Divide REG_LABEL notes into REG_LABEL_OPERAND and REG_LABEL_TARGET.
[gcc.git] / gcc / reorg.c
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
6 Hacked by Michael Tiemann (tiemann@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Instruction reorganization pass.
25
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
33
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
38
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
43
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
48 is taken.
49
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
56
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
60
61 Three techniques for filling delay slots have been implemented so far:
62
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
71
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
84
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
93 branch.
94
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
104
105 Not yet implemented:
106
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
110
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
113
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "toplev.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
136 #include "timevar.h"
137 #include "target.h"
138 #include "tree-pass.h"
139
140 #ifdef DELAY_SLOTS
141
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
148
149 /* Insns which have delay slots that have not yet been filled. */
150
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
153
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
157
158 #define unfilled_slots_base \
159 ((rtx *) obstack_base (&unfilled_slots_obstack))
160
161 #define unfilled_slots_next \
162 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
163
164 /* Points to the label before the end of the function. */
165 static rtx end_of_function_label;
166
167 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
168 not always monotonically increase. */
169 static int *uid_to_ruid;
170
171 /* Highest valid index in `uid_to_ruid'. */
172 static int max_uid;
173
174 static int stop_search_p (rtx, int);
175 static int resource_conflicts_p (struct resources *, struct resources *);
176 static int insn_references_resource_p (rtx, struct resources *, int);
177 static int insn_sets_resource_p (rtx, struct resources *, int);
178 static rtx find_end_label (void);
179 static rtx emit_delay_sequence (rtx, rtx, int);
180 static rtx add_to_delay_list (rtx, rtx);
181 static rtx delete_from_delay_slot (rtx);
182 static void delete_scheduled_jump (rtx);
183 static void note_delay_statistics (int, int);
184 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
185 static rtx optimize_skip (rtx);
186 #endif
187 static int get_jump_flags (rtx, rtx);
188 static int rare_destination (rtx);
189 static int mostly_true_jump (rtx, rtx);
190 static rtx get_branch_condition (rtx, rtx);
191 static int condition_dominates_p (rtx, rtx);
192 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
194 static int check_annul_list_true_false (int, rtx);
195 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
196 struct resources *,
197 struct resources *,
198 struct resources *,
199 int, int *, int *, rtx *);
200 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
201 struct resources *,
202 struct resources *,
203 struct resources *,
204 int, int *, int *);
205 static void try_merge_delay_insns (rtx, rtx);
206 static rtx redundant_insn (rtx, rtx, rtx);
207 static int own_thread_p (rtx, rtx, int);
208 static void update_block (rtx, rtx);
209 static int reorg_redirect_jump (rtx, rtx);
210 static void update_reg_dead_notes (rtx, rtx);
211 static void fix_reg_dead_note (rtx, rtx);
212 static void update_reg_unused_notes (rtx, rtx);
213 static void fill_simple_delay_slots (int);
214 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
215 int, int, int, int,
216 int *, rtx);
217 static void fill_eager_delay_slots (void);
218 static void relax_delay_slots (rtx);
219 #ifdef HAVE_return
220 static void make_return_insns (rtx);
221 #endif
222 \f
223 /* Return TRUE if this insn should stop the search for insn to fill delay
224 slots. LABELS_P indicates that labels should terminate the search.
225 In all cases, jumps terminate the search. */
226
227 static int
228 stop_search_p (rtx insn, int labels_p)
229 {
230 if (insn == 0)
231 return 1;
232
233 /* If the insn can throw an exception that is caught within the function,
234 it may effectively perform a jump from the viewpoint of the function.
235 Therefore act like for a jump. */
236 if (can_throw_internal (insn))
237 return 1;
238
239 switch (GET_CODE (insn))
240 {
241 case NOTE:
242 case CALL_INSN:
243 return 0;
244
245 case CODE_LABEL:
246 return labels_p;
247
248 case JUMP_INSN:
249 case BARRIER:
250 return 1;
251
252 case INSN:
253 /* OK unless it contains a delay slot or is an `asm' insn of some type.
254 We don't know anything about these. */
255 return (GET_CODE (PATTERN (insn)) == SEQUENCE
256 || GET_CODE (PATTERN (insn)) == ASM_INPUT
257 || asm_noperands (PATTERN (insn)) >= 0);
258
259 default:
260 gcc_unreachable ();
261 }
262 }
263 \f
264 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
265 resource set contains a volatile memory reference. Otherwise, return FALSE. */
266
267 static int
268 resource_conflicts_p (struct resources *res1, struct resources *res2)
269 {
270 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
271 || (res1->unch_memory && res2->unch_memory)
272 || res1->volatil || res2->volatil)
273 return 1;
274
275 #ifdef HARD_REG_SET
276 return (res1->regs & res2->regs) != HARD_CONST (0);
277 #else
278 {
279 int i;
280
281 for (i = 0; i < HARD_REG_SET_LONGS; i++)
282 if ((res1->regs[i] & res2->regs[i]) != 0)
283 return 1;
284 return 0;
285 }
286 #endif
287 }
288
289 /* Return TRUE if any resource marked in RES, a `struct resources', is
290 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
291 routine is using those resources.
292
293 We compute this by computing all the resources referenced by INSN and
294 seeing if this conflicts with RES. It might be faster to directly check
295 ourselves, and this is the way it used to work, but it means duplicating
296 a large block of complex code. */
297
298 static int
299 insn_references_resource_p (rtx insn, struct resources *res,
300 int include_delayed_effects)
301 {
302 struct resources insn_res;
303
304 CLEAR_RESOURCE (&insn_res);
305 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
306 return resource_conflicts_p (&insn_res, res);
307 }
308
309 /* Return TRUE if INSN modifies resources that are marked in RES.
310 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
311 included. CC0 is only modified if it is explicitly set; see comments
312 in front of mark_set_resources for details. */
313
314 static int
315 insn_sets_resource_p (rtx insn, struct resources *res,
316 int include_delayed_effects)
317 {
318 struct resources insn_sets;
319
320 CLEAR_RESOURCE (&insn_sets);
321 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
322 return resource_conflicts_p (&insn_sets, res);
323 }
324 \f
325 /* Find a label at the end of the function or before a RETURN. If there
326 is none, try to make one. If that fails, returns 0.
327
328 The property of such a label is that it is placed just before the
329 epilogue or a bare RETURN insn, so that another bare RETURN can be
330 turned into a jump to the label unconditionally. In particular, the
331 label cannot be placed before a RETURN insn with a filled delay slot.
332
333 ??? There may be a problem with the current implementation. Suppose
334 we start with a bare RETURN insn and call find_end_label. It may set
335 end_of_function_label just before the RETURN. Suppose the machinery
336 is able to fill the delay slot of the RETURN insn afterwards. Then
337 end_of_function_label is no longer valid according to the property
338 described above and find_end_label will still return it unmodified.
339 Note that this is probably mitigated by the following observation:
340 once end_of_function_label is made, it is very likely the target of
341 a jump, so filling the delay slot of the RETURN will be much more
342 difficult. */
343
344 static rtx
345 find_end_label (void)
346 {
347 rtx insn;
348
349 /* If we found one previously, return it. */
350 if (end_of_function_label)
351 return end_of_function_label;
352
353 /* Otherwise, see if there is a label at the end of the function. If there
354 is, it must be that RETURN insns aren't needed, so that is our return
355 label and we don't have to do anything else. */
356
357 insn = get_last_insn ();
358 while (NOTE_P (insn)
359 || (NONJUMP_INSN_P (insn)
360 && (GET_CODE (PATTERN (insn)) == USE
361 || GET_CODE (PATTERN (insn)) == CLOBBER)))
362 insn = PREV_INSN (insn);
363
364 /* When a target threads its epilogue we might already have a
365 suitable return insn. If so put a label before it for the
366 end_of_function_label. */
367 if (BARRIER_P (insn)
368 && JUMP_P (PREV_INSN (insn))
369 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
370 {
371 rtx temp = PREV_INSN (PREV_INSN (insn));
372 end_of_function_label = gen_label_rtx ();
373 LABEL_NUSES (end_of_function_label) = 0;
374
375 /* Put the label before an USE insns that may precede the RETURN insn. */
376 while (GET_CODE (temp) == USE)
377 temp = PREV_INSN (temp);
378
379 emit_label_after (end_of_function_label, temp);
380 }
381
382 else if (LABEL_P (insn))
383 end_of_function_label = insn;
384 else
385 {
386 end_of_function_label = gen_label_rtx ();
387 LABEL_NUSES (end_of_function_label) = 0;
388 /* If the basic block reorder pass moves the return insn to
389 some other place try to locate it again and put our
390 end_of_function_label there. */
391 while (insn && ! (JUMP_P (insn)
392 && (GET_CODE (PATTERN (insn)) == RETURN)))
393 insn = PREV_INSN (insn);
394 if (insn)
395 {
396 insn = PREV_INSN (insn);
397
398 /* Put the label before an USE insns that may proceed the
399 RETURN insn. */
400 while (GET_CODE (insn) == USE)
401 insn = PREV_INSN (insn);
402
403 emit_label_after (end_of_function_label, insn);
404 }
405 else
406 {
407 #ifdef HAVE_epilogue
408 if (HAVE_epilogue
409 #ifdef HAVE_return
410 && ! HAVE_return
411 #endif
412 )
413 {
414 /* The RETURN insn has its delay slot filled so we cannot
415 emit the label just before it. Since we already have
416 an epilogue and cannot emit a new RETURN, we cannot
417 emit the label at all. */
418 end_of_function_label = NULL_RTX;
419 return end_of_function_label;
420 }
421 #endif /* HAVE_epilogue */
422
423 /* Otherwise, make a new label and emit a RETURN and BARRIER,
424 if needed. */
425 emit_label (end_of_function_label);
426 #ifdef HAVE_return
427 /* We don't bother trying to create a return insn if the
428 epilogue has filled delay-slots; we would have to try and
429 move the delay-slot fillers to the delay-slots for the new
430 return insn or in front of the new return insn. */
431 if (current_function_epilogue_delay_list == NULL
432 && HAVE_return)
433 {
434 /* The return we make may have delay slots too. */
435 rtx insn = gen_return ();
436 insn = emit_jump_insn (insn);
437 emit_barrier ();
438 if (num_delay_slots (insn) > 0)
439 obstack_ptr_grow (&unfilled_slots_obstack, insn);
440 }
441 #endif
442 }
443 }
444
445 /* Show one additional use for this label so it won't go away until
446 we are done. */
447 ++LABEL_NUSES (end_of_function_label);
448
449 return end_of_function_label;
450 }
451 \f
452 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
453 the pattern of INSN with the SEQUENCE.
454
455 Chain the insns so that NEXT_INSN of each insn in the sequence points to
456 the next and NEXT_INSN of the last insn in the sequence points to
457 the first insn after the sequence. Similarly for PREV_INSN. This makes
458 it easier to scan all insns.
459
460 Returns the SEQUENCE that replaces INSN. */
461
462 static rtx
463 emit_delay_sequence (rtx insn, rtx list, int length)
464 {
465 int i = 1;
466 rtx li;
467 int had_barrier = 0;
468
469 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
470 rtvec seqv = rtvec_alloc (length + 1);
471 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
472 rtx seq_insn = make_insn_raw (seq);
473 rtx first = get_insns ();
474 rtx last = get_last_insn ();
475
476 /* Make a copy of the insn having delay slots. */
477 rtx delay_insn = copy_rtx (insn);
478
479 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
480 confuse further processing. Update LAST in case it was the last insn.
481 We will put the BARRIER back in later. */
482 if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
483 {
484 delete_related_insns (NEXT_INSN (insn));
485 last = get_last_insn ();
486 had_barrier = 1;
487 }
488
489 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
490 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
491 PREV_INSN (seq_insn) = PREV_INSN (insn);
492
493 if (insn != last)
494 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
495
496 if (insn != first)
497 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
498
499 /* Note the calls to set_new_first_and_last_insn must occur after
500 SEQ_INSN has been completely spliced into the insn stream.
501
502 Otherwise CUR_INSN_UID will get set to an incorrect value because
503 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
504 if (insn == last)
505 set_new_first_and_last_insn (first, seq_insn);
506
507 if (insn == first)
508 set_new_first_and_last_insn (seq_insn, last);
509
510 /* Build our SEQUENCE and rebuild the insn chain. */
511 XVECEXP (seq, 0, 0) = delay_insn;
512 INSN_DELETED_P (delay_insn) = 0;
513 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
514
515 for (li = list; li; li = XEXP (li, 1), i++)
516 {
517 rtx tem = XEXP (li, 0);
518 rtx note, next;
519
520 /* Show that this copy of the insn isn't deleted. */
521 INSN_DELETED_P (tem) = 0;
522
523 XVECEXP (seq, 0, i) = tem;
524 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
525 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
526
527 /* SPARC assembler, for instance, emit warning when debug info is output
528 into the delay slot. */
529 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
530 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
531 INSN_LOCATOR (tem) = 0;
532
533 for (note = REG_NOTES (tem); note; note = next)
534 {
535 next = XEXP (note, 1);
536 switch (REG_NOTE_KIND (note))
537 {
538 case REG_DEAD:
539 /* Remove any REG_DEAD notes because we can't rely on them now
540 that the insn has been moved. */
541 remove_note (tem, note);
542 break;
543
544 case REG_LABEL_OPERAND:
545 case REG_LABEL_TARGET:
546 /* Keep the label reference count up to date. */
547 if (LABEL_P (XEXP (note, 0)))
548 LABEL_NUSES (XEXP (note, 0)) ++;
549 break;
550
551 default:
552 break;
553 }
554 }
555 }
556
557 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
558
559 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
560 last insn in that SEQUENCE to point to us. Similarly for the first
561 insn in the following insn if it is a SEQUENCE. */
562
563 if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
564 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
565 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
566 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
567 = seq_insn;
568
569 if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
570 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
571 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
572
573 /* If there used to be a BARRIER, put it back. */
574 if (had_barrier)
575 emit_barrier_after (seq_insn);
576
577 gcc_assert (i == length + 1);
578
579 return seq_insn;
580 }
581
582 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
583 be in the order in which the insns are to be executed. */
584
585 static rtx
586 add_to_delay_list (rtx insn, rtx delay_list)
587 {
588 /* If we have an empty list, just make a new list element. If
589 INSN has its block number recorded, clear it since we may
590 be moving the insn to a new block. */
591
592 if (delay_list == 0)
593 {
594 clear_hashed_info_for_insn (insn);
595 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
596 }
597
598 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
599 list. */
600 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
601
602 return delay_list;
603 }
604 \f
605 /* Delete INSN from the delay slot of the insn that it is in, which may
606 produce an insn with no delay slots. Return the new insn. */
607
608 static rtx
609 delete_from_delay_slot (rtx insn)
610 {
611 rtx trial, seq_insn, seq, prev;
612 rtx delay_list = 0;
613 int i;
614 int had_barrier = 0;
615
616 /* We first must find the insn containing the SEQUENCE with INSN in its
617 delay slot. Do this by finding an insn, TRIAL, where
618 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
619
620 for (trial = insn;
621 PREV_INSN (NEXT_INSN (trial)) == trial;
622 trial = NEXT_INSN (trial))
623 ;
624
625 seq_insn = PREV_INSN (NEXT_INSN (trial));
626 seq = PATTERN (seq_insn);
627
628 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
629 had_barrier = 1;
630
631 /* Create a delay list consisting of all the insns other than the one
632 we are deleting (unless we were the only one). */
633 if (XVECLEN (seq, 0) > 2)
634 for (i = 1; i < XVECLEN (seq, 0); i++)
635 if (XVECEXP (seq, 0, i) != insn)
636 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
637
638 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
639 list, and rebuild the delay list if non-empty. */
640 prev = PREV_INSN (seq_insn);
641 trial = XVECEXP (seq, 0, 0);
642 delete_related_insns (seq_insn);
643 add_insn_after (trial, prev, NULL);
644
645 /* If there was a barrier after the old SEQUENCE, remit it. */
646 if (had_barrier)
647 emit_barrier_after (trial);
648
649 /* If there are any delay insns, remit them. Otherwise clear the
650 annul flag. */
651 if (delay_list)
652 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
653 else if (INSN_P (trial))
654 INSN_ANNULLED_BRANCH_P (trial) = 0;
655
656 INSN_FROM_TARGET_P (insn) = 0;
657
658 /* Show we need to fill this insn again. */
659 obstack_ptr_grow (&unfilled_slots_obstack, trial);
660
661 return trial;
662 }
663 \f
664 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
665 the insn that sets CC0 for it and delete it too. */
666
667 static void
668 delete_scheduled_jump (rtx insn)
669 {
670 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
671 delete the insn that sets the condition code, but it is hard to find it.
672 Since this case is rare anyway, don't bother trying; there would likely
673 be other insns that became dead anyway, which we wouldn't know to
674 delete. */
675
676 #ifdef HAVE_cc0
677 if (reg_mentioned_p (cc0_rtx, insn))
678 {
679 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
680
681 /* If a reg-note was found, it points to an insn to set CC0. This
682 insn is in the delay list of some other insn. So delete it from
683 the delay list it was in. */
684 if (note)
685 {
686 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
687 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
688 delete_from_delay_slot (XEXP (note, 0));
689 }
690 else
691 {
692 /* The insn setting CC0 is our previous insn, but it may be in
693 a delay slot. It will be the last insn in the delay slot, if
694 it is. */
695 rtx trial = previous_insn (insn);
696 if (NOTE_P (trial))
697 trial = prev_nonnote_insn (trial);
698 if (sets_cc0_p (PATTERN (trial)) != 1
699 || FIND_REG_INC_NOTE (trial, NULL_RTX))
700 return;
701 if (PREV_INSN (NEXT_INSN (trial)) == trial)
702 delete_related_insns (trial);
703 else
704 delete_from_delay_slot (trial);
705 }
706 }
707 #endif
708
709 delete_related_insns (insn);
710 }
711 \f
712 /* Counters for delay-slot filling. */
713
714 #define NUM_REORG_FUNCTIONS 2
715 #define MAX_DELAY_HISTOGRAM 3
716 #define MAX_REORG_PASSES 2
717
718 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
719
720 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
721
722 static int reorg_pass_number;
723
724 static void
725 note_delay_statistics (int slots_filled, int index)
726 {
727 num_insns_needing_delays[index][reorg_pass_number]++;
728 if (slots_filled > MAX_DELAY_HISTOGRAM)
729 slots_filled = MAX_DELAY_HISTOGRAM;
730 num_filled_delays[index][slots_filled][reorg_pass_number]++;
731 }
732 \f
733 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
734
735 /* Optimize the following cases:
736
737 1. When a conditional branch skips over only one instruction,
738 use an annulling branch and put that insn in the delay slot.
739 Use either a branch that annuls when the condition if true or
740 invert the test with a branch that annuls when the condition is
741 false. This saves insns, since otherwise we must copy an insn
742 from the L1 target.
743
744 (orig) (skip) (otherwise)
745 Bcc.n L1 Bcc',a L1 Bcc,a L1'
746 insn insn insn2
747 L1: L1: L1:
748 insn2 insn2 insn2
749 insn3 insn3 L1':
750 insn3
751
752 2. When a conditional branch skips over only one instruction,
753 and after that, it unconditionally branches somewhere else,
754 perform the similar optimization. This saves executing the
755 second branch in the case where the inverted condition is true.
756
757 Bcc.n L1 Bcc',a L2
758 insn insn
759 L1: L1:
760 Bra L2 Bra L2
761
762 INSN is a JUMP_INSN.
763
764 This should be expanded to skip over N insns, where N is the number
765 of delay slots required. */
766
767 static rtx
768 optimize_skip (rtx insn)
769 {
770 rtx trial = next_nonnote_insn (insn);
771 rtx next_trial = next_active_insn (trial);
772 rtx delay_list = 0;
773 int flags;
774
775 flags = get_jump_flags (insn, JUMP_LABEL (insn));
776
777 if (trial == 0
778 || !NONJUMP_INSN_P (trial)
779 || GET_CODE (PATTERN (trial)) == SEQUENCE
780 || recog_memoized (trial) < 0
781 || (! eligible_for_annul_false (insn, 0, trial, flags)
782 && ! eligible_for_annul_true (insn, 0, trial, flags))
783 || can_throw_internal (trial))
784 return 0;
785
786 /* There are two cases where we are just executing one insn (we assume
787 here that a branch requires only one insn; this should be generalized
788 at some point): Where the branch goes around a single insn or where
789 we have one insn followed by a branch to the same label we branch to.
790 In both of these cases, inverting the jump and annulling the delay
791 slot give the same effect in fewer insns. */
792 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
793 && ! (next_trial == 0 && current_function_epilogue_delay_list != 0))
794 || (next_trial != 0
795 && JUMP_P (next_trial)
796 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
797 && (simplejump_p (next_trial)
798 || GET_CODE (PATTERN (next_trial)) == RETURN)))
799 {
800 if (eligible_for_annul_false (insn, 0, trial, flags))
801 {
802 if (invert_jump (insn, JUMP_LABEL (insn), 1))
803 INSN_FROM_TARGET_P (trial) = 1;
804 else if (! eligible_for_annul_true (insn, 0, trial, flags))
805 return 0;
806 }
807
808 delay_list = add_to_delay_list (trial, NULL_RTX);
809 next_trial = next_active_insn (trial);
810 update_block (trial, trial);
811 delete_related_insns (trial);
812
813 /* Also, if we are targeting an unconditional
814 branch, thread our jump to the target of that branch. Don't
815 change this into a RETURN here, because it may not accept what
816 we have in the delay slot. We'll fix this up later. */
817 if (next_trial && JUMP_P (next_trial)
818 && (simplejump_p (next_trial)
819 || GET_CODE (PATTERN (next_trial)) == RETURN))
820 {
821 rtx target_label = JUMP_LABEL (next_trial);
822 if (target_label == 0)
823 target_label = find_end_label ();
824
825 if (target_label)
826 {
827 /* Recompute the flags based on TARGET_LABEL since threading
828 the jump to TARGET_LABEL may change the direction of the
829 jump (which may change the circumstances in which the
830 delay slot is nullified). */
831 flags = get_jump_flags (insn, target_label);
832 if (eligible_for_annul_true (insn, 0, trial, flags))
833 reorg_redirect_jump (insn, target_label);
834 }
835 }
836
837 INSN_ANNULLED_BRANCH_P (insn) = 1;
838 }
839
840 return delay_list;
841 }
842 #endif
843 \f
844 /* Encode and return branch direction and prediction information for
845 INSN assuming it will jump to LABEL.
846
847 Non conditional branches return no direction information and
848 are predicted as very likely taken. */
849
850 static int
851 get_jump_flags (rtx insn, rtx label)
852 {
853 int flags;
854
855 /* get_jump_flags can be passed any insn with delay slots, these may
856 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
857 direction information, and only if they are conditional jumps.
858
859 If LABEL is zero, then there is no way to determine the branch
860 direction. */
861 if (JUMP_P (insn)
862 && (condjump_p (insn) || condjump_in_parallel_p (insn))
863 && INSN_UID (insn) <= max_uid
864 && label != 0
865 && INSN_UID (label) <= max_uid)
866 flags
867 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
868 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
869 /* No valid direction information. */
870 else
871 flags = 0;
872
873 /* If insn is a conditional branch call mostly_true_jump to get
874 determine the branch prediction.
875
876 Non conditional branches are predicted as very likely taken. */
877 if (JUMP_P (insn)
878 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
879 {
880 int prediction;
881
882 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
883 switch (prediction)
884 {
885 case 2:
886 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
887 break;
888 case 1:
889 flags |= ATTR_FLAG_likely;
890 break;
891 case 0:
892 flags |= ATTR_FLAG_unlikely;
893 break;
894 case -1:
895 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
896 break;
897
898 default:
899 gcc_unreachable ();
900 }
901 }
902 else
903 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
904
905 return flags;
906 }
907
908 /* Return 1 if INSN is a destination that will be branched to rarely (the
909 return point of a function); return 2 if DEST will be branched to very
910 rarely (a call to a function that doesn't return). Otherwise,
911 return 0. */
912
913 static int
914 rare_destination (rtx insn)
915 {
916 int jump_count = 0;
917 rtx next;
918
919 for (; insn; insn = next)
920 {
921 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
922 insn = XVECEXP (PATTERN (insn), 0, 0);
923
924 next = NEXT_INSN (insn);
925
926 switch (GET_CODE (insn))
927 {
928 case CODE_LABEL:
929 return 0;
930 case BARRIER:
931 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
932 don't scan past JUMP_INSNs, so any barrier we find here must
933 have been after a CALL_INSN and hence mean the call doesn't
934 return. */
935 return 2;
936 case JUMP_INSN:
937 if (GET_CODE (PATTERN (insn)) == RETURN)
938 return 1;
939 else if (simplejump_p (insn)
940 && jump_count++ < 10)
941 next = JUMP_LABEL (insn);
942 else
943 return 0;
944
945 default:
946 break;
947 }
948 }
949
950 /* If we got here it means we hit the end of the function. So this
951 is an unlikely destination. */
952
953 return 1;
954 }
955
956 /* Return truth value of the statement that this branch
957 is mostly taken. If we think that the branch is extremely likely
958 to be taken, we return 2. If the branch is slightly more likely to be
959 taken, return 1. If the branch is slightly less likely to be taken,
960 return 0 and if the branch is highly unlikely to be taken, return -1.
961
962 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
963
964 static int
965 mostly_true_jump (rtx jump_insn, rtx condition)
966 {
967 rtx target_label = JUMP_LABEL (jump_insn);
968 rtx note;
969 int rare_dest, rare_fallthrough;
970
971 /* If branch probabilities are available, then use that number since it
972 always gives a correct answer. */
973 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
974 if (note)
975 {
976 int prob = INTVAL (XEXP (note, 0));
977
978 if (prob >= REG_BR_PROB_BASE * 9 / 10)
979 return 2;
980 else if (prob >= REG_BR_PROB_BASE / 2)
981 return 1;
982 else if (prob >= REG_BR_PROB_BASE / 10)
983 return 0;
984 else
985 return -1;
986 }
987
988 /* Look at the relative rarities of the fallthrough and destination. If
989 they differ, we can predict the branch that way. */
990 rare_dest = rare_destination (target_label);
991 rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
992
993 switch (rare_fallthrough - rare_dest)
994 {
995 case -2:
996 return -1;
997 case -1:
998 return 0;
999 case 0:
1000 break;
1001 case 1:
1002 return 1;
1003 case 2:
1004 return 2;
1005 }
1006
1007 /* If we couldn't figure out what this jump was, assume it won't be
1008 taken. This should be rare. */
1009 if (condition == 0)
1010 return 0;
1011
1012 /* Predict backward branches usually take, forward branches usually not. If
1013 we don't know whether this is forward or backward, assume the branch
1014 will be taken, since most are. */
1015 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1016 || INSN_UID (target_label) > max_uid
1017 || (uid_to_ruid[INSN_UID (jump_insn)]
1018 > uid_to_ruid[INSN_UID (target_label)]));
1019 }
1020
1021 /* Return the condition under which INSN will branch to TARGET. If TARGET
1022 is zero, return the condition under which INSN will return. If INSN is
1023 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1024 type of jump, or it doesn't go to TARGET, return 0. */
1025
1026 static rtx
1027 get_branch_condition (rtx insn, rtx target)
1028 {
1029 rtx pat = PATTERN (insn);
1030 rtx src;
1031
1032 if (condjump_in_parallel_p (insn))
1033 pat = XVECEXP (pat, 0, 0);
1034
1035 if (GET_CODE (pat) == RETURN)
1036 return target == 0 ? const_true_rtx : 0;
1037
1038 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1039 return 0;
1040
1041 src = SET_SRC (pat);
1042 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1043 return const_true_rtx;
1044
1045 else if (GET_CODE (src) == IF_THEN_ELSE
1046 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1047 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1048 && XEXP (XEXP (src, 1), 0) == target))
1049 && XEXP (src, 2) == pc_rtx)
1050 return XEXP (src, 0);
1051
1052 else if (GET_CODE (src) == IF_THEN_ELSE
1053 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1054 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1055 && XEXP (XEXP (src, 2), 0) == target))
1056 && XEXP (src, 1) == pc_rtx)
1057 {
1058 enum rtx_code rev;
1059 rev = reversed_comparison_code (XEXP (src, 0), insn);
1060 if (rev != UNKNOWN)
1061 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1062 XEXP (XEXP (src, 0), 0),
1063 XEXP (XEXP (src, 0), 1));
1064 }
1065
1066 return 0;
1067 }
1068
1069 /* Return nonzero if CONDITION is more strict than the condition of
1070 INSN, i.e., if INSN will always branch if CONDITION is true. */
1071
1072 static int
1073 condition_dominates_p (rtx condition, rtx insn)
1074 {
1075 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1076 enum rtx_code code = GET_CODE (condition);
1077 enum rtx_code other_code;
1078
1079 if (rtx_equal_p (condition, other_condition)
1080 || other_condition == const_true_rtx)
1081 return 1;
1082
1083 else if (condition == const_true_rtx || other_condition == 0)
1084 return 0;
1085
1086 other_code = GET_CODE (other_condition);
1087 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1088 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1089 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1090 return 0;
1091
1092 return comparison_dominates_p (code, other_code);
1093 }
1094
1095 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1096 any insns already in the delay slot of JUMP. */
1097
1098 static int
1099 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1100 {
1101 int flags, i;
1102 rtx pat = PATTERN (seq);
1103
1104 /* Make sure all the delay slots of this jump would still
1105 be valid after threading the jump. If they are still
1106 valid, then return nonzero. */
1107
1108 flags = get_jump_flags (jump, newlabel);
1109 for (i = 1; i < XVECLEN (pat, 0); i++)
1110 if (! (
1111 #ifdef ANNUL_IFFALSE_SLOTS
1112 (INSN_ANNULLED_BRANCH_P (jump)
1113 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1114 ? eligible_for_annul_false (jump, i - 1,
1115 XVECEXP (pat, 0, i), flags) :
1116 #endif
1117 #ifdef ANNUL_IFTRUE_SLOTS
1118 (INSN_ANNULLED_BRANCH_P (jump)
1119 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1120 ? eligible_for_annul_true (jump, i - 1,
1121 XVECEXP (pat, 0, i), flags) :
1122 #endif
1123 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1124 break;
1125
1126 return (i == XVECLEN (pat, 0));
1127 }
1128
1129 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1130 any insns we wish to place in the delay slot of JUMP. */
1131
1132 static int
1133 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1134 {
1135 int flags, i;
1136 rtx li;
1137
1138 /* Make sure all the insns in DELAY_LIST would still be
1139 valid after threading the jump. If they are still
1140 valid, then return nonzero. */
1141
1142 flags = get_jump_flags (jump, newlabel);
1143 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1144 if (! (
1145 #ifdef ANNUL_IFFALSE_SLOTS
1146 (INSN_ANNULLED_BRANCH_P (jump)
1147 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1148 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1149 #endif
1150 #ifdef ANNUL_IFTRUE_SLOTS
1151 (INSN_ANNULLED_BRANCH_P (jump)
1152 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1153 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1154 #endif
1155 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1156 break;
1157
1158 return (li == NULL);
1159 }
1160
1161 /* DELAY_LIST is a list of insns that have already been placed into delay
1162 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1163 If not, return 0; otherwise return 1. */
1164
1165 static int
1166 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1167 {
1168 rtx temp;
1169
1170 if (delay_list)
1171 {
1172 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1173 {
1174 rtx trial = XEXP (temp, 0);
1175
1176 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1177 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1178 return 0;
1179 }
1180 }
1181
1182 return 1;
1183 }
1184 \f
1185 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1186 the condition tested by INSN is CONDITION and the resources shown in
1187 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1188 from SEQ's delay list, in addition to whatever insns it may execute
1189 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1190 needed while searching for delay slot insns. Return the concatenated
1191 delay list if possible, otherwise, return 0.
1192
1193 SLOTS_TO_FILL is the total number of slots required by INSN, and
1194 PSLOTS_FILLED points to the number filled so far (also the number of
1195 insns in DELAY_LIST). It is updated with the number that have been
1196 filled from the SEQUENCE, if any.
1197
1198 PANNUL_P points to a nonzero value if we already know that we need
1199 to annul INSN. If this routine determines that annulling is needed,
1200 it may set that value nonzero.
1201
1202 PNEW_THREAD points to a location that is to receive the place at which
1203 execution should continue. */
1204
1205 static rtx
1206 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1207 rtx delay_list, struct resources *sets,
1208 struct resources *needed,
1209 struct resources *other_needed,
1210 int slots_to_fill, int *pslots_filled,
1211 int *pannul_p, rtx *pnew_thread)
1212 {
1213 rtx temp;
1214 int slots_remaining = slots_to_fill - *pslots_filled;
1215 int total_slots_filled = *pslots_filled;
1216 rtx new_delay_list = 0;
1217 int must_annul = *pannul_p;
1218 int used_annul = 0;
1219 int i;
1220 struct resources cc_set;
1221
1222 /* We can't do anything if there are more delay slots in SEQ than we
1223 can handle, or if we don't know that it will be a taken branch.
1224 We know that it will be a taken branch if it is either an unconditional
1225 branch or a conditional branch with a stricter branch condition.
1226
1227 Also, exit if the branch has more than one set, since then it is computing
1228 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1229 ??? It may be possible to move other sets into INSN in addition to
1230 moving the instructions in the delay slots.
1231
1232 We can not steal the delay list if one of the instructions in the
1233 current delay_list modifies the condition codes and the jump in the
1234 sequence is a conditional jump. We can not do this because we can
1235 not change the direction of the jump because the condition codes
1236 will effect the direction of the jump in the sequence. */
1237
1238 CLEAR_RESOURCE (&cc_set);
1239 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1240 {
1241 rtx trial = XEXP (temp, 0);
1242
1243 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1244 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1245 return delay_list;
1246 }
1247
1248 if (XVECLEN (seq, 0) - 1 > slots_remaining
1249 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1250 || ! single_set (XVECEXP (seq, 0, 0)))
1251 return delay_list;
1252
1253 #ifdef MD_CAN_REDIRECT_BRANCH
1254 /* On some targets, branches with delay slots can have a limited
1255 displacement. Give the back end a chance to tell us we can't do
1256 this. */
1257 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1258 return delay_list;
1259 #endif
1260
1261 for (i = 1; i < XVECLEN (seq, 0); i++)
1262 {
1263 rtx trial = XVECEXP (seq, 0, i);
1264 int flags;
1265
1266 if (insn_references_resource_p (trial, sets, 0)
1267 || insn_sets_resource_p (trial, needed, 0)
1268 || insn_sets_resource_p (trial, sets, 0)
1269 #ifdef HAVE_cc0
1270 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1271 delay list. */
1272 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1273 #endif
1274 /* If TRIAL is from the fallthrough code of an annulled branch insn
1275 in SEQ, we cannot use it. */
1276 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1277 && ! INSN_FROM_TARGET_P (trial)))
1278 return delay_list;
1279
1280 /* If this insn was already done (usually in a previous delay slot),
1281 pretend we put it in our delay slot. */
1282 if (redundant_insn (trial, insn, new_delay_list))
1283 continue;
1284
1285 /* We will end up re-vectoring this branch, so compute flags
1286 based on jumping to the new label. */
1287 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1288
1289 if (! must_annul
1290 && ((condition == const_true_rtx
1291 || (! insn_sets_resource_p (trial, other_needed, 0)
1292 && ! may_trap_or_fault_p (PATTERN (trial)))))
1293 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1294 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1295 && (must_annul = 1,
1296 check_annul_list_true_false (0, delay_list)
1297 && check_annul_list_true_false (0, new_delay_list)
1298 && eligible_for_annul_false (insn, total_slots_filled,
1299 trial, flags)))
1300 {
1301 if (must_annul)
1302 used_annul = 1;
1303 temp = copy_rtx (trial);
1304 INSN_FROM_TARGET_P (temp) = 1;
1305 new_delay_list = add_to_delay_list (temp, new_delay_list);
1306 total_slots_filled++;
1307
1308 if (--slots_remaining == 0)
1309 break;
1310 }
1311 else
1312 return delay_list;
1313 }
1314
1315 /* Show the place to which we will be branching. */
1316 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1317
1318 /* Add any new insns to the delay list and update the count of the
1319 number of slots filled. */
1320 *pslots_filled = total_slots_filled;
1321 if (used_annul)
1322 *pannul_p = 1;
1323
1324 if (delay_list == 0)
1325 return new_delay_list;
1326
1327 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1328 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1329
1330 return delay_list;
1331 }
1332 \f
1333 /* Similar to steal_delay_list_from_target except that SEQ is on the
1334 fallthrough path of INSN. Here we only do something if the delay insn
1335 of SEQ is an unconditional branch. In that case we steal its delay slot
1336 for INSN since unconditional branches are much easier to fill. */
1337
1338 static rtx
1339 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1340 rtx delay_list, struct resources *sets,
1341 struct resources *needed,
1342 struct resources *other_needed,
1343 int slots_to_fill, int *pslots_filled,
1344 int *pannul_p)
1345 {
1346 int i;
1347 int flags;
1348 int must_annul = *pannul_p;
1349 int used_annul = 0;
1350
1351 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1352
1353 /* We can't do anything if SEQ's delay insn isn't an
1354 unconditional branch. */
1355
1356 if (! simplejump_p (XVECEXP (seq, 0, 0))
1357 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1358 return delay_list;
1359
1360 for (i = 1; i < XVECLEN (seq, 0); i++)
1361 {
1362 rtx trial = XVECEXP (seq, 0, i);
1363
1364 /* If TRIAL sets CC0, stealing it will move it too far from the use
1365 of CC0. */
1366 if (insn_references_resource_p (trial, sets, 0)
1367 || insn_sets_resource_p (trial, needed, 0)
1368 || insn_sets_resource_p (trial, sets, 0)
1369 #ifdef HAVE_cc0
1370 || sets_cc0_p (PATTERN (trial))
1371 #endif
1372 )
1373
1374 break;
1375
1376 /* If this insn was already done, we don't need it. */
1377 if (redundant_insn (trial, insn, delay_list))
1378 {
1379 delete_from_delay_slot (trial);
1380 continue;
1381 }
1382
1383 if (! must_annul
1384 && ((condition == const_true_rtx
1385 || (! insn_sets_resource_p (trial, other_needed, 0)
1386 && ! may_trap_or_fault_p (PATTERN (trial)))))
1387 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1388 : (must_annul || delay_list == NULL) && (must_annul = 1,
1389 check_annul_list_true_false (1, delay_list)
1390 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1391 {
1392 if (must_annul)
1393 used_annul = 1;
1394 delete_from_delay_slot (trial);
1395 delay_list = add_to_delay_list (trial, delay_list);
1396
1397 if (++(*pslots_filled) == slots_to_fill)
1398 break;
1399 }
1400 else
1401 break;
1402 }
1403
1404 if (used_annul)
1405 *pannul_p = 1;
1406 return delay_list;
1407 }
1408 \f
1409 /* Try merging insns starting at THREAD which match exactly the insns in
1410 INSN's delay list.
1411
1412 If all insns were matched and the insn was previously annulling, the
1413 annul bit will be cleared.
1414
1415 For each insn that is merged, if the branch is or will be non-annulling,
1416 we delete the merged insn. */
1417
1418 static void
1419 try_merge_delay_insns (rtx insn, rtx thread)
1420 {
1421 rtx trial, next_trial;
1422 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1423 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1424 int slot_number = 1;
1425 int num_slots = XVECLEN (PATTERN (insn), 0);
1426 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1427 struct resources set, needed;
1428 rtx merged_insns = 0;
1429 int i;
1430 int flags;
1431
1432 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1433
1434 CLEAR_RESOURCE (&needed);
1435 CLEAR_RESOURCE (&set);
1436
1437 /* If this is not an annulling branch, take into account anything needed in
1438 INSN's delay slot. This prevents two increments from being incorrectly
1439 folded into one. If we are annulling, this would be the correct
1440 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1441 will essentially disable this optimization. This method is somewhat of
1442 a kludge, but I don't see a better way.) */
1443 if (! annul_p)
1444 for (i = 1 ; i < num_slots; i++)
1445 if (XVECEXP (PATTERN (insn), 0, i))
1446 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1447
1448 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1449 {
1450 rtx pat = PATTERN (trial);
1451 rtx oldtrial = trial;
1452
1453 next_trial = next_nonnote_insn (trial);
1454
1455 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1456 if (NONJUMP_INSN_P (trial)
1457 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1458 continue;
1459
1460 if (GET_CODE (next_to_match) == GET_CODE (trial)
1461 #ifdef HAVE_cc0
1462 /* We can't share an insn that sets cc0. */
1463 && ! sets_cc0_p (pat)
1464 #endif
1465 && ! insn_references_resource_p (trial, &set, 1)
1466 && ! insn_sets_resource_p (trial, &set, 1)
1467 && ! insn_sets_resource_p (trial, &needed, 1)
1468 && (trial = try_split (pat, trial, 0)) != 0
1469 /* Update next_trial, in case try_split succeeded. */
1470 && (next_trial = next_nonnote_insn (trial))
1471 /* Likewise THREAD. */
1472 && (thread = oldtrial == thread ? trial : thread)
1473 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1474 /* Have to test this condition if annul condition is different
1475 from (and less restrictive than) non-annulling one. */
1476 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1477 {
1478
1479 if (! annul_p)
1480 {
1481 update_block (trial, thread);
1482 if (trial == thread)
1483 thread = next_active_insn (thread);
1484
1485 delete_related_insns (trial);
1486 INSN_FROM_TARGET_P (next_to_match) = 0;
1487 }
1488 else
1489 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1490
1491 if (++slot_number == num_slots)
1492 break;
1493
1494 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1495 }
1496
1497 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1498 mark_referenced_resources (trial, &needed, 1);
1499 }
1500
1501 /* See if we stopped on a filled insn. If we did, try to see if its
1502 delay slots match. */
1503 if (slot_number != num_slots
1504 && trial && NONJUMP_INSN_P (trial)
1505 && GET_CODE (PATTERN (trial)) == SEQUENCE
1506 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1507 {
1508 rtx pat = PATTERN (trial);
1509 rtx filled_insn = XVECEXP (pat, 0, 0);
1510
1511 /* Account for resources set/needed by the filled insn. */
1512 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1513 mark_referenced_resources (filled_insn, &needed, 1);
1514
1515 for (i = 1; i < XVECLEN (pat, 0); i++)
1516 {
1517 rtx dtrial = XVECEXP (pat, 0, i);
1518
1519 if (! insn_references_resource_p (dtrial, &set, 1)
1520 && ! insn_sets_resource_p (dtrial, &set, 1)
1521 && ! insn_sets_resource_p (dtrial, &needed, 1)
1522 #ifdef HAVE_cc0
1523 && ! sets_cc0_p (PATTERN (dtrial))
1524 #endif
1525 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1526 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1527 {
1528 if (! annul_p)
1529 {
1530 rtx new;
1531
1532 update_block (dtrial, thread);
1533 new = delete_from_delay_slot (dtrial);
1534 if (INSN_DELETED_P (thread))
1535 thread = new;
1536 INSN_FROM_TARGET_P (next_to_match) = 0;
1537 }
1538 else
1539 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1540 merged_insns);
1541
1542 if (++slot_number == num_slots)
1543 break;
1544
1545 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1546 }
1547 else
1548 {
1549 /* Keep track of the set/referenced resources for the delay
1550 slots of any trial insns we encounter. */
1551 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1552 mark_referenced_resources (dtrial, &needed, 1);
1553 }
1554 }
1555 }
1556
1557 /* If all insns in the delay slot have been matched and we were previously
1558 annulling the branch, we need not any more. In that case delete all the
1559 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1560 the delay list so that we know that it isn't only being used at the
1561 target. */
1562 if (slot_number == num_slots && annul_p)
1563 {
1564 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1565 {
1566 if (GET_MODE (merged_insns) == SImode)
1567 {
1568 rtx new;
1569
1570 update_block (XEXP (merged_insns, 0), thread);
1571 new = delete_from_delay_slot (XEXP (merged_insns, 0));
1572 if (INSN_DELETED_P (thread))
1573 thread = new;
1574 }
1575 else
1576 {
1577 update_block (XEXP (merged_insns, 0), thread);
1578 delete_related_insns (XEXP (merged_insns, 0));
1579 }
1580 }
1581
1582 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1583
1584 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1585 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1586 }
1587 }
1588 \f
1589 /* See if INSN is redundant with an insn in front of TARGET. Often this
1590 is called when INSN is a candidate for a delay slot of TARGET.
1591 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1592 of INSN. Often INSN will be redundant with an insn in a delay slot of
1593 some previous insn. This happens when we have a series of branches to the
1594 same label; in that case the first insn at the target might want to go
1595 into each of the delay slots.
1596
1597 If we are not careful, this routine can take up a significant fraction
1598 of the total compilation time (4%), but only wins rarely. Hence we
1599 speed this routine up by making two passes. The first pass goes back
1600 until it hits a label and sees if it finds an insn with an identical
1601 pattern. Only in this (relatively rare) event does it check for
1602 data conflicts.
1603
1604 We do not split insns we encounter. This could cause us not to find a
1605 redundant insn, but the cost of splitting seems greater than the possible
1606 gain in rare cases. */
1607
1608 static rtx
1609 redundant_insn (rtx insn, rtx target, rtx delay_list)
1610 {
1611 rtx target_main = target;
1612 rtx ipat = PATTERN (insn);
1613 rtx trial, pat;
1614 struct resources needed, set;
1615 int i;
1616 unsigned insns_to_search;
1617
1618 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1619 are allowed to not actually assign to such a register. */
1620 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1621 return 0;
1622
1623 /* Scan backwards looking for a match. */
1624 for (trial = PREV_INSN (target),
1625 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1626 trial && insns_to_search > 0;
1627 trial = PREV_INSN (trial), --insns_to_search)
1628 {
1629 if (LABEL_P (trial))
1630 return 0;
1631
1632 if (! INSN_P (trial))
1633 continue;
1634
1635 pat = PATTERN (trial);
1636 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1637 continue;
1638
1639 if (GET_CODE (pat) == SEQUENCE)
1640 {
1641 /* Stop for a CALL and its delay slots because it is difficult to
1642 track its resource needs correctly. */
1643 if (CALL_P (XVECEXP (pat, 0, 0)))
1644 return 0;
1645
1646 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1647 slots because it is difficult to track its resource needs
1648 correctly. */
1649
1650 #ifdef INSN_SETS_ARE_DELAYED
1651 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1652 return 0;
1653 #endif
1654
1655 #ifdef INSN_REFERENCES_ARE_DELAYED
1656 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1657 return 0;
1658 #endif
1659
1660 /* See if any of the insns in the delay slot match, updating
1661 resource requirements as we go. */
1662 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1663 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1664 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1665 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1666 break;
1667
1668 /* If found a match, exit this loop early. */
1669 if (i > 0)
1670 break;
1671 }
1672
1673 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1674 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1675 break;
1676 }
1677
1678 /* If we didn't find an insn that matches, return 0. */
1679 if (trial == 0)
1680 return 0;
1681
1682 /* See what resources this insn sets and needs. If they overlap, or
1683 if this insn references CC0, it can't be redundant. */
1684
1685 CLEAR_RESOURCE (&needed);
1686 CLEAR_RESOURCE (&set);
1687 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1688 mark_referenced_resources (insn, &needed, 1);
1689
1690 /* If TARGET is a SEQUENCE, get the main insn. */
1691 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1692 target_main = XVECEXP (PATTERN (target), 0, 0);
1693
1694 if (resource_conflicts_p (&needed, &set)
1695 #ifdef HAVE_cc0
1696 || reg_mentioned_p (cc0_rtx, ipat)
1697 #endif
1698 /* The insn requiring the delay may not set anything needed or set by
1699 INSN. */
1700 || insn_sets_resource_p (target_main, &needed, 1)
1701 || insn_sets_resource_p (target_main, &set, 1))
1702 return 0;
1703
1704 /* Insns we pass may not set either NEEDED or SET, so merge them for
1705 simpler tests. */
1706 needed.memory |= set.memory;
1707 needed.unch_memory |= set.unch_memory;
1708 IOR_HARD_REG_SET (needed.regs, set.regs);
1709
1710 /* This insn isn't redundant if it conflicts with an insn that either is
1711 or will be in a delay slot of TARGET. */
1712
1713 while (delay_list)
1714 {
1715 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1716 return 0;
1717 delay_list = XEXP (delay_list, 1);
1718 }
1719
1720 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1721 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1722 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1723 return 0;
1724
1725 /* Scan backwards until we reach a label or an insn that uses something
1726 INSN sets or sets something insn uses or sets. */
1727
1728 for (trial = PREV_INSN (target),
1729 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1730 trial && !LABEL_P (trial) && insns_to_search > 0;
1731 trial = PREV_INSN (trial), --insns_to_search)
1732 {
1733 if (!INSN_P (trial))
1734 continue;
1735
1736 pat = PATTERN (trial);
1737 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1738 continue;
1739
1740 if (GET_CODE (pat) == SEQUENCE)
1741 {
1742 /* If this is a CALL_INSN and its delay slots, it is hard to track
1743 the resource needs properly, so give up. */
1744 if (CALL_P (XVECEXP (pat, 0, 0)))
1745 return 0;
1746
1747 /* If this is an INSN or JUMP_INSN with delayed effects, it
1748 is hard to track the resource needs properly, so give up. */
1749
1750 #ifdef INSN_SETS_ARE_DELAYED
1751 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1752 return 0;
1753 #endif
1754
1755 #ifdef INSN_REFERENCES_ARE_DELAYED
1756 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1757 return 0;
1758 #endif
1759
1760 /* See if any of the insns in the delay slot match, updating
1761 resource requirements as we go. */
1762 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1763 {
1764 rtx candidate = XVECEXP (pat, 0, i);
1765
1766 /* If an insn will be annulled if the branch is false, it isn't
1767 considered as a possible duplicate insn. */
1768 if (rtx_equal_p (PATTERN (candidate), ipat)
1769 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1770 && INSN_FROM_TARGET_P (candidate)))
1771 {
1772 /* Show that this insn will be used in the sequel. */
1773 INSN_FROM_TARGET_P (candidate) = 0;
1774 return candidate;
1775 }
1776
1777 /* Unless this is an annulled insn from the target of a branch,
1778 we must stop if it sets anything needed or set by INSN. */
1779 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1780 || ! INSN_FROM_TARGET_P (candidate))
1781 && insn_sets_resource_p (candidate, &needed, 1))
1782 return 0;
1783 }
1784
1785 /* If the insn requiring the delay slot conflicts with INSN, we
1786 must stop. */
1787 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1788 return 0;
1789 }
1790 else
1791 {
1792 /* See if TRIAL is the same as INSN. */
1793 pat = PATTERN (trial);
1794 if (rtx_equal_p (pat, ipat))
1795 return trial;
1796
1797 /* Can't go any further if TRIAL conflicts with INSN. */
1798 if (insn_sets_resource_p (trial, &needed, 1))
1799 return 0;
1800 }
1801 }
1802
1803 return 0;
1804 }
1805 \f
1806 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1807 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1808 is nonzero, we are allowed to fall into this thread; otherwise, we are
1809 not.
1810
1811 If LABEL is used more than one or we pass a label other than LABEL before
1812 finding an active insn, we do not own this thread. */
1813
1814 static int
1815 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1816 {
1817 rtx active_insn;
1818 rtx insn;
1819
1820 /* We don't own the function end. */
1821 if (thread == 0)
1822 return 0;
1823
1824 /* Get the first active insn, or THREAD, if it is an active insn. */
1825 active_insn = next_active_insn (PREV_INSN (thread));
1826
1827 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1828 if (LABEL_P (insn)
1829 && (insn != label || LABEL_NUSES (insn) != 1))
1830 return 0;
1831
1832 if (allow_fallthrough)
1833 return 1;
1834
1835 /* Ensure that we reach a BARRIER before any insn or label. */
1836 for (insn = prev_nonnote_insn (thread);
1837 insn == 0 || !BARRIER_P (insn);
1838 insn = prev_nonnote_insn (insn))
1839 if (insn == 0
1840 || LABEL_P (insn)
1841 || (NONJUMP_INSN_P (insn)
1842 && GET_CODE (PATTERN (insn)) != USE
1843 && GET_CODE (PATTERN (insn)) != CLOBBER))
1844 return 0;
1845
1846 return 1;
1847 }
1848 \f
1849 /* Called when INSN is being moved from a location near the target of a jump.
1850 We leave a marker of the form (use (INSN)) immediately in front
1851 of WHERE for mark_target_live_regs. These markers will be deleted when
1852 reorg finishes.
1853
1854 We used to try to update the live status of registers if WHERE is at
1855 the start of a basic block, but that can't work since we may remove a
1856 BARRIER in relax_delay_slots. */
1857
1858 static void
1859 update_block (rtx insn, rtx where)
1860 {
1861 /* Ignore if this was in a delay slot and it came from the target of
1862 a branch. */
1863 if (INSN_FROM_TARGET_P (insn))
1864 return;
1865
1866 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1867
1868 /* INSN might be making a value live in a block where it didn't use to
1869 be. So recompute liveness information for this block. */
1870
1871 incr_ticks_for_insn (insn);
1872 }
1873
1874 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1875 the basic block containing the jump. */
1876
1877 static int
1878 reorg_redirect_jump (rtx jump, rtx nlabel)
1879 {
1880 incr_ticks_for_insn (jump);
1881 return redirect_jump (jump, nlabel, 1);
1882 }
1883
1884 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1885 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1886 that reference values used in INSN. If we find one, then we move the
1887 REG_DEAD note to INSN.
1888
1889 This is needed to handle the case where a later insn (after INSN) has a
1890 REG_DEAD note for a register used by INSN, and this later insn subsequently
1891 gets moved before a CODE_LABEL because it is a redundant insn. In this
1892 case, mark_target_live_regs may be confused into thinking the register
1893 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1894
1895 static void
1896 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1897 {
1898 rtx p, link, next;
1899
1900 for (p = next_nonnote_insn (insn); p != delayed_insn;
1901 p = next_nonnote_insn (p))
1902 for (link = REG_NOTES (p); link; link = next)
1903 {
1904 next = XEXP (link, 1);
1905
1906 if (REG_NOTE_KIND (link) != REG_DEAD
1907 || !REG_P (XEXP (link, 0)))
1908 continue;
1909
1910 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1911 {
1912 /* Move the REG_DEAD note from P to INSN. */
1913 remove_note (p, link);
1914 XEXP (link, 1) = REG_NOTES (insn);
1915 REG_NOTES (insn) = link;
1916 }
1917 }
1918 }
1919
1920 /* Called when an insn redundant with start_insn is deleted. If there
1921 is a REG_DEAD note for the target of start_insn between start_insn
1922 and stop_insn, then the REG_DEAD note needs to be deleted since the
1923 value no longer dies there.
1924
1925 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1926 confused into thinking the register is dead. */
1927
1928 static void
1929 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1930 {
1931 rtx p, link, next;
1932
1933 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1934 p = next_nonnote_insn (p))
1935 for (link = REG_NOTES (p); link; link = next)
1936 {
1937 next = XEXP (link, 1);
1938
1939 if (REG_NOTE_KIND (link) != REG_DEAD
1940 || !REG_P (XEXP (link, 0)))
1941 continue;
1942
1943 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1944 {
1945 remove_note (p, link);
1946 return;
1947 }
1948 }
1949 }
1950
1951 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1952
1953 This handles the case of udivmodXi4 instructions which optimize their
1954 output depending on whether any REG_UNUSED notes are present.
1955 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1956 does. */
1957
1958 static void
1959 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1960 {
1961 rtx link, next;
1962
1963 for (link = REG_NOTES (insn); link; link = next)
1964 {
1965 next = XEXP (link, 1);
1966
1967 if (REG_NOTE_KIND (link) != REG_UNUSED
1968 || !REG_P (XEXP (link, 0)))
1969 continue;
1970
1971 if (! find_regno_note (redundant_insn, REG_UNUSED,
1972 REGNO (XEXP (link, 0))))
1973 remove_note (insn, link);
1974 }
1975 }
1976 \f
1977 /* Return the label before INSN, or put a new label there. */
1978
1979 static rtx
1980 get_label_before (rtx insn)
1981 {
1982 rtx label;
1983
1984 /* Find an existing label at this point
1985 or make a new one if there is none. */
1986 label = prev_nonnote_insn (insn);
1987
1988 if (label == 0 || !LABEL_P (label))
1989 {
1990 rtx prev = PREV_INSN (insn);
1991
1992 label = gen_label_rtx ();
1993 emit_label_after (label, prev);
1994 LABEL_NUSES (label) = 0;
1995 }
1996 return label;
1997 }
1998
1999 /* Scan a function looking for insns that need a delay slot and find insns to
2000 put into the delay slot.
2001
2002 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2003 as calls). We do these first since we don't want jump insns (that are
2004 easier to fill) to get the only insns that could be used for non-jump insns.
2005 When it is zero, only try to fill JUMP_INSNs.
2006
2007 When slots are filled in this manner, the insns (including the
2008 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2009 it is possible to tell whether a delay slot has really been filled
2010 or not. `final' knows how to deal with this, by communicating
2011 through FINAL_SEQUENCE. */
2012
2013 static void
2014 fill_simple_delay_slots (int non_jumps_p)
2015 {
2016 rtx insn, pat, trial, next_trial;
2017 int i;
2018 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2019 struct resources needed, set;
2020 int slots_to_fill, slots_filled;
2021 rtx delay_list;
2022
2023 for (i = 0; i < num_unfilled_slots; i++)
2024 {
2025 int flags;
2026 /* Get the next insn to fill. If it has already had any slots assigned,
2027 we can't do anything with it. Maybe we'll improve this later. */
2028
2029 insn = unfilled_slots_base[i];
2030 if (insn == 0
2031 || INSN_DELETED_P (insn)
2032 || (NONJUMP_INSN_P (insn)
2033 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2034 || (JUMP_P (insn) && non_jumps_p)
2035 || (!JUMP_P (insn) && ! non_jumps_p))
2036 continue;
2037
2038 /* It may have been that this insn used to need delay slots, but
2039 now doesn't; ignore in that case. This can happen, for example,
2040 on the HP PA RISC, where the number of delay slots depends on
2041 what insns are nearby. */
2042 slots_to_fill = num_delay_slots (insn);
2043
2044 /* Some machine description have defined instructions to have
2045 delay slots only in certain circumstances which may depend on
2046 nearby insns (which change due to reorg's actions).
2047
2048 For example, the PA port normally has delay slots for unconditional
2049 jumps.
2050
2051 However, the PA port claims such jumps do not have a delay slot
2052 if they are immediate successors of certain CALL_INSNs. This
2053 allows the port to favor filling the delay slot of the call with
2054 the unconditional jump. */
2055 if (slots_to_fill == 0)
2056 continue;
2057
2058 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2059 says how many. After initialization, first try optimizing
2060
2061 call _foo call _foo
2062 nop add %o7,.-L1,%o7
2063 b,a L1
2064 nop
2065
2066 If this case applies, the delay slot of the call is filled with
2067 the unconditional jump. This is done first to avoid having the
2068 delay slot of the call filled in the backward scan. Also, since
2069 the unconditional jump is likely to also have a delay slot, that
2070 insn must exist when it is subsequently scanned.
2071
2072 This is tried on each insn with delay slots as some machines
2073 have insns which perform calls, but are not represented as
2074 CALL_INSNs. */
2075
2076 slots_filled = 0;
2077 delay_list = 0;
2078
2079 if (JUMP_P (insn))
2080 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2081 else
2082 flags = get_jump_flags (insn, NULL_RTX);
2083
2084 if ((trial = next_active_insn (insn))
2085 && JUMP_P (trial)
2086 && simplejump_p (trial)
2087 && eligible_for_delay (insn, slots_filled, trial, flags)
2088 && no_labels_between_p (insn, trial)
2089 && ! can_throw_internal (trial))
2090 {
2091 rtx *tmp;
2092 slots_filled++;
2093 delay_list = add_to_delay_list (trial, delay_list);
2094
2095 /* TRIAL may have had its delay slot filled, then unfilled. When
2096 the delay slot is unfilled, TRIAL is placed back on the unfilled
2097 slots obstack. Unfortunately, it is placed on the end of the
2098 obstack, not in its original location. Therefore, we must search
2099 from entry i + 1 to the end of the unfilled slots obstack to
2100 try and find TRIAL. */
2101 tmp = &unfilled_slots_base[i + 1];
2102 while (*tmp != trial && tmp != unfilled_slots_next)
2103 tmp++;
2104
2105 /* Remove the unconditional jump from consideration for delay slot
2106 filling and unthread it. */
2107 if (*tmp == trial)
2108 *tmp = 0;
2109 {
2110 rtx next = NEXT_INSN (trial);
2111 rtx prev = PREV_INSN (trial);
2112 if (prev)
2113 NEXT_INSN (prev) = next;
2114 if (next)
2115 PREV_INSN (next) = prev;
2116 }
2117 }
2118
2119 /* Now, scan backwards from the insn to search for a potential
2120 delay-slot candidate. Stop searching when a label or jump is hit.
2121
2122 For each candidate, if it is to go into the delay slot (moved
2123 forward in execution sequence), it must not need or set any resources
2124 that were set by later insns and must not set any resources that
2125 are needed for those insns.
2126
2127 The delay slot insn itself sets resources unless it is a call
2128 (in which case the called routine, not the insn itself, is doing
2129 the setting). */
2130
2131 if (slots_filled < slots_to_fill)
2132 {
2133 CLEAR_RESOURCE (&needed);
2134 CLEAR_RESOURCE (&set);
2135 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2136 mark_referenced_resources (insn, &needed, 0);
2137
2138 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2139 trial = next_trial)
2140 {
2141 next_trial = prev_nonnote_insn (trial);
2142
2143 /* This must be an INSN or CALL_INSN. */
2144 pat = PATTERN (trial);
2145
2146 /* USE and CLOBBER at this level was just for flow; ignore it. */
2147 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2148 continue;
2149
2150 /* Check for resource conflict first, to avoid unnecessary
2151 splitting. */
2152 if (! insn_references_resource_p (trial, &set, 1)
2153 && ! insn_sets_resource_p (trial, &set, 1)
2154 && ! insn_sets_resource_p (trial, &needed, 1)
2155 #ifdef HAVE_cc0
2156 /* Can't separate set of cc0 from its use. */
2157 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2158 #endif
2159 && ! can_throw_internal (trial))
2160 {
2161 trial = try_split (pat, trial, 1);
2162 next_trial = prev_nonnote_insn (trial);
2163 if (eligible_for_delay (insn, slots_filled, trial, flags))
2164 {
2165 /* In this case, we are searching backward, so if we
2166 find insns to put on the delay list, we want
2167 to put them at the head, rather than the
2168 tail, of the list. */
2169
2170 update_reg_dead_notes (trial, insn);
2171 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2172 trial, delay_list);
2173 update_block (trial, trial);
2174 delete_related_insns (trial);
2175 if (slots_to_fill == ++slots_filled)
2176 break;
2177 continue;
2178 }
2179 }
2180
2181 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2182 mark_referenced_resources (trial, &needed, 1);
2183 }
2184 }
2185
2186 /* If all needed slots haven't been filled, we come here. */
2187
2188 /* Try to optimize case of jumping around a single insn. */
2189 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2190 if (slots_filled != slots_to_fill
2191 && delay_list == 0
2192 && JUMP_P (insn)
2193 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2194 {
2195 delay_list = optimize_skip (insn);
2196 if (delay_list)
2197 slots_filled += 1;
2198 }
2199 #endif
2200
2201 /* Try to get insns from beyond the insn needing the delay slot.
2202 These insns can neither set or reference resources set in insns being
2203 skipped, cannot set resources in the insn being skipped, and, if this
2204 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2205 call might not return).
2206
2207 There used to be code which continued past the target label if
2208 we saw all uses of the target label. This code did not work,
2209 because it failed to account for some instructions which were
2210 both annulled and marked as from the target. This can happen as a
2211 result of optimize_skip. Since this code was redundant with
2212 fill_eager_delay_slots anyways, it was just deleted. */
2213
2214 if (slots_filled != slots_to_fill
2215 /* If this instruction could throw an exception which is
2216 caught in the same function, then it's not safe to fill
2217 the delay slot with an instruction from beyond this
2218 point. For example, consider:
2219
2220 int i = 2;
2221
2222 try {
2223 f();
2224 i = 3;
2225 } catch (...) {}
2226
2227 return i;
2228
2229 Even though `i' is a local variable, we must be sure not
2230 to put `i = 3' in the delay slot if `f' might throw an
2231 exception.
2232
2233 Presumably, we should also check to see if we could get
2234 back to this function via `setjmp'. */
2235 && ! can_throw_internal (insn)
2236 && (!JUMP_P (insn)
2237 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2238 && ! simplejump_p (insn)
2239 && JUMP_LABEL (insn) != 0)))
2240 {
2241 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2242 label. Otherwise, zero. */
2243 rtx target = 0;
2244 int maybe_never = 0;
2245 rtx pat, trial_delay;
2246
2247 CLEAR_RESOURCE (&needed);
2248 CLEAR_RESOURCE (&set);
2249
2250 if (CALL_P (insn))
2251 {
2252 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2253 mark_referenced_resources (insn, &needed, 1);
2254 maybe_never = 1;
2255 }
2256 else
2257 {
2258 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2259 mark_referenced_resources (insn, &needed, 1);
2260 if (JUMP_P (insn))
2261 target = JUMP_LABEL (insn);
2262 }
2263
2264 if (target == 0)
2265 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2266 {
2267 next_trial = next_nonnote_insn (trial);
2268
2269 if (LABEL_P (trial)
2270 || BARRIER_P (trial))
2271 break;
2272
2273 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2274 pat = PATTERN (trial);
2275
2276 /* Stand-alone USE and CLOBBER are just for flow. */
2277 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2278 continue;
2279
2280 /* If this already has filled delay slots, get the insn needing
2281 the delay slots. */
2282 if (GET_CODE (pat) == SEQUENCE)
2283 trial_delay = XVECEXP (pat, 0, 0);
2284 else
2285 trial_delay = trial;
2286
2287 /* Stop our search when seeing an unconditional jump. */
2288 if (JUMP_P (trial_delay))
2289 break;
2290
2291 /* See if we have a resource problem before we try to
2292 split. */
2293 if (GET_CODE (pat) != SEQUENCE
2294 && ! insn_references_resource_p (trial, &set, 1)
2295 && ! insn_sets_resource_p (trial, &set, 1)
2296 && ! insn_sets_resource_p (trial, &needed, 1)
2297 #ifdef HAVE_cc0
2298 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2299 #endif
2300 && ! (maybe_never && may_trap_or_fault_p (pat))
2301 && (trial = try_split (pat, trial, 0))
2302 && eligible_for_delay (insn, slots_filled, trial, flags)
2303 && ! can_throw_internal(trial))
2304 {
2305 next_trial = next_nonnote_insn (trial);
2306 delay_list = add_to_delay_list (trial, delay_list);
2307
2308 #ifdef HAVE_cc0
2309 if (reg_mentioned_p (cc0_rtx, pat))
2310 link_cc0_insns (trial);
2311 #endif
2312
2313 delete_related_insns (trial);
2314 if (slots_to_fill == ++slots_filled)
2315 break;
2316 continue;
2317 }
2318
2319 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2320 mark_referenced_resources (trial, &needed, 1);
2321
2322 /* Ensure we don't put insns between the setting of cc and the
2323 comparison by moving a setting of cc into an earlier delay
2324 slot since these insns could clobber the condition code. */
2325 set.cc = 1;
2326
2327 /* If this is a call or jump, we might not get here. */
2328 if (CALL_P (trial_delay)
2329 || JUMP_P (trial_delay))
2330 maybe_never = 1;
2331 }
2332
2333 /* If there are slots left to fill and our search was stopped by an
2334 unconditional branch, try the insn at the branch target. We can
2335 redirect the branch if it works.
2336
2337 Don't do this if the insn at the branch target is a branch. */
2338 if (slots_to_fill != slots_filled
2339 && trial
2340 && JUMP_P (trial)
2341 && simplejump_p (trial)
2342 && (target == 0 || JUMP_LABEL (trial) == target)
2343 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2344 && ! (NONJUMP_INSN_P (next_trial)
2345 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2346 && !JUMP_P (next_trial)
2347 && ! insn_references_resource_p (next_trial, &set, 1)
2348 && ! insn_sets_resource_p (next_trial, &set, 1)
2349 && ! insn_sets_resource_p (next_trial, &needed, 1)
2350 #ifdef HAVE_cc0
2351 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2352 #endif
2353 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2354 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2355 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2356 && ! can_throw_internal (trial))
2357 {
2358 /* See comment in relax_delay_slots about necessity of using
2359 next_real_insn here. */
2360 rtx new_label = next_real_insn (next_trial);
2361
2362 if (new_label != 0)
2363 new_label = get_label_before (new_label);
2364 else
2365 new_label = find_end_label ();
2366
2367 if (new_label)
2368 {
2369 delay_list
2370 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2371 slots_filled++;
2372 reorg_redirect_jump (trial, new_label);
2373
2374 /* If we merged because we both jumped to the same place,
2375 redirect the original insn also. */
2376 if (target)
2377 reorg_redirect_jump (insn, new_label);
2378 }
2379 }
2380 }
2381
2382 /* If this is an unconditional jump, then try to get insns from the
2383 target of the jump. */
2384 if (JUMP_P (insn)
2385 && simplejump_p (insn)
2386 && slots_filled != slots_to_fill)
2387 delay_list
2388 = fill_slots_from_thread (insn, const_true_rtx,
2389 next_active_insn (JUMP_LABEL (insn)),
2390 NULL, 1, 1,
2391 own_thread_p (JUMP_LABEL (insn),
2392 JUMP_LABEL (insn), 0),
2393 slots_to_fill, &slots_filled,
2394 delay_list);
2395
2396 if (delay_list)
2397 unfilled_slots_base[i]
2398 = emit_delay_sequence (insn, delay_list, slots_filled);
2399
2400 if (slots_to_fill == slots_filled)
2401 unfilled_slots_base[i] = 0;
2402
2403 note_delay_statistics (slots_filled, 0);
2404 }
2405
2406 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2407 /* See if the epilogue needs any delay slots. Try to fill them if so.
2408 The only thing we can do is scan backwards from the end of the
2409 function. If we did this in a previous pass, it is incorrect to do it
2410 again. */
2411 if (current_function_epilogue_delay_list)
2412 return;
2413
2414 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2415 if (slots_to_fill == 0)
2416 return;
2417
2418 slots_filled = 0;
2419 CLEAR_RESOURCE (&set);
2420
2421 /* The frame pointer and stack pointer are needed at the beginning of
2422 the epilogue, so instructions setting them can not be put in the
2423 epilogue delay slot. However, everything else needed at function
2424 end is safe, so we don't want to use end_of_function_needs here. */
2425 CLEAR_RESOURCE (&needed);
2426 if (frame_pointer_needed)
2427 {
2428 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2429 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2430 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2431 #endif
2432 if (! EXIT_IGNORE_STACK
2433 || current_function_sp_is_unchanging)
2434 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2435 }
2436 else
2437 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2438
2439 #ifdef EPILOGUE_USES
2440 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2441 {
2442 if (EPILOGUE_USES (i))
2443 SET_HARD_REG_BIT (needed.regs, i);
2444 }
2445 #endif
2446
2447 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2448 trial = PREV_INSN (trial))
2449 {
2450 if (NOTE_P (trial))
2451 continue;
2452 pat = PATTERN (trial);
2453 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2454 continue;
2455
2456 if (! insn_references_resource_p (trial, &set, 1)
2457 && ! insn_sets_resource_p (trial, &needed, 1)
2458 && ! insn_sets_resource_p (trial, &set, 1)
2459 #ifdef HAVE_cc0
2460 /* Don't want to mess with cc0 here. */
2461 && ! reg_mentioned_p (cc0_rtx, pat)
2462 #endif
2463 && ! can_throw_internal (trial))
2464 {
2465 trial = try_split (pat, trial, 1);
2466 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2467 {
2468 /* Here as well we are searching backward, so put the
2469 insns we find on the head of the list. */
2470
2471 current_function_epilogue_delay_list
2472 = gen_rtx_INSN_LIST (VOIDmode, trial,
2473 current_function_epilogue_delay_list);
2474 mark_end_of_function_resources (trial, 1);
2475 update_block (trial, trial);
2476 delete_related_insns (trial);
2477
2478 /* Clear deleted bit so final.c will output the insn. */
2479 INSN_DELETED_P (trial) = 0;
2480
2481 if (slots_to_fill == ++slots_filled)
2482 break;
2483 continue;
2484 }
2485 }
2486
2487 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2488 mark_referenced_resources (trial, &needed, 1);
2489 }
2490
2491 note_delay_statistics (slots_filled, 0);
2492 #endif
2493 }
2494 \f
2495 /* Follow any unconditional jump at LABEL;
2496 return the ultimate label reached by any such chain of jumps.
2497 Return null if the chain ultimately leads to a return instruction.
2498 If LABEL is not followed by a jump, return LABEL.
2499 If the chain loops or we can't find end, return LABEL,
2500 since that tells caller to avoid changing the insn. */
2501
2502 static rtx
2503 follow_jumps (rtx label)
2504 {
2505 rtx insn;
2506 rtx next;
2507 rtx value = label;
2508 int depth;
2509
2510 for (depth = 0;
2511 (depth < 10
2512 && (insn = next_active_insn (value)) != 0
2513 && JUMP_P (insn)
2514 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2515 && onlyjump_p (insn))
2516 || GET_CODE (PATTERN (insn)) == RETURN)
2517 && (next = NEXT_INSN (insn))
2518 && BARRIER_P (next));
2519 depth++)
2520 {
2521 rtx tem;
2522
2523 /* If we have found a cycle, make the insn jump to itself. */
2524 if (JUMP_LABEL (insn) == label)
2525 return label;
2526
2527 tem = next_active_insn (JUMP_LABEL (insn));
2528 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2529 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2530 break;
2531
2532 value = JUMP_LABEL (insn);
2533 }
2534 if (depth == 10)
2535 return label;
2536 return value;
2537 }
2538
2539 /* Try to find insns to place in delay slots.
2540
2541 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2542 or is an unconditional branch if CONDITION is const_true_rtx.
2543 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2544
2545 THREAD is a flow-of-control, either the insns to be executed if the
2546 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2547
2548 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2549 to see if any potential delay slot insns set things needed there.
2550
2551 LIKELY is nonzero if it is extremely likely that the branch will be
2552 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2553 end of a loop back up to the top.
2554
2555 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2556 thread. I.e., it is the fallthrough code of our jump or the target of the
2557 jump when we are the only jump going there.
2558
2559 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2560 case, we can only take insns from the head of the thread for our delay
2561 slot. We then adjust the jump to point after the insns we have taken. */
2562
2563 static rtx
2564 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2565 rtx opposite_thread, int likely, int thread_if_true,
2566 int own_thread, int slots_to_fill,
2567 int *pslots_filled, rtx delay_list)
2568 {
2569 rtx new_thread;
2570 struct resources opposite_needed, set, needed;
2571 rtx trial;
2572 int lose = 0;
2573 int must_annul = 0;
2574 int flags;
2575
2576 /* Validate our arguments. */
2577 gcc_assert(condition != const_true_rtx || thread_if_true);
2578 gcc_assert(own_thread || thread_if_true);
2579
2580 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2581
2582 /* If our thread is the end of subroutine, we can't get any delay
2583 insns from that. */
2584 if (thread == 0)
2585 return delay_list;
2586
2587 /* If this is an unconditional branch, nothing is needed at the
2588 opposite thread. Otherwise, compute what is needed there. */
2589 if (condition == const_true_rtx)
2590 CLEAR_RESOURCE (&opposite_needed);
2591 else
2592 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2593
2594 /* If the insn at THREAD can be split, do it here to avoid having to
2595 update THREAD and NEW_THREAD if it is done in the loop below. Also
2596 initialize NEW_THREAD. */
2597
2598 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2599
2600 /* Scan insns at THREAD. We are looking for an insn that can be removed
2601 from THREAD (it neither sets nor references resources that were set
2602 ahead of it and it doesn't set anything needs by the insns ahead of
2603 it) and that either can be placed in an annulling insn or aren't
2604 needed at OPPOSITE_THREAD. */
2605
2606 CLEAR_RESOURCE (&needed);
2607 CLEAR_RESOURCE (&set);
2608
2609 /* If we do not own this thread, we must stop as soon as we find
2610 something that we can't put in a delay slot, since all we can do
2611 is branch into THREAD at a later point. Therefore, labels stop
2612 the search if this is not the `true' thread. */
2613
2614 for (trial = thread;
2615 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2616 trial = next_nonnote_insn (trial))
2617 {
2618 rtx pat, old_trial;
2619
2620 /* If we have passed a label, we no longer own this thread. */
2621 if (LABEL_P (trial))
2622 {
2623 own_thread = 0;
2624 continue;
2625 }
2626
2627 pat = PATTERN (trial);
2628 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2629 continue;
2630
2631 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2632 don't separate or copy insns that set and use CC0. */
2633 if (! insn_references_resource_p (trial, &set, 1)
2634 && ! insn_sets_resource_p (trial, &set, 1)
2635 && ! insn_sets_resource_p (trial, &needed, 1)
2636 #ifdef HAVE_cc0
2637 && ! (reg_mentioned_p (cc0_rtx, pat)
2638 && (! own_thread || ! sets_cc0_p (pat)))
2639 #endif
2640 && ! can_throw_internal (trial))
2641 {
2642 rtx prior_insn;
2643
2644 /* If TRIAL is redundant with some insn before INSN, we don't
2645 actually need to add it to the delay list; we can merely pretend
2646 we did. */
2647 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2648 {
2649 fix_reg_dead_note (prior_insn, insn);
2650 if (own_thread)
2651 {
2652 update_block (trial, thread);
2653 if (trial == thread)
2654 {
2655 thread = next_active_insn (thread);
2656 if (new_thread == trial)
2657 new_thread = thread;
2658 }
2659
2660 delete_related_insns (trial);
2661 }
2662 else
2663 {
2664 update_reg_unused_notes (prior_insn, trial);
2665 new_thread = next_active_insn (trial);
2666 }
2667
2668 continue;
2669 }
2670
2671 /* There are two ways we can win: If TRIAL doesn't set anything
2672 needed at the opposite thread and can't trap, or if it can
2673 go into an annulled delay slot. */
2674 if (!must_annul
2675 && (condition == const_true_rtx
2676 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2677 && ! may_trap_or_fault_p (pat))))
2678 {
2679 old_trial = trial;
2680 trial = try_split (pat, trial, 0);
2681 if (new_thread == old_trial)
2682 new_thread = trial;
2683 if (thread == old_trial)
2684 thread = trial;
2685 pat = PATTERN (trial);
2686 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2687 goto winner;
2688 }
2689 else if (0
2690 #ifdef ANNUL_IFTRUE_SLOTS
2691 || ! thread_if_true
2692 #endif
2693 #ifdef ANNUL_IFFALSE_SLOTS
2694 || thread_if_true
2695 #endif
2696 )
2697 {
2698 old_trial = trial;
2699 trial = try_split (pat, trial, 0);
2700 if (new_thread == old_trial)
2701 new_thread = trial;
2702 if (thread == old_trial)
2703 thread = trial;
2704 pat = PATTERN (trial);
2705 if ((must_annul || delay_list == NULL) && (thread_if_true
2706 ? check_annul_list_true_false (0, delay_list)
2707 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2708 : check_annul_list_true_false (1, delay_list)
2709 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2710 {
2711 rtx temp;
2712
2713 must_annul = 1;
2714 winner:
2715
2716 #ifdef HAVE_cc0
2717 if (reg_mentioned_p (cc0_rtx, pat))
2718 link_cc0_insns (trial);
2719 #endif
2720
2721 /* If we own this thread, delete the insn. If this is the
2722 destination of a branch, show that a basic block status
2723 may have been updated. In any case, mark the new
2724 starting point of this thread. */
2725 if (own_thread)
2726 {
2727 rtx note;
2728
2729 update_block (trial, thread);
2730 if (trial == thread)
2731 {
2732 thread = next_active_insn (thread);
2733 if (new_thread == trial)
2734 new_thread = thread;
2735 }
2736
2737 /* We are moving this insn, not deleting it. We must
2738 temporarily increment the use count on any referenced
2739 label lest it be deleted by delete_related_insns. */
2740 for (note = REG_NOTES (trial);
2741 note != NULL;
2742 note = XEXP (note, 1))
2743 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2744 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2745 {
2746 /* REG_LABEL_OPERAND could be
2747 NOTE_INSN_DELETED_LABEL too. */
2748 if (LABEL_P (XEXP (note, 0)))
2749 LABEL_NUSES (XEXP (note, 0))++;
2750 else
2751 gcc_assert (REG_NOTE_KIND (note)
2752 == REG_LABEL_OPERAND);
2753 }
2754 if (JUMP_P (trial) && JUMP_LABEL (trial))
2755 LABEL_NUSES (XEXP (note, 0))++;
2756
2757 delete_related_insns (trial);
2758
2759 for (note = REG_NOTES (trial);
2760 note != NULL;
2761 note = XEXP (note, 1))
2762 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2763 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2764 {
2765 /* REG_LABEL_OPERAND could be
2766 NOTE_INSN_DELETED_LABEL too. */
2767 if (LABEL_P (XEXP (note, 0)))
2768 LABEL_NUSES (XEXP (note, 0))--;
2769 else
2770 gcc_assert (REG_NOTE_KIND (note)
2771 == REG_LABEL_OPERAND);
2772 }
2773 if (JUMP_P (trial) && JUMP_LABEL (trial))
2774 LABEL_NUSES (XEXP (note, 0))--;
2775 }
2776 else
2777 new_thread = next_active_insn (trial);
2778
2779 temp = own_thread ? trial : copy_rtx (trial);
2780 if (thread_if_true)
2781 INSN_FROM_TARGET_P (temp) = 1;
2782
2783 delay_list = add_to_delay_list (temp, delay_list);
2784
2785 if (slots_to_fill == ++(*pslots_filled))
2786 {
2787 /* Even though we have filled all the slots, we
2788 may be branching to a location that has a
2789 redundant insn. Skip any if so. */
2790 while (new_thread && ! own_thread
2791 && ! insn_sets_resource_p (new_thread, &set, 1)
2792 && ! insn_sets_resource_p (new_thread, &needed, 1)
2793 && ! insn_references_resource_p (new_thread,
2794 &set, 1)
2795 && (prior_insn
2796 = redundant_insn (new_thread, insn,
2797 delay_list)))
2798 {
2799 /* We know we do not own the thread, so no need
2800 to call update_block and delete_insn. */
2801 fix_reg_dead_note (prior_insn, insn);
2802 update_reg_unused_notes (prior_insn, new_thread);
2803 new_thread = next_active_insn (new_thread);
2804 }
2805 break;
2806 }
2807
2808 continue;
2809 }
2810 }
2811 }
2812
2813 /* This insn can't go into a delay slot. */
2814 lose = 1;
2815 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2816 mark_referenced_resources (trial, &needed, 1);
2817
2818 /* Ensure we don't put insns between the setting of cc and the comparison
2819 by moving a setting of cc into an earlier delay slot since these insns
2820 could clobber the condition code. */
2821 set.cc = 1;
2822
2823 /* If this insn is a register-register copy and the next insn has
2824 a use of our destination, change it to use our source. That way,
2825 it will become a candidate for our delay slot the next time
2826 through this loop. This case occurs commonly in loops that
2827 scan a list.
2828
2829 We could check for more complex cases than those tested below,
2830 but it doesn't seem worth it. It might also be a good idea to try
2831 to swap the two insns. That might do better.
2832
2833 We can't do this if the next insn modifies our destination, because
2834 that would make the replacement into the insn invalid. We also can't
2835 do this if it modifies our source, because it might be an earlyclobber
2836 operand. This latter test also prevents updating the contents of
2837 a PRE_INC. We also can't do this if there's overlap of source and
2838 destination. Overlap may happen for larger-than-register-size modes. */
2839
2840 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2841 && REG_P (SET_SRC (pat))
2842 && REG_P (SET_DEST (pat))
2843 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2844 {
2845 rtx next = next_nonnote_insn (trial);
2846
2847 if (next && NONJUMP_INSN_P (next)
2848 && GET_CODE (PATTERN (next)) != USE
2849 && ! reg_set_p (SET_DEST (pat), next)
2850 && ! reg_set_p (SET_SRC (pat), next)
2851 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2852 && ! modified_in_p (SET_DEST (pat), next))
2853 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2854 }
2855 }
2856
2857 /* If we stopped on a branch insn that has delay slots, see if we can
2858 steal some of the insns in those slots. */
2859 if (trial && NONJUMP_INSN_P (trial)
2860 && GET_CODE (PATTERN (trial)) == SEQUENCE
2861 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2862 {
2863 /* If this is the `true' thread, we will want to follow the jump,
2864 so we can only do this if we have taken everything up to here. */
2865 if (thread_if_true && trial == new_thread)
2866 {
2867 delay_list
2868 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2869 delay_list, &set, &needed,
2870 &opposite_needed, slots_to_fill,
2871 pslots_filled, &must_annul,
2872 &new_thread);
2873 /* If we owned the thread and are told that it branched
2874 elsewhere, make sure we own the thread at the new location. */
2875 if (own_thread && trial != new_thread)
2876 own_thread = own_thread_p (new_thread, new_thread, 0);
2877 }
2878 else if (! thread_if_true)
2879 delay_list
2880 = steal_delay_list_from_fallthrough (insn, condition,
2881 PATTERN (trial),
2882 delay_list, &set, &needed,
2883 &opposite_needed, slots_to_fill,
2884 pslots_filled, &must_annul);
2885 }
2886
2887 /* If we haven't found anything for this delay slot and it is very
2888 likely that the branch will be taken, see if the insn at our target
2889 increments or decrements a register with an increment that does not
2890 depend on the destination register. If so, try to place the opposite
2891 arithmetic insn after the jump insn and put the arithmetic insn in the
2892 delay slot. If we can't do this, return. */
2893 if (delay_list == 0 && likely && new_thread
2894 && NONJUMP_INSN_P (new_thread)
2895 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2896 && asm_noperands (PATTERN (new_thread)) < 0)
2897 {
2898 rtx pat = PATTERN (new_thread);
2899 rtx dest;
2900 rtx src;
2901
2902 trial = new_thread;
2903 pat = PATTERN (trial);
2904
2905 if (!NONJUMP_INSN_P (trial)
2906 || GET_CODE (pat) != SET
2907 || ! eligible_for_delay (insn, 0, trial, flags)
2908 || can_throw_internal (trial))
2909 return 0;
2910
2911 dest = SET_DEST (pat), src = SET_SRC (pat);
2912 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2913 && rtx_equal_p (XEXP (src, 0), dest)
2914 && (!FLOAT_MODE_P (GET_MODE (src))
2915 || flag_unsafe_math_optimizations)
2916 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2917 && ! side_effects_p (pat))
2918 {
2919 rtx other = XEXP (src, 1);
2920 rtx new_arith;
2921 rtx ninsn;
2922
2923 /* If this is a constant adjustment, use the same code with
2924 the negated constant. Otherwise, reverse the sense of the
2925 arithmetic. */
2926 if (GET_CODE (other) == CONST_INT)
2927 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2928 negate_rtx (GET_MODE (src), other));
2929 else
2930 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2931 GET_MODE (src), dest, other);
2932
2933 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2934 insn);
2935
2936 if (recog_memoized (ninsn) < 0
2937 || (extract_insn (ninsn), ! constrain_operands (1)))
2938 {
2939 delete_related_insns (ninsn);
2940 return 0;
2941 }
2942
2943 if (own_thread)
2944 {
2945 update_block (trial, thread);
2946 if (trial == thread)
2947 {
2948 thread = next_active_insn (thread);
2949 if (new_thread == trial)
2950 new_thread = thread;
2951 }
2952 delete_related_insns (trial);
2953 }
2954 else
2955 new_thread = next_active_insn (trial);
2956
2957 ninsn = own_thread ? trial : copy_rtx (trial);
2958 if (thread_if_true)
2959 INSN_FROM_TARGET_P (ninsn) = 1;
2960
2961 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2962 (*pslots_filled)++;
2963 }
2964 }
2965
2966 if (delay_list && must_annul)
2967 INSN_ANNULLED_BRANCH_P (insn) = 1;
2968
2969 /* If we are to branch into the middle of this thread, find an appropriate
2970 label or make a new one if none, and redirect INSN to it. If we hit the
2971 end of the function, use the end-of-function label. */
2972 if (new_thread != thread)
2973 {
2974 rtx label;
2975
2976 gcc_assert (thread_if_true);
2977
2978 if (new_thread && JUMP_P (new_thread)
2979 && (simplejump_p (new_thread)
2980 || GET_CODE (PATTERN (new_thread)) == RETURN)
2981 && redirect_with_delay_list_safe_p (insn,
2982 JUMP_LABEL (new_thread),
2983 delay_list))
2984 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2985
2986 if (new_thread == 0)
2987 label = find_end_label ();
2988 else if (LABEL_P (new_thread))
2989 label = new_thread;
2990 else
2991 label = get_label_before (new_thread);
2992
2993 if (label)
2994 reorg_redirect_jump (insn, label);
2995 }
2996
2997 return delay_list;
2998 }
2999 \f
3000 /* Make another attempt to find insns to place in delay slots.
3001
3002 We previously looked for insns located in front of the delay insn
3003 and, for non-jump delay insns, located behind the delay insn.
3004
3005 Here only try to schedule jump insns and try to move insns from either
3006 the target or the following insns into the delay slot. If annulling is
3007 supported, we will be likely to do this. Otherwise, we can do this only
3008 if safe. */
3009
3010 static void
3011 fill_eager_delay_slots (void)
3012 {
3013 rtx insn;
3014 int i;
3015 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3016
3017 for (i = 0; i < num_unfilled_slots; i++)
3018 {
3019 rtx condition;
3020 rtx target_label, insn_at_target, fallthrough_insn;
3021 rtx delay_list = 0;
3022 int own_target;
3023 int own_fallthrough;
3024 int prediction, slots_to_fill, slots_filled;
3025
3026 insn = unfilled_slots_base[i];
3027 if (insn == 0
3028 || INSN_DELETED_P (insn)
3029 || !JUMP_P (insn)
3030 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3031 continue;
3032
3033 slots_to_fill = num_delay_slots (insn);
3034 /* Some machine description have defined instructions to have
3035 delay slots only in certain circumstances which may depend on
3036 nearby insns (which change due to reorg's actions).
3037
3038 For example, the PA port normally has delay slots for unconditional
3039 jumps.
3040
3041 However, the PA port claims such jumps do not have a delay slot
3042 if they are immediate successors of certain CALL_INSNs. This
3043 allows the port to favor filling the delay slot of the call with
3044 the unconditional jump. */
3045 if (slots_to_fill == 0)
3046 continue;
3047
3048 slots_filled = 0;
3049 target_label = JUMP_LABEL (insn);
3050 condition = get_branch_condition (insn, target_label);
3051
3052 if (condition == 0)
3053 continue;
3054
3055 /* Get the next active fallthrough and target insns and see if we own
3056 them. Then see whether the branch is likely true. We don't need
3057 to do a lot of this for unconditional branches. */
3058
3059 insn_at_target = next_active_insn (target_label);
3060 own_target = own_thread_p (target_label, target_label, 0);
3061
3062 if (condition == const_true_rtx)
3063 {
3064 own_fallthrough = 0;
3065 fallthrough_insn = 0;
3066 prediction = 2;
3067 }
3068 else
3069 {
3070 fallthrough_insn = next_active_insn (insn);
3071 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3072 prediction = mostly_true_jump (insn, condition);
3073 }
3074
3075 /* If this insn is expected to branch, first try to get insns from our
3076 target, then our fallthrough insns. If it is not expected to branch,
3077 try the other order. */
3078
3079 if (prediction > 0)
3080 {
3081 delay_list
3082 = fill_slots_from_thread (insn, condition, insn_at_target,
3083 fallthrough_insn, prediction == 2, 1,
3084 own_target,
3085 slots_to_fill, &slots_filled, delay_list);
3086
3087 if (delay_list == 0 && own_fallthrough)
3088 {
3089 /* Even though we didn't find anything for delay slots,
3090 we might have found a redundant insn which we deleted
3091 from the thread that was filled. So we have to recompute
3092 the next insn at the target. */
3093 target_label = JUMP_LABEL (insn);
3094 insn_at_target = next_active_insn (target_label);
3095
3096 delay_list
3097 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3098 insn_at_target, 0, 0,
3099 own_fallthrough,
3100 slots_to_fill, &slots_filled,
3101 delay_list);
3102 }
3103 }
3104 else
3105 {
3106 if (own_fallthrough)
3107 delay_list
3108 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3109 insn_at_target, 0, 0,
3110 own_fallthrough,
3111 slots_to_fill, &slots_filled,
3112 delay_list);
3113
3114 if (delay_list == 0)
3115 delay_list
3116 = fill_slots_from_thread (insn, condition, insn_at_target,
3117 next_active_insn (insn), 0, 1,
3118 own_target,
3119 slots_to_fill, &slots_filled,
3120 delay_list);
3121 }
3122
3123 if (delay_list)
3124 unfilled_slots_base[i]
3125 = emit_delay_sequence (insn, delay_list, slots_filled);
3126
3127 if (slots_to_fill == slots_filled)
3128 unfilled_slots_base[i] = 0;
3129
3130 note_delay_statistics (slots_filled, 1);
3131 }
3132 }
3133 \f
3134 static void delete_computation (rtx insn);
3135
3136 /* Recursively delete prior insns that compute the value (used only by INSN
3137 which the caller is deleting) stored in the register mentioned by NOTE
3138 which is a REG_DEAD note associated with INSN. */
3139
3140 static void
3141 delete_prior_computation (rtx note, rtx insn)
3142 {
3143 rtx our_prev;
3144 rtx reg = XEXP (note, 0);
3145
3146 for (our_prev = prev_nonnote_insn (insn);
3147 our_prev && (NONJUMP_INSN_P (our_prev)
3148 || CALL_P (our_prev));
3149 our_prev = prev_nonnote_insn (our_prev))
3150 {
3151 rtx pat = PATTERN (our_prev);
3152
3153 /* If we reach a CALL which is not calling a const function
3154 or the callee pops the arguments, then give up. */
3155 if (CALL_P (our_prev)
3156 && (! CONST_OR_PURE_CALL_P (our_prev)
3157 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
3158 break;
3159
3160 /* If we reach a SEQUENCE, it is too complex to try to
3161 do anything with it, so give up. We can be run during
3162 and after reorg, so SEQUENCE rtl can legitimately show
3163 up here. */
3164 if (GET_CODE (pat) == SEQUENCE)
3165 break;
3166
3167 if (GET_CODE (pat) == USE
3168 && NONJUMP_INSN_P (XEXP (pat, 0)))
3169 /* reorg creates USEs that look like this. We leave them
3170 alone because reorg needs them for its own purposes. */
3171 break;
3172
3173 if (reg_set_p (reg, pat))
3174 {
3175 if (side_effects_p (pat) && !CALL_P (our_prev))
3176 break;
3177
3178 if (GET_CODE (pat) == PARALLEL)
3179 {
3180 /* If we find a SET of something else, we can't
3181 delete the insn. */
3182
3183 int i;
3184
3185 for (i = 0; i < XVECLEN (pat, 0); i++)
3186 {
3187 rtx part = XVECEXP (pat, 0, i);
3188
3189 if (GET_CODE (part) == SET
3190 && SET_DEST (part) != reg)
3191 break;
3192 }
3193
3194 if (i == XVECLEN (pat, 0))
3195 delete_computation (our_prev);
3196 }
3197 else if (GET_CODE (pat) == SET
3198 && REG_P (SET_DEST (pat)))
3199 {
3200 int dest_regno = REGNO (SET_DEST (pat));
3201 int dest_endregno = END_REGNO (SET_DEST (pat));
3202 int regno = REGNO (reg);
3203 int endregno = END_REGNO (reg);
3204
3205 if (dest_regno >= regno
3206 && dest_endregno <= endregno)
3207 delete_computation (our_prev);
3208
3209 /* We may have a multi-word hard register and some, but not
3210 all, of the words of the register are needed in subsequent
3211 insns. Write REG_UNUSED notes for those parts that were not
3212 needed. */
3213 else if (dest_regno <= regno
3214 && dest_endregno >= endregno)
3215 {
3216 int i;
3217
3218 REG_NOTES (our_prev)
3219 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
3220 REG_NOTES (our_prev));
3221
3222 for (i = dest_regno; i < dest_endregno; i++)
3223 if (! find_regno_note (our_prev, REG_UNUSED, i))
3224 break;
3225
3226 if (i == dest_endregno)
3227 delete_computation (our_prev);
3228 }
3229 }
3230
3231 break;
3232 }
3233
3234 /* If PAT references the register that dies here, it is an
3235 additional use. Hence any prior SET isn't dead. However, this
3236 insn becomes the new place for the REG_DEAD note. */
3237 if (reg_overlap_mentioned_p (reg, pat))
3238 {
3239 XEXP (note, 1) = REG_NOTES (our_prev);
3240 REG_NOTES (our_prev) = note;
3241 break;
3242 }
3243 }
3244 }
3245
3246 /* Delete INSN and recursively delete insns that compute values used only
3247 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3248 If we are running before flow.c, we need do nothing since flow.c will
3249 delete dead code. We also can't know if the registers being used are
3250 dead or not at this point.
3251
3252 Otherwise, look at all our REG_DEAD notes. If a previous insn does
3253 nothing other than set a register that dies in this insn, we can delete
3254 that insn as well.
3255
3256 On machines with CC0, if CC0 is used in this insn, we may be able to
3257 delete the insn that set it. */
3258
3259 static void
3260 delete_computation (rtx insn)
3261 {
3262 rtx note, next;
3263
3264 #ifdef HAVE_cc0
3265 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3266 {
3267 rtx prev = prev_nonnote_insn (insn);
3268 /* We assume that at this stage
3269 CC's are always set explicitly
3270 and always immediately before the jump that
3271 will use them. So if the previous insn
3272 exists to set the CC's, delete it
3273 (unless it performs auto-increments, etc.). */
3274 if (prev && NONJUMP_INSN_P (prev)
3275 && sets_cc0_p (PATTERN (prev)))
3276 {
3277 if (sets_cc0_p (PATTERN (prev)) > 0
3278 && ! side_effects_p (PATTERN (prev)))
3279 delete_computation (prev);
3280 else
3281 /* Otherwise, show that cc0 won't be used. */
3282 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
3283 cc0_rtx, REG_NOTES (prev));
3284 }
3285 }
3286 #endif
3287
3288 for (note = REG_NOTES (insn); note; note = next)
3289 {
3290 next = XEXP (note, 1);
3291
3292 if (REG_NOTE_KIND (note) != REG_DEAD
3293 /* Verify that the REG_NOTE is legitimate. */
3294 || !REG_P (XEXP (note, 0)))
3295 continue;
3296
3297 delete_prior_computation (note, insn);
3298 }
3299
3300 delete_related_insns (insn);
3301 }
3302
3303 /* If all INSN does is set the pc, delete it,
3304 and delete the insn that set the condition codes for it
3305 if that's what the previous thing was. */
3306
3307 static void
3308 delete_jump (rtx insn)
3309 {
3310 rtx set = single_set (insn);
3311
3312 if (set && GET_CODE (SET_DEST (set)) == PC)
3313 delete_computation (insn);
3314 }
3315
3316 \f
3317 /* Once we have tried two ways to fill a delay slot, make a pass over the
3318 code to try to improve the results and to do such things as more jump
3319 threading. */
3320
3321 static void
3322 relax_delay_slots (rtx first)
3323 {
3324 rtx insn, next, pat;
3325 rtx trial, delay_insn, target_label;
3326
3327 /* Look at every JUMP_INSN and see if we can improve it. */
3328 for (insn = first; insn; insn = next)
3329 {
3330 rtx other;
3331
3332 next = next_active_insn (insn);
3333
3334 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3335 the next insn, or jumps to a label that is not the last of a
3336 group of consecutive labels. */
3337 if (JUMP_P (insn)
3338 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3339 && (target_label = JUMP_LABEL (insn)) != 0)
3340 {
3341 target_label = skip_consecutive_labels (follow_jumps (target_label));
3342 if (target_label == 0)
3343 target_label = find_end_label ();
3344
3345 if (target_label && next_active_insn (target_label) == next
3346 && ! condjump_in_parallel_p (insn))
3347 {
3348 delete_jump (insn);
3349 continue;
3350 }
3351
3352 if (target_label && target_label != JUMP_LABEL (insn))
3353 reorg_redirect_jump (insn, target_label);
3354
3355 /* See if this jump conditionally branches around an unconditional
3356 jump. If so, invert this jump and point it to the target of the
3357 second jump. */
3358 if (next && JUMP_P (next)
3359 && any_condjump_p (insn)
3360 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3361 && target_label
3362 && next_active_insn (target_label) == next_active_insn (next)
3363 && no_labels_between_p (insn, next))
3364 {
3365 rtx label = JUMP_LABEL (next);
3366
3367 /* Be careful how we do this to avoid deleting code or
3368 labels that are momentarily dead. See similar optimization
3369 in jump.c.
3370
3371 We also need to ensure we properly handle the case when
3372 invert_jump fails. */
3373
3374 ++LABEL_NUSES (target_label);
3375 if (label)
3376 ++LABEL_NUSES (label);
3377
3378 if (invert_jump (insn, label, 1))
3379 {
3380 delete_related_insns (next);
3381 next = insn;
3382 }
3383
3384 if (label)
3385 --LABEL_NUSES (label);
3386
3387 if (--LABEL_NUSES (target_label) == 0)
3388 delete_related_insns (target_label);
3389
3390 continue;
3391 }
3392 }
3393
3394 /* If this is an unconditional jump and the previous insn is a
3395 conditional jump, try reversing the condition of the previous
3396 insn and swapping our targets. The next pass might be able to
3397 fill the slots.
3398
3399 Don't do this if we expect the conditional branch to be true, because
3400 we would then be making the more common case longer. */
3401
3402 if (JUMP_P (insn)
3403 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3404 && (other = prev_active_insn (insn)) != 0
3405 && any_condjump_p (other)
3406 && no_labels_between_p (other, insn)
3407 && 0 > mostly_true_jump (other,
3408 get_branch_condition (other,
3409 JUMP_LABEL (other))))
3410 {
3411 rtx other_target = JUMP_LABEL (other);
3412 target_label = JUMP_LABEL (insn);
3413
3414 if (invert_jump (other, target_label, 0))
3415 reorg_redirect_jump (insn, other_target);
3416 }
3417
3418 /* Now look only at cases where we have filled a delay slot. */
3419 if (!NONJUMP_INSN_P (insn)
3420 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3421 continue;
3422
3423 pat = PATTERN (insn);
3424 delay_insn = XVECEXP (pat, 0, 0);
3425
3426 /* See if the first insn in the delay slot is redundant with some
3427 previous insn. Remove it from the delay slot if so; then set up
3428 to reprocess this insn. */
3429 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3430 {
3431 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3432 next = prev_active_insn (next);
3433 continue;
3434 }
3435
3436 /* See if we have a RETURN insn with a filled delay slot followed
3437 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3438 the first RETURN (but not its delay insn). This gives the same
3439 effect in fewer instructions.
3440
3441 Only do so if optimizing for size since this results in slower, but
3442 smaller code. */
3443 if (optimize_size
3444 && GET_CODE (PATTERN (delay_insn)) == RETURN
3445 && next
3446 && JUMP_P (next)
3447 && GET_CODE (PATTERN (next)) == RETURN)
3448 {
3449 rtx after;
3450 int i;
3451
3452 /* Delete the RETURN and just execute the delay list insns.
3453
3454 We do this by deleting the INSN containing the SEQUENCE, then
3455 re-emitting the insns separately, and then deleting the RETURN.
3456 This allows the count of the jump target to be properly
3457 decremented. */
3458
3459 /* Clear the from target bit, since these insns are no longer
3460 in delay slots. */
3461 for (i = 0; i < XVECLEN (pat, 0); i++)
3462 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3463
3464 trial = PREV_INSN (insn);
3465 delete_related_insns (insn);
3466 gcc_assert (GET_CODE (pat) == SEQUENCE);
3467 after = trial;
3468 for (i = 0; i < XVECLEN (pat, 0); i++)
3469 {
3470 rtx this_insn = XVECEXP (pat, 0, i);
3471 add_insn_after (this_insn, after, NULL);
3472 after = this_insn;
3473 }
3474 delete_scheduled_jump (delay_insn);
3475 continue;
3476 }
3477
3478 /* Now look only at the cases where we have a filled JUMP_INSN. */
3479 if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3480 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3481 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3482 continue;
3483
3484 target_label = JUMP_LABEL (delay_insn);
3485
3486 if (target_label)
3487 {
3488 /* If this jump goes to another unconditional jump, thread it, but
3489 don't convert a jump into a RETURN here. */
3490 trial = skip_consecutive_labels (follow_jumps (target_label));
3491 if (trial == 0)
3492 trial = find_end_label ();
3493
3494 if (trial && trial != target_label
3495 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3496 {
3497 reorg_redirect_jump (delay_insn, trial);
3498 target_label = trial;
3499 }
3500
3501 /* If the first insn at TARGET_LABEL is redundant with a previous
3502 insn, redirect the jump to the following insn process again. */
3503 trial = next_active_insn (target_label);
3504 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3505 && redundant_insn (trial, insn, 0)
3506 && ! can_throw_internal (trial))
3507 {
3508 /* Figure out where to emit the special USE insn so we don't
3509 later incorrectly compute register live/death info. */
3510 rtx tmp = next_active_insn (trial);
3511 if (tmp == 0)
3512 tmp = find_end_label ();
3513
3514 if (tmp)
3515 {
3516 /* Insert the special USE insn and update dataflow info. */
3517 update_block (trial, tmp);
3518
3519 /* Now emit a label before the special USE insn, and
3520 redirect our jump to the new label. */
3521 target_label = get_label_before (PREV_INSN (tmp));
3522 reorg_redirect_jump (delay_insn, target_label);
3523 next = insn;
3524 continue;
3525 }
3526 }
3527
3528 /* Similarly, if it is an unconditional jump with one insn in its
3529 delay list and that insn is redundant, thread the jump. */
3530 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3531 && XVECLEN (PATTERN (trial), 0) == 2
3532 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3533 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3534 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3535 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3536 {
3537 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3538 if (target_label == 0)
3539 target_label = find_end_label ();
3540
3541 if (target_label
3542 && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3543 insn))
3544 {
3545 reorg_redirect_jump (delay_insn, target_label);
3546 next = insn;
3547 continue;
3548 }
3549 }
3550 }
3551
3552 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3553 && prev_active_insn (target_label) == insn
3554 && ! condjump_in_parallel_p (delay_insn)
3555 #ifdef HAVE_cc0
3556 /* If the last insn in the delay slot sets CC0 for some insn,
3557 various code assumes that it is in a delay slot. We could
3558 put it back where it belonged and delete the register notes,
3559 but it doesn't seem worthwhile in this uncommon case. */
3560 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3561 REG_CC_USER, NULL_RTX)
3562 #endif
3563 )
3564 {
3565 rtx after;
3566 int i;
3567
3568 /* All this insn does is execute its delay list and jump to the
3569 following insn. So delete the jump and just execute the delay
3570 list insns.
3571
3572 We do this by deleting the INSN containing the SEQUENCE, then
3573 re-emitting the insns separately, and then deleting the jump.
3574 This allows the count of the jump target to be properly
3575 decremented. */
3576
3577 /* Clear the from target bit, since these insns are no longer
3578 in delay slots. */
3579 for (i = 0; i < XVECLEN (pat, 0); i++)
3580 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3581
3582 trial = PREV_INSN (insn);
3583 delete_related_insns (insn);
3584 gcc_assert (GET_CODE (pat) == SEQUENCE);
3585 after = trial;
3586 for (i = 0; i < XVECLEN (pat, 0); i++)
3587 {
3588 rtx this_insn = XVECEXP (pat, 0, i);
3589 add_insn_after (this_insn, after, NULL);
3590 after = this_insn;
3591 }
3592 delete_scheduled_jump (delay_insn);
3593 continue;
3594 }
3595
3596 /* See if this is an unconditional jump around a single insn which is
3597 identical to the one in its delay slot. In this case, we can just
3598 delete the branch and the insn in its delay slot. */
3599 if (next && NONJUMP_INSN_P (next)
3600 && prev_label (next_active_insn (next)) == target_label
3601 && simplejump_p (insn)
3602 && XVECLEN (pat, 0) == 2
3603 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3604 {
3605 delete_related_insns (insn);
3606 continue;
3607 }
3608
3609 /* See if this jump (with its delay slots) conditionally branches
3610 around an unconditional jump (without delay slots). If so, invert
3611 this jump and point it to the target of the second jump. We cannot
3612 do this for annulled jumps, though. Again, don't convert a jump to
3613 a RETURN here. */
3614 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3615 && any_condjump_p (delay_insn)
3616 && next && JUMP_P (next)
3617 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3618 && next_active_insn (target_label) == next_active_insn (next)
3619 && no_labels_between_p (insn, next))
3620 {
3621 rtx label = JUMP_LABEL (next);
3622 rtx old_label = JUMP_LABEL (delay_insn);
3623
3624 if (label == 0)
3625 label = find_end_label ();
3626
3627 /* find_end_label can generate a new label. Check this first. */
3628 if (label
3629 && no_labels_between_p (insn, next)
3630 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3631 {
3632 /* Be careful how we do this to avoid deleting code or labels
3633 that are momentarily dead. See similar optimization in
3634 jump.c */
3635 if (old_label)
3636 ++LABEL_NUSES (old_label);
3637
3638 if (invert_jump (delay_insn, label, 1))
3639 {
3640 int i;
3641
3642 /* Must update the INSN_FROM_TARGET_P bits now that
3643 the branch is reversed, so that mark_target_live_regs
3644 will handle the delay slot insn correctly. */
3645 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3646 {
3647 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3648 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3649 }
3650
3651 delete_related_insns (next);
3652 next = insn;
3653 }
3654
3655 if (old_label && --LABEL_NUSES (old_label) == 0)
3656 delete_related_insns (old_label);
3657 continue;
3658 }
3659 }
3660
3661 /* If we own the thread opposite the way this insn branches, see if we
3662 can merge its delay slots with following insns. */
3663 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3664 && own_thread_p (NEXT_INSN (insn), 0, 1))
3665 try_merge_delay_insns (insn, next);
3666 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3667 && own_thread_p (target_label, target_label, 0))
3668 try_merge_delay_insns (insn, next_active_insn (target_label));
3669
3670 /* If we get here, we haven't deleted INSN. But we may have deleted
3671 NEXT, so recompute it. */
3672 next = next_active_insn (insn);
3673 }
3674 }
3675 \f
3676 #ifdef HAVE_return
3677
3678 /* Look for filled jumps to the end of function label. We can try to convert
3679 them into RETURN insns if the insns in the delay slot are valid for the
3680 RETURN as well. */
3681
3682 static void
3683 make_return_insns (rtx first)
3684 {
3685 rtx insn, jump_insn, pat;
3686 rtx real_return_label = end_of_function_label;
3687 int slots, i;
3688
3689 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3690 /* If a previous pass filled delay slots in the epilogue, things get a
3691 bit more complicated, as those filler insns would generally (without
3692 data flow analysis) have to be executed after any existing branch
3693 delay slot filler insns. It is also unknown whether such a
3694 transformation would actually be profitable. Note that the existing
3695 code only cares for branches with (some) filled delay slots. */
3696 if (current_function_epilogue_delay_list != NULL)
3697 return;
3698 #endif
3699
3700 /* See if there is a RETURN insn in the function other than the one we
3701 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3702 into a RETURN to jump to it. */
3703 for (insn = first; insn; insn = NEXT_INSN (insn))
3704 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3705 {
3706 real_return_label = get_label_before (insn);
3707 break;
3708 }
3709
3710 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3711 was equal to END_OF_FUNCTION_LABEL. */
3712 LABEL_NUSES (real_return_label)++;
3713
3714 /* Clear the list of insns to fill so we can use it. */
3715 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3716
3717 for (insn = first; insn; insn = NEXT_INSN (insn))
3718 {
3719 int flags;
3720
3721 /* Only look at filled JUMP_INSNs that go to the end of function
3722 label. */
3723 if (!NONJUMP_INSN_P (insn)
3724 || GET_CODE (PATTERN (insn)) != SEQUENCE
3725 || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3726 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3727 continue;
3728
3729 pat = PATTERN (insn);
3730 jump_insn = XVECEXP (pat, 0, 0);
3731
3732 /* If we can't make the jump into a RETURN, try to redirect it to the best
3733 RETURN and go on to the next insn. */
3734 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3735 {
3736 /* Make sure redirecting the jump will not invalidate the delay
3737 slot insns. */
3738 if (redirect_with_delay_slots_safe_p (jump_insn,
3739 real_return_label,
3740 insn))
3741 reorg_redirect_jump (jump_insn, real_return_label);
3742 continue;
3743 }
3744
3745 /* See if this RETURN can accept the insns current in its delay slot.
3746 It can if it has more or an equal number of slots and the contents
3747 of each is valid. */
3748
3749 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3750 slots = num_delay_slots (jump_insn);
3751 if (slots >= XVECLEN (pat, 0) - 1)
3752 {
3753 for (i = 1; i < XVECLEN (pat, 0); i++)
3754 if (! (
3755 #ifdef ANNUL_IFFALSE_SLOTS
3756 (INSN_ANNULLED_BRANCH_P (jump_insn)
3757 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3758 ? eligible_for_annul_false (jump_insn, i - 1,
3759 XVECEXP (pat, 0, i), flags) :
3760 #endif
3761 #ifdef ANNUL_IFTRUE_SLOTS
3762 (INSN_ANNULLED_BRANCH_P (jump_insn)
3763 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3764 ? eligible_for_annul_true (jump_insn, i - 1,
3765 XVECEXP (pat, 0, i), flags) :
3766 #endif
3767 eligible_for_delay (jump_insn, i - 1,
3768 XVECEXP (pat, 0, i), flags)))
3769 break;
3770 }
3771 else
3772 i = 0;
3773
3774 if (i == XVECLEN (pat, 0))
3775 continue;
3776
3777 /* We have to do something with this insn. If it is an unconditional
3778 RETURN, delete the SEQUENCE and output the individual insns,
3779 followed by the RETURN. Then set things up so we try to find
3780 insns for its delay slots, if it needs some. */
3781 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3782 {
3783 rtx prev = PREV_INSN (insn);
3784
3785 delete_related_insns (insn);
3786 for (i = 1; i < XVECLEN (pat, 0); i++)
3787 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3788
3789 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3790 emit_barrier_after (insn);
3791
3792 if (slots)
3793 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3794 }
3795 else
3796 /* It is probably more efficient to keep this with its current
3797 delay slot as a branch to a RETURN. */
3798 reorg_redirect_jump (jump_insn, real_return_label);
3799 }
3800
3801 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3802 new delay slots we have created. */
3803 if (--LABEL_NUSES (real_return_label) == 0)
3804 delete_related_insns (real_return_label);
3805
3806 fill_simple_delay_slots (1);
3807 fill_simple_delay_slots (0);
3808 }
3809 #endif
3810 \f
3811 /* Try to find insns to place in delay slots. */
3812
3813 void
3814 dbr_schedule (rtx first)
3815 {
3816 rtx insn, next, epilogue_insn = 0;
3817 int i;
3818
3819 /* If the current function has no insns other than the prologue and
3820 epilogue, then do not try to fill any delay slots. */
3821 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3822 return;
3823
3824 /* Find the highest INSN_UID and allocate and initialize our map from
3825 INSN_UID's to position in code. */
3826 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3827 {
3828 if (INSN_UID (insn) > max_uid)
3829 max_uid = INSN_UID (insn);
3830 if (NOTE_P (insn)
3831 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3832 epilogue_insn = insn;
3833 }
3834
3835 uid_to_ruid = xmalloc ((max_uid + 1) * sizeof (int));
3836 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3837 uid_to_ruid[INSN_UID (insn)] = i;
3838
3839 /* Initialize the list of insns that need filling. */
3840 if (unfilled_firstobj == 0)
3841 {
3842 gcc_obstack_init (&unfilled_slots_obstack);
3843 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3844 }
3845
3846 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3847 {
3848 rtx target;
3849
3850 INSN_ANNULLED_BRANCH_P (insn) = 0;
3851 INSN_FROM_TARGET_P (insn) = 0;
3852
3853 /* Skip vector tables. We can't get attributes for them. */
3854 if (JUMP_P (insn)
3855 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3856 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3857 continue;
3858
3859 if (num_delay_slots (insn) > 0)
3860 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3861
3862 /* Ensure all jumps go to the last of a set of consecutive labels. */
3863 if (JUMP_P (insn)
3864 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3865 && JUMP_LABEL (insn) != 0
3866 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3867 != JUMP_LABEL (insn)))
3868 redirect_jump (insn, target, 1);
3869 }
3870
3871 init_resource_info (epilogue_insn);
3872
3873 /* Show we haven't computed an end-of-function label yet. */
3874 end_of_function_label = 0;
3875
3876 /* Initialize the statistics for this function. */
3877 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3878 memset (num_filled_delays, 0, sizeof num_filled_delays);
3879
3880 /* Now do the delay slot filling. Try everything twice in case earlier
3881 changes make more slots fillable. */
3882
3883 for (reorg_pass_number = 0;
3884 reorg_pass_number < MAX_REORG_PASSES;
3885 reorg_pass_number++)
3886 {
3887 fill_simple_delay_slots (1);
3888 fill_simple_delay_slots (0);
3889 fill_eager_delay_slots ();
3890 relax_delay_slots (first);
3891 }
3892
3893 /* If we made an end of function label, indicate that it is now
3894 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3895 If it is now unused, delete it. */
3896 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3897 delete_related_insns (end_of_function_label);
3898
3899 #ifdef HAVE_return
3900 if (HAVE_return && end_of_function_label != 0)
3901 make_return_insns (first);
3902 #endif
3903
3904 /* Delete any USE insns made by update_block; subsequent passes don't need
3905 them or know how to deal with them. */
3906 for (insn = first; insn; insn = next)
3907 {
3908 next = NEXT_INSN (insn);
3909
3910 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3911 && INSN_P (XEXP (PATTERN (insn), 0)))
3912 next = delete_related_insns (insn);
3913 }
3914
3915 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3916
3917 /* It is not clear why the line below is needed, but it does seem to be. */
3918 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3919
3920 if (dump_file)
3921 {
3922 int i, j, need_comma;
3923 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3924 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3925
3926 for (reorg_pass_number = 0;
3927 reorg_pass_number < MAX_REORG_PASSES;
3928 reorg_pass_number++)
3929 {
3930 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3931 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3932 {
3933 need_comma = 0;
3934 fprintf (dump_file, ";; Reorg function #%d\n", i);
3935
3936 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3937 num_insns_needing_delays[i][reorg_pass_number]);
3938
3939 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3940 if (num_filled_delays[i][j][reorg_pass_number])
3941 {
3942 if (need_comma)
3943 fprintf (dump_file, ", ");
3944 need_comma = 1;
3945 fprintf (dump_file, "%d got %d delays",
3946 num_filled_delays[i][j][reorg_pass_number], j);
3947 }
3948 fprintf (dump_file, "\n");
3949 }
3950 }
3951 memset (total_delay_slots, 0, sizeof total_delay_slots);
3952 memset (total_annul_slots, 0, sizeof total_annul_slots);
3953 for (insn = first; insn; insn = NEXT_INSN (insn))
3954 {
3955 if (! INSN_DELETED_P (insn)
3956 && NONJUMP_INSN_P (insn)
3957 && GET_CODE (PATTERN (insn)) != USE
3958 && GET_CODE (PATTERN (insn)) != CLOBBER)
3959 {
3960 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3961 {
3962 j = XVECLEN (PATTERN (insn), 0) - 1;
3963 if (j > MAX_DELAY_HISTOGRAM)
3964 j = MAX_DELAY_HISTOGRAM;
3965 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3966 total_annul_slots[j]++;
3967 else
3968 total_delay_slots[j]++;
3969 }
3970 else if (num_delay_slots (insn) > 0)
3971 total_delay_slots[0]++;
3972 }
3973 }
3974 fprintf (dump_file, ";; Reorg totals: ");
3975 need_comma = 0;
3976 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3977 {
3978 if (total_delay_slots[j])
3979 {
3980 if (need_comma)
3981 fprintf (dump_file, ", ");
3982 need_comma = 1;
3983 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3984 }
3985 }
3986 fprintf (dump_file, "\n");
3987 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3988 fprintf (dump_file, ";; Reorg annuls: ");
3989 need_comma = 0;
3990 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3991 {
3992 if (total_annul_slots[j])
3993 {
3994 if (need_comma)
3995 fprintf (dump_file, ", ");
3996 need_comma = 1;
3997 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
3998 }
3999 }
4000 fprintf (dump_file, "\n");
4001 #endif
4002 fprintf (dump_file, "\n");
4003 }
4004
4005 /* For all JUMP insns, fill in branch prediction notes, so that during
4006 assembler output a target can set branch prediction bits in the code.
4007 We have to do this now, as up until this point the destinations of
4008 JUMPS can be moved around and changed, but past right here that cannot
4009 happen. */
4010 for (insn = first; insn; insn = NEXT_INSN (insn))
4011 {
4012 int pred_flags;
4013
4014 if (NONJUMP_INSN_P (insn))
4015 {
4016 rtx pat = PATTERN (insn);
4017
4018 if (GET_CODE (pat) == SEQUENCE)
4019 insn = XVECEXP (pat, 0, 0);
4020 }
4021 if (!JUMP_P (insn))
4022 continue;
4023
4024 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
4025 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_BR_PRED,
4026 GEN_INT (pred_flags),
4027 REG_NOTES (insn));
4028 }
4029 free_resource_info ();
4030 free (uid_to_ruid);
4031 #ifdef DELAY_SLOTS_FOR_EPILOGUE
4032 /* SPARC assembler, for instance, emit warning when debug info is output
4033 into the delay slot. */
4034 {
4035 rtx link;
4036
4037 for (link = current_function_epilogue_delay_list;
4038 link;
4039 link = XEXP (link, 1))
4040 INSN_LOCATOR (XEXP (link, 0)) = 0;
4041 }
4042
4043 #endif
4044 }
4045 #endif /* DELAY_SLOTS */
4046 \f
4047 static bool
4048 gate_handle_delay_slots (void)
4049 {
4050 #ifdef DELAY_SLOTS
4051 return flag_delayed_branch;
4052 #else
4053 return 0;
4054 #endif
4055 }
4056
4057 /* Run delay slot optimization. */
4058 static unsigned int
4059 rest_of_handle_delay_slots (void)
4060 {
4061 #ifdef DELAY_SLOTS
4062 dbr_schedule (get_insns ());
4063 #endif
4064 return 0;
4065 }
4066
4067 struct tree_opt_pass pass_delay_slots =
4068 {
4069 "dbr", /* name */
4070 gate_handle_delay_slots, /* gate */
4071 rest_of_handle_delay_slots, /* execute */
4072 NULL, /* sub */
4073 NULL, /* next */
4074 0, /* static_pass_number */
4075 TV_DBR_SCHED, /* tv_id */
4076 0, /* properties_required */
4077 0, /* properties_provided */
4078 0, /* properties_destroyed */
4079 0, /* todo_flags_start */
4080 TODO_dump_func |
4081 TODO_ggc_collect, /* todo_flags_finish */
4082 'd' /* letter */
4083 };
4084
4085 /* Machine dependent reorg pass. */
4086 static bool
4087 gate_handle_machine_reorg (void)
4088 {
4089 return targetm.machine_dependent_reorg != 0;
4090 }
4091
4092
4093 static unsigned int
4094 rest_of_handle_machine_reorg (void)
4095 {
4096 targetm.machine_dependent_reorg ();
4097 return 0;
4098 }
4099
4100 struct tree_opt_pass pass_machine_reorg =
4101 {
4102 "mach", /* name */
4103 gate_handle_machine_reorg, /* gate */
4104 rest_of_handle_machine_reorg, /* execute */
4105 NULL, /* sub */
4106 NULL, /* next */
4107 0, /* static_pass_number */
4108 TV_MACH_DEP, /* tv_id */
4109 0, /* properties_required */
4110 0, /* properties_provided */
4111 0, /* properties_destroyed */
4112 0, /* todo_flags_start */
4113 TODO_dump_func |
4114 TODO_ggc_collect, /* todo_flags_finish */
4115 'M' /* letter */
4116 };