re PR fortran/58771 (ICE in transfer_expr, at fortran/trans-io.c:2164)
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "flags.h"
31 #include "output.h"
32 #include "resource.h"
33 #include "except.h"
34 #include "insn-attr.h"
35 #include "params.h"
36 #include "df.h"
37
38 /* This structure is used to record liveness information at the targets or
39 fallthrough insns of branches. We will most likely need the information
40 at targets again, so save them in a hash table rather than recomputing them
41 each time. */
42
43 struct target_info
44 {
45 int uid; /* INSN_UID of target. */
46 struct target_info *next; /* Next info for same hash bucket. */
47 HARD_REG_SET live_regs; /* Registers live at target. */
48 int block; /* Basic block number containing target. */
49 int bb_tick; /* Generation count of basic block info. */
50 };
51
52 #define TARGET_HASH_PRIME 257
53
54 /* Indicates what resources are required at the beginning of the epilogue. */
55 static struct resources start_of_epilogue_needs;
56
57 /* Indicates what resources are required at function end. */
58 static struct resources end_of_function_needs;
59
60 /* Define the hash table itself. */
61 static struct target_info **target_hash_table = NULL;
62
63 /* For each basic block, we maintain a generation number of its basic
64 block info, which is updated each time we move an insn from the
65 target of a jump. This is the generation number indexed by block
66 number. */
67
68 static int *bb_ticks;
69
70 /* Marks registers possibly live at the current place being scanned by
71 mark_target_live_regs. Also used by update_live_status. */
72
73 static HARD_REG_SET current_live_regs;
74
75 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
76 Also only used by the next two functions. */
77
78 static HARD_REG_SET pending_dead_regs;
79 \f
80 static void update_live_status (rtx, const_rtx, void *);
81 static int find_basic_block (rtx, int);
82 static rtx next_insn_no_annul (rtx);
83 static rtx find_dead_or_set_registers (rtx, struct resources*,
84 rtx*, int, struct resources,
85 struct resources);
86 \f
87 /* Utility function called from mark_target_live_regs via note_stores.
88 It deadens any CLOBBERed registers and livens any SET registers. */
89
90 static void
91 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
92 {
93 int first_regno, last_regno;
94 int i;
95
96 if (!REG_P (dest)
97 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
98 return;
99
100 if (GET_CODE (dest) == SUBREG)
101 {
102 first_regno = subreg_regno (dest);
103 last_regno = first_regno + subreg_nregs (dest);
104
105 }
106 else
107 {
108 first_regno = REGNO (dest);
109 last_regno = END_HARD_REGNO (dest);
110 }
111
112 if (GET_CODE (x) == CLOBBER)
113 for (i = first_regno; i < last_regno; i++)
114 CLEAR_HARD_REG_BIT (current_live_regs, i);
115 else
116 for (i = first_regno; i < last_regno; i++)
117 {
118 SET_HARD_REG_BIT (current_live_regs, i);
119 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
120 }
121 }
122
123 /* Find the number of the basic block with correct live register
124 information that starts closest to INSN. Return -1 if we couldn't
125 find such a basic block or the beginning is more than
126 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
127 an unlimited search.
128
129 The delay slot filling code destroys the control-flow graph so,
130 instead of finding the basic block containing INSN, we search
131 backwards toward a BARRIER where the live register information is
132 correct. */
133
134 static int
135 find_basic_block (rtx insn, int search_limit)
136 {
137 /* Scan backwards to the previous BARRIER. Then see if we can find a
138 label that starts a basic block. Return the basic block number. */
139 for (insn = prev_nonnote_insn (insn);
140 insn && !BARRIER_P (insn) && search_limit != 0;
141 insn = prev_nonnote_insn (insn), --search_limit)
142 ;
143
144 /* The closest BARRIER is too far away. */
145 if (search_limit == 0)
146 return -1;
147
148 /* The start of the function. */
149 else if (insn == 0)
150 return ENTRY_BLOCK_PTR->next_bb->index;
151
152 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
153 anything other than a CODE_LABEL or note, we can't find this code. */
154 for (insn = next_nonnote_insn (insn);
155 insn && LABEL_P (insn);
156 insn = next_nonnote_insn (insn))
157 if (BLOCK_FOR_INSN (insn))
158 return BLOCK_FOR_INSN (insn)->index;
159
160 return -1;
161 }
162 \f
163 /* Similar to next_insn, but ignores insns in the delay slots of
164 an annulled branch. */
165
166 static rtx
167 next_insn_no_annul (rtx insn)
168 {
169 if (insn)
170 {
171 /* If INSN is an annulled branch, skip any insns from the target
172 of the branch. */
173 if (JUMP_P (insn)
174 && INSN_ANNULLED_BRANCH_P (insn)
175 && NEXT_INSN (PREV_INSN (insn)) != insn)
176 {
177 rtx next = NEXT_INSN (insn);
178
179 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
180 && INSN_FROM_TARGET_P (next))
181 {
182 insn = next;
183 next = NEXT_INSN (insn);
184 }
185 }
186
187 insn = NEXT_INSN (insn);
188 if (insn && NONJUMP_INSN_P (insn)
189 && GET_CODE (PATTERN (insn)) == SEQUENCE)
190 insn = XVECEXP (PATTERN (insn), 0, 0);
191 }
192
193 return insn;
194 }
195 \f
196 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
197 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
198 is TRUE, resources used by the called routine will be included for
199 CALL_INSNs. */
200
201 void
202 mark_referenced_resources (rtx x, struct resources *res,
203 bool include_delayed_effects)
204 {
205 enum rtx_code code = GET_CODE (x);
206 int i, j;
207 unsigned int r;
208 const char *format_ptr;
209
210 /* Handle leaf items for which we set resource flags. Also, special-case
211 CALL, SET and CLOBBER operators. */
212 switch (code)
213 {
214 case CONST:
215 CASE_CONST_ANY:
216 case PC:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return;
220
221 case SUBREG:
222 if (!REG_P (SUBREG_REG (x)))
223 mark_referenced_resources (SUBREG_REG (x), res, false);
224 else
225 {
226 unsigned int regno = subreg_regno (x);
227 unsigned int last_regno = regno + subreg_nregs (x);
228
229 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
230 for (r = regno; r < last_regno; r++)
231 SET_HARD_REG_BIT (res->regs, r);
232 }
233 return;
234
235 case REG:
236 gcc_assert (HARD_REGISTER_P (x));
237 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
238 return;
239
240 case MEM:
241 /* If this memory shouldn't change, it really isn't referencing
242 memory. */
243 if (! MEM_READONLY_P (x))
244 res->memory = 1;
245 res->volatil |= MEM_VOLATILE_P (x);
246
247 /* Mark registers used to access memory. */
248 mark_referenced_resources (XEXP (x, 0), res, false);
249 return;
250
251 case CC0:
252 res->cc = 1;
253 return;
254
255 case UNSPEC_VOLATILE:
256 case TRAP_IF:
257 case ASM_INPUT:
258 /* Traditional asm's are always volatile. */
259 res->volatil = 1;
260 break;
261
262 case ASM_OPERANDS:
263 res->volatil |= MEM_VOLATILE_P (x);
264
265 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
266 We can not just fall through here since then we would be confused
267 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
268 traditional asms unlike their normal usage. */
269
270 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
271 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
272 return;
273
274 case CALL:
275 /* The first operand will be a (MEM (xxx)) but doesn't really reference
276 memory. The second operand may be referenced, though. */
277 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
278 mark_referenced_resources (XEXP (x, 1), res, false);
279 return;
280
281 case SET:
282 /* Usually, the first operand of SET is set, not referenced. But
283 registers used to access memory are referenced. SET_DEST is
284 also referenced if it is a ZERO_EXTRACT. */
285
286 mark_referenced_resources (SET_SRC (x), res, false);
287
288 x = SET_DEST (x);
289 if (GET_CODE (x) == ZERO_EXTRACT
290 || GET_CODE (x) == STRICT_LOW_PART)
291 mark_referenced_resources (x, res, false);
292 else if (GET_CODE (x) == SUBREG)
293 x = SUBREG_REG (x);
294 if (MEM_P (x))
295 mark_referenced_resources (XEXP (x, 0), res, false);
296 return;
297
298 case CLOBBER:
299 return;
300
301 case CALL_INSN:
302 if (include_delayed_effects)
303 {
304 /* A CALL references memory, the frame pointer if it exists, the
305 stack pointer, any global registers and any registers given in
306 USE insns immediately in front of the CALL.
307
308 However, we may have moved some of the parameter loading insns
309 into the delay slot of this CALL. If so, the USE's for them
310 don't count and should be skipped. */
311 rtx insn = PREV_INSN (x);
312 rtx sequence = 0;
313 int seq_size = 0;
314 int i;
315
316 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
317 if (NEXT_INSN (insn) != x)
318 {
319 sequence = PATTERN (NEXT_INSN (insn));
320 seq_size = XVECLEN (sequence, 0);
321 gcc_assert (GET_CODE (sequence) == SEQUENCE);
322 }
323
324 res->memory = 1;
325 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
326 if (frame_pointer_needed)
327 {
328 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
329 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
330 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
331 #endif
332 }
333
334 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
335 if (global_regs[i])
336 SET_HARD_REG_BIT (res->regs, i);
337
338 /* Check for a REG_SETJMP. If it exists, then we must
339 assume that this call can need any register.
340
341 This is done to be more conservative about how we handle setjmp.
342 We assume that they both use and set all registers. Using all
343 registers ensures that a register will not be considered dead
344 just because it crosses a setjmp call. A register should be
345 considered dead only if the setjmp call returns nonzero. */
346 if (find_reg_note (x, REG_SETJMP, NULL))
347 SET_HARD_REG_SET (res->regs);
348
349 {
350 rtx link;
351
352 for (link = CALL_INSN_FUNCTION_USAGE (x);
353 link;
354 link = XEXP (link, 1))
355 if (GET_CODE (XEXP (link, 0)) == USE)
356 {
357 for (i = 1; i < seq_size; i++)
358 {
359 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
360 if (GET_CODE (slot_pat) == SET
361 && rtx_equal_p (SET_DEST (slot_pat),
362 XEXP (XEXP (link, 0), 0)))
363 break;
364 }
365 if (i >= seq_size)
366 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
367 res, false);
368 }
369 }
370 }
371
372 /* ... fall through to other INSN processing ... */
373
374 case INSN:
375 case JUMP_INSN:
376
377 if (GET_CODE (PATTERN (x)) == COND_EXEC)
378 /* In addition to the usual references, also consider all outputs
379 as referenced, to compensate for mark_set_resources treating
380 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
381 handling, execpt that we got a partial incidence instead of a partial
382 width. */
383 mark_set_resources (x, res, 0,
384 include_delayed_effects
385 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
386
387 #ifdef INSN_REFERENCES_ARE_DELAYED
388 if (! include_delayed_effects
389 && INSN_REFERENCES_ARE_DELAYED (x))
390 return;
391 #endif
392
393 /* No special processing, just speed up. */
394 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
395 return;
396
397 default:
398 break;
399 }
400
401 /* Process each sub-expression and flag what it needs. */
402 format_ptr = GET_RTX_FORMAT (code);
403 for (i = 0; i < GET_RTX_LENGTH (code); i++)
404 switch (*format_ptr++)
405 {
406 case 'e':
407 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
408 break;
409
410 case 'E':
411 for (j = 0; j < XVECLEN (x, i); j++)
412 mark_referenced_resources (XVECEXP (x, i, j), res,
413 include_delayed_effects);
414 break;
415 }
416 }
417 \f
418 /* A subroutine of mark_target_live_regs. Search forward from TARGET
419 looking for registers that are set before they are used. These are dead.
420 Stop after passing a few conditional jumps, and/or a small
421 number of unconditional branches. */
422
423 static rtx
424 find_dead_or_set_registers (rtx target, struct resources *res,
425 rtx *jump_target, int jump_count,
426 struct resources set, struct resources needed)
427 {
428 HARD_REG_SET scratch;
429 rtx insn, next;
430 rtx jump_insn = 0;
431 int i;
432
433 for (insn = target; insn; insn = next)
434 {
435 rtx this_jump_insn = insn;
436
437 next = NEXT_INSN (insn);
438
439 /* If this instruction can throw an exception, then we don't
440 know where we might end up next. That means that we have to
441 assume that whatever we have already marked as live really is
442 live. */
443 if (can_throw_internal (insn))
444 break;
445
446 switch (GET_CODE (insn))
447 {
448 case CODE_LABEL:
449 /* After a label, any pending dead registers that weren't yet
450 used can be made dead. */
451 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
452 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
453 CLEAR_HARD_REG_SET (pending_dead_regs);
454
455 continue;
456
457 case BARRIER:
458 case NOTE:
459 continue;
460
461 case INSN:
462 if (GET_CODE (PATTERN (insn)) == USE)
463 {
464 /* If INSN is a USE made by update_block, we care about the
465 underlying insn. Any registers set by the underlying insn
466 are live since the insn is being done somewhere else. */
467 if (INSN_P (XEXP (PATTERN (insn), 0)))
468 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
469 MARK_SRC_DEST_CALL);
470
471 /* All other USE insns are to be ignored. */
472 continue;
473 }
474 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
475 continue;
476 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
477 {
478 /* An unconditional jump can be used to fill the delay slot
479 of a call, so search for a JUMP_INSN in any position. */
480 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
481 {
482 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
483 if (JUMP_P (this_jump_insn))
484 break;
485 }
486 }
487
488 default:
489 break;
490 }
491
492 if (JUMP_P (this_jump_insn))
493 {
494 if (jump_count++ < 10)
495 {
496 if (any_uncondjump_p (this_jump_insn)
497 || ANY_RETURN_P (PATTERN (this_jump_insn)))
498 {
499 next = JUMP_LABEL (this_jump_insn);
500 if (ANY_RETURN_P (next))
501 next = NULL_RTX;
502 if (jump_insn == 0)
503 {
504 jump_insn = insn;
505 if (jump_target)
506 *jump_target = JUMP_LABEL (this_jump_insn);
507 }
508 }
509 else if (any_condjump_p (this_jump_insn))
510 {
511 struct resources target_set, target_res;
512 struct resources fallthrough_res;
513
514 /* We can handle conditional branches here by following
515 both paths, and then IOR the results of the two paths
516 together, which will give us registers that are dead
517 on both paths. Since this is expensive, we give it
518 a much higher cost than unconditional branches. The
519 cost was chosen so that we will follow at most 1
520 conditional branch. */
521
522 jump_count += 4;
523 if (jump_count >= 10)
524 break;
525
526 mark_referenced_resources (insn, &needed, true);
527
528 /* For an annulled branch, mark_set_resources ignores slots
529 filled by instructions from the target. This is correct
530 if the branch is not taken. Since we are following both
531 paths from the branch, we must also compute correct info
532 if the branch is taken. We do this by inverting all of
533 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
534 and then inverting the INSN_FROM_TARGET_P bits again. */
535
536 if (GET_CODE (PATTERN (insn)) == SEQUENCE
537 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
538 {
539 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
540 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
541 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
542
543 target_set = set;
544 mark_set_resources (insn, &target_set, 0,
545 MARK_SRC_DEST_CALL);
546
547 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
548 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
549 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
550
551 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
552 }
553 else
554 {
555 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
556 target_set = set;
557 }
558
559 target_res = *res;
560 COPY_HARD_REG_SET (scratch, target_set.regs);
561 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
562 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
563
564 fallthrough_res = *res;
565 COPY_HARD_REG_SET (scratch, set.regs);
566 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
567 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
568
569 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
570 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
571 &target_res, 0, jump_count,
572 target_set, needed);
573 find_dead_or_set_registers (next,
574 &fallthrough_res, 0, jump_count,
575 set, needed);
576 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
577 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
578 break;
579 }
580 else
581 break;
582 }
583 else
584 {
585 /* Don't try this optimization if we expired our jump count
586 above, since that would mean there may be an infinite loop
587 in the function being compiled. */
588 jump_insn = 0;
589 break;
590 }
591 }
592
593 mark_referenced_resources (insn, &needed, true);
594 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
595
596 COPY_HARD_REG_SET (scratch, set.regs);
597 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
598 AND_COMPL_HARD_REG_SET (res->regs, scratch);
599 }
600
601 return jump_insn;
602 }
603 \f
604 /* Given X, a part of an insn, and a pointer to a `struct resource',
605 RES, indicate which resources are modified by the insn. If
606 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
607 set by the called routine.
608
609 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
610 objects are being referenced instead of set.
611
612 We never mark the insn as modifying the condition code unless it explicitly
613 SETs CC0 even though this is not totally correct. The reason for this is
614 that we require a SET of CC0 to immediately precede the reference to CC0.
615 So if some other insn sets CC0 as a side-effect, we know it cannot affect
616 our computation and thus may be placed in a delay slot. */
617
618 void
619 mark_set_resources (rtx x, struct resources *res, int in_dest,
620 enum mark_resource_type mark_type)
621 {
622 enum rtx_code code;
623 int i, j;
624 unsigned int r;
625 const char *format_ptr;
626
627 restart:
628
629 code = GET_CODE (x);
630
631 switch (code)
632 {
633 case NOTE:
634 case BARRIER:
635 case CODE_LABEL:
636 case USE:
637 CASE_CONST_ANY:
638 case LABEL_REF:
639 case SYMBOL_REF:
640 case CONST:
641 case PC:
642 /* These don't set any resources. */
643 return;
644
645 case CC0:
646 if (in_dest)
647 res->cc = 1;
648 return;
649
650 case CALL_INSN:
651 /* Called routine modifies the condition code, memory, any registers
652 that aren't saved across calls, global registers and anything
653 explicitly CLOBBERed immediately after the CALL_INSN. */
654
655 if (mark_type == MARK_SRC_DEST_CALL)
656 {
657 rtx link;
658
659 res->cc = res->memory = 1;
660
661 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
662
663 for (link = CALL_INSN_FUNCTION_USAGE (x);
664 link; link = XEXP (link, 1))
665 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
666 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
667 MARK_SRC_DEST);
668
669 /* Check for a REG_SETJMP. If it exists, then we must
670 assume that this call can clobber any register. */
671 if (find_reg_note (x, REG_SETJMP, NULL))
672 SET_HARD_REG_SET (res->regs);
673 }
674
675 /* ... and also what its RTL says it modifies, if anything. */
676
677 case JUMP_INSN:
678 case INSN:
679
680 /* An insn consisting of just a CLOBBER (or USE) is just for flow
681 and doesn't actually do anything, so we ignore it. */
682
683 #ifdef INSN_SETS_ARE_DELAYED
684 if (mark_type != MARK_SRC_DEST_CALL
685 && INSN_SETS_ARE_DELAYED (x))
686 return;
687 #endif
688
689 x = PATTERN (x);
690 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
691 goto restart;
692 return;
693
694 case SET:
695 /* If the source of a SET is a CALL, this is actually done by
696 the called routine. So only include it if we are to include the
697 effects of the calling routine. */
698
699 mark_set_resources (SET_DEST (x), res,
700 (mark_type == MARK_SRC_DEST_CALL
701 || GET_CODE (SET_SRC (x)) != CALL),
702 mark_type);
703
704 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
705 return;
706
707 case CLOBBER:
708 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
709 return;
710
711 case SEQUENCE:
712 {
713 rtx control = XVECEXP (x, 0, 0);
714 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
715
716 mark_set_resources (control, res, 0, mark_type);
717 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
718 {
719 rtx elt = XVECEXP (x, 0, i);
720 if (!annul_p && INSN_FROM_TARGET_P (elt))
721 mark_set_resources (elt, res, 0, mark_type);
722 }
723 }
724 return;
725
726 case POST_INC:
727 case PRE_INC:
728 case POST_DEC:
729 case PRE_DEC:
730 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
731 return;
732
733 case PRE_MODIFY:
734 case POST_MODIFY:
735 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
736 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
737 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
738 return;
739
740 case SIGN_EXTRACT:
741 case ZERO_EXTRACT:
742 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
743 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
744 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
745 return;
746
747 case MEM:
748 if (in_dest)
749 {
750 res->memory = 1;
751 res->volatil |= MEM_VOLATILE_P (x);
752 }
753
754 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
755 return;
756
757 case SUBREG:
758 if (in_dest)
759 {
760 if (!REG_P (SUBREG_REG (x)))
761 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
762 else
763 {
764 unsigned int regno = subreg_regno (x);
765 unsigned int last_regno = regno + subreg_nregs (x);
766
767 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
768 for (r = regno; r < last_regno; r++)
769 SET_HARD_REG_BIT (res->regs, r);
770 }
771 }
772 return;
773
774 case REG:
775 if (in_dest)
776 {
777 gcc_assert (HARD_REGISTER_P (x));
778 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
779 }
780 return;
781
782 case UNSPEC_VOLATILE:
783 case ASM_INPUT:
784 /* Traditional asm's are always volatile. */
785 res->volatil = 1;
786 return;
787
788 case TRAP_IF:
789 res->volatil = 1;
790 break;
791
792 case ASM_OPERANDS:
793 res->volatil |= MEM_VOLATILE_P (x);
794
795 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
796 We can not just fall through here since then we would be confused
797 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
798 traditional asms unlike their normal usage. */
799
800 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
801 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
802 MARK_SRC_DEST);
803 return;
804
805 default:
806 break;
807 }
808
809 /* Process each sub-expression and flag what it needs. */
810 format_ptr = GET_RTX_FORMAT (code);
811 for (i = 0; i < GET_RTX_LENGTH (code); i++)
812 switch (*format_ptr++)
813 {
814 case 'e':
815 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
816 break;
817
818 case 'E':
819 for (j = 0; j < XVECLEN (x, i); j++)
820 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
821 break;
822 }
823 }
824 \f
825 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
826
827 static bool
828 return_insn_p (const_rtx insn)
829 {
830 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
831 return true;
832
833 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
834 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
835
836 return false;
837 }
838
839 /* Set the resources that are live at TARGET.
840
841 If TARGET is zero, we refer to the end of the current function and can
842 return our precomputed value.
843
844 Otherwise, we try to find out what is live by consulting the basic block
845 information. This is tricky, because we must consider the actions of
846 reload and jump optimization, which occur after the basic block information
847 has been computed.
848
849 Accordingly, we proceed as follows::
850
851 We find the previous BARRIER and look at all immediately following labels
852 (with no intervening active insns) to see if any of them start a basic
853 block. If we hit the start of the function first, we use block 0.
854
855 Once we have found a basic block and a corresponding first insn, we can
856 accurately compute the live status (by starting at a label following a
857 BARRIER, we are immune to actions taken by reload and jump.) Then we
858 scan all insns between that point and our target. For each CLOBBER (or
859 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
860 registers are dead. For a SET, mark them as live.
861
862 We have to be careful when using REG_DEAD notes because they are not
863 updated by such things as find_equiv_reg. So keep track of registers
864 marked as dead that haven't been assigned to, and mark them dead at the
865 next CODE_LABEL since reload and jump won't propagate values across labels.
866
867 If we cannot find the start of a basic block (should be a very rare
868 case, if it can happen at all), mark everything as potentially live.
869
870 Next, scan forward from TARGET looking for things set or clobbered
871 before they are used. These are not live.
872
873 Because we can be called many times on the same target, save our results
874 in a hash table indexed by INSN_UID. This is only done if the function
875 init_resource_info () was invoked before we are called. */
876
877 void
878 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
879 {
880 int b = -1;
881 unsigned int i;
882 struct target_info *tinfo = NULL;
883 rtx insn;
884 rtx jump_insn = 0;
885 rtx jump_target;
886 HARD_REG_SET scratch;
887 struct resources set, needed;
888
889 /* Handle end of function. */
890 if (target == 0 || ANY_RETURN_P (target))
891 {
892 *res = end_of_function_needs;
893 return;
894 }
895
896 /* Handle return insn. */
897 else if (return_insn_p (target))
898 {
899 *res = end_of_function_needs;
900 mark_referenced_resources (target, res, false);
901 return;
902 }
903
904 /* We have to assume memory is needed, but the CC isn't. */
905 res->memory = 1;
906 res->volatil = 0;
907 res->cc = 0;
908
909 /* See if we have computed this value already. */
910 if (target_hash_table != NULL)
911 {
912 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
913 tinfo; tinfo = tinfo->next)
914 if (tinfo->uid == INSN_UID (target))
915 break;
916
917 /* Start by getting the basic block number. If we have saved
918 information, we can get it from there unless the insn at the
919 start of the basic block has been deleted. */
920 if (tinfo && tinfo->block != -1
921 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
922 b = tinfo->block;
923 }
924
925 if (b == -1)
926 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
927
928 if (target_hash_table != NULL)
929 {
930 if (tinfo)
931 {
932 /* If the information is up-to-date, use it. Otherwise, we will
933 update it below. */
934 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
935 {
936 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
937 return;
938 }
939 }
940 else
941 {
942 /* Allocate a place to put our results and chain it into the
943 hash table. */
944 tinfo = XNEW (struct target_info);
945 tinfo->uid = INSN_UID (target);
946 tinfo->block = b;
947 tinfo->next
948 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
949 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
950 }
951 }
952
953 CLEAR_HARD_REG_SET (pending_dead_regs);
954
955 /* If we found a basic block, get the live registers from it and update
956 them with anything set or killed between its start and the insn before
957 TARGET; this custom life analysis is really about registers so we need
958 to use the LR problem. Otherwise, we must assume everything is live. */
959 if (b != -1)
960 {
961 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
962 rtx start_insn, stop_insn;
963
964 /* Compute hard regs live at start of block. */
965 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
966
967 /* Get starting and ending insn, handling the case where each might
968 be a SEQUENCE. */
969 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
970 insns : BB_HEAD (BASIC_BLOCK (b)));
971 stop_insn = target;
972
973 if (NONJUMP_INSN_P (start_insn)
974 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
975 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
976
977 if (NONJUMP_INSN_P (stop_insn)
978 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
979 stop_insn = next_insn (PREV_INSN (stop_insn));
980
981 for (insn = start_insn; insn != stop_insn;
982 insn = next_insn_no_annul (insn))
983 {
984 rtx link;
985 rtx real_insn = insn;
986 enum rtx_code code = GET_CODE (insn);
987
988 if (DEBUG_INSN_P (insn))
989 continue;
990
991 /* If this insn is from the target of a branch, it isn't going to
992 be used in the sequel. If it is used in both cases, this
993 test will not be true. */
994 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
995 && INSN_FROM_TARGET_P (insn))
996 continue;
997
998 /* If this insn is a USE made by update_block, we care about the
999 underlying insn. */
1000 if (code == INSN
1001 && GET_CODE (PATTERN (insn)) == USE
1002 && INSN_P (XEXP (PATTERN (insn), 0)))
1003 real_insn = XEXP (PATTERN (insn), 0);
1004
1005 if (CALL_P (real_insn))
1006 {
1007 /* Values in call-clobbered registers survive a COND_EXEC CALL
1008 if that is not executed; this matters for resoure use because
1009 they may be used by a complementarily (or more strictly)
1010 predicated instruction, or if the CALL is NORETURN. */
1011 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1012 {
1013 /* CALL clobbers all call-used regs that aren't fixed except
1014 sp, ap, and fp. Do this before setting the result of the
1015 call live. */
1016 AND_COMPL_HARD_REG_SET (current_live_regs,
1017 regs_invalidated_by_call);
1018 }
1019
1020 /* A CALL_INSN sets any global register live, since it may
1021 have been modified by the call. */
1022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1023 if (global_regs[i])
1024 SET_HARD_REG_BIT (current_live_regs, i);
1025 }
1026
1027 /* Mark anything killed in an insn to be deadened at the next
1028 label. Ignore USE insns; the only REG_DEAD notes will be for
1029 parameters. But they might be early. A CALL_INSN will usually
1030 clobber registers used for parameters. It isn't worth bothering
1031 with the unlikely case when it won't. */
1032 if ((NONJUMP_INSN_P (real_insn)
1033 && GET_CODE (PATTERN (real_insn)) != USE
1034 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1035 || JUMP_P (real_insn)
1036 || CALL_P (real_insn))
1037 {
1038 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1039 if (REG_NOTE_KIND (link) == REG_DEAD
1040 && REG_P (XEXP (link, 0))
1041 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1042 add_to_hard_reg_set (&pending_dead_regs,
1043 GET_MODE (XEXP (link, 0)),
1044 REGNO (XEXP (link, 0)));
1045
1046 note_stores (PATTERN (real_insn), update_live_status, NULL);
1047
1048 /* If any registers were unused after this insn, kill them.
1049 These notes will always be accurate. */
1050 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1051 if (REG_NOTE_KIND (link) == REG_UNUSED
1052 && REG_P (XEXP (link, 0))
1053 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1054 remove_from_hard_reg_set (&current_live_regs,
1055 GET_MODE (XEXP (link, 0)),
1056 REGNO (XEXP (link, 0)));
1057 }
1058
1059 else if (LABEL_P (real_insn))
1060 {
1061 basic_block bb;
1062
1063 /* A label clobbers the pending dead registers since neither
1064 reload nor jump will propagate a value across a label. */
1065 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1066 CLEAR_HARD_REG_SET (pending_dead_regs);
1067
1068 /* We must conservatively assume that all registers that used
1069 to be live here still are. The fallthrough edge may have
1070 left a live register uninitialized. */
1071 bb = BLOCK_FOR_INSN (real_insn);
1072 if (bb)
1073 {
1074 HARD_REG_SET extra_live;
1075
1076 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1077 IOR_HARD_REG_SET (current_live_regs, extra_live);
1078 }
1079 }
1080
1081 /* The beginning of the epilogue corresponds to the end of the
1082 RTL chain when there are no epilogue insns. Certain resources
1083 are implicitly required at that point. */
1084 else if (NOTE_P (real_insn)
1085 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1086 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1087 }
1088
1089 COPY_HARD_REG_SET (res->regs, current_live_regs);
1090 if (tinfo != NULL)
1091 {
1092 tinfo->block = b;
1093 tinfo->bb_tick = bb_ticks[b];
1094 }
1095 }
1096 else
1097 /* We didn't find the start of a basic block. Assume everything
1098 in use. This should happen only extremely rarely. */
1099 SET_HARD_REG_SET (res->regs);
1100
1101 CLEAR_RESOURCE (&set);
1102 CLEAR_RESOURCE (&needed);
1103
1104 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1105 set, needed);
1106
1107 /* If we hit an unconditional branch, we have another way of finding out
1108 what is live: we can see what is live at the branch target and include
1109 anything used but not set before the branch. We add the live
1110 resources found using the test below to those found until now. */
1111
1112 if (jump_insn)
1113 {
1114 struct resources new_resources;
1115 rtx stop_insn = next_active_insn (jump_insn);
1116
1117 if (!ANY_RETURN_P (jump_target))
1118 jump_target = next_active_insn (jump_target);
1119 mark_target_live_regs (insns, jump_target, &new_resources);
1120 CLEAR_RESOURCE (&set);
1121 CLEAR_RESOURCE (&needed);
1122
1123 /* Include JUMP_INSN in the needed registers. */
1124 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1125 {
1126 mark_referenced_resources (insn, &needed, true);
1127
1128 COPY_HARD_REG_SET (scratch, needed.regs);
1129 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1130 IOR_HARD_REG_SET (new_resources.regs, scratch);
1131
1132 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1133 }
1134
1135 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1136 }
1137
1138 if (tinfo != NULL)
1139 {
1140 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1141 }
1142 }
1143 \f
1144 /* Initialize the resources required by mark_target_live_regs ().
1145 This should be invoked before the first call to mark_target_live_regs. */
1146
1147 void
1148 init_resource_info (rtx epilogue_insn)
1149 {
1150 int i;
1151 basic_block bb;
1152
1153 /* Indicate what resources are required to be valid at the end of the current
1154 function. The condition code never is and memory always is.
1155 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1156 and there is an epilogue that restores the original stack pointer
1157 from the frame pointer. Registers used to return the function value
1158 are needed. Registers holding global variables are needed. */
1159
1160 end_of_function_needs.cc = 0;
1161 end_of_function_needs.memory = 1;
1162 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1163
1164 if (frame_pointer_needed)
1165 {
1166 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1167 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1168 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1169 #endif
1170 }
1171 if (!(frame_pointer_needed
1172 && EXIT_IGNORE_STACK
1173 && epilogue_insn
1174 && !crtl->sp_is_unchanging))
1175 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1176
1177 if (crtl->return_rtx != 0)
1178 mark_referenced_resources (crtl->return_rtx,
1179 &end_of_function_needs, true);
1180
1181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1182 if (global_regs[i]
1183 #ifdef EPILOGUE_USES
1184 || EPILOGUE_USES (i)
1185 #endif
1186 )
1187 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1188
1189 /* The registers required to be live at the end of the function are
1190 represented in the flow information as being dead just prior to
1191 reaching the end of the function. For example, the return of a value
1192 might be represented by a USE of the return register immediately
1193 followed by an unconditional jump to the return label where the
1194 return label is the end of the RTL chain. The end of the RTL chain
1195 is then taken to mean that the return register is live.
1196
1197 This sequence is no longer maintained when epilogue instructions are
1198 added to the RTL chain. To reconstruct the original meaning, the
1199 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1200 point where these registers become live (start_of_epilogue_needs).
1201 If epilogue instructions are present, the registers set by those
1202 instructions won't have been processed by flow. Thus, those
1203 registers are additionally required at the end of the RTL chain
1204 (end_of_function_needs). */
1205
1206 start_of_epilogue_needs = end_of_function_needs;
1207
1208 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1209 {
1210 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1211 MARK_SRC_DEST_CALL);
1212 if (return_insn_p (epilogue_insn))
1213 break;
1214 }
1215
1216 /* Allocate and initialize the tables used by mark_target_live_regs. */
1217 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1218 bb_ticks = XCNEWVEC (int, last_basic_block);
1219
1220 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1221 FOR_EACH_BB (bb)
1222 if (LABEL_P (BB_HEAD (bb)))
1223 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1224 }
1225 \f
1226 /* Free up the resources allocated to mark_target_live_regs (). This
1227 should be invoked after the last call to mark_target_live_regs (). */
1228
1229 void
1230 free_resource_info (void)
1231 {
1232 basic_block bb;
1233
1234 if (target_hash_table != NULL)
1235 {
1236 int i;
1237
1238 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1239 {
1240 struct target_info *ti = target_hash_table[i];
1241
1242 while (ti)
1243 {
1244 struct target_info *next = ti->next;
1245 free (ti);
1246 ti = next;
1247 }
1248 }
1249
1250 free (target_hash_table);
1251 target_hash_table = NULL;
1252 }
1253
1254 if (bb_ticks != NULL)
1255 {
1256 free (bb_ticks);
1257 bb_ticks = NULL;
1258 }
1259
1260 FOR_EACH_BB (bb)
1261 if (LABEL_P (BB_HEAD (bb)))
1262 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1263 }
1264 \f
1265 /* Clear any hashed information that we have stored for INSN. */
1266
1267 void
1268 clear_hashed_info_for_insn (rtx insn)
1269 {
1270 struct target_info *tinfo;
1271
1272 if (target_hash_table != NULL)
1273 {
1274 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1275 tinfo; tinfo = tinfo->next)
1276 if (tinfo->uid == INSN_UID (insn))
1277 break;
1278
1279 if (tinfo)
1280 tinfo->block = -1;
1281 }
1282 }
1283 \f
1284 /* Increment the tick count for the basic block that contains INSN. */
1285
1286 void
1287 incr_ticks_for_insn (rtx insn)
1288 {
1289 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1290
1291 if (b != -1)
1292 bb_ticks[b]++;
1293 }
1294 \f
1295 /* Add TRIAL to the set of resources used at the end of the current
1296 function. */
1297 void
1298 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1299 {
1300 mark_referenced_resources (trial, &end_of_function_needs,
1301 include_delayed_effects);
1302 }