ia64.c (ia64_expand_prologue): Declare ei variable.
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "regs.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "resource.h"
36 #include "except.h"
37 #include "insn-attr.h"
38 #include "params.h"
39
40 /* This structure is used to record liveness information at the targets or
41 fallthrough insns of branches. We will most likely need the information
42 at targets again, so save them in a hash table rather than recomputing them
43 each time. */
44
45 struct target_info
46 {
47 int uid; /* INSN_UID of target. */
48 struct target_info *next; /* Next info for same hash bucket. */
49 HARD_REG_SET live_regs; /* Registers live at target. */
50 int block; /* Basic block number containing target. */
51 int bb_tick; /* Generation count of basic block info. */
52 };
53
54 #define TARGET_HASH_PRIME 257
55
56 /* Indicates what resources are required at the beginning of the epilogue. */
57 static struct resources start_of_epilogue_needs;
58
59 /* Indicates what resources are required at function end. */
60 static struct resources end_of_function_needs;
61
62 /* Define the hash table itself. */
63 static struct target_info **target_hash_table = NULL;
64
65 /* For each basic block, we maintain a generation number of its basic
66 block info, which is updated each time we move an insn from the
67 target of a jump. This is the generation number indexed by block
68 number. */
69
70 static int *bb_ticks;
71
72 /* Marks registers possibly live at the current place being scanned by
73 mark_target_live_regs. Also used by update_live_status. */
74
75 static HARD_REG_SET current_live_regs;
76
77 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
78 Also only used by the next two functions. */
79
80 static HARD_REG_SET pending_dead_regs;
81 \f
82 static void update_live_status (rtx, rtx, void *);
83 static int find_basic_block (rtx, int);
84 static rtx next_insn_no_annul (rtx);
85 static rtx find_dead_or_set_registers (rtx, struct resources*,
86 rtx*, int, struct resources,
87 struct resources);
88 \f
89 /* Utility function called from mark_target_live_regs via note_stores.
90 It deadens any CLOBBERed registers and livens any SET registers. */
91
92 static void
93 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
94 {
95 int first_regno, last_regno;
96 int i;
97
98 if (!REG_P (dest)
99 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
100 return;
101
102 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 else
105 first_regno = REGNO (dest);
106
107 last_regno = first_regno + hard_regno_nregs[first_regno][GET_MODE (dest)];
108
109 if (GET_CODE (x) == CLOBBER)
110 for (i = first_regno; i < last_regno; i++)
111 CLEAR_HARD_REG_BIT (current_live_regs, i);
112 else
113 for (i = first_regno; i < last_regno; i++)
114 {
115 SET_HARD_REG_BIT (current_live_regs, i);
116 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
117 }
118 }
119
120 /* Find the number of the basic block with correct live register
121 information that starts closest to INSN. Return -1 if we couldn't
122 find such a basic block or the beginning is more than
123 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
124 an unlimited search.
125
126 The delay slot filling code destroys the control-flow graph so,
127 instead of finding the basic block containing INSN, we search
128 backwards toward a BARRIER where the live register information is
129 correct. */
130
131 static int
132 find_basic_block (rtx insn, int search_limit)
133 {
134 basic_block bb;
135
136 /* Scan backwards to the previous BARRIER. Then see if we can find a
137 label that starts a basic block. Return the basic block number. */
138 for (insn = prev_nonnote_insn (insn);
139 insn && !BARRIER_P (insn) && search_limit != 0;
140 insn = prev_nonnote_insn (insn), --search_limit)
141 ;
142
143 /* The closest BARRIER is too far away. */
144 if (search_limit == 0)
145 return -1;
146
147 /* The start of the function. */
148 else if (insn == 0)
149 return ENTRY_BLOCK_PTR->next_bb->index;
150
151 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
152 anything other than a CODE_LABEL or note, we can't find this code. */
153 for (insn = next_nonnote_insn (insn);
154 insn && LABEL_P (insn);
155 insn = next_nonnote_insn (insn))
156 {
157 FOR_EACH_BB (bb)
158 if (insn == BB_HEAD (bb))
159 return bb->index;
160 }
161
162 return -1;
163 }
164 \f
165 /* Similar to next_insn, but ignores insns in the delay slots of
166 an annulled branch. */
167
168 static rtx
169 next_insn_no_annul (rtx insn)
170 {
171 if (insn)
172 {
173 /* If INSN is an annulled branch, skip any insns from the target
174 of the branch. */
175 if (INSN_P (insn)
176 && INSN_ANNULLED_BRANCH_P (insn)
177 && NEXT_INSN (PREV_INSN (insn)) != insn)
178 {
179 rtx next = NEXT_INSN (insn);
180 enum rtx_code code = GET_CODE (next);
181
182 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
183 && INSN_FROM_TARGET_P (next))
184 {
185 insn = next;
186 next = NEXT_INSN (insn);
187 code = GET_CODE (next);
188 }
189 }
190
191 insn = NEXT_INSN (insn);
192 if (insn && NONJUMP_INSN_P (insn)
193 && GET_CODE (PATTERN (insn)) == SEQUENCE)
194 insn = XVECEXP (PATTERN (insn), 0, 0);
195 }
196
197 return insn;
198 }
199 \f
200 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
201 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
202 is TRUE, resources used by the called routine will be included for
203 CALL_INSNs. */
204
205 void
206 mark_referenced_resources (rtx x, struct resources *res,
207 int include_delayed_effects)
208 {
209 enum rtx_code code = GET_CODE (x);
210 int i, j;
211 unsigned int r;
212 const char *format_ptr;
213
214 /* Handle leaf items for which we set resource flags. Also, special-case
215 CALL, SET and CLOBBER operators. */
216 switch (code)
217 {
218 case CONST:
219 case CONST_INT:
220 case CONST_DOUBLE:
221 case CONST_VECTOR:
222 case PC:
223 case SYMBOL_REF:
224 case LABEL_REF:
225 return;
226
227 case SUBREG:
228 if (!REG_P (SUBREG_REG (x)))
229 mark_referenced_resources (SUBREG_REG (x), res, 0);
230 else
231 {
232 unsigned int regno = subreg_regno (x);
233 unsigned int last_regno
234 = regno + hard_regno_nregs[regno][GET_MODE (x)];
235
236 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
237 for (r = regno; r < last_regno; r++)
238 SET_HARD_REG_BIT (res->regs, r);
239 }
240 return;
241
242 case REG:
243 {
244 unsigned int regno = REGNO (x);
245 unsigned int last_regno
246 = regno + hard_regno_nregs[regno][GET_MODE (x)];
247
248 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
249 for (r = regno; r < last_regno; r++)
250 SET_HARD_REG_BIT (res->regs, r);
251 }
252 return;
253
254 case MEM:
255 /* If this memory shouldn't change, it really isn't referencing
256 memory. */
257 if (MEM_READONLY_P (x))
258 res->unch_memory = 1;
259 else
260 res->memory = 1;
261 res->volatil |= MEM_VOLATILE_P (x);
262
263 /* Mark registers used to access memory. */
264 mark_referenced_resources (XEXP (x, 0), res, 0);
265 return;
266
267 case CC0:
268 res->cc = 1;
269 return;
270
271 case UNSPEC_VOLATILE:
272 case ASM_INPUT:
273 /* Traditional asm's are always volatile. */
274 res->volatil = 1;
275 return;
276
277 case TRAP_IF:
278 res->volatil = 1;
279 break;
280
281 case ASM_OPERANDS:
282 res->volatil |= MEM_VOLATILE_P (x);
283
284 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
285 We can not just fall through here since then we would be confused
286 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
287 traditional asms unlike their normal usage. */
288
289 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
290 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
291 return;
292
293 case CALL:
294 /* The first operand will be a (MEM (xxx)) but doesn't really reference
295 memory. The second operand may be referenced, though. */
296 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
297 mark_referenced_resources (XEXP (x, 1), res, 0);
298 return;
299
300 case SET:
301 /* Usually, the first operand of SET is set, not referenced. But
302 registers used to access memory are referenced. SET_DEST is
303 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
304
305 mark_referenced_resources (SET_SRC (x), res, 0);
306
307 x = SET_DEST (x);
308 if (GET_CODE (x) == SIGN_EXTRACT
309 || GET_CODE (x) == ZERO_EXTRACT
310 || GET_CODE (x) == STRICT_LOW_PART)
311 mark_referenced_resources (x, res, 0);
312 else if (GET_CODE (x) == SUBREG)
313 x = SUBREG_REG (x);
314 if (MEM_P (x))
315 mark_referenced_resources (XEXP (x, 0), res, 0);
316 return;
317
318 case CLOBBER:
319 return;
320
321 case CALL_INSN:
322 if (include_delayed_effects)
323 {
324 /* A CALL references memory, the frame pointer if it exists, the
325 stack pointer, any global registers and any registers given in
326 USE insns immediately in front of the CALL.
327
328 However, we may have moved some of the parameter loading insns
329 into the delay slot of this CALL. If so, the USE's for them
330 don't count and should be skipped. */
331 rtx insn = PREV_INSN (x);
332 rtx sequence = 0;
333 int seq_size = 0;
334 int i;
335
336 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
337 if (NEXT_INSN (insn) != x)
338 {
339 sequence = PATTERN (NEXT_INSN (insn));
340 seq_size = XVECLEN (sequence, 0);
341 gcc_assert (GET_CODE (sequence) == SEQUENCE);
342 }
343
344 res->memory = 1;
345 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
346 if (frame_pointer_needed)
347 {
348 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
349 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
350 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
351 #endif
352 }
353
354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
355 if (global_regs[i])
356 SET_HARD_REG_BIT (res->regs, i);
357
358 /* Check for a REG_SETJMP. If it exists, then we must
359 assume that this call can need any register.
360
361 This is done to be more conservative about how we handle setjmp.
362 We assume that they both use and set all registers. Using all
363 registers ensures that a register will not be considered dead
364 just because it crosses a setjmp call. A register should be
365 considered dead only if the setjmp call returns nonzero. */
366 if (find_reg_note (x, REG_SETJMP, NULL))
367 SET_HARD_REG_SET (res->regs);
368
369 {
370 rtx link;
371
372 for (link = CALL_INSN_FUNCTION_USAGE (x);
373 link;
374 link = XEXP (link, 1))
375 if (GET_CODE (XEXP (link, 0)) == USE)
376 {
377 for (i = 1; i < seq_size; i++)
378 {
379 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
380 if (GET_CODE (slot_pat) == SET
381 && rtx_equal_p (SET_DEST (slot_pat),
382 XEXP (XEXP (link, 0), 0)))
383 break;
384 }
385 if (i >= seq_size)
386 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
387 res, 0);
388 }
389 }
390 }
391
392 /* ... fall through to other INSN processing ... */
393
394 case INSN:
395 case JUMP_INSN:
396
397 #ifdef INSN_REFERENCES_ARE_DELAYED
398 if (! include_delayed_effects
399 && INSN_REFERENCES_ARE_DELAYED (x))
400 return;
401 #endif
402
403 /* No special processing, just speed up. */
404 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
405 return;
406
407 default:
408 break;
409 }
410
411 /* Process each sub-expression and flag what it needs. */
412 format_ptr = GET_RTX_FORMAT (code);
413 for (i = 0; i < GET_RTX_LENGTH (code); i++)
414 switch (*format_ptr++)
415 {
416 case 'e':
417 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
418 break;
419
420 case 'E':
421 for (j = 0; j < XVECLEN (x, i); j++)
422 mark_referenced_resources (XVECEXP (x, i, j), res,
423 include_delayed_effects);
424 break;
425 }
426 }
427 \f
428 /* A subroutine of mark_target_live_regs. Search forward from TARGET
429 looking for registers that are set before they are used. These are dead.
430 Stop after passing a few conditional jumps, and/or a small
431 number of unconditional branches. */
432
433 static rtx
434 find_dead_or_set_registers (rtx target, struct resources *res,
435 rtx *jump_target, int jump_count,
436 struct resources set, struct resources needed)
437 {
438 HARD_REG_SET scratch;
439 rtx insn, next;
440 rtx jump_insn = 0;
441 int i;
442
443 for (insn = target; insn; insn = next)
444 {
445 rtx this_jump_insn = insn;
446
447 next = NEXT_INSN (insn);
448
449 /* If this instruction can throw an exception, then we don't
450 know where we might end up next. That means that we have to
451 assume that whatever we have already marked as live really is
452 live. */
453 if (can_throw_internal (insn))
454 break;
455
456 switch (GET_CODE (insn))
457 {
458 case CODE_LABEL:
459 /* After a label, any pending dead registers that weren't yet
460 used can be made dead. */
461 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
462 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
463 CLEAR_HARD_REG_SET (pending_dead_regs);
464
465 continue;
466
467 case BARRIER:
468 case NOTE:
469 continue;
470
471 case INSN:
472 if (GET_CODE (PATTERN (insn)) == USE)
473 {
474 /* If INSN is a USE made by update_block, we care about the
475 underlying insn. Any registers set by the underlying insn
476 are live since the insn is being done somewhere else. */
477 if (INSN_P (XEXP (PATTERN (insn), 0)))
478 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
479 MARK_SRC_DEST_CALL);
480
481 /* All other USE insns are to be ignored. */
482 continue;
483 }
484 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
485 continue;
486 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
487 {
488 /* An unconditional jump can be used to fill the delay slot
489 of a call, so search for a JUMP_INSN in any position. */
490 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
491 {
492 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
493 if (JUMP_P (this_jump_insn))
494 break;
495 }
496 }
497
498 default:
499 break;
500 }
501
502 if (JUMP_P (this_jump_insn))
503 {
504 if (jump_count++ < 10)
505 {
506 if (any_uncondjump_p (this_jump_insn)
507 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
508 {
509 next = JUMP_LABEL (this_jump_insn);
510 if (jump_insn == 0)
511 {
512 jump_insn = insn;
513 if (jump_target)
514 *jump_target = JUMP_LABEL (this_jump_insn);
515 }
516 }
517 else if (any_condjump_p (this_jump_insn))
518 {
519 struct resources target_set, target_res;
520 struct resources fallthrough_res;
521
522 /* We can handle conditional branches here by following
523 both paths, and then IOR the results of the two paths
524 together, which will give us registers that are dead
525 on both paths. Since this is expensive, we give it
526 a much higher cost than unconditional branches. The
527 cost was chosen so that we will follow at most 1
528 conditional branch. */
529
530 jump_count += 4;
531 if (jump_count >= 10)
532 break;
533
534 mark_referenced_resources (insn, &needed, 1);
535
536 /* For an annulled branch, mark_set_resources ignores slots
537 filled by instructions from the target. This is correct
538 if the branch is not taken. Since we are following both
539 paths from the branch, we must also compute correct info
540 if the branch is taken. We do this by inverting all of
541 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
542 and then inverting the INSN_FROM_TARGET_P bits again. */
543
544 if (GET_CODE (PATTERN (insn)) == SEQUENCE
545 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
546 {
547 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
548 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
549 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
550
551 target_set = set;
552 mark_set_resources (insn, &target_set, 0,
553 MARK_SRC_DEST_CALL);
554
555 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
556 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
557 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
558
559 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
560 }
561 else
562 {
563 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
564 target_set = set;
565 }
566
567 target_res = *res;
568 COPY_HARD_REG_SET (scratch, target_set.regs);
569 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
570 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
571
572 fallthrough_res = *res;
573 COPY_HARD_REG_SET (scratch, set.regs);
574 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
575 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
576
577 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
578 &target_res, 0, jump_count,
579 target_set, needed);
580 find_dead_or_set_registers (next,
581 &fallthrough_res, 0, jump_count,
582 set, needed);
583 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
584 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
585 break;
586 }
587 else
588 break;
589 }
590 else
591 {
592 /* Don't try this optimization if we expired our jump count
593 above, since that would mean there may be an infinite loop
594 in the function being compiled. */
595 jump_insn = 0;
596 break;
597 }
598 }
599
600 mark_referenced_resources (insn, &needed, 1);
601 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
602
603 COPY_HARD_REG_SET (scratch, set.regs);
604 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
605 AND_COMPL_HARD_REG_SET (res->regs, scratch);
606 }
607
608 return jump_insn;
609 }
610 \f
611 /* Given X, a part of an insn, and a pointer to a `struct resource',
612 RES, indicate which resources are modified by the insn. If
613 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
614 set by the called routine.
615
616 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
617 objects are being referenced instead of set.
618
619 We never mark the insn as modifying the condition code unless it explicitly
620 SETs CC0 even though this is not totally correct. The reason for this is
621 that we require a SET of CC0 to immediately precede the reference to CC0.
622 So if some other insn sets CC0 as a side-effect, we know it cannot affect
623 our computation and thus may be placed in a delay slot. */
624
625 void
626 mark_set_resources (rtx x, struct resources *res, int in_dest,
627 enum mark_resource_type mark_type)
628 {
629 enum rtx_code code;
630 int i, j;
631 unsigned int r;
632 const char *format_ptr;
633
634 restart:
635
636 code = GET_CODE (x);
637
638 switch (code)
639 {
640 case NOTE:
641 case BARRIER:
642 case CODE_LABEL:
643 case USE:
644 case CONST_INT:
645 case CONST_DOUBLE:
646 case CONST_VECTOR:
647 case LABEL_REF:
648 case SYMBOL_REF:
649 case CONST:
650 case PC:
651 /* These don't set any resources. */
652 return;
653
654 case CC0:
655 if (in_dest)
656 res->cc = 1;
657 return;
658
659 case CALL_INSN:
660 /* Called routine modifies the condition code, memory, any registers
661 that aren't saved across calls, global registers and anything
662 explicitly CLOBBERed immediately after the CALL_INSN. */
663
664 if (mark_type == MARK_SRC_DEST_CALL)
665 {
666 rtx link;
667
668 res->cc = res->memory = 1;
669 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
670 if (call_used_regs[r] || global_regs[r])
671 SET_HARD_REG_BIT (res->regs, r);
672
673 for (link = CALL_INSN_FUNCTION_USAGE (x);
674 link; link = XEXP (link, 1))
675 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
676 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
677 MARK_SRC_DEST);
678
679 /* Check for a REG_SETJMP. If it exists, then we must
680 assume that this call can clobber any register. */
681 if (find_reg_note (x, REG_SETJMP, NULL))
682 SET_HARD_REG_SET (res->regs);
683 }
684
685 /* ... and also what its RTL says it modifies, if anything. */
686
687 case JUMP_INSN:
688 case INSN:
689
690 /* An insn consisting of just a CLOBBER (or USE) is just for flow
691 and doesn't actually do anything, so we ignore it. */
692
693 #ifdef INSN_SETS_ARE_DELAYED
694 if (mark_type != MARK_SRC_DEST_CALL
695 && INSN_SETS_ARE_DELAYED (x))
696 return;
697 #endif
698
699 x = PATTERN (x);
700 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
701 goto restart;
702 return;
703
704 case SET:
705 /* If the source of a SET is a CALL, this is actually done by
706 the called routine. So only include it if we are to include the
707 effects of the calling routine. */
708
709 mark_set_resources (SET_DEST (x), res,
710 (mark_type == MARK_SRC_DEST_CALL
711 || GET_CODE (SET_SRC (x)) != CALL),
712 mark_type);
713
714 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
715 return;
716
717 case CLOBBER:
718 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
719 return;
720
721 case SEQUENCE:
722 for (i = 0; i < XVECLEN (x, 0); i++)
723 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
724 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
725 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
726 return;
727
728 case POST_INC:
729 case PRE_INC:
730 case POST_DEC:
731 case PRE_DEC:
732 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
733 return;
734
735 case PRE_MODIFY:
736 case POST_MODIFY:
737 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
738 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
739 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
740 return;
741
742 case SIGN_EXTRACT:
743 case ZERO_EXTRACT:
744 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
745 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
746 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
747 return;
748
749 case MEM:
750 if (in_dest)
751 {
752 res->memory = 1;
753 res->unch_memory |= MEM_READONLY_P (x);
754 res->volatil |= MEM_VOLATILE_P (x);
755 }
756
757 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
758 return;
759
760 case SUBREG:
761 if (in_dest)
762 {
763 if (!REG_P (SUBREG_REG (x)))
764 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
765 else
766 {
767 unsigned int regno = subreg_regno (x);
768 unsigned int last_regno
769 = regno + hard_regno_nregs[regno][GET_MODE (x)];
770
771 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
772 for (r = regno; r < last_regno; r++)
773 SET_HARD_REG_BIT (res->regs, r);
774 }
775 }
776 return;
777
778 case REG:
779 if (in_dest)
780 {
781 unsigned int regno = REGNO (x);
782 unsigned int last_regno
783 = regno + hard_regno_nregs[regno][GET_MODE (x)];
784
785 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
786 for (r = regno; r < last_regno; r++)
787 SET_HARD_REG_BIT (res->regs, r);
788 }
789 return;
790
791 case UNSPEC_VOLATILE:
792 case ASM_INPUT:
793 /* Traditional asm's are always volatile. */
794 res->volatil = 1;
795 return;
796
797 case TRAP_IF:
798 res->volatil = 1;
799 break;
800
801 case ASM_OPERANDS:
802 res->volatil |= MEM_VOLATILE_P (x);
803
804 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
805 We can not just fall through here since then we would be confused
806 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
807 traditional asms unlike their normal usage. */
808
809 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
810 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
811 MARK_SRC_DEST);
812 return;
813
814 default:
815 break;
816 }
817
818 /* Process each sub-expression and flag what it needs. */
819 format_ptr = GET_RTX_FORMAT (code);
820 for (i = 0; i < GET_RTX_LENGTH (code); i++)
821 switch (*format_ptr++)
822 {
823 case 'e':
824 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
825 break;
826
827 case 'E':
828 for (j = 0; j < XVECLEN (x, i); j++)
829 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
830 break;
831 }
832 }
833 \f
834 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
835
836 static bool
837 return_insn_p (rtx insn)
838 {
839 if (GET_CODE (insn) == JUMP_INSN && GET_CODE (PATTERN (insn)) == RETURN)
840 return true;
841
842 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
843 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
844
845 return false;
846 }
847
848 /* Set the resources that are live at TARGET.
849
850 If TARGET is zero, we refer to the end of the current function and can
851 return our precomputed value.
852
853 Otherwise, we try to find out what is live by consulting the basic block
854 information. This is tricky, because we must consider the actions of
855 reload and jump optimization, which occur after the basic block information
856 has been computed.
857
858 Accordingly, we proceed as follows::
859
860 We find the previous BARRIER and look at all immediately following labels
861 (with no intervening active insns) to see if any of them start a basic
862 block. If we hit the start of the function first, we use block 0.
863
864 Once we have found a basic block and a corresponding first insns, we can
865 accurately compute the live status from basic_block_live_regs and
866 reg_renumber. (By starting at a label following a BARRIER, we are immune
867 to actions taken by reload and jump.) Then we scan all insns between
868 that point and our target. For each CLOBBER (or for call-clobbered regs
869 when we pass a CALL_INSN), mark the appropriate registers are dead. For
870 a SET, mark them as live.
871
872 We have to be careful when using REG_DEAD notes because they are not
873 updated by such things as find_equiv_reg. So keep track of registers
874 marked as dead that haven't been assigned to, and mark them dead at the
875 next CODE_LABEL since reload and jump won't propagate values across labels.
876
877 If we cannot find the start of a basic block (should be a very rare
878 case, if it can happen at all), mark everything as potentially live.
879
880 Next, scan forward from TARGET looking for things set or clobbered
881 before they are used. These are not live.
882
883 Because we can be called many times on the same target, save our results
884 in a hash table indexed by INSN_UID. This is only done if the function
885 init_resource_info () was invoked before we are called. */
886
887 void
888 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
889 {
890 int b = -1;
891 unsigned int i;
892 struct target_info *tinfo = NULL;
893 rtx insn;
894 rtx jump_insn = 0;
895 rtx jump_target;
896 HARD_REG_SET scratch;
897 struct resources set, needed;
898
899 /* Handle end of function. */
900 if (target == 0)
901 {
902 *res = end_of_function_needs;
903 return;
904 }
905
906 /* Handle return insn. */
907 else if (return_insn_p (target))
908 {
909 *res = end_of_function_needs;
910 mark_referenced_resources (target, res, 0);
911 return;
912 }
913
914 /* We have to assume memory is needed, but the CC isn't. */
915 res->memory = 1;
916 res->volatil = res->unch_memory = 0;
917 res->cc = 0;
918
919 /* See if we have computed this value already. */
920 if (target_hash_table != NULL)
921 {
922 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
923 tinfo; tinfo = tinfo->next)
924 if (tinfo->uid == INSN_UID (target))
925 break;
926
927 /* Start by getting the basic block number. If we have saved
928 information, we can get it from there unless the insn at the
929 start of the basic block has been deleted. */
930 if (tinfo && tinfo->block != -1
931 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
932 b = tinfo->block;
933 }
934
935 if (b == -1)
936 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
937
938 if (target_hash_table != NULL)
939 {
940 if (tinfo)
941 {
942 /* If the information is up-to-date, use it. Otherwise, we will
943 update it below. */
944 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
945 {
946 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
947 return;
948 }
949 }
950 else
951 {
952 /* Allocate a place to put our results and chain it into the
953 hash table. */
954 tinfo = xmalloc (sizeof (struct target_info));
955 tinfo->uid = INSN_UID (target);
956 tinfo->block = b;
957 tinfo->next
958 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
959 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
960 }
961 }
962
963 CLEAR_HARD_REG_SET (pending_dead_regs);
964
965 /* If we found a basic block, get the live registers from it and update
966 them with anything set or killed between its start and the insn before
967 TARGET. Otherwise, we must assume everything is live. */
968 if (b != -1)
969 {
970 regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
971 unsigned int j;
972 unsigned int regno;
973 rtx start_insn, stop_insn;
974
975 /* Compute hard regs live at start of block -- this is the real hard regs
976 marked live, plus live pseudo regs that have been renumbered to
977 hard regs. */
978
979 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
980
981 EXECUTE_IF_SET_IN_REG_SET
982 (regs_live, FIRST_PSEUDO_REGISTER, i,
983 {
984 if (reg_renumber[i] >= 0)
985 {
986 regno = reg_renumber[i];
987 for (j = regno;
988 j < regno + hard_regno_nregs[regno]
989 [PSEUDO_REGNO_MODE (i)];
990 j++)
991 SET_HARD_REG_BIT (current_live_regs, j);
992 }
993 });
994
995 /* Get starting and ending insn, handling the case where each might
996 be a SEQUENCE. */
997 start_insn = (b == 0 ? insns : BB_HEAD (BASIC_BLOCK (b)));
998 stop_insn = target;
999
1000 if (NONJUMP_INSN_P (start_insn)
1001 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
1002 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
1003
1004 if (NONJUMP_INSN_P (stop_insn)
1005 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1006 stop_insn = next_insn (PREV_INSN (stop_insn));
1007
1008 for (insn = start_insn; insn != stop_insn;
1009 insn = next_insn_no_annul (insn))
1010 {
1011 rtx link;
1012 rtx real_insn = insn;
1013 enum rtx_code code = GET_CODE (insn);
1014
1015 /* If this insn is from the target of a branch, it isn't going to
1016 be used in the sequel. If it is used in both cases, this
1017 test will not be true. */
1018 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1019 && INSN_FROM_TARGET_P (insn))
1020 continue;
1021
1022 /* If this insn is a USE made by update_block, we care about the
1023 underlying insn. */
1024 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1025 && INSN_P (XEXP (PATTERN (insn), 0)))
1026 real_insn = XEXP (PATTERN (insn), 0);
1027
1028 if (CALL_P (real_insn))
1029 {
1030 /* CALL clobbers all call-used regs that aren't fixed except
1031 sp, ap, and fp. Do this before setting the result of the
1032 call live. */
1033 AND_COMPL_HARD_REG_SET (current_live_regs,
1034 regs_invalidated_by_call);
1035
1036 /* A CALL_INSN sets any global register live, since it may
1037 have been modified by the call. */
1038 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1039 if (global_regs[i])
1040 SET_HARD_REG_BIT (current_live_regs, i);
1041 }
1042
1043 /* Mark anything killed in an insn to be deadened at the next
1044 label. Ignore USE insns; the only REG_DEAD notes will be for
1045 parameters. But they might be early. A CALL_INSN will usually
1046 clobber registers used for parameters. It isn't worth bothering
1047 with the unlikely case when it won't. */
1048 if ((NONJUMP_INSN_P (real_insn)
1049 && GET_CODE (PATTERN (real_insn)) != USE
1050 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1051 || JUMP_P (real_insn)
1052 || CALL_P (real_insn))
1053 {
1054 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1055 if (REG_NOTE_KIND (link) == REG_DEAD
1056 && REG_P (XEXP (link, 0))
1057 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1058 {
1059 unsigned int first_regno = REGNO (XEXP (link, 0));
1060 unsigned int last_regno
1061 = (first_regno
1062 + hard_regno_nregs[first_regno]
1063 [GET_MODE (XEXP (link, 0))]);
1064
1065 for (i = first_regno; i < last_regno; i++)
1066 SET_HARD_REG_BIT (pending_dead_regs, i);
1067 }
1068
1069 note_stores (PATTERN (real_insn), update_live_status, NULL);
1070
1071 /* If any registers were unused after this insn, kill them.
1072 These notes will always be accurate. */
1073 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1074 if (REG_NOTE_KIND (link) == REG_UNUSED
1075 && REG_P (XEXP (link, 0))
1076 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1077 {
1078 unsigned int first_regno = REGNO (XEXP (link, 0));
1079 unsigned int last_regno
1080 = (first_regno
1081 + hard_regno_nregs[first_regno]
1082 [GET_MODE (XEXP (link, 0))]);
1083
1084 for (i = first_regno; i < last_regno; i++)
1085 CLEAR_HARD_REG_BIT (current_live_regs, i);
1086 }
1087 }
1088
1089 else if (LABEL_P (real_insn))
1090 {
1091 /* A label clobbers the pending dead registers since neither
1092 reload nor jump will propagate a value across a label. */
1093 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1094 CLEAR_HARD_REG_SET (pending_dead_regs);
1095 }
1096
1097 /* The beginning of the epilogue corresponds to the end of the
1098 RTL chain when there are no epilogue insns. Certain resources
1099 are implicitly required at that point. */
1100 else if (NOTE_P (real_insn)
1101 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1102 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1103 }
1104
1105 COPY_HARD_REG_SET (res->regs, current_live_regs);
1106 if (tinfo != NULL)
1107 {
1108 tinfo->block = b;
1109 tinfo->bb_tick = bb_ticks[b];
1110 }
1111 }
1112 else
1113 /* We didn't find the start of a basic block. Assume everything
1114 in use. This should happen only extremely rarely. */
1115 SET_HARD_REG_SET (res->regs);
1116
1117 CLEAR_RESOURCE (&set);
1118 CLEAR_RESOURCE (&needed);
1119
1120 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1121 set, needed);
1122
1123 /* If we hit an unconditional branch, we have another way of finding out
1124 what is live: we can see what is live at the branch target and include
1125 anything used but not set before the branch. We add the live
1126 resources found using the test below to those found until now. */
1127
1128 if (jump_insn)
1129 {
1130 struct resources new_resources;
1131 rtx stop_insn = next_active_insn (jump_insn);
1132
1133 mark_target_live_regs (insns, next_active_insn (jump_target),
1134 &new_resources);
1135 CLEAR_RESOURCE (&set);
1136 CLEAR_RESOURCE (&needed);
1137
1138 /* Include JUMP_INSN in the needed registers. */
1139 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1140 {
1141 mark_referenced_resources (insn, &needed, 1);
1142
1143 COPY_HARD_REG_SET (scratch, needed.regs);
1144 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1145 IOR_HARD_REG_SET (new_resources.regs, scratch);
1146
1147 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1148 }
1149
1150 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1151 }
1152
1153 if (tinfo != NULL)
1154 {
1155 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1156 }
1157 }
1158 \f
1159 /* Initialize the resources required by mark_target_live_regs ().
1160 This should be invoked before the first call to mark_target_live_regs. */
1161
1162 void
1163 init_resource_info (rtx epilogue_insn)
1164 {
1165 int i;
1166
1167 /* Indicate what resources are required to be valid at the end of the current
1168 function. The condition code never is and memory always is. If the
1169 frame pointer is needed, it is and so is the stack pointer unless
1170 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1171 stack pointer is. Registers used to return the function value are
1172 needed. Registers holding global variables are needed. */
1173
1174 end_of_function_needs.cc = 0;
1175 end_of_function_needs.memory = 1;
1176 end_of_function_needs.unch_memory = 0;
1177 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1178
1179 if (frame_pointer_needed)
1180 {
1181 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1182 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1183 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1184 #endif
1185 if (! EXIT_IGNORE_STACK
1186 || current_function_sp_is_unchanging)
1187 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1188 }
1189 else
1190 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1191
1192 if (current_function_return_rtx != 0)
1193 mark_referenced_resources (current_function_return_rtx,
1194 &end_of_function_needs, 1);
1195
1196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197 if (global_regs[i]
1198 #ifdef EPILOGUE_USES
1199 || EPILOGUE_USES (i)
1200 #endif
1201 )
1202 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1203
1204 /* The registers required to be live at the end of the function are
1205 represented in the flow information as being dead just prior to
1206 reaching the end of the function. For example, the return of a value
1207 might be represented by a USE of the return register immediately
1208 followed by an unconditional jump to the return label where the
1209 return label is the end of the RTL chain. The end of the RTL chain
1210 is then taken to mean that the return register is live.
1211
1212 This sequence is no longer maintained when epilogue instructions are
1213 added to the RTL chain. To reconstruct the original meaning, the
1214 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1215 point where these registers become live (start_of_epilogue_needs).
1216 If epilogue instructions are present, the registers set by those
1217 instructions won't have been processed by flow. Thus, those
1218 registers are additionally required at the end of the RTL chain
1219 (end_of_function_needs). */
1220
1221 start_of_epilogue_needs = end_of_function_needs;
1222
1223 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1224 {
1225 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1226 MARK_SRC_DEST_CALL);
1227 if (return_insn_p (epilogue_insn))
1228 break;
1229 }
1230
1231 /* Allocate and initialize the tables used by mark_target_live_regs. */
1232 target_hash_table = xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1233 bb_ticks = xcalloc (last_basic_block, sizeof (int));
1234 }
1235 \f
1236 /* Free up the resources allocated to mark_target_live_regs (). This
1237 should be invoked after the last call to mark_target_live_regs (). */
1238
1239 void
1240 free_resource_info (void)
1241 {
1242 if (target_hash_table != NULL)
1243 {
1244 int i;
1245
1246 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1247 {
1248 struct target_info *ti = target_hash_table[i];
1249
1250 while (ti)
1251 {
1252 struct target_info *next = ti->next;
1253 free (ti);
1254 ti = next;
1255 }
1256 }
1257
1258 free (target_hash_table);
1259 target_hash_table = NULL;
1260 }
1261
1262 if (bb_ticks != NULL)
1263 {
1264 free (bb_ticks);
1265 bb_ticks = NULL;
1266 }
1267 }
1268 \f
1269 /* Clear any hashed information that we have stored for INSN. */
1270
1271 void
1272 clear_hashed_info_for_insn (rtx insn)
1273 {
1274 struct target_info *tinfo;
1275
1276 if (target_hash_table != NULL)
1277 {
1278 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1279 tinfo; tinfo = tinfo->next)
1280 if (tinfo->uid == INSN_UID (insn))
1281 break;
1282
1283 if (tinfo)
1284 tinfo->block = -1;
1285 }
1286 }
1287 \f
1288 /* Increment the tick count for the basic block that contains INSN. */
1289
1290 void
1291 incr_ticks_for_insn (rtx insn)
1292 {
1293 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1294
1295 if (b != -1)
1296 bb_ticks[b]++;
1297 }
1298 \f
1299 /* Add TRIAL to the set of resources used at the end of the current
1300 function. */
1301 void
1302 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1303 {
1304 mark_referenced_resources (trial, &end_of_function_needs,
1305 include_delayed_effects);
1306 }