typeck2.c (store_init_value): Don't re-digest a bracketed initializer.
[gcc.git] / gcc / reorg.c
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 /* Instruction reorganization pass.
25
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
33
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
38
39 The MIPS and AMD 29000 have a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
43
44 The Motorola 88000 conditionally exposes its branch delay slot,
45 so code is shorter when it is turned off, but will run faster
46 when useful insns are scheduled there.
47
48 The IBM ROMP has two forms of branch and call insns, both with and
49 without a delay slot. Much like the 88k, insns not using the delay
50 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
51
52 The SPARC always has a branch delay slot, but its effects can be
53 annulled when the branch is not taken. This means that failing to
54 find other sources of insns, we can hoist an insn from the branch
55 target that would only be safe to execute knowing that the branch
56 is taken.
57
58 The HP-PA always has a branch delay slot. For unconditional branches
59 its effects can be annulled when the branch is taken. The effects
60 of the delay slot in a conditional branch can be nullified for forward
61 taken branches, or for untaken backward branches. This means
62 we can hoist insns from the fall-through path for forward branches or
63 steal insns from the target of backward branches.
64
65 The TMS320C3x and C4x have three branch delay slots. When the three
66 slots are filled, the branch penalty is zero. Most insns can fill the
67 delay slots except jump insns.
68
69 Three techniques for filling delay slots have been implemented so far:
70
71 (1) `fill_simple_delay_slots' is the simplest, most efficient way
72 to fill delay slots. This pass first looks for insns which come
73 from before the branch and which are safe to execute after the
74 branch. Then it searches after the insn requiring delay slots or,
75 in the case of a branch, for insns that are after the point at
76 which the branch merges into the fallthrough code, if such a point
77 exists. When such insns are found, the branch penalty decreases
78 and no code expansion takes place.
79
80 (2) `fill_eager_delay_slots' is more complicated: it is used for
81 scheduling conditional jumps, or for scheduling jumps which cannot
82 be filled using (1). A machine need not have annulled jumps to use
83 this strategy, but it helps (by keeping more options open).
84 `fill_eager_delay_slots' tries to guess the direction the branch
85 will go; if it guesses right 100% of the time, it can reduce the
86 branch penalty as much as `fill_simple_delay_slots' does. If it
87 guesses wrong 100% of the time, it might as well schedule nops (or
88 on the m88k, unexpose the branch slot). When
89 `fill_eager_delay_slots' takes insns from the fall-through path of
90 the jump, usually there is no code expansion; when it takes insns
91 from the branch target, there is code expansion if it is not the
92 only way to reach that target.
93
94 (3) `relax_delay_slots' uses a set of rules to simplify code that
95 has been reorganized by (1) and (2). It finds cases where
96 conditional test can be eliminated, jumps can be threaded, extra
97 insns can be eliminated, etc. It is the job of (1) and (2) to do a
98 good job of scheduling locally; `relax_delay_slots' takes care of
99 making the various individual schedules work well together. It is
100 especially tuned to handle the control flow interactions of branch
101 insns. It does nothing for insns with delay slots that do not
102 branch.
103
104 On machines that use CC0, we are very conservative. We will not make
105 a copy of an insn involving CC0 since we want to maintain a 1-1
106 correspondence between the insn that sets and uses CC0. The insns are
107 allowed to be separated by placing an insn that sets CC0 (but not an insn
108 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
109 delay slot. In that case, we point each insn at the other with REG_CC_USER
110 and REG_CC_SETTER notes. Note that these restrictions affect very few
111 machines because most RISC machines with delay slots will not use CC0
112 (the RT is the only known exception at this point).
113
114 Not yet implemented:
115
116 The Acorn Risc Machine can conditionally execute most insns, so
117 it is profitable to move single insns into a position to execute
118 based on the condition code of the previous insn.
119
120 The HP-PA can conditionally nullify insns, providing a similar
121 effect to the ARM, differing mostly in which insn is "in charge". */
122
123 #include "config.h"
124 #include "system.h"
125 #include "toplev.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "expr.h"
129 #include "function.h"
130 #include "insn-config.h"
131 #include "conditions.h"
132 #include "hard-reg-set.h"
133 #include "basic-block.h"
134 #include "regs.h"
135 #include "recog.h"
136 #include "flags.h"
137 #include "output.h"
138 #include "obstack.h"
139 #include "insn-attr.h"
140 #include "resource.h"
141 #include "except.h"
142 #include "params.h"
143
144 #ifdef DELAY_SLOTS
145
146 #define obstack_chunk_alloc xmalloc
147 #define obstack_chunk_free free
148
149 #ifndef ANNUL_IFTRUE_SLOTS
150 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
151 #endif
152 #ifndef ANNUL_IFFALSE_SLOTS
153 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
154 #endif
155
156 /* Insns which have delay slots that have not yet been filled. */
157
158 static struct obstack unfilled_slots_obstack;
159 static rtx *unfilled_firstobj;
160
161 /* Define macros to refer to the first and last slot containing unfilled
162 insns. These are used because the list may move and its address
163 should be recomputed at each use. */
164
165 #define unfilled_slots_base \
166 ((rtx *) obstack_base (&unfilled_slots_obstack))
167
168 #define unfilled_slots_next \
169 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
170
171 /* Points to the label before the end of the function. */
172 static rtx end_of_function_label;
173
174 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
175 not always monotonically increase. */
176 static int *uid_to_ruid;
177
178 /* Highest valid index in `uid_to_ruid'. */
179 static int max_uid;
180
181 static int stop_search_p PARAMS ((rtx, int));
182 static int resource_conflicts_p PARAMS ((struct resources *,
183 struct resources *));
184 static int insn_references_resource_p PARAMS ((rtx, struct resources *, int));
185 static int insn_sets_resource_p PARAMS ((rtx, struct resources *, int));
186 static rtx find_end_label PARAMS ((void));
187 static rtx emit_delay_sequence PARAMS ((rtx, rtx, int));
188 static rtx add_to_delay_list PARAMS ((rtx, rtx));
189 static rtx delete_from_delay_slot PARAMS ((rtx));
190 static void delete_scheduled_jump PARAMS ((rtx));
191 static void note_delay_statistics PARAMS ((int, int));
192 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
193 static rtx optimize_skip PARAMS ((rtx));
194 #endif
195 static int get_jump_flags PARAMS ((rtx, rtx));
196 static int rare_destination PARAMS ((rtx));
197 static int mostly_true_jump PARAMS ((rtx, rtx));
198 static rtx get_branch_condition PARAMS ((rtx, rtx));
199 static int condition_dominates_p PARAMS ((rtx, rtx));
200 static int redirect_with_delay_slots_safe_p PARAMS ((rtx, rtx, rtx));
201 static int redirect_with_delay_list_safe_p PARAMS ((rtx, rtx, rtx));
202 static int check_annul_list_true_false PARAMS ((int, rtx));
203 static rtx steal_delay_list_from_target PARAMS ((rtx, rtx, rtx, rtx,
204 struct resources *,
205 struct resources *,
206 struct resources *,
207 int, int *, int *, rtx *));
208 static rtx steal_delay_list_from_fallthrough PARAMS ((rtx, rtx, rtx, rtx,
209 struct resources *,
210 struct resources *,
211 struct resources *,
212 int, int *, int *));
213 static void try_merge_delay_insns PARAMS ((rtx, rtx));
214 static rtx redundant_insn PARAMS ((rtx, rtx, rtx));
215 static int own_thread_p PARAMS ((rtx, rtx, int));
216 static void update_block PARAMS ((rtx, rtx));
217 static int reorg_redirect_jump PARAMS ((rtx, rtx));
218 static void update_reg_dead_notes PARAMS ((rtx, rtx));
219 static void fix_reg_dead_note PARAMS ((rtx, rtx));
220 static void update_reg_unused_notes PARAMS ((rtx, rtx));
221 static void fill_simple_delay_slots PARAMS ((int));
222 static rtx fill_slots_from_thread PARAMS ((rtx, rtx, rtx, rtx, int, int,
223 int, int, int *, rtx));
224 static void fill_eager_delay_slots PARAMS ((void));
225 static void relax_delay_slots PARAMS ((rtx));
226 #ifdef HAVE_return
227 static void make_return_insns PARAMS ((rtx));
228 #endif
229 \f
230 /* Return TRUE if this insn should stop the search for insn to fill delay
231 slots. LABELS_P indicates that labels should terminate the search.
232 In all cases, jumps terminate the search. */
233
234 static int
235 stop_search_p (insn, labels_p)
236 rtx insn;
237 int labels_p;
238 {
239 if (insn == 0)
240 return 1;
241
242 switch (GET_CODE (insn))
243 {
244 case NOTE:
245 case CALL_INSN:
246 return 0;
247
248 case CODE_LABEL:
249 return labels_p;
250
251 case JUMP_INSN:
252 case BARRIER:
253 return 1;
254
255 case INSN:
256 /* OK unless it contains a delay slot or is an `asm' insn of some type.
257 We don't know anything about these. */
258 return (GET_CODE (PATTERN (insn)) == SEQUENCE
259 || GET_CODE (PATTERN (insn)) == ASM_INPUT
260 || asm_noperands (PATTERN (insn)) >= 0);
261
262 default:
263 abort ();
264 }
265 }
266 \f
267 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
268 resource set contains a volatile memory reference. Otherwise, return FALSE. */
269
270 static int
271 resource_conflicts_p (res1, res2)
272 struct resources *res1, *res2;
273 {
274 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
275 || (res1->unch_memory && res2->unch_memory)
276 || res1->volatil || res2->volatil)
277 return 1;
278
279 #ifdef HARD_REG_SET
280 return (res1->regs & res2->regs) != HARD_CONST (0);
281 #else
282 {
283 int i;
284
285 for (i = 0; i < HARD_REG_SET_LONGS; i++)
286 if ((res1->regs[i] & res2->regs[i]) != 0)
287 return 1;
288 return 0;
289 }
290 #endif
291 }
292
293 /* Return TRUE if any resource marked in RES, a `struct resources', is
294 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
295 routine is using those resources.
296
297 We compute this by computing all the resources referenced by INSN and
298 seeing if this conflicts with RES. It might be faster to directly check
299 ourselves, and this is the way it used to work, but it means duplicating
300 a large block of complex code. */
301
302 static int
303 insn_references_resource_p (insn, res, include_delayed_effects)
304 rtx insn;
305 struct resources *res;
306 int include_delayed_effects;
307 {
308 struct resources insn_res;
309
310 CLEAR_RESOURCE (&insn_res);
311 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
312 return resource_conflicts_p (&insn_res, res);
313 }
314
315 /* Return TRUE if INSN modifies resources that are marked in RES.
316 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
317 included. CC0 is only modified if it is explicitly set; see comments
318 in front of mark_set_resources for details. */
319
320 static int
321 insn_sets_resource_p (insn, res, include_delayed_effects)
322 rtx insn;
323 struct resources *res;
324 int include_delayed_effects;
325 {
326 struct resources insn_sets;
327
328 CLEAR_RESOURCE (&insn_sets);
329 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
330 return resource_conflicts_p (&insn_sets, res);
331 }
332 \f
333 /* Find a label at the end of the function or before a RETURN. If there is
334 none, make one. */
335
336 static rtx
337 find_end_label ()
338 {
339 rtx insn;
340
341 /* If we found one previously, return it. */
342 if (end_of_function_label)
343 return end_of_function_label;
344
345 /* Otherwise, see if there is a label at the end of the function. If there
346 is, it must be that RETURN insns aren't needed, so that is our return
347 label and we don't have to do anything else. */
348
349 insn = get_last_insn ();
350 while (GET_CODE (insn) == NOTE
351 || (GET_CODE (insn) == INSN
352 && (GET_CODE (PATTERN (insn)) == USE
353 || GET_CODE (PATTERN (insn)) == CLOBBER)))
354 insn = PREV_INSN (insn);
355
356 /* When a target threads its epilogue we might already have a
357 suitable return insn. If so put a label before it for the
358 end_of_function_label. */
359 if (GET_CODE (insn) == BARRIER
360 && GET_CODE (PREV_INSN (insn)) == JUMP_INSN
361 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
362 {
363 rtx temp = PREV_INSN (PREV_INSN (insn));
364 end_of_function_label = gen_label_rtx ();
365 LABEL_NUSES (end_of_function_label) = 0;
366
367 /* Put the label before an USE insns that may proceed the RETURN insn. */
368 while (GET_CODE (temp) == USE)
369 temp = PREV_INSN (temp);
370
371 emit_label_after (end_of_function_label, temp);
372 }
373
374 else if (GET_CODE (insn) == CODE_LABEL)
375 end_of_function_label = insn;
376 else
377 {
378 end_of_function_label = gen_label_rtx ();
379 LABEL_NUSES (end_of_function_label) = 0;
380 /* If the basic block reorder pass moves the return insn to
381 some other place try to locate it again and put our
382 end_of_function_label there. */
383 while (insn && ! (GET_CODE (insn) == JUMP_INSN
384 && (GET_CODE (PATTERN (insn)) == RETURN)))
385 insn = PREV_INSN (insn);
386 if (insn)
387 {
388 insn = PREV_INSN (insn);
389
390 /* Put the label before an USE insns that may proceed the
391 RETURN insn. */
392 while (GET_CODE (insn) == USE)
393 insn = PREV_INSN (insn);
394
395 emit_label_after (end_of_function_label, insn);
396 }
397 else
398 {
399 /* Otherwise, make a new label and emit a RETURN and BARRIER,
400 if needed. */
401 emit_label (end_of_function_label);
402 #ifdef HAVE_return
403 if (HAVE_return)
404 {
405 /* The return we make may have delay slots too. */
406 rtx insn = gen_return ();
407 insn = emit_jump_insn (insn);
408 emit_barrier ();
409 if (num_delay_slots (insn) > 0)
410 obstack_ptr_grow (&unfilled_slots_obstack, insn);
411 }
412 #endif
413 }
414 }
415
416 /* Show one additional use for this label so it won't go away until
417 we are done. */
418 ++LABEL_NUSES (end_of_function_label);
419
420 return end_of_function_label;
421 }
422 \f
423 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
424 the pattern of INSN with the SEQUENCE.
425
426 Chain the insns so that NEXT_INSN of each insn in the sequence points to
427 the next and NEXT_INSN of the last insn in the sequence points to
428 the first insn after the sequence. Similarly for PREV_INSN. This makes
429 it easier to scan all insns.
430
431 Returns the SEQUENCE that replaces INSN. */
432
433 static rtx
434 emit_delay_sequence (insn, list, length)
435 rtx insn;
436 rtx list;
437 int length;
438 {
439 int i = 1;
440 rtx li;
441 int had_barrier = 0;
442
443 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
444 rtvec seqv = rtvec_alloc (length + 1);
445 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
446 rtx seq_insn = make_insn_raw (seq);
447 rtx first = get_insns ();
448 rtx last = get_last_insn ();
449
450 /* Make a copy of the insn having delay slots. */
451 rtx delay_insn = copy_rtx (insn);
452
453 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
454 confuse further processing. Update LAST in case it was the last insn.
455 We will put the BARRIER back in later. */
456 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER)
457 {
458 delete_related_insns (NEXT_INSN (insn));
459 last = get_last_insn ();
460 had_barrier = 1;
461 }
462
463 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
464 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
465 PREV_INSN (seq_insn) = PREV_INSN (insn);
466
467 if (insn != last)
468 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
469
470 if (insn != first)
471 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
472
473 /* Note the calls to set_new_first_and_last_insn must occur after
474 SEQ_INSN has been completely spliced into the insn stream.
475
476 Otherwise CUR_INSN_UID will get set to an incorrect value because
477 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
478 if (insn == last)
479 set_new_first_and_last_insn (first, seq_insn);
480
481 if (insn == first)
482 set_new_first_and_last_insn (seq_insn, last);
483
484 /* Build our SEQUENCE and rebuild the insn chain. */
485 XVECEXP (seq, 0, 0) = delay_insn;
486 INSN_DELETED_P (delay_insn) = 0;
487 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
488
489 for (li = list; li; li = XEXP (li, 1), i++)
490 {
491 rtx tem = XEXP (li, 0);
492 rtx note;
493
494 /* Show that this copy of the insn isn't deleted. */
495 INSN_DELETED_P (tem) = 0;
496
497 XVECEXP (seq, 0, i) = tem;
498 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
499 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
500
501 /* Remove any REG_DEAD notes because we can't rely on them now
502 that the insn has been moved. */
503 for (note = REG_NOTES (tem); note; note = XEXP (note, 1))
504 if (REG_NOTE_KIND (note) == REG_DEAD)
505 XEXP (note, 0) = const0_rtx;
506 }
507
508 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
509
510 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
511 last insn in that SEQUENCE to point to us. Similarly for the first
512 insn in the following insn if it is a SEQUENCE. */
513
514 if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN
515 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
516 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
517 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
518 = seq_insn;
519
520 if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN
521 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
522 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
523
524 /* If there used to be a BARRIER, put it back. */
525 if (had_barrier)
526 emit_barrier_after (seq_insn);
527
528 if (i != length + 1)
529 abort ();
530
531 return seq_insn;
532 }
533
534 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
535 be in the order in which the insns are to be executed. */
536
537 static rtx
538 add_to_delay_list (insn, delay_list)
539 rtx insn;
540 rtx delay_list;
541 {
542 /* If we have an empty list, just make a new list element. If
543 INSN has its block number recorded, clear it since we may
544 be moving the insn to a new block. */
545
546 if (delay_list == 0)
547 {
548 clear_hashed_info_for_insn (insn);
549 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
550 }
551
552 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
553 list. */
554 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
555
556 return delay_list;
557 }
558 \f
559 /* Delete INSN from the delay slot of the insn that it is in, which may
560 produce an insn with no delay slots. Return the new insn. */
561
562 static rtx
563 delete_from_delay_slot (insn)
564 rtx insn;
565 {
566 rtx trial, seq_insn, seq, prev;
567 rtx delay_list = 0;
568 int i;
569
570 /* We first must find the insn containing the SEQUENCE with INSN in its
571 delay slot. Do this by finding an insn, TRIAL, where
572 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
573
574 for (trial = insn;
575 PREV_INSN (NEXT_INSN (trial)) == trial;
576 trial = NEXT_INSN (trial))
577 ;
578
579 seq_insn = PREV_INSN (NEXT_INSN (trial));
580 seq = PATTERN (seq_insn);
581
582 /* Create a delay list consisting of all the insns other than the one
583 we are deleting (unless we were the only one). */
584 if (XVECLEN (seq, 0) > 2)
585 for (i = 1; i < XVECLEN (seq, 0); i++)
586 if (XVECEXP (seq, 0, i) != insn)
587 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
588
589 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
590 list, and rebuild the delay list if non-empty. */
591 prev = PREV_INSN (seq_insn);
592 trial = XVECEXP (seq, 0, 0);
593 delete_related_insns (seq_insn);
594 add_insn_after (trial, prev);
595
596 if (GET_CODE (trial) == JUMP_INSN
597 && (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN))
598 emit_barrier_after (trial);
599
600 /* If there are any delay insns, remit them. Otherwise clear the
601 annul flag. */
602 if (delay_list)
603 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
604 else
605 INSN_ANNULLED_BRANCH_P (trial) = 0;
606
607 INSN_FROM_TARGET_P (insn) = 0;
608
609 /* Show we need to fill this insn again. */
610 obstack_ptr_grow (&unfilled_slots_obstack, trial);
611
612 return trial;
613 }
614 \f
615 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
616 the insn that sets CC0 for it and delete it too. */
617
618 static void
619 delete_scheduled_jump (insn)
620 rtx insn;
621 {
622 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
623 delete the insn that sets the condition code, but it is hard to find it.
624 Since this case is rare anyway, don't bother trying; there would likely
625 be other insns that became dead anyway, which we wouldn't know to
626 delete. */
627
628 #ifdef HAVE_cc0
629 if (reg_mentioned_p (cc0_rtx, insn))
630 {
631 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
632
633 /* If a reg-note was found, it points to an insn to set CC0. This
634 insn is in the delay list of some other insn. So delete it from
635 the delay list it was in. */
636 if (note)
637 {
638 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
639 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
640 delete_from_delay_slot (XEXP (note, 0));
641 }
642 else
643 {
644 /* The insn setting CC0 is our previous insn, but it may be in
645 a delay slot. It will be the last insn in the delay slot, if
646 it is. */
647 rtx trial = previous_insn (insn);
648 if (GET_CODE (trial) == NOTE)
649 trial = prev_nonnote_insn (trial);
650 if (sets_cc0_p (PATTERN (trial)) != 1
651 || FIND_REG_INC_NOTE (trial, 0))
652 return;
653 if (PREV_INSN (NEXT_INSN (trial)) == trial)
654 delete_related_insns (trial);
655 else
656 delete_from_delay_slot (trial);
657 }
658 }
659 #endif
660
661 delete_related_insns (insn);
662 }
663 \f
664 /* Counters for delay-slot filling. */
665
666 #define NUM_REORG_FUNCTIONS 2
667 #define MAX_DELAY_HISTOGRAM 3
668 #define MAX_REORG_PASSES 2
669
670 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
671
672 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
673
674 static int reorg_pass_number;
675
676 static void
677 note_delay_statistics (slots_filled, index)
678 int slots_filled, index;
679 {
680 num_insns_needing_delays[index][reorg_pass_number]++;
681 if (slots_filled > MAX_DELAY_HISTOGRAM)
682 slots_filled = MAX_DELAY_HISTOGRAM;
683 num_filled_delays[index][slots_filled][reorg_pass_number]++;
684 }
685 \f
686 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
687
688 /* Optimize the following cases:
689
690 1. When a conditional branch skips over only one instruction,
691 use an annulling branch and put that insn in the delay slot.
692 Use either a branch that annuls when the condition if true or
693 invert the test with a branch that annuls when the condition is
694 false. This saves insns, since otherwise we must copy an insn
695 from the L1 target.
696
697 (orig) (skip) (otherwise)
698 Bcc.n L1 Bcc',a L1 Bcc,a L1'
699 insn insn insn2
700 L1: L1: L1:
701 insn2 insn2 insn2
702 insn3 insn3 L1':
703 insn3
704
705 2. When a conditional branch skips over only one instruction,
706 and after that, it unconditionally branches somewhere else,
707 perform the similar optimization. This saves executing the
708 second branch in the case where the inverted condition is true.
709
710 Bcc.n L1 Bcc',a L2
711 insn insn
712 L1: L1:
713 Bra L2 Bra L2
714
715 INSN is a JUMP_INSN.
716
717 This should be expanded to skip over N insns, where N is the number
718 of delay slots required. */
719
720 static rtx
721 optimize_skip (insn)
722 rtx insn;
723 {
724 rtx trial = next_nonnote_insn (insn);
725 rtx next_trial = next_active_insn (trial);
726 rtx delay_list = 0;
727 rtx target_label;
728 int flags;
729
730 flags = get_jump_flags (insn, JUMP_LABEL (insn));
731
732 if (trial == 0
733 || GET_CODE (trial) != INSN
734 || GET_CODE (PATTERN (trial)) == SEQUENCE
735 || recog_memoized (trial) < 0
736 || (! eligible_for_annul_false (insn, 0, trial, flags)
737 && ! eligible_for_annul_true (insn, 0, trial, flags)))
738 return 0;
739
740 /* There are two cases where we are just executing one insn (we assume
741 here that a branch requires only one insn; this should be generalized
742 at some point): Where the branch goes around a single insn or where
743 we have one insn followed by a branch to the same label we branch to.
744 In both of these cases, inverting the jump and annulling the delay
745 slot give the same effect in fewer insns. */
746 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
747 && ! (next_trial == 0 && current_function_epilogue_delay_list != 0))
748 || (next_trial != 0
749 && GET_CODE (next_trial) == JUMP_INSN
750 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
751 && (simplejump_p (next_trial)
752 || GET_CODE (PATTERN (next_trial)) == RETURN)))
753 {
754 if (eligible_for_annul_false (insn, 0, trial, flags))
755 {
756 if (invert_jump (insn, JUMP_LABEL (insn), 1))
757 INSN_FROM_TARGET_P (trial) = 1;
758 else if (! eligible_for_annul_true (insn, 0, trial, flags))
759 return 0;
760 }
761
762 delay_list = add_to_delay_list (trial, NULL_RTX);
763 next_trial = next_active_insn (trial);
764 update_block (trial, trial);
765 delete_related_insns (trial);
766
767 /* Also, if we are targeting an unconditional
768 branch, thread our jump to the target of that branch. Don't
769 change this into a RETURN here, because it may not accept what
770 we have in the delay slot. We'll fix this up later. */
771 if (next_trial && GET_CODE (next_trial) == JUMP_INSN
772 && (simplejump_p (next_trial)
773 || GET_CODE (PATTERN (next_trial)) == RETURN))
774 {
775 target_label = JUMP_LABEL (next_trial);
776 if (target_label == 0)
777 target_label = find_end_label ();
778
779 /* Recompute the flags based on TARGET_LABEL since threading
780 the jump to TARGET_LABEL may change the direction of the
781 jump (which may change the circumstances in which the
782 delay slot is nullified). */
783 flags = get_jump_flags (insn, target_label);
784 if (eligible_for_annul_true (insn, 0, trial, flags))
785 reorg_redirect_jump (insn, target_label);
786 }
787
788 INSN_ANNULLED_BRANCH_P (insn) = 1;
789 }
790
791 return delay_list;
792 }
793 #endif
794 \f
795 /* Encode and return branch direction and prediction information for
796 INSN assuming it will jump to LABEL.
797
798 Non conditional branches return no direction information and
799 are predicted as very likely taken. */
800
801 static int
802 get_jump_flags (insn, label)
803 rtx insn, label;
804 {
805 int flags;
806
807 /* get_jump_flags can be passed any insn with delay slots, these may
808 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
809 direction information, and only if they are conditional jumps.
810
811 If LABEL is zero, then there is no way to determine the branch
812 direction. */
813 if (GET_CODE (insn) == JUMP_INSN
814 && (condjump_p (insn) || condjump_in_parallel_p (insn))
815 && INSN_UID (insn) <= max_uid
816 && label != 0
817 && INSN_UID (label) <= max_uid)
818 flags
819 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
820 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
821 /* No valid direction information. */
822 else
823 flags = 0;
824
825 /* If insn is a conditional branch call mostly_true_jump to get
826 determine the branch prediction.
827
828 Non conditional branches are predicted as very likely taken. */
829 if (GET_CODE (insn) == JUMP_INSN
830 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
831 {
832 int prediction;
833
834 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
835 switch (prediction)
836 {
837 case 2:
838 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
839 break;
840 case 1:
841 flags |= ATTR_FLAG_likely;
842 break;
843 case 0:
844 flags |= ATTR_FLAG_unlikely;
845 break;
846 case -1:
847 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
848 break;
849
850 default:
851 abort ();
852 }
853 }
854 else
855 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
856
857 return flags;
858 }
859
860 /* Return 1 if INSN is a destination that will be branched to rarely (the
861 return point of a function); return 2 if DEST will be branched to very
862 rarely (a call to a function that doesn't return). Otherwise,
863 return 0. */
864
865 static int
866 rare_destination (insn)
867 rtx insn;
868 {
869 int jump_count = 0;
870 rtx next;
871
872 for (; insn; insn = next)
873 {
874 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
875 insn = XVECEXP (PATTERN (insn), 0, 0);
876
877 next = NEXT_INSN (insn);
878
879 switch (GET_CODE (insn))
880 {
881 case CODE_LABEL:
882 return 0;
883 case BARRIER:
884 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
885 don't scan past JUMP_INSNs, so any barrier we find here must
886 have been after a CALL_INSN and hence mean the call doesn't
887 return. */
888 return 2;
889 case JUMP_INSN:
890 if (GET_CODE (PATTERN (insn)) == RETURN)
891 return 1;
892 else if (simplejump_p (insn)
893 && jump_count++ < 10)
894 next = JUMP_LABEL (insn);
895 else
896 return 0;
897
898 default:
899 break;
900 }
901 }
902
903 /* If we got here it means we hit the end of the function. So this
904 is an unlikely destination. */
905
906 return 1;
907 }
908
909 /* Return truth value of the statement that this branch
910 is mostly taken. If we think that the branch is extremely likely
911 to be taken, we return 2. If the branch is slightly more likely to be
912 taken, return 1. If the branch is slightly less likely to be taken,
913 return 0 and if the branch is highly unlikely to be taken, return -1.
914
915 CONDITION, if non-zero, is the condition that JUMP_INSN is testing. */
916
917 static int
918 mostly_true_jump (jump_insn, condition)
919 rtx jump_insn, condition;
920 {
921 rtx target_label = JUMP_LABEL (jump_insn);
922 rtx insn, note;
923 int rare_dest = rare_destination (target_label);
924 int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
925
926 /* If branch probabilities are available, then use that number since it
927 always gives a correct answer. */
928 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
929 if (note)
930 {
931 int prob = INTVAL (XEXP (note, 0));
932
933 if (prob >= REG_BR_PROB_BASE * 9 / 10)
934 return 2;
935 else if (prob >= REG_BR_PROB_BASE / 2)
936 return 1;
937 else if (prob >= REG_BR_PROB_BASE / 10)
938 return 0;
939 else
940 return -1;
941 }
942
943 /* ??? Ought to use estimate_probability instead. */
944
945 /* If this is a branch outside a loop, it is highly unlikely. */
946 if (GET_CODE (PATTERN (jump_insn)) == SET
947 && GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
948 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
949 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
950 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
951 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
952 return -1;
953
954 if (target_label)
955 {
956 /* If this is the test of a loop, it is very likely true. We scan
957 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
958 before the next real insn, we assume the branch is to the top of
959 the loop. */
960 for (insn = PREV_INSN (target_label);
961 insn && GET_CODE (insn) == NOTE;
962 insn = PREV_INSN (insn))
963 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
964 return 2;
965
966 /* If this is a jump to the test of a loop, it is likely true. We scan
967 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
968 before the next real insn, we assume the branch is to the loop branch
969 test. */
970 for (insn = NEXT_INSN (target_label);
971 insn && GET_CODE (insn) == NOTE;
972 insn = PREV_INSN (insn))
973 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
974 return 1;
975 }
976
977 /* Look at the relative rarities of the fallthrough and destination. If
978 they differ, we can predict the branch that way. */
979
980 switch (rare_fallthrough - rare_dest)
981 {
982 case -2:
983 return -1;
984 case -1:
985 return 0;
986 case 0:
987 break;
988 case 1:
989 return 1;
990 case 2:
991 return 2;
992 }
993
994 /* If we couldn't figure out what this jump was, assume it won't be
995 taken. This should be rare. */
996 if (condition == 0)
997 return 0;
998
999 /* EQ tests are usually false and NE tests are usually true. Also,
1000 most quantities are positive, so we can make the appropriate guesses
1001 about signed comparisons against zero. */
1002 switch (GET_CODE (condition))
1003 {
1004 case CONST_INT:
1005 /* Unconditional branch. */
1006 return 1;
1007 case EQ:
1008 return 0;
1009 case NE:
1010 return 1;
1011 case LE:
1012 case LT:
1013 if (XEXP (condition, 1) == const0_rtx)
1014 return 0;
1015 break;
1016 case GE:
1017 case GT:
1018 if (XEXP (condition, 1) == const0_rtx)
1019 return 1;
1020 break;
1021
1022 default:
1023 break;
1024 }
1025
1026 /* Predict backward branches usually take, forward branches usually not. If
1027 we don't know whether this is forward or backward, assume the branch
1028 will be taken, since most are. */
1029 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1030 || INSN_UID (target_label) > max_uid
1031 || (uid_to_ruid[INSN_UID (jump_insn)]
1032 > uid_to_ruid[INSN_UID (target_label)]));
1033 }
1034
1035 /* Return the condition under which INSN will branch to TARGET. If TARGET
1036 is zero, return the condition under which INSN will return. If INSN is
1037 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1038 type of jump, or it doesn't go to TARGET, return 0. */
1039
1040 static rtx
1041 get_branch_condition (insn, target)
1042 rtx insn;
1043 rtx target;
1044 {
1045 rtx pat = PATTERN (insn);
1046 rtx src;
1047
1048 if (condjump_in_parallel_p (insn))
1049 pat = XVECEXP (pat, 0, 0);
1050
1051 if (GET_CODE (pat) == RETURN)
1052 return target == 0 ? const_true_rtx : 0;
1053
1054 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1055 return 0;
1056
1057 src = SET_SRC (pat);
1058 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1059 return const_true_rtx;
1060
1061 else if (GET_CODE (src) == IF_THEN_ELSE
1062 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1063 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1064 && XEXP (XEXP (src, 1), 0) == target))
1065 && XEXP (src, 2) == pc_rtx)
1066 return XEXP (src, 0);
1067
1068 else if (GET_CODE (src) == IF_THEN_ELSE
1069 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1070 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1071 && XEXP (XEXP (src, 2), 0) == target))
1072 && XEXP (src, 1) == pc_rtx)
1073 return gen_rtx_fmt_ee (reverse_condition (GET_CODE (XEXP (src, 0))),
1074 GET_MODE (XEXP (src, 0)),
1075 XEXP (XEXP (src, 0), 0), XEXP (XEXP (src, 0), 1));
1076
1077 return 0;
1078 }
1079
1080 /* Return non-zero if CONDITION is more strict than the condition of
1081 INSN, i.e., if INSN will always branch if CONDITION is true. */
1082
1083 static int
1084 condition_dominates_p (condition, insn)
1085 rtx condition;
1086 rtx insn;
1087 {
1088 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1089 enum rtx_code code = GET_CODE (condition);
1090 enum rtx_code other_code;
1091
1092 if (rtx_equal_p (condition, other_condition)
1093 || other_condition == const_true_rtx)
1094 return 1;
1095
1096 else if (condition == const_true_rtx || other_condition == 0)
1097 return 0;
1098
1099 other_code = GET_CODE (other_condition);
1100 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1101 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1102 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1103 return 0;
1104
1105 return comparison_dominates_p (code, other_code);
1106 }
1107
1108 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1109 any insns already in the delay slot of JUMP. */
1110
1111 static int
1112 redirect_with_delay_slots_safe_p (jump, newlabel, seq)
1113 rtx jump, newlabel, seq;
1114 {
1115 int flags, i;
1116 rtx pat = PATTERN (seq);
1117
1118 /* Make sure all the delay slots of this jump would still
1119 be valid after threading the jump. If they are still
1120 valid, then return non-zero. */
1121
1122 flags = get_jump_flags (jump, newlabel);
1123 for (i = 1; i < XVECLEN (pat, 0); i++)
1124 if (! (
1125 #ifdef ANNUL_IFFALSE_SLOTS
1126 (INSN_ANNULLED_BRANCH_P (jump)
1127 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1128 ? eligible_for_annul_false (jump, i - 1,
1129 XVECEXP (pat, 0, i), flags) :
1130 #endif
1131 #ifdef ANNUL_IFTRUE_SLOTS
1132 (INSN_ANNULLED_BRANCH_P (jump)
1133 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1134 ? eligible_for_annul_true (jump, i - 1,
1135 XVECEXP (pat, 0, i), flags) :
1136 #endif
1137 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1138 break;
1139
1140 return (i == XVECLEN (pat, 0));
1141 }
1142
1143 /* Return non-zero if redirecting JUMP to NEWLABEL does not invalidate
1144 any insns we wish to place in the delay slot of JUMP. */
1145
1146 static int
1147 redirect_with_delay_list_safe_p (jump, newlabel, delay_list)
1148 rtx jump, newlabel, delay_list;
1149 {
1150 int flags, i;
1151 rtx li;
1152
1153 /* Make sure all the insns in DELAY_LIST would still be
1154 valid after threading the jump. If they are still
1155 valid, then return non-zero. */
1156
1157 flags = get_jump_flags (jump, newlabel);
1158 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1159 if (! (
1160 #ifdef ANNUL_IFFALSE_SLOTS
1161 (INSN_ANNULLED_BRANCH_P (jump)
1162 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1163 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1164 #endif
1165 #ifdef ANNUL_IFTRUE_SLOTS
1166 (INSN_ANNULLED_BRANCH_P (jump)
1167 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1168 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1169 #endif
1170 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1171 break;
1172
1173 return (li == NULL);
1174 }
1175
1176 /* DELAY_LIST is a list of insns that have already been placed into delay
1177 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1178 If not, return 0; otherwise return 1. */
1179
1180 static int
1181 check_annul_list_true_false (annul_true_p, delay_list)
1182 int annul_true_p;
1183 rtx delay_list;
1184 {
1185 rtx temp;
1186
1187 if (delay_list)
1188 {
1189 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1190 {
1191 rtx trial = XEXP (temp, 0);
1192
1193 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1194 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1195 return 0;
1196 }
1197 }
1198
1199 return 1;
1200 }
1201 \f
1202 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1203 the condition tested by INSN is CONDITION and the resources shown in
1204 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1205 from SEQ's delay list, in addition to whatever insns it may execute
1206 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1207 needed while searching for delay slot insns. Return the concatenated
1208 delay list if possible, otherwise, return 0.
1209
1210 SLOTS_TO_FILL is the total number of slots required by INSN, and
1211 PSLOTS_FILLED points to the number filled so far (also the number of
1212 insns in DELAY_LIST). It is updated with the number that have been
1213 filled from the SEQUENCE, if any.
1214
1215 PANNUL_P points to a non-zero value if we already know that we need
1216 to annul INSN. If this routine determines that annulling is needed,
1217 it may set that value non-zero.
1218
1219 PNEW_THREAD points to a location that is to receive the place at which
1220 execution should continue. */
1221
1222 static rtx
1223 steal_delay_list_from_target (insn, condition, seq, delay_list,
1224 sets, needed, other_needed,
1225 slots_to_fill, pslots_filled, pannul_p,
1226 pnew_thread)
1227 rtx insn, condition;
1228 rtx seq;
1229 rtx delay_list;
1230 struct resources *sets, *needed, *other_needed;
1231 int slots_to_fill;
1232 int *pslots_filled;
1233 int *pannul_p;
1234 rtx *pnew_thread;
1235 {
1236 rtx temp;
1237 int slots_remaining = slots_to_fill - *pslots_filled;
1238 int total_slots_filled = *pslots_filled;
1239 rtx new_delay_list = 0;
1240 int must_annul = *pannul_p;
1241 int used_annul = 0;
1242 int i;
1243 struct resources cc_set;
1244
1245 /* We can't do anything if there are more delay slots in SEQ than we
1246 can handle, or if we don't know that it will be a taken branch.
1247 We know that it will be a taken branch if it is either an unconditional
1248 branch or a conditional branch with a stricter branch condition.
1249
1250 Also, exit if the branch has more than one set, since then it is computing
1251 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1252 ??? It may be possible to move other sets into INSN in addition to
1253 moving the instructions in the delay slots.
1254
1255 We can not steal the delay list if one of the instructions in the
1256 current delay_list modifies the condition codes and the jump in the
1257 sequence is a conditional jump. We can not do this because we can
1258 not change the direction of the jump because the condition codes
1259 will effect the direction of the jump in the sequence. */
1260
1261 CLEAR_RESOURCE (&cc_set);
1262 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1263 {
1264 rtx trial = XEXP (temp, 0);
1265
1266 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1267 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1268 return delay_list;
1269 }
1270
1271 if (XVECLEN (seq, 0) - 1 > slots_remaining
1272 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1273 || ! single_set (XVECEXP (seq, 0, 0)))
1274 return delay_list;
1275
1276 #ifdef MD_CAN_REDIRECT_BRANCH
1277 /* On some targets, branches with delay slots can have a limited
1278 displacement. Give the back end a chance to tell us we can't do
1279 this. */
1280 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1281 return delay_list;
1282 #endif
1283
1284 for (i = 1; i < XVECLEN (seq, 0); i++)
1285 {
1286 rtx trial = XVECEXP (seq, 0, i);
1287 int flags;
1288
1289 if (insn_references_resource_p (trial, sets, 0)
1290 || insn_sets_resource_p (trial, needed, 0)
1291 || insn_sets_resource_p (trial, sets, 0)
1292 #ifdef HAVE_cc0
1293 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1294 delay list. */
1295 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1296 #endif
1297 /* If TRIAL is from the fallthrough code of an annulled branch insn
1298 in SEQ, we cannot use it. */
1299 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1300 && ! INSN_FROM_TARGET_P (trial)))
1301 return delay_list;
1302
1303 /* If this insn was already done (usually in a previous delay slot),
1304 pretend we put it in our delay slot. */
1305 if (redundant_insn (trial, insn, new_delay_list))
1306 continue;
1307
1308 /* We will end up re-vectoring this branch, so compute flags
1309 based on jumping to the new label. */
1310 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1311
1312 if (! must_annul
1313 && ((condition == const_true_rtx
1314 || (! insn_sets_resource_p (trial, other_needed, 0)
1315 && ! may_trap_p (PATTERN (trial)))))
1316 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1317 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1318 && (must_annul = 1,
1319 check_annul_list_true_false (0, delay_list)
1320 && check_annul_list_true_false (0, new_delay_list)
1321 && eligible_for_annul_false (insn, total_slots_filled,
1322 trial, flags)))
1323 {
1324 if (must_annul)
1325 used_annul = 1;
1326 temp = copy_rtx (trial);
1327 INSN_FROM_TARGET_P (temp) = 1;
1328 new_delay_list = add_to_delay_list (temp, new_delay_list);
1329 total_slots_filled++;
1330
1331 if (--slots_remaining == 0)
1332 break;
1333 }
1334 else
1335 return delay_list;
1336 }
1337
1338 /* Show the place to which we will be branching. */
1339 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1340
1341 /* Add any new insns to the delay list and update the count of the
1342 number of slots filled. */
1343 *pslots_filled = total_slots_filled;
1344 if (used_annul)
1345 *pannul_p = 1;
1346
1347 if (delay_list == 0)
1348 return new_delay_list;
1349
1350 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1351 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1352
1353 return delay_list;
1354 }
1355 \f
1356 /* Similar to steal_delay_list_from_target except that SEQ is on the
1357 fallthrough path of INSN. Here we only do something if the delay insn
1358 of SEQ is an unconditional branch. In that case we steal its delay slot
1359 for INSN since unconditional branches are much easier to fill. */
1360
1361 static rtx
1362 steal_delay_list_from_fallthrough (insn, condition, seq,
1363 delay_list, sets, needed, other_needed,
1364 slots_to_fill, pslots_filled, pannul_p)
1365 rtx insn, condition;
1366 rtx seq;
1367 rtx delay_list;
1368 struct resources *sets, *needed, *other_needed;
1369 int slots_to_fill;
1370 int *pslots_filled;
1371 int *pannul_p;
1372 {
1373 int i;
1374 int flags;
1375 int must_annul = *pannul_p;
1376 int used_annul = 0;
1377
1378 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1379
1380 /* We can't do anything if SEQ's delay insn isn't an
1381 unconditional branch. */
1382
1383 if (! simplejump_p (XVECEXP (seq, 0, 0))
1384 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1385 return delay_list;
1386
1387 for (i = 1; i < XVECLEN (seq, 0); i++)
1388 {
1389 rtx trial = XVECEXP (seq, 0, i);
1390
1391 /* If TRIAL sets CC0, stealing it will move it too far from the use
1392 of CC0. */
1393 if (insn_references_resource_p (trial, sets, 0)
1394 || insn_sets_resource_p (trial, needed, 0)
1395 || insn_sets_resource_p (trial, sets, 0)
1396 #ifdef HAVE_cc0
1397 || sets_cc0_p (PATTERN (trial))
1398 #endif
1399 )
1400
1401 break;
1402
1403 /* If this insn was already done, we don't need it. */
1404 if (redundant_insn (trial, insn, delay_list))
1405 {
1406 delete_from_delay_slot (trial);
1407 continue;
1408 }
1409
1410 if (! must_annul
1411 && ((condition == const_true_rtx
1412 || (! insn_sets_resource_p (trial, other_needed, 0)
1413 && ! may_trap_p (PATTERN (trial)))))
1414 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1415 : (must_annul || delay_list == NULL) && (must_annul = 1,
1416 check_annul_list_true_false (1, delay_list)
1417 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1418 {
1419 if (must_annul)
1420 used_annul = 1;
1421 delete_from_delay_slot (trial);
1422 delay_list = add_to_delay_list (trial, delay_list);
1423
1424 if (++(*pslots_filled) == slots_to_fill)
1425 break;
1426 }
1427 else
1428 break;
1429 }
1430
1431 if (used_annul)
1432 *pannul_p = 1;
1433 return delay_list;
1434 }
1435 \f
1436 /* Try merging insns starting at THREAD which match exactly the insns in
1437 INSN's delay list.
1438
1439 If all insns were matched and the insn was previously annulling, the
1440 annul bit will be cleared.
1441
1442 For each insn that is merged, if the branch is or will be non-annulling,
1443 we delete the merged insn. */
1444
1445 static void
1446 try_merge_delay_insns (insn, thread)
1447 rtx insn, thread;
1448 {
1449 rtx trial, next_trial;
1450 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1451 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1452 int slot_number = 1;
1453 int num_slots = XVECLEN (PATTERN (insn), 0);
1454 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1455 struct resources set, needed;
1456 rtx merged_insns = 0;
1457 int i;
1458 int flags;
1459
1460 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1461
1462 CLEAR_RESOURCE (&needed);
1463 CLEAR_RESOURCE (&set);
1464
1465 /* If this is not an annulling branch, take into account anything needed in
1466 INSN's delay slot. This prevents two increments from being incorrectly
1467 folded into one. If we are annulling, this would be the correct
1468 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1469 will essentially disable this optimization. This method is somewhat of
1470 a kludge, but I don't see a better way.) */
1471 if (! annul_p)
1472 for (i = 1 ; i < num_slots; i++)
1473 if (XVECEXP (PATTERN (insn), 0, i))
1474 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1475
1476 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1477 {
1478 rtx pat = PATTERN (trial);
1479 rtx oldtrial = trial;
1480
1481 next_trial = next_nonnote_insn (trial);
1482
1483 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1484 if (GET_CODE (trial) == INSN
1485 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1486 continue;
1487
1488 if (GET_CODE (next_to_match) == GET_CODE (trial)
1489 #ifdef HAVE_cc0
1490 /* We can't share an insn that sets cc0. */
1491 && ! sets_cc0_p (pat)
1492 #endif
1493 && ! insn_references_resource_p (trial, &set, 1)
1494 && ! insn_sets_resource_p (trial, &set, 1)
1495 && ! insn_sets_resource_p (trial, &needed, 1)
1496 && (trial = try_split (pat, trial, 0)) != 0
1497 /* Update next_trial, in case try_split succeeded. */
1498 && (next_trial = next_nonnote_insn (trial))
1499 /* Likewise THREAD. */
1500 && (thread = oldtrial == thread ? trial : thread)
1501 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1502 /* Have to test this condition if annul condition is different
1503 from (and less restrictive than) non-annulling one. */
1504 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1505 {
1506
1507 if (! annul_p)
1508 {
1509 update_block (trial, thread);
1510 if (trial == thread)
1511 thread = next_active_insn (thread);
1512
1513 delete_related_insns (trial);
1514 INSN_FROM_TARGET_P (next_to_match) = 0;
1515 }
1516 else
1517 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1518
1519 if (++slot_number == num_slots)
1520 break;
1521
1522 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1523 }
1524
1525 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1526 mark_referenced_resources (trial, &needed, 1);
1527 }
1528
1529 /* See if we stopped on a filled insn. If we did, try to see if its
1530 delay slots match. */
1531 if (slot_number != num_slots
1532 && trial && GET_CODE (trial) == INSN
1533 && GET_CODE (PATTERN (trial)) == SEQUENCE
1534 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1535 {
1536 rtx pat = PATTERN (trial);
1537 rtx filled_insn = XVECEXP (pat, 0, 0);
1538
1539 /* Account for resources set/needed by the filled insn. */
1540 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1541 mark_referenced_resources (filled_insn, &needed, 1);
1542
1543 for (i = 1; i < XVECLEN (pat, 0); i++)
1544 {
1545 rtx dtrial = XVECEXP (pat, 0, i);
1546
1547 if (! insn_references_resource_p (dtrial, &set, 1)
1548 && ! insn_sets_resource_p (dtrial, &set, 1)
1549 && ! insn_sets_resource_p (dtrial, &needed, 1)
1550 #ifdef HAVE_cc0
1551 && ! sets_cc0_p (PATTERN (dtrial))
1552 #endif
1553 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1554 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1555 {
1556 if (! annul_p)
1557 {
1558 rtx new;
1559
1560 update_block (dtrial, thread);
1561 new = delete_from_delay_slot (dtrial);
1562 if (INSN_DELETED_P (thread))
1563 thread = new;
1564 INSN_FROM_TARGET_P (next_to_match) = 0;
1565 }
1566 else
1567 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1568 merged_insns);
1569
1570 if (++slot_number == num_slots)
1571 break;
1572
1573 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1574 }
1575 else
1576 {
1577 /* Keep track of the set/referenced resources for the delay
1578 slots of any trial insns we encounter. */
1579 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1580 mark_referenced_resources (dtrial, &needed, 1);
1581 }
1582 }
1583 }
1584
1585 /* If all insns in the delay slot have been matched and we were previously
1586 annulling the branch, we need not any more. In that case delete all the
1587 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1588 the delay list so that we know that it isn't only being used at the
1589 target. */
1590 if (slot_number == num_slots && annul_p)
1591 {
1592 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1593 {
1594 if (GET_MODE (merged_insns) == SImode)
1595 {
1596 rtx new;
1597
1598 update_block (XEXP (merged_insns, 0), thread);
1599 new = delete_from_delay_slot (XEXP (merged_insns, 0));
1600 if (INSN_DELETED_P (thread))
1601 thread = new;
1602 }
1603 else
1604 {
1605 update_block (XEXP (merged_insns, 0), thread);
1606 delete_related_insns (XEXP (merged_insns, 0));
1607 }
1608 }
1609
1610 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1611
1612 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1613 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1614 }
1615 }
1616 \f
1617 /* See if INSN is redundant with an insn in front of TARGET. Often this
1618 is called when INSN is a candidate for a delay slot of TARGET.
1619 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1620 of INSN. Often INSN will be redundant with an insn in a delay slot of
1621 some previous insn. This happens when we have a series of branches to the
1622 same label; in that case the first insn at the target might want to go
1623 into each of the delay slots.
1624
1625 If we are not careful, this routine can take up a significant fraction
1626 of the total compilation time (4%), but only wins rarely. Hence we
1627 speed this routine up by making two passes. The first pass goes back
1628 until it hits a label and sees if it find an insn with an identical
1629 pattern. Only in this (relatively rare) event does it check for
1630 data conflicts.
1631
1632 We do not split insns we encounter. This could cause us not to find a
1633 redundant insn, but the cost of splitting seems greater than the possible
1634 gain in rare cases. */
1635
1636 static rtx
1637 redundant_insn (insn, target, delay_list)
1638 rtx insn;
1639 rtx target;
1640 rtx delay_list;
1641 {
1642 rtx target_main = target;
1643 rtx ipat = PATTERN (insn);
1644 rtx trial, pat;
1645 struct resources needed, set;
1646 int i;
1647 unsigned insns_to_search;
1648
1649 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1650 are allowed to not actually assign to such a register. */
1651 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1652 return 0;
1653
1654 /* Scan backwards looking for a match. */
1655 for (trial = PREV_INSN (target),
1656 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1657 trial && insns_to_search > 0;
1658 trial = PREV_INSN (trial), --insns_to_search)
1659 {
1660 if (GET_CODE (trial) == CODE_LABEL)
1661 return 0;
1662
1663 if (! INSN_P (trial))
1664 continue;
1665
1666 pat = PATTERN (trial);
1667 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1668 continue;
1669
1670 if (GET_CODE (pat) == SEQUENCE)
1671 {
1672 /* Stop for a CALL and its delay slots because it is difficult to
1673 track its resource needs correctly. */
1674 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
1675 return 0;
1676
1677 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1678 slots because it is difficult to track its resource needs
1679 correctly. */
1680
1681 #ifdef INSN_SETS_ARE_DELAYED
1682 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1683 return 0;
1684 #endif
1685
1686 #ifdef INSN_REFERENCES_ARE_DELAYED
1687 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1688 return 0;
1689 #endif
1690
1691 /* See if any of the insns in the delay slot match, updating
1692 resource requirements as we go. */
1693 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1694 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1695 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1696 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1697 break;
1698
1699 /* If found a match, exit this loop early. */
1700 if (i > 0)
1701 break;
1702 }
1703
1704 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1705 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1706 break;
1707 }
1708
1709 /* If we didn't find an insn that matches, return 0. */
1710 if (trial == 0)
1711 return 0;
1712
1713 /* See what resources this insn sets and needs. If they overlap, or
1714 if this insn references CC0, it can't be redundant. */
1715
1716 CLEAR_RESOURCE (&needed);
1717 CLEAR_RESOURCE (&set);
1718 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1719 mark_referenced_resources (insn, &needed, 1);
1720
1721 /* If TARGET is a SEQUENCE, get the main insn. */
1722 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
1723 target_main = XVECEXP (PATTERN (target), 0, 0);
1724
1725 if (resource_conflicts_p (&needed, &set)
1726 #ifdef HAVE_cc0
1727 || reg_mentioned_p (cc0_rtx, ipat)
1728 #endif
1729 /* The insn requiring the delay may not set anything needed or set by
1730 INSN. */
1731 || insn_sets_resource_p (target_main, &needed, 1)
1732 || insn_sets_resource_p (target_main, &set, 1))
1733 return 0;
1734
1735 /* Insns we pass may not set either NEEDED or SET, so merge them for
1736 simpler tests. */
1737 needed.memory |= set.memory;
1738 needed.unch_memory |= set.unch_memory;
1739 IOR_HARD_REG_SET (needed.regs, set.regs);
1740
1741 /* This insn isn't redundant if it conflicts with an insn that either is
1742 or will be in a delay slot of TARGET. */
1743
1744 while (delay_list)
1745 {
1746 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1747 return 0;
1748 delay_list = XEXP (delay_list, 1);
1749 }
1750
1751 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
1752 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1753 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1754 return 0;
1755
1756 /* Scan backwards until we reach a label or an insn that uses something
1757 INSN sets or sets something insn uses or sets. */
1758
1759 for (trial = PREV_INSN (target),
1760 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1761 trial && GET_CODE (trial) != CODE_LABEL && insns_to_search > 0;
1762 trial = PREV_INSN (trial), --insns_to_search)
1763 {
1764 if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN
1765 && GET_CODE (trial) != JUMP_INSN)
1766 continue;
1767
1768 pat = PATTERN (trial);
1769 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1770 continue;
1771
1772 if (GET_CODE (pat) == SEQUENCE)
1773 {
1774 /* If this is a CALL_INSN and its delay slots, it is hard to track
1775 the resource needs properly, so give up. */
1776 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
1777 return 0;
1778
1779 /* If this is an INSN or JUMP_INSN with delayed effects, it
1780 is hard to track the resource needs properly, so give up. */
1781
1782 #ifdef INSN_SETS_ARE_DELAYED
1783 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1784 return 0;
1785 #endif
1786
1787 #ifdef INSN_REFERENCES_ARE_DELAYED
1788 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1789 return 0;
1790 #endif
1791
1792 /* See if any of the insns in the delay slot match, updating
1793 resource requirements as we go. */
1794 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1795 {
1796 rtx candidate = XVECEXP (pat, 0, i);
1797
1798 /* If an insn will be annulled if the branch is false, it isn't
1799 considered as a possible duplicate insn. */
1800 if (rtx_equal_p (PATTERN (candidate), ipat)
1801 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1802 && INSN_FROM_TARGET_P (candidate)))
1803 {
1804 /* Show that this insn will be used in the sequel. */
1805 INSN_FROM_TARGET_P (candidate) = 0;
1806 return candidate;
1807 }
1808
1809 /* Unless this is an annulled insn from the target of a branch,
1810 we must stop if it sets anything needed or set by INSN. */
1811 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1812 || ! INSN_FROM_TARGET_P (candidate))
1813 && insn_sets_resource_p (candidate, &needed, 1))
1814 return 0;
1815 }
1816
1817 /* If the insn requiring the delay slot conflicts with INSN, we
1818 must stop. */
1819 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1820 return 0;
1821 }
1822 else
1823 {
1824 /* See if TRIAL is the same as INSN. */
1825 pat = PATTERN (trial);
1826 if (rtx_equal_p (pat, ipat))
1827 return trial;
1828
1829 /* Can't go any further if TRIAL conflicts with INSN. */
1830 if (insn_sets_resource_p (trial, &needed, 1))
1831 return 0;
1832 }
1833 }
1834
1835 return 0;
1836 }
1837 \f
1838 /* Return 1 if THREAD can only be executed in one way. If LABEL is non-zero,
1839 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1840 is non-zero, we are allowed to fall into this thread; otherwise, we are
1841 not.
1842
1843 If LABEL is used more than one or we pass a label other than LABEL before
1844 finding an active insn, we do not own this thread. */
1845
1846 static int
1847 own_thread_p (thread, label, allow_fallthrough)
1848 rtx thread;
1849 rtx label;
1850 int allow_fallthrough;
1851 {
1852 rtx active_insn;
1853 rtx insn;
1854
1855 /* We don't own the function end. */
1856 if (thread == 0)
1857 return 0;
1858
1859 /* Get the first active insn, or THREAD, if it is an active insn. */
1860 active_insn = next_active_insn (PREV_INSN (thread));
1861
1862 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1863 if (GET_CODE (insn) == CODE_LABEL
1864 && (insn != label || LABEL_NUSES (insn) != 1))
1865 return 0;
1866
1867 if (allow_fallthrough)
1868 return 1;
1869
1870 /* Ensure that we reach a BARRIER before any insn or label. */
1871 for (insn = prev_nonnote_insn (thread);
1872 insn == 0 || GET_CODE (insn) != BARRIER;
1873 insn = prev_nonnote_insn (insn))
1874 if (insn == 0
1875 || GET_CODE (insn) == CODE_LABEL
1876 || (GET_CODE (insn) == INSN
1877 && GET_CODE (PATTERN (insn)) != USE
1878 && GET_CODE (PATTERN (insn)) != CLOBBER))
1879 return 0;
1880
1881 return 1;
1882 }
1883 \f
1884 /* Called when INSN is being moved from a location near the target of a jump.
1885 We leave a marker of the form (use (INSN)) immediately in front
1886 of WHERE for mark_target_live_regs. These markers will be deleted when
1887 reorg finishes.
1888
1889 We used to try to update the live status of registers if WHERE is at
1890 the start of a basic block, but that can't work since we may remove a
1891 BARRIER in relax_delay_slots. */
1892
1893 static void
1894 update_block (insn, where)
1895 rtx insn;
1896 rtx where;
1897 {
1898 /* Ignore if this was in a delay slot and it came from the target of
1899 a branch. */
1900 if (INSN_FROM_TARGET_P (insn))
1901 return;
1902
1903 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1904
1905 /* INSN might be making a value live in a block where it didn't use to
1906 be. So recompute liveness information for this block. */
1907
1908 incr_ticks_for_insn (insn);
1909 }
1910
1911 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1912 the basic block containing the jump. */
1913
1914 static int
1915 reorg_redirect_jump (jump, nlabel)
1916 rtx jump;
1917 rtx nlabel;
1918 {
1919 incr_ticks_for_insn (jump);
1920 return redirect_jump (jump, nlabel, 1);
1921 }
1922
1923 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1924 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1925 that reference values used in INSN. If we find one, then we move the
1926 REG_DEAD note to INSN.
1927
1928 This is needed to handle the case where an later insn (after INSN) has a
1929 REG_DEAD note for a register used by INSN, and this later insn subsequently
1930 gets moved before a CODE_LABEL because it is a redundant insn. In this
1931 case, mark_target_live_regs may be confused into thinking the register
1932 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1933
1934 static void
1935 update_reg_dead_notes (insn, delayed_insn)
1936 rtx insn, delayed_insn;
1937 {
1938 rtx p, link, next;
1939
1940 for (p = next_nonnote_insn (insn); p != delayed_insn;
1941 p = next_nonnote_insn (p))
1942 for (link = REG_NOTES (p); link; link = next)
1943 {
1944 next = XEXP (link, 1);
1945
1946 if (REG_NOTE_KIND (link) != REG_DEAD
1947 || GET_CODE (XEXP (link, 0)) != REG)
1948 continue;
1949
1950 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1951 {
1952 /* Move the REG_DEAD note from P to INSN. */
1953 remove_note (p, link);
1954 XEXP (link, 1) = REG_NOTES (insn);
1955 REG_NOTES (insn) = link;
1956 }
1957 }
1958 }
1959
1960 /* Called when an insn redundant with start_insn is deleted. If there
1961 is a REG_DEAD note for the target of start_insn between start_insn
1962 and stop_insn, then the REG_DEAD note needs to be deleted since the
1963 value no longer dies there.
1964
1965 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1966 confused into thinking the register is dead. */
1967
1968 static void
1969 fix_reg_dead_note (start_insn, stop_insn)
1970 rtx start_insn, stop_insn;
1971 {
1972 rtx p, link, next;
1973
1974 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1975 p = next_nonnote_insn (p))
1976 for (link = REG_NOTES (p); link; link = next)
1977 {
1978 next = XEXP (link, 1);
1979
1980 if (REG_NOTE_KIND (link) != REG_DEAD
1981 || GET_CODE (XEXP (link, 0)) != REG)
1982 continue;
1983
1984 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1985 {
1986 remove_note (p, link);
1987 return;
1988 }
1989 }
1990 }
1991
1992 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1993
1994 This handles the case of udivmodXi4 instructions which optimize their
1995 output depending on whether any REG_UNUSED notes are present.
1996 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1997 does. */
1998
1999 static void
2000 update_reg_unused_notes (insn, redundant_insn)
2001 rtx insn, redundant_insn;
2002 {
2003 rtx link, next;
2004
2005 for (link = REG_NOTES (insn); link; link = next)
2006 {
2007 next = XEXP (link, 1);
2008
2009 if (REG_NOTE_KIND (link) != REG_UNUSED
2010 || GET_CODE (XEXP (link, 0)) != REG)
2011 continue;
2012
2013 if (! find_regno_note (redundant_insn, REG_UNUSED,
2014 REGNO (XEXP (link, 0))))
2015 remove_note (insn, link);
2016 }
2017 }
2018 \f
2019 /* Scan a function looking for insns that need a delay slot and find insns to
2020 put into the delay slot.
2021
2022 NON_JUMPS_P is non-zero if we are to only try to fill non-jump insns (such
2023 as calls). We do these first since we don't want jump insns (that are
2024 easier to fill) to get the only insns that could be used for non-jump insns.
2025 When it is zero, only try to fill JUMP_INSNs.
2026
2027 When slots are filled in this manner, the insns (including the
2028 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2029 it is possible to tell whether a delay slot has really been filled
2030 or not. `final' knows how to deal with this, by communicating
2031 through FINAL_SEQUENCE. */
2032
2033 static void
2034 fill_simple_delay_slots (non_jumps_p)
2035 int non_jumps_p;
2036 {
2037 rtx insn, pat, trial, next_trial;
2038 int i;
2039 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2040 struct resources needed, set;
2041 int slots_to_fill, slots_filled;
2042 rtx delay_list;
2043
2044 for (i = 0; i < num_unfilled_slots; i++)
2045 {
2046 int flags;
2047 /* Get the next insn to fill. If it has already had any slots assigned,
2048 we can't do anything with it. Maybe we'll improve this later. */
2049
2050 insn = unfilled_slots_base[i];
2051 if (insn == 0
2052 || INSN_DELETED_P (insn)
2053 || (GET_CODE (insn) == INSN
2054 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2055 || (GET_CODE (insn) == JUMP_INSN && non_jumps_p)
2056 || (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p))
2057 continue;
2058
2059 /* It may have been that this insn used to need delay slots, but
2060 now doesn't; ignore in that case. This can happen, for example,
2061 on the HP PA RISC, where the number of delay slots depends on
2062 what insns are nearby. */
2063 slots_to_fill = num_delay_slots (insn);
2064
2065 /* Some machine description have defined instructions to have
2066 delay slots only in certain circumstances which may depend on
2067 nearby insns (which change due to reorg's actions).
2068
2069 For example, the PA port normally has delay slots for unconditional
2070 jumps.
2071
2072 However, the PA port claims such jumps do not have a delay slot
2073 if they are immediate successors of certain CALL_INSNs. This
2074 allows the port to favor filling the delay slot of the call with
2075 the unconditional jump. */
2076 if (slots_to_fill == 0)
2077 continue;
2078
2079 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2080 says how many. After initialization, first try optimizing
2081
2082 call _foo call _foo
2083 nop add %o7,.-L1,%o7
2084 b,a L1
2085 nop
2086
2087 If this case applies, the delay slot of the call is filled with
2088 the unconditional jump. This is done first to avoid having the
2089 delay slot of the call filled in the backward scan. Also, since
2090 the unconditional jump is likely to also have a delay slot, that
2091 insn must exist when it is subsequently scanned.
2092
2093 This is tried on each insn with delay slots as some machines
2094 have insns which perform calls, but are not represented as
2095 CALL_INSNs. */
2096
2097 slots_filled = 0;
2098 delay_list = 0;
2099
2100 if (GET_CODE (insn) == JUMP_INSN)
2101 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2102 else
2103 flags = get_jump_flags (insn, NULL_RTX);
2104
2105 if ((trial = next_active_insn (insn))
2106 && GET_CODE (trial) == JUMP_INSN
2107 && simplejump_p (trial)
2108 && eligible_for_delay (insn, slots_filled, trial, flags)
2109 && no_labels_between_p (insn, trial))
2110 {
2111 rtx *tmp;
2112 slots_filled++;
2113 delay_list = add_to_delay_list (trial, delay_list);
2114
2115 /* TRIAL may have had its delay slot filled, then unfilled. When
2116 the delay slot is unfilled, TRIAL is placed back on the unfilled
2117 slots obstack. Unfortunately, it is placed on the end of the
2118 obstack, not in its original location. Therefore, we must search
2119 from entry i + 1 to the end of the unfilled slots obstack to
2120 try and find TRIAL. */
2121 tmp = &unfilled_slots_base[i + 1];
2122 while (*tmp != trial && tmp != unfilled_slots_next)
2123 tmp++;
2124
2125 /* Remove the unconditional jump from consideration for delay slot
2126 filling and unthread it. */
2127 if (*tmp == trial)
2128 *tmp = 0;
2129 {
2130 rtx next = NEXT_INSN (trial);
2131 rtx prev = PREV_INSN (trial);
2132 if (prev)
2133 NEXT_INSN (prev) = next;
2134 if (next)
2135 PREV_INSN (next) = prev;
2136 }
2137 }
2138
2139 /* Now, scan backwards from the insn to search for a potential
2140 delay-slot candidate. Stop searching when a label or jump is hit.
2141
2142 For each candidate, if it is to go into the delay slot (moved
2143 forward in execution sequence), it must not need or set any resources
2144 that were set by later insns and must not set any resources that
2145 are needed for those insns.
2146
2147 The delay slot insn itself sets resources unless it is a call
2148 (in which case the called routine, not the insn itself, is doing
2149 the setting). */
2150
2151 if (slots_filled < slots_to_fill)
2152 {
2153 CLEAR_RESOURCE (&needed);
2154 CLEAR_RESOURCE (&set);
2155 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2156 mark_referenced_resources (insn, &needed, 0);
2157
2158 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2159 trial = next_trial)
2160 {
2161 next_trial = prev_nonnote_insn (trial);
2162
2163 /* This must be an INSN or CALL_INSN. */
2164 pat = PATTERN (trial);
2165
2166 /* USE and CLOBBER at this level was just for flow; ignore it. */
2167 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2168 continue;
2169
2170 /* Check for resource conflict first, to avoid unnecessary
2171 splitting. */
2172 if (! insn_references_resource_p (trial, &set, 1)
2173 && ! insn_sets_resource_p (trial, &set, 1)
2174 && ! insn_sets_resource_p (trial, &needed, 1)
2175 #ifdef HAVE_cc0
2176 /* Can't separate set of cc0 from its use. */
2177 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2178 #endif
2179 )
2180 {
2181 trial = try_split (pat, trial, 1);
2182 next_trial = prev_nonnote_insn (trial);
2183 if (eligible_for_delay (insn, slots_filled, trial, flags))
2184 {
2185 /* In this case, we are searching backward, so if we
2186 find insns to put on the delay list, we want
2187 to put them at the head, rather than the
2188 tail, of the list. */
2189
2190 update_reg_dead_notes (trial, insn);
2191 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2192 trial, delay_list);
2193 update_block (trial, trial);
2194 delete_related_insns (trial);
2195 if (slots_to_fill == ++slots_filled)
2196 break;
2197 continue;
2198 }
2199 }
2200
2201 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2202 mark_referenced_resources (trial, &needed, 1);
2203 }
2204 }
2205
2206 /* If all needed slots haven't been filled, we come here. */
2207
2208 /* Try to optimize case of jumping around a single insn. */
2209 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2210 if (slots_filled != slots_to_fill
2211 && delay_list == 0
2212 && GET_CODE (insn) == JUMP_INSN
2213 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2214 {
2215 delay_list = optimize_skip (insn);
2216 if (delay_list)
2217 slots_filled += 1;
2218 }
2219 #endif
2220
2221 /* Try to get insns from beyond the insn needing the delay slot.
2222 These insns can neither set or reference resources set in insns being
2223 skipped, cannot set resources in the insn being skipped, and, if this
2224 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2225 call might not return).
2226
2227 There used to be code which continued past the target label if
2228 we saw all uses of the target label. This code did not work,
2229 because it failed to account for some instructions which were
2230 both annulled and marked as from the target. This can happen as a
2231 result of optimize_skip. Since this code was redundant with
2232 fill_eager_delay_slots anyways, it was just deleted. */
2233
2234 if (slots_filled != slots_to_fill
2235 /* If this instruction could throw an exception which is
2236 caught in the same function, then it's not safe to fill
2237 the delay slot with an instruction from beyond this
2238 point. For example, consider:
2239
2240 int i = 2;
2241
2242 try {
2243 f();
2244 i = 3;
2245 } catch (...) {}
2246
2247 return i;
2248
2249 Even though `i' is a local variable, we must be sure not
2250 to put `i = 3' in the delay slot if `f' might throw an
2251 exception.
2252
2253 Presumably, we should also check to see if we could get
2254 back to this function via `setjmp'. */
2255 && !can_throw_internal (insn)
2256 && (GET_CODE (insn) != JUMP_INSN
2257 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2258 && ! simplejump_p (insn)
2259 && JUMP_LABEL (insn) != 0)))
2260 {
2261 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2262 label. Otherwise, zero. */
2263 rtx target = 0;
2264 int maybe_never = 0;
2265 rtx pat, trial_delay;
2266
2267 CLEAR_RESOURCE (&needed);
2268 CLEAR_RESOURCE (&set);
2269
2270 if (GET_CODE (insn) == CALL_INSN)
2271 {
2272 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2273 mark_referenced_resources (insn, &needed, 1);
2274 maybe_never = 1;
2275 }
2276 else
2277 {
2278 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2279 mark_referenced_resources (insn, &needed, 1);
2280 if (GET_CODE (insn) == JUMP_INSN)
2281 target = JUMP_LABEL (insn);
2282 }
2283
2284 if (target == 0)
2285 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2286 {
2287 next_trial = next_nonnote_insn (trial);
2288
2289 if (GET_CODE (trial) == CODE_LABEL
2290 || GET_CODE (trial) == BARRIER)
2291 break;
2292
2293 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2294 pat = PATTERN (trial);
2295
2296 /* Stand-alone USE and CLOBBER are just for flow. */
2297 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2298 continue;
2299
2300 /* If this already has filled delay slots, get the insn needing
2301 the delay slots. */
2302 if (GET_CODE (pat) == SEQUENCE)
2303 trial_delay = XVECEXP (pat, 0, 0);
2304 else
2305 trial_delay = trial;
2306
2307 /* Stop our search when seeing an unconditional jump. */
2308 if (GET_CODE (trial_delay) == JUMP_INSN)
2309 break;
2310
2311 /* See if we have a resource problem before we try to
2312 split. */
2313 if (GET_CODE (pat) != SEQUENCE
2314 && ! insn_references_resource_p (trial, &set, 1)
2315 && ! insn_sets_resource_p (trial, &set, 1)
2316 && ! insn_sets_resource_p (trial, &needed, 1)
2317 #ifdef HAVE_cc0
2318 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2319 #endif
2320 && ! (maybe_never && may_trap_p (pat))
2321 && (trial = try_split (pat, trial, 0))
2322 && eligible_for_delay (insn, slots_filled, trial, flags))
2323 {
2324 next_trial = next_nonnote_insn (trial);
2325 delay_list = add_to_delay_list (trial, delay_list);
2326
2327 #ifdef HAVE_cc0
2328 if (reg_mentioned_p (cc0_rtx, pat))
2329 link_cc0_insns (trial);
2330 #endif
2331
2332 delete_related_insns (trial);
2333 if (slots_to_fill == ++slots_filled)
2334 break;
2335 continue;
2336 }
2337
2338 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2339 mark_referenced_resources (trial, &needed, 1);
2340
2341 /* Ensure we don't put insns between the setting of cc and the
2342 comparison by moving a setting of cc into an earlier delay
2343 slot since these insns could clobber the condition code. */
2344 set.cc = 1;
2345
2346 /* If this is a call or jump, we might not get here. */
2347 if (GET_CODE (trial_delay) == CALL_INSN
2348 || GET_CODE (trial_delay) == JUMP_INSN)
2349 maybe_never = 1;
2350 }
2351
2352 /* If there are slots left to fill and our search was stopped by an
2353 unconditional branch, try the insn at the branch target. We can
2354 redirect the branch if it works.
2355
2356 Don't do this if the insn at the branch target is a branch. */
2357 if (slots_to_fill != slots_filled
2358 && trial
2359 && GET_CODE (trial) == JUMP_INSN
2360 && simplejump_p (trial)
2361 && (target == 0 || JUMP_LABEL (trial) == target)
2362 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2363 && ! (GET_CODE (next_trial) == INSN
2364 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2365 && GET_CODE (next_trial) != JUMP_INSN
2366 && ! insn_references_resource_p (next_trial, &set, 1)
2367 && ! insn_sets_resource_p (next_trial, &set, 1)
2368 && ! insn_sets_resource_p (next_trial, &needed, 1)
2369 #ifdef HAVE_cc0
2370 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2371 #endif
2372 && ! (maybe_never && may_trap_p (PATTERN (next_trial)))
2373 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2374 && eligible_for_delay (insn, slots_filled, next_trial, flags))
2375 {
2376 rtx new_label = next_active_insn (next_trial);
2377
2378 if (new_label != 0)
2379 new_label = get_label_before (new_label);
2380 else
2381 new_label = find_end_label ();
2382
2383 delay_list
2384 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2385 slots_filled++;
2386 reorg_redirect_jump (trial, new_label);
2387
2388 /* If we merged because we both jumped to the same place,
2389 redirect the original insn also. */
2390 if (target)
2391 reorg_redirect_jump (insn, new_label);
2392 }
2393 }
2394
2395 /* If this is an unconditional jump, then try to get insns from the
2396 target of the jump. */
2397 if (GET_CODE (insn) == JUMP_INSN
2398 && simplejump_p (insn)
2399 && slots_filled != slots_to_fill)
2400 delay_list
2401 = fill_slots_from_thread (insn, const_true_rtx,
2402 next_active_insn (JUMP_LABEL (insn)),
2403 NULL, 1, 1,
2404 own_thread_p (JUMP_LABEL (insn),
2405 JUMP_LABEL (insn), 0),
2406 slots_to_fill, &slots_filled,
2407 delay_list);
2408
2409 if (delay_list)
2410 unfilled_slots_base[i]
2411 = emit_delay_sequence (insn, delay_list, slots_filled);
2412
2413 if (slots_to_fill == slots_filled)
2414 unfilled_slots_base[i] = 0;
2415
2416 note_delay_statistics (slots_filled, 0);
2417 }
2418
2419 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2420 /* See if the epilogue needs any delay slots. Try to fill them if so.
2421 The only thing we can do is scan backwards from the end of the
2422 function. If we did this in a previous pass, it is incorrect to do it
2423 again. */
2424 if (current_function_epilogue_delay_list)
2425 return;
2426
2427 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2428 if (slots_to_fill == 0)
2429 return;
2430
2431 slots_filled = 0;
2432 CLEAR_RESOURCE (&set);
2433
2434 /* The frame pointer and stack pointer are needed at the beginning of
2435 the epilogue, so instructions setting them can not be put in the
2436 epilogue delay slot. However, everything else needed at function
2437 end is safe, so we don't want to use end_of_function_needs here. */
2438 CLEAR_RESOURCE (&needed);
2439 if (frame_pointer_needed)
2440 {
2441 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2442 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2443 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2444 #endif
2445 #ifdef EXIT_IGNORE_STACK
2446 if (! EXIT_IGNORE_STACK
2447 || current_function_sp_is_unchanging)
2448 #endif
2449 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2450 }
2451 else
2452 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2453
2454 #ifdef EPILOGUE_USES
2455 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2456 {
2457 if (EPILOGUE_USES (i))
2458 SET_HARD_REG_BIT (needed.regs, i);
2459 }
2460 #endif
2461
2462 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2463 trial = PREV_INSN (trial))
2464 {
2465 if (GET_CODE (trial) == NOTE)
2466 continue;
2467 pat = PATTERN (trial);
2468 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2469 continue;
2470
2471 if (! insn_references_resource_p (trial, &set, 1)
2472 && ! insn_sets_resource_p (trial, &needed, 1)
2473 && ! insn_sets_resource_p (trial, &set, 1)
2474 #ifdef HAVE_cc0
2475 /* Don't want to mess with cc0 here. */
2476 && ! reg_mentioned_p (cc0_rtx, pat)
2477 #endif
2478 )
2479 {
2480 trial = try_split (pat, trial, 1);
2481 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2482 {
2483 /* Here as well we are searching backward, so put the
2484 insns we find on the head of the list. */
2485
2486 current_function_epilogue_delay_list
2487 = gen_rtx_INSN_LIST (VOIDmode, trial,
2488 current_function_epilogue_delay_list);
2489 mark_end_of_function_resources (trial, 1);
2490 update_block (trial, trial);
2491 delete_related_insns (trial);
2492
2493 /* Clear deleted bit so final.c will output the insn. */
2494 INSN_DELETED_P (trial) = 0;
2495
2496 if (slots_to_fill == ++slots_filled)
2497 break;
2498 continue;
2499 }
2500 }
2501
2502 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2503 mark_referenced_resources (trial, &needed, 1);
2504 }
2505
2506 note_delay_statistics (slots_filled, 0);
2507 #endif
2508 }
2509 \f
2510 /* Try to find insns to place in delay slots.
2511
2512 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2513 or is an unconditional branch if CONDITION is const_true_rtx.
2514 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2515
2516 THREAD is a flow-of-control, either the insns to be executed if the
2517 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2518
2519 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2520 to see if any potential delay slot insns set things needed there.
2521
2522 LIKELY is non-zero if it is extremely likely that the branch will be
2523 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2524 end of a loop back up to the top.
2525
2526 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2527 thread. I.e., it is the fallthrough code of our jump or the target of the
2528 jump when we are the only jump going there.
2529
2530 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2531 case, we can only take insns from the head of the thread for our delay
2532 slot. We then adjust the jump to point after the insns we have taken. */
2533
2534 static rtx
2535 fill_slots_from_thread (insn, condition, thread, opposite_thread, likely,
2536 thread_if_true, own_thread,
2537 slots_to_fill, pslots_filled, delay_list)
2538 rtx insn;
2539 rtx condition;
2540 rtx thread, opposite_thread;
2541 int likely;
2542 int thread_if_true;
2543 int own_thread;
2544 int slots_to_fill, *pslots_filled;
2545 rtx delay_list;
2546 {
2547 rtx new_thread;
2548 struct resources opposite_needed, set, needed;
2549 rtx trial;
2550 int lose = 0;
2551 int must_annul = 0;
2552 int flags;
2553
2554 /* Validate our arguments. */
2555 if ((condition == const_true_rtx && ! thread_if_true)
2556 || (! own_thread && ! thread_if_true))
2557 abort ();
2558
2559 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2560
2561 /* If our thread is the end of subroutine, we can't get any delay
2562 insns from that. */
2563 if (thread == 0)
2564 return delay_list;
2565
2566 /* If this is an unconditional branch, nothing is needed at the
2567 opposite thread. Otherwise, compute what is needed there. */
2568 if (condition == const_true_rtx)
2569 CLEAR_RESOURCE (&opposite_needed);
2570 else
2571 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2572
2573 /* If the insn at THREAD can be split, do it here to avoid having to
2574 update THREAD and NEW_THREAD if it is done in the loop below. Also
2575 initialize NEW_THREAD. */
2576
2577 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2578
2579 /* Scan insns at THREAD. We are looking for an insn that can be removed
2580 from THREAD (it neither sets nor references resources that were set
2581 ahead of it and it doesn't set anything needs by the insns ahead of
2582 it) and that either can be placed in an annulling insn or aren't
2583 needed at OPPOSITE_THREAD. */
2584
2585 CLEAR_RESOURCE (&needed);
2586 CLEAR_RESOURCE (&set);
2587
2588 /* If we do not own this thread, we must stop as soon as we find
2589 something that we can't put in a delay slot, since all we can do
2590 is branch into THREAD at a later point. Therefore, labels stop
2591 the search if this is not the `true' thread. */
2592
2593 for (trial = thread;
2594 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2595 trial = next_nonnote_insn (trial))
2596 {
2597 rtx pat, old_trial;
2598
2599 /* If we have passed a label, we no longer own this thread. */
2600 if (GET_CODE (trial) == CODE_LABEL)
2601 {
2602 own_thread = 0;
2603 continue;
2604 }
2605
2606 pat = PATTERN (trial);
2607 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2608 continue;
2609
2610 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2611 don't separate or copy insns that set and use CC0. */
2612 if (! insn_references_resource_p (trial, &set, 1)
2613 && ! insn_sets_resource_p (trial, &set, 1)
2614 && ! insn_sets_resource_p (trial, &needed, 1)
2615 #ifdef HAVE_cc0
2616 && ! (reg_mentioned_p (cc0_rtx, pat)
2617 && (! own_thread || ! sets_cc0_p (pat)))
2618 #endif
2619 )
2620 {
2621 rtx prior_insn;
2622
2623 /* If TRIAL is redundant with some insn before INSN, we don't
2624 actually need to add it to the delay list; we can merely pretend
2625 we did. */
2626 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2627 {
2628 fix_reg_dead_note (prior_insn, insn);
2629 if (own_thread)
2630 {
2631 update_block (trial, thread);
2632 if (trial == thread)
2633 {
2634 thread = next_active_insn (thread);
2635 if (new_thread == trial)
2636 new_thread = thread;
2637 }
2638
2639 delete_related_insns (trial);
2640 }
2641 else
2642 {
2643 update_reg_unused_notes (prior_insn, trial);
2644 new_thread = next_active_insn (trial);
2645 }
2646
2647 continue;
2648 }
2649
2650 /* There are two ways we can win: If TRIAL doesn't set anything
2651 needed at the opposite thread and can't trap, or if it can
2652 go into an annulled delay slot. */
2653 if (!must_annul
2654 && (condition == const_true_rtx
2655 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2656 && ! may_trap_p (pat))))
2657 {
2658 old_trial = trial;
2659 trial = try_split (pat, trial, 0);
2660 if (new_thread == old_trial)
2661 new_thread = trial;
2662 if (thread == old_trial)
2663 thread = trial;
2664 pat = PATTERN (trial);
2665 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2666 goto winner;
2667 }
2668 else if (0
2669 #ifdef ANNUL_IFTRUE_SLOTS
2670 || ! thread_if_true
2671 #endif
2672 #ifdef ANNUL_IFFALSE_SLOTS
2673 || thread_if_true
2674 #endif
2675 )
2676 {
2677 old_trial = trial;
2678 trial = try_split (pat, trial, 0);
2679 if (new_thread == old_trial)
2680 new_thread = trial;
2681 if (thread == old_trial)
2682 thread = trial;
2683 pat = PATTERN (trial);
2684 if ((must_annul || delay_list == NULL) && (thread_if_true
2685 ? check_annul_list_true_false (0, delay_list)
2686 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2687 : check_annul_list_true_false (1, delay_list)
2688 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2689 {
2690 rtx temp;
2691
2692 must_annul = 1;
2693 winner:
2694
2695 #ifdef HAVE_cc0
2696 if (reg_mentioned_p (cc0_rtx, pat))
2697 link_cc0_insns (trial);
2698 #endif
2699
2700 /* If we own this thread, delete the insn. If this is the
2701 destination of a branch, show that a basic block status
2702 may have been updated. In any case, mark the new
2703 starting point of this thread. */
2704 if (own_thread)
2705 {
2706 update_block (trial, thread);
2707 if (trial == thread)
2708 {
2709 thread = next_active_insn (thread);
2710 if (new_thread == trial)
2711 new_thread = thread;
2712 }
2713 delete_related_insns (trial);
2714 }
2715 else
2716 new_thread = next_active_insn (trial);
2717
2718 temp = own_thread ? trial : copy_rtx (trial);
2719 if (thread_if_true)
2720 INSN_FROM_TARGET_P (temp) = 1;
2721
2722 delay_list = add_to_delay_list (temp, delay_list);
2723
2724 if (slots_to_fill == ++(*pslots_filled))
2725 {
2726 /* Even though we have filled all the slots, we
2727 may be branching to a location that has a
2728 redundant insn. Skip any if so. */
2729 while (new_thread && ! own_thread
2730 && ! insn_sets_resource_p (new_thread, &set, 1)
2731 && ! insn_sets_resource_p (new_thread, &needed, 1)
2732 && ! insn_references_resource_p (new_thread,
2733 &set, 1)
2734 && (prior_insn
2735 = redundant_insn (new_thread, insn,
2736 delay_list)))
2737 {
2738 /* We know we do not own the thread, so no need
2739 to call update_block and delete_insn. */
2740 fix_reg_dead_note (prior_insn, insn);
2741 update_reg_unused_notes (prior_insn, new_thread);
2742 new_thread = next_active_insn (new_thread);
2743 }
2744 break;
2745 }
2746
2747 continue;
2748 }
2749 }
2750 }
2751
2752 /* This insn can't go into a delay slot. */
2753 lose = 1;
2754 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2755 mark_referenced_resources (trial, &needed, 1);
2756
2757 /* Ensure we don't put insns between the setting of cc and the comparison
2758 by moving a setting of cc into an earlier delay slot since these insns
2759 could clobber the condition code. */
2760 set.cc = 1;
2761
2762 /* If this insn is a register-register copy and the next insn has
2763 a use of our destination, change it to use our source. That way,
2764 it will become a candidate for our delay slot the next time
2765 through this loop. This case occurs commonly in loops that
2766 scan a list.
2767
2768 We could check for more complex cases than those tested below,
2769 but it doesn't seem worth it. It might also be a good idea to try
2770 to swap the two insns. That might do better.
2771
2772 We can't do this if the next insn modifies our destination, because
2773 that would make the replacement into the insn invalid. We also can't
2774 do this if it modifies our source, because it might be an earlyclobber
2775 operand. This latter test also prevents updating the contents of
2776 a PRE_INC. */
2777
2778 if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET
2779 && GET_CODE (SET_SRC (pat)) == REG
2780 && GET_CODE (SET_DEST (pat)) == REG)
2781 {
2782 rtx next = next_nonnote_insn (trial);
2783
2784 if (next && GET_CODE (next) == INSN
2785 && GET_CODE (PATTERN (next)) != USE
2786 && ! reg_set_p (SET_DEST (pat), next)
2787 && ! reg_set_p (SET_SRC (pat), next)
2788 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2789 && ! modified_in_p (SET_DEST (pat), next))
2790 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2791 }
2792 }
2793
2794 /* If we stopped on a branch insn that has delay slots, see if we can
2795 steal some of the insns in those slots. */
2796 if (trial && GET_CODE (trial) == INSN
2797 && GET_CODE (PATTERN (trial)) == SEQUENCE
2798 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN)
2799 {
2800 /* If this is the `true' thread, we will want to follow the jump,
2801 so we can only do this if we have taken everything up to here. */
2802 if (thread_if_true && trial == new_thread)
2803 {
2804 delay_list
2805 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2806 delay_list, &set, &needed,
2807 &opposite_needed, slots_to_fill,
2808 pslots_filled, &must_annul,
2809 &new_thread);
2810 /* If we owned the thread and are told that it branched
2811 elsewhere, make sure we own the thread at the new location. */
2812 if (own_thread && trial != new_thread)
2813 own_thread = own_thread_p (new_thread, new_thread, 0);
2814 }
2815 else if (! thread_if_true)
2816 delay_list
2817 = steal_delay_list_from_fallthrough (insn, condition,
2818 PATTERN (trial),
2819 delay_list, &set, &needed,
2820 &opposite_needed, slots_to_fill,
2821 pslots_filled, &must_annul);
2822 }
2823
2824 /* If we haven't found anything for this delay slot and it is very
2825 likely that the branch will be taken, see if the insn at our target
2826 increments or decrements a register with an increment that does not
2827 depend on the destination register. If so, try to place the opposite
2828 arithmetic insn after the jump insn and put the arithmetic insn in the
2829 delay slot. If we can't do this, return. */
2830 if (delay_list == 0 && likely && new_thread
2831 && GET_CODE (new_thread) == INSN
2832 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2833 && asm_noperands (PATTERN (new_thread)) < 0)
2834 {
2835 rtx pat = PATTERN (new_thread);
2836 rtx dest;
2837 rtx src;
2838
2839 trial = new_thread;
2840 pat = PATTERN (trial);
2841
2842 if (GET_CODE (trial) != INSN || GET_CODE (pat) != SET
2843 || ! eligible_for_delay (insn, 0, trial, flags))
2844 return 0;
2845
2846 dest = SET_DEST (pat), src = SET_SRC (pat);
2847 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2848 && rtx_equal_p (XEXP (src, 0), dest)
2849 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2850 && ! side_effects_p (pat))
2851 {
2852 rtx other = XEXP (src, 1);
2853 rtx new_arith;
2854 rtx ninsn;
2855
2856 /* If this is a constant adjustment, use the same code with
2857 the negated constant. Otherwise, reverse the sense of the
2858 arithmetic. */
2859 if (GET_CODE (other) == CONST_INT)
2860 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2861 negate_rtx (GET_MODE (src), other));
2862 else
2863 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2864 GET_MODE (src), dest, other);
2865
2866 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2867 insn);
2868
2869 if (recog_memoized (ninsn) < 0
2870 || (extract_insn (ninsn), ! constrain_operands (1)))
2871 {
2872 delete_related_insns (ninsn);
2873 return 0;
2874 }
2875
2876 if (own_thread)
2877 {
2878 update_block (trial, thread);
2879 if (trial == thread)
2880 {
2881 thread = next_active_insn (thread);
2882 if (new_thread == trial)
2883 new_thread = thread;
2884 }
2885 delete_related_insns (trial);
2886 }
2887 else
2888 new_thread = next_active_insn (trial);
2889
2890 ninsn = own_thread ? trial : copy_rtx (trial);
2891 if (thread_if_true)
2892 INSN_FROM_TARGET_P (ninsn) = 1;
2893
2894 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2895 (*pslots_filled)++;
2896 }
2897 }
2898
2899 if (delay_list && must_annul)
2900 INSN_ANNULLED_BRANCH_P (insn) = 1;
2901
2902 /* If we are to branch into the middle of this thread, find an appropriate
2903 label or make a new one if none, and redirect INSN to it. If we hit the
2904 end of the function, use the end-of-function label. */
2905 if (new_thread != thread)
2906 {
2907 rtx label;
2908
2909 if (! thread_if_true)
2910 abort ();
2911
2912 if (new_thread && GET_CODE (new_thread) == JUMP_INSN
2913 && (simplejump_p (new_thread)
2914 || GET_CODE (PATTERN (new_thread)) == RETURN)
2915 && redirect_with_delay_list_safe_p (insn,
2916 JUMP_LABEL (new_thread),
2917 delay_list))
2918 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2919
2920 if (new_thread == 0)
2921 label = find_end_label ();
2922 else if (GET_CODE (new_thread) == CODE_LABEL)
2923 label = new_thread;
2924 else
2925 label = get_label_before (new_thread);
2926
2927 reorg_redirect_jump (insn, label);
2928 }
2929
2930 return delay_list;
2931 }
2932 \f
2933 /* Make another attempt to find insns to place in delay slots.
2934
2935 We previously looked for insns located in front of the delay insn
2936 and, for non-jump delay insns, located behind the delay insn.
2937
2938 Here only try to schedule jump insns and try to move insns from either
2939 the target or the following insns into the delay slot. If annulling is
2940 supported, we will be likely to do this. Otherwise, we can do this only
2941 if safe. */
2942
2943 static void
2944 fill_eager_delay_slots ()
2945 {
2946 rtx insn;
2947 int i;
2948 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2949
2950 for (i = 0; i < num_unfilled_slots; i++)
2951 {
2952 rtx condition;
2953 rtx target_label, insn_at_target, fallthrough_insn;
2954 rtx delay_list = 0;
2955 int own_target;
2956 int own_fallthrough;
2957 int prediction, slots_to_fill, slots_filled;
2958
2959 insn = unfilled_slots_base[i];
2960 if (insn == 0
2961 || INSN_DELETED_P (insn)
2962 || GET_CODE (insn) != JUMP_INSN
2963 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
2964 continue;
2965
2966 slots_to_fill = num_delay_slots (insn);
2967 /* Some machine description have defined instructions to have
2968 delay slots only in certain circumstances which may depend on
2969 nearby insns (which change due to reorg's actions).
2970
2971 For example, the PA port normally has delay slots for unconditional
2972 jumps.
2973
2974 However, the PA port claims such jumps do not have a delay slot
2975 if they are immediate successors of certain CALL_INSNs. This
2976 allows the port to favor filling the delay slot of the call with
2977 the unconditional jump. */
2978 if (slots_to_fill == 0)
2979 continue;
2980
2981 slots_filled = 0;
2982 target_label = JUMP_LABEL (insn);
2983 condition = get_branch_condition (insn, target_label);
2984
2985 if (condition == 0)
2986 continue;
2987
2988 /* Get the next active fallthrough and target insns and see if we own
2989 them. Then see whether the branch is likely true. We don't need
2990 to do a lot of this for unconditional branches. */
2991
2992 insn_at_target = next_active_insn (target_label);
2993 own_target = own_thread_p (target_label, target_label, 0);
2994
2995 if (condition == const_true_rtx)
2996 {
2997 own_fallthrough = 0;
2998 fallthrough_insn = 0;
2999 prediction = 2;
3000 }
3001 else
3002 {
3003 fallthrough_insn = next_active_insn (insn);
3004 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3005 prediction = mostly_true_jump (insn, condition);
3006 }
3007
3008 /* If this insn is expected to branch, first try to get insns from our
3009 target, then our fallthrough insns. If it is not expected to branch,
3010 try the other order. */
3011
3012 if (prediction > 0)
3013 {
3014 delay_list
3015 = fill_slots_from_thread (insn, condition, insn_at_target,
3016 fallthrough_insn, prediction == 2, 1,
3017 own_target,
3018 slots_to_fill, &slots_filled, delay_list);
3019
3020 if (delay_list == 0 && own_fallthrough)
3021 {
3022 /* Even though we didn't find anything for delay slots,
3023 we might have found a redundant insn which we deleted
3024 from the thread that was filled. So we have to recompute
3025 the next insn at the target. */
3026 target_label = JUMP_LABEL (insn);
3027 insn_at_target = next_active_insn (target_label);
3028
3029 delay_list
3030 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3031 insn_at_target, 0, 0,
3032 own_fallthrough,
3033 slots_to_fill, &slots_filled,
3034 delay_list);
3035 }
3036 }
3037 else
3038 {
3039 if (own_fallthrough)
3040 delay_list
3041 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3042 insn_at_target, 0, 0,
3043 own_fallthrough,
3044 slots_to_fill, &slots_filled,
3045 delay_list);
3046
3047 if (delay_list == 0)
3048 delay_list
3049 = fill_slots_from_thread (insn, condition, insn_at_target,
3050 next_active_insn (insn), 0, 1,
3051 own_target,
3052 slots_to_fill, &slots_filled,
3053 delay_list);
3054 }
3055
3056 if (delay_list)
3057 unfilled_slots_base[i]
3058 = emit_delay_sequence (insn, delay_list, slots_filled);
3059
3060 if (slots_to_fill == slots_filled)
3061 unfilled_slots_base[i] = 0;
3062
3063 note_delay_statistics (slots_filled, 1);
3064 }
3065 }
3066 \f
3067 /* Once we have tried two ways to fill a delay slot, make a pass over the
3068 code to try to improve the results and to do such things as more jump
3069 threading. */
3070
3071 static void
3072 relax_delay_slots (first)
3073 rtx first;
3074 {
3075 rtx insn, next, pat;
3076 rtx trial, delay_insn, target_label;
3077
3078 /* Look at every JUMP_INSN and see if we can improve it. */
3079 for (insn = first; insn; insn = next)
3080 {
3081 rtx other;
3082
3083 next = next_active_insn (insn);
3084
3085 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3086 the next insn, or jumps to a label that is not the last of a
3087 group of consecutive labels. */
3088 if (GET_CODE (insn) == JUMP_INSN
3089 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3090 && (target_label = JUMP_LABEL (insn)) != 0)
3091 {
3092 target_label = follow_jumps (target_label);
3093 target_label = prev_label (next_active_insn (target_label));
3094
3095 if (target_label == 0)
3096 target_label = find_end_label ();
3097
3098 if (next_active_insn (target_label) == next
3099 && ! condjump_in_parallel_p (insn))
3100 {
3101 delete_jump (insn);
3102 continue;
3103 }
3104
3105 if (target_label != JUMP_LABEL (insn))
3106 reorg_redirect_jump (insn, target_label);
3107
3108 /* See if this jump branches around an unconditional jump.
3109 If so, invert this jump and point it to the target of the
3110 second jump. */
3111 if (next && GET_CODE (next) == JUMP_INSN
3112 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3113 && next_active_insn (target_label) == next_active_insn (next)
3114 && no_labels_between_p (insn, next))
3115 {
3116 rtx label = JUMP_LABEL (next);
3117
3118 /* Be careful how we do this to avoid deleting code or
3119 labels that are momentarily dead. See similar optimization
3120 in jump.c.
3121
3122 We also need to ensure we properly handle the case when
3123 invert_jump fails. */
3124
3125 ++LABEL_NUSES (target_label);
3126 if (label)
3127 ++LABEL_NUSES (label);
3128
3129 if (invert_jump (insn, label, 1))
3130 {
3131 delete_related_insns (next);
3132 next = insn;
3133 }
3134
3135 if (label)
3136 --LABEL_NUSES (label);
3137
3138 if (--LABEL_NUSES (target_label) == 0)
3139 delete_related_insns (target_label);
3140
3141 continue;
3142 }
3143 }
3144
3145 /* If this is an unconditional jump and the previous insn is a
3146 conditional jump, try reversing the condition of the previous
3147 insn and swapping our targets. The next pass might be able to
3148 fill the slots.
3149
3150 Don't do this if we expect the conditional branch to be true, because
3151 we would then be making the more common case longer. */
3152
3153 if (GET_CODE (insn) == JUMP_INSN
3154 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3155 && (other = prev_active_insn (insn)) != 0
3156 && (condjump_p (other) || condjump_in_parallel_p (other))
3157 && no_labels_between_p (other, insn)
3158 && 0 > mostly_true_jump (other,
3159 get_branch_condition (other,
3160 JUMP_LABEL (other))))
3161 {
3162 rtx other_target = JUMP_LABEL (other);
3163 target_label = JUMP_LABEL (insn);
3164
3165 if (invert_jump (other, target_label, 0))
3166 reorg_redirect_jump (insn, other_target);
3167 }
3168
3169 /* Now look only at cases where we have filled a delay slot. */
3170 if (GET_CODE (insn) != INSN
3171 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3172 continue;
3173
3174 pat = PATTERN (insn);
3175 delay_insn = XVECEXP (pat, 0, 0);
3176
3177 /* See if the first insn in the delay slot is redundant with some
3178 previous insn. Remove it from the delay slot if so; then set up
3179 to reprocess this insn. */
3180 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3181 {
3182 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3183 next = prev_active_insn (next);
3184 continue;
3185 }
3186
3187 /* See if we have a RETURN insn with a filled delay slot followed
3188 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3189 the first RETURN (but not it's delay insn). This gives the same
3190 effect in fewer instructions.
3191
3192 Only do so if optimizing for size since this results in slower, but
3193 smaller code. */
3194 if (optimize_size
3195 && GET_CODE (PATTERN (delay_insn)) == RETURN
3196 && next
3197 && GET_CODE (next) == JUMP_INSN
3198 && GET_CODE (PATTERN (next)) == RETURN)
3199 {
3200 int i;
3201
3202 /* Delete the RETURN and just execute the delay list insns.
3203
3204 We do this by deleting the INSN containing the SEQUENCE, then
3205 re-emitting the insns separately, and then deleting the RETURN.
3206 This allows the count of the jump target to be properly
3207 decremented. */
3208
3209 /* Clear the from target bit, since these insns are no longer
3210 in delay slots. */
3211 for (i = 0; i < XVECLEN (pat, 0); i++)
3212 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3213
3214 trial = PREV_INSN (insn);
3215 delete_related_insns (insn);
3216 emit_insn_after (pat, trial);
3217 delete_scheduled_jump (delay_insn);
3218 continue;
3219 }
3220
3221 /* Now look only at the cases where we have a filled JUMP_INSN. */
3222 if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
3223 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3224 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3225 continue;
3226
3227 target_label = JUMP_LABEL (delay_insn);
3228
3229 if (target_label)
3230 {
3231 /* If this jump goes to another unconditional jump, thread it, but
3232 don't convert a jump into a RETURN here. */
3233 trial = follow_jumps (target_label);
3234 /* We use next_real_insn instead of next_active_insn, so that
3235 the special USE insns emitted by reorg won't be ignored.
3236 If they are ignored, then they will get deleted if target_label
3237 is now unreachable, and that would cause mark_target_live_regs
3238 to fail. */
3239 trial = prev_label (next_real_insn (trial));
3240 if (trial == 0 && target_label != 0)
3241 trial = find_end_label ();
3242
3243 if (trial != target_label
3244 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3245 {
3246 reorg_redirect_jump (delay_insn, trial);
3247 target_label = trial;
3248 }
3249
3250 /* If the first insn at TARGET_LABEL is redundant with a previous
3251 insn, redirect the jump to the following insn process again. */
3252 trial = next_active_insn (target_label);
3253 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3254 && redundant_insn (trial, insn, 0))
3255 {
3256 rtx tmp;
3257
3258 /* Figure out where to emit the special USE insn so we don't
3259 later incorrectly compute register live/death info. */
3260 tmp = next_active_insn (trial);
3261 if (tmp == 0)
3262 tmp = find_end_label ();
3263
3264 /* Insert the special USE insn and update dataflow info. */
3265 update_block (trial, tmp);
3266
3267 /* Now emit a label before the special USE insn, and
3268 redirect our jump to the new label. */
3269 target_label = get_label_before (PREV_INSN (tmp));
3270 reorg_redirect_jump (delay_insn, target_label);
3271 next = insn;
3272 continue;
3273 }
3274
3275 /* Similarly, if it is an unconditional jump with one insn in its
3276 delay list and that insn is redundant, thread the jump. */
3277 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3278 && XVECLEN (PATTERN (trial), 0) == 2
3279 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN
3280 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3281 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3282 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3283 {
3284 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3285 if (target_label == 0)
3286 target_label = find_end_label ();
3287
3288 if (redirect_with_delay_slots_safe_p (delay_insn, target_label,
3289 insn))
3290 {
3291 reorg_redirect_jump (delay_insn, target_label);
3292 next = insn;
3293 continue;
3294 }
3295 }
3296 }
3297
3298 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3299 && prev_active_insn (target_label) == insn
3300 && ! condjump_in_parallel_p (delay_insn)
3301 #ifdef HAVE_cc0
3302 /* If the last insn in the delay slot sets CC0 for some insn,
3303 various code assumes that it is in a delay slot. We could
3304 put it back where it belonged and delete the register notes,
3305 but it doesn't seem worthwhile in this uncommon case. */
3306 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3307 REG_CC_USER, NULL_RTX)
3308 #endif
3309 )
3310 {
3311 int i;
3312
3313 /* All this insn does is execute its delay list and jump to the
3314 following insn. So delete the jump and just execute the delay
3315 list insns.
3316
3317 We do this by deleting the INSN containing the SEQUENCE, then
3318 re-emitting the insns separately, and then deleting the jump.
3319 This allows the count of the jump target to be properly
3320 decremented. */
3321
3322 /* Clear the from target bit, since these insns are no longer
3323 in delay slots. */
3324 for (i = 0; i < XVECLEN (pat, 0); i++)
3325 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3326
3327 trial = PREV_INSN (insn);
3328 delete_related_insns (insn);
3329 emit_insn_after (pat, trial);
3330 delete_scheduled_jump (delay_insn);
3331 continue;
3332 }
3333
3334 /* See if this is an unconditional jump around a single insn which is
3335 identical to the one in its delay slot. In this case, we can just
3336 delete the branch and the insn in its delay slot. */
3337 if (next && GET_CODE (next) == INSN
3338 && prev_label (next_active_insn (next)) == target_label
3339 && simplejump_p (insn)
3340 && XVECLEN (pat, 0) == 2
3341 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3342 {
3343 delete_related_insns (insn);
3344 continue;
3345 }
3346
3347 /* See if this jump (with its delay slots) branches around another
3348 jump (without delay slots). If so, invert this jump and point
3349 it to the target of the second jump. We cannot do this for
3350 annulled jumps, though. Again, don't convert a jump to a RETURN
3351 here. */
3352 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3353 && next && GET_CODE (next) == JUMP_INSN
3354 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3355 && next_active_insn (target_label) == next_active_insn (next)
3356 && no_labels_between_p (insn, next))
3357 {
3358 rtx label = JUMP_LABEL (next);
3359 rtx old_label = JUMP_LABEL (delay_insn);
3360
3361 if (label == 0)
3362 label = find_end_label ();
3363
3364 /* find_end_label can generate a new label. Check this first. */
3365 if (no_labels_between_p (insn, next)
3366 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3367 {
3368 /* Be careful how we do this to avoid deleting code or labels
3369 that are momentarily dead. See similar optimization in
3370 jump.c */
3371 if (old_label)
3372 ++LABEL_NUSES (old_label);
3373
3374 if (invert_jump (delay_insn, label, 1))
3375 {
3376 int i;
3377
3378 /* Must update the INSN_FROM_TARGET_P bits now that
3379 the branch is reversed, so that mark_target_live_regs
3380 will handle the delay slot insn correctly. */
3381 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3382 {
3383 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3384 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3385 }
3386
3387 delete_related_insns (next);
3388 next = insn;
3389 }
3390
3391 if (old_label && --LABEL_NUSES (old_label) == 0)
3392 delete_related_insns (old_label);
3393 continue;
3394 }
3395 }
3396
3397 /* If we own the thread opposite the way this insn branches, see if we
3398 can merge its delay slots with following insns. */
3399 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3400 && own_thread_p (NEXT_INSN (insn), 0, 1))
3401 try_merge_delay_insns (insn, next);
3402 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3403 && own_thread_p (target_label, target_label, 0))
3404 try_merge_delay_insns (insn, next_active_insn (target_label));
3405
3406 /* If we get here, we haven't deleted INSN. But we may have deleted
3407 NEXT, so recompute it. */
3408 next = next_active_insn (insn);
3409 }
3410 }
3411 \f
3412 #ifdef HAVE_return
3413
3414 /* Look for filled jumps to the end of function label. We can try to convert
3415 them into RETURN insns if the insns in the delay slot are valid for the
3416 RETURN as well. */
3417
3418 static void
3419 make_return_insns (first)
3420 rtx first;
3421 {
3422 rtx insn, jump_insn, pat;
3423 rtx real_return_label = end_of_function_label;
3424 int slots, i;
3425
3426 /* See if there is a RETURN insn in the function other than the one we
3427 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3428 into a RETURN to jump to it. */
3429 for (insn = first; insn; insn = NEXT_INSN (insn))
3430 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
3431 {
3432 real_return_label = get_label_before (insn);
3433 break;
3434 }
3435
3436 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3437 was equal to END_OF_FUNCTION_LABEL. */
3438 LABEL_NUSES (real_return_label)++;
3439
3440 /* Clear the list of insns to fill so we can use it. */
3441 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3442
3443 for (insn = first; insn; insn = NEXT_INSN (insn))
3444 {
3445 int flags;
3446
3447 /* Only look at filled JUMP_INSNs that go to the end of function
3448 label. */
3449 if (GET_CODE (insn) != INSN
3450 || GET_CODE (PATTERN (insn)) != SEQUENCE
3451 || GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
3452 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3453 continue;
3454
3455 pat = PATTERN (insn);
3456 jump_insn = XVECEXP (pat, 0, 0);
3457
3458 /* If we can't make the jump into a RETURN, try to redirect it to the best
3459 RETURN and go on to the next insn. */
3460 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3461 {
3462 /* Make sure redirecting the jump will not invalidate the delay
3463 slot insns. */
3464 if (redirect_with_delay_slots_safe_p (jump_insn,
3465 real_return_label,
3466 insn))
3467 reorg_redirect_jump (jump_insn, real_return_label);
3468 continue;
3469 }
3470
3471 /* See if this RETURN can accept the insns current in its delay slot.
3472 It can if it has more or an equal number of slots and the contents
3473 of each is valid. */
3474
3475 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3476 slots = num_delay_slots (jump_insn);
3477 if (slots >= XVECLEN (pat, 0) - 1)
3478 {
3479 for (i = 1; i < XVECLEN (pat, 0); i++)
3480 if (! (
3481 #ifdef ANNUL_IFFALSE_SLOTS
3482 (INSN_ANNULLED_BRANCH_P (jump_insn)
3483 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3484 ? eligible_for_annul_false (jump_insn, i - 1,
3485 XVECEXP (pat, 0, i), flags) :
3486 #endif
3487 #ifdef ANNUL_IFTRUE_SLOTS
3488 (INSN_ANNULLED_BRANCH_P (jump_insn)
3489 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3490 ? eligible_for_annul_true (jump_insn, i - 1,
3491 XVECEXP (pat, 0, i), flags) :
3492 #endif
3493 eligible_for_delay (jump_insn, i - 1,
3494 XVECEXP (pat, 0, i), flags)))
3495 break;
3496 }
3497 else
3498 i = 0;
3499
3500 if (i == XVECLEN (pat, 0))
3501 continue;
3502
3503 /* We have to do something with this insn. If it is an unconditional
3504 RETURN, delete the SEQUENCE and output the individual insns,
3505 followed by the RETURN. Then set things up so we try to find
3506 insns for its delay slots, if it needs some. */
3507 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3508 {
3509 rtx prev = PREV_INSN (insn);
3510
3511 delete_related_insns (insn);
3512 for (i = 1; i < XVECLEN (pat, 0); i++)
3513 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3514
3515 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3516 emit_barrier_after (insn);
3517
3518 if (slots)
3519 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3520 }
3521 else
3522 /* It is probably more efficient to keep this with its current
3523 delay slot as a branch to a RETURN. */
3524 reorg_redirect_jump (jump_insn, real_return_label);
3525 }
3526
3527 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3528 new delay slots we have created. */
3529 if (--LABEL_NUSES (real_return_label) == 0)
3530 delete_related_insns (real_return_label);
3531
3532 fill_simple_delay_slots (1);
3533 fill_simple_delay_slots (0);
3534 }
3535 #endif
3536 \f
3537 /* Try to find insns to place in delay slots. */
3538
3539 void
3540 dbr_schedule (first, file)
3541 rtx first;
3542 FILE *file;
3543 {
3544 rtx insn, next, epilogue_insn = 0;
3545 int i;
3546 #if 0
3547 int old_flag_no_peephole = flag_no_peephole;
3548
3549 /* Execute `final' once in prescan mode to delete any insns that won't be
3550 used. Don't let final try to do any peephole optimization--it will
3551 ruin dataflow information for this pass. */
3552
3553 flag_no_peephole = 1;
3554 final (first, 0, NO_DEBUG, 1, 1);
3555 flag_no_peephole = old_flag_no_peephole;
3556 #endif
3557
3558 /* If the current function has no insns other than the prologue and
3559 epilogue, then do not try to fill any delay slots. */
3560 if (n_basic_blocks == 0)
3561 return;
3562
3563 /* Find the highest INSN_UID and allocate and initialize our map from
3564 INSN_UID's to position in code. */
3565 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3566 {
3567 if (INSN_UID (insn) > max_uid)
3568 max_uid = INSN_UID (insn);
3569 if (GET_CODE (insn) == NOTE
3570 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
3571 epilogue_insn = insn;
3572 }
3573
3574 uid_to_ruid = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3575 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3576 uid_to_ruid[INSN_UID (insn)] = i;
3577
3578 /* Initialize the list of insns that need filling. */
3579 if (unfilled_firstobj == 0)
3580 {
3581 gcc_obstack_init (&unfilled_slots_obstack);
3582 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
3583 }
3584
3585 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3586 {
3587 rtx target;
3588
3589 INSN_ANNULLED_BRANCH_P (insn) = 0;
3590 INSN_FROM_TARGET_P (insn) = 0;
3591
3592 /* Skip vector tables. We can't get attributes for them. */
3593 if (GET_CODE (insn) == JUMP_INSN
3594 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3595 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3596 continue;
3597
3598 if (num_delay_slots (insn) > 0)
3599 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3600
3601 /* Ensure all jumps go to the last of a set of consecutive labels. */
3602 if (GET_CODE (insn) == JUMP_INSN
3603 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3604 && JUMP_LABEL (insn) != 0
3605 && ((target = prev_label (next_active_insn (JUMP_LABEL (insn))))
3606 != JUMP_LABEL (insn)))
3607 redirect_jump (insn, target, 1);
3608 }
3609
3610 init_resource_info (epilogue_insn);
3611
3612 /* Show we haven't computed an end-of-function label yet. */
3613 end_of_function_label = 0;
3614
3615 /* Initialize the statistics for this function. */
3616 memset ((char *) num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3617 memset ((char *) num_filled_delays, 0, sizeof num_filled_delays);
3618
3619 /* Now do the delay slot filling. Try everything twice in case earlier
3620 changes make more slots fillable. */
3621
3622 for (reorg_pass_number = 0;
3623 reorg_pass_number < MAX_REORG_PASSES;
3624 reorg_pass_number++)
3625 {
3626 fill_simple_delay_slots (1);
3627 fill_simple_delay_slots (0);
3628 fill_eager_delay_slots ();
3629 relax_delay_slots (first);
3630 }
3631
3632 /* Delete any USE insns made by update_block; subsequent passes don't need
3633 them or know how to deal with them. */
3634 for (insn = first; insn; insn = next)
3635 {
3636 next = NEXT_INSN (insn);
3637
3638 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
3639 && INSN_P (XEXP (PATTERN (insn), 0)))
3640 next = delete_related_insns (insn);
3641 }
3642
3643 /* If we made an end of function label, indicate that it is now
3644 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3645 If it is now unused, delete it. */
3646 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3647 delete_related_insns (end_of_function_label);
3648
3649 #ifdef HAVE_return
3650 if (HAVE_return && end_of_function_label != 0)
3651 make_return_insns (first);
3652 #endif
3653
3654 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3655
3656 /* It is not clear why the line below is needed, but it does seem to be. */
3657 unfilled_firstobj = (rtx *) obstack_alloc (&unfilled_slots_obstack, 0);
3658
3659 /* Reposition the prologue and epilogue notes in case we moved the
3660 prologue/epilogue insns. */
3661 reposition_prologue_and_epilogue_notes (first);
3662
3663 if (file)
3664 {
3665 int i, j, need_comma;
3666 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3667 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3668
3669 for (reorg_pass_number = 0;
3670 reorg_pass_number < MAX_REORG_PASSES;
3671 reorg_pass_number++)
3672 {
3673 fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3674 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3675 {
3676 need_comma = 0;
3677 fprintf (file, ";; Reorg function #%d\n", i);
3678
3679 fprintf (file, ";; %d insns needing delay slots\n;; ",
3680 num_insns_needing_delays[i][reorg_pass_number]);
3681
3682 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3683 if (num_filled_delays[i][j][reorg_pass_number])
3684 {
3685 if (need_comma)
3686 fprintf (file, ", ");
3687 need_comma = 1;
3688 fprintf (file, "%d got %d delays",
3689 num_filled_delays[i][j][reorg_pass_number], j);
3690 }
3691 fprintf (file, "\n");
3692 }
3693 }
3694 memset ((char *) total_delay_slots, 0, sizeof total_delay_slots);
3695 memset ((char *) total_annul_slots, 0, sizeof total_annul_slots);
3696 for (insn = first; insn; insn = NEXT_INSN (insn))
3697 {
3698 if (! INSN_DELETED_P (insn)
3699 && GET_CODE (insn) == INSN
3700 && GET_CODE (PATTERN (insn)) != USE
3701 && GET_CODE (PATTERN (insn)) != CLOBBER)
3702 {
3703 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3704 {
3705 j = XVECLEN (PATTERN (insn), 0) - 1;
3706 if (j > MAX_DELAY_HISTOGRAM)
3707 j = MAX_DELAY_HISTOGRAM;
3708 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3709 total_annul_slots[j]++;
3710 else
3711 total_delay_slots[j]++;
3712 }
3713 else if (num_delay_slots (insn) > 0)
3714 total_delay_slots[0]++;
3715 }
3716 }
3717 fprintf (file, ";; Reorg totals: ");
3718 need_comma = 0;
3719 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3720 {
3721 if (total_delay_slots[j])
3722 {
3723 if (need_comma)
3724 fprintf (file, ", ");
3725 need_comma = 1;
3726 fprintf (file, "%d got %d delays", total_delay_slots[j], j);
3727 }
3728 }
3729 fprintf (file, "\n");
3730 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3731 fprintf (file, ";; Reorg annuls: ");
3732 need_comma = 0;
3733 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3734 {
3735 if (total_annul_slots[j])
3736 {
3737 if (need_comma)
3738 fprintf (file, ", ");
3739 need_comma = 1;
3740 fprintf (file, "%d got %d delays", total_annul_slots[j], j);
3741 }
3742 }
3743 fprintf (file, "\n");
3744 #endif
3745 fprintf (file, "\n");
3746 }
3747
3748 /* For all JUMP insns, fill in branch prediction notes, so that during
3749 assembler output a target can set branch prediction bits in the code.
3750 We have to do this now, as up until this point the destinations of
3751 JUMPS can be moved around and changed, but past right here that cannot
3752 happen. */
3753 for (insn = first; insn; insn = NEXT_INSN (insn))
3754 {
3755 int pred_flags;
3756
3757 if (GET_CODE (insn) == INSN)
3758 {
3759 rtx pat = PATTERN (insn);
3760
3761 if (GET_CODE (pat) == SEQUENCE)
3762 insn = XVECEXP (pat, 0, 0);
3763 }
3764 if (GET_CODE (insn) != JUMP_INSN)
3765 continue;
3766
3767 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
3768 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_BR_PRED,
3769 GEN_INT (pred_flags),
3770 REG_NOTES (insn));
3771 }
3772 free_resource_info ();
3773 free (uid_to_ruid);
3774 }
3775 #endif /* DELAY_SLOTS */