re PR target/55981 (std::atomic store is split in two smaller stores)
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "flags.h"
31 #include "output.h"
32 #include "resource.h"
33 #include "except.h"
34 #include "insn-attr.h"
35 #include "params.h"
36 #include "df.h"
37
38 /* This structure is used to record liveness information at the targets or
39 fallthrough insns of branches. We will most likely need the information
40 at targets again, so save them in a hash table rather than recomputing them
41 each time. */
42
43 struct target_info
44 {
45 int uid; /* INSN_UID of target. */
46 struct target_info *next; /* Next info for same hash bucket. */
47 HARD_REG_SET live_regs; /* Registers live at target. */
48 int block; /* Basic block number containing target. */
49 int bb_tick; /* Generation count of basic block info. */
50 };
51
52 #define TARGET_HASH_PRIME 257
53
54 /* Indicates what resources are required at the beginning of the epilogue. */
55 static struct resources start_of_epilogue_needs;
56
57 /* Indicates what resources are required at function end. */
58 static struct resources end_of_function_needs;
59
60 /* Define the hash table itself. */
61 static struct target_info **target_hash_table = NULL;
62
63 /* For each basic block, we maintain a generation number of its basic
64 block info, which is updated each time we move an insn from the
65 target of a jump. This is the generation number indexed by block
66 number. */
67
68 static int *bb_ticks;
69
70 /* Marks registers possibly live at the current place being scanned by
71 mark_target_live_regs. Also used by update_live_status. */
72
73 static HARD_REG_SET current_live_regs;
74
75 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
76 Also only used by the next two functions. */
77
78 static HARD_REG_SET pending_dead_regs;
79 \f
80 static void update_live_status (rtx, const_rtx, void *);
81 static int find_basic_block (rtx, int);
82 static rtx next_insn_no_annul (rtx);
83 static rtx find_dead_or_set_registers (rtx, struct resources*,
84 rtx*, int, struct resources,
85 struct resources);
86 \f
87 /* Utility function called from mark_target_live_regs via note_stores.
88 It deadens any CLOBBERed registers and livens any SET registers. */
89
90 static void
91 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
92 {
93 int first_regno, last_regno;
94 int i;
95
96 if (!REG_P (dest)
97 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
98 return;
99
100 if (GET_CODE (dest) == SUBREG)
101 {
102 first_regno = subreg_regno (dest);
103 last_regno = first_regno + subreg_nregs (dest);
104
105 }
106 else
107 {
108 first_regno = REGNO (dest);
109 last_regno = END_HARD_REGNO (dest);
110 }
111
112 if (GET_CODE (x) == CLOBBER)
113 for (i = first_regno; i < last_regno; i++)
114 CLEAR_HARD_REG_BIT (current_live_regs, i);
115 else
116 for (i = first_regno; i < last_regno; i++)
117 {
118 SET_HARD_REG_BIT (current_live_regs, i);
119 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
120 }
121 }
122
123 /* Find the number of the basic block with correct live register
124 information that starts closest to INSN. Return -1 if we couldn't
125 find such a basic block or the beginning is more than
126 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
127 an unlimited search.
128
129 The delay slot filling code destroys the control-flow graph so,
130 instead of finding the basic block containing INSN, we search
131 backwards toward a BARRIER where the live register information is
132 correct. */
133
134 static int
135 find_basic_block (rtx insn, int search_limit)
136 {
137 /* Scan backwards to the previous BARRIER. Then see if we can find a
138 label that starts a basic block. Return the basic block number. */
139 for (insn = prev_nonnote_insn (insn);
140 insn && !BARRIER_P (insn) && search_limit != 0;
141 insn = prev_nonnote_insn (insn), --search_limit)
142 ;
143
144 /* The closest BARRIER is too far away. */
145 if (search_limit == 0)
146 return -1;
147
148 /* The start of the function. */
149 else if (insn == 0)
150 return ENTRY_BLOCK_PTR->next_bb->index;
151
152 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
153 anything other than a CODE_LABEL or note, we can't find this code. */
154 for (insn = next_nonnote_insn (insn);
155 insn && LABEL_P (insn);
156 insn = next_nonnote_insn (insn))
157 if (BLOCK_FOR_INSN (insn))
158 return BLOCK_FOR_INSN (insn)->index;
159
160 return -1;
161 }
162 \f
163 /* Similar to next_insn, but ignores insns in the delay slots of
164 an annulled branch. */
165
166 static rtx
167 next_insn_no_annul (rtx insn)
168 {
169 if (insn)
170 {
171 /* If INSN is an annulled branch, skip any insns from the target
172 of the branch. */
173 if (JUMP_P (insn)
174 && INSN_ANNULLED_BRANCH_P (insn)
175 && NEXT_INSN (PREV_INSN (insn)) != insn)
176 {
177 rtx next = NEXT_INSN (insn);
178 enum rtx_code code = GET_CODE (next);
179
180 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
181 && INSN_FROM_TARGET_P (next))
182 {
183 insn = next;
184 next = NEXT_INSN (insn);
185 code = GET_CODE (next);
186 }
187 }
188
189 insn = NEXT_INSN (insn);
190 if (insn && NONJUMP_INSN_P (insn)
191 && GET_CODE (PATTERN (insn)) == SEQUENCE)
192 insn = XVECEXP (PATTERN (insn), 0, 0);
193 }
194
195 return insn;
196 }
197 \f
198 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
199 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
200 is TRUE, resources used by the called routine will be included for
201 CALL_INSNs. */
202
203 void
204 mark_referenced_resources (rtx x, struct resources *res,
205 bool include_delayed_effects)
206 {
207 enum rtx_code code = GET_CODE (x);
208 int i, j;
209 unsigned int r;
210 const char *format_ptr;
211
212 /* Handle leaf items for which we set resource flags. Also, special-case
213 CALL, SET and CLOBBER operators. */
214 switch (code)
215 {
216 case CONST:
217 CASE_CONST_ANY:
218 case PC:
219 case SYMBOL_REF:
220 case LABEL_REF:
221 return;
222
223 case SUBREG:
224 if (!REG_P (SUBREG_REG (x)))
225 mark_referenced_resources (SUBREG_REG (x), res, false);
226 else
227 {
228 unsigned int regno = subreg_regno (x);
229 unsigned int last_regno = regno + subreg_nregs (x);
230
231 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
232 for (r = regno; r < last_regno; r++)
233 SET_HARD_REG_BIT (res->regs, r);
234 }
235 return;
236
237 case REG:
238 gcc_assert (HARD_REGISTER_P (x));
239 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
240 return;
241
242 case MEM:
243 /* If this memory shouldn't change, it really isn't referencing
244 memory. */
245 if (MEM_READONLY_P (x))
246 res->unch_memory = 1;
247 else
248 res->memory = 1;
249 res->volatil |= MEM_VOLATILE_P (x);
250
251 /* Mark registers used to access memory. */
252 mark_referenced_resources (XEXP (x, 0), res, false);
253 return;
254
255 case CC0:
256 res->cc = 1;
257 return;
258
259 case UNSPEC_VOLATILE:
260 case TRAP_IF:
261 case ASM_INPUT:
262 /* Traditional asm's are always volatile. */
263 res->volatil = 1;
264 break;
265
266 case ASM_OPERANDS:
267 res->volatil |= MEM_VOLATILE_P (x);
268
269 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
270 We can not just fall through here since then we would be confused
271 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
272 traditional asms unlike their normal usage. */
273
274 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
275 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
276 return;
277
278 case CALL:
279 /* The first operand will be a (MEM (xxx)) but doesn't really reference
280 memory. The second operand may be referenced, though. */
281 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
282 mark_referenced_resources (XEXP (x, 1), res, false);
283 return;
284
285 case SET:
286 /* Usually, the first operand of SET is set, not referenced. But
287 registers used to access memory are referenced. SET_DEST is
288 also referenced if it is a ZERO_EXTRACT. */
289
290 mark_referenced_resources (SET_SRC (x), res, false);
291
292 x = SET_DEST (x);
293 if (GET_CODE (x) == ZERO_EXTRACT
294 || GET_CODE (x) == STRICT_LOW_PART)
295 mark_referenced_resources (x, res, false);
296 else if (GET_CODE (x) == SUBREG)
297 x = SUBREG_REG (x);
298 if (MEM_P (x))
299 mark_referenced_resources (XEXP (x, 0), res, false);
300 return;
301
302 case CLOBBER:
303 return;
304
305 case CALL_INSN:
306 if (include_delayed_effects)
307 {
308 /* A CALL references memory, the frame pointer if it exists, the
309 stack pointer, any global registers and any registers given in
310 USE insns immediately in front of the CALL.
311
312 However, we may have moved some of the parameter loading insns
313 into the delay slot of this CALL. If so, the USE's for them
314 don't count and should be skipped. */
315 rtx insn = PREV_INSN (x);
316 rtx sequence = 0;
317 int seq_size = 0;
318 int i;
319
320 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
321 if (NEXT_INSN (insn) != x)
322 {
323 sequence = PATTERN (NEXT_INSN (insn));
324 seq_size = XVECLEN (sequence, 0);
325 gcc_assert (GET_CODE (sequence) == SEQUENCE);
326 }
327
328 res->memory = 1;
329 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
330 if (frame_pointer_needed)
331 {
332 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
333 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
334 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
335 #endif
336 }
337
338 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
339 if (global_regs[i])
340 SET_HARD_REG_BIT (res->regs, i);
341
342 /* Check for a REG_SETJMP. If it exists, then we must
343 assume that this call can need any register.
344
345 This is done to be more conservative about how we handle setjmp.
346 We assume that they both use and set all registers. Using all
347 registers ensures that a register will not be considered dead
348 just because it crosses a setjmp call. A register should be
349 considered dead only if the setjmp call returns nonzero. */
350 if (find_reg_note (x, REG_SETJMP, NULL))
351 SET_HARD_REG_SET (res->regs);
352
353 {
354 rtx link;
355
356 for (link = CALL_INSN_FUNCTION_USAGE (x);
357 link;
358 link = XEXP (link, 1))
359 if (GET_CODE (XEXP (link, 0)) == USE)
360 {
361 for (i = 1; i < seq_size; i++)
362 {
363 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
364 if (GET_CODE (slot_pat) == SET
365 && rtx_equal_p (SET_DEST (slot_pat),
366 XEXP (XEXP (link, 0), 0)))
367 break;
368 }
369 if (i >= seq_size)
370 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
371 res, false);
372 }
373 }
374 }
375
376 /* ... fall through to other INSN processing ... */
377
378 case INSN:
379 case JUMP_INSN:
380
381 #ifdef INSN_REFERENCES_ARE_DELAYED
382 if (! include_delayed_effects
383 && INSN_REFERENCES_ARE_DELAYED (x))
384 return;
385 #endif
386
387 /* No special processing, just speed up. */
388 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
389 return;
390
391 default:
392 break;
393 }
394
395 /* Process each sub-expression and flag what it needs. */
396 format_ptr = GET_RTX_FORMAT (code);
397 for (i = 0; i < GET_RTX_LENGTH (code); i++)
398 switch (*format_ptr++)
399 {
400 case 'e':
401 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
402 break;
403
404 case 'E':
405 for (j = 0; j < XVECLEN (x, i); j++)
406 mark_referenced_resources (XVECEXP (x, i, j), res,
407 include_delayed_effects);
408 break;
409 }
410 }
411 \f
412 /* A subroutine of mark_target_live_regs. Search forward from TARGET
413 looking for registers that are set before they are used. These are dead.
414 Stop after passing a few conditional jumps, and/or a small
415 number of unconditional branches. */
416
417 static rtx
418 find_dead_or_set_registers (rtx target, struct resources *res,
419 rtx *jump_target, int jump_count,
420 struct resources set, struct resources needed)
421 {
422 HARD_REG_SET scratch;
423 rtx insn, next;
424 rtx jump_insn = 0;
425 int i;
426
427 for (insn = target; insn; insn = next)
428 {
429 rtx this_jump_insn = insn;
430
431 next = NEXT_INSN (insn);
432
433 /* If this instruction can throw an exception, then we don't
434 know where we might end up next. That means that we have to
435 assume that whatever we have already marked as live really is
436 live. */
437 if (can_throw_internal (insn))
438 break;
439
440 switch (GET_CODE (insn))
441 {
442 case CODE_LABEL:
443 /* After a label, any pending dead registers that weren't yet
444 used can be made dead. */
445 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
446 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
447 CLEAR_HARD_REG_SET (pending_dead_regs);
448
449 continue;
450
451 case BARRIER:
452 case NOTE:
453 continue;
454
455 case INSN:
456 if (GET_CODE (PATTERN (insn)) == USE)
457 {
458 /* If INSN is a USE made by update_block, we care about the
459 underlying insn. Any registers set by the underlying insn
460 are live since the insn is being done somewhere else. */
461 if (INSN_P (XEXP (PATTERN (insn), 0)))
462 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
463 MARK_SRC_DEST_CALL);
464
465 /* All other USE insns are to be ignored. */
466 continue;
467 }
468 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
469 continue;
470 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
471 {
472 /* An unconditional jump can be used to fill the delay slot
473 of a call, so search for a JUMP_INSN in any position. */
474 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
475 {
476 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
477 if (JUMP_P (this_jump_insn))
478 break;
479 }
480 }
481
482 default:
483 break;
484 }
485
486 if (JUMP_P (this_jump_insn))
487 {
488 if (jump_count++ < 10)
489 {
490 if (any_uncondjump_p (this_jump_insn)
491 || ANY_RETURN_P (PATTERN (this_jump_insn)))
492 {
493 next = JUMP_LABEL (this_jump_insn);
494 if (ANY_RETURN_P (next))
495 next = NULL_RTX;
496 if (jump_insn == 0)
497 {
498 jump_insn = insn;
499 if (jump_target)
500 *jump_target = JUMP_LABEL (this_jump_insn);
501 }
502 }
503 else if (any_condjump_p (this_jump_insn))
504 {
505 struct resources target_set, target_res;
506 struct resources fallthrough_res;
507
508 /* We can handle conditional branches here by following
509 both paths, and then IOR the results of the two paths
510 together, which will give us registers that are dead
511 on both paths. Since this is expensive, we give it
512 a much higher cost than unconditional branches. The
513 cost was chosen so that we will follow at most 1
514 conditional branch. */
515
516 jump_count += 4;
517 if (jump_count >= 10)
518 break;
519
520 mark_referenced_resources (insn, &needed, true);
521
522 /* For an annulled branch, mark_set_resources ignores slots
523 filled by instructions from the target. This is correct
524 if the branch is not taken. Since we are following both
525 paths from the branch, we must also compute correct info
526 if the branch is taken. We do this by inverting all of
527 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
528 and then inverting the INSN_FROM_TARGET_P bits again. */
529
530 if (GET_CODE (PATTERN (insn)) == SEQUENCE
531 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
532 {
533 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
534 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
535 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
536
537 target_set = set;
538 mark_set_resources (insn, &target_set, 0,
539 MARK_SRC_DEST_CALL);
540
541 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
542 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
543 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
544
545 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
546 }
547 else
548 {
549 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
550 target_set = set;
551 }
552
553 target_res = *res;
554 COPY_HARD_REG_SET (scratch, target_set.regs);
555 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
556 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
557
558 fallthrough_res = *res;
559 COPY_HARD_REG_SET (scratch, set.regs);
560 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
561 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
562
563 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
564 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
565 &target_res, 0, jump_count,
566 target_set, needed);
567 find_dead_or_set_registers (next,
568 &fallthrough_res, 0, jump_count,
569 set, needed);
570 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
571 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
572 break;
573 }
574 else
575 break;
576 }
577 else
578 {
579 /* Don't try this optimization if we expired our jump count
580 above, since that would mean there may be an infinite loop
581 in the function being compiled. */
582 jump_insn = 0;
583 break;
584 }
585 }
586
587 mark_referenced_resources (insn, &needed, true);
588 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
589
590 COPY_HARD_REG_SET (scratch, set.regs);
591 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
592 AND_COMPL_HARD_REG_SET (res->regs, scratch);
593 }
594
595 return jump_insn;
596 }
597 \f
598 /* Given X, a part of an insn, and a pointer to a `struct resource',
599 RES, indicate which resources are modified by the insn. If
600 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
601 set by the called routine.
602
603 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
604 objects are being referenced instead of set.
605
606 We never mark the insn as modifying the condition code unless it explicitly
607 SETs CC0 even though this is not totally correct. The reason for this is
608 that we require a SET of CC0 to immediately precede the reference to CC0.
609 So if some other insn sets CC0 as a side-effect, we know it cannot affect
610 our computation and thus may be placed in a delay slot. */
611
612 void
613 mark_set_resources (rtx x, struct resources *res, int in_dest,
614 enum mark_resource_type mark_type)
615 {
616 enum rtx_code code;
617 int i, j;
618 unsigned int r;
619 const char *format_ptr;
620
621 restart:
622
623 code = GET_CODE (x);
624
625 switch (code)
626 {
627 case NOTE:
628 case BARRIER:
629 case CODE_LABEL:
630 case USE:
631 CASE_CONST_ANY:
632 case LABEL_REF:
633 case SYMBOL_REF:
634 case CONST:
635 case PC:
636 /* These don't set any resources. */
637 return;
638
639 case CC0:
640 if (in_dest)
641 res->cc = 1;
642 return;
643
644 case CALL_INSN:
645 /* Called routine modifies the condition code, memory, any registers
646 that aren't saved across calls, global registers and anything
647 explicitly CLOBBERed immediately after the CALL_INSN. */
648
649 if (mark_type == MARK_SRC_DEST_CALL)
650 {
651 rtx link;
652
653 res->cc = res->memory = 1;
654
655 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
656
657 for (link = CALL_INSN_FUNCTION_USAGE (x);
658 link; link = XEXP (link, 1))
659 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
660 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
661 MARK_SRC_DEST);
662
663 /* Check for a REG_SETJMP. If it exists, then we must
664 assume that this call can clobber any register. */
665 if (find_reg_note (x, REG_SETJMP, NULL))
666 SET_HARD_REG_SET (res->regs);
667 }
668
669 /* ... and also what its RTL says it modifies, if anything. */
670
671 case JUMP_INSN:
672 case INSN:
673
674 /* An insn consisting of just a CLOBBER (or USE) is just for flow
675 and doesn't actually do anything, so we ignore it. */
676
677 #ifdef INSN_SETS_ARE_DELAYED
678 if (mark_type != MARK_SRC_DEST_CALL
679 && INSN_SETS_ARE_DELAYED (x))
680 return;
681 #endif
682
683 x = PATTERN (x);
684 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
685 goto restart;
686 return;
687
688 case SET:
689 /* If the source of a SET is a CALL, this is actually done by
690 the called routine. So only include it if we are to include the
691 effects of the calling routine. */
692
693 mark_set_resources (SET_DEST (x), res,
694 (mark_type == MARK_SRC_DEST_CALL
695 || GET_CODE (SET_SRC (x)) != CALL),
696 mark_type);
697
698 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
699 return;
700
701 case CLOBBER:
702 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
703 return;
704
705 case SEQUENCE:
706 {
707 rtx control = XVECEXP (x, 0, 0);
708 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
709
710 mark_set_resources (control, res, 0, mark_type);
711 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
712 {
713 rtx elt = XVECEXP (x, 0, i);
714 if (!annul_p && INSN_FROM_TARGET_P (elt))
715 mark_set_resources (elt, res, 0, mark_type);
716 }
717 }
718 return;
719
720 case POST_INC:
721 case PRE_INC:
722 case POST_DEC:
723 case PRE_DEC:
724 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
725 return;
726
727 case PRE_MODIFY:
728 case POST_MODIFY:
729 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
730 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
731 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
732 return;
733
734 case SIGN_EXTRACT:
735 case ZERO_EXTRACT:
736 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
737 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
738 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
739 return;
740
741 case MEM:
742 if (in_dest)
743 {
744 res->memory = 1;
745 res->unch_memory |= MEM_READONLY_P (x);
746 res->volatil |= MEM_VOLATILE_P (x);
747 }
748
749 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
750 return;
751
752 case SUBREG:
753 if (in_dest)
754 {
755 if (!REG_P (SUBREG_REG (x)))
756 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
757 else
758 {
759 unsigned int regno = subreg_regno (x);
760 unsigned int last_regno = regno + subreg_nregs (x);
761
762 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
763 for (r = regno; r < last_regno; r++)
764 SET_HARD_REG_BIT (res->regs, r);
765 }
766 }
767 return;
768
769 case REG:
770 if (in_dest)
771 {
772 gcc_assert (HARD_REGISTER_P (x));
773 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
774 }
775 return;
776
777 case UNSPEC_VOLATILE:
778 case ASM_INPUT:
779 /* Traditional asm's are always volatile. */
780 res->volatil = 1;
781 return;
782
783 case TRAP_IF:
784 res->volatil = 1;
785 break;
786
787 case ASM_OPERANDS:
788 res->volatil |= MEM_VOLATILE_P (x);
789
790 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
791 We can not just fall through here since then we would be confused
792 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
793 traditional asms unlike their normal usage. */
794
795 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
796 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
797 MARK_SRC_DEST);
798 return;
799
800 default:
801 break;
802 }
803
804 /* Process each sub-expression and flag what it needs. */
805 format_ptr = GET_RTX_FORMAT (code);
806 for (i = 0; i < GET_RTX_LENGTH (code); i++)
807 switch (*format_ptr++)
808 {
809 case 'e':
810 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
811 break;
812
813 case 'E':
814 for (j = 0; j < XVECLEN (x, i); j++)
815 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
816 break;
817 }
818 }
819 \f
820 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
821
822 static bool
823 return_insn_p (const_rtx insn)
824 {
825 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
826 return true;
827
828 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
829 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
830
831 return false;
832 }
833
834 /* Set the resources that are live at TARGET.
835
836 If TARGET is zero, we refer to the end of the current function and can
837 return our precomputed value.
838
839 Otherwise, we try to find out what is live by consulting the basic block
840 information. This is tricky, because we must consider the actions of
841 reload and jump optimization, which occur after the basic block information
842 has been computed.
843
844 Accordingly, we proceed as follows::
845
846 We find the previous BARRIER and look at all immediately following labels
847 (with no intervening active insns) to see if any of them start a basic
848 block. If we hit the start of the function first, we use block 0.
849
850 Once we have found a basic block and a corresponding first insn, we can
851 accurately compute the live status (by starting at a label following a
852 BARRIER, we are immune to actions taken by reload and jump.) Then we
853 scan all insns between that point and our target. For each CLOBBER (or
854 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
855 registers are dead. For a SET, mark them as live.
856
857 We have to be careful when using REG_DEAD notes because they are not
858 updated by such things as find_equiv_reg. So keep track of registers
859 marked as dead that haven't been assigned to, and mark them dead at the
860 next CODE_LABEL since reload and jump won't propagate values across labels.
861
862 If we cannot find the start of a basic block (should be a very rare
863 case, if it can happen at all), mark everything as potentially live.
864
865 Next, scan forward from TARGET looking for things set or clobbered
866 before they are used. These are not live.
867
868 Because we can be called many times on the same target, save our results
869 in a hash table indexed by INSN_UID. This is only done if the function
870 init_resource_info () was invoked before we are called. */
871
872 void
873 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
874 {
875 int b = -1;
876 unsigned int i;
877 struct target_info *tinfo = NULL;
878 rtx insn;
879 rtx jump_insn = 0;
880 rtx jump_target;
881 HARD_REG_SET scratch;
882 struct resources set, needed;
883
884 /* Handle end of function. */
885 if (target == 0 || ANY_RETURN_P (target))
886 {
887 *res = end_of_function_needs;
888 return;
889 }
890
891 /* Handle return insn. */
892 else if (return_insn_p (target))
893 {
894 *res = end_of_function_needs;
895 mark_referenced_resources (target, res, false);
896 return;
897 }
898
899 /* We have to assume memory is needed, but the CC isn't. */
900 res->memory = 1;
901 res->volatil = res->unch_memory = 0;
902 res->cc = 0;
903
904 /* See if we have computed this value already. */
905 if (target_hash_table != NULL)
906 {
907 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
908 tinfo; tinfo = tinfo->next)
909 if (tinfo->uid == INSN_UID (target))
910 break;
911
912 /* Start by getting the basic block number. If we have saved
913 information, we can get it from there unless the insn at the
914 start of the basic block has been deleted. */
915 if (tinfo && tinfo->block != -1
916 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
917 b = tinfo->block;
918 }
919
920 if (b == -1)
921 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
922
923 if (target_hash_table != NULL)
924 {
925 if (tinfo)
926 {
927 /* If the information is up-to-date, use it. Otherwise, we will
928 update it below. */
929 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
930 {
931 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
932 return;
933 }
934 }
935 else
936 {
937 /* Allocate a place to put our results and chain it into the
938 hash table. */
939 tinfo = XNEW (struct target_info);
940 tinfo->uid = INSN_UID (target);
941 tinfo->block = b;
942 tinfo->next
943 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
944 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
945 }
946 }
947
948 CLEAR_HARD_REG_SET (pending_dead_regs);
949
950 /* If we found a basic block, get the live registers from it and update
951 them with anything set or killed between its start and the insn before
952 TARGET; this custom life analysis is really about registers so we need
953 to use the LR problem. Otherwise, we must assume everything is live. */
954 if (b != -1)
955 {
956 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
957 rtx start_insn, stop_insn;
958
959 /* Compute hard regs live at start of block. */
960 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
961
962 /* Get starting and ending insn, handling the case where each might
963 be a SEQUENCE. */
964 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
965 insns : BB_HEAD (BASIC_BLOCK (b)));
966 stop_insn = target;
967
968 if (NONJUMP_INSN_P (start_insn)
969 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
970 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
971
972 if (NONJUMP_INSN_P (stop_insn)
973 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
974 stop_insn = next_insn (PREV_INSN (stop_insn));
975
976 for (insn = start_insn; insn != stop_insn;
977 insn = next_insn_no_annul (insn))
978 {
979 rtx link;
980 rtx real_insn = insn;
981 enum rtx_code code = GET_CODE (insn);
982
983 if (DEBUG_INSN_P (insn))
984 continue;
985
986 /* If this insn is from the target of a branch, it isn't going to
987 be used in the sequel. If it is used in both cases, this
988 test will not be true. */
989 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
990 && INSN_FROM_TARGET_P (insn))
991 continue;
992
993 /* If this insn is a USE made by update_block, we care about the
994 underlying insn. */
995 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
996 && INSN_P (XEXP (PATTERN (insn), 0)))
997 real_insn = XEXP (PATTERN (insn), 0);
998
999 if (CALL_P (real_insn))
1000 {
1001 /* CALL clobbers all call-used regs that aren't fixed except
1002 sp, ap, and fp. Do this before setting the result of the
1003 call live. */
1004 AND_COMPL_HARD_REG_SET (current_live_regs,
1005 regs_invalidated_by_call);
1006
1007 /* A CALL_INSN sets any global register live, since it may
1008 have been modified by the call. */
1009 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1010 if (global_regs[i])
1011 SET_HARD_REG_BIT (current_live_regs, i);
1012 }
1013
1014 /* Mark anything killed in an insn to be deadened at the next
1015 label. Ignore USE insns; the only REG_DEAD notes will be for
1016 parameters. But they might be early. A CALL_INSN will usually
1017 clobber registers used for parameters. It isn't worth bothering
1018 with the unlikely case when it won't. */
1019 if ((NONJUMP_INSN_P (real_insn)
1020 && GET_CODE (PATTERN (real_insn)) != USE
1021 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1022 || JUMP_P (real_insn)
1023 || CALL_P (real_insn))
1024 {
1025 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1026 if (REG_NOTE_KIND (link) == REG_DEAD
1027 && REG_P (XEXP (link, 0))
1028 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1029 add_to_hard_reg_set (&pending_dead_regs,
1030 GET_MODE (XEXP (link, 0)),
1031 REGNO (XEXP (link, 0)));
1032
1033 note_stores (PATTERN (real_insn), update_live_status, NULL);
1034
1035 /* If any registers were unused after this insn, kill them.
1036 These notes will always be accurate. */
1037 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1038 if (REG_NOTE_KIND (link) == REG_UNUSED
1039 && REG_P (XEXP (link, 0))
1040 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1041 remove_from_hard_reg_set (&current_live_regs,
1042 GET_MODE (XEXP (link, 0)),
1043 REGNO (XEXP (link, 0)));
1044 }
1045
1046 else if (LABEL_P (real_insn))
1047 {
1048 basic_block bb;
1049
1050 /* A label clobbers the pending dead registers since neither
1051 reload nor jump will propagate a value across a label. */
1052 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1053 CLEAR_HARD_REG_SET (pending_dead_regs);
1054
1055 /* We must conservatively assume that all registers that used
1056 to be live here still are. The fallthrough edge may have
1057 left a live register uninitialized. */
1058 bb = BLOCK_FOR_INSN (real_insn);
1059 if (bb)
1060 {
1061 HARD_REG_SET extra_live;
1062
1063 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1064 IOR_HARD_REG_SET (current_live_regs, extra_live);
1065 }
1066 }
1067
1068 /* The beginning of the epilogue corresponds to the end of the
1069 RTL chain when there are no epilogue insns. Certain resources
1070 are implicitly required at that point. */
1071 else if (NOTE_P (real_insn)
1072 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1073 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1074 }
1075
1076 COPY_HARD_REG_SET (res->regs, current_live_regs);
1077 if (tinfo != NULL)
1078 {
1079 tinfo->block = b;
1080 tinfo->bb_tick = bb_ticks[b];
1081 }
1082 }
1083 else
1084 /* We didn't find the start of a basic block. Assume everything
1085 in use. This should happen only extremely rarely. */
1086 SET_HARD_REG_SET (res->regs);
1087
1088 CLEAR_RESOURCE (&set);
1089 CLEAR_RESOURCE (&needed);
1090
1091 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1092 set, needed);
1093
1094 /* If we hit an unconditional branch, we have another way of finding out
1095 what is live: we can see what is live at the branch target and include
1096 anything used but not set before the branch. We add the live
1097 resources found using the test below to those found until now. */
1098
1099 if (jump_insn)
1100 {
1101 struct resources new_resources;
1102 rtx stop_insn = next_active_insn (jump_insn);
1103
1104 if (!ANY_RETURN_P (jump_target))
1105 jump_target = next_active_insn (jump_target);
1106 mark_target_live_regs (insns, jump_target, &new_resources);
1107 CLEAR_RESOURCE (&set);
1108 CLEAR_RESOURCE (&needed);
1109
1110 /* Include JUMP_INSN in the needed registers. */
1111 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1112 {
1113 mark_referenced_resources (insn, &needed, true);
1114
1115 COPY_HARD_REG_SET (scratch, needed.regs);
1116 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1117 IOR_HARD_REG_SET (new_resources.regs, scratch);
1118
1119 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1120 }
1121
1122 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1123 }
1124
1125 if (tinfo != NULL)
1126 {
1127 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1128 }
1129 }
1130 \f
1131 /* Initialize the resources required by mark_target_live_regs ().
1132 This should be invoked before the first call to mark_target_live_regs. */
1133
1134 void
1135 init_resource_info (rtx epilogue_insn)
1136 {
1137 int i;
1138 basic_block bb;
1139
1140 /* Indicate what resources are required to be valid at the end of the current
1141 function. The condition code never is and memory always is.
1142 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1143 and there is an epilogue that restores the original stack pointer
1144 from the frame pointer. Registers used to return the function value
1145 are needed. Registers holding global variables are needed. */
1146
1147 end_of_function_needs.cc = 0;
1148 end_of_function_needs.memory = 1;
1149 end_of_function_needs.unch_memory = 0;
1150 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1151
1152 if (frame_pointer_needed)
1153 {
1154 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1155 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1156 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1157 #endif
1158 }
1159 if (!(frame_pointer_needed
1160 && EXIT_IGNORE_STACK
1161 && epilogue_insn
1162 && !crtl->sp_is_unchanging))
1163 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1164
1165 if (crtl->return_rtx != 0)
1166 mark_referenced_resources (crtl->return_rtx,
1167 &end_of_function_needs, true);
1168
1169 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1170 if (global_regs[i]
1171 #ifdef EPILOGUE_USES
1172 || EPILOGUE_USES (i)
1173 #endif
1174 )
1175 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1176
1177 /* The registers required to be live at the end of the function are
1178 represented in the flow information as being dead just prior to
1179 reaching the end of the function. For example, the return of a value
1180 might be represented by a USE of the return register immediately
1181 followed by an unconditional jump to the return label where the
1182 return label is the end of the RTL chain. The end of the RTL chain
1183 is then taken to mean that the return register is live.
1184
1185 This sequence is no longer maintained when epilogue instructions are
1186 added to the RTL chain. To reconstruct the original meaning, the
1187 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1188 point where these registers become live (start_of_epilogue_needs).
1189 If epilogue instructions are present, the registers set by those
1190 instructions won't have been processed by flow. Thus, those
1191 registers are additionally required at the end of the RTL chain
1192 (end_of_function_needs). */
1193
1194 start_of_epilogue_needs = end_of_function_needs;
1195
1196 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1197 {
1198 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1199 MARK_SRC_DEST_CALL);
1200 if (return_insn_p (epilogue_insn))
1201 break;
1202 }
1203
1204 /* Allocate and initialize the tables used by mark_target_live_regs. */
1205 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1206 bb_ticks = XCNEWVEC (int, last_basic_block);
1207
1208 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1209 FOR_EACH_BB (bb)
1210 if (LABEL_P (BB_HEAD (bb)))
1211 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1212 }
1213 \f
1214 /* Free up the resources allocated to mark_target_live_regs (). This
1215 should be invoked after the last call to mark_target_live_regs (). */
1216
1217 void
1218 free_resource_info (void)
1219 {
1220 basic_block bb;
1221
1222 if (target_hash_table != NULL)
1223 {
1224 int i;
1225
1226 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1227 {
1228 struct target_info *ti = target_hash_table[i];
1229
1230 while (ti)
1231 {
1232 struct target_info *next = ti->next;
1233 free (ti);
1234 ti = next;
1235 }
1236 }
1237
1238 free (target_hash_table);
1239 target_hash_table = NULL;
1240 }
1241
1242 if (bb_ticks != NULL)
1243 {
1244 free (bb_ticks);
1245 bb_ticks = NULL;
1246 }
1247
1248 FOR_EACH_BB (bb)
1249 if (LABEL_P (BB_HEAD (bb)))
1250 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1251 }
1252 \f
1253 /* Clear any hashed information that we have stored for INSN. */
1254
1255 void
1256 clear_hashed_info_for_insn (rtx insn)
1257 {
1258 struct target_info *tinfo;
1259
1260 if (target_hash_table != NULL)
1261 {
1262 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1263 tinfo; tinfo = tinfo->next)
1264 if (tinfo->uid == INSN_UID (insn))
1265 break;
1266
1267 if (tinfo)
1268 tinfo->block = -1;
1269 }
1270 }
1271 \f
1272 /* Increment the tick count for the basic block that contains INSN. */
1273
1274 void
1275 incr_ticks_for_insn (rtx insn)
1276 {
1277 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1278
1279 if (b != -1)
1280 bb_ticks[b]++;
1281 }
1282 \f
1283 /* Add TRIAL to the set of resources used at the end of the current
1284 function. */
1285 void
1286 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1287 {
1288 mark_referenced_resources (trial, &end_of_function_needs,
1289 include_delayed_effects);
1290 }