re PR c++/13478 (gcc uses wrong constructor to initialize a const reference)
[gcc.git] / gcc / reorg.c
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 /* Instruction reorganization pass.
25
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
33
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
38
39 The MIPS and AMD 29000 have a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
43
44 The Motorola 88000 conditionally exposes its branch delay slot,
45 so code is shorter when it is turned off, but will run faster
46 when useful insns are scheduled there.
47
48 The IBM ROMP has two forms of branch and call insns, both with and
49 without a delay slot. Much like the 88k, insns not using the delay
50 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
51
52 The SPARC always has a branch delay slot, but its effects can be
53 annulled when the branch is not taken. This means that failing to
54 find other sources of insns, we can hoist an insn from the branch
55 target that would only be safe to execute knowing that the branch
56 is taken.
57
58 The HP-PA always has a branch delay slot. For unconditional branches
59 its effects can be annulled when the branch is taken. The effects
60 of the delay slot in a conditional branch can be nullified for forward
61 taken branches, or for untaken backward branches. This means
62 we can hoist insns from the fall-through path for forward branches or
63 steal insns from the target of backward branches.
64
65 The TMS320C3x and C4x have three branch delay slots. When the three
66 slots are filled, the branch penalty is zero. Most insns can fill the
67 delay slots except jump insns.
68
69 Three techniques for filling delay slots have been implemented so far:
70
71 (1) `fill_simple_delay_slots' is the simplest, most efficient way
72 to fill delay slots. This pass first looks for insns which come
73 from before the branch and which are safe to execute after the
74 branch. Then it searches after the insn requiring delay slots or,
75 in the case of a branch, for insns that are after the point at
76 which the branch merges into the fallthrough code, if such a point
77 exists. When such insns are found, the branch penalty decreases
78 and no code expansion takes place.
79
80 (2) `fill_eager_delay_slots' is more complicated: it is used for
81 scheduling conditional jumps, or for scheduling jumps which cannot
82 be filled using (1). A machine need not have annulled jumps to use
83 this strategy, but it helps (by keeping more options open).
84 `fill_eager_delay_slots' tries to guess the direction the branch
85 will go; if it guesses right 100% of the time, it can reduce the
86 branch penalty as much as `fill_simple_delay_slots' does. If it
87 guesses wrong 100% of the time, it might as well schedule nops (or
88 on the m88k, unexpose the branch slot). When
89 `fill_eager_delay_slots' takes insns from the fall-through path of
90 the jump, usually there is no code expansion; when it takes insns
91 from the branch target, there is code expansion if it is not the
92 only way to reach that target.
93
94 (3) `relax_delay_slots' uses a set of rules to simplify code that
95 has been reorganized by (1) and (2). It finds cases where
96 conditional test can be eliminated, jumps can be threaded, extra
97 insns can be eliminated, etc. It is the job of (1) and (2) to do a
98 good job of scheduling locally; `relax_delay_slots' takes care of
99 making the various individual schedules work well together. It is
100 especially tuned to handle the control flow interactions of branch
101 insns. It does nothing for insns with delay slots that do not
102 branch.
103
104 On machines that use CC0, we are very conservative. We will not make
105 a copy of an insn involving CC0 since we want to maintain a 1-1
106 correspondence between the insn that sets and uses CC0. The insns are
107 allowed to be separated by placing an insn that sets CC0 (but not an insn
108 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
109 delay slot. In that case, we point each insn at the other with REG_CC_USER
110 and REG_CC_SETTER notes. Note that these restrictions affect very few
111 machines because most RISC machines with delay slots will not use CC0
112 (the RT is the only known exception at this point).
113
114 Not yet implemented:
115
116 The Acorn Risc Machine can conditionally execute most insns, so
117 it is profitable to move single insns into a position to execute
118 based on the condition code of the previous insn.
119
120 The HP-PA can conditionally nullify insns, providing a similar
121 effect to the ARM, differing mostly in which insn is "in charge". */
122
123 #include "config.h"
124 #include "system.h"
125 #include "coretypes.h"
126 #include "tm.h"
127 #include "toplev.h"
128 #include "rtl.h"
129 #include "tm_p.h"
130 #include "expr.h"
131 #include "function.h"
132 #include "insn-config.h"
133 #include "conditions.h"
134 #include "hard-reg-set.h"
135 #include "basic-block.h"
136 #include "regs.h"
137 #include "recog.h"
138 #include "flags.h"
139 #include "output.h"
140 #include "obstack.h"
141 #include "insn-attr.h"
142 #include "resource.h"
143 #include "except.h"
144 #include "params.h"
145
146 #ifdef DELAY_SLOTS
147
148 #ifndef ANNUL_IFTRUE_SLOTS
149 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
150 #endif
151 #ifndef ANNUL_IFFALSE_SLOTS
152 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
153 #endif
154
155 /* Insns which have delay slots that have not yet been filled. */
156
157 static struct obstack unfilled_slots_obstack;
158 static rtx *unfilled_firstobj;
159
160 /* Define macros to refer to the first and last slot containing unfilled
161 insns. These are used because the list may move and its address
162 should be recomputed at each use. */
163
164 #define unfilled_slots_base \
165 ((rtx *) obstack_base (&unfilled_slots_obstack))
166
167 #define unfilled_slots_next \
168 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
169
170 /* Points to the label before the end of the function. */
171 static rtx end_of_function_label;
172
173 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
174 not always monotonically increase. */
175 static int *uid_to_ruid;
176
177 /* Highest valid index in `uid_to_ruid'. */
178 static int max_uid;
179
180 static int stop_search_p (rtx, int);
181 static int resource_conflicts_p (struct resources *, struct resources *);
182 static int insn_references_resource_p (rtx, struct resources *, int);
183 static int insn_sets_resource_p (rtx, struct resources *, int);
184 static rtx find_end_label (void);
185 static rtx emit_delay_sequence (rtx, rtx, int);
186 static rtx add_to_delay_list (rtx, rtx);
187 static rtx delete_from_delay_slot (rtx);
188 static void delete_scheduled_jump (rtx);
189 static void note_delay_statistics (int, int);
190 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
191 static rtx optimize_skip (rtx);
192 #endif
193 static int get_jump_flags (rtx, rtx);
194 static int rare_destination (rtx);
195 static int mostly_true_jump (rtx, rtx);
196 static rtx get_branch_condition (rtx, rtx);
197 static int condition_dominates_p (rtx, rtx);
198 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
199 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
200 static int check_annul_list_true_false (int, rtx);
201 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
202 struct resources *,
203 struct resources *,
204 struct resources *,
205 int, int *, int *, rtx *);
206 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
207 struct resources *,
208 struct resources *,
209 struct resources *,
210 int, int *, int *);
211 static void try_merge_delay_insns (rtx, rtx);
212 static rtx redundant_insn (rtx, rtx, rtx);
213 static int own_thread_p (rtx, rtx, int);
214 static void update_block (rtx, rtx);
215 static int reorg_redirect_jump (rtx, rtx);
216 static void update_reg_dead_notes (rtx, rtx);
217 static void fix_reg_dead_note (rtx, rtx);
218 static void update_reg_unused_notes (rtx, rtx);
219 static void fill_simple_delay_slots (int);
220 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx, int, int, int, int,
221 int *, rtx);
222 static void fill_eager_delay_slots (void);
223 static void relax_delay_slots (rtx);
224 #ifdef HAVE_return
225 static void make_return_insns (rtx);
226 #endif
227 \f
228 /* Return TRUE if this insn should stop the search for insn to fill delay
229 slots. LABELS_P indicates that labels should terminate the search.
230 In all cases, jumps terminate the search. */
231
232 static int
233 stop_search_p (rtx insn, int labels_p)
234 {
235 if (insn == 0)
236 return 1;
237
238 /* If the insn can throw an exception that is caught within the function,
239 it may effectively perform a jump from the viewpoint of the function.
240 Therefore act like for a jump. */
241 if (can_throw_internal (insn))
242 return 1;
243
244 switch (GET_CODE (insn))
245 {
246 case NOTE:
247 case CALL_INSN:
248 return 0;
249
250 case CODE_LABEL:
251 return labels_p;
252
253 case JUMP_INSN:
254 case BARRIER:
255 return 1;
256
257 case INSN:
258 /* OK unless it contains a delay slot or is an `asm' insn of some type.
259 We don't know anything about these. */
260 return (GET_CODE (PATTERN (insn)) == SEQUENCE
261 || GET_CODE (PATTERN (insn)) == ASM_INPUT
262 || asm_noperands (PATTERN (insn)) >= 0);
263
264 default:
265 abort ();
266 }
267 }
268 \f
269 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
270 resource set contains a volatile memory reference. Otherwise, return FALSE. */
271
272 static int
273 resource_conflicts_p (struct resources *res1, struct resources *res2)
274 {
275 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
276 || (res1->unch_memory && res2->unch_memory)
277 || res1->volatil || res2->volatil)
278 return 1;
279
280 #ifdef HARD_REG_SET
281 return (res1->regs & res2->regs) != HARD_CONST (0);
282 #else
283 {
284 int i;
285
286 for (i = 0; i < HARD_REG_SET_LONGS; i++)
287 if ((res1->regs[i] & res2->regs[i]) != 0)
288 return 1;
289 return 0;
290 }
291 #endif
292 }
293
294 /* Return TRUE if any resource marked in RES, a `struct resources', is
295 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
296 routine is using those resources.
297
298 We compute this by computing all the resources referenced by INSN and
299 seeing if this conflicts with RES. It might be faster to directly check
300 ourselves, and this is the way it used to work, but it means duplicating
301 a large block of complex code. */
302
303 static int
304 insn_references_resource_p (rtx insn, struct resources *res,
305 int include_delayed_effects)
306 {
307 struct resources insn_res;
308
309 CLEAR_RESOURCE (&insn_res);
310 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
311 return resource_conflicts_p (&insn_res, res);
312 }
313
314 /* Return TRUE if INSN modifies resources that are marked in RES.
315 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
316 included. CC0 is only modified if it is explicitly set; see comments
317 in front of mark_set_resources for details. */
318
319 static int
320 insn_sets_resource_p (rtx insn, struct resources *res,
321 int include_delayed_effects)
322 {
323 struct resources insn_sets;
324
325 CLEAR_RESOURCE (&insn_sets);
326 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
327 return resource_conflicts_p (&insn_sets, res);
328 }
329 \f
330 /* Find a label at the end of the function or before a RETURN. If there is
331 none, make one. */
332
333 static rtx
334 find_end_label (void)
335 {
336 rtx insn;
337
338 /* If we found one previously, return it. */
339 if (end_of_function_label)
340 return end_of_function_label;
341
342 /* Otherwise, see if there is a label at the end of the function. If there
343 is, it must be that RETURN insns aren't needed, so that is our return
344 label and we don't have to do anything else. */
345
346 insn = get_last_insn ();
347 while (GET_CODE (insn) == NOTE
348 || (GET_CODE (insn) == INSN
349 && (GET_CODE (PATTERN (insn)) == USE
350 || GET_CODE (PATTERN (insn)) == CLOBBER)))
351 insn = PREV_INSN (insn);
352
353 /* When a target threads its epilogue we might already have a
354 suitable return insn. If so put a label before it for the
355 end_of_function_label. */
356 if (GET_CODE (insn) == BARRIER
357 && GET_CODE (PREV_INSN (insn)) == JUMP_INSN
358 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
359 {
360 rtx temp = PREV_INSN (PREV_INSN (insn));
361 end_of_function_label = gen_label_rtx ();
362 LABEL_NUSES (end_of_function_label) = 0;
363
364 /* Put the label before an USE insns that may proceed the RETURN insn. */
365 while (GET_CODE (temp) == USE)
366 temp = PREV_INSN (temp);
367
368 emit_label_after (end_of_function_label, temp);
369 }
370
371 else if (GET_CODE (insn) == CODE_LABEL)
372 end_of_function_label = insn;
373 else
374 {
375 end_of_function_label = gen_label_rtx ();
376 LABEL_NUSES (end_of_function_label) = 0;
377 /* If the basic block reorder pass moves the return insn to
378 some other place try to locate it again and put our
379 end_of_function_label there. */
380 while (insn && ! (GET_CODE (insn) == JUMP_INSN
381 && (GET_CODE (PATTERN (insn)) == RETURN)))
382 insn = PREV_INSN (insn);
383 if (insn)
384 {
385 insn = PREV_INSN (insn);
386
387 /* Put the label before an USE insns that may proceed the
388 RETURN insn. */
389 while (GET_CODE (insn) == USE)
390 insn = PREV_INSN (insn);
391
392 emit_label_after (end_of_function_label, insn);
393 }
394 else
395 {
396 /* Otherwise, make a new label and emit a RETURN and BARRIER,
397 if needed. */
398 emit_label (end_of_function_label);
399 #ifdef HAVE_return
400 if (HAVE_return)
401 {
402 /* The return we make may have delay slots too. */
403 rtx insn = gen_return ();
404 insn = emit_jump_insn (insn);
405 emit_barrier ();
406 if (num_delay_slots (insn) > 0)
407 obstack_ptr_grow (&unfilled_slots_obstack, insn);
408 }
409 #endif
410 }
411 }
412
413 /* Show one additional use for this label so it won't go away until
414 we are done. */
415 ++LABEL_NUSES (end_of_function_label);
416
417 return end_of_function_label;
418 }
419 \f
420 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
421 the pattern of INSN with the SEQUENCE.
422
423 Chain the insns so that NEXT_INSN of each insn in the sequence points to
424 the next and NEXT_INSN of the last insn in the sequence points to
425 the first insn after the sequence. Similarly for PREV_INSN. This makes
426 it easier to scan all insns.
427
428 Returns the SEQUENCE that replaces INSN. */
429
430 static rtx
431 emit_delay_sequence (rtx insn, rtx list, int length)
432 {
433 int i = 1;
434 rtx li;
435 int had_barrier = 0;
436
437 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
438 rtvec seqv = rtvec_alloc (length + 1);
439 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
440 rtx seq_insn = make_insn_raw (seq);
441 rtx first = get_insns ();
442 rtx last = get_last_insn ();
443
444 /* Make a copy of the insn having delay slots. */
445 rtx delay_insn = copy_rtx (insn);
446
447 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
448 confuse further processing. Update LAST in case it was the last insn.
449 We will put the BARRIER back in later. */
450 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == BARRIER)
451 {
452 delete_related_insns (NEXT_INSN (insn));
453 last = get_last_insn ();
454 had_barrier = 1;
455 }
456
457 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
458 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
459 PREV_INSN (seq_insn) = PREV_INSN (insn);
460
461 if (insn != last)
462 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
463
464 if (insn != first)
465 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
466
467 /* Note the calls to set_new_first_and_last_insn must occur after
468 SEQ_INSN has been completely spliced into the insn stream.
469
470 Otherwise CUR_INSN_UID will get set to an incorrect value because
471 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
472 if (insn == last)
473 set_new_first_and_last_insn (first, seq_insn);
474
475 if (insn == first)
476 set_new_first_and_last_insn (seq_insn, last);
477
478 /* Build our SEQUENCE and rebuild the insn chain. */
479 XVECEXP (seq, 0, 0) = delay_insn;
480 INSN_DELETED_P (delay_insn) = 0;
481 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
482
483 for (li = list; li; li = XEXP (li, 1), i++)
484 {
485 rtx tem = XEXP (li, 0);
486 rtx note, next;
487
488 /* Show that this copy of the insn isn't deleted. */
489 INSN_DELETED_P (tem) = 0;
490
491 XVECEXP (seq, 0, i) = tem;
492 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
493 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
494
495 /* SPARC assembler, for instance, emit warning when debug info is output
496 into the delay slot. */
497 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
498 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
499 INSN_LOCATOR (tem) = 0;
500
501 for (note = REG_NOTES (tem); note; note = next)
502 {
503 next = XEXP (note, 1);
504 switch (REG_NOTE_KIND (note))
505 {
506 case REG_DEAD:
507 /* Remove any REG_DEAD notes because we can't rely on them now
508 that the insn has been moved. */
509 remove_note (tem, note);
510 break;
511
512 case REG_LABEL:
513 /* Keep the label reference count up to date. */
514 if (GET_CODE (XEXP (note, 0)) == CODE_LABEL)
515 LABEL_NUSES (XEXP (note, 0)) ++;
516 break;
517
518 default:
519 break;
520 }
521 }
522 }
523
524 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
525
526 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
527 last insn in that SEQUENCE to point to us. Similarly for the first
528 insn in the following insn if it is a SEQUENCE. */
529
530 if (PREV_INSN (seq_insn) && GET_CODE (PREV_INSN (seq_insn)) == INSN
531 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
532 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
533 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
534 = seq_insn;
535
536 if (NEXT_INSN (seq_insn) && GET_CODE (NEXT_INSN (seq_insn)) == INSN
537 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
538 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
539
540 /* If there used to be a BARRIER, put it back. */
541 if (had_barrier)
542 emit_barrier_after (seq_insn);
543
544 if (i != length + 1)
545 abort ();
546
547 return seq_insn;
548 }
549
550 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
551 be in the order in which the insns are to be executed. */
552
553 static rtx
554 add_to_delay_list (rtx insn, rtx delay_list)
555 {
556 /* If we have an empty list, just make a new list element. If
557 INSN has its block number recorded, clear it since we may
558 be moving the insn to a new block. */
559
560 if (delay_list == 0)
561 {
562 clear_hashed_info_for_insn (insn);
563 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
564 }
565
566 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
567 list. */
568 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
569
570 return delay_list;
571 }
572 \f
573 /* Delete INSN from the delay slot of the insn that it is in, which may
574 produce an insn with no delay slots. Return the new insn. */
575
576 static rtx
577 delete_from_delay_slot (rtx insn)
578 {
579 rtx trial, seq_insn, seq, prev;
580 rtx delay_list = 0;
581 int i;
582
583 /* We first must find the insn containing the SEQUENCE with INSN in its
584 delay slot. Do this by finding an insn, TRIAL, where
585 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
586
587 for (trial = insn;
588 PREV_INSN (NEXT_INSN (trial)) == trial;
589 trial = NEXT_INSN (trial))
590 ;
591
592 seq_insn = PREV_INSN (NEXT_INSN (trial));
593 seq = PATTERN (seq_insn);
594
595 /* Create a delay list consisting of all the insns other than the one
596 we are deleting (unless we were the only one). */
597 if (XVECLEN (seq, 0) > 2)
598 for (i = 1; i < XVECLEN (seq, 0); i++)
599 if (XVECEXP (seq, 0, i) != insn)
600 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
601
602 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
603 list, and rebuild the delay list if non-empty. */
604 prev = PREV_INSN (seq_insn);
605 trial = XVECEXP (seq, 0, 0);
606 delete_related_insns (seq_insn);
607 add_insn_after (trial, prev);
608
609 if (GET_CODE (trial) == JUMP_INSN
610 && (simplejump_p (trial) || GET_CODE (PATTERN (trial)) == RETURN))
611 emit_barrier_after (trial);
612
613 /* If there are any delay insns, remit them. Otherwise clear the
614 annul flag. */
615 if (delay_list)
616 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
617 else if (GET_CODE (trial) == JUMP_INSN
618 || GET_CODE (trial) == CALL_INSN
619 || GET_CODE (trial) == INSN)
620 INSN_ANNULLED_BRANCH_P (trial) = 0;
621
622 INSN_FROM_TARGET_P (insn) = 0;
623
624 /* Show we need to fill this insn again. */
625 obstack_ptr_grow (&unfilled_slots_obstack, trial);
626
627 return trial;
628 }
629 \f
630 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
631 the insn that sets CC0 for it and delete it too. */
632
633 static void
634 delete_scheduled_jump (rtx insn)
635 {
636 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
637 delete the insn that sets the condition code, but it is hard to find it.
638 Since this case is rare anyway, don't bother trying; there would likely
639 be other insns that became dead anyway, which we wouldn't know to
640 delete. */
641
642 #ifdef HAVE_cc0
643 if (reg_mentioned_p (cc0_rtx, insn))
644 {
645 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
646
647 /* If a reg-note was found, it points to an insn to set CC0. This
648 insn is in the delay list of some other insn. So delete it from
649 the delay list it was in. */
650 if (note)
651 {
652 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
653 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
654 delete_from_delay_slot (XEXP (note, 0));
655 }
656 else
657 {
658 /* The insn setting CC0 is our previous insn, but it may be in
659 a delay slot. It will be the last insn in the delay slot, if
660 it is. */
661 rtx trial = previous_insn (insn);
662 if (GET_CODE (trial) == NOTE)
663 trial = prev_nonnote_insn (trial);
664 if (sets_cc0_p (PATTERN (trial)) != 1
665 || FIND_REG_INC_NOTE (trial, NULL_RTX))
666 return;
667 if (PREV_INSN (NEXT_INSN (trial)) == trial)
668 delete_related_insns (trial);
669 else
670 delete_from_delay_slot (trial);
671 }
672 }
673 #endif
674
675 delete_related_insns (insn);
676 }
677 \f
678 /* Counters for delay-slot filling. */
679
680 #define NUM_REORG_FUNCTIONS 2
681 #define MAX_DELAY_HISTOGRAM 3
682 #define MAX_REORG_PASSES 2
683
684 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
685
686 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
687
688 static int reorg_pass_number;
689
690 static void
691 note_delay_statistics (int slots_filled, int index)
692 {
693 num_insns_needing_delays[index][reorg_pass_number]++;
694 if (slots_filled > MAX_DELAY_HISTOGRAM)
695 slots_filled = MAX_DELAY_HISTOGRAM;
696 num_filled_delays[index][slots_filled][reorg_pass_number]++;
697 }
698 \f
699 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
700
701 /* Optimize the following cases:
702
703 1. When a conditional branch skips over only one instruction,
704 use an annulling branch and put that insn in the delay slot.
705 Use either a branch that annuls when the condition if true or
706 invert the test with a branch that annuls when the condition is
707 false. This saves insns, since otherwise we must copy an insn
708 from the L1 target.
709
710 (orig) (skip) (otherwise)
711 Bcc.n L1 Bcc',a L1 Bcc,a L1'
712 insn insn insn2
713 L1: L1: L1:
714 insn2 insn2 insn2
715 insn3 insn3 L1':
716 insn3
717
718 2. When a conditional branch skips over only one instruction,
719 and after that, it unconditionally branches somewhere else,
720 perform the similar optimization. This saves executing the
721 second branch in the case where the inverted condition is true.
722
723 Bcc.n L1 Bcc',a L2
724 insn insn
725 L1: L1:
726 Bra L2 Bra L2
727
728 INSN is a JUMP_INSN.
729
730 This should be expanded to skip over N insns, where N is the number
731 of delay slots required. */
732
733 static rtx
734 optimize_skip (rtx insn)
735 {
736 rtx trial = next_nonnote_insn (insn);
737 rtx next_trial = next_active_insn (trial);
738 rtx delay_list = 0;
739 rtx target_label;
740 int flags;
741
742 flags = get_jump_flags (insn, JUMP_LABEL (insn));
743
744 if (trial == 0
745 || GET_CODE (trial) != INSN
746 || GET_CODE (PATTERN (trial)) == SEQUENCE
747 || recog_memoized (trial) < 0
748 || (! eligible_for_annul_false (insn, 0, trial, flags)
749 && ! eligible_for_annul_true (insn, 0, trial, flags))
750 || can_throw_internal (trial))
751 return 0;
752
753 /* There are two cases where we are just executing one insn (we assume
754 here that a branch requires only one insn; this should be generalized
755 at some point): Where the branch goes around a single insn or where
756 we have one insn followed by a branch to the same label we branch to.
757 In both of these cases, inverting the jump and annulling the delay
758 slot give the same effect in fewer insns. */
759 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
760 && ! (next_trial == 0 && current_function_epilogue_delay_list != 0))
761 || (next_trial != 0
762 && GET_CODE (next_trial) == JUMP_INSN
763 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
764 && (simplejump_p (next_trial)
765 || GET_CODE (PATTERN (next_trial)) == RETURN)))
766 {
767 if (eligible_for_annul_false (insn, 0, trial, flags))
768 {
769 if (invert_jump (insn, JUMP_LABEL (insn), 1))
770 INSN_FROM_TARGET_P (trial) = 1;
771 else if (! eligible_for_annul_true (insn, 0, trial, flags))
772 return 0;
773 }
774
775 delay_list = add_to_delay_list (trial, NULL_RTX);
776 next_trial = next_active_insn (trial);
777 update_block (trial, trial);
778 delete_related_insns (trial);
779
780 /* Also, if we are targeting an unconditional
781 branch, thread our jump to the target of that branch. Don't
782 change this into a RETURN here, because it may not accept what
783 we have in the delay slot. We'll fix this up later. */
784 if (next_trial && GET_CODE (next_trial) == JUMP_INSN
785 && (simplejump_p (next_trial)
786 || GET_CODE (PATTERN (next_trial)) == RETURN))
787 {
788 target_label = JUMP_LABEL (next_trial);
789 if (target_label == 0)
790 target_label = find_end_label ();
791
792 /* Recompute the flags based on TARGET_LABEL since threading
793 the jump to TARGET_LABEL may change the direction of the
794 jump (which may change the circumstances in which the
795 delay slot is nullified). */
796 flags = get_jump_flags (insn, target_label);
797 if (eligible_for_annul_true (insn, 0, trial, flags))
798 reorg_redirect_jump (insn, target_label);
799 }
800
801 INSN_ANNULLED_BRANCH_P (insn) = 1;
802 }
803
804 return delay_list;
805 }
806 #endif
807 \f
808 /* Encode and return branch direction and prediction information for
809 INSN assuming it will jump to LABEL.
810
811 Non conditional branches return no direction information and
812 are predicted as very likely taken. */
813
814 static int
815 get_jump_flags (rtx insn, rtx label)
816 {
817 int flags;
818
819 /* get_jump_flags can be passed any insn with delay slots, these may
820 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
821 direction information, and only if they are conditional jumps.
822
823 If LABEL is zero, then there is no way to determine the branch
824 direction. */
825 if (GET_CODE (insn) == JUMP_INSN
826 && (condjump_p (insn) || condjump_in_parallel_p (insn))
827 && INSN_UID (insn) <= max_uid
828 && label != 0
829 && INSN_UID (label) <= max_uid)
830 flags
831 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
832 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
833 /* No valid direction information. */
834 else
835 flags = 0;
836
837 /* If insn is a conditional branch call mostly_true_jump to get
838 determine the branch prediction.
839
840 Non conditional branches are predicted as very likely taken. */
841 if (GET_CODE (insn) == JUMP_INSN
842 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
843 {
844 int prediction;
845
846 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
847 switch (prediction)
848 {
849 case 2:
850 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
851 break;
852 case 1:
853 flags |= ATTR_FLAG_likely;
854 break;
855 case 0:
856 flags |= ATTR_FLAG_unlikely;
857 break;
858 case -1:
859 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
860 break;
861
862 default:
863 abort ();
864 }
865 }
866 else
867 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
868
869 return flags;
870 }
871
872 /* Return 1 if INSN is a destination that will be branched to rarely (the
873 return point of a function); return 2 if DEST will be branched to very
874 rarely (a call to a function that doesn't return). Otherwise,
875 return 0. */
876
877 static int
878 rare_destination (rtx insn)
879 {
880 int jump_count = 0;
881 rtx next;
882
883 for (; insn; insn = next)
884 {
885 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
886 insn = XVECEXP (PATTERN (insn), 0, 0);
887
888 next = NEXT_INSN (insn);
889
890 switch (GET_CODE (insn))
891 {
892 case CODE_LABEL:
893 return 0;
894 case BARRIER:
895 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
896 don't scan past JUMP_INSNs, so any barrier we find here must
897 have been after a CALL_INSN and hence mean the call doesn't
898 return. */
899 return 2;
900 case JUMP_INSN:
901 if (GET_CODE (PATTERN (insn)) == RETURN)
902 return 1;
903 else if (simplejump_p (insn)
904 && jump_count++ < 10)
905 next = JUMP_LABEL (insn);
906 else
907 return 0;
908
909 default:
910 break;
911 }
912 }
913
914 /* If we got here it means we hit the end of the function. So this
915 is an unlikely destination. */
916
917 return 1;
918 }
919
920 /* Return truth value of the statement that this branch
921 is mostly taken. If we think that the branch is extremely likely
922 to be taken, we return 2. If the branch is slightly more likely to be
923 taken, return 1. If the branch is slightly less likely to be taken,
924 return 0 and if the branch is highly unlikely to be taken, return -1.
925
926 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
927
928 static int
929 mostly_true_jump (rtx jump_insn, rtx condition)
930 {
931 rtx target_label = JUMP_LABEL (jump_insn);
932 rtx insn, note;
933 int rare_dest = rare_destination (target_label);
934 int rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
935
936 /* If branch probabilities are available, then use that number since it
937 always gives a correct answer. */
938 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
939 if (note)
940 {
941 int prob = INTVAL (XEXP (note, 0));
942
943 if (prob >= REG_BR_PROB_BASE * 9 / 10)
944 return 2;
945 else if (prob >= REG_BR_PROB_BASE / 2)
946 return 1;
947 else if (prob >= REG_BR_PROB_BASE / 10)
948 return 0;
949 else
950 return -1;
951 }
952
953 /* ??? Ought to use estimate_probability instead. */
954
955 /* If this is a branch outside a loop, it is highly unlikely. */
956 if (GET_CODE (PATTERN (jump_insn)) == SET
957 && GET_CODE (SET_SRC (PATTERN (jump_insn))) == IF_THEN_ELSE
958 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 1)) == LABEL_REF
959 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 1)))
960 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn)), 2)) == LABEL_REF
961 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn)), 2)))))
962 return -1;
963
964 if (target_label)
965 {
966 /* If this is the test of a loop, it is very likely true. We scan
967 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
968 before the next real insn, we assume the branch is to the top of
969 the loop. */
970 for (insn = PREV_INSN (target_label);
971 insn && GET_CODE (insn) == NOTE;
972 insn = PREV_INSN (insn))
973 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
974 return 2;
975
976 /* If this is a jump to the test of a loop, it is likely true. We scan
977 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
978 before the next real insn, we assume the branch is to the loop branch
979 test. */
980 for (insn = NEXT_INSN (target_label);
981 insn && GET_CODE (insn) == NOTE;
982 insn = PREV_INSN (insn))
983 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP)
984 return 1;
985 }
986
987 /* Look at the relative rarities of the fallthrough and destination. If
988 they differ, we can predict the branch that way. */
989
990 switch (rare_fallthrough - rare_dest)
991 {
992 case -2:
993 return -1;
994 case -1:
995 return 0;
996 case 0:
997 break;
998 case 1:
999 return 1;
1000 case 2:
1001 return 2;
1002 }
1003
1004 /* If we couldn't figure out what this jump was, assume it won't be
1005 taken. This should be rare. */
1006 if (condition == 0)
1007 return 0;
1008
1009 /* EQ tests are usually false and NE tests are usually true. Also,
1010 most quantities are positive, so we can make the appropriate guesses
1011 about signed comparisons against zero. */
1012 switch (GET_CODE (condition))
1013 {
1014 case CONST_INT:
1015 /* Unconditional branch. */
1016 return 1;
1017 case EQ:
1018 return 0;
1019 case NE:
1020 return 1;
1021 case LE:
1022 case LT:
1023 if (XEXP (condition, 1) == const0_rtx)
1024 return 0;
1025 break;
1026 case GE:
1027 case GT:
1028 if (XEXP (condition, 1) == const0_rtx)
1029 return 1;
1030 break;
1031
1032 default:
1033 break;
1034 }
1035
1036 /* Predict backward branches usually take, forward branches usually not. If
1037 we don't know whether this is forward or backward, assume the branch
1038 will be taken, since most are. */
1039 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1040 || INSN_UID (target_label) > max_uid
1041 || (uid_to_ruid[INSN_UID (jump_insn)]
1042 > uid_to_ruid[INSN_UID (target_label)]));
1043 }
1044
1045 /* Return the condition under which INSN will branch to TARGET. If TARGET
1046 is zero, return the condition under which INSN will return. If INSN is
1047 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1048 type of jump, or it doesn't go to TARGET, return 0. */
1049
1050 static rtx
1051 get_branch_condition (rtx insn, rtx target)
1052 {
1053 rtx pat = PATTERN (insn);
1054 rtx src;
1055
1056 if (condjump_in_parallel_p (insn))
1057 pat = XVECEXP (pat, 0, 0);
1058
1059 if (GET_CODE (pat) == RETURN)
1060 return target == 0 ? const_true_rtx : 0;
1061
1062 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1063 return 0;
1064
1065 src = SET_SRC (pat);
1066 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1067 return const_true_rtx;
1068
1069 else if (GET_CODE (src) == IF_THEN_ELSE
1070 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1071 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1072 && XEXP (XEXP (src, 1), 0) == target))
1073 && XEXP (src, 2) == pc_rtx)
1074 return XEXP (src, 0);
1075
1076 else if (GET_CODE (src) == IF_THEN_ELSE
1077 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1078 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1079 && XEXP (XEXP (src, 2), 0) == target))
1080 && XEXP (src, 1) == pc_rtx)
1081 {
1082 enum rtx_code rev;
1083 rev = reversed_comparison_code (XEXP (src, 0), insn);
1084 if (rev != UNKNOWN)
1085 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1086 XEXP (XEXP (src, 0), 0),
1087 XEXP (XEXP (src, 0), 1));
1088 }
1089
1090 return 0;
1091 }
1092
1093 /* Return nonzero if CONDITION is more strict than the condition of
1094 INSN, i.e., if INSN will always branch if CONDITION is true. */
1095
1096 static int
1097 condition_dominates_p (rtx condition, rtx insn)
1098 {
1099 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1100 enum rtx_code code = GET_CODE (condition);
1101 enum rtx_code other_code;
1102
1103 if (rtx_equal_p (condition, other_condition)
1104 || other_condition == const_true_rtx)
1105 return 1;
1106
1107 else if (condition == const_true_rtx || other_condition == 0)
1108 return 0;
1109
1110 other_code = GET_CODE (other_condition);
1111 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1112 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1113 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1114 return 0;
1115
1116 return comparison_dominates_p (code, other_code);
1117 }
1118
1119 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1120 any insns already in the delay slot of JUMP. */
1121
1122 static int
1123 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1124 {
1125 int flags, i;
1126 rtx pat = PATTERN (seq);
1127
1128 /* Make sure all the delay slots of this jump would still
1129 be valid after threading the jump. If they are still
1130 valid, then return nonzero. */
1131
1132 flags = get_jump_flags (jump, newlabel);
1133 for (i = 1; i < XVECLEN (pat, 0); i++)
1134 if (! (
1135 #ifdef ANNUL_IFFALSE_SLOTS
1136 (INSN_ANNULLED_BRANCH_P (jump)
1137 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1138 ? eligible_for_annul_false (jump, i - 1,
1139 XVECEXP (pat, 0, i), flags) :
1140 #endif
1141 #ifdef ANNUL_IFTRUE_SLOTS
1142 (INSN_ANNULLED_BRANCH_P (jump)
1143 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1144 ? eligible_for_annul_true (jump, i - 1,
1145 XVECEXP (pat, 0, i), flags) :
1146 #endif
1147 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1148 break;
1149
1150 return (i == XVECLEN (pat, 0));
1151 }
1152
1153 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1154 any insns we wish to place in the delay slot of JUMP. */
1155
1156 static int
1157 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1158 {
1159 int flags, i;
1160 rtx li;
1161
1162 /* Make sure all the insns in DELAY_LIST would still be
1163 valid after threading the jump. If they are still
1164 valid, then return nonzero. */
1165
1166 flags = get_jump_flags (jump, newlabel);
1167 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1168 if (! (
1169 #ifdef ANNUL_IFFALSE_SLOTS
1170 (INSN_ANNULLED_BRANCH_P (jump)
1171 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1172 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1173 #endif
1174 #ifdef ANNUL_IFTRUE_SLOTS
1175 (INSN_ANNULLED_BRANCH_P (jump)
1176 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1177 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1178 #endif
1179 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1180 break;
1181
1182 return (li == NULL);
1183 }
1184
1185 /* DELAY_LIST is a list of insns that have already been placed into delay
1186 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1187 If not, return 0; otherwise return 1. */
1188
1189 static int
1190 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1191 {
1192 rtx temp;
1193
1194 if (delay_list)
1195 {
1196 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1197 {
1198 rtx trial = XEXP (temp, 0);
1199
1200 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1201 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1202 return 0;
1203 }
1204 }
1205
1206 return 1;
1207 }
1208 \f
1209 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1210 the condition tested by INSN is CONDITION and the resources shown in
1211 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1212 from SEQ's delay list, in addition to whatever insns it may execute
1213 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1214 needed while searching for delay slot insns. Return the concatenated
1215 delay list if possible, otherwise, return 0.
1216
1217 SLOTS_TO_FILL is the total number of slots required by INSN, and
1218 PSLOTS_FILLED points to the number filled so far (also the number of
1219 insns in DELAY_LIST). It is updated with the number that have been
1220 filled from the SEQUENCE, if any.
1221
1222 PANNUL_P points to a nonzero value if we already know that we need
1223 to annul INSN. If this routine determines that annulling is needed,
1224 it may set that value nonzero.
1225
1226 PNEW_THREAD points to a location that is to receive the place at which
1227 execution should continue. */
1228
1229 static rtx
1230 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1231 rtx delay_list, struct resources *sets,
1232 struct resources *needed,
1233 struct resources *other_needed,
1234 int slots_to_fill, int *pslots_filled,
1235 int *pannul_p, rtx *pnew_thread)
1236 {
1237 rtx temp;
1238 int slots_remaining = slots_to_fill - *pslots_filled;
1239 int total_slots_filled = *pslots_filled;
1240 rtx new_delay_list = 0;
1241 int must_annul = *pannul_p;
1242 int used_annul = 0;
1243 int i;
1244 struct resources cc_set;
1245
1246 /* We can't do anything if there are more delay slots in SEQ than we
1247 can handle, or if we don't know that it will be a taken branch.
1248 We know that it will be a taken branch if it is either an unconditional
1249 branch or a conditional branch with a stricter branch condition.
1250
1251 Also, exit if the branch has more than one set, since then it is computing
1252 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1253 ??? It may be possible to move other sets into INSN in addition to
1254 moving the instructions in the delay slots.
1255
1256 We can not steal the delay list if one of the instructions in the
1257 current delay_list modifies the condition codes and the jump in the
1258 sequence is a conditional jump. We can not do this because we can
1259 not change the direction of the jump because the condition codes
1260 will effect the direction of the jump in the sequence. */
1261
1262 CLEAR_RESOURCE (&cc_set);
1263 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1264 {
1265 rtx trial = XEXP (temp, 0);
1266
1267 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1268 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1269 return delay_list;
1270 }
1271
1272 if (XVECLEN (seq, 0) - 1 > slots_remaining
1273 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1274 || ! single_set (XVECEXP (seq, 0, 0)))
1275 return delay_list;
1276
1277 #ifdef MD_CAN_REDIRECT_BRANCH
1278 /* On some targets, branches with delay slots can have a limited
1279 displacement. Give the back end a chance to tell us we can't do
1280 this. */
1281 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1282 return delay_list;
1283 #endif
1284
1285 for (i = 1; i < XVECLEN (seq, 0); i++)
1286 {
1287 rtx trial = XVECEXP (seq, 0, i);
1288 int flags;
1289
1290 if (insn_references_resource_p (trial, sets, 0)
1291 || insn_sets_resource_p (trial, needed, 0)
1292 || insn_sets_resource_p (trial, sets, 0)
1293 #ifdef HAVE_cc0
1294 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1295 delay list. */
1296 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1297 #endif
1298 /* If TRIAL is from the fallthrough code of an annulled branch insn
1299 in SEQ, we cannot use it. */
1300 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1301 && ! INSN_FROM_TARGET_P (trial)))
1302 return delay_list;
1303
1304 /* If this insn was already done (usually in a previous delay slot),
1305 pretend we put it in our delay slot. */
1306 if (redundant_insn (trial, insn, new_delay_list))
1307 continue;
1308
1309 /* We will end up re-vectoring this branch, so compute flags
1310 based on jumping to the new label. */
1311 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1312
1313 if (! must_annul
1314 && ((condition == const_true_rtx
1315 || (! insn_sets_resource_p (trial, other_needed, 0)
1316 && ! may_trap_p (PATTERN (trial)))))
1317 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1318 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1319 && (must_annul = 1,
1320 check_annul_list_true_false (0, delay_list)
1321 && check_annul_list_true_false (0, new_delay_list)
1322 && eligible_for_annul_false (insn, total_slots_filled,
1323 trial, flags)))
1324 {
1325 if (must_annul)
1326 used_annul = 1;
1327 temp = copy_rtx (trial);
1328 INSN_FROM_TARGET_P (temp) = 1;
1329 new_delay_list = add_to_delay_list (temp, new_delay_list);
1330 total_slots_filled++;
1331
1332 if (--slots_remaining == 0)
1333 break;
1334 }
1335 else
1336 return delay_list;
1337 }
1338
1339 /* Show the place to which we will be branching. */
1340 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1341
1342 /* Add any new insns to the delay list and update the count of the
1343 number of slots filled. */
1344 *pslots_filled = total_slots_filled;
1345 if (used_annul)
1346 *pannul_p = 1;
1347
1348 if (delay_list == 0)
1349 return new_delay_list;
1350
1351 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1352 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1353
1354 return delay_list;
1355 }
1356 \f
1357 /* Similar to steal_delay_list_from_target except that SEQ is on the
1358 fallthrough path of INSN. Here we only do something if the delay insn
1359 of SEQ is an unconditional branch. In that case we steal its delay slot
1360 for INSN since unconditional branches are much easier to fill. */
1361
1362 static rtx
1363 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1364 rtx delay_list, struct resources *sets,
1365 struct resources *needed,
1366 struct resources *other_needed,
1367 int slots_to_fill, int *pslots_filled,
1368 int *pannul_p)
1369 {
1370 int i;
1371 int flags;
1372 int must_annul = *pannul_p;
1373 int used_annul = 0;
1374
1375 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1376
1377 /* We can't do anything if SEQ's delay insn isn't an
1378 unconditional branch. */
1379
1380 if (! simplejump_p (XVECEXP (seq, 0, 0))
1381 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1382 return delay_list;
1383
1384 for (i = 1; i < XVECLEN (seq, 0); i++)
1385 {
1386 rtx trial = XVECEXP (seq, 0, i);
1387
1388 /* If TRIAL sets CC0, stealing it will move it too far from the use
1389 of CC0. */
1390 if (insn_references_resource_p (trial, sets, 0)
1391 || insn_sets_resource_p (trial, needed, 0)
1392 || insn_sets_resource_p (trial, sets, 0)
1393 #ifdef HAVE_cc0
1394 || sets_cc0_p (PATTERN (trial))
1395 #endif
1396 )
1397
1398 break;
1399
1400 /* If this insn was already done, we don't need it. */
1401 if (redundant_insn (trial, insn, delay_list))
1402 {
1403 delete_from_delay_slot (trial);
1404 continue;
1405 }
1406
1407 if (! must_annul
1408 && ((condition == const_true_rtx
1409 || (! insn_sets_resource_p (trial, other_needed, 0)
1410 && ! may_trap_p (PATTERN (trial)))))
1411 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1412 : (must_annul || delay_list == NULL) && (must_annul = 1,
1413 check_annul_list_true_false (1, delay_list)
1414 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1415 {
1416 if (must_annul)
1417 used_annul = 1;
1418 delete_from_delay_slot (trial);
1419 delay_list = add_to_delay_list (trial, delay_list);
1420
1421 if (++(*pslots_filled) == slots_to_fill)
1422 break;
1423 }
1424 else
1425 break;
1426 }
1427
1428 if (used_annul)
1429 *pannul_p = 1;
1430 return delay_list;
1431 }
1432 \f
1433 /* Try merging insns starting at THREAD which match exactly the insns in
1434 INSN's delay list.
1435
1436 If all insns were matched and the insn was previously annulling, the
1437 annul bit will be cleared.
1438
1439 For each insn that is merged, if the branch is or will be non-annulling,
1440 we delete the merged insn. */
1441
1442 static void
1443 try_merge_delay_insns (rtx insn, rtx thread)
1444 {
1445 rtx trial, next_trial;
1446 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1447 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1448 int slot_number = 1;
1449 int num_slots = XVECLEN (PATTERN (insn), 0);
1450 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1451 struct resources set, needed;
1452 rtx merged_insns = 0;
1453 int i;
1454 int flags;
1455
1456 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1457
1458 CLEAR_RESOURCE (&needed);
1459 CLEAR_RESOURCE (&set);
1460
1461 /* If this is not an annulling branch, take into account anything needed in
1462 INSN's delay slot. This prevents two increments from being incorrectly
1463 folded into one. If we are annulling, this would be the correct
1464 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1465 will essentially disable this optimization. This method is somewhat of
1466 a kludge, but I don't see a better way.) */
1467 if (! annul_p)
1468 for (i = 1 ; i < num_slots; i++)
1469 if (XVECEXP (PATTERN (insn), 0, i))
1470 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1471
1472 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1473 {
1474 rtx pat = PATTERN (trial);
1475 rtx oldtrial = trial;
1476
1477 next_trial = next_nonnote_insn (trial);
1478
1479 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1480 if (GET_CODE (trial) == INSN
1481 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1482 continue;
1483
1484 if (GET_CODE (next_to_match) == GET_CODE (trial)
1485 #ifdef HAVE_cc0
1486 /* We can't share an insn that sets cc0. */
1487 && ! sets_cc0_p (pat)
1488 #endif
1489 && ! insn_references_resource_p (trial, &set, 1)
1490 && ! insn_sets_resource_p (trial, &set, 1)
1491 && ! insn_sets_resource_p (trial, &needed, 1)
1492 && (trial = try_split (pat, trial, 0)) != 0
1493 /* Update next_trial, in case try_split succeeded. */
1494 && (next_trial = next_nonnote_insn (trial))
1495 /* Likewise THREAD. */
1496 && (thread = oldtrial == thread ? trial : thread)
1497 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1498 /* Have to test this condition if annul condition is different
1499 from (and less restrictive than) non-annulling one. */
1500 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1501 {
1502
1503 if (! annul_p)
1504 {
1505 update_block (trial, thread);
1506 if (trial == thread)
1507 thread = next_active_insn (thread);
1508
1509 delete_related_insns (trial);
1510 INSN_FROM_TARGET_P (next_to_match) = 0;
1511 }
1512 else
1513 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1514
1515 if (++slot_number == num_slots)
1516 break;
1517
1518 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1519 }
1520
1521 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1522 mark_referenced_resources (trial, &needed, 1);
1523 }
1524
1525 /* See if we stopped on a filled insn. If we did, try to see if its
1526 delay slots match. */
1527 if (slot_number != num_slots
1528 && trial && GET_CODE (trial) == INSN
1529 && GET_CODE (PATTERN (trial)) == SEQUENCE
1530 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1531 {
1532 rtx pat = PATTERN (trial);
1533 rtx filled_insn = XVECEXP (pat, 0, 0);
1534
1535 /* Account for resources set/needed by the filled insn. */
1536 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1537 mark_referenced_resources (filled_insn, &needed, 1);
1538
1539 for (i = 1; i < XVECLEN (pat, 0); i++)
1540 {
1541 rtx dtrial = XVECEXP (pat, 0, i);
1542
1543 if (! insn_references_resource_p (dtrial, &set, 1)
1544 && ! insn_sets_resource_p (dtrial, &set, 1)
1545 && ! insn_sets_resource_p (dtrial, &needed, 1)
1546 #ifdef HAVE_cc0
1547 && ! sets_cc0_p (PATTERN (dtrial))
1548 #endif
1549 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1550 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1551 {
1552 if (! annul_p)
1553 {
1554 rtx new;
1555
1556 update_block (dtrial, thread);
1557 new = delete_from_delay_slot (dtrial);
1558 if (INSN_DELETED_P (thread))
1559 thread = new;
1560 INSN_FROM_TARGET_P (next_to_match) = 0;
1561 }
1562 else
1563 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1564 merged_insns);
1565
1566 if (++slot_number == num_slots)
1567 break;
1568
1569 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1570 }
1571 else
1572 {
1573 /* Keep track of the set/referenced resources for the delay
1574 slots of any trial insns we encounter. */
1575 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1576 mark_referenced_resources (dtrial, &needed, 1);
1577 }
1578 }
1579 }
1580
1581 /* If all insns in the delay slot have been matched and we were previously
1582 annulling the branch, we need not any more. In that case delete all the
1583 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1584 the delay list so that we know that it isn't only being used at the
1585 target. */
1586 if (slot_number == num_slots && annul_p)
1587 {
1588 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1589 {
1590 if (GET_MODE (merged_insns) == SImode)
1591 {
1592 rtx new;
1593
1594 update_block (XEXP (merged_insns, 0), thread);
1595 new = delete_from_delay_slot (XEXP (merged_insns, 0));
1596 if (INSN_DELETED_P (thread))
1597 thread = new;
1598 }
1599 else
1600 {
1601 update_block (XEXP (merged_insns, 0), thread);
1602 delete_related_insns (XEXP (merged_insns, 0));
1603 }
1604 }
1605
1606 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1607
1608 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1609 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1610 }
1611 }
1612 \f
1613 /* See if INSN is redundant with an insn in front of TARGET. Often this
1614 is called when INSN is a candidate for a delay slot of TARGET.
1615 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1616 of INSN. Often INSN will be redundant with an insn in a delay slot of
1617 some previous insn. This happens when we have a series of branches to the
1618 same label; in that case the first insn at the target might want to go
1619 into each of the delay slots.
1620
1621 If we are not careful, this routine can take up a significant fraction
1622 of the total compilation time (4%), but only wins rarely. Hence we
1623 speed this routine up by making two passes. The first pass goes back
1624 until it hits a label and sees if it finds an insn with an identical
1625 pattern. Only in this (relatively rare) event does it check for
1626 data conflicts.
1627
1628 We do not split insns we encounter. This could cause us not to find a
1629 redundant insn, but the cost of splitting seems greater than the possible
1630 gain in rare cases. */
1631
1632 static rtx
1633 redundant_insn (rtx insn, rtx target, rtx delay_list)
1634 {
1635 rtx target_main = target;
1636 rtx ipat = PATTERN (insn);
1637 rtx trial, pat;
1638 struct resources needed, set;
1639 int i;
1640 unsigned insns_to_search;
1641
1642 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1643 are allowed to not actually assign to such a register. */
1644 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1645 return 0;
1646
1647 /* Scan backwards looking for a match. */
1648 for (trial = PREV_INSN (target),
1649 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1650 trial && insns_to_search > 0;
1651 trial = PREV_INSN (trial), --insns_to_search)
1652 {
1653 if (GET_CODE (trial) == CODE_LABEL)
1654 return 0;
1655
1656 if (! INSN_P (trial))
1657 continue;
1658
1659 pat = PATTERN (trial);
1660 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1661 continue;
1662
1663 if (GET_CODE (pat) == SEQUENCE)
1664 {
1665 /* Stop for a CALL and its delay slots because it is difficult to
1666 track its resource needs correctly. */
1667 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
1668 return 0;
1669
1670 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1671 slots because it is difficult to track its resource needs
1672 correctly. */
1673
1674 #ifdef INSN_SETS_ARE_DELAYED
1675 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1676 return 0;
1677 #endif
1678
1679 #ifdef INSN_REFERENCES_ARE_DELAYED
1680 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1681 return 0;
1682 #endif
1683
1684 /* See if any of the insns in the delay slot match, updating
1685 resource requirements as we go. */
1686 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1687 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1688 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1689 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1690 break;
1691
1692 /* If found a match, exit this loop early. */
1693 if (i > 0)
1694 break;
1695 }
1696
1697 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1698 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1699 break;
1700 }
1701
1702 /* If we didn't find an insn that matches, return 0. */
1703 if (trial == 0)
1704 return 0;
1705
1706 /* See what resources this insn sets and needs. If they overlap, or
1707 if this insn references CC0, it can't be redundant. */
1708
1709 CLEAR_RESOURCE (&needed);
1710 CLEAR_RESOURCE (&set);
1711 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1712 mark_referenced_resources (insn, &needed, 1);
1713
1714 /* If TARGET is a SEQUENCE, get the main insn. */
1715 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
1716 target_main = XVECEXP (PATTERN (target), 0, 0);
1717
1718 if (resource_conflicts_p (&needed, &set)
1719 #ifdef HAVE_cc0
1720 || reg_mentioned_p (cc0_rtx, ipat)
1721 #endif
1722 /* The insn requiring the delay may not set anything needed or set by
1723 INSN. */
1724 || insn_sets_resource_p (target_main, &needed, 1)
1725 || insn_sets_resource_p (target_main, &set, 1))
1726 return 0;
1727
1728 /* Insns we pass may not set either NEEDED or SET, so merge them for
1729 simpler tests. */
1730 needed.memory |= set.memory;
1731 needed.unch_memory |= set.unch_memory;
1732 IOR_HARD_REG_SET (needed.regs, set.regs);
1733
1734 /* This insn isn't redundant if it conflicts with an insn that either is
1735 or will be in a delay slot of TARGET. */
1736
1737 while (delay_list)
1738 {
1739 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1740 return 0;
1741 delay_list = XEXP (delay_list, 1);
1742 }
1743
1744 if (GET_CODE (target) == INSN && GET_CODE (PATTERN (target)) == SEQUENCE)
1745 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1746 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1747 return 0;
1748
1749 /* Scan backwards until we reach a label or an insn that uses something
1750 INSN sets or sets something insn uses or sets. */
1751
1752 for (trial = PREV_INSN (target),
1753 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1754 trial && GET_CODE (trial) != CODE_LABEL && insns_to_search > 0;
1755 trial = PREV_INSN (trial), --insns_to_search)
1756 {
1757 if (GET_CODE (trial) != INSN && GET_CODE (trial) != CALL_INSN
1758 && GET_CODE (trial) != JUMP_INSN)
1759 continue;
1760
1761 pat = PATTERN (trial);
1762 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1763 continue;
1764
1765 if (GET_CODE (pat) == SEQUENCE)
1766 {
1767 /* If this is a CALL_INSN and its delay slots, it is hard to track
1768 the resource needs properly, so give up. */
1769 if (GET_CODE (XVECEXP (pat, 0, 0)) == CALL_INSN)
1770 return 0;
1771
1772 /* If this is an INSN or JUMP_INSN with delayed effects, it
1773 is hard to track the resource needs properly, so give up. */
1774
1775 #ifdef INSN_SETS_ARE_DELAYED
1776 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1777 return 0;
1778 #endif
1779
1780 #ifdef INSN_REFERENCES_ARE_DELAYED
1781 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1782 return 0;
1783 #endif
1784
1785 /* See if any of the insns in the delay slot match, updating
1786 resource requirements as we go. */
1787 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1788 {
1789 rtx candidate = XVECEXP (pat, 0, i);
1790
1791 /* If an insn will be annulled if the branch is false, it isn't
1792 considered as a possible duplicate insn. */
1793 if (rtx_equal_p (PATTERN (candidate), ipat)
1794 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1795 && INSN_FROM_TARGET_P (candidate)))
1796 {
1797 /* Show that this insn will be used in the sequel. */
1798 INSN_FROM_TARGET_P (candidate) = 0;
1799 return candidate;
1800 }
1801
1802 /* Unless this is an annulled insn from the target of a branch,
1803 we must stop if it sets anything needed or set by INSN. */
1804 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1805 || ! INSN_FROM_TARGET_P (candidate))
1806 && insn_sets_resource_p (candidate, &needed, 1))
1807 return 0;
1808 }
1809
1810 /* If the insn requiring the delay slot conflicts with INSN, we
1811 must stop. */
1812 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1813 return 0;
1814 }
1815 else
1816 {
1817 /* See if TRIAL is the same as INSN. */
1818 pat = PATTERN (trial);
1819 if (rtx_equal_p (pat, ipat))
1820 return trial;
1821
1822 /* Can't go any further if TRIAL conflicts with INSN. */
1823 if (insn_sets_resource_p (trial, &needed, 1))
1824 return 0;
1825 }
1826 }
1827
1828 return 0;
1829 }
1830 \f
1831 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1832 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1833 is nonzero, we are allowed to fall into this thread; otherwise, we are
1834 not.
1835
1836 If LABEL is used more than one or we pass a label other than LABEL before
1837 finding an active insn, we do not own this thread. */
1838
1839 static int
1840 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1841 {
1842 rtx active_insn;
1843 rtx insn;
1844
1845 /* We don't own the function end. */
1846 if (thread == 0)
1847 return 0;
1848
1849 /* Get the first active insn, or THREAD, if it is an active insn. */
1850 active_insn = next_active_insn (PREV_INSN (thread));
1851
1852 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1853 if (GET_CODE (insn) == CODE_LABEL
1854 && (insn != label || LABEL_NUSES (insn) != 1))
1855 return 0;
1856
1857 if (allow_fallthrough)
1858 return 1;
1859
1860 /* Ensure that we reach a BARRIER before any insn or label. */
1861 for (insn = prev_nonnote_insn (thread);
1862 insn == 0 || GET_CODE (insn) != BARRIER;
1863 insn = prev_nonnote_insn (insn))
1864 if (insn == 0
1865 || GET_CODE (insn) == CODE_LABEL
1866 || (GET_CODE (insn) == INSN
1867 && GET_CODE (PATTERN (insn)) != USE
1868 && GET_CODE (PATTERN (insn)) != CLOBBER))
1869 return 0;
1870
1871 return 1;
1872 }
1873 \f
1874 /* Called when INSN is being moved from a location near the target of a jump.
1875 We leave a marker of the form (use (INSN)) immediately in front
1876 of WHERE for mark_target_live_regs. These markers will be deleted when
1877 reorg finishes.
1878
1879 We used to try to update the live status of registers if WHERE is at
1880 the start of a basic block, but that can't work since we may remove a
1881 BARRIER in relax_delay_slots. */
1882
1883 static void
1884 update_block (rtx insn, rtx where)
1885 {
1886 /* Ignore if this was in a delay slot and it came from the target of
1887 a branch. */
1888 if (INSN_FROM_TARGET_P (insn))
1889 return;
1890
1891 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1892
1893 /* INSN might be making a value live in a block where it didn't use to
1894 be. So recompute liveness information for this block. */
1895
1896 incr_ticks_for_insn (insn);
1897 }
1898
1899 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1900 the basic block containing the jump. */
1901
1902 static int
1903 reorg_redirect_jump (rtx jump, rtx nlabel)
1904 {
1905 incr_ticks_for_insn (jump);
1906 return redirect_jump (jump, nlabel, 1);
1907 }
1908
1909 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1910 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1911 that reference values used in INSN. If we find one, then we move the
1912 REG_DEAD note to INSN.
1913
1914 This is needed to handle the case where an later insn (after INSN) has a
1915 REG_DEAD note for a register used by INSN, and this later insn subsequently
1916 gets moved before a CODE_LABEL because it is a redundant insn. In this
1917 case, mark_target_live_regs may be confused into thinking the register
1918 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1919
1920 static void
1921 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1922 {
1923 rtx p, link, next;
1924
1925 for (p = next_nonnote_insn (insn); p != delayed_insn;
1926 p = next_nonnote_insn (p))
1927 for (link = REG_NOTES (p); link; link = next)
1928 {
1929 next = XEXP (link, 1);
1930
1931 if (REG_NOTE_KIND (link) != REG_DEAD
1932 || GET_CODE (XEXP (link, 0)) != REG)
1933 continue;
1934
1935 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1936 {
1937 /* Move the REG_DEAD note from P to INSN. */
1938 remove_note (p, link);
1939 XEXP (link, 1) = REG_NOTES (insn);
1940 REG_NOTES (insn) = link;
1941 }
1942 }
1943 }
1944
1945 /* Called when an insn redundant with start_insn is deleted. If there
1946 is a REG_DEAD note for the target of start_insn between start_insn
1947 and stop_insn, then the REG_DEAD note needs to be deleted since the
1948 value no longer dies there.
1949
1950 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1951 confused into thinking the register is dead. */
1952
1953 static void
1954 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1955 {
1956 rtx p, link, next;
1957
1958 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1959 p = next_nonnote_insn (p))
1960 for (link = REG_NOTES (p); link; link = next)
1961 {
1962 next = XEXP (link, 1);
1963
1964 if (REG_NOTE_KIND (link) != REG_DEAD
1965 || GET_CODE (XEXP (link, 0)) != REG)
1966 continue;
1967
1968 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1969 {
1970 remove_note (p, link);
1971 return;
1972 }
1973 }
1974 }
1975
1976 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1977
1978 This handles the case of udivmodXi4 instructions which optimize their
1979 output depending on whether any REG_UNUSED notes are present.
1980 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1981 does. */
1982
1983 static void
1984 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1985 {
1986 rtx link, next;
1987
1988 for (link = REG_NOTES (insn); link; link = next)
1989 {
1990 next = XEXP (link, 1);
1991
1992 if (REG_NOTE_KIND (link) != REG_UNUSED
1993 || GET_CODE (XEXP (link, 0)) != REG)
1994 continue;
1995
1996 if (! find_regno_note (redundant_insn, REG_UNUSED,
1997 REGNO (XEXP (link, 0))))
1998 remove_note (insn, link);
1999 }
2000 }
2001 \f
2002 /* Scan a function looking for insns that need a delay slot and find insns to
2003 put into the delay slot.
2004
2005 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2006 as calls). We do these first since we don't want jump insns (that are
2007 easier to fill) to get the only insns that could be used for non-jump insns.
2008 When it is zero, only try to fill JUMP_INSNs.
2009
2010 When slots are filled in this manner, the insns (including the
2011 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2012 it is possible to tell whether a delay slot has really been filled
2013 or not. `final' knows how to deal with this, by communicating
2014 through FINAL_SEQUENCE. */
2015
2016 static void
2017 fill_simple_delay_slots (int non_jumps_p)
2018 {
2019 rtx insn, pat, trial, next_trial;
2020 int i;
2021 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2022 struct resources needed, set;
2023 int slots_to_fill, slots_filled;
2024 rtx delay_list;
2025
2026 for (i = 0; i < num_unfilled_slots; i++)
2027 {
2028 int flags;
2029 /* Get the next insn to fill. If it has already had any slots assigned,
2030 we can't do anything with it. Maybe we'll improve this later. */
2031
2032 insn = unfilled_slots_base[i];
2033 if (insn == 0
2034 || INSN_DELETED_P (insn)
2035 || (GET_CODE (insn) == INSN
2036 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2037 || (GET_CODE (insn) == JUMP_INSN && non_jumps_p)
2038 || (GET_CODE (insn) != JUMP_INSN && ! non_jumps_p))
2039 continue;
2040
2041 /* It may have been that this insn used to need delay slots, but
2042 now doesn't; ignore in that case. This can happen, for example,
2043 on the HP PA RISC, where the number of delay slots depends on
2044 what insns are nearby. */
2045 slots_to_fill = num_delay_slots (insn);
2046
2047 /* Some machine description have defined instructions to have
2048 delay slots only in certain circumstances which may depend on
2049 nearby insns (which change due to reorg's actions).
2050
2051 For example, the PA port normally has delay slots for unconditional
2052 jumps.
2053
2054 However, the PA port claims such jumps do not have a delay slot
2055 if they are immediate successors of certain CALL_INSNs. This
2056 allows the port to favor filling the delay slot of the call with
2057 the unconditional jump. */
2058 if (slots_to_fill == 0)
2059 continue;
2060
2061 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2062 says how many. After initialization, first try optimizing
2063
2064 call _foo call _foo
2065 nop add %o7,.-L1,%o7
2066 b,a L1
2067 nop
2068
2069 If this case applies, the delay slot of the call is filled with
2070 the unconditional jump. This is done first to avoid having the
2071 delay slot of the call filled in the backward scan. Also, since
2072 the unconditional jump is likely to also have a delay slot, that
2073 insn must exist when it is subsequently scanned.
2074
2075 This is tried on each insn with delay slots as some machines
2076 have insns which perform calls, but are not represented as
2077 CALL_INSNs. */
2078
2079 slots_filled = 0;
2080 delay_list = 0;
2081
2082 if (GET_CODE (insn) == JUMP_INSN)
2083 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2084 else
2085 flags = get_jump_flags (insn, NULL_RTX);
2086
2087 if ((trial = next_active_insn (insn))
2088 && GET_CODE (trial) == JUMP_INSN
2089 && simplejump_p (trial)
2090 && eligible_for_delay (insn, slots_filled, trial, flags)
2091 && no_labels_between_p (insn, trial)
2092 && ! can_throw_internal (trial))
2093 {
2094 rtx *tmp;
2095 slots_filled++;
2096 delay_list = add_to_delay_list (trial, delay_list);
2097
2098 /* TRIAL may have had its delay slot filled, then unfilled. When
2099 the delay slot is unfilled, TRIAL is placed back on the unfilled
2100 slots obstack. Unfortunately, it is placed on the end of the
2101 obstack, not in its original location. Therefore, we must search
2102 from entry i + 1 to the end of the unfilled slots obstack to
2103 try and find TRIAL. */
2104 tmp = &unfilled_slots_base[i + 1];
2105 while (*tmp != trial && tmp != unfilled_slots_next)
2106 tmp++;
2107
2108 /* Remove the unconditional jump from consideration for delay slot
2109 filling and unthread it. */
2110 if (*tmp == trial)
2111 *tmp = 0;
2112 {
2113 rtx next = NEXT_INSN (trial);
2114 rtx prev = PREV_INSN (trial);
2115 if (prev)
2116 NEXT_INSN (prev) = next;
2117 if (next)
2118 PREV_INSN (next) = prev;
2119 }
2120 }
2121
2122 /* Now, scan backwards from the insn to search for a potential
2123 delay-slot candidate. Stop searching when a label or jump is hit.
2124
2125 For each candidate, if it is to go into the delay slot (moved
2126 forward in execution sequence), it must not need or set any resources
2127 that were set by later insns and must not set any resources that
2128 are needed for those insns.
2129
2130 The delay slot insn itself sets resources unless it is a call
2131 (in which case the called routine, not the insn itself, is doing
2132 the setting). */
2133
2134 if (slots_filled < slots_to_fill)
2135 {
2136 CLEAR_RESOURCE (&needed);
2137 CLEAR_RESOURCE (&set);
2138 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2139 mark_referenced_resources (insn, &needed, 0);
2140
2141 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2142 trial = next_trial)
2143 {
2144 next_trial = prev_nonnote_insn (trial);
2145
2146 /* This must be an INSN or CALL_INSN. */
2147 pat = PATTERN (trial);
2148
2149 /* USE and CLOBBER at this level was just for flow; ignore it. */
2150 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2151 continue;
2152
2153 /* Check for resource conflict first, to avoid unnecessary
2154 splitting. */
2155 if (! insn_references_resource_p (trial, &set, 1)
2156 && ! insn_sets_resource_p (trial, &set, 1)
2157 && ! insn_sets_resource_p (trial, &needed, 1)
2158 #ifdef HAVE_cc0
2159 /* Can't separate set of cc0 from its use. */
2160 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2161 #endif
2162 && ! can_throw_internal (trial))
2163 {
2164 trial = try_split (pat, trial, 1);
2165 next_trial = prev_nonnote_insn (trial);
2166 if (eligible_for_delay (insn, slots_filled, trial, flags))
2167 {
2168 /* In this case, we are searching backward, so if we
2169 find insns to put on the delay list, we want
2170 to put them at the head, rather than the
2171 tail, of the list. */
2172
2173 update_reg_dead_notes (trial, insn);
2174 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2175 trial, delay_list);
2176 update_block (trial, trial);
2177 delete_related_insns (trial);
2178 if (slots_to_fill == ++slots_filled)
2179 break;
2180 continue;
2181 }
2182 }
2183
2184 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2185 mark_referenced_resources (trial, &needed, 1);
2186 }
2187 }
2188
2189 /* If all needed slots haven't been filled, we come here. */
2190
2191 /* Try to optimize case of jumping around a single insn. */
2192 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2193 if (slots_filled != slots_to_fill
2194 && delay_list == 0
2195 && GET_CODE (insn) == JUMP_INSN
2196 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2197 {
2198 delay_list = optimize_skip (insn);
2199 if (delay_list)
2200 slots_filled += 1;
2201 }
2202 #endif
2203
2204 /* Try to get insns from beyond the insn needing the delay slot.
2205 These insns can neither set or reference resources set in insns being
2206 skipped, cannot set resources in the insn being skipped, and, if this
2207 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2208 call might not return).
2209
2210 There used to be code which continued past the target label if
2211 we saw all uses of the target label. This code did not work,
2212 because it failed to account for some instructions which were
2213 both annulled and marked as from the target. This can happen as a
2214 result of optimize_skip. Since this code was redundant with
2215 fill_eager_delay_slots anyways, it was just deleted. */
2216
2217 if (slots_filled != slots_to_fill
2218 /* If this instruction could throw an exception which is
2219 caught in the same function, then it's not safe to fill
2220 the delay slot with an instruction from beyond this
2221 point. For example, consider:
2222
2223 int i = 2;
2224
2225 try {
2226 f();
2227 i = 3;
2228 } catch (...) {}
2229
2230 return i;
2231
2232 Even though `i' is a local variable, we must be sure not
2233 to put `i = 3' in the delay slot if `f' might throw an
2234 exception.
2235
2236 Presumably, we should also check to see if we could get
2237 back to this function via `setjmp'. */
2238 && ! can_throw_internal (insn)
2239 && (GET_CODE (insn) != JUMP_INSN
2240 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2241 && ! simplejump_p (insn)
2242 && JUMP_LABEL (insn) != 0)))
2243 {
2244 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2245 label. Otherwise, zero. */
2246 rtx target = 0;
2247 int maybe_never = 0;
2248 rtx pat, trial_delay;
2249
2250 CLEAR_RESOURCE (&needed);
2251 CLEAR_RESOURCE (&set);
2252
2253 if (GET_CODE (insn) == CALL_INSN)
2254 {
2255 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2256 mark_referenced_resources (insn, &needed, 1);
2257 maybe_never = 1;
2258 }
2259 else
2260 {
2261 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2262 mark_referenced_resources (insn, &needed, 1);
2263 if (GET_CODE (insn) == JUMP_INSN)
2264 target = JUMP_LABEL (insn);
2265 }
2266
2267 if (target == 0)
2268 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2269 {
2270 next_trial = next_nonnote_insn (trial);
2271
2272 if (GET_CODE (trial) == CODE_LABEL
2273 || GET_CODE (trial) == BARRIER)
2274 break;
2275
2276 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2277 pat = PATTERN (trial);
2278
2279 /* Stand-alone USE and CLOBBER are just for flow. */
2280 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2281 continue;
2282
2283 /* If this already has filled delay slots, get the insn needing
2284 the delay slots. */
2285 if (GET_CODE (pat) == SEQUENCE)
2286 trial_delay = XVECEXP (pat, 0, 0);
2287 else
2288 trial_delay = trial;
2289
2290 /* Stop our search when seeing an unconditional jump. */
2291 if (GET_CODE (trial_delay) == JUMP_INSN)
2292 break;
2293
2294 /* See if we have a resource problem before we try to
2295 split. */
2296 if (GET_CODE (pat) != SEQUENCE
2297 && ! insn_references_resource_p (trial, &set, 1)
2298 && ! insn_sets_resource_p (trial, &set, 1)
2299 && ! insn_sets_resource_p (trial, &needed, 1)
2300 #ifdef HAVE_cc0
2301 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2302 #endif
2303 && ! (maybe_never && may_trap_p (pat))
2304 && (trial = try_split (pat, trial, 0))
2305 && eligible_for_delay (insn, slots_filled, trial, flags)
2306 && ! can_throw_internal(trial))
2307 {
2308 next_trial = next_nonnote_insn (trial);
2309 delay_list = add_to_delay_list (trial, delay_list);
2310
2311 #ifdef HAVE_cc0
2312 if (reg_mentioned_p (cc0_rtx, pat))
2313 link_cc0_insns (trial);
2314 #endif
2315
2316 delete_related_insns (trial);
2317 if (slots_to_fill == ++slots_filled)
2318 break;
2319 continue;
2320 }
2321
2322 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2323 mark_referenced_resources (trial, &needed, 1);
2324
2325 /* Ensure we don't put insns between the setting of cc and the
2326 comparison by moving a setting of cc into an earlier delay
2327 slot since these insns could clobber the condition code. */
2328 set.cc = 1;
2329
2330 /* If this is a call or jump, we might not get here. */
2331 if (GET_CODE (trial_delay) == CALL_INSN
2332 || GET_CODE (trial_delay) == JUMP_INSN)
2333 maybe_never = 1;
2334 }
2335
2336 /* If there are slots left to fill and our search was stopped by an
2337 unconditional branch, try the insn at the branch target. We can
2338 redirect the branch if it works.
2339
2340 Don't do this if the insn at the branch target is a branch. */
2341 if (slots_to_fill != slots_filled
2342 && trial
2343 && GET_CODE (trial) == JUMP_INSN
2344 && simplejump_p (trial)
2345 && (target == 0 || JUMP_LABEL (trial) == target)
2346 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2347 && ! (GET_CODE (next_trial) == INSN
2348 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2349 && GET_CODE (next_trial) != JUMP_INSN
2350 && ! insn_references_resource_p (next_trial, &set, 1)
2351 && ! insn_sets_resource_p (next_trial, &set, 1)
2352 && ! insn_sets_resource_p (next_trial, &needed, 1)
2353 #ifdef HAVE_cc0
2354 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2355 #endif
2356 && ! (maybe_never && may_trap_p (PATTERN (next_trial)))
2357 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2358 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2359 && ! can_throw_internal (trial))
2360 {
2361 rtx new_label = next_active_insn (next_trial);
2362
2363 if (new_label != 0)
2364 new_label = get_label_before (new_label);
2365 else
2366 new_label = find_end_label ();
2367
2368 delay_list
2369 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2370 slots_filled++;
2371 reorg_redirect_jump (trial, new_label);
2372
2373 /* If we merged because we both jumped to the same place,
2374 redirect the original insn also. */
2375 if (target)
2376 reorg_redirect_jump (insn, new_label);
2377 }
2378 }
2379
2380 /* If this is an unconditional jump, then try to get insns from the
2381 target of the jump. */
2382 if (GET_CODE (insn) == JUMP_INSN
2383 && simplejump_p (insn)
2384 && slots_filled != slots_to_fill)
2385 delay_list
2386 = fill_slots_from_thread (insn, const_true_rtx,
2387 next_active_insn (JUMP_LABEL (insn)),
2388 NULL, 1, 1,
2389 own_thread_p (JUMP_LABEL (insn),
2390 JUMP_LABEL (insn), 0),
2391 slots_to_fill, &slots_filled,
2392 delay_list);
2393
2394 if (delay_list)
2395 unfilled_slots_base[i]
2396 = emit_delay_sequence (insn, delay_list, slots_filled);
2397
2398 if (slots_to_fill == slots_filled)
2399 unfilled_slots_base[i] = 0;
2400
2401 note_delay_statistics (slots_filled, 0);
2402 }
2403
2404 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2405 /* See if the epilogue needs any delay slots. Try to fill them if so.
2406 The only thing we can do is scan backwards from the end of the
2407 function. If we did this in a previous pass, it is incorrect to do it
2408 again. */
2409 if (current_function_epilogue_delay_list)
2410 return;
2411
2412 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2413 if (slots_to_fill == 0)
2414 return;
2415
2416 slots_filled = 0;
2417 CLEAR_RESOURCE (&set);
2418
2419 /* The frame pointer and stack pointer are needed at the beginning of
2420 the epilogue, so instructions setting them can not be put in the
2421 epilogue delay slot. However, everything else needed at function
2422 end is safe, so we don't want to use end_of_function_needs here. */
2423 CLEAR_RESOURCE (&needed);
2424 if (frame_pointer_needed)
2425 {
2426 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2427 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2428 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2429 #endif
2430 if (! EXIT_IGNORE_STACK
2431 || current_function_sp_is_unchanging)
2432 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2433 }
2434 else
2435 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2436
2437 #ifdef EPILOGUE_USES
2438 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2439 {
2440 if (EPILOGUE_USES (i))
2441 SET_HARD_REG_BIT (needed.regs, i);
2442 }
2443 #endif
2444
2445 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2446 trial = PREV_INSN (trial))
2447 {
2448 if (GET_CODE (trial) == NOTE)
2449 continue;
2450 pat = PATTERN (trial);
2451 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2452 continue;
2453
2454 if (! insn_references_resource_p (trial, &set, 1)
2455 && ! insn_sets_resource_p (trial, &needed, 1)
2456 && ! insn_sets_resource_p (trial, &set, 1)
2457 #ifdef HAVE_cc0
2458 /* Don't want to mess with cc0 here. */
2459 && ! reg_mentioned_p (cc0_rtx, pat)
2460 #endif
2461 && ! can_throw_internal (trial))
2462 {
2463 trial = try_split (pat, trial, 1);
2464 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2465 {
2466 /* Here as well we are searching backward, so put the
2467 insns we find on the head of the list. */
2468
2469 current_function_epilogue_delay_list
2470 = gen_rtx_INSN_LIST (VOIDmode, trial,
2471 current_function_epilogue_delay_list);
2472 mark_end_of_function_resources (trial, 1);
2473 update_block (trial, trial);
2474 delete_related_insns (trial);
2475
2476 /* Clear deleted bit so final.c will output the insn. */
2477 INSN_DELETED_P (trial) = 0;
2478
2479 if (slots_to_fill == ++slots_filled)
2480 break;
2481 continue;
2482 }
2483 }
2484
2485 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2486 mark_referenced_resources (trial, &needed, 1);
2487 }
2488
2489 note_delay_statistics (slots_filled, 0);
2490 #endif
2491 }
2492 \f
2493 /* Try to find insns to place in delay slots.
2494
2495 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2496 or is an unconditional branch if CONDITION is const_true_rtx.
2497 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2498
2499 THREAD is a flow-of-control, either the insns to be executed if the
2500 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2501
2502 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2503 to see if any potential delay slot insns set things needed there.
2504
2505 LIKELY is nonzero if it is extremely likely that the branch will be
2506 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2507 end of a loop back up to the top.
2508
2509 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2510 thread. I.e., it is the fallthrough code of our jump or the target of the
2511 jump when we are the only jump going there.
2512
2513 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2514 case, we can only take insns from the head of the thread for our delay
2515 slot. We then adjust the jump to point after the insns we have taken. */
2516
2517 static rtx
2518 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2519 rtx opposite_thread, int likely, int thread_if_true,
2520 int own_thread, int slots_to_fill,
2521 int *pslots_filled, rtx delay_list)
2522 {
2523 rtx new_thread;
2524 struct resources opposite_needed, set, needed;
2525 rtx trial;
2526 int lose = 0;
2527 int must_annul = 0;
2528 int flags;
2529
2530 /* Validate our arguments. */
2531 if ((condition == const_true_rtx && ! thread_if_true)
2532 || (! own_thread && ! thread_if_true))
2533 abort ();
2534
2535 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2536
2537 /* If our thread is the end of subroutine, we can't get any delay
2538 insns from that. */
2539 if (thread == 0)
2540 return delay_list;
2541
2542 /* If this is an unconditional branch, nothing is needed at the
2543 opposite thread. Otherwise, compute what is needed there. */
2544 if (condition == const_true_rtx)
2545 CLEAR_RESOURCE (&opposite_needed);
2546 else
2547 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2548
2549 /* If the insn at THREAD can be split, do it here to avoid having to
2550 update THREAD and NEW_THREAD if it is done in the loop below. Also
2551 initialize NEW_THREAD. */
2552
2553 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2554
2555 /* Scan insns at THREAD. We are looking for an insn that can be removed
2556 from THREAD (it neither sets nor references resources that were set
2557 ahead of it and it doesn't set anything needs by the insns ahead of
2558 it) and that either can be placed in an annulling insn or aren't
2559 needed at OPPOSITE_THREAD. */
2560
2561 CLEAR_RESOURCE (&needed);
2562 CLEAR_RESOURCE (&set);
2563
2564 /* If we do not own this thread, we must stop as soon as we find
2565 something that we can't put in a delay slot, since all we can do
2566 is branch into THREAD at a later point. Therefore, labels stop
2567 the search if this is not the `true' thread. */
2568
2569 for (trial = thread;
2570 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2571 trial = next_nonnote_insn (trial))
2572 {
2573 rtx pat, old_trial;
2574
2575 /* If we have passed a label, we no longer own this thread. */
2576 if (GET_CODE (trial) == CODE_LABEL)
2577 {
2578 own_thread = 0;
2579 continue;
2580 }
2581
2582 pat = PATTERN (trial);
2583 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2584 continue;
2585
2586 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2587 don't separate or copy insns that set and use CC0. */
2588 if (! insn_references_resource_p (trial, &set, 1)
2589 && ! insn_sets_resource_p (trial, &set, 1)
2590 && ! insn_sets_resource_p (trial, &needed, 1)
2591 #ifdef HAVE_cc0
2592 && ! (reg_mentioned_p (cc0_rtx, pat)
2593 && (! own_thread || ! sets_cc0_p (pat)))
2594 #endif
2595 && ! can_throw_internal (trial))
2596 {
2597 rtx prior_insn;
2598
2599 /* If TRIAL is redundant with some insn before INSN, we don't
2600 actually need to add it to the delay list; we can merely pretend
2601 we did. */
2602 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2603 {
2604 fix_reg_dead_note (prior_insn, insn);
2605 if (own_thread)
2606 {
2607 update_block (trial, thread);
2608 if (trial == thread)
2609 {
2610 thread = next_active_insn (thread);
2611 if (new_thread == trial)
2612 new_thread = thread;
2613 }
2614
2615 delete_related_insns (trial);
2616 }
2617 else
2618 {
2619 update_reg_unused_notes (prior_insn, trial);
2620 new_thread = next_active_insn (trial);
2621 }
2622
2623 continue;
2624 }
2625
2626 /* There are two ways we can win: If TRIAL doesn't set anything
2627 needed at the opposite thread and can't trap, or if it can
2628 go into an annulled delay slot. */
2629 if (!must_annul
2630 && (condition == const_true_rtx
2631 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2632 && ! may_trap_p (pat))))
2633 {
2634 old_trial = trial;
2635 trial = try_split (pat, trial, 0);
2636 if (new_thread == old_trial)
2637 new_thread = trial;
2638 if (thread == old_trial)
2639 thread = trial;
2640 pat = PATTERN (trial);
2641 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2642 goto winner;
2643 }
2644 else if (0
2645 #ifdef ANNUL_IFTRUE_SLOTS
2646 || ! thread_if_true
2647 #endif
2648 #ifdef ANNUL_IFFALSE_SLOTS
2649 || thread_if_true
2650 #endif
2651 )
2652 {
2653 old_trial = trial;
2654 trial = try_split (pat, trial, 0);
2655 if (new_thread == old_trial)
2656 new_thread = trial;
2657 if (thread == old_trial)
2658 thread = trial;
2659 pat = PATTERN (trial);
2660 if ((must_annul || delay_list == NULL) && (thread_if_true
2661 ? check_annul_list_true_false (0, delay_list)
2662 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2663 : check_annul_list_true_false (1, delay_list)
2664 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2665 {
2666 rtx temp;
2667
2668 must_annul = 1;
2669 winner:
2670
2671 #ifdef HAVE_cc0
2672 if (reg_mentioned_p (cc0_rtx, pat))
2673 link_cc0_insns (trial);
2674 #endif
2675
2676 /* If we own this thread, delete the insn. If this is the
2677 destination of a branch, show that a basic block status
2678 may have been updated. In any case, mark the new
2679 starting point of this thread. */
2680 if (own_thread)
2681 {
2682 rtx note;
2683
2684 update_block (trial, thread);
2685 if (trial == thread)
2686 {
2687 thread = next_active_insn (thread);
2688 if (new_thread == trial)
2689 new_thread = thread;
2690 }
2691
2692 /* We are moving this insn, not deleting it. We must
2693 temporarily increment the use count on any referenced
2694 label lest it be deleted by delete_related_insns. */
2695 note = find_reg_note (trial, REG_LABEL, 0);
2696 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2697 if (note && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2698 LABEL_NUSES (XEXP (note, 0))++;
2699
2700 delete_related_insns (trial);
2701
2702 if (note && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2703 LABEL_NUSES (XEXP (note, 0))--;
2704 }
2705 else
2706 new_thread = next_active_insn (trial);
2707
2708 temp = own_thread ? trial : copy_rtx (trial);
2709 if (thread_if_true)
2710 INSN_FROM_TARGET_P (temp) = 1;
2711
2712 delay_list = add_to_delay_list (temp, delay_list);
2713
2714 if (slots_to_fill == ++(*pslots_filled))
2715 {
2716 /* Even though we have filled all the slots, we
2717 may be branching to a location that has a
2718 redundant insn. Skip any if so. */
2719 while (new_thread && ! own_thread
2720 && ! insn_sets_resource_p (new_thread, &set, 1)
2721 && ! insn_sets_resource_p (new_thread, &needed, 1)
2722 && ! insn_references_resource_p (new_thread,
2723 &set, 1)
2724 && (prior_insn
2725 = redundant_insn (new_thread, insn,
2726 delay_list)))
2727 {
2728 /* We know we do not own the thread, so no need
2729 to call update_block and delete_insn. */
2730 fix_reg_dead_note (prior_insn, insn);
2731 update_reg_unused_notes (prior_insn, new_thread);
2732 new_thread = next_active_insn (new_thread);
2733 }
2734 break;
2735 }
2736
2737 continue;
2738 }
2739 }
2740 }
2741
2742 /* This insn can't go into a delay slot. */
2743 lose = 1;
2744 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2745 mark_referenced_resources (trial, &needed, 1);
2746
2747 /* Ensure we don't put insns between the setting of cc and the comparison
2748 by moving a setting of cc into an earlier delay slot since these insns
2749 could clobber the condition code. */
2750 set.cc = 1;
2751
2752 /* If this insn is a register-register copy and the next insn has
2753 a use of our destination, change it to use our source. That way,
2754 it will become a candidate for our delay slot the next time
2755 through this loop. This case occurs commonly in loops that
2756 scan a list.
2757
2758 We could check for more complex cases than those tested below,
2759 but it doesn't seem worth it. It might also be a good idea to try
2760 to swap the two insns. That might do better.
2761
2762 We can't do this if the next insn modifies our destination, because
2763 that would make the replacement into the insn invalid. We also can't
2764 do this if it modifies our source, because it might be an earlyclobber
2765 operand. This latter test also prevents updating the contents of
2766 a PRE_INC. We also can't do this if there's overlap of source and
2767 destination. Overlap may happen for larger-than-register-size modes. */
2768
2769 if (GET_CODE (trial) == INSN && GET_CODE (pat) == SET
2770 && GET_CODE (SET_SRC (pat)) == REG
2771 && GET_CODE (SET_DEST (pat)) == REG
2772 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2773 {
2774 rtx next = next_nonnote_insn (trial);
2775
2776 if (next && GET_CODE (next) == INSN
2777 && GET_CODE (PATTERN (next)) != USE
2778 && ! reg_set_p (SET_DEST (pat), next)
2779 && ! reg_set_p (SET_SRC (pat), next)
2780 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2781 && ! modified_in_p (SET_DEST (pat), next))
2782 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2783 }
2784 }
2785
2786 /* If we stopped on a branch insn that has delay slots, see if we can
2787 steal some of the insns in those slots. */
2788 if (trial && GET_CODE (trial) == INSN
2789 && GET_CODE (PATTERN (trial)) == SEQUENCE
2790 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN)
2791 {
2792 /* If this is the `true' thread, we will want to follow the jump,
2793 so we can only do this if we have taken everything up to here. */
2794 if (thread_if_true && trial == new_thread)
2795 {
2796 delay_list
2797 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2798 delay_list, &set, &needed,
2799 &opposite_needed, slots_to_fill,
2800 pslots_filled, &must_annul,
2801 &new_thread);
2802 /* If we owned the thread and are told that it branched
2803 elsewhere, make sure we own the thread at the new location. */
2804 if (own_thread && trial != new_thread)
2805 own_thread = own_thread_p (new_thread, new_thread, 0);
2806 }
2807 else if (! thread_if_true)
2808 delay_list
2809 = steal_delay_list_from_fallthrough (insn, condition,
2810 PATTERN (trial),
2811 delay_list, &set, &needed,
2812 &opposite_needed, slots_to_fill,
2813 pslots_filled, &must_annul);
2814 }
2815
2816 /* If we haven't found anything for this delay slot and it is very
2817 likely that the branch will be taken, see if the insn at our target
2818 increments or decrements a register with an increment that does not
2819 depend on the destination register. If so, try to place the opposite
2820 arithmetic insn after the jump insn and put the arithmetic insn in the
2821 delay slot. If we can't do this, return. */
2822 if (delay_list == 0 && likely && new_thread
2823 && GET_CODE (new_thread) == INSN
2824 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2825 && asm_noperands (PATTERN (new_thread)) < 0)
2826 {
2827 rtx pat = PATTERN (new_thread);
2828 rtx dest;
2829 rtx src;
2830
2831 trial = new_thread;
2832 pat = PATTERN (trial);
2833
2834 if (GET_CODE (trial) != INSN
2835 || GET_CODE (pat) != SET
2836 || ! eligible_for_delay (insn, 0, trial, flags)
2837 || can_throw_internal (trial))
2838 return 0;
2839
2840 dest = SET_DEST (pat), src = SET_SRC (pat);
2841 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2842 && rtx_equal_p (XEXP (src, 0), dest)
2843 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2844 && ! side_effects_p (pat))
2845 {
2846 rtx other = XEXP (src, 1);
2847 rtx new_arith;
2848 rtx ninsn;
2849
2850 /* If this is a constant adjustment, use the same code with
2851 the negated constant. Otherwise, reverse the sense of the
2852 arithmetic. */
2853 if (GET_CODE (other) == CONST_INT)
2854 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2855 negate_rtx (GET_MODE (src), other));
2856 else
2857 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2858 GET_MODE (src), dest, other);
2859
2860 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2861 insn);
2862
2863 if (recog_memoized (ninsn) < 0
2864 || (extract_insn (ninsn), ! constrain_operands (1)))
2865 {
2866 delete_related_insns (ninsn);
2867 return 0;
2868 }
2869
2870 if (own_thread)
2871 {
2872 update_block (trial, thread);
2873 if (trial == thread)
2874 {
2875 thread = next_active_insn (thread);
2876 if (new_thread == trial)
2877 new_thread = thread;
2878 }
2879 delete_related_insns (trial);
2880 }
2881 else
2882 new_thread = next_active_insn (trial);
2883
2884 ninsn = own_thread ? trial : copy_rtx (trial);
2885 if (thread_if_true)
2886 INSN_FROM_TARGET_P (ninsn) = 1;
2887
2888 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2889 (*pslots_filled)++;
2890 }
2891 }
2892
2893 if (delay_list && must_annul)
2894 INSN_ANNULLED_BRANCH_P (insn) = 1;
2895
2896 /* If we are to branch into the middle of this thread, find an appropriate
2897 label or make a new one if none, and redirect INSN to it. If we hit the
2898 end of the function, use the end-of-function label. */
2899 if (new_thread != thread)
2900 {
2901 rtx label;
2902
2903 if (! thread_if_true)
2904 abort ();
2905
2906 if (new_thread && GET_CODE (new_thread) == JUMP_INSN
2907 && (simplejump_p (new_thread)
2908 || GET_CODE (PATTERN (new_thread)) == RETURN)
2909 && redirect_with_delay_list_safe_p (insn,
2910 JUMP_LABEL (new_thread),
2911 delay_list))
2912 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2913
2914 if (new_thread == 0)
2915 label = find_end_label ();
2916 else if (GET_CODE (new_thread) == CODE_LABEL)
2917 label = new_thread;
2918 else
2919 label = get_label_before (new_thread);
2920
2921 reorg_redirect_jump (insn, label);
2922 }
2923
2924 return delay_list;
2925 }
2926 \f
2927 /* Make another attempt to find insns to place in delay slots.
2928
2929 We previously looked for insns located in front of the delay insn
2930 and, for non-jump delay insns, located behind the delay insn.
2931
2932 Here only try to schedule jump insns and try to move insns from either
2933 the target or the following insns into the delay slot. If annulling is
2934 supported, we will be likely to do this. Otherwise, we can do this only
2935 if safe. */
2936
2937 static void
2938 fill_eager_delay_slots (void)
2939 {
2940 rtx insn;
2941 int i;
2942 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2943
2944 for (i = 0; i < num_unfilled_slots; i++)
2945 {
2946 rtx condition;
2947 rtx target_label, insn_at_target, fallthrough_insn;
2948 rtx delay_list = 0;
2949 int own_target;
2950 int own_fallthrough;
2951 int prediction, slots_to_fill, slots_filled;
2952
2953 insn = unfilled_slots_base[i];
2954 if (insn == 0
2955 || INSN_DELETED_P (insn)
2956 || GET_CODE (insn) != JUMP_INSN
2957 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
2958 continue;
2959
2960 slots_to_fill = num_delay_slots (insn);
2961 /* Some machine description have defined instructions to have
2962 delay slots only in certain circumstances which may depend on
2963 nearby insns (which change due to reorg's actions).
2964
2965 For example, the PA port normally has delay slots for unconditional
2966 jumps.
2967
2968 However, the PA port claims such jumps do not have a delay slot
2969 if they are immediate successors of certain CALL_INSNs. This
2970 allows the port to favor filling the delay slot of the call with
2971 the unconditional jump. */
2972 if (slots_to_fill == 0)
2973 continue;
2974
2975 slots_filled = 0;
2976 target_label = JUMP_LABEL (insn);
2977 condition = get_branch_condition (insn, target_label);
2978
2979 if (condition == 0)
2980 continue;
2981
2982 /* Get the next active fallthrough and target insns and see if we own
2983 them. Then see whether the branch is likely true. We don't need
2984 to do a lot of this for unconditional branches. */
2985
2986 insn_at_target = next_active_insn (target_label);
2987 own_target = own_thread_p (target_label, target_label, 0);
2988
2989 if (condition == const_true_rtx)
2990 {
2991 own_fallthrough = 0;
2992 fallthrough_insn = 0;
2993 prediction = 2;
2994 }
2995 else
2996 {
2997 fallthrough_insn = next_active_insn (insn);
2998 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
2999 prediction = mostly_true_jump (insn, condition);
3000 }
3001
3002 /* If this insn is expected to branch, first try to get insns from our
3003 target, then our fallthrough insns. If it is not expected to branch,
3004 try the other order. */
3005
3006 if (prediction > 0)
3007 {
3008 delay_list
3009 = fill_slots_from_thread (insn, condition, insn_at_target,
3010 fallthrough_insn, prediction == 2, 1,
3011 own_target,
3012 slots_to_fill, &slots_filled, delay_list);
3013
3014 if (delay_list == 0 && own_fallthrough)
3015 {
3016 /* Even though we didn't find anything for delay slots,
3017 we might have found a redundant insn which we deleted
3018 from the thread that was filled. So we have to recompute
3019 the next insn at the target. */
3020 target_label = JUMP_LABEL (insn);
3021 insn_at_target = next_active_insn (target_label);
3022
3023 delay_list
3024 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3025 insn_at_target, 0, 0,
3026 own_fallthrough,
3027 slots_to_fill, &slots_filled,
3028 delay_list);
3029 }
3030 }
3031 else
3032 {
3033 if (own_fallthrough)
3034 delay_list
3035 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3036 insn_at_target, 0, 0,
3037 own_fallthrough,
3038 slots_to_fill, &slots_filled,
3039 delay_list);
3040
3041 if (delay_list == 0)
3042 delay_list
3043 = fill_slots_from_thread (insn, condition, insn_at_target,
3044 next_active_insn (insn), 0, 1,
3045 own_target,
3046 slots_to_fill, &slots_filled,
3047 delay_list);
3048 }
3049
3050 if (delay_list)
3051 unfilled_slots_base[i]
3052 = emit_delay_sequence (insn, delay_list, slots_filled);
3053
3054 if (slots_to_fill == slots_filled)
3055 unfilled_slots_base[i] = 0;
3056
3057 note_delay_statistics (slots_filled, 1);
3058 }
3059 }
3060 \f
3061 /* Once we have tried two ways to fill a delay slot, make a pass over the
3062 code to try to improve the results and to do such things as more jump
3063 threading. */
3064
3065 static void
3066 relax_delay_slots (rtx first)
3067 {
3068 rtx insn, next, pat;
3069 rtx trial, delay_insn, target_label;
3070
3071 /* Look at every JUMP_INSN and see if we can improve it. */
3072 for (insn = first; insn; insn = next)
3073 {
3074 rtx other;
3075
3076 next = next_active_insn (insn);
3077
3078 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3079 the next insn, or jumps to a label that is not the last of a
3080 group of consecutive labels. */
3081 if (GET_CODE (insn) == JUMP_INSN
3082 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3083 && (target_label = JUMP_LABEL (insn)) != 0)
3084 {
3085 target_label = follow_jumps (target_label);
3086 target_label = prev_label (next_active_insn (target_label));
3087
3088 if (target_label == 0)
3089 target_label = find_end_label ();
3090
3091 if (next_active_insn (target_label) == next
3092 && ! condjump_in_parallel_p (insn))
3093 {
3094 delete_jump (insn);
3095 continue;
3096 }
3097
3098 if (target_label != JUMP_LABEL (insn))
3099 reorg_redirect_jump (insn, target_label);
3100
3101 /* See if this jump branches around an unconditional jump.
3102 If so, invert this jump and point it to the target of the
3103 second jump. */
3104 if (next && GET_CODE (next) == JUMP_INSN
3105 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3106 && next_active_insn (target_label) == next_active_insn (next)
3107 && no_labels_between_p (insn, next))
3108 {
3109 rtx label = JUMP_LABEL (next);
3110
3111 /* Be careful how we do this to avoid deleting code or
3112 labels that are momentarily dead. See similar optimization
3113 in jump.c.
3114
3115 We also need to ensure we properly handle the case when
3116 invert_jump fails. */
3117
3118 ++LABEL_NUSES (target_label);
3119 if (label)
3120 ++LABEL_NUSES (label);
3121
3122 if (invert_jump (insn, label, 1))
3123 {
3124 delete_related_insns (next);
3125 next = insn;
3126 }
3127
3128 if (label)
3129 --LABEL_NUSES (label);
3130
3131 if (--LABEL_NUSES (target_label) == 0)
3132 delete_related_insns (target_label);
3133
3134 continue;
3135 }
3136 }
3137
3138 /* If this is an unconditional jump and the previous insn is a
3139 conditional jump, try reversing the condition of the previous
3140 insn and swapping our targets. The next pass might be able to
3141 fill the slots.
3142
3143 Don't do this if we expect the conditional branch to be true, because
3144 we would then be making the more common case longer. */
3145
3146 if (GET_CODE (insn) == JUMP_INSN
3147 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3148 && (other = prev_active_insn (insn)) != 0
3149 && (condjump_p (other) || condjump_in_parallel_p (other))
3150 && no_labels_between_p (other, insn)
3151 && 0 > mostly_true_jump (other,
3152 get_branch_condition (other,
3153 JUMP_LABEL (other))))
3154 {
3155 rtx other_target = JUMP_LABEL (other);
3156 target_label = JUMP_LABEL (insn);
3157
3158 if (invert_jump (other, target_label, 0))
3159 reorg_redirect_jump (insn, other_target);
3160 }
3161
3162 /* Now look only at cases where we have filled a delay slot. */
3163 if (GET_CODE (insn) != INSN
3164 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3165 continue;
3166
3167 pat = PATTERN (insn);
3168 delay_insn = XVECEXP (pat, 0, 0);
3169
3170 /* See if the first insn in the delay slot is redundant with some
3171 previous insn. Remove it from the delay slot if so; then set up
3172 to reprocess this insn. */
3173 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3174 {
3175 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3176 next = prev_active_insn (next);
3177 continue;
3178 }
3179
3180 /* See if we have a RETURN insn with a filled delay slot followed
3181 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3182 the first RETURN (but not it's delay insn). This gives the same
3183 effect in fewer instructions.
3184
3185 Only do so if optimizing for size since this results in slower, but
3186 smaller code. */
3187 if (optimize_size
3188 && GET_CODE (PATTERN (delay_insn)) == RETURN
3189 && next
3190 && GET_CODE (next) == JUMP_INSN
3191 && GET_CODE (PATTERN (next)) == RETURN)
3192 {
3193 rtx after;
3194 int i;
3195
3196 /* Delete the RETURN and just execute the delay list insns.
3197
3198 We do this by deleting the INSN containing the SEQUENCE, then
3199 re-emitting the insns separately, and then deleting the RETURN.
3200 This allows the count of the jump target to be properly
3201 decremented. */
3202
3203 /* Clear the from target bit, since these insns are no longer
3204 in delay slots. */
3205 for (i = 0; i < XVECLEN (pat, 0); i++)
3206 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3207
3208 trial = PREV_INSN (insn);
3209 delete_related_insns (insn);
3210 if (GET_CODE (pat) != SEQUENCE)
3211 abort ();
3212 after = trial;
3213 for (i = 0; i < XVECLEN (pat, 0); i++)
3214 {
3215 rtx this_insn = XVECEXP (pat, 0, i);
3216 add_insn_after (this_insn, after);
3217 after = this_insn;
3218 }
3219 delete_scheduled_jump (delay_insn);
3220 continue;
3221 }
3222
3223 /* Now look only at the cases where we have a filled JUMP_INSN. */
3224 if (GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
3225 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3226 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3227 continue;
3228
3229 target_label = JUMP_LABEL (delay_insn);
3230
3231 if (target_label)
3232 {
3233 /* If this jump goes to another unconditional jump, thread it, but
3234 don't convert a jump into a RETURN here. */
3235 trial = follow_jumps (target_label);
3236 /* We use next_real_insn instead of next_active_insn, so that
3237 the special USE insns emitted by reorg won't be ignored.
3238 If they are ignored, then they will get deleted if target_label
3239 is now unreachable, and that would cause mark_target_live_regs
3240 to fail. */
3241 trial = prev_label (next_real_insn (trial));
3242 if (trial == 0 && target_label != 0)
3243 trial = find_end_label ();
3244
3245 if (trial != target_label
3246 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3247 {
3248 reorg_redirect_jump (delay_insn, trial);
3249 target_label = trial;
3250 }
3251
3252 /* If the first insn at TARGET_LABEL is redundant with a previous
3253 insn, redirect the jump to the following insn process again. */
3254 trial = next_active_insn (target_label);
3255 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3256 && redundant_insn (trial, insn, 0)
3257 && ! can_throw_internal (trial))
3258 {
3259 rtx tmp;
3260
3261 /* Figure out where to emit the special USE insn so we don't
3262 later incorrectly compute register live/death info. */
3263 tmp = next_active_insn (trial);
3264 if (tmp == 0)
3265 tmp = find_end_label ();
3266
3267 /* Insert the special USE insn and update dataflow info. */
3268 update_block (trial, tmp);
3269
3270 /* Now emit a label before the special USE insn, and
3271 redirect our jump to the new label. */
3272 target_label = get_label_before (PREV_INSN (tmp));
3273 reorg_redirect_jump (delay_insn, target_label);
3274 next = insn;
3275 continue;
3276 }
3277
3278 /* Similarly, if it is an unconditional jump with one insn in its
3279 delay list and that insn is redundant, thread the jump. */
3280 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3281 && XVECLEN (PATTERN (trial), 0) == 2
3282 && GET_CODE (XVECEXP (PATTERN (trial), 0, 0)) == JUMP_INSN
3283 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3284 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3285 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3286 {
3287 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3288 if (target_label == 0)
3289 target_label = find_end_label ();
3290
3291 if (redirect_with_delay_slots_safe_p (delay_insn, target_label,
3292 insn))
3293 {
3294 reorg_redirect_jump (delay_insn, target_label);
3295 next = insn;
3296 continue;
3297 }
3298 }
3299 }
3300
3301 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3302 && prev_active_insn (target_label) == insn
3303 && ! condjump_in_parallel_p (delay_insn)
3304 #ifdef HAVE_cc0
3305 /* If the last insn in the delay slot sets CC0 for some insn,
3306 various code assumes that it is in a delay slot. We could
3307 put it back where it belonged and delete the register notes,
3308 but it doesn't seem worthwhile in this uncommon case. */
3309 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3310 REG_CC_USER, NULL_RTX)
3311 #endif
3312 )
3313 {
3314 rtx after;
3315 int i;
3316
3317 /* All this insn does is execute its delay list and jump to the
3318 following insn. So delete the jump and just execute the delay
3319 list insns.
3320
3321 We do this by deleting the INSN containing the SEQUENCE, then
3322 re-emitting the insns separately, and then deleting the jump.
3323 This allows the count of the jump target to be properly
3324 decremented. */
3325
3326 /* Clear the from target bit, since these insns are no longer
3327 in delay slots. */
3328 for (i = 0; i < XVECLEN (pat, 0); i++)
3329 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3330
3331 trial = PREV_INSN (insn);
3332 delete_related_insns (insn);
3333 if (GET_CODE (pat) != SEQUENCE)
3334 abort ();
3335 after = trial;
3336 for (i = 0; i < XVECLEN (pat, 0); i++)
3337 {
3338 rtx this_insn = XVECEXP (pat, 0, i);
3339 add_insn_after (this_insn, after);
3340 after = this_insn;
3341 }
3342 delete_scheduled_jump (delay_insn);
3343 continue;
3344 }
3345
3346 /* See if this is an unconditional jump around a single insn which is
3347 identical to the one in its delay slot. In this case, we can just
3348 delete the branch and the insn in its delay slot. */
3349 if (next && GET_CODE (next) == INSN
3350 && prev_label (next_active_insn (next)) == target_label
3351 && simplejump_p (insn)
3352 && XVECLEN (pat, 0) == 2
3353 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3354 {
3355 delete_related_insns (insn);
3356 continue;
3357 }
3358
3359 /* See if this jump (with its delay slots) branches around another
3360 jump (without delay slots). If so, invert this jump and point
3361 it to the target of the second jump. We cannot do this for
3362 annulled jumps, though. Again, don't convert a jump to a RETURN
3363 here. */
3364 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3365 && next && GET_CODE (next) == JUMP_INSN
3366 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3367 && next_active_insn (target_label) == next_active_insn (next)
3368 && no_labels_between_p (insn, next))
3369 {
3370 rtx label = JUMP_LABEL (next);
3371 rtx old_label = JUMP_LABEL (delay_insn);
3372
3373 if (label == 0)
3374 label = find_end_label ();
3375
3376 /* find_end_label can generate a new label. Check this first. */
3377 if (no_labels_between_p (insn, next)
3378 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3379 {
3380 /* Be careful how we do this to avoid deleting code or labels
3381 that are momentarily dead. See similar optimization in
3382 jump.c */
3383 if (old_label)
3384 ++LABEL_NUSES (old_label);
3385
3386 if (invert_jump (delay_insn, label, 1))
3387 {
3388 int i;
3389
3390 /* Must update the INSN_FROM_TARGET_P bits now that
3391 the branch is reversed, so that mark_target_live_regs
3392 will handle the delay slot insn correctly. */
3393 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3394 {
3395 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3396 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3397 }
3398
3399 delete_related_insns (next);
3400 next = insn;
3401 }
3402
3403 if (old_label && --LABEL_NUSES (old_label) == 0)
3404 delete_related_insns (old_label);
3405 continue;
3406 }
3407 }
3408
3409 /* If we own the thread opposite the way this insn branches, see if we
3410 can merge its delay slots with following insns. */
3411 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3412 && own_thread_p (NEXT_INSN (insn), 0, 1))
3413 try_merge_delay_insns (insn, next);
3414 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3415 && own_thread_p (target_label, target_label, 0))
3416 try_merge_delay_insns (insn, next_active_insn (target_label));
3417
3418 /* If we get here, we haven't deleted INSN. But we may have deleted
3419 NEXT, so recompute it. */
3420 next = next_active_insn (insn);
3421 }
3422 }
3423 \f
3424 #ifdef HAVE_return
3425
3426 /* Look for filled jumps to the end of function label. We can try to convert
3427 them into RETURN insns if the insns in the delay slot are valid for the
3428 RETURN as well. */
3429
3430 static void
3431 make_return_insns (rtx first)
3432 {
3433 rtx insn, jump_insn, pat;
3434 rtx real_return_label = end_of_function_label;
3435 int slots, i;
3436
3437 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3438 /* If a previous pass filled delay slots in the epilogue, things get a
3439 bit more complicated, as those filler insns would generally (without
3440 data flow analysis) have to be executed after any existing branch
3441 delay slot filler insns. It is also unknown whether such a
3442 transformation would actually be profitable. Note that the existing
3443 code only cares for branches with (some) filled delay slots. */
3444 if (current_function_epilogue_delay_list != NULL)
3445 return;
3446 #endif
3447
3448 /* See if there is a RETURN insn in the function other than the one we
3449 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3450 into a RETURN to jump to it. */
3451 for (insn = first; insn; insn = NEXT_INSN (insn))
3452 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
3453 {
3454 real_return_label = get_label_before (insn);
3455 break;
3456 }
3457
3458 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3459 was equal to END_OF_FUNCTION_LABEL. */
3460 LABEL_NUSES (real_return_label)++;
3461
3462 /* Clear the list of insns to fill so we can use it. */
3463 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3464
3465 for (insn = first; insn; insn = NEXT_INSN (insn))
3466 {
3467 int flags;
3468
3469 /* Only look at filled JUMP_INSNs that go to the end of function
3470 label. */
3471 if (GET_CODE (insn) != INSN
3472 || GET_CODE (PATTERN (insn)) != SEQUENCE
3473 || GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) != JUMP_INSN
3474 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3475 continue;
3476
3477 pat = PATTERN (insn);
3478 jump_insn = XVECEXP (pat, 0, 0);
3479
3480 /* If we can't make the jump into a RETURN, try to redirect it to the best
3481 RETURN and go on to the next insn. */
3482 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3483 {
3484 /* Make sure redirecting the jump will not invalidate the delay
3485 slot insns. */
3486 if (redirect_with_delay_slots_safe_p (jump_insn,
3487 real_return_label,
3488 insn))
3489 reorg_redirect_jump (jump_insn, real_return_label);
3490 continue;
3491 }
3492
3493 /* See if this RETURN can accept the insns current in its delay slot.
3494 It can if it has more or an equal number of slots and the contents
3495 of each is valid. */
3496
3497 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3498 slots = num_delay_slots (jump_insn);
3499 if (slots >= XVECLEN (pat, 0) - 1)
3500 {
3501 for (i = 1; i < XVECLEN (pat, 0); i++)
3502 if (! (
3503 #ifdef ANNUL_IFFALSE_SLOTS
3504 (INSN_ANNULLED_BRANCH_P (jump_insn)
3505 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3506 ? eligible_for_annul_false (jump_insn, i - 1,
3507 XVECEXP (pat, 0, i), flags) :
3508 #endif
3509 #ifdef ANNUL_IFTRUE_SLOTS
3510 (INSN_ANNULLED_BRANCH_P (jump_insn)
3511 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3512 ? eligible_for_annul_true (jump_insn, i - 1,
3513 XVECEXP (pat, 0, i), flags) :
3514 #endif
3515 eligible_for_delay (jump_insn, i - 1,
3516 XVECEXP (pat, 0, i), flags)))
3517 break;
3518 }
3519 else
3520 i = 0;
3521
3522 if (i == XVECLEN (pat, 0))
3523 continue;
3524
3525 /* We have to do something with this insn. If it is an unconditional
3526 RETURN, delete the SEQUENCE and output the individual insns,
3527 followed by the RETURN. Then set things up so we try to find
3528 insns for its delay slots, if it needs some. */
3529 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3530 {
3531 rtx prev = PREV_INSN (insn);
3532
3533 delete_related_insns (insn);
3534 for (i = 1; i < XVECLEN (pat, 0); i++)
3535 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3536
3537 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3538 emit_barrier_after (insn);
3539
3540 if (slots)
3541 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3542 }
3543 else
3544 /* It is probably more efficient to keep this with its current
3545 delay slot as a branch to a RETURN. */
3546 reorg_redirect_jump (jump_insn, real_return_label);
3547 }
3548
3549 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3550 new delay slots we have created. */
3551 if (--LABEL_NUSES (real_return_label) == 0)
3552 delete_related_insns (real_return_label);
3553
3554 fill_simple_delay_slots (1);
3555 fill_simple_delay_slots (0);
3556 }
3557 #endif
3558 \f
3559 /* Try to find insns to place in delay slots. */
3560
3561 void
3562 dbr_schedule (rtx first, FILE *file)
3563 {
3564 rtx insn, next, epilogue_insn = 0;
3565 int i;
3566 #if 0
3567 int old_flag_no_peephole = flag_no_peephole;
3568
3569 /* Execute `final' once in prescan mode to delete any insns that won't be
3570 used. Don't let final try to do any peephole optimization--it will
3571 ruin dataflow information for this pass. */
3572
3573 flag_no_peephole = 1;
3574 final (first, 0, NO_DEBUG, 1, 1);
3575 flag_no_peephole = old_flag_no_peephole;
3576 #endif
3577
3578 /* If the current function has no insns other than the prologue and
3579 epilogue, then do not try to fill any delay slots. */
3580 if (n_basic_blocks == 0)
3581 return;
3582
3583 /* Find the highest INSN_UID and allocate and initialize our map from
3584 INSN_UID's to position in code. */
3585 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3586 {
3587 if (INSN_UID (insn) > max_uid)
3588 max_uid = INSN_UID (insn);
3589 if (GET_CODE (insn) == NOTE
3590 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
3591 epilogue_insn = insn;
3592 }
3593
3594 uid_to_ruid = xmalloc ((max_uid + 1) * sizeof (int));
3595 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3596 uid_to_ruid[INSN_UID (insn)] = i;
3597
3598 /* Initialize the list of insns that need filling. */
3599 if (unfilled_firstobj == 0)
3600 {
3601 gcc_obstack_init (&unfilled_slots_obstack);
3602 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3603 }
3604
3605 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3606 {
3607 rtx target;
3608
3609 INSN_ANNULLED_BRANCH_P (insn) = 0;
3610 INSN_FROM_TARGET_P (insn) = 0;
3611
3612 /* Skip vector tables. We can't get attributes for them. */
3613 if (GET_CODE (insn) == JUMP_INSN
3614 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3615 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3616 continue;
3617
3618 if (num_delay_slots (insn) > 0)
3619 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3620
3621 /* Ensure all jumps go to the last of a set of consecutive labels. */
3622 if (GET_CODE (insn) == JUMP_INSN
3623 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3624 && JUMP_LABEL (insn) != 0
3625 && ((target = prev_label (next_active_insn (JUMP_LABEL (insn))))
3626 != JUMP_LABEL (insn)))
3627 redirect_jump (insn, target, 1);
3628 }
3629
3630 init_resource_info (epilogue_insn);
3631
3632 /* Show we haven't computed an end-of-function label yet. */
3633 end_of_function_label = 0;
3634
3635 /* Initialize the statistics for this function. */
3636 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3637 memset (num_filled_delays, 0, sizeof num_filled_delays);
3638
3639 /* Now do the delay slot filling. Try everything twice in case earlier
3640 changes make more slots fillable. */
3641
3642 for (reorg_pass_number = 0;
3643 reorg_pass_number < MAX_REORG_PASSES;
3644 reorg_pass_number++)
3645 {
3646 fill_simple_delay_slots (1);
3647 fill_simple_delay_slots (0);
3648 fill_eager_delay_slots ();
3649 relax_delay_slots (first);
3650 }
3651
3652 /* Delete any USE insns made by update_block; subsequent passes don't need
3653 them or know how to deal with them. */
3654 for (insn = first; insn; insn = next)
3655 {
3656 next = NEXT_INSN (insn);
3657
3658 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
3659 && INSN_P (XEXP (PATTERN (insn), 0)))
3660 next = delete_related_insns (insn);
3661 }
3662
3663 /* If we made an end of function label, indicate that it is now
3664 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3665 If it is now unused, delete it. */
3666 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3667 delete_related_insns (end_of_function_label);
3668
3669 #ifdef HAVE_return
3670 if (HAVE_return && end_of_function_label != 0)
3671 make_return_insns (first);
3672 #endif
3673
3674 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3675
3676 /* It is not clear why the line below is needed, but it does seem to be. */
3677 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3678
3679 if (file)
3680 {
3681 int i, j, need_comma;
3682 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3683 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3684
3685 for (reorg_pass_number = 0;
3686 reorg_pass_number < MAX_REORG_PASSES;
3687 reorg_pass_number++)
3688 {
3689 fprintf (file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3690 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3691 {
3692 need_comma = 0;
3693 fprintf (file, ";; Reorg function #%d\n", i);
3694
3695 fprintf (file, ";; %d insns needing delay slots\n;; ",
3696 num_insns_needing_delays[i][reorg_pass_number]);
3697
3698 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3699 if (num_filled_delays[i][j][reorg_pass_number])
3700 {
3701 if (need_comma)
3702 fprintf (file, ", ");
3703 need_comma = 1;
3704 fprintf (file, "%d got %d delays",
3705 num_filled_delays[i][j][reorg_pass_number], j);
3706 }
3707 fprintf (file, "\n");
3708 }
3709 }
3710 memset (total_delay_slots, 0, sizeof total_delay_slots);
3711 memset (total_annul_slots, 0, sizeof total_annul_slots);
3712 for (insn = first; insn; insn = NEXT_INSN (insn))
3713 {
3714 if (! INSN_DELETED_P (insn)
3715 && GET_CODE (insn) == INSN
3716 && GET_CODE (PATTERN (insn)) != USE
3717 && GET_CODE (PATTERN (insn)) != CLOBBER)
3718 {
3719 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3720 {
3721 j = XVECLEN (PATTERN (insn), 0) - 1;
3722 if (j > MAX_DELAY_HISTOGRAM)
3723 j = MAX_DELAY_HISTOGRAM;
3724 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3725 total_annul_slots[j]++;
3726 else
3727 total_delay_slots[j]++;
3728 }
3729 else if (num_delay_slots (insn) > 0)
3730 total_delay_slots[0]++;
3731 }
3732 }
3733 fprintf (file, ";; Reorg totals: ");
3734 need_comma = 0;
3735 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3736 {
3737 if (total_delay_slots[j])
3738 {
3739 if (need_comma)
3740 fprintf (file, ", ");
3741 need_comma = 1;
3742 fprintf (file, "%d got %d delays", total_delay_slots[j], j);
3743 }
3744 }
3745 fprintf (file, "\n");
3746 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3747 fprintf (file, ";; Reorg annuls: ");
3748 need_comma = 0;
3749 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3750 {
3751 if (total_annul_slots[j])
3752 {
3753 if (need_comma)
3754 fprintf (file, ", ");
3755 need_comma = 1;
3756 fprintf (file, "%d got %d delays", total_annul_slots[j], j);
3757 }
3758 }
3759 fprintf (file, "\n");
3760 #endif
3761 fprintf (file, "\n");
3762 }
3763
3764 /* For all JUMP insns, fill in branch prediction notes, so that during
3765 assembler output a target can set branch prediction bits in the code.
3766 We have to do this now, as up until this point the destinations of
3767 JUMPS can be moved around and changed, but past right here that cannot
3768 happen. */
3769 for (insn = first; insn; insn = NEXT_INSN (insn))
3770 {
3771 int pred_flags;
3772
3773 if (GET_CODE (insn) == INSN)
3774 {
3775 rtx pat = PATTERN (insn);
3776
3777 if (GET_CODE (pat) == SEQUENCE)
3778 insn = XVECEXP (pat, 0, 0);
3779 }
3780 if (GET_CODE (insn) != JUMP_INSN)
3781 continue;
3782
3783 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
3784 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_BR_PRED,
3785 GEN_INT (pred_flags),
3786 REG_NOTES (insn));
3787 }
3788 free_resource_info ();
3789 free (uid_to_ruid);
3790 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3791 /* SPARC assembler, for instance, emit warning when debug info is output
3792 into the delay slot. */
3793 {
3794 rtx link;
3795
3796 for (link = current_function_epilogue_delay_list;
3797 link;
3798 link = XEXP (link, 1))
3799 INSN_LOCATOR (XEXP (link, 0)) = 0;
3800 }
3801 #endif
3802 }
3803 #endif /* DELAY_SLOTS */