 {
6102 if (asm_noperands (PATTERN (insn)) < 0)
6103 /* It's the compiler's fault. */
6104 fatal_insn ("could not find a spill register", insn);
6105
6106 /* It's the user's fault; the operand's mode and constraint
6107 don't match. Disable this reload so we don't crash in final. */
6108 error_for_asm (insn,
6109 "%<asm%> operand constraint incompatible with operand size");
6110 rld[r].in = 0;
6111 rld[r].out = 0;
6112 rld[r].reg_rtx = 0;
6113 rld[r].optional = 1;
6114 rld[r].secondary_p = 1;
6115 }
6116
6117 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6118 for reload R. If it's valid, get an rtx for it. Return nonzero if
6119 successful. */
6120 static int
6121 set_reload_reg (int i, int r)
6122 {
6123 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6124 parameter. */
6125 int regno ATTRIBUTE_UNUSED;
6126 rtx reg = spill_reg_rtx[i];
6127
6128 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6129 spill_reg_rtx[i] = reg
6130 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6131
6132 regno = true_regnum (reg);
6133
6134 /* Detect when the reload reg can't hold the reload mode.
6135 This used to be one `if', but Sequent compiler can't handle that. */
6136 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6137 {
6138 enum machine_mode test_mode = VOIDmode;
6139 if (rld[r].in)
6140 test_mode = GET_MODE (rld[r].in);
6141 /* If rld[r].in has VOIDmode, it means we will load it
6142 in whatever mode the reload reg has: to wit, rld[r].mode.
6143 We have already tested that for validity. */
6144 /* Aside from that, we need to test that the expressions
6145 to reload from or into have modes which are valid for this
6146 reload register. Otherwise the reload insns would be invalid. */
6147 if (! (rld[r].in != 0 && test_mode != VOIDmode
6148 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6149 if (! (rld[r].out != 0
6150 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6151 {
6152 /* The reg is OK. */
6153 last_spill_reg = i;
6154
6155 /* Mark as in use for this insn the reload regs we use
6156 for this. */
6157 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6158 rld[r].when_needed, rld[r].mode);
6159
6160 rld[r].reg_rtx = reg;
6161 reload_spill_index[r] = spill_regs[i];
6162 return 1;
6163 }
6164 }
6165 return 0;
6166 }
6167
6168 /* Find a spill register to use as a reload register for reload R.
6169 LAST_RELOAD is nonzero if this is the last reload for the insn being
6170 processed.
6171
6172 Set rld[R].reg_rtx to the register allocated.
6173
6174 We return 1 if successful, or 0 if we couldn't find a spill reg and
6175 we didn't change anything. */
6176
6177 static int
6178 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6179 int last_reload)
6180 {
6181 int i, pass, count;
6182
6183 /* If we put this reload ahead, thinking it is a group,
6184 then insist on finding a group. Otherwise we can grab a
6185 reg that some other reload needs.
6186 (That can happen when we have a 68000 DATA_OR_FP_REG
6187 which is a group of data regs or one fp reg.)
6188 We need not be so restrictive if there are no more reloads
6189 for this insn.
6190
6191 ??? Really it would be nicer to have smarter handling
6192 for that kind of reg class, where a problem like this is normal.
6193 Perhaps those classes should be avoided for reloading
6194 by use of more alternatives. */
6195
6196 int force_group = rld[r].nregs > 1 && ! last_reload;
6197
6198 /* If we want a single register and haven't yet found one,
6199 take any reg in the right class and not in use.
6200 If we want a consecutive group, here is where we look for it.
6201
6202 We use three passes so we can first look for reload regs to
6203 reuse, which are already in use for other reloads in this insn,
6204 and only then use additional registers which are not "bad", then
6205 finally any register.
6206
6207 I think that maximizing reuse is needed to make sure we don't
6208 run out of reload regs. Suppose we have three reloads, and
6209 reloads A and B can share regs. These need two regs.
6210 Suppose A and B are given different regs.
6211 That leaves none for C. */
6212 for (pass = 0; pass < 3; pass++)
6213 {
6214 /* I is the index in spill_regs.
6215 We advance it round-robin between insns to use all spill regs
6216 equally, so that inherited reloads have a chance
6217 of leapfrogging each other. */
6218
6219 i = last_spill_reg;
6220
6221 for (count = 0; count < n_spills; count++)
6222 {
6223 int rclass = (int) rld[r].rclass;
6224 int regnum;
6225
6226 i++;
6227 if (i >= n_spills)
6228 i -= n_spills;
6229 regnum = spill_regs[i];
6230
6231 if ((reload_reg_free_p (regnum, rld[r].opnum,
6232 rld[r].when_needed)
6233 || (rld[r].in
6234 /* We check reload_reg_used to make sure we
6235 don't clobber the return register. */
6236 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6237 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6238 rld[r].when_needed, rld[r].in,
6239 rld[r].out, r, 1)))
6240 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6241 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6242 /* Look first for regs to share, then for unshared. But
6243 don't share regs used for inherited reloads; they are
6244 the ones we want to preserve. */
6245 && (pass
6246 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6247 regnum)
6248 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6249 regnum))))
6250 {
6251 int nr = hard_regno_nregs[regnum][rld[r].mode];
6252
6253 /* During the second pass we want to avoid reload registers
6254 which are "bad" for this reload. */
6255 if (pass == 1
6256 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6257 continue;
6258
6259 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6260 (on 68000) got us two FP regs. If NR is 1,
6261 we would reject both of them. */
6262 if (force_group)
6263 nr = rld[r].nregs;
6264 /* If we need only one reg, we have already won. */
6265 if (nr == 1)
6266 {
6267 /* But reject a single reg if we demand a group. */
6268 if (force_group)
6269 continue;
6270 break;
6271 }
6272 /* Otherwise check that as many consecutive regs as we need
6273 are available here. */
6274 while (nr > 1)
6275 {
6276 int regno = regnum + nr - 1;
6277 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6278 && spill_reg_order[regno] >= 0
6279 && reload_reg_free_p (regno, rld[r].opnum,
6280 rld[r].when_needed)))
6281 break;
6282 nr--;
6283 }
6284 if (nr == 1)
6285 break;
6286 }
6287 }
6288
6289 /* If we found something on the current pass, omit later passes. */
6290 if (count < n_spills)
6291 break;
6292 }
6293
6294 /* We should have found a spill register by now. */
6295 if (count >= n_spills)
6296 return 0;
6297
6298 /* I is the index in SPILL_REG_RTX of the reload register we are to
6299 allocate. Get an rtx for it and find its register number. */
6300
6301 return set_reload_reg (i, r);
6302 }
6303 \f
6304 /* Initialize all the tables needed to allocate reload registers.
6305 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6306 is the array we use to restore the reg_rtx field for every reload. */
6307
6308 static void
6309 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6310 {
6311 int i;
6312
6313 for (i = 0; i < n_reloads; i++)
6314 rld[i].reg_rtx = save_reload_reg_rtx[i];
6315
6316 memset (reload_inherited, 0, MAX_RELOADS);
6317 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6318 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6319
6320 CLEAR_HARD_REG_SET (reload_reg_used);
6321 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6322 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6323 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6324 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6325 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6326
6327 CLEAR_HARD_REG_SET (reg_used_in_insn);
6328 {
6329 HARD_REG_SET tmp;
6330 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6331 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6332 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6333 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6334 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6335 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6336 }
6337
6338 for (i = 0; i < reload_n_operands; i++)
6339 {
6340 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6341 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6342 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6343 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6344 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6345 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6346 }
6347
6348 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6349
6350 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6351
6352 for (i = 0; i < n_reloads; i++)
6353 /* If we have already decided to use a certain register,
6354 don't use it in another way. */
6355 if (rld[i].reg_rtx)
6356 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6357 rld[i].when_needed, rld[i].mode);
6358 }
6359
6360 #ifdef SECONDARY_MEMORY_NEEDED
6361 /* If X is not a subreg, return it unmodified. If it is a subreg,
6362 look up whether we made a replacement for the SUBREG_REG. Return
6363 either the replacement or the SUBREG_REG. */
6364
6365 static rtx
6366 replaced_subreg (rtx x)
6367 {
6368 if (GET_CODE (x) == SUBREG)
6369 return find_replacement (&SUBREG_REG (x));
6370 return x;
6371 }
6372 #endif
6373
6374 /* Assign hard reg targets for the pseudo-registers we must reload
6375 into hard regs for this insn.
6376 Also output the instructions to copy them in and out of the hard regs.
6377
6378 For machines with register classes, we are responsible for
6379 finding a reload reg in the proper class. */
6380
6381 static void
6382 choose_reload_regs (struct insn_chain *chain)
6383 {
6384 rtx insn = chain->insn;
6385 int i, j;
6386 unsigned int max_group_size = 1;
6387 enum reg_class group_class = NO_REGS;
6388 int pass, win, inheritance;
6389
6390 rtx save_reload_reg_rtx[MAX_RELOADS];
6391
6392 /* In order to be certain of getting the registers we need,
6393 we must sort the reloads into order of increasing register class.
6394 Then our grabbing of reload registers will parallel the process
6395 that provided the reload registers.
6396
6397 Also note whether any of the reloads wants a consecutive group of regs.
6398 If so, record the maximum size of the group desired and what
6399 register class contains all the groups needed by this insn. */
6400
6401 for (j = 0; j < n_reloads; j++)
6402 {
6403 reload_order[j] = j;
6404 if (rld[j].reg_rtx != NULL_RTX)
6405 {
6406 gcc_assert (REG_P (rld[j].reg_rtx)
6407 && HARD_REGISTER_P (rld[j].reg_rtx));
6408 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6409 }
6410 else
6411 reload_spill_index[j] = -1;
6412
6413 if (rld[j].nregs > 1)
6414 {
6415 max_group_size = MAX (rld[j].nregs, max_group_size);
6416 group_class
6417 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6418 }
6419
6420 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6421 }
6422
6423 if (n_reloads > 1)
6424 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6425
6426 /* If -O, try first with inheritance, then turning it off.
6427 If not -O, don't do inheritance.
6428 Using inheritance when not optimizing leads to paradoxes
6429 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6430 because one side of the comparison might be inherited. */
6431 win = 0;
6432 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6433 {
6434 choose_reload_regs_init (chain, save_reload_reg_rtx);
6435
6436 /* Process the reloads in order of preference just found.
6437 Beyond this point, subregs can be found in reload_reg_rtx.
6438
6439 This used to look for an existing reloaded home for all of the
6440 reloads, and only then perform any new reloads. But that could lose
6441 if the reloads were done out of reg-class order because a later
6442 reload with a looser constraint might have an old home in a register
6443 needed by an earlier reload with a tighter constraint.
6444
6445 To solve this, we make two passes over the reloads, in the order
6446 described above. In the first pass we try to inherit a reload
6447 from a previous insn. If there is a later reload that needs a
6448 class that is a proper subset of the class being processed, we must
6449 also allocate a spill register during the first pass.
6450
6451 Then make a second pass over the reloads to allocate any reloads
6452 that haven't been given registers yet. */
6453
6454 for (j = 0; j < n_reloads; j++)
6455 {
6456 int r = reload_order[j];
6457 rtx search_equiv = NULL_RTX;
6458
6459 /* Ignore reloads that got marked inoperative. */
6460 if (rld[r].out == 0 && rld[r].in == 0
6461 && ! rld[r].secondary_p)
6462 continue;
6463
6464 /* If find_reloads chose to use reload_in or reload_out as a reload
6465 register, we don't need to chose one. Otherwise, try even if it
6466 found one since we might save an insn if we find the value lying
6467 around.
6468 Try also when reload_in is a pseudo without a hard reg. */
6469 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6470 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6471 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6472 && !MEM_P (rld[r].in)
6473 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6474 continue;
6475
6476 #if 0 /* No longer needed for correct operation.
6477 It might give better code, or might not; worth an experiment? */
6478 /* If this is an optional reload, we can't inherit from earlier insns
6479 until we are sure that any non-optional reloads have been allocated.
6480 The following code takes advantage of the fact that optional reloads
6481 are at the end of reload_order. */
6482 if (rld[r].optional != 0)
6483 for (i = 0; i < j; i++)
6484 if ((rld[reload_order[i]].out != 0
6485 || rld[reload_order[i]].in != 0
6486 || rld[reload_order[i]].secondary_p)
6487 && ! rld[reload_order[i]].optional
6488 && rld[reload_order[i]].reg_rtx == 0)
6489 allocate_reload_reg (chain, reload_order[i], 0);
6490 #endif
6491
6492 /* First see if this pseudo is already available as reloaded
6493 for a previous insn. We cannot try to inherit for reloads
6494 that are smaller than the maximum number of registers needed
6495 for groups unless the register we would allocate cannot be used
6496 for the groups.
6497
6498 We could check here to see if this is a secondary reload for
6499 an object that is already in a register of the desired class.
6500 This would avoid the need for the secondary reload register.
6501 But this is complex because we can't easily determine what
6502 objects might want to be loaded via this reload. So let a
6503 register be allocated here. In `emit_reload_insns' we suppress
6504 one of the loads in the case described above. */
6505
6506 if (inheritance)
6507 {
6508 int byte = 0;
6509 int regno = -1;
6510 enum machine_mode mode = VOIDmode;
6511
6512 if (rld[r].in == 0)
6513 ;
6514 else if (REG_P (rld[r].in))
6515 {
6516 regno = REGNO (rld[r].in);
6517 mode = GET_MODE (rld[r].in);
6518 }
6519 else if (REG_P (rld[r].in_reg))
6520 {
6521 regno = REGNO (rld[r].in_reg);
6522 mode = GET_MODE (rld[r].in_reg);
6523 }
6524 else if (GET_CODE (rld[r].in_reg) == SUBREG
6525 && REG_P (SUBREG_REG (rld[r].in_reg)))
6526 {
6527 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6528 if (regno < FIRST_PSEUDO_REGISTER)
6529 regno = subreg_regno (rld[r].in_reg);
6530 else
6531 byte = SUBREG_BYTE (rld[r].in_reg);
6532 mode = GET_MODE (rld[r].in_reg);
6533 }
6534 #ifdef AUTO_INC_DEC
6535 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6536 && REG_P (XEXP (rld[r].in_reg, 0)))
6537 {
6538 regno = REGNO (XEXP (rld[r].in_reg, 0));
6539 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6540 rld[r].out = rld[r].in;
6541 }
6542 #endif
6543 #if 0
6544 /* This won't work, since REGNO can be a pseudo reg number.
6545 Also, it takes much more hair to keep track of all the things
6546 that can invalidate an inherited reload of part of a pseudoreg. */
6547 else if (GET_CODE (rld[r].in) == SUBREG
6548 && REG_P (SUBREG_REG (rld[r].in)))
6549 regno = subreg_regno (rld[r].in);
6550 #endif
6551
6552 if (regno >= 0
6553 && reg_last_reload_reg[regno] != 0
6554 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6555 >= GET_MODE_SIZE (mode) + byte)
6556 #ifdef CANNOT_CHANGE_MODE_CLASS
6557 /* Verify that the register it's in can be used in
6558 mode MODE. */
6559 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6560 GET_MODE (reg_last_reload_reg[regno]),
6561 mode)
6562 #endif
6563 )
6564 {
6565 enum reg_class rclass = rld[r].rclass, last_class;
6566 rtx last_reg = reg_last_reload_reg[regno];
6567
6568 i = REGNO (last_reg);
6569 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6570 last_class = REGNO_REG_CLASS (i);
6571
6572 if (reg_reloaded_contents[i] == regno
6573 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6574 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6575 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6576 /* Even if we can't use this register as a reload
6577 register, we might use it for reload_override_in,
6578 if copying it to the desired class is cheap
6579 enough. */
6580 || ((register_move_cost (mode, last_class, rclass)
6581 < memory_move_cost (mode, rclass, true))
6582 && (secondary_reload_class (1, rclass, mode,
6583 last_reg)
6584 == NO_REGS)
6585 #ifdef SECONDARY_MEMORY_NEEDED
6586 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6587 mode)
6588 #endif
6589 ))
6590
6591 && (rld[r].nregs == max_group_size
6592 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6593 i))
6594 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6595 rld[r].when_needed, rld[r].in,
6596 const0_rtx, r, 1))
6597 {
6598 /* If a group is needed, verify that all the subsequent
6599 registers still have their values intact. */
6600 int nr = hard_regno_nregs[i][rld[r].mode];
6601 int k;
6602
6603 for (k = 1; k < nr; k++)
6604 if (reg_reloaded_contents[i + k] != regno
6605 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6606 break;
6607
6608 if (k == nr)
6609 {
6610 int i1;
6611 int bad_for_class;
6612
6613 last_reg = (GET_MODE (last_reg) == mode
6614 ? last_reg : gen_rtx_REG (mode, i));
6615
6616 bad_for_class = 0;
6617 for (k = 0; k < nr; k++)
6618 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6619 i+k);
6620
6621 /* We found a register that contains the
6622 value we need. If this register is the
6623 same as an `earlyclobber' operand of the
6624 current insn, just mark it as a place to
6625 reload from since we can't use it as the
6626 reload register itself. */
6627
6628 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6629 if (reg_overlap_mentioned_for_reload_p
6630 (reg_last_reload_reg[regno],
6631 reload_earlyclobbers[i1]))
6632 break;
6633
6634 if (i1 != n_earlyclobbers
6635 || ! (free_for_value_p (i, rld[r].mode,
6636 rld[r].opnum,
6637 rld[r].when_needed, rld[r].in,
6638 rld[r].out, r, 1))
6639 /* Don't use it if we'd clobber a pseudo reg. */
6640 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6641 && rld[r].out
6642 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6643 /* Don't clobber the frame pointer. */
6644 || (i == HARD_FRAME_POINTER_REGNUM
6645 && frame_pointer_needed
6646 && rld[r].out)
6647 /* Don't really use the inherited spill reg
6648 if we need it wider than we've got it. */
6649 || (GET_MODE_SIZE (rld[r].mode)
6650 > GET_MODE_SIZE (mode))
6651 || bad_for_class
6652
6653 /* If find_reloads chose reload_out as reload
6654 register, stay with it - that leaves the
6655 inherited register for subsequent reloads. */
6656 || (rld[r].out && rld[r].reg_rtx
6657 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6658 {
6659 if (! rld[r].optional)
6660 {
6661 reload_override_in[r] = last_reg;
6662 reload_inheritance_insn[r]
6663 = reg_reloaded_insn[i];
6664 }
6665 }
6666 else
6667 {
6668 int k;
6669 /* We can use this as a reload reg. */
6670 /* Mark the register as in use for this part of
6671 the insn. */
6672 mark_reload_reg_in_use (i,
6673 rld[r].opnum,
6674 rld[r].when_needed,
6675 rld[r].mode);
6676 rld[r].reg_rtx = last_reg;
6677 reload_inherited[r] = 1;
6678 reload_inheritance_insn[r]
6679 = reg_reloaded_insn[i];
6680 reload_spill_index[r] = i;
6681 for (k = 0; k < nr; k++)
6682 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6683 i + k);
6684 }
6685 }
6686 }
6687 }
6688 }
6689
6690 /* Here's another way to see if the value is already lying around. */
6691 if (inheritance
6692 && rld[r].in != 0
6693 && ! reload_inherited[r]
6694 && rld[r].out == 0
6695 && (CONSTANT_P (rld[r].in)
6696 || GET_CODE (rld[r].in) == PLUS
6697 || REG_P (rld[r].in)
6698 || MEM_P (rld[r].in))
6699 && (rld[r].nregs == max_group_size
6700 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6701 search_equiv = rld[r].in;
6702
6703 if (search_equiv)
6704 {
6705 rtx equiv
6706 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6707 -1, NULL, 0, rld[r].mode);
6708 int regno = 0;
6709
6710 if (equiv != 0)
6711 {
6712 if (REG_P (equiv))
6713 regno = REGNO (equiv);
6714 else
6715 {
6716 /* This must be a SUBREG of a hard register.
6717 Make a new REG since this might be used in an
6718 address and not all machines support SUBREGs
6719 there. */
6720 gcc_assert (GET_CODE (equiv) == SUBREG);
6721 regno = subreg_regno (equiv);
6722 equiv = gen_rtx_REG (rld[r].mode, regno);
6723 /* If we choose EQUIV as the reload register, but the
6724 loop below decides to cancel the inheritance, we'll
6725 end up reloading EQUIV in rld[r].mode, not the mode
6726 it had originally. That isn't safe when EQUIV isn't
6727 available as a spill register since its value might
6728 still be live at this point. */
6729 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6730 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6731 equiv = 0;
6732 }
6733 }
6734
6735 /* If we found a spill reg, reject it unless it is free
6736 and of the desired class. */
6737 if (equiv != 0)
6738 {
6739 int regs_used = 0;
6740 int bad_for_class = 0;
6741 int max_regno = regno + rld[r].nregs;
6742
6743 for (i = regno; i < max_regno; i++)
6744 {
6745 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6746 i);
6747 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6748 i);
6749 }
6750
6751 if ((regs_used
6752 && ! free_for_value_p (regno, rld[r].mode,
6753 rld[r].opnum, rld[r].when_needed,
6754 rld[r].in, rld[r].out, r, 1))
6755 || bad_for_class)
6756 equiv = 0;
6757 }
6758
6759 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6760 equiv = 0;
6761
6762 /* We found a register that contains the value we need.
6763 If this register is the same as an `earlyclobber' operand
6764 of the current insn, just mark it as a place to reload from
6765 since we can't use it as the reload register itself. */
6766
6767 if (equiv != 0)
6768 for (i = 0; i < n_earlyclobbers; i++)
6769 if (reg_overlap_mentioned_for_reload_p (equiv,
6770 reload_earlyclobbers[i]))
6771 {
6772 if (! rld[r].optional)
6773 reload_override_in[r] = equiv;
6774 equiv = 0;
6775 break;
6776 }
6777
6778 /* If the equiv register we have found is explicitly clobbered
6779 in the current insn, it depends on the reload type if we
6780 can use it, use it for reload_override_in, or not at all.
6781 In particular, we then can't use EQUIV for a
6782 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6783
6784 if (equiv != 0)
6785 {
6786 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6787 switch (rld[r].when_needed)
6788 {
6789 case RELOAD_FOR_OTHER_ADDRESS:
6790 case RELOAD_FOR_INPADDR_ADDRESS:
6791 case RELOAD_FOR_INPUT_ADDRESS:
6792 case RELOAD_FOR_OPADDR_ADDR:
6793 break;
6794 case RELOAD_OTHER:
6795 case RELOAD_FOR_INPUT:
6796 case RELOAD_FOR_OPERAND_ADDRESS:
6797 if (! rld[r].optional)
6798 reload_override_in[r] = equiv;
6799 /* Fall through. */
6800 default:
6801 equiv = 0;
6802 break;
6803 }
6804 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6805 switch (rld[r].when_needed)
6806 {
6807 case RELOAD_FOR_OTHER_ADDRESS:
6808 case RELOAD_FOR_INPADDR_ADDRESS:
6809 case RELOAD_FOR_INPUT_ADDRESS:
6810 case RELOAD_FOR_OPADDR_ADDR:
6811 case RELOAD_FOR_OPERAND_ADDRESS:
6812 case RELOAD_FOR_INPUT:
6813 break;
6814 case RELOAD_OTHER:
6815 if (! rld[r].optional)
6816 reload_override_in[r] = equiv;
6817 /* Fall through. */
6818 default:
6819 equiv = 0;
6820 break;
6821 }
6822 }
6823
6824 /* If we found an equivalent reg, say no code need be generated
6825 to load it, and use it as our reload reg. */
6826 if (equiv != 0
6827 && (regno != HARD_FRAME_POINTER_REGNUM
6828 || !frame_pointer_needed))
6829 {
6830 int nr = hard_regno_nregs[regno][rld[r].mode];
6831 int k;
6832 rld[r].reg_rtx = equiv;
6833 reload_spill_index[r] = regno;
6834 reload_inherited[r] = 1;
6835
6836 /* If reg_reloaded_valid is not set for this register,
6837 there might be a stale spill_reg_store lying around.
6838 We must clear it, since otherwise emit_reload_insns
6839 might delete the store. */
6840 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6841 spill_reg_store[regno] = NULL_RTX;
6842 /* If any of the hard registers in EQUIV are spill
6843 registers, mark them as in use for this insn. */
6844 for (k = 0; k < nr; k++)
6845 {
6846 i = spill_reg_order[regno + k];
6847 if (i >= 0)
6848 {
6849 mark_reload_reg_in_use (regno, rld[r].opnum,
6850 rld[r].when_needed,
6851 rld[r].mode);
6852 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6853 regno + k);
6854 }
6855 }
6856 }
6857 }
6858
6859 /* If we found a register to use already, or if this is an optional
6860 reload, we are done. */
6861 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6862 continue;
6863
6864 #if 0
6865 /* No longer needed for correct operation. Might or might
6866 not give better code on the average. Want to experiment? */
6867
6868 /* See if there is a later reload that has a class different from our
6869 class that intersects our class or that requires less register
6870 than our reload. If so, we must allocate a register to this
6871 reload now, since that reload might inherit a previous reload
6872 and take the only available register in our class. Don't do this
6873 for optional reloads since they will force all previous reloads
6874 to be allocated. Also don't do this for reloads that have been
6875 turned off. */
6876
6877 for (i = j + 1; i < n_reloads; i++)
6878 {
6879 int s = reload_order[i];
6880
6881 if ((rld[s].in == 0 && rld[s].out == 0
6882 && ! rld[s].secondary_p)
6883 || rld[s].optional)
6884 continue;
6885
6886 if ((rld[s].rclass != rld[r].rclass
6887 && reg_classes_intersect_p (rld[r].rclass,
6888 rld[s].rclass))
6889 || rld[s].nregs < rld[r].nregs)
6890 break;
6891 }
6892
6893 if (i == n_reloads)
6894 continue;
6895
6896 allocate_reload_reg (chain, r, j == n_reloads - 1);
6897 #endif
6898 }
6899
6900 /* Now allocate reload registers for anything non-optional that
6901 didn't get one yet. */
6902 for (j = 0; j < n_reloads; j++)
6903 {
6904 int r = reload_order[j];
6905
6906 /* Ignore reloads that got marked inoperative. */
6907 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6908 continue;
6909
6910 /* Skip reloads that already have a register allocated or are
6911 optional. */
6912 if (rld[r].reg_rtx != 0 || rld[r].optional)
6913 continue;
6914
6915 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6916 break;
6917 }
6918
6919 /* If that loop got all the way, we have won. */
6920 if (j == n_reloads)
6921 {
6922 win = 1;
6923 break;
6924 }
6925
6926 /* Loop around and try without any inheritance. */
6927 }
6928
6929 if (! win)
6930 {
6931 /* First undo everything done by the failed attempt
6932 to allocate with inheritance. */
6933 choose_reload_regs_init (chain, save_reload_reg_rtx);
6934
6935 /* Some sanity tests to verify that the reloads found in the first
6936 pass are identical to the ones we have now. */
6937 gcc_assert (chain->n_reloads == n_reloads);
6938
6939 for (i = 0; i < n_reloads; i++)
6940 {
6941 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6942 continue;
6943 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6944 for (j = 0; j < n_spills; j++)
6945 if (spill_regs[j] == chain->rld[i].regno)
6946 if (! set_reload_reg (j, i))
6947 failed_reload (chain->insn, i);
6948 }
6949 }
6950
6951 /* If we thought we could inherit a reload, because it seemed that
6952 nothing else wanted the same reload register earlier in the insn,
6953 verify that assumption, now that all reloads have been assigned.
6954 Likewise for reloads where reload_override_in has been set. */
6955
6956 /* If doing expensive optimizations, do one preliminary pass that doesn't
6957 cancel any inheritance, but removes reloads that have been needed only
6958 for reloads that we know can be inherited. */
6959 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6960 {
6961 for (j = 0; j < n_reloads; j++)
6962 {
6963 int r = reload_order[j];
6964 rtx check_reg;
6965 #ifdef SECONDARY_MEMORY_NEEDED
6966 rtx tem;
6967 #endif
6968 if (reload_inherited[r] && rld[r].reg_rtx)
6969 check_reg = rld[r].reg_rtx;
6970 else if (reload_override_in[r]
6971 && (REG_P (reload_override_in[r])
6972 || GET_CODE (reload_override_in[r]) == SUBREG))
6973 check_reg = reload_override_in[r];
6974 else
6975 continue;
6976 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6977 rld[r].opnum, rld[r].when_needed, rld[r].in,
6978 (reload_inherited[r]
6979 ? rld[r].out : const0_rtx),
6980 r, 1))
6981 {
6982 if (pass)
6983 continue;
6984 reload_inherited[r] = 0;
6985 reload_override_in[r] = 0;
6986 }
6987 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6988 reload_override_in, then we do not need its related
6989 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6990 likewise for other reload types.
6991 We handle this by removing a reload when its only replacement
6992 is mentioned in reload_in of the reload we are going to inherit.
6993 A special case are auto_inc expressions; even if the input is
6994 inherited, we still need the address for the output. We can
6995 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6996 If we succeeded removing some reload and we are doing a preliminary
6997 pass just to remove such reloads, make another pass, since the
6998 removal of one reload might allow us to inherit another one. */
6999 else if (rld[r].in
7000 && rld[r].out != rld[r].in
7001 && remove_address_replacements (rld[r].in))
7002 {
7003 if (pass)
7004 pass = 2;
7005 }
7006 #ifdef SECONDARY_MEMORY_NEEDED
7007 /* If we needed a memory location for the reload, we also have to
7008 remove its related reloads. */
7009 else if (rld[r].in
7010 && rld[r].out != rld[r].in
7011 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7012 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7013 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7014 rld[r].rclass, rld[r].inmode)
7015 && remove_address_replacements
7016 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7017 rld[r].when_needed)))
7018 {
7019 if (pass)
7020 pass = 2;
7021 }
7022 #endif
7023 }
7024 }
7025
7026 /* Now that reload_override_in is known valid,
7027 actually override reload_in. */
7028 for (j = 0; j < n_reloads; j++)
7029 if (reload_override_in[j])
7030 rld[j].in = reload_override_in[j];
7031
7032 /* If this reload won't be done because it has been canceled or is
7033 optional and not inherited, clear reload_reg_rtx so other
7034 routines (such as subst_reloads) don't get confused. */
7035 for (j = 0; j < n_reloads; j++)
7036 if (rld[j].reg_rtx != 0
7037 && ((rld[j].optional && ! reload_inherited[j])
7038 || (rld[j].in == 0 && rld[j].out == 0
7039 && ! rld[j].secondary_p)))
7040 {
7041 int regno = true_regnum (rld[j].reg_rtx);
7042
7043 if (spill_reg_order[regno] >= 0)
7044 clear_reload_reg_in_use (regno, rld[j].opnum,
7045 rld[j].when_needed, rld[j].mode);
7046 rld[j].reg_rtx = 0;
7047 reload_spill_index[j] = -1;
7048 }
7049
7050 /* Record which pseudos and which spill regs have output reloads. */
7051 for (j = 0; j < n_reloads; j++)
7052 {
7053 int r = reload_order[j];
7054
7055 i = reload_spill_index[r];
7056
7057 /* I is nonneg if this reload uses a register.
7058 If rld[r].reg_rtx is 0, this is an optional reload
7059 that we opted to ignore. */
7060 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7061 && rld[r].reg_rtx != 0)
7062 {
7063 int nregno = REGNO (rld[r].out_reg);
7064 int nr = 1;
7065
7066 if (nregno < FIRST_PSEUDO_REGISTER)
7067 nr = hard_regno_nregs[nregno][rld[r].mode];
7068
7069 while (--nr >= 0)
7070 SET_REGNO_REG_SET (&reg_has_output_reload,
7071 nregno + nr);
7072
7073 if (i >= 0)
7074 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7075
7076 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7077 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7078 || rld[r].when_needed == RELOAD_FOR_INSN);
7079 }
7080 }
7081 }
7082
7083 /* Deallocate the reload register for reload R. This is called from
7084 remove_address_replacements. */
7085
7086 void
7087 deallocate_reload_reg (int r)
7088 {
7089 int regno;
7090
7091 if (! rld[r].reg_rtx)
7092 return;
7093 regno = true_regnum (rld[r].reg_rtx);
7094 rld[r].reg_rtx = 0;
7095 if (spill_reg_order[regno] >= 0)
7096 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7097 rld[r].mode);
7098 reload_spill_index[r] = -1;
7099 }
7100 \f
7101 /* These arrays are filled by emit_reload_insns and its subroutines. */
7102 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
7103 static rtx other_input_address_reload_insns = 0;
7104 static rtx other_input_reload_insns = 0;
7105 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
7106 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7107 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
7108 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
7109 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7110 static rtx operand_reload_insns = 0;
7111 static rtx other_operand_reload_insns = 0;
7112 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
7113
7114 /* Values to be put in spill_reg_store are put here first. Instructions
7115 must only be placed here if the associated reload register reaches
7116 the end of the instruction's reload sequence. */
7117 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7118 static HARD_REG_SET reg_reloaded_died;
7119
7120 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7121 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7122 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7123 adjusted register, and return true. Otherwise, return false. */
7124 static bool
7125 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7126 enum reg_class new_class,
7127 enum machine_mode new_mode)
7128
7129 {
7130 rtx reg;
7131
7132 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7133 {
7134 unsigned regno = REGNO (reg);
7135
7136 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7137 continue;
7138 if (GET_MODE (reg) != new_mode)
7139 {
7140 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7141 continue;
7142 if (hard_regno_nregs[regno][new_mode]
7143 > hard_regno_nregs[regno][GET_MODE (reg)])
7144 continue;
7145 reg = reload_adjust_reg_for_mode (reg, new_mode);
7146 }
7147 *reload_reg = reg;
7148 return true;
7149 }
7150 return false;
7151 }
7152
7153 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7154 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7155 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7156 adjusted register, and return true. Otherwise, return false. */
7157 static bool
7158 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7159 enum insn_code icode)
7160
7161 {
7162 enum reg_class new_class = scratch_reload_class (icode);
7163 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7164
7165 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7166 new_class, new_mode);
7167 }
7168
7169 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7170 has the number J. OLD contains the value to be used as input. */
7171
7172 static void
7173 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7174 rtx old, int j)
7175 {
7176 rtx insn = chain->insn;
7177 rtx reloadreg;
7178 rtx oldequiv_reg = 0;
7179 rtx oldequiv = 0;
7180 int special = 0;
7181 enum machine_mode mode;
7182 rtx *where;
7183
7184 /* delete_output_reload is only invoked properly if old contains
7185 the original pseudo register. Since this is replaced with a
7186 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7187 find the pseudo in RELOAD_IN_REG. */
7188 if (reload_override_in[j]
7189 && REG_P (rl->in_reg))
7190 {
7191 oldequiv = old;
7192 old = rl->in_reg;
7193 }
7194 if (oldequiv == 0)
7195 oldequiv = old;
7196 else if (REG_P (oldequiv))
7197 oldequiv_reg = oldequiv;
7198 else if (GET_CODE (oldequiv) == SUBREG)
7199 oldequiv_reg = SUBREG_REG (oldequiv);
7200
7201 reloadreg = reload_reg_rtx_for_input[j];
7202 mode = GET_MODE (reloadreg);
7203
7204 /* If we are reloading from a register that was recently stored in
7205 with an output-reload, see if we can prove there was
7206 actually no need to store the old value in it. */
7207
7208 if (optimize && REG_P (oldequiv)
7209 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7210 && spill_reg_store[REGNO (oldequiv)]
7211 && REG_P (old)
7212 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7213 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7214 rl->out_reg)))
7215 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7216
7217 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7218 OLDEQUIV. */
7219
7220 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7221 oldequiv = SUBREG_REG (oldequiv);
7222 if (GET_MODE (oldequiv) != VOIDmode
7223 && mode != GET_MODE (oldequiv))
7224 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7225
7226 /* Switch to the right place to emit the reload insns. */
7227 switch (rl->when_needed)
7228 {
7229 case RELOAD_OTHER:
7230 where = &other_input_reload_insns;
7231 break;
7232 case RELOAD_FOR_INPUT:
7233 where = &input_reload_insns[rl->opnum];
7234 break;
7235 case RELOAD_FOR_INPUT_ADDRESS:
7236 where = &input_address_reload_insns[rl->opnum];
7237 break;
7238 case RELOAD_FOR_INPADDR_ADDRESS:
7239 where = &inpaddr_address_reload_insns[rl->opnum];
7240 break;
7241 case RELOAD_FOR_OUTPUT_ADDRESS:
7242 where = &output_address_reload_insns[rl->opnum];
7243 break;
7244 case RELOAD_FOR_OUTADDR_ADDRESS:
7245 where = &outaddr_address_reload_insns[rl->opnum];
7246 break;
7247 case RELOAD_FOR_OPERAND_ADDRESS:
7248 where = &operand_reload_insns;
7249 break;
7250 case RELOAD_FOR_OPADDR_ADDR:
7251 where = &other_operand_reload_insns;
7252 break;
7253 case RELOAD_FOR_OTHER_ADDRESS:
7254 where = &other_input_address_reload_insns;
7255 break;
7256 default:
7257 gcc_unreachable ();
7258 }
7259
7260 push_to_sequence (*where);
7261
7262 /* Auto-increment addresses must be reloaded in a special way. */
7263 if (rl->out && ! rl->out_reg)
7264 {
7265 /* We are not going to bother supporting the case where a
7266 incremented register can't be copied directly from
7267 OLDEQUIV since this seems highly unlikely. */
7268 gcc_assert (rl->secondary_in_reload < 0);
7269
7270 if (reload_inherited[j])
7271 oldequiv = reloadreg;
7272
7273 old = XEXP (rl->in_reg, 0);
7274
7275 /* Prevent normal processing of this reload. */
7276 special = 1;
7277 /* Output a special code sequence for this case. */
7278 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7279 }
7280
7281 /* If we are reloading a pseudo-register that was set by the previous
7282 insn, see if we can get rid of that pseudo-register entirely
7283 by redirecting the previous insn into our reload register. */
7284
7285 else if (optimize && REG_P (old)
7286 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7287 && dead_or_set_p (insn, old)
7288 /* This is unsafe if some other reload
7289 uses the same reg first. */
7290 && ! conflicts_with_override (reloadreg)
7291 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7292 rl->when_needed, old, rl->out, j, 0))
7293 {
7294 rtx temp = PREV_INSN (insn);
7295 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7296 temp = PREV_INSN (temp);
7297 if (temp
7298 && NONJUMP_INSN_P (temp)
7299 && GET_CODE (PATTERN (temp)) == SET
7300 && SET_DEST (PATTERN (temp)) == old
7301 /* Make sure we can access insn_operand_constraint. */
7302 && asm_noperands (PATTERN (temp)) < 0
7303 /* This is unsafe if operand occurs more than once in current
7304 insn. Perhaps some occurrences aren't reloaded. */
7305 && count_occurrences (PATTERN (insn), old, 0) == 1)
7306 {
7307 rtx old = SET_DEST (PATTERN (temp));
7308 /* Store into the reload register instead of the pseudo. */
7309 SET_DEST (PATTERN (temp)) = reloadreg;
7310
7311 /* Verify that resulting insn is valid. */
7312 extract_insn (temp);
7313 if (constrain_operands (1))
7314 {
7315 /* If the previous insn is an output reload, the source is
7316 a reload register, and its spill_reg_store entry will
7317 contain the previous destination. This is now
7318 invalid. */
7319 if (REG_P (SET_SRC (PATTERN (temp)))
7320 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7321 {
7322 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7323 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7324 }
7325
7326 /* If these are the only uses of the pseudo reg,
7327 pretend for GDB it lives in the reload reg we used. */
7328 if (REG_N_DEATHS (REGNO (old)) == 1
7329 && REG_N_SETS (REGNO (old)) == 1)
7330 {
7331 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7332 if (ira_conflicts_p)
7333 /* Inform IRA about the change. */
7334 ira_mark_allocation_change (REGNO (old));
7335 alter_reg (REGNO (old), -1, false);
7336 }
7337 special = 1;
7338
7339 /* Adjust any debug insns between temp and insn. */
7340 while ((temp = NEXT_INSN (temp)) != insn)
7341 if (DEBUG_INSN_P (temp))
7342 replace_rtx (PATTERN (temp), old, reloadreg);
7343 else
7344 gcc_assert (NOTE_P (temp));
7345 }
7346 else
7347 {
7348 SET_DEST (PATTERN (temp)) = old;
7349 }
7350 }
7351 }
7352
7353 /* We can't do that, so output an insn to load RELOADREG. */
7354
7355 /* If we have a secondary reload, pick up the secondary register
7356 and icode, if any. If OLDEQUIV and OLD are different or
7357 if this is an in-out reload, recompute whether or not we
7358 still need a secondary register and what the icode should
7359 be. If we still need a secondary register and the class or
7360 icode is different, go back to reloading from OLD if using
7361 OLDEQUIV means that we got the wrong type of register. We
7362 cannot have different class or icode due to an in-out reload
7363 because we don't make such reloads when both the input and
7364 output need secondary reload registers. */
7365
7366 if (! special && rl->secondary_in_reload >= 0)
7367 {
7368 rtx second_reload_reg = 0;
7369 rtx third_reload_reg = 0;
7370 int secondary_reload = rl->secondary_in_reload;
7371 rtx real_oldequiv = oldequiv;
7372 rtx real_old = old;
7373 rtx tmp;
7374 enum insn_code icode;
7375 enum insn_code tertiary_icode = CODE_FOR_nothing;
7376
7377 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7378 and similarly for OLD.
7379 See comments in get_secondary_reload in reload.c. */
7380 /* If it is a pseudo that cannot be replaced with its
7381 equivalent MEM, we must fall back to reload_in, which
7382 will have all the necessary substitutions registered.
7383 Likewise for a pseudo that can't be replaced with its
7384 equivalent constant.
7385
7386 Take extra care for subregs of such pseudos. Note that
7387 we cannot use reg_equiv_mem in this case because it is
7388 not in the right mode. */
7389
7390 tmp = oldequiv;
7391 if (GET_CODE (tmp) == SUBREG)
7392 tmp = SUBREG_REG (tmp);
7393 if (REG_P (tmp)
7394 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7395 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7396 || reg_equiv_constant (REGNO (tmp)) != 0))
7397 {
7398 if (! reg_equiv_mem (REGNO (tmp))
7399 || num_not_at_initial_offset
7400 || GET_CODE (oldequiv) == SUBREG)
7401 real_oldequiv = rl->in;
7402 else
7403 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7404 }
7405
7406 tmp = old;
7407 if (GET_CODE (tmp) == SUBREG)
7408 tmp = SUBREG_REG (tmp);
7409 if (REG_P (tmp)
7410 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7411 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7412 || reg_equiv_constant (REGNO (tmp)) != 0))
7413 {
7414 if (! reg_equiv_mem (REGNO (tmp))
7415 || num_not_at_initial_offset
7416 || GET_CODE (old) == SUBREG)
7417 real_old = rl->in;
7418 else
7419 real_old = reg_equiv_mem (REGNO (tmp));
7420 }
7421
7422 second_reload_reg = rld[secondary_reload].reg_rtx;
7423 if (rld[secondary_reload].secondary_in_reload >= 0)
7424 {
7425 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7426
7427 third_reload_reg = rld[tertiary_reload].reg_rtx;
7428 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7429 /* We'd have to add more code for quartary reloads. */
7430 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7431 }
7432 icode = rl->secondary_in_icode;
7433
7434 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7435 || (rl->in != 0 && rl->out != 0))
7436 {
7437 secondary_reload_info sri, sri2;
7438 enum reg_class new_class, new_t_class;
7439
7440 sri.icode = CODE_FOR_nothing;
7441 sri.prev_sri = NULL;
7442 new_class
7443 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7444 rl->rclass, mode,
7445 &sri);
7446
7447 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7448 second_reload_reg = 0;
7449 else if (new_class == NO_REGS)
7450 {
7451 if (reload_adjust_reg_for_icode (&second_reload_reg,
7452 third_reload_reg,
7453 (enum insn_code) sri.icode))
7454 {
7455 icode = (enum insn_code) sri.icode;
7456 third_reload_reg = 0;
7457 }
7458 else
7459 {
7460 oldequiv = old;
7461 real_oldequiv = real_old;
7462 }
7463 }
7464 else if (sri.icode != CODE_FOR_nothing)
7465 /* We currently lack a way to express this in reloads. */
7466 gcc_unreachable ();
7467 else
7468 {
7469 sri2.icode = CODE_FOR_nothing;
7470 sri2.prev_sri = &sri;
7471 new_t_class
7472 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7473 new_class, mode,
7474 &sri);
7475 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7476 {
7477 if (reload_adjust_reg_for_temp (&second_reload_reg,
7478 third_reload_reg,
7479 new_class, mode))
7480 {
7481 third_reload_reg = 0;
7482 tertiary_icode = (enum insn_code) sri2.icode;
7483 }
7484 else
7485 {
7486 oldequiv = old;
7487 real_oldequiv = real_old;
7488 }
7489 }
7490 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7491 {
7492 rtx intermediate = second_reload_reg;
7493
7494 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7495 new_class, mode)
7496 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7497 ((enum insn_code)
7498 sri2.icode)))
7499 {
7500 second_reload_reg = intermediate;
7501 tertiary_icode = (enum insn_code) sri2.icode;
7502 }
7503 else
7504 {
7505 oldequiv = old;
7506 real_oldequiv = real_old;
7507 }
7508 }
7509 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7510 {
7511 rtx intermediate = second_reload_reg;
7512
7513 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7514 new_class, mode)
7515 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7516 new_t_class, mode))
7517 {
7518 second_reload_reg = intermediate;
7519 tertiary_icode = (enum insn_code) sri2.icode;
7520 }
7521 else
7522 {
7523 oldequiv = old;
7524 real_oldequiv = real_old;
7525 }
7526 }
7527 else
7528 {
7529 /* This could be handled more intelligently too. */
7530 oldequiv = old;
7531 real_oldequiv = real_old;
7532 }
7533 }
7534 }
7535
7536 /* If we still need a secondary reload register, check
7537 to see if it is being used as a scratch or intermediate
7538 register and generate code appropriately. If we need
7539 a scratch register, use REAL_OLDEQUIV since the form of
7540 the insn may depend on the actual address if it is
7541 a MEM. */
7542
7543 if (second_reload_reg)
7544 {
7545 if (icode != CODE_FOR_nothing)
7546 {
7547 /* We'd have to add extra code to handle this case. */
7548 gcc_assert (!third_reload_reg);
7549
7550 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7551 second_reload_reg));
7552 special = 1;
7553 }
7554 else
7555 {
7556 /* See if we need a scratch register to load the
7557 intermediate register (a tertiary reload). */
7558 if (tertiary_icode != CODE_FOR_nothing)
7559 {
7560 emit_insn ((GEN_FCN (tertiary_icode)
7561 (second_reload_reg, real_oldequiv,
7562 third_reload_reg)));
7563 }
7564 else if (third_reload_reg)
7565 {
7566 gen_reload (third_reload_reg, real_oldequiv,
7567 rl->opnum,
7568 rl->when_needed);
7569 gen_reload (second_reload_reg, third_reload_reg,
7570 rl->opnum,
7571 rl->when_needed);
7572 }
7573 else
7574 gen_reload (second_reload_reg, real_oldequiv,
7575 rl->opnum,
7576 rl->when_needed);
7577
7578 oldequiv = second_reload_reg;
7579 }
7580 }
7581 }
7582
7583 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7584 {
7585 rtx real_oldequiv = oldequiv;
7586
7587 if ((REG_P (oldequiv)
7588 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7589 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7590 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7591 || (GET_CODE (oldequiv) == SUBREG
7592 && REG_P (SUBREG_REG (oldequiv))
7593 && (REGNO (SUBREG_REG (oldequiv))
7594 >= FIRST_PSEUDO_REGISTER)
7595 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7596 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7597 || (CONSTANT_P (oldequiv)
7598 && (targetm.preferred_reload_class (oldequiv,
7599 REGNO_REG_CLASS (REGNO (reloadreg)))
7600 == NO_REGS)))
7601 real_oldequiv = rl->in;
7602 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7603 rl->when_needed);
7604 }
7605
7606 if (cfun->can_throw_non_call_exceptions)
7607 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7608
7609 /* End this sequence. */
7610 *where = get_insns ();
7611 end_sequence ();
7612
7613 /* Update reload_override_in so that delete_address_reloads_1
7614 can see the actual register usage. */
7615 if (oldequiv_reg)
7616 reload_override_in[j] = oldequiv;
7617 }
7618
7619 /* Generate insns to for the output reload RL, which is for the insn described
7620 by CHAIN and has the number J. */
7621 static void
7622 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7623 int j)
7624 {
7625 rtx reloadreg;
7626 rtx insn = chain->insn;
7627 int special = 0;
7628 rtx old = rl->out;
7629 enum machine_mode mode;
7630 rtx p;
7631 rtx rl_reg_rtx;
7632
7633 if (rl->when_needed == RELOAD_OTHER)
7634 start_sequence ();
7635 else
7636 push_to_sequence (output_reload_insns[rl->opnum]);
7637
7638 rl_reg_rtx = reload_reg_rtx_for_output[j];
7639 mode = GET_MODE (rl_reg_rtx);
7640
7641 reloadreg = rl_reg_rtx;
7642
7643 /* If we need two reload regs, set RELOADREG to the intermediate
7644 one, since it will be stored into OLD. We might need a secondary
7645 register only for an input reload, so check again here. */
7646
7647 if (rl->secondary_out_reload >= 0)
7648 {
7649 rtx real_old = old;
7650 int secondary_reload = rl->secondary_out_reload;
7651 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7652
7653 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7654 && reg_equiv_mem (REGNO (old)) != 0)
7655 real_old = reg_equiv_mem (REGNO (old));
7656
7657 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7658 {
7659 rtx second_reloadreg = reloadreg;
7660 reloadreg = rld[secondary_reload].reg_rtx;
7661
7662 /* See if RELOADREG is to be used as a scratch register
7663 or as an intermediate register. */
7664 if (rl->secondary_out_icode != CODE_FOR_nothing)
7665 {
7666 /* We'd have to add extra code to handle this case. */
7667 gcc_assert (tertiary_reload < 0);
7668
7669 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7670 (real_old, second_reloadreg, reloadreg)));
7671 special = 1;
7672 }
7673 else
7674 {
7675 /* See if we need both a scratch and intermediate reload
7676 register. */
7677
7678 enum insn_code tertiary_icode
7679 = rld[secondary_reload].secondary_out_icode;
7680
7681 /* We'd have to add more code for quartary reloads. */
7682 gcc_assert (tertiary_reload < 0
7683 || rld[tertiary_reload].secondary_out_reload < 0);
7684
7685 if (GET_MODE (reloadreg) != mode)
7686 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7687
7688 if (tertiary_icode != CODE_FOR_nothing)
7689 {
7690 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7691
7692 /* Copy primary reload reg to secondary reload reg.
7693 (Note that these have been swapped above, then
7694 secondary reload reg to OLD using our insn.) */
7695
7696 /* If REAL_OLD is a paradoxical SUBREG, remove it
7697 and try to put the opposite SUBREG on
7698 RELOADREG. */
7699 strip_paradoxical_subreg (&real_old, &reloadreg);
7700
7701 gen_reload (reloadreg, second_reloadreg,
7702 rl->opnum, rl->when_needed);
7703 emit_insn ((GEN_FCN (tertiary_icode)
7704 (real_old, reloadreg, third_reloadreg)));
7705 special = 1;
7706 }
7707
7708 else
7709 {
7710 /* Copy between the reload regs here and then to
7711 OUT later. */
7712
7713 gen_reload (reloadreg, second_reloadreg,
7714 rl->opnum, rl->when_needed);
7715 if (tertiary_reload >= 0)
7716 {
7717 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7718
7719 gen_reload (third_reloadreg, reloadreg,
7720 rl->opnum, rl->when_needed);
7721 reloadreg = third_reloadreg;
7722 }
7723 }
7724 }
7725 }
7726 }
7727
7728 /* Output the last reload insn. */
7729 if (! special)
7730 {
7731 rtx set;
7732
7733 /* Don't output the last reload if OLD is not the dest of
7734 INSN and is in the src and is clobbered by INSN. */
7735 if (! flag_expensive_optimizations
7736 || !REG_P (old)
7737 || !(set = single_set (insn))
7738 || rtx_equal_p (old, SET_DEST (set))
7739 || !reg_mentioned_p (old, SET_SRC (set))
7740 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7741 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7742 gen_reload (old, reloadreg, rl->opnum,
7743 rl->when_needed);
7744 }
7745
7746 /* Look at all insns we emitted, just to be safe. */
7747 for (p = get_insns (); p; p = NEXT_INSN (p))
7748 if (INSN_P (p))
7749 {
7750 rtx pat = PATTERN (p);
7751
7752 /* If this output reload doesn't come from a spill reg,
7753 clear any memory of reloaded copies of the pseudo reg.
7754 If this output reload comes from a spill reg,
7755 reg_has_output_reload will make this do nothing. */
7756 note_stores (pat, forget_old_reloads_1, NULL);
7757
7758 if (reg_mentioned_p (rl_reg_rtx, pat))
7759 {
7760 rtx set = single_set (insn);
7761 if (reload_spill_index[j] < 0
7762 && set
7763 && SET_SRC (set) == rl_reg_rtx)
7764 {
7765 int src = REGNO (SET_SRC (set));
7766
7767 reload_spill_index[j] = src;
7768 SET_HARD_REG_BIT (reg_is_output_reload, src);
7769 if (find_regno_note (insn, REG_DEAD, src))
7770 SET_HARD_REG_BIT (reg_reloaded_died, src);
7771 }
7772 if (HARD_REGISTER_P (rl_reg_rtx))
7773 {
7774 int s = rl->secondary_out_reload;
7775 set = single_set (p);
7776 /* If this reload copies only to the secondary reload
7777 register, the secondary reload does the actual
7778 store. */
7779 if (s >= 0 && set == NULL_RTX)
7780 /* We can't tell what function the secondary reload
7781 has and where the actual store to the pseudo is
7782 made; leave new_spill_reg_store alone. */
7783 ;
7784 else if (s >= 0
7785 && SET_SRC (set) == rl_reg_rtx
7786 && SET_DEST (set) == rld[s].reg_rtx)
7787 {
7788 /* Usually the next instruction will be the
7789 secondary reload insn; if we can confirm
7790 that it is, setting new_spill_reg_store to
7791 that insn will allow an extra optimization. */
7792 rtx s_reg = rld[s].reg_rtx;
7793 rtx next = NEXT_INSN (p);
7794 rld[s].out = rl->out;
7795 rld[s].out_reg = rl->out_reg;
7796 set = single_set (next);
7797 if (set && SET_SRC (set) == s_reg
7798 && reload_reg_rtx_reaches_end_p (s_reg, s))
7799 {
7800 SET_HARD_REG_BIT (reg_is_output_reload,
7801 REGNO (s_reg));
7802 new_spill_reg_store[REGNO (s_reg)] = next;
7803 }
7804 }
7805 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7806 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7807 }
7808 }
7809 }
7810
7811 if (rl->when_needed == RELOAD_OTHER)
7812 {
7813 emit_insn (other_output_reload_insns[rl->opnum]);
7814 other_output_reload_insns[rl->opnum] = get_insns ();
7815 }
7816 else
7817 output_reload_insns[rl->opnum] = get_insns ();
7818
7819 if (cfun->can_throw_non_call_exceptions)
7820 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7821
7822 end_sequence ();
7823 }
7824
7825 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7826 and has the number J. */
7827 static void
7828 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7829 {
7830 rtx insn = chain->insn;
7831 rtx old = (rl->in && MEM_P (rl->in)
7832 ? rl->in_reg : rl->in);
7833 rtx reg_rtx = rl->reg_rtx;
7834
7835 if (old && reg_rtx)
7836 {
7837 enum machine_mode mode;
7838
7839 /* Determine the mode to reload in.
7840 This is very tricky because we have three to choose from.
7841 There is the mode the insn operand wants (rl->inmode).
7842 There is the mode of the reload register RELOADREG.
7843 There is the intrinsic mode of the operand, which we could find
7844 by stripping some SUBREGs.
7845 It turns out that RELOADREG's mode is irrelevant:
7846 we can change that arbitrarily.
7847
7848 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7849 then the reload reg may not support QImode moves, so use SImode.
7850 If foo is in memory due to spilling a pseudo reg, this is safe,
7851 because the QImode value is in the least significant part of a
7852 slot big enough for a SImode. If foo is some other sort of
7853 memory reference, then it is impossible to reload this case,
7854 so previous passes had better make sure this never happens.
7855
7856 Then consider a one-word union which has SImode and one of its
7857 members is a float, being fetched as (SUBREG:SF union:SI).
7858 We must fetch that as SFmode because we could be loading into
7859 a float-only register. In this case OLD's mode is correct.
7860
7861 Consider an immediate integer: it has VOIDmode. Here we need
7862 to get a mode from something else.
7863
7864 In some cases, there is a fourth mode, the operand's
7865 containing mode. If the insn specifies a containing mode for
7866 this operand, it overrides all others.
7867
7868 I am not sure whether the algorithm here is always right,
7869 but it does the right things in those cases. */
7870
7871 mode = GET_MODE (old);
7872 if (mode == VOIDmode)
7873 mode = rl->inmode;
7874
7875 /* We cannot use gen_lowpart_common since it can do the wrong thing
7876 when REG_RTX has a multi-word mode. Note that REG_RTX must
7877 always be a REG here. */
7878 if (GET_MODE (reg_rtx) != mode)
7879 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7880 }
7881 reload_reg_rtx_for_input[j] = reg_rtx;
7882
7883 if (old != 0
7884 /* AUTO_INC reloads need to be handled even if inherited. We got an
7885 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7886 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7887 && ! rtx_equal_p (reg_rtx, old)
7888 && reg_rtx != 0)
7889 emit_input_reload_insns (chain, rld + j, old, j);
7890
7891 /* When inheriting a wider reload, we have a MEM in rl->in,
7892 e.g. inheriting a SImode output reload for
7893 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7894 if (optimize && reload_inherited[j] && rl->in
7895 && MEM_P (rl->in)
7896 && MEM_P (rl->in_reg)
7897 && reload_spill_index[j] >= 0
7898 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7899 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7900
7901 /* If we are reloading a register that was recently stored in with an
7902 output-reload, see if we can prove there was
7903 actually no need to store the old value in it. */
7904
7905 if (optimize
7906 && (reload_inherited[j] || reload_override_in[j])
7907 && reg_rtx
7908 && REG_P (reg_rtx)
7909 && spill_reg_store[REGNO (reg_rtx)] != 0
7910 #if 0
7911 /* There doesn't seem to be any reason to restrict this to pseudos
7912 and doing so loses in the case where we are copying from a
7913 register of the wrong class. */
7914 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7915 #endif
7916 /* The insn might have already some references to stackslots
7917 replaced by MEMs, while reload_out_reg still names the
7918 original pseudo. */
7919 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7920 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7921 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7922 }
7923
7924 /* Do output reloading for reload RL, which is for the insn described by
7925 CHAIN and has the number J.
7926 ??? At some point we need to support handling output reloads of
7927 JUMP_INSNs or insns that set cc0. */
7928 static void
7929 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7930 {
7931 rtx note, old;
7932 rtx insn = chain->insn;
7933 /* If this is an output reload that stores something that is
7934 not loaded in this same reload, see if we can eliminate a previous
7935 store. */
7936 rtx pseudo = rl->out_reg;
7937 rtx reg_rtx = rl->reg_rtx;
7938
7939 if (rl->out && reg_rtx)
7940 {
7941 enum machine_mode mode;
7942
7943 /* Determine the mode to reload in.
7944 See comments above (for input reloading). */
7945 mode = GET_MODE (rl->out);
7946 if (mode == VOIDmode)
7947 {
7948 /* VOIDmode should never happen for an output. */
7949 if (asm_noperands (PATTERN (insn)) < 0)
7950 /* It's the compiler's fault. */
7951 fatal_insn ("VOIDmode on an output", insn);
7952 error_for_asm (insn, "output operand is constant in %<asm%>");
7953 /* Prevent crash--use something we know is valid. */
7954 mode = word_mode;
7955 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7956 }
7957 if (GET_MODE (reg_rtx) != mode)
7958 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7959 }
7960 reload_reg_rtx_for_output[j] = reg_rtx;
7961
7962 if (pseudo
7963 && optimize
7964 && REG_P (pseudo)
7965 && ! rtx_equal_p (rl->in_reg, pseudo)
7966 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7967 && reg_last_reload_reg[REGNO (pseudo)])
7968 {
7969 int pseudo_no = REGNO (pseudo);
7970 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7971
7972 /* We don't need to test full validity of last_regno for
7973 inherit here; we only want to know if the store actually
7974 matches the pseudo. */
7975 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7976 && reg_reloaded_contents[last_regno] == pseudo_no
7977 && spill_reg_store[last_regno]
7978 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7979 delete_output_reload (insn, j, last_regno, reg_rtx);
7980 }
7981
7982 old = rl->out_reg;
7983 if (old == 0
7984 || reg_rtx == 0
7985 || rtx_equal_p (old, reg_rtx))
7986 return;
7987
7988 /* An output operand that dies right away does need a reload,
7989 but need not be copied from it. Show the new location in the
7990 REG_UNUSED note. */
7991 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7992 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7993 {
7994 XEXP (note, 0) = reg_rtx;
7995 return;
7996 }
7997 /* Likewise for a SUBREG of an operand that dies. */
7998 else if (GET_CODE (old) == SUBREG
7999 && REG_P (SUBREG_REG (old))
8000 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8001 SUBREG_REG (old))))
8002 {
8003 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8004 return;
8005 }
8006 else if (GET_CODE (old) == SCRATCH)
8007 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8008 but we don't want to make an output reload. */
8009 return;
8010
8011 /* If is a JUMP_INSN, we can't support output reloads yet. */
8012 gcc_assert (NONJUMP_INSN_P (insn));
8013
8014 emit_output_reload_insns (chain, rld + j, j);
8015 }
8016
8017 /* A reload copies values of MODE from register SRC to register DEST.
8018 Return true if it can be treated for inheritance purposes like a
8019 group of reloads, each one reloading a single hard register. The
8020 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8021 occupy the same number of hard registers. */
8022
8023 static bool
8024 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8025 int src ATTRIBUTE_UNUSED,
8026 enum machine_mode mode ATTRIBUTE_UNUSED)
8027 {
8028 #ifdef CANNOT_CHANGE_MODE_CLASS
8029 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8030 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8031 #else
8032 return true;
8033 #endif
8034 }
8035
8036 /* Output insns to reload values in and out of the chosen reload regs. */
8037
8038 static void
8039 emit_reload_insns (struct insn_chain *chain)
8040 {
8041 rtx insn = chain->insn;
8042
8043 int j;
8044
8045 CLEAR_HARD_REG_SET (reg_reloaded_died);
8046
8047 for (j = 0; j < reload_n_operands; j++)
8048 input_reload_insns[j] = input_address_reload_insns[j]
8049 = inpaddr_address_reload_insns[j]
8050 = output_reload_insns[j] = output_address_reload_insns[j]
8051 = outaddr_address_reload_insns[j]
8052 = other_output_reload_insns[j] = 0;
8053 other_input_address_reload_insns = 0;
8054 other_input_reload_insns = 0;
8055 operand_reload_insns = 0;
8056 other_operand_reload_insns = 0;
8057
8058 /* Dump reloads into the dump file. */
8059 if (dump_file)
8060 {
8061 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8062 debug_reload_to_stream (dump_file);
8063 }
8064
8065 for (j = 0; j < n_reloads; j++)
8066 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8067 {
8068 unsigned int i;
8069
8070 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8071 new_spill_reg_store[i] = 0;
8072 }
8073
8074 /* Now output the instructions to copy the data into and out of the
8075 reload registers. Do these in the order that the reloads were reported,
8076 since reloads of base and index registers precede reloads of operands
8077 and the operands may need the base and index registers reloaded. */
8078
8079 for (j = 0; j < n_reloads; j++)
8080 {
8081 do_input_reload (chain, rld + j, j);
8082 do_output_reload (chain, rld + j, j);
8083 }
8084
8085 /* Now write all the insns we made for reloads in the order expected by
8086 the allocation functions. Prior to the insn being reloaded, we write
8087 the following reloads:
8088
8089 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8090
8091 RELOAD_OTHER reloads.
8092
8093 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8094 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8095 RELOAD_FOR_INPUT reload for the operand.
8096
8097 RELOAD_FOR_OPADDR_ADDRS reloads.
8098
8099 RELOAD_FOR_OPERAND_ADDRESS reloads.
8100
8101 After the insn being reloaded, we write the following:
8102
8103 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8104 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8105 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8106 reloads for the operand. The RELOAD_OTHER output reloads are
8107 output in descending order by reload number. */
8108
8109 emit_insn_before (other_input_address_reload_insns, insn);
8110 emit_insn_before (other_input_reload_insns, insn);
8111
8112 for (j = 0; j < reload_n_operands; j++)
8113 {
8114 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8115 emit_insn_before (input_address_reload_insns[j], insn);
8116 emit_insn_before (input_reload_insns[j], insn);
8117 }
8118
8119 emit_insn_before (other_operand_reload_insns, insn);
8120 emit_insn_before (operand_reload_insns, insn);
8121
8122 for (j = 0; j < reload_n_operands; j++)
8123 {
8124 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8125 x = emit_insn_after (output_address_reload_insns[j], x);
8126 x = emit_insn_after (output_reload_insns[j], x);
8127 emit_insn_after (other_output_reload_insns[j], x);
8128 }
8129
8130 /* For all the spill regs newly reloaded in this instruction,
8131 record what they were reloaded from, so subsequent instructions
8132 can inherit the reloads.
8133
8134 Update spill_reg_store for the reloads of this insn.
8135 Copy the elements that were updated in the loop above. */
8136
8137 for (j = 0; j < n_reloads; j++)
8138 {
8139 int r = reload_order[j];
8140 int i = reload_spill_index[r];
8141
8142 /* If this is a non-inherited input reload from a pseudo, we must
8143 clear any memory of a previous store to the same pseudo. Only do
8144 something if there will not be an output reload for the pseudo
8145 being reloaded. */
8146 if (rld[r].in_reg != 0
8147 && ! (reload_inherited[r] || reload_override_in[r]))
8148 {
8149 rtx reg = rld[r].in_reg;
8150
8151 if (GET_CODE (reg) == SUBREG)
8152 reg = SUBREG_REG (reg);
8153
8154 if (REG_P (reg)
8155 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8156 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8157 {
8158 int nregno = REGNO (reg);
8159
8160 if (reg_last_reload_reg[nregno])
8161 {
8162 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8163
8164 if (reg_reloaded_contents[last_regno] == nregno)
8165 spill_reg_store[last_regno] = 0;
8166 }
8167 }
8168 }
8169
8170 /* I is nonneg if this reload used a register.
8171 If rld[r].reg_rtx is 0, this is an optional reload
8172 that we opted to ignore. */
8173
8174 if (i >= 0 && rld[r].reg_rtx != 0)
8175 {
8176 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8177 int k;
8178
8179 /* For a multi register reload, we need to check if all or part
8180 of the value lives to the end. */
8181 for (k = 0; k < nr; k++)
8182 if (reload_reg_reaches_end_p (i + k, r))
8183 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8184
8185 /* Maybe the spill reg contains a copy of reload_out. */
8186 if (rld[r].out != 0
8187 && (REG_P (rld[r].out)
8188 || (rld[r].out_reg
8189 ? REG_P (rld[r].out_reg)
8190 /* The reload value is an auto-modification of
8191 some kind. For PRE_INC, POST_INC, PRE_DEC
8192 and POST_DEC, we record an equivalence
8193 between the reload register and the operand
8194 on the optimistic assumption that we can make
8195 the equivalence hold. reload_as_needed must
8196 then either make it hold or invalidate the
8197 equivalence.
8198
8199 PRE_MODIFY and POST_MODIFY addresses are reloaded
8200 somewhat differently, and allowing them here leads
8201 to problems. */
8202 : (GET_CODE (rld[r].out) != POST_MODIFY
8203 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8204 {
8205 rtx reg;
8206
8207 reg = reload_reg_rtx_for_output[r];
8208 if (reload_reg_rtx_reaches_end_p (reg, r))
8209 {
8210 enum machine_mode mode = GET_MODE (reg);
8211 int regno = REGNO (reg);
8212 int nregs = hard_regno_nregs[regno][mode];
8213 rtx out = (REG_P (rld[r].out)
8214 ? rld[r].out
8215 : rld[r].out_reg
8216 ? rld[r].out_reg
8217 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8218 int out_regno = REGNO (out);
8219 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8220 : hard_regno_nregs[out_regno][mode]);
8221 bool piecemeal;
8222
8223 spill_reg_store[regno] = new_spill_reg_store[regno];
8224 spill_reg_stored_to[regno] = out;
8225 reg_last_reload_reg[out_regno] = reg;
8226
8227 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8228 && nregs == out_nregs
8229 && inherit_piecemeal_p (out_regno, regno, mode));
8230
8231 /* If OUT_REGNO is a hard register, it may occupy more than
8232 one register. If it does, say what is in the
8233 rest of the registers assuming that both registers
8234 agree on how many words the object takes. If not,
8235 invalidate the subsequent registers. */
8236
8237 if (HARD_REGISTER_NUM_P (out_regno))
8238 for (k = 1; k < out_nregs; k++)
8239 reg_last_reload_reg[out_regno + k]
8240 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8241
8242 /* Now do the inverse operation. */
8243 for (k = 0; k < nregs; k++)
8244 {
8245 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8246 reg_reloaded_contents[regno + k]
8247 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8248 ? out_regno
8249 : out_regno + k);
8250 reg_reloaded_insn[regno + k] = insn;
8251 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8252 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8253 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8254 regno + k);
8255 else
8256 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8257 regno + k);
8258 }
8259 }
8260 }
8261 /* Maybe the spill reg contains a copy of reload_in. Only do
8262 something if there will not be an output reload for
8263 the register being reloaded. */
8264 else if (rld[r].out_reg == 0
8265 && rld[r].in != 0
8266 && ((REG_P (rld[r].in)
8267 && !HARD_REGISTER_P (rld[r].in)
8268 && !REGNO_REG_SET_P (&reg_has_output_reload,
8269 REGNO (rld[r].in)))
8270 || (REG_P (rld[r].in_reg)
8271 && !REGNO_REG_SET_P (&reg_has_output_reload,
8272 REGNO (rld[r].in_reg))))
8273 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8274 {
8275 rtx reg;
8276
8277 reg = reload_reg_rtx_for_input[r];
8278 if (reload_reg_rtx_reaches_end_p (reg, r))
8279 {
8280 enum machine_mode mode;
8281 int regno;
8282 int nregs;
8283 int in_regno;
8284 int in_nregs;
8285 rtx in;
8286 bool piecemeal;
8287
8288 mode = GET_MODE (reg);
8289 regno = REGNO (reg);
8290 nregs = hard_regno_nregs[regno][mode];
8291 if (REG_P (rld[r].in)
8292 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8293 in = rld[r].in;
8294 else if (REG_P (rld[r].in_reg))
8295 in = rld[r].in_reg;
8296 else
8297 in = XEXP (rld[r].in_reg, 0);
8298 in_regno = REGNO (in);
8299
8300 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8301 : hard_regno_nregs[in_regno][mode]);
8302
8303 reg_last_reload_reg[in_regno] = reg;
8304
8305 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8306 && nregs == in_nregs
8307 && inherit_piecemeal_p (regno, in_regno, mode));
8308
8309 if (HARD_REGISTER_NUM_P (in_regno))
8310 for (k = 1; k < in_nregs; k++)
8311 reg_last_reload_reg[in_regno + k]
8312 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8313
8314 /* Unless we inherited this reload, show we haven't
8315 recently done a store.
8316 Previous stores of inherited auto_inc expressions
8317 also have to be discarded. */
8318 if (! reload_inherited[r]
8319 || (rld[r].out && ! rld[r].out_reg))
8320 spill_reg_store[regno] = 0;
8321
8322 for (k = 0; k < nregs; k++)
8323 {
8324 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8325 reg_reloaded_contents[regno + k]
8326 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8327 ? in_regno
8328 : in_regno + k);
8329 reg_reloaded_insn[regno + k] = insn;
8330 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8331 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8332 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8333 regno + k);
8334 else
8335 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8336 regno + k);
8337 }
8338 }
8339 }
8340 }
8341
8342 /* The following if-statement was #if 0'd in 1.34 (or before...).
8343 It's reenabled in 1.35 because supposedly nothing else
8344 deals with this problem. */
8345
8346 /* If a register gets output-reloaded from a non-spill register,
8347 that invalidates any previous reloaded copy of it.
8348 But forget_old_reloads_1 won't get to see it, because
8349 it thinks only about the original insn. So invalidate it here.
8350 Also do the same thing for RELOAD_OTHER constraints where the
8351 output is discarded. */
8352 if (i < 0
8353 && ((rld[r].out != 0
8354 && (REG_P (rld[r].out)
8355 || (MEM_P (rld[r].out)
8356 && REG_P (rld[r].out_reg))))
8357 || (rld[r].out == 0 && rld[r].out_reg
8358 && REG_P (rld[r].out_reg))))
8359 {
8360 rtx out = ((rld[r].out && REG_P (rld[r].out))
8361 ? rld[r].out : rld[r].out_reg);
8362 int out_regno = REGNO (out);
8363 enum machine_mode mode = GET_MODE (out);
8364
8365 /* REG_RTX is now set or clobbered by the main instruction.
8366 As the comment above explains, forget_old_reloads_1 only
8367 sees the original instruction, and there is no guarantee
8368 that the original instruction also clobbered REG_RTX.
8369 For example, if find_reloads sees that the input side of
8370 a matched operand pair dies in this instruction, it may
8371 use the input register as the reload register.
8372
8373 Calling forget_old_reloads_1 is a waste of effort if
8374 REG_RTX is also the output register.
8375
8376 If we know that REG_RTX holds the value of a pseudo
8377 register, the code after the call will record that fact. */
8378 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8379 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8380
8381 if (!HARD_REGISTER_NUM_P (out_regno))
8382 {
8383 rtx src_reg, store_insn = NULL_RTX;
8384
8385 reg_last_reload_reg[out_regno] = 0;
8386
8387 /* If we can find a hard register that is stored, record
8388 the storing insn so that we may delete this insn with
8389 delete_output_reload. */
8390 src_reg = reload_reg_rtx_for_output[r];
8391
8392 if (src_reg)
8393 {
8394 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8395 store_insn = new_spill_reg_store[REGNO (src_reg)];
8396 else
8397 src_reg = NULL_RTX;
8398 }
8399 else
8400 {
8401 /* If this is an optional reload, try to find the
8402 source reg from an input reload. */
8403 rtx set = single_set (insn);
8404 if (set && SET_DEST (set) == rld[r].out)
8405 {
8406 int k;
8407
8408 src_reg = SET_SRC (set);
8409 store_insn = insn;
8410 for (k = 0; k < n_reloads; k++)
8411 {
8412 if (rld[k].in == src_reg)
8413 {
8414 src_reg = reload_reg_rtx_for_input[k];
8415 break;
8416 }
8417 }
8418 }
8419 }
8420 if (src_reg && REG_P (src_reg)
8421 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8422 {
8423 int src_regno, src_nregs, k;
8424 rtx note;
8425
8426 gcc_assert (GET_MODE (src_reg) == mode);
8427 src_regno = REGNO (src_reg);
8428 src_nregs = hard_regno_nregs[src_regno][mode];
8429 /* The place where to find a death note varies with
8430 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8431 necessarily checked exactly in the code that moves
8432 notes, so just check both locations. */
8433 note = find_regno_note (insn, REG_DEAD, src_regno);
8434 if (! note && store_insn)
8435 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8436 for (k = 0; k < src_nregs; k++)
8437 {
8438 spill_reg_store[src_regno + k] = store_insn;
8439 spill_reg_stored_to[src_regno + k] = out;
8440 reg_reloaded_contents[src_regno + k] = out_regno;
8441 reg_reloaded_insn[src_regno + k] = store_insn;
8442 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8443 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8444 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8445 mode))
8446 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8447 src_regno + k);
8448 else
8449 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8450 src_regno + k);
8451 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8452 if (note)
8453 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8454 else
8455 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8456 }
8457 reg_last_reload_reg[out_regno] = src_reg;
8458 /* We have to set reg_has_output_reload here, or else
8459 forget_old_reloads_1 will clear reg_last_reload_reg
8460 right away. */
8461 SET_REGNO_REG_SET (&reg_has_output_reload,
8462 out_regno);
8463 }
8464 }
8465 else
8466 {
8467 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8468
8469 for (k = 0; k < out_nregs; k++)
8470 reg_last_reload_reg[out_regno + k] = 0;
8471 }
8472 }
8473 }
8474 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8475 }
8476 \f
8477 /* Go through the motions to emit INSN and test if it is strictly valid.
8478 Return the emitted insn if valid, else return NULL. */
8479
8480 static rtx
8481 emit_insn_if_valid_for_reload (rtx insn)
8482 {
8483 rtx last = get_last_insn ();
8484 int code;
8485
8486 insn = emit_insn (insn);
8487 code = recog_memoized (insn);
8488
8489 if (code >= 0)
8490 {
8491 extract_insn (insn);
8492 /* We want constrain operands to treat this insn strictly in its
8493 validity determination, i.e., the way it would after reload has
8494 completed. */
8495 if (constrain_operands (1))
8496 return insn;
8497 }
8498
8499 delete_insns_since (last);
8500 return NULL;
8501 }
8502
8503 /* Emit code to perform a reload from IN (which may be a reload register) to
8504 OUT (which may also be a reload register). IN or OUT is from operand
8505 OPNUM with reload type TYPE.
8506
8507 Returns first insn emitted. */
8508
8509 static rtx
8510 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8511 {
8512 rtx last = get_last_insn ();
8513 rtx tem;
8514 #ifdef SECONDARY_MEMORY_NEEDED
8515 rtx tem1, tem2;
8516 #endif
8517
8518 /* If IN is a paradoxical SUBREG, remove it and try to put the
8519 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8520 if (!strip_paradoxical_subreg (&in, &out))
8521 strip_paradoxical_subreg (&out, &in);
8522
8523 /* How to do this reload can get quite tricky. Normally, we are being
8524 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8525 register that didn't get a hard register. In that case we can just
8526 call emit_move_insn.
8527
8528 We can also be asked to reload a PLUS that adds a register or a MEM to
8529 another register, constant or MEM. This can occur during frame pointer
8530 elimination and while reloading addresses. This case is handled by
8531 trying to emit a single insn to perform the add. If it is not valid,
8532 we use a two insn sequence.
8533
8534 Or we can be asked to reload an unary operand that was a fragment of
8535 an addressing mode, into a register. If it isn't recognized as-is,
8536 we try making the unop operand and the reload-register the same:
8537 (set reg:X (unop:X expr:Y))
8538 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8539
8540 Finally, we could be called to handle an 'o' constraint by putting
8541 an address into a register. In that case, we first try to do this
8542 with a named pattern of "reload_load_address". If no such pattern
8543 exists, we just emit a SET insn and hope for the best (it will normally
8544 be valid on machines that use 'o').
8545
8546 This entire process is made complex because reload will never
8547 process the insns we generate here and so we must ensure that
8548 they will fit their constraints and also by the fact that parts of
8549 IN might be being reloaded separately and replaced with spill registers.
8550 Because of this, we are, in some sense, just guessing the right approach
8551 here. The one listed above seems to work.
8552
8553 ??? At some point, this whole thing needs to be rethought. */
8554
8555 if (GET_CODE (in) == PLUS
8556 && (REG_P (XEXP (in, 0))
8557 || GET_CODE (XEXP (in, 0)) == SUBREG
8558 || MEM_P (XEXP (in, 0)))
8559 && (REG_P (XEXP (in, 1))
8560 || GET_CODE (XEXP (in, 1)) == SUBREG
8561 || CONSTANT_P (XEXP (in, 1))
8562 || MEM_P (XEXP (in, 1))))
8563 {
8564 /* We need to compute the sum of a register or a MEM and another
8565 register, constant, or MEM, and put it into the reload
8566 register. The best possible way of doing this is if the machine
8567 has a three-operand ADD insn that accepts the required operands.
8568
8569 The simplest approach is to try to generate such an insn and see if it
8570 is recognized and matches its constraints. If so, it can be used.
8571
8572 It might be better not to actually emit the insn unless it is valid,
8573 but we need to pass the insn as an operand to `recog' and
8574 `extract_insn' and it is simpler to emit and then delete the insn if
8575 not valid than to dummy things up. */
8576
8577 rtx op0, op1, tem, insn;
8578 enum insn_code code;
8579
8580 op0 = find_replacement (&XEXP (in, 0));
8581 op1 = find_replacement (&XEXP (in, 1));
8582
8583 /* Since constraint checking is strict, commutativity won't be
8584 checked, so we need to do that here to avoid spurious failure
8585 if the add instruction is two-address and the second operand
8586 of the add is the same as the reload reg, which is frequently
8587 the case. If the insn would be A = B + A, rearrange it so
8588 it will be A = A + B as constrain_operands expects. */
8589
8590 if (REG_P (XEXP (in, 1))
8591 && REGNO (out) == REGNO (XEXP (in, 1)))
8592 tem = op0, op0 = op1, op1 = tem;
8593
8594 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8595 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8596
8597 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8598 if (insn)
8599 return insn;
8600
8601 /* If that failed, we must use a conservative two-insn sequence.
8602
8603 Use a move to copy one operand into the reload register. Prefer
8604 to reload a constant, MEM or pseudo since the move patterns can
8605 handle an arbitrary operand. If OP1 is not a constant, MEM or
8606 pseudo and OP1 is not a valid operand for an add instruction, then
8607 reload OP1.
8608
8609 After reloading one of the operands into the reload register, add
8610 the reload register to the output register.
8611
8612 If there is another way to do this for a specific machine, a
8613 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8614 we emit below. */
8615
8616 code = optab_handler (add_optab, GET_MODE (out));
8617
8618 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8619 || (REG_P (op1)
8620 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8621 || (code != CODE_FOR_nothing
8622 && !insn_operand_matches (code, 2, op1)))
8623 tem = op0, op0 = op1, op1 = tem;
8624
8625 gen_reload (out, op0, opnum, type);
8626
8627 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8628 This fixes a problem on the 32K where the stack pointer cannot
8629 be used as an operand of an add insn. */
8630
8631 if (rtx_equal_p (op0, op1))
8632 op1 = out;
8633
8634 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8635 if (insn)
8636 {
8637 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8638 set_dst_reg_note (insn, REG_EQUIV, in, out);
8639 return insn;
8640 }
8641
8642 /* If that failed, copy the address register to the reload register.
8643 Then add the constant to the reload register. */
8644
8645 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8646 gen_reload (out, op1, opnum, type);
8647 insn = emit_insn (gen_add2_insn (out, op0));
8648 set_dst_reg_note (insn, REG_EQUIV, in, out);
8649 }
8650
8651 #ifdef SECONDARY_MEMORY_NEEDED
8652 /* If we need a memory location to do the move, do it that way. */
8653 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8654 (REG_P (tem1) && REG_P (tem2)))
8655 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8656 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8657 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8658 REGNO_REG_CLASS (REGNO (tem2)),
8659 GET_MODE (out)))
8660 {
8661 /* Get the memory to use and rewrite both registers to its mode. */
8662 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8663
8664 if (GET_MODE (loc) != GET_MODE (out))
8665 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8666
8667 if (GET_MODE (loc) != GET_MODE (in))
8668 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8669
8670 gen_reload (loc, in, opnum, type);
8671 gen_reload (out, loc, opnum, type);
8672 }
8673 #endif
8674 else if (REG_P (out) && UNARY_P (in))
8675 {
8676 rtx insn;
8677 rtx op1;
8678 rtx out_moded;
8679 rtx set;
8680
8681 op1 = find_replacement (&XEXP (in, 0));
8682 if (op1 != XEXP (in, 0))
8683 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8684
8685 /* First, try a plain SET. */
8686 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8687 if (set)
8688 return set;
8689
8690 /* If that failed, move the inner operand to the reload
8691 register, and try the same unop with the inner expression
8692 replaced with the reload register. */
8693
8694 if (GET_MODE (op1) != GET_MODE (out))
8695 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8696 else
8697 out_moded = out;
8698
8699 gen_reload (out_moded, op1, opnum, type);
8700
8701 insn
8702 = gen_rtx_SET (VOIDmode, out,
8703 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8704 out_moded));
8705 insn = emit_insn_if_valid_for_reload (insn);
8706 if (insn)
8707 {
8708 set_unique_reg_note (insn, REG_EQUIV, in);
8709 return insn;
8710 }
8711
8712 fatal_insn ("failure trying to reload:", set);
8713 }
8714 /* If IN is a simple operand, use gen_move_insn. */
8715 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8716 {
8717 tem = emit_insn (gen_move_insn (out, in));
8718 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8719 mark_jump_label (in, tem, 0);
8720 }
8721
8722 #ifdef HAVE_reload_load_address
8723 else if (HAVE_reload_load_address)
8724 emit_insn (gen_reload_load_address (out, in));
8725 #endif
8726
8727 /* Otherwise, just write (set OUT IN) and hope for the best. */
8728 else
8729 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8730
8731 /* Return the first insn emitted.
8732 We can not just return get_last_insn, because there may have
8733 been multiple instructions emitted. Also note that gen_move_insn may
8734 emit more than one insn itself, so we can not assume that there is one
8735 insn emitted per emit_insn_before call. */
8736
8737 return last ? NEXT_INSN (last) : get_insns ();
8738 }
8739 \f
8740 /* Delete a previously made output-reload whose result we now believe
8741 is not needed. First we double-check.
8742
8743 INSN is the insn now being processed.
8744 LAST_RELOAD_REG is the hard register number for which we want to delete
8745 the last output reload.
8746 J is the reload-number that originally used REG. The caller has made
8747 certain that reload J doesn't use REG any longer for input.
8748 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8749
8750 static void
8751 delete_output_reload (rtx insn, int j, int last_reload_reg, rtx new_reload_reg)
8752 {
8753 rtx output_reload_insn = spill_reg_store[last_reload_reg];
8754 rtx reg = spill_reg_stored_to[last_reload_reg];
8755 int k;
8756 int n_occurrences;
8757 int n_inherited = 0;
8758 rtx i1;
8759 rtx substed;
8760 unsigned regno;
8761 int nregs;
8762
8763 /* It is possible that this reload has been only used to set another reload
8764 we eliminated earlier and thus deleted this instruction too. */
8765 if (INSN_DELETED_P (output_reload_insn))
8766 return;
8767
8768 /* Get the raw pseudo-register referred to. */
8769
8770 while (GET_CODE (reg) == SUBREG)
8771 reg = SUBREG_REG (reg);
8772 substed = reg_equiv_memory_loc (REGNO (reg));
8773
8774 /* This is unsafe if the operand occurs more often in the current
8775 insn than it is inherited. */
8776 for (k = n_reloads - 1; k >= 0; k--)
8777 {
8778 rtx reg2 = rld[k].in;
8779 if (! reg2)
8780 continue;
8781 if (MEM_P (reg2) || reload_override_in[k])
8782 reg2 = rld[k].in_reg;
8783 #ifdef AUTO_INC_DEC
8784 if (rld[k].out && ! rld[k].out_reg)
8785 reg2 = XEXP (rld[k].in_reg, 0);
8786 #endif
8787 while (GET_CODE (reg2) == SUBREG)
8788 reg2 = SUBREG_REG (reg2);
8789 if (rtx_equal_p (reg2, reg))
8790 {
8791 if (reload_inherited[k] || reload_override_in[k] || k == j)
8792 n_inherited++;
8793 else
8794 return;
8795 }
8796 }
8797 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8798 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8799 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8800 reg, 0);
8801 if (substed)
8802 n_occurrences += count_occurrences (PATTERN (insn),
8803 eliminate_regs (substed, VOIDmode,
8804 NULL_RTX), 0);
8805 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8806 {
8807 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8808 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8809 }
8810 if (n_occurrences > n_inherited)
8811 return;
8812
8813 regno = REGNO (reg);
8814 if (regno >= FIRST_PSEUDO_REGISTER)
8815 nregs = 1;
8816 else
8817 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8818
8819 /* If the pseudo-reg we are reloading is no longer referenced
8820 anywhere between the store into it and here,
8821 and we're within the same basic block, then the value can only
8822 pass through the reload reg and end up here.
8823 Otherwise, give up--return. */
8824 for (i1 = NEXT_INSN (output_reload_insn);
8825 i1 != insn; i1 = NEXT_INSN (i1))
8826 {
8827 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8828 return;
8829 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8830 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8831 {
8832 /* If this is USE in front of INSN, we only have to check that
8833 there are no more references than accounted for by inheritance. */
8834 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8835 {
8836 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8837 i1 = NEXT_INSN (i1);
8838 }
8839 if (n_occurrences <= n_inherited && i1 == insn)
8840 break;
8841 return;
8842 }
8843 }
8844
8845 /* We will be deleting the insn. Remove the spill reg information. */
8846 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8847 {
8848 spill_reg_store[last_reload_reg + k] = 0;
8849 spill_reg_stored_to[last_reload_reg + k] = 0;
8850 }
8851
8852 /* The caller has already checked that REG dies or is set in INSN.
8853 It has also checked that we are optimizing, and thus some
8854 inaccuracies in the debugging information are acceptable.
8855 So we could just delete output_reload_insn. But in some cases
8856 we can improve the debugging information without sacrificing
8857 optimization - maybe even improving the code: See if the pseudo
8858 reg has been completely replaced with reload regs. If so, delete
8859 the store insn and forget we had a stack slot for the pseudo. */
8860 if (rld[j].out != rld[j].in
8861 && REG_N_DEATHS (REGNO (reg)) == 1
8862 && REG_N_SETS (REGNO (reg)) == 1
8863 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8864 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8865 {
8866 rtx i2;
8867
8868 /* We know that it was used only between here and the beginning of
8869 the current basic block. (We also know that the last use before
8870 INSN was the output reload we are thinking of deleting, but never
8871 mind that.) Search that range; see if any ref remains. */
8872 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8873 {
8874 rtx set = single_set (i2);
8875
8876 /* Uses which just store in the pseudo don't count,
8877 since if they are the only uses, they are dead. */
8878 if (set != 0 && SET_DEST (set) == reg)
8879 continue;
8880 if (LABEL_P (i2) || JUMP_P (i2))
8881 break;
8882 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8883 && reg_mentioned_p (reg, PATTERN (i2)))
8884 {
8885 /* Some other ref remains; just delete the output reload we
8886 know to be dead. */
8887 delete_address_reloads (output_reload_insn, insn);
8888 delete_insn (output_reload_insn);
8889 return;
8890 }
8891 }
8892
8893 /* Delete the now-dead stores into this pseudo. Note that this
8894 loop also takes care of deleting output_reload_insn. */
8895 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8896 {
8897 rtx set = single_set (i2);
8898
8899 if (set != 0 && SET_DEST (set) == reg)
8900 {
8901 delete_address_reloads (i2, insn);
8902 delete_insn (i2);
8903 }
8904 if (LABEL_P (i2) || JUMP_P (i2))
8905 break;
8906 }
8907
8908 /* For the debugging info, say the pseudo lives in this reload reg. */
8909 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8910 if (ira_conflicts_p)
8911 /* Inform IRA about the change. */
8912 ira_mark_allocation_change (REGNO (reg));
8913 alter_reg (REGNO (reg), -1, false);
8914 }
8915 else
8916 {
8917 delete_address_reloads (output_reload_insn, insn);
8918 delete_insn (output_reload_insn);
8919 }
8920 }
8921
8922 /* We are going to delete DEAD_INSN. Recursively delete loads of
8923 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8924 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8925 static void
8926 delete_address_reloads (rtx dead_insn, rtx current_insn)
8927 {
8928 rtx set = single_set (dead_insn);
8929 rtx set2, dst, prev, next;
8930 if (set)
8931 {
8932 rtx dst = SET_DEST (set);
8933 if (MEM_P (dst))
8934 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8935 }
8936 /* If we deleted the store from a reloaded post_{in,de}c expression,
8937 we can delete the matching adds. */
8938 prev = PREV_INSN (dead_insn);
8939 next = NEXT_INSN (dead_insn);
8940 if (! prev || ! next)
8941 return;
8942 set = single_set (next);
8943 set2 = single_set (prev);
8944 if (! set || ! set2
8945 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8946 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8947 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8948 return;
8949 dst = SET_DEST (set);
8950 if (! rtx_equal_p (dst, SET_DEST (set2))
8951 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8952 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8953 || (INTVAL (XEXP (SET_SRC (set), 1))
8954 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8955 return;
8956 delete_related_insns (prev);
8957 delete_related_insns (next);
8958 }
8959
8960 /* Subfunction of delete_address_reloads: process registers found in X. */
8961 static void
8962 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
8963 {
8964 rtx prev, set, dst, i2;
8965 int i, j;
8966 enum rtx_code code = GET_CODE (x);
8967
8968 if (code != REG)
8969 {
8970 const char *fmt = GET_RTX_FORMAT (code);
8971 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8972 {
8973 if (fmt[i] == 'e')
8974 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8975 else if (fmt[i] == 'E')
8976 {
8977 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8978 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8979 current_insn);
8980 }
8981 }
8982 return;
8983 }
8984
8985 if (spill_reg_order[REGNO (x)] < 0)
8986 return;
8987
8988 /* Scan backwards for the insn that sets x. This might be a way back due
8989 to inheritance. */
8990 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8991 {
8992 code = GET_CODE (prev);
8993 if (code == CODE_LABEL || code == JUMP_INSN)
8994 return;
8995 if (!INSN_P (prev))
8996 continue;
8997 if (reg_set_p (x, PATTERN (prev)))
8998 break;
8999 if (reg_referenced_p (x, PATTERN (prev)))
9000 return;
9001 }
9002 if (! prev || INSN_UID (prev) < reload_first_uid)
9003 return;
9004 /* Check that PREV only sets the reload register. */
9005 set = single_set (prev);
9006 if (! set)
9007 return;
9008 dst = SET_DEST (set);
9009 if (!REG_P (dst)
9010 || ! rtx_equal_p (dst, x))
9011 return;
9012 if (! reg_set_p (dst, PATTERN (dead_insn)))
9013 {
9014 /* Check if DST was used in a later insn -
9015 it might have been inherited. */
9016 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9017 {
9018 if (LABEL_P (i2))
9019 break;
9020 if (! INSN_P (i2))
9021 continue;
9022 if (reg_referenced_p (dst, PATTERN (i2)))
9023 {
9024 /* If there is a reference to the register in the current insn,
9025 it might be loaded in a non-inherited reload. If no other
9026 reload uses it, that means the register is set before
9027 referenced. */
9028 if (i2 == current_insn)
9029 {
9030 for (j = n_reloads - 1; j >= 0; j--)
9031 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9032 || reload_override_in[j] == dst)
9033 return;
9034 for (j = n_reloads - 1; j >= 0; j--)
9035 if (rld[j].in && rld[j].reg_rtx == dst)
9036 break;
9037 if (j >= 0)
9038 break;
9039 }
9040 return;
9041 }
9042 if (JUMP_P (i2))
9043 break;
9044 /* If DST is still live at CURRENT_INSN, check if it is used for
9045 any reload. Note that even if CURRENT_INSN sets DST, we still
9046 have to check the reloads. */
9047 if (i2 == current_insn)
9048 {
9049 for (j = n_reloads - 1; j >= 0; j--)
9050 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9051 || reload_override_in[j] == dst)
9052 return;
9053 /* ??? We can't finish the loop here, because dst might be
9054 allocated to a pseudo in this block if no reload in this
9055 block needs any of the classes containing DST - see
9056 spill_hard_reg. There is no easy way to tell this, so we
9057 have to scan till the end of the basic block. */
9058 }
9059 if (reg_set_p (dst, PATTERN (i2)))
9060 break;
9061 }
9062 }
9063 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9064 reg_reloaded_contents[REGNO (dst)] = -1;
9065 delete_insn (prev);
9066 }
9067 \f
9068 /* Output reload-insns to reload VALUE into RELOADREG.
9069 VALUE is an autoincrement or autodecrement RTX whose operand
9070 is a register or memory location;
9071 so reloading involves incrementing that location.
9072 IN is either identical to VALUE, or some cheaper place to reload from.
9073
9074 INC_AMOUNT is the number to increment or decrement by (always positive).
9075 This cannot be deduced from VALUE. */
9076
9077 static void
9078 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9079 {
9080 /* REG or MEM to be copied and incremented. */
9081 rtx incloc = find_replacement (&XEXP (value, 0));
9082 /* Nonzero if increment after copying. */
9083 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9084 || GET_CODE (value) == POST_MODIFY);
9085 rtx last;
9086 rtx inc;
9087 rtx add_insn;
9088 int code;
9089 rtx real_in = in == value ? incloc : in;
9090
9091 /* No hard register is equivalent to this register after
9092 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9093 we could inc/dec that register as well (maybe even using it for
9094 the source), but I'm not sure it's worth worrying about. */
9095 if (REG_P (incloc))
9096 reg_last_reload_reg[REGNO (incloc)] = 0;
9097
9098 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9099 {
9100 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9101 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9102 }
9103 else
9104 {
9105 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9106 inc_amount = -inc_amount;
9107
9108 inc = GEN_INT (inc_amount);
9109 }
9110
9111 /* If this is post-increment, first copy the location to the reload reg. */
9112 if (post && real_in != reloadreg)
9113 emit_insn (gen_move_insn (reloadreg, real_in));
9114
9115 if (in == value)
9116 {
9117 /* See if we can directly increment INCLOC. Use a method similar to
9118 that in gen_reload. */
9119
9120 last = get_last_insn ();
9121 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9122 gen_rtx_PLUS (GET_MODE (incloc),
9123 incloc, inc)));
9124
9125 code = recog_memoized (add_insn);
9126 if (code >= 0)
9127 {
9128 extract_insn (add_insn);
9129 if (constrain_operands (1))
9130 {
9131 /* If this is a pre-increment and we have incremented the value
9132 where it lives, copy the incremented value to RELOADREG to
9133 be used as an address. */
9134
9135 if (! post)
9136 emit_insn (gen_move_insn (reloadreg, incloc));
9137 return;
9138 }
9139 }
9140 delete_insns_since (last);
9141 }
9142
9143 /* If couldn't do the increment directly, must increment in RELOADREG.
9144 The way we do this depends on whether this is pre- or post-increment.
9145 For pre-increment, copy INCLOC to the reload register, increment it
9146 there, then save back. */
9147
9148 if (! post)
9149 {
9150 if (in != reloadreg)
9151 emit_insn (gen_move_insn (reloadreg, real_in));
9152 emit_insn (gen_add2_insn (reloadreg, inc));
9153 emit_insn (gen_move_insn (incloc, reloadreg));
9154 }
9155 else
9156 {
9157 /* Postincrement.
9158 Because this might be a jump insn or a compare, and because RELOADREG
9159 may not be available after the insn in an input reload, we must do
9160 the incrementation before the insn being reloaded for.
9161
9162 We have already copied IN to RELOADREG. Increment the copy in
9163 RELOADREG, save that back, then decrement RELOADREG so it has
9164 the original value. */
9165
9166 emit_insn (gen_add2_insn (reloadreg, inc));
9167 emit_insn (gen_move_insn (incloc, reloadreg));
9168 if (CONST_INT_P (inc))
9169 emit_insn (gen_add2_insn (reloadreg,
9170 gen_int_mode (-INTVAL (inc),
9171 GET_MODE (reloadreg))));
9172 else
9173 emit_insn (gen_sub2_insn (reloadreg, inc));
9174 }
9175 }
9176 \f
9177 #ifdef AUTO_INC_DEC
9178 static void
9179 add_auto_inc_notes (rtx insn, rtx x)
9180 {
9181 enum rtx_code code = GET_CODE (x);
9182 const char *fmt;
9183 int i, j;
9184
9185 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9186 {
9187 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9188 return;
9189 }
9190
9191 /* Scan all the operand sub-expressions. */
9192 fmt = GET_RTX_FORMAT (code);
9193 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9194 {
9195 if (fmt[i] == 'e')
9196 add_auto_inc_notes (insn, XEXP (x, i));
9197 else if (fmt[i] == 'E')
9198 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9199 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9200 }
9201 }
9202 #endif