re PR tree-optimization/91351 (-fstrict-enums generates incorrect code)
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "df.h"
26 #include "memmodel.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "emit-rtl.h"
30 #include "resource.h"
31 #include "insn-attr.h"
32 #include "params.h"
33
34 /* This structure is used to record liveness information at the targets or
35 fallthrough insns of branches. We will most likely need the information
36 at targets again, so save them in a hash table rather than recomputing them
37 each time. */
38
39 struct target_info
40 {
41 int uid; /* INSN_UID of target. */
42 struct target_info *next; /* Next info for same hash bucket. */
43 HARD_REG_SET live_regs; /* Registers live at target. */
44 int block; /* Basic block number containing target. */
45 int bb_tick; /* Generation count of basic block info. */
46 };
47
48 #define TARGET_HASH_PRIME 257
49
50 /* Indicates what resources are required at the beginning of the epilogue. */
51 static struct resources start_of_epilogue_needs;
52
53 /* Indicates what resources are required at function end. */
54 static struct resources end_of_function_needs;
55
56 /* Define the hash table itself. */
57 static struct target_info **target_hash_table = NULL;
58
59 /* For each basic block, we maintain a generation number of its basic
60 block info, which is updated each time we move an insn from the
61 target of a jump. This is the generation number indexed by block
62 number. */
63
64 static int *bb_ticks;
65
66 /* Marks registers possibly live at the current place being scanned by
67 mark_target_live_regs. Also used by update_live_status. */
68
69 static HARD_REG_SET current_live_regs;
70
71 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
72 Also only used by the next two functions. */
73
74 static HARD_REG_SET pending_dead_regs;
75 \f
76 static void update_live_status (rtx, const_rtx, void *);
77 static int find_basic_block (rtx_insn *, int);
78 static rtx_insn *next_insn_no_annul (rtx_insn *);
79 static rtx_insn *find_dead_or_set_registers (rtx_insn *, struct resources*,
80 rtx *, int, struct resources,
81 struct resources);
82 \f
83 /* Utility function called from mark_target_live_regs via note_stores.
84 It deadens any CLOBBERed registers and livens any SET registers. */
85
86 static void
87 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
88 {
89 int first_regno, last_regno;
90 int i;
91
92 if (!REG_P (dest)
93 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
94 return;
95
96 if (GET_CODE (dest) == SUBREG)
97 {
98 first_regno = subreg_regno (dest);
99 last_regno = first_regno + subreg_nregs (dest);
100
101 }
102 else
103 {
104 first_regno = REGNO (dest);
105 last_regno = END_REGNO (dest);
106 }
107
108 if (GET_CODE (x) == CLOBBER)
109 for (i = first_regno; i < last_regno; i++)
110 CLEAR_HARD_REG_BIT (current_live_regs, i);
111 else if (GET_CODE (x) == CLOBBER_HIGH)
112 /* No current target supports both branch delay slots and CLOBBER_HIGH.
113 We'd need more elaborate liveness tracking to handle that
114 combination. */
115 gcc_unreachable ();
116 else
117 for (i = first_regno; i < last_regno; i++)
118 {
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121 }
122 }
123
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
129
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
134
135 static int
136 find_basic_block (rtx_insn *insn, int search_limit)
137 {
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn = prev_nonnote_insn (insn);
141 insn && !BARRIER_P (insn) && search_limit != 0;
142 insn = prev_nonnote_insn (insn), --search_limit)
143 ;
144
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
148
149 /* The start of the function. */
150 else if (insn == 0)
151 return ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index;
152
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
156 insn && LABEL_P (insn);
157 insn = next_nonnote_insn (insn))
158 if (BLOCK_FOR_INSN (insn))
159 return BLOCK_FOR_INSN (insn)->index;
160
161 return -1;
162 }
163 \f
164 /* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
166
167 static rtx_insn *
168 next_insn_no_annul (rtx_insn *insn)
169 {
170 if (insn)
171 {
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
174 if (JUMP_P (insn)
175 && INSN_ANNULLED_BRANCH_P (insn)
176 && NEXT_INSN (PREV_INSN (insn)) != insn)
177 {
178 rtx_insn *next = NEXT_INSN (insn);
179
180 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
181 && INSN_FROM_TARGET_P (next))
182 {
183 insn = next;
184 next = NEXT_INSN (insn);
185 }
186 }
187
188 insn = NEXT_INSN (insn);
189 if (insn && NONJUMP_INSN_P (insn)
190 && GET_CODE (PATTERN (insn)) == SEQUENCE)
191 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
192 }
193
194 return insn;
195 }
196 \f
197 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
198 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
199 is TRUE, resources used by the called routine will be included for
200 CALL_INSNs. */
201
202 void
203 mark_referenced_resources (rtx x, struct resources *res,
204 bool include_delayed_effects)
205 {
206 enum rtx_code code = GET_CODE (x);
207 int i, j;
208 unsigned int r;
209 const char *format_ptr;
210
211 /* Handle leaf items for which we set resource flags. Also, special-case
212 CALL, SET and CLOBBER operators. */
213 switch (code)
214 {
215 case CONST:
216 CASE_CONST_ANY:
217 case PC:
218 case SYMBOL_REF:
219 case LABEL_REF:
220 case DEBUG_INSN:
221 return;
222
223 case SUBREG:
224 if (!REG_P (SUBREG_REG (x)))
225 mark_referenced_resources (SUBREG_REG (x), res, false);
226 else
227 {
228 unsigned int regno = subreg_regno (x);
229 unsigned int last_regno = regno + subreg_nregs (x);
230
231 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
232 for (r = regno; r < last_regno; r++)
233 SET_HARD_REG_BIT (res->regs, r);
234 }
235 return;
236
237 case REG:
238 gcc_assert (HARD_REGISTER_P (x));
239 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
240 return;
241
242 case MEM:
243 /* If this memory shouldn't change, it really isn't referencing
244 memory. */
245 if (! MEM_READONLY_P (x))
246 res->memory = 1;
247 res->volatil |= MEM_VOLATILE_P (x);
248
249 /* Mark registers used to access memory. */
250 mark_referenced_resources (XEXP (x, 0), res, false);
251 return;
252
253 case CC0:
254 res->cc = 1;
255 return;
256
257 case UNSPEC_VOLATILE:
258 case TRAP_IF:
259 case ASM_INPUT:
260 /* Traditional asm's are always volatile. */
261 res->volatil = 1;
262 break;
263
264 case ASM_OPERANDS:
265 res->volatil |= MEM_VOLATILE_P (x);
266
267 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
268 We cannot just fall through here since then we would be confused
269 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
270 traditional asms unlike their normal usage. */
271
272 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
273 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
274 return;
275
276 case CALL:
277 /* The first operand will be a (MEM (xxx)) but doesn't really reference
278 memory. The second operand may be referenced, though. */
279 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
280 mark_referenced_resources (XEXP (x, 1), res, false);
281 return;
282
283 case SET:
284 /* Usually, the first operand of SET is set, not referenced. But
285 registers used to access memory are referenced. SET_DEST is
286 also referenced if it is a ZERO_EXTRACT. */
287
288 mark_referenced_resources (SET_SRC (x), res, false);
289
290 x = SET_DEST (x);
291 if (GET_CODE (x) == ZERO_EXTRACT
292 || GET_CODE (x) == STRICT_LOW_PART)
293 mark_referenced_resources (x, res, false);
294 else if (GET_CODE (x) == SUBREG)
295 x = SUBREG_REG (x);
296 if (MEM_P (x))
297 mark_referenced_resources (XEXP (x, 0), res, false);
298 return;
299
300 case CLOBBER:
301 case CLOBBER_HIGH:
302 return;
303
304 case CALL_INSN:
305 if (include_delayed_effects)
306 {
307 /* A CALL references memory, the frame pointer if it exists, the
308 stack pointer, any global registers and any registers given in
309 USE insns immediately in front of the CALL.
310
311 However, we may have moved some of the parameter loading insns
312 into the delay slot of this CALL. If so, the USE's for them
313 don't count and should be skipped. */
314 rtx_insn *insn = PREV_INSN (as_a <rtx_insn *> (x));
315 rtx_sequence *sequence = 0;
316 int seq_size = 0;
317 int i;
318
319 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
320 if (NEXT_INSN (insn) != x)
321 {
322 sequence = as_a <rtx_sequence *> (PATTERN (NEXT_INSN (insn)));
323 seq_size = sequence->len ();
324 gcc_assert (GET_CODE (sequence) == SEQUENCE);
325 }
326
327 res->memory = 1;
328 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
329 if (frame_pointer_needed)
330 {
331 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
332 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
333 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
334 }
335
336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
337 if (global_regs[i])
338 SET_HARD_REG_BIT (res->regs, i);
339
340 /* Check for a REG_SETJMP. If it exists, then we must
341 assume that this call can need any register.
342
343 This is done to be more conservative about how we handle setjmp.
344 We assume that they both use and set all registers. Using all
345 registers ensures that a register will not be considered dead
346 just because it crosses a setjmp call. A register should be
347 considered dead only if the setjmp call returns nonzero. */
348 if (find_reg_note (x, REG_SETJMP, NULL))
349 SET_HARD_REG_SET (res->regs);
350
351 {
352 rtx link;
353
354 for (link = CALL_INSN_FUNCTION_USAGE (x);
355 link;
356 link = XEXP (link, 1))
357 if (GET_CODE (XEXP (link, 0)) == USE)
358 {
359 for (i = 1; i < seq_size; i++)
360 {
361 rtx slot_pat = PATTERN (sequence->element (i));
362 if (GET_CODE (slot_pat) == SET
363 && rtx_equal_p (SET_DEST (slot_pat),
364 XEXP (XEXP (link, 0), 0)))
365 break;
366 }
367 if (i >= seq_size)
368 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
369 res, false);
370 }
371 }
372 }
373
374 /* ... fall through to other INSN processing ... */
375 gcc_fallthrough ();
376
377 case INSN:
378 case JUMP_INSN:
379
380 if (GET_CODE (PATTERN (x)) == COND_EXEC)
381 /* In addition to the usual references, also consider all outputs
382 as referenced, to compensate for mark_set_resources treating
383 them as killed. This is similar to ZERO_EXTRACT / STRICT_LOW_PART
384 handling, execpt that we got a partial incidence instead of a partial
385 width. */
386 mark_set_resources (x, res, 0,
387 include_delayed_effects
388 ? MARK_SRC_DEST_CALL : MARK_SRC_DEST);
389
390 if (! include_delayed_effects
391 && INSN_REFERENCES_ARE_DELAYED (as_a <rtx_insn *> (x)))
392 return;
393
394 /* No special processing, just speed up. */
395 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
396 return;
397
398 default:
399 break;
400 }
401
402 /* Process each sub-expression and flag what it needs. */
403 format_ptr = GET_RTX_FORMAT (code);
404 for (i = 0; i < GET_RTX_LENGTH (code); i++)
405 switch (*format_ptr++)
406 {
407 case 'e':
408 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
409 break;
410
411 case 'E':
412 for (j = 0; j < XVECLEN (x, i); j++)
413 mark_referenced_resources (XVECEXP (x, i, j), res,
414 include_delayed_effects);
415 break;
416 }
417 }
418 \f
419 /* A subroutine of mark_target_live_regs. Search forward from TARGET
420 looking for registers that are set before they are used. These are dead.
421 Stop after passing a few conditional jumps, and/or a small
422 number of unconditional branches. */
423
424 static rtx_insn *
425 find_dead_or_set_registers (rtx_insn *target, struct resources *res,
426 rtx *jump_target, int jump_count,
427 struct resources set, struct resources needed)
428 {
429 HARD_REG_SET scratch;
430 rtx_insn *insn;
431 rtx_insn *next_insn;
432 rtx_insn *jump_insn = 0;
433 int i;
434
435 for (insn = target; insn; insn = next_insn)
436 {
437 rtx_insn *this_insn = insn;
438
439 next_insn = NEXT_INSN (insn);
440
441 /* If this instruction can throw an exception, then we don't
442 know where we might end up next. That means that we have to
443 assume that whatever we have already marked as live really is
444 live. */
445 if (can_throw_internal (insn))
446 break;
447
448 switch (GET_CODE (insn))
449 {
450 case CODE_LABEL:
451 /* After a label, any pending dead registers that weren't yet
452 used can be made dead. */
453 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
454 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
455 CLEAR_HARD_REG_SET (pending_dead_regs);
456
457 continue;
458
459 case BARRIER:
460 case NOTE:
461 case DEBUG_INSN:
462 continue;
463
464 case INSN:
465 if (GET_CODE (PATTERN (insn)) == USE)
466 {
467 /* If INSN is a USE made by update_block, we care about the
468 underlying insn. Any registers set by the underlying insn
469 are live since the insn is being done somewhere else. */
470 if (INSN_P (XEXP (PATTERN (insn), 0)))
471 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
472 MARK_SRC_DEST_CALL);
473
474 /* All other USE insns are to be ignored. */
475 continue;
476 }
477 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
478 continue;
479 else if (rtx_sequence *seq =
480 dyn_cast <rtx_sequence *> (PATTERN (insn)))
481 {
482 /* An unconditional jump can be used to fill the delay slot
483 of a call, so search for a JUMP_INSN in any position. */
484 for (i = 0; i < seq->len (); i++)
485 {
486 this_insn = seq->insn (i);
487 if (JUMP_P (this_insn))
488 break;
489 }
490 }
491
492 default:
493 break;
494 }
495
496 if (rtx_jump_insn *this_jump_insn =
497 dyn_cast <rtx_jump_insn *> (this_insn))
498 {
499 if (jump_count++ < 10)
500 {
501 if (any_uncondjump_p (this_jump_insn)
502 || ANY_RETURN_P (PATTERN (this_jump_insn)))
503 {
504 rtx lab_or_return = this_jump_insn->jump_label ();
505 if (ANY_RETURN_P (lab_or_return))
506 next_insn = NULL;
507 else
508 next_insn = as_a <rtx_insn *> (lab_or_return);
509 if (jump_insn == 0)
510 {
511 jump_insn = insn;
512 if (jump_target)
513 *jump_target = JUMP_LABEL (this_jump_insn);
514 }
515 }
516 else if (any_condjump_p (this_jump_insn))
517 {
518 struct resources target_set, target_res;
519 struct resources fallthrough_res;
520
521 /* We can handle conditional branches here by following
522 both paths, and then IOR the results of the two paths
523 together, which will give us registers that are dead
524 on both paths. Since this is expensive, we give it
525 a much higher cost than unconditional branches. The
526 cost was chosen so that we will follow at most 1
527 conditional branch. */
528
529 jump_count += 4;
530 if (jump_count >= 10)
531 break;
532
533 mark_referenced_resources (insn, &needed, true);
534
535 /* For an annulled branch, mark_set_resources ignores slots
536 filled by instructions from the target. This is correct
537 if the branch is not taken. Since we are following both
538 paths from the branch, we must also compute correct info
539 if the branch is taken. We do this by inverting all of
540 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
541 and then inverting the INSN_FROM_TARGET_P bits again. */
542
543 if (GET_CODE (PATTERN (insn)) == SEQUENCE
544 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
545 {
546 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
547 for (i = 1; i < seq->len (); i++)
548 INSN_FROM_TARGET_P (seq->element (i))
549 = ! INSN_FROM_TARGET_P (seq->element (i));
550
551 target_set = set;
552 mark_set_resources (insn, &target_set, 0,
553 MARK_SRC_DEST_CALL);
554
555 for (i = 1; i < seq->len (); i++)
556 INSN_FROM_TARGET_P (seq->element (i))
557 = ! INSN_FROM_TARGET_P (seq->element (i));
558
559 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
560 }
561 else
562 {
563 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
564 target_set = set;
565 }
566
567 target_res = *res;
568 COPY_HARD_REG_SET (scratch, target_set.regs);
569 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
570 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
571
572 fallthrough_res = *res;
573 COPY_HARD_REG_SET (scratch, set.regs);
574 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
575 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
576
577 if (!ANY_RETURN_P (this_jump_insn->jump_label ()))
578 find_dead_or_set_registers
579 (this_jump_insn->jump_target (),
580 &target_res, 0, jump_count, target_set, needed);
581 find_dead_or_set_registers (next_insn,
582 &fallthrough_res, 0, jump_count,
583 set, needed);
584 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
585 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
586 break;
587 }
588 else
589 break;
590 }
591 else
592 {
593 /* Don't try this optimization if we expired our jump count
594 above, since that would mean there may be an infinite loop
595 in the function being compiled. */
596 jump_insn = 0;
597 break;
598 }
599 }
600
601 mark_referenced_resources (insn, &needed, true);
602 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
603
604 COPY_HARD_REG_SET (scratch, set.regs);
605 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
606 AND_COMPL_HARD_REG_SET (res->regs, scratch);
607 }
608
609 return jump_insn;
610 }
611 \f
612 /* Given X, a part of an insn, and a pointer to a `struct resource',
613 RES, indicate which resources are modified by the insn. If
614 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
615 set by the called routine.
616
617 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
618 objects are being referenced instead of set.
619
620 We never mark the insn as modifying the condition code unless it explicitly
621 SETs CC0 even though this is not totally correct. The reason for this is
622 that we require a SET of CC0 to immediately precede the reference to CC0.
623 So if some other insn sets CC0 as a side-effect, we know it cannot affect
624 our computation and thus may be placed in a delay slot. */
625
626 void
627 mark_set_resources (rtx x, struct resources *res, int in_dest,
628 enum mark_resource_type mark_type)
629 {
630 enum rtx_code code;
631 int i, j;
632 unsigned int r;
633 const char *format_ptr;
634
635 restart:
636
637 code = GET_CODE (x);
638
639 switch (code)
640 {
641 case NOTE:
642 case BARRIER:
643 case CODE_LABEL:
644 case USE:
645 CASE_CONST_ANY:
646 case LABEL_REF:
647 case SYMBOL_REF:
648 case CONST:
649 case PC:
650 case DEBUG_INSN:
651 /* These don't set any resources. */
652 return;
653
654 case CC0:
655 if (in_dest)
656 res->cc = 1;
657 return;
658
659 case CALL_INSN:
660 /* Called routine modifies the condition code, memory, any registers
661 that aren't saved across calls, global registers and anything
662 explicitly CLOBBERed immediately after the CALL_INSN. */
663
664 if (mark_type == MARK_SRC_DEST_CALL)
665 {
666 rtx_call_insn *call_insn = as_a <rtx_call_insn *> (x);
667 rtx link;
668 HARD_REG_SET regs;
669
670 res->cc = res->memory = 1;
671
672 get_call_reg_set_usage (call_insn, &regs, regs_invalidated_by_call);
673 IOR_HARD_REG_SET (res->regs, regs);
674
675 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
676 link; link = XEXP (link, 1))
677 {
678 /* We could support CLOBBER_HIGH and treat it in the same way as
679 HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that
680 yet. */
681 gcc_assert (GET_CODE (XEXP (link, 0)) != CLOBBER_HIGH);
682 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
683 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
684 MARK_SRC_DEST);
685 }
686
687 /* Check for a REG_SETJMP. If it exists, then we must
688 assume that this call can clobber any register. */
689 if (find_reg_note (call_insn, REG_SETJMP, NULL))
690 SET_HARD_REG_SET (res->regs);
691 }
692
693 /* ... and also what its RTL says it modifies, if anything. */
694 gcc_fallthrough ();
695
696 case JUMP_INSN:
697 case INSN:
698
699 /* An insn consisting of just a CLOBBER (or USE) is just for flow
700 and doesn't actually do anything, so we ignore it. */
701
702 if (mark_type != MARK_SRC_DEST_CALL
703 && INSN_SETS_ARE_DELAYED (as_a <rtx_insn *> (x)))
704 return;
705
706 x = PATTERN (x);
707 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
708 goto restart;
709 return;
710
711 case SET:
712 /* If the source of a SET is a CALL, this is actually done by
713 the called routine. So only include it if we are to include the
714 effects of the calling routine. */
715
716 mark_set_resources (SET_DEST (x), res,
717 (mark_type == MARK_SRC_DEST_CALL
718 || GET_CODE (SET_SRC (x)) != CALL),
719 mark_type);
720
721 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
722 return;
723
724 case CLOBBER:
725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726 return;
727
728 case CLOBBER_HIGH:
729 /* No current target supports both branch delay slots and CLOBBER_HIGH.
730 We'd need more elaborate liveness tracking to handle that
731 combination. */
732 gcc_unreachable ();
733
734 case SEQUENCE:
735 {
736 rtx_sequence *seq = as_a <rtx_sequence *> (x);
737 rtx control = seq->element (0);
738 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
739
740 mark_set_resources (control, res, 0, mark_type);
741 for (i = seq->len () - 1; i >= 0; --i)
742 {
743 rtx elt = seq->element (i);
744 if (!annul_p && INSN_FROM_TARGET_P (elt))
745 mark_set_resources (elt, res, 0, mark_type);
746 }
747 }
748 return;
749
750 case POST_INC:
751 case PRE_INC:
752 case POST_DEC:
753 case PRE_DEC:
754 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
755 return;
756
757 case PRE_MODIFY:
758 case POST_MODIFY:
759 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
760 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
761 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
762 return;
763
764 case SIGN_EXTRACT:
765 case ZERO_EXTRACT:
766 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
767 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
768 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
769 return;
770
771 case MEM:
772 if (in_dest)
773 {
774 res->memory = 1;
775 res->volatil |= MEM_VOLATILE_P (x);
776 }
777
778 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
779 return;
780
781 case SUBREG:
782 if (in_dest)
783 {
784 if (!REG_P (SUBREG_REG (x)))
785 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
786 else
787 {
788 unsigned int regno = subreg_regno (x);
789 unsigned int last_regno = regno + subreg_nregs (x);
790
791 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
792 for (r = regno; r < last_regno; r++)
793 SET_HARD_REG_BIT (res->regs, r);
794 }
795 }
796 return;
797
798 case REG:
799 if (in_dest)
800 {
801 gcc_assert (HARD_REGISTER_P (x));
802 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
803 }
804 return;
805
806 case UNSPEC_VOLATILE:
807 case ASM_INPUT:
808 /* Traditional asm's are always volatile. */
809 res->volatil = 1;
810 return;
811
812 case TRAP_IF:
813 res->volatil = 1;
814 break;
815
816 case ASM_OPERANDS:
817 res->volatil |= MEM_VOLATILE_P (x);
818
819 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
820 We cannot just fall through here since then we would be confused
821 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
822 traditional asms unlike their normal usage. */
823
824 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
825 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
826 MARK_SRC_DEST);
827 return;
828
829 default:
830 break;
831 }
832
833 /* Process each sub-expression and flag what it needs. */
834 format_ptr = GET_RTX_FORMAT (code);
835 for (i = 0; i < GET_RTX_LENGTH (code); i++)
836 switch (*format_ptr++)
837 {
838 case 'e':
839 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
840 break;
841
842 case 'E':
843 for (j = 0; j < XVECLEN (x, i); j++)
844 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
845 break;
846 }
847 }
848 \f
849 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
850
851 static bool
852 return_insn_p (const_rtx insn)
853 {
854 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
855 return true;
856
857 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
858 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
859
860 return false;
861 }
862
863 /* Set the resources that are live at TARGET.
864
865 If TARGET is zero, we refer to the end of the current function and can
866 return our precomputed value.
867
868 Otherwise, we try to find out what is live by consulting the basic block
869 information. This is tricky, because we must consider the actions of
870 reload and jump optimization, which occur after the basic block information
871 has been computed.
872
873 Accordingly, we proceed as follows::
874
875 We find the previous BARRIER and look at all immediately following labels
876 (with no intervening active insns) to see if any of them start a basic
877 block. If we hit the start of the function first, we use block 0.
878
879 Once we have found a basic block and a corresponding first insn, we can
880 accurately compute the live status (by starting at a label following a
881 BARRIER, we are immune to actions taken by reload and jump.) Then we
882 scan all insns between that point and our target. For each CLOBBER (or
883 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
884 registers are dead. For a SET, mark them as live.
885
886 We have to be careful when using REG_DEAD notes because they are not
887 updated by such things as find_equiv_reg. So keep track of registers
888 marked as dead that haven't been assigned to, and mark them dead at the
889 next CODE_LABEL since reload and jump won't propagate values across labels.
890
891 If we cannot find the start of a basic block (should be a very rare
892 case, if it can happen at all), mark everything as potentially live.
893
894 Next, scan forward from TARGET looking for things set or clobbered
895 before they are used. These are not live.
896
897 Because we can be called many times on the same target, save our results
898 in a hash table indexed by INSN_UID. This is only done if the function
899 init_resource_info () was invoked before we are called. */
900
901 void
902 mark_target_live_regs (rtx_insn *insns, rtx target_maybe_return, struct resources *res)
903 {
904 int b = -1;
905 unsigned int i;
906 struct target_info *tinfo = NULL;
907 rtx_insn *insn;
908 rtx jump_target;
909 HARD_REG_SET scratch;
910 struct resources set, needed;
911
912 /* Handle end of function. */
913 if (target_maybe_return == 0 || ANY_RETURN_P (target_maybe_return))
914 {
915 *res = end_of_function_needs;
916 return;
917 }
918
919 /* We've handled the case of RETURN/SIMPLE_RETURN; we should now have an
920 instruction. */
921 rtx_insn *target = as_a <rtx_insn *> (target_maybe_return);
922
923 /* Handle return insn. */
924 if (return_insn_p (target))
925 {
926 *res = end_of_function_needs;
927 mark_referenced_resources (target, res, false);
928 return;
929 }
930
931 /* We have to assume memory is needed, but the CC isn't. */
932 res->memory = 1;
933 res->volatil = 0;
934 res->cc = 0;
935
936 /* See if we have computed this value already. */
937 if (target_hash_table != NULL)
938 {
939 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
940 tinfo; tinfo = tinfo->next)
941 if (tinfo->uid == INSN_UID (target))
942 break;
943
944 /* Start by getting the basic block number. If we have saved
945 information, we can get it from there unless the insn at the
946 start of the basic block has been deleted. */
947 if (tinfo && tinfo->block != -1
948 && ! BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, tinfo->block))->deleted ())
949 b = tinfo->block;
950 }
951
952 if (b == -1)
953 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
954
955 if (target_hash_table != NULL)
956 {
957 if (tinfo)
958 {
959 /* If the information is up-to-date, use it. Otherwise, we will
960 update it below. */
961 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
962 {
963 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
964 return;
965 }
966 }
967 else
968 {
969 /* Allocate a place to put our results and chain it into the
970 hash table. */
971 tinfo = XNEW (struct target_info);
972 tinfo->uid = INSN_UID (target);
973 tinfo->block = b;
974 tinfo->next
975 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
976 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
977 }
978 }
979
980 CLEAR_HARD_REG_SET (pending_dead_regs);
981
982 /* If we found a basic block, get the live registers from it and update
983 them with anything set or killed between its start and the insn before
984 TARGET; this custom life analysis is really about registers so we need
985 to use the LR problem. Otherwise, we must assume everything is live. */
986 if (b != -1)
987 {
988 regset regs_live = DF_LR_IN (BASIC_BLOCK_FOR_FN (cfun, b));
989 rtx_insn *start_insn, *stop_insn;
990 df_ref def;
991
992 /* Compute hard regs live at start of block. */
993 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
994 FOR_EACH_ARTIFICIAL_DEF (def, b)
995 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
996 SET_HARD_REG_BIT (current_live_regs, DF_REF_REGNO (def));
997
998 /* Get starting and ending insn, handling the case where each might
999 be a SEQUENCE. */
1000 start_insn = (b == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb->index ?
1001 insns : BB_HEAD (BASIC_BLOCK_FOR_FN (cfun, b)));
1002 stop_insn = target;
1003
1004 if (NONJUMP_INSN_P (start_insn)
1005 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
1006 start_insn = as_a <rtx_sequence *> (PATTERN (start_insn))->insn (0);
1007
1008 if (NONJUMP_INSN_P (stop_insn)
1009 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1010 stop_insn = next_insn (PREV_INSN (stop_insn));
1011
1012 for (insn = start_insn; insn != stop_insn;
1013 insn = next_insn_no_annul (insn))
1014 {
1015 rtx link;
1016 rtx_insn *real_insn = insn;
1017 enum rtx_code code = GET_CODE (insn);
1018
1019 if (DEBUG_INSN_P (insn))
1020 continue;
1021
1022 /* If this insn is from the target of a branch, it isn't going to
1023 be used in the sequel. If it is used in both cases, this
1024 test will not be true. */
1025 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1026 && INSN_FROM_TARGET_P (insn))
1027 continue;
1028
1029 /* If this insn is a USE made by update_block, we care about the
1030 underlying insn. */
1031 if (code == INSN
1032 && GET_CODE (PATTERN (insn)) == USE
1033 && INSN_P (XEXP (PATTERN (insn), 0)))
1034 real_insn = as_a <rtx_insn *> (XEXP (PATTERN (insn), 0));
1035
1036 if (CALL_P (real_insn))
1037 {
1038 /* Values in call-clobbered registers survive a COND_EXEC CALL
1039 if that is not executed; this matters for resoure use because
1040 they may be used by a complementarily (or more strictly)
1041 predicated instruction, or if the CALL is NORETURN. */
1042 if (GET_CODE (PATTERN (real_insn)) != COND_EXEC)
1043 {
1044 HARD_REG_SET regs_invalidated_by_this_call;
1045 get_call_reg_set_usage (real_insn,
1046 &regs_invalidated_by_this_call,
1047 regs_invalidated_by_call);
1048 /* CALL clobbers all call-used regs that aren't fixed except
1049 sp, ap, and fp. Do this before setting the result of the
1050 call live. */
1051 AND_COMPL_HARD_REG_SET (current_live_regs,
1052 regs_invalidated_by_this_call);
1053 }
1054
1055 /* A CALL_INSN sets any global register live, since it may
1056 have been modified by the call. */
1057 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1058 if (global_regs[i])
1059 SET_HARD_REG_BIT (current_live_regs, i);
1060 }
1061
1062 /* Mark anything killed in an insn to be deadened at the next
1063 label. Ignore USE insns; the only REG_DEAD notes will be for
1064 parameters. But they might be early. A CALL_INSN will usually
1065 clobber registers used for parameters. It isn't worth bothering
1066 with the unlikely case when it won't. */
1067 if ((NONJUMP_INSN_P (real_insn)
1068 && GET_CODE (PATTERN (real_insn)) != USE
1069 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1070 || JUMP_P (real_insn)
1071 || CALL_P (real_insn))
1072 {
1073 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1074 if (REG_NOTE_KIND (link) == REG_DEAD
1075 && REG_P (XEXP (link, 0))
1076 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1077 add_to_hard_reg_set (&pending_dead_regs,
1078 GET_MODE (XEXP (link, 0)),
1079 REGNO (XEXP (link, 0)));
1080
1081 note_stores (PATTERN (real_insn), update_live_status, NULL);
1082
1083 /* If any registers were unused after this insn, kill them.
1084 These notes will always be accurate. */
1085 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1086 if (REG_NOTE_KIND (link) == REG_UNUSED
1087 && REG_P (XEXP (link, 0))
1088 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1089 remove_from_hard_reg_set (&current_live_regs,
1090 GET_MODE (XEXP (link, 0)),
1091 REGNO (XEXP (link, 0)));
1092 }
1093
1094 else if (LABEL_P (real_insn))
1095 {
1096 basic_block bb;
1097
1098 /* A label clobbers the pending dead registers since neither
1099 reload nor jump will propagate a value across a label. */
1100 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1101 CLEAR_HARD_REG_SET (pending_dead_regs);
1102
1103 /* We must conservatively assume that all registers that used
1104 to be live here still are. The fallthrough edge may have
1105 left a live register uninitialized. */
1106 bb = BLOCK_FOR_INSN (real_insn);
1107 if (bb)
1108 {
1109 HARD_REG_SET extra_live;
1110
1111 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1112 IOR_HARD_REG_SET (current_live_regs, extra_live);
1113 }
1114 }
1115
1116 /* The beginning of the epilogue corresponds to the end of the
1117 RTL chain when there are no epilogue insns. Certain resources
1118 are implicitly required at that point. */
1119 else if (NOTE_P (real_insn)
1120 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1121 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1122 }
1123
1124 COPY_HARD_REG_SET (res->regs, current_live_regs);
1125 if (tinfo != NULL)
1126 {
1127 tinfo->block = b;
1128 tinfo->bb_tick = bb_ticks[b];
1129 }
1130 }
1131 else
1132 /* We didn't find the start of a basic block. Assume everything
1133 in use. This should happen only extremely rarely. */
1134 SET_HARD_REG_SET (res->regs);
1135
1136 CLEAR_RESOURCE (&set);
1137 CLEAR_RESOURCE (&needed);
1138
1139 rtx_insn *jump_insn = find_dead_or_set_registers (target, res, &jump_target,
1140 0, set, needed);
1141
1142 /* If we hit an unconditional branch, we have another way of finding out
1143 what is live: we can see what is live at the branch target and include
1144 anything used but not set before the branch. We add the live
1145 resources found using the test below to those found until now. */
1146
1147 if (jump_insn)
1148 {
1149 struct resources new_resources;
1150 rtx_insn *stop_insn = next_active_insn (jump_insn);
1151
1152 if (!ANY_RETURN_P (jump_target))
1153 jump_target = next_active_insn (as_a<rtx_insn *> (jump_target));
1154 mark_target_live_regs (insns, jump_target, &new_resources);
1155 CLEAR_RESOURCE (&set);
1156 CLEAR_RESOURCE (&needed);
1157
1158 /* Include JUMP_INSN in the needed registers. */
1159 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1160 {
1161 mark_referenced_resources (insn, &needed, true);
1162
1163 COPY_HARD_REG_SET (scratch, needed.regs);
1164 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1165 IOR_HARD_REG_SET (new_resources.regs, scratch);
1166
1167 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1168 }
1169
1170 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1171 }
1172
1173 if (tinfo != NULL)
1174 {
1175 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1176 }
1177 }
1178 \f
1179 /* Initialize the resources required by mark_target_live_regs ().
1180 This should be invoked before the first call to mark_target_live_regs. */
1181
1182 void
1183 init_resource_info (rtx_insn *epilogue_insn)
1184 {
1185 int i;
1186 basic_block bb;
1187
1188 /* Indicate what resources are required to be valid at the end of the current
1189 function. The condition code never is and memory always is.
1190 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1191 and there is an epilogue that restores the original stack pointer
1192 from the frame pointer. Registers used to return the function value
1193 are needed. Registers holding global variables are needed. */
1194
1195 end_of_function_needs.cc = 0;
1196 end_of_function_needs.memory = 1;
1197 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1198
1199 if (frame_pointer_needed)
1200 {
1201 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1202 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1203 SET_HARD_REG_BIT (end_of_function_needs.regs,
1204 HARD_FRAME_POINTER_REGNUM);
1205 }
1206 if (!(frame_pointer_needed
1207 && EXIT_IGNORE_STACK
1208 && epilogue_insn
1209 && !crtl->sp_is_unchanging))
1210 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1211
1212 if (crtl->return_rtx != 0)
1213 mark_referenced_resources (crtl->return_rtx,
1214 &end_of_function_needs, true);
1215
1216 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1217 if (global_regs[i] || EPILOGUE_USES (i))
1218 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1219
1220 /* The registers required to be live at the end of the function are
1221 represented in the flow information as being dead just prior to
1222 reaching the end of the function. For example, the return of a value
1223 might be represented by a USE of the return register immediately
1224 followed by an unconditional jump to the return label where the
1225 return label is the end of the RTL chain. The end of the RTL chain
1226 is then taken to mean that the return register is live.
1227
1228 This sequence is no longer maintained when epilogue instructions are
1229 added to the RTL chain. To reconstruct the original meaning, the
1230 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1231 point where these registers become live (start_of_epilogue_needs).
1232 If epilogue instructions are present, the registers set by those
1233 instructions won't have been processed by flow. Thus, those
1234 registers are additionally required at the end of the RTL chain
1235 (end_of_function_needs). */
1236
1237 start_of_epilogue_needs = end_of_function_needs;
1238
1239 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1240 {
1241 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1242 MARK_SRC_DEST_CALL);
1243 if (return_insn_p (epilogue_insn))
1244 break;
1245 }
1246
1247 /* Allocate and initialize the tables used by mark_target_live_regs. */
1248 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1249 bb_ticks = XCNEWVEC (int, last_basic_block_for_fn (cfun));
1250
1251 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1252 FOR_EACH_BB_FN (bb, cfun)
1253 if (LABEL_P (BB_HEAD (bb)))
1254 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1255 }
1256 \f
1257 /* Free up the resources allocated to mark_target_live_regs (). This
1258 should be invoked after the last call to mark_target_live_regs (). */
1259
1260 void
1261 free_resource_info (void)
1262 {
1263 basic_block bb;
1264
1265 if (target_hash_table != NULL)
1266 {
1267 int i;
1268
1269 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1270 {
1271 struct target_info *ti = target_hash_table[i];
1272
1273 while (ti)
1274 {
1275 struct target_info *next = ti->next;
1276 free (ti);
1277 ti = next;
1278 }
1279 }
1280
1281 free (target_hash_table);
1282 target_hash_table = NULL;
1283 }
1284
1285 if (bb_ticks != NULL)
1286 {
1287 free (bb_ticks);
1288 bb_ticks = NULL;
1289 }
1290
1291 FOR_EACH_BB_FN (bb, cfun)
1292 if (LABEL_P (BB_HEAD (bb)))
1293 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1294 }
1295 \f
1296 /* Clear any hashed information that we have stored for INSN. */
1297
1298 void
1299 clear_hashed_info_for_insn (rtx_insn *insn)
1300 {
1301 struct target_info *tinfo;
1302
1303 if (target_hash_table != NULL)
1304 {
1305 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1306 tinfo; tinfo = tinfo->next)
1307 if (tinfo->uid == INSN_UID (insn))
1308 break;
1309
1310 if (tinfo)
1311 tinfo->block = -1;
1312 }
1313 }
1314 \f
1315 /* Increment the tick count for the basic block that contains INSN. */
1316
1317 void
1318 incr_ticks_for_insn (rtx_insn *insn)
1319 {
1320 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1321
1322 if (b != -1)
1323 bb_ticks[b]++;
1324 }
1325 \f
1326 /* Add TRIAL to the set of resources used at the end of the current
1327 function. */
1328 void
1329 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1330 {
1331 mark_referenced_resources (trial, &end_of_function_needs,
1332 include_delayed_effects);
1333 }