predicates.md (input_operand): Do not consider TImode constants as 1-instruction...
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
38
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
43
44 struct target_info
45 {
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
51 };
52
53 #define TARGET_HASH_PRIME 257
54
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
57
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
60
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
63
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
68
69 static int *bb_ticks;
70
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
73
74 static HARD_REG_SET current_live_regs;
75
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
78
79 static HARD_REG_SET pending_dead_regs;
80 \f
81 static void update_live_status (rtx, const_rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
87 \f
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
90
91 static void
92 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93 {
94 int first_regno, last_regno;
95 int i;
96
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
100
101 if (GET_CODE (dest) == SUBREG)
102 {
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
105
106 }
107 else
108 {
109 first_regno = REGNO (dest);
110 last_regno = END_HARD_REGNO (dest);
111 }
112
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
118 {
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121 }
122 }
123
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
129
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
134
135 static int
136 find_basic_block (rtx insn, int search_limit)
137 {
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn = prev_nonnote_insn (insn);
141 insn && !BARRIER_P (insn) && search_limit != 0;
142 insn = prev_nonnote_insn (insn), --search_limit)
143 ;
144
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
148
149 /* The start of the function. */
150 else if (insn == 0)
151 return ENTRY_BLOCK_PTR->next_bb->index;
152
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
156 insn && LABEL_P (insn);
157 insn = next_nonnote_insn (insn))
158 if (BLOCK_FOR_INSN (insn))
159 return BLOCK_FOR_INSN (insn)->index;
160
161 return -1;
162 }
163 \f
164 /* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
166
167 static rtx
168 next_insn_no_annul (rtx insn)
169 {
170 if (insn)
171 {
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
174 if (JUMP_P (insn)
175 && INSN_ANNULLED_BRANCH_P (insn)
176 && NEXT_INSN (PREV_INSN (insn)) != insn)
177 {
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
180
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
183 {
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
187 }
188 }
189
190 insn = NEXT_INSN (insn);
191 if (insn && NONJUMP_INSN_P (insn)
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
194 }
195
196 return insn;
197 }
198 \f
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
203
204 void
205 mark_referenced_resources (rtx x, struct resources *res,
206 bool include_delayed_effects)
207 {
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
211 const char *format_ptr;
212
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
216 {
217 case CONST:
218 CASE_CONST_ANY:
219 case PC:
220 case SYMBOL_REF:
221 case LABEL_REF:
222 return;
223
224 case SUBREG:
225 if (!REG_P (SUBREG_REG (x)))
226 mark_referenced_resources (SUBREG_REG (x), res, false);
227 else
228 {
229 unsigned int regno = subreg_regno (x);
230 unsigned int last_regno = regno + subreg_nregs (x);
231
232 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
233 for (r = regno; r < last_regno; r++)
234 SET_HARD_REG_BIT (res->regs, r);
235 }
236 return;
237
238 case REG:
239 gcc_assert (HARD_REGISTER_P (x));
240 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
241 return;
242
243 case MEM:
244 /* If this memory shouldn't change, it really isn't referencing
245 memory. */
246 if (MEM_READONLY_P (x))
247 res->unch_memory = 1;
248 else
249 res->memory = 1;
250 res->volatil |= MEM_VOLATILE_P (x);
251
252 /* Mark registers used to access memory. */
253 mark_referenced_resources (XEXP (x, 0), res, false);
254 return;
255
256 case CC0:
257 res->cc = 1;
258 return;
259
260 case UNSPEC_VOLATILE:
261 case TRAP_IF:
262 case ASM_INPUT:
263 /* Traditional asm's are always volatile. */
264 res->volatil = 1;
265 break;
266
267 case ASM_OPERANDS:
268 res->volatil |= MEM_VOLATILE_P (x);
269
270 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
271 We can not just fall through here since then we would be confused
272 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
273 traditional asms unlike their normal usage. */
274
275 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
276 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
277 return;
278
279 case CALL:
280 /* The first operand will be a (MEM (xxx)) but doesn't really reference
281 memory. The second operand may be referenced, though. */
282 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
283 mark_referenced_resources (XEXP (x, 1), res, false);
284 return;
285
286 case SET:
287 /* Usually, the first operand of SET is set, not referenced. But
288 registers used to access memory are referenced. SET_DEST is
289 also referenced if it is a ZERO_EXTRACT. */
290
291 mark_referenced_resources (SET_SRC (x), res, false);
292
293 x = SET_DEST (x);
294 if (GET_CODE (x) == ZERO_EXTRACT
295 || GET_CODE (x) == STRICT_LOW_PART)
296 mark_referenced_resources (x, res, false);
297 else if (GET_CODE (x) == SUBREG)
298 x = SUBREG_REG (x);
299 if (MEM_P (x))
300 mark_referenced_resources (XEXP (x, 0), res, false);
301 return;
302
303 case CLOBBER:
304 return;
305
306 case CALL_INSN:
307 if (include_delayed_effects)
308 {
309 /* A CALL references memory, the frame pointer if it exists, the
310 stack pointer, any global registers and any registers given in
311 USE insns immediately in front of the CALL.
312
313 However, we may have moved some of the parameter loading insns
314 into the delay slot of this CALL. If so, the USE's for them
315 don't count and should be skipped. */
316 rtx insn = PREV_INSN (x);
317 rtx sequence = 0;
318 int seq_size = 0;
319 int i;
320
321 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
322 if (NEXT_INSN (insn) != x)
323 {
324 sequence = PATTERN (NEXT_INSN (insn));
325 seq_size = XVECLEN (sequence, 0);
326 gcc_assert (GET_CODE (sequence) == SEQUENCE);
327 }
328
329 res->memory = 1;
330 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
331 if (frame_pointer_needed)
332 {
333 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
334 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
335 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
336 #endif
337 }
338
339 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
340 if (global_regs[i])
341 SET_HARD_REG_BIT (res->regs, i);
342
343 /* Check for a REG_SETJMP. If it exists, then we must
344 assume that this call can need any register.
345
346 This is done to be more conservative about how we handle setjmp.
347 We assume that they both use and set all registers. Using all
348 registers ensures that a register will not be considered dead
349 just because it crosses a setjmp call. A register should be
350 considered dead only if the setjmp call returns nonzero. */
351 if (find_reg_note (x, REG_SETJMP, NULL))
352 SET_HARD_REG_SET (res->regs);
353
354 {
355 rtx link;
356
357 for (link = CALL_INSN_FUNCTION_USAGE (x);
358 link;
359 link = XEXP (link, 1))
360 if (GET_CODE (XEXP (link, 0)) == USE)
361 {
362 for (i = 1; i < seq_size; i++)
363 {
364 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
365 if (GET_CODE (slot_pat) == SET
366 && rtx_equal_p (SET_DEST (slot_pat),
367 XEXP (XEXP (link, 0), 0)))
368 break;
369 }
370 if (i >= seq_size)
371 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
372 res, false);
373 }
374 }
375 }
376
377 /* ... fall through to other INSN processing ... */
378
379 case INSN:
380 case JUMP_INSN:
381
382 #ifdef INSN_REFERENCES_ARE_DELAYED
383 if (! include_delayed_effects
384 && INSN_REFERENCES_ARE_DELAYED (x))
385 return;
386 #endif
387
388 /* No special processing, just speed up. */
389 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
390 return;
391
392 default:
393 break;
394 }
395
396 /* Process each sub-expression and flag what it needs. */
397 format_ptr = GET_RTX_FORMAT (code);
398 for (i = 0; i < GET_RTX_LENGTH (code); i++)
399 switch (*format_ptr++)
400 {
401 case 'e':
402 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
403 break;
404
405 case 'E':
406 for (j = 0; j < XVECLEN (x, i); j++)
407 mark_referenced_resources (XVECEXP (x, i, j), res,
408 include_delayed_effects);
409 break;
410 }
411 }
412 \f
413 /* A subroutine of mark_target_live_regs. Search forward from TARGET
414 looking for registers that are set before they are used. These are dead.
415 Stop after passing a few conditional jumps, and/or a small
416 number of unconditional branches. */
417
418 static rtx
419 find_dead_or_set_registers (rtx target, struct resources *res,
420 rtx *jump_target, int jump_count,
421 struct resources set, struct resources needed)
422 {
423 HARD_REG_SET scratch;
424 rtx insn, next;
425 rtx jump_insn = 0;
426 int i;
427
428 for (insn = target; insn; insn = next)
429 {
430 rtx this_jump_insn = insn;
431
432 next = NEXT_INSN (insn);
433
434 /* If this instruction can throw an exception, then we don't
435 know where we might end up next. That means that we have to
436 assume that whatever we have already marked as live really is
437 live. */
438 if (can_throw_internal (insn))
439 break;
440
441 switch (GET_CODE (insn))
442 {
443 case CODE_LABEL:
444 /* After a label, any pending dead registers that weren't yet
445 used can be made dead. */
446 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
447 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
448 CLEAR_HARD_REG_SET (pending_dead_regs);
449
450 continue;
451
452 case BARRIER:
453 case NOTE:
454 continue;
455
456 case INSN:
457 if (GET_CODE (PATTERN (insn)) == USE)
458 {
459 /* If INSN is a USE made by update_block, we care about the
460 underlying insn. Any registers set by the underlying insn
461 are live since the insn is being done somewhere else. */
462 if (INSN_P (XEXP (PATTERN (insn), 0)))
463 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
464 MARK_SRC_DEST_CALL);
465
466 /* All other USE insns are to be ignored. */
467 continue;
468 }
469 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
470 continue;
471 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
472 {
473 /* An unconditional jump can be used to fill the delay slot
474 of a call, so search for a JUMP_INSN in any position. */
475 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
476 {
477 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
478 if (JUMP_P (this_jump_insn))
479 break;
480 }
481 }
482
483 default:
484 break;
485 }
486
487 if (JUMP_P (this_jump_insn))
488 {
489 if (jump_count++ < 10)
490 {
491 if (any_uncondjump_p (this_jump_insn)
492 || ANY_RETURN_P (PATTERN (this_jump_insn)))
493 {
494 next = JUMP_LABEL (this_jump_insn);
495 if (ANY_RETURN_P (next))
496 next = NULL_RTX;
497 if (jump_insn == 0)
498 {
499 jump_insn = insn;
500 if (jump_target)
501 *jump_target = JUMP_LABEL (this_jump_insn);
502 }
503 }
504 else if (any_condjump_p (this_jump_insn))
505 {
506 struct resources target_set, target_res;
507 struct resources fallthrough_res;
508
509 /* We can handle conditional branches here by following
510 both paths, and then IOR the results of the two paths
511 together, which will give us registers that are dead
512 on both paths. Since this is expensive, we give it
513 a much higher cost than unconditional branches. The
514 cost was chosen so that we will follow at most 1
515 conditional branch. */
516
517 jump_count += 4;
518 if (jump_count >= 10)
519 break;
520
521 mark_referenced_resources (insn, &needed, true);
522
523 /* For an annulled branch, mark_set_resources ignores slots
524 filled by instructions from the target. This is correct
525 if the branch is not taken. Since we are following both
526 paths from the branch, we must also compute correct info
527 if the branch is taken. We do this by inverting all of
528 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
529 and then inverting the INSN_FROM_TARGET_P bits again. */
530
531 if (GET_CODE (PATTERN (insn)) == SEQUENCE
532 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
533 {
534 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
535 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
536 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
537
538 target_set = set;
539 mark_set_resources (insn, &target_set, 0,
540 MARK_SRC_DEST_CALL);
541
542 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
543 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
544 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
545
546 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
547 }
548 else
549 {
550 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
551 target_set = set;
552 }
553
554 target_res = *res;
555 COPY_HARD_REG_SET (scratch, target_set.regs);
556 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
557 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
558
559 fallthrough_res = *res;
560 COPY_HARD_REG_SET (scratch, set.regs);
561 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
562 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
563
564 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
565 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
566 &target_res, 0, jump_count,
567 target_set, needed);
568 find_dead_or_set_registers (next,
569 &fallthrough_res, 0, jump_count,
570 set, needed);
571 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
572 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
573 break;
574 }
575 else
576 break;
577 }
578 else
579 {
580 /* Don't try this optimization if we expired our jump count
581 above, since that would mean there may be an infinite loop
582 in the function being compiled. */
583 jump_insn = 0;
584 break;
585 }
586 }
587
588 mark_referenced_resources (insn, &needed, true);
589 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
590
591 COPY_HARD_REG_SET (scratch, set.regs);
592 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
593 AND_COMPL_HARD_REG_SET (res->regs, scratch);
594 }
595
596 return jump_insn;
597 }
598 \f
599 /* Given X, a part of an insn, and a pointer to a `struct resource',
600 RES, indicate which resources are modified by the insn. If
601 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
602 set by the called routine.
603
604 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
605 objects are being referenced instead of set.
606
607 We never mark the insn as modifying the condition code unless it explicitly
608 SETs CC0 even though this is not totally correct. The reason for this is
609 that we require a SET of CC0 to immediately precede the reference to CC0.
610 So if some other insn sets CC0 as a side-effect, we know it cannot affect
611 our computation and thus may be placed in a delay slot. */
612
613 void
614 mark_set_resources (rtx x, struct resources *res, int in_dest,
615 enum mark_resource_type mark_type)
616 {
617 enum rtx_code code;
618 int i, j;
619 unsigned int r;
620 const char *format_ptr;
621
622 restart:
623
624 code = GET_CODE (x);
625
626 switch (code)
627 {
628 case NOTE:
629 case BARRIER:
630 case CODE_LABEL:
631 case USE:
632 CASE_CONST_ANY:
633 case LABEL_REF:
634 case SYMBOL_REF:
635 case CONST:
636 case PC:
637 /* These don't set any resources. */
638 return;
639
640 case CC0:
641 if (in_dest)
642 res->cc = 1;
643 return;
644
645 case CALL_INSN:
646 /* Called routine modifies the condition code, memory, any registers
647 that aren't saved across calls, global registers and anything
648 explicitly CLOBBERed immediately after the CALL_INSN. */
649
650 if (mark_type == MARK_SRC_DEST_CALL)
651 {
652 rtx link;
653
654 res->cc = res->memory = 1;
655
656 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
657
658 for (link = CALL_INSN_FUNCTION_USAGE (x);
659 link; link = XEXP (link, 1))
660 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
661 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
662 MARK_SRC_DEST);
663
664 /* Check for a REG_SETJMP. If it exists, then we must
665 assume that this call can clobber any register. */
666 if (find_reg_note (x, REG_SETJMP, NULL))
667 SET_HARD_REG_SET (res->regs);
668 }
669
670 /* ... and also what its RTL says it modifies, if anything. */
671
672 case JUMP_INSN:
673 case INSN:
674
675 /* An insn consisting of just a CLOBBER (or USE) is just for flow
676 and doesn't actually do anything, so we ignore it. */
677
678 #ifdef INSN_SETS_ARE_DELAYED
679 if (mark_type != MARK_SRC_DEST_CALL
680 && INSN_SETS_ARE_DELAYED (x))
681 return;
682 #endif
683
684 x = PATTERN (x);
685 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
686 goto restart;
687 return;
688
689 case SET:
690 /* If the source of a SET is a CALL, this is actually done by
691 the called routine. So only include it if we are to include the
692 effects of the calling routine. */
693
694 mark_set_resources (SET_DEST (x), res,
695 (mark_type == MARK_SRC_DEST_CALL
696 || GET_CODE (SET_SRC (x)) != CALL),
697 mark_type);
698
699 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
700 return;
701
702 case CLOBBER:
703 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
704 return;
705
706 case SEQUENCE:
707 {
708 rtx control = XVECEXP (x, 0, 0);
709 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
710
711 mark_set_resources (control, res, 0, mark_type);
712 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
713 {
714 rtx elt = XVECEXP (x, 0, i);
715 if (!annul_p && INSN_FROM_TARGET_P (elt))
716 mark_set_resources (elt, res, 0, mark_type);
717 }
718 }
719 return;
720
721 case POST_INC:
722 case PRE_INC:
723 case POST_DEC:
724 case PRE_DEC:
725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726 return;
727
728 case PRE_MODIFY:
729 case POST_MODIFY:
730 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
731 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
732 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
733 return;
734
735 case SIGN_EXTRACT:
736 case ZERO_EXTRACT:
737 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
738 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
739 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
740 return;
741
742 case MEM:
743 if (in_dest)
744 {
745 res->memory = 1;
746 res->unch_memory |= MEM_READONLY_P (x);
747 res->volatil |= MEM_VOLATILE_P (x);
748 }
749
750 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
751 return;
752
753 case SUBREG:
754 if (in_dest)
755 {
756 if (!REG_P (SUBREG_REG (x)))
757 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
758 else
759 {
760 unsigned int regno = subreg_regno (x);
761 unsigned int last_regno = regno + subreg_nregs (x);
762
763 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
764 for (r = regno; r < last_regno; r++)
765 SET_HARD_REG_BIT (res->regs, r);
766 }
767 }
768 return;
769
770 case REG:
771 if (in_dest)
772 {
773 gcc_assert (HARD_REGISTER_P (x));
774 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
775 }
776 return;
777
778 case UNSPEC_VOLATILE:
779 case ASM_INPUT:
780 /* Traditional asm's are always volatile. */
781 res->volatil = 1;
782 return;
783
784 case TRAP_IF:
785 res->volatil = 1;
786 break;
787
788 case ASM_OPERANDS:
789 res->volatil |= MEM_VOLATILE_P (x);
790
791 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
792 We can not just fall through here since then we would be confused
793 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
794 traditional asms unlike their normal usage. */
795
796 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
797 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
798 MARK_SRC_DEST);
799 return;
800
801 default:
802 break;
803 }
804
805 /* Process each sub-expression and flag what it needs. */
806 format_ptr = GET_RTX_FORMAT (code);
807 for (i = 0; i < GET_RTX_LENGTH (code); i++)
808 switch (*format_ptr++)
809 {
810 case 'e':
811 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
812 break;
813
814 case 'E':
815 for (j = 0; j < XVECLEN (x, i); j++)
816 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
817 break;
818 }
819 }
820 \f
821 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
822
823 static bool
824 return_insn_p (const_rtx insn)
825 {
826 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
827 return true;
828
829 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
830 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
831
832 return false;
833 }
834
835 /* Set the resources that are live at TARGET.
836
837 If TARGET is zero, we refer to the end of the current function and can
838 return our precomputed value.
839
840 Otherwise, we try to find out what is live by consulting the basic block
841 information. This is tricky, because we must consider the actions of
842 reload and jump optimization, which occur after the basic block information
843 has been computed.
844
845 Accordingly, we proceed as follows::
846
847 We find the previous BARRIER and look at all immediately following labels
848 (with no intervening active insns) to see if any of them start a basic
849 block. If we hit the start of the function first, we use block 0.
850
851 Once we have found a basic block and a corresponding first insn, we can
852 accurately compute the live status (by starting at a label following a
853 BARRIER, we are immune to actions taken by reload and jump.) Then we
854 scan all insns between that point and our target. For each CLOBBER (or
855 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
856 registers are dead. For a SET, mark them as live.
857
858 We have to be careful when using REG_DEAD notes because they are not
859 updated by such things as find_equiv_reg. So keep track of registers
860 marked as dead that haven't been assigned to, and mark them dead at the
861 next CODE_LABEL since reload and jump won't propagate values across labels.
862
863 If we cannot find the start of a basic block (should be a very rare
864 case, if it can happen at all), mark everything as potentially live.
865
866 Next, scan forward from TARGET looking for things set or clobbered
867 before they are used. These are not live.
868
869 Because we can be called many times on the same target, save our results
870 in a hash table indexed by INSN_UID. This is only done if the function
871 init_resource_info () was invoked before we are called. */
872
873 void
874 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
875 {
876 int b = -1;
877 unsigned int i;
878 struct target_info *tinfo = NULL;
879 rtx insn;
880 rtx jump_insn = 0;
881 rtx jump_target;
882 HARD_REG_SET scratch;
883 struct resources set, needed;
884
885 /* Handle end of function. */
886 if (target == 0 || ANY_RETURN_P (target))
887 {
888 *res = end_of_function_needs;
889 return;
890 }
891
892 /* Handle return insn. */
893 else if (return_insn_p (target))
894 {
895 *res = end_of_function_needs;
896 mark_referenced_resources (target, res, false);
897 return;
898 }
899
900 /* We have to assume memory is needed, but the CC isn't. */
901 res->memory = 1;
902 res->volatil = res->unch_memory = 0;
903 res->cc = 0;
904
905 /* See if we have computed this value already. */
906 if (target_hash_table != NULL)
907 {
908 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
909 tinfo; tinfo = tinfo->next)
910 if (tinfo->uid == INSN_UID (target))
911 break;
912
913 /* Start by getting the basic block number. If we have saved
914 information, we can get it from there unless the insn at the
915 start of the basic block has been deleted. */
916 if (tinfo && tinfo->block != -1
917 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
918 b = tinfo->block;
919 }
920
921 if (b == -1)
922 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
923
924 if (target_hash_table != NULL)
925 {
926 if (tinfo)
927 {
928 /* If the information is up-to-date, use it. Otherwise, we will
929 update it below. */
930 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
931 {
932 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
933 return;
934 }
935 }
936 else
937 {
938 /* Allocate a place to put our results and chain it into the
939 hash table. */
940 tinfo = XNEW (struct target_info);
941 tinfo->uid = INSN_UID (target);
942 tinfo->block = b;
943 tinfo->next
944 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
945 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
946 }
947 }
948
949 CLEAR_HARD_REG_SET (pending_dead_regs);
950
951 /* If we found a basic block, get the live registers from it and update
952 them with anything set or killed between its start and the insn before
953 TARGET; this custom life analysis is really about registers so we need
954 to use the LR problem. Otherwise, we must assume everything is live. */
955 if (b != -1)
956 {
957 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
958 rtx start_insn, stop_insn;
959
960 /* Compute hard regs live at start of block. */
961 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
962
963 /* Get starting and ending insn, handling the case where each might
964 be a SEQUENCE. */
965 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
966 insns : BB_HEAD (BASIC_BLOCK (b)));
967 stop_insn = target;
968
969 if (NONJUMP_INSN_P (start_insn)
970 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
971 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
972
973 if (NONJUMP_INSN_P (stop_insn)
974 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
975 stop_insn = next_insn (PREV_INSN (stop_insn));
976
977 for (insn = start_insn; insn != stop_insn;
978 insn = next_insn_no_annul (insn))
979 {
980 rtx link;
981 rtx real_insn = insn;
982 enum rtx_code code = GET_CODE (insn);
983
984 if (DEBUG_INSN_P (insn))
985 continue;
986
987 /* If this insn is from the target of a branch, it isn't going to
988 be used in the sequel. If it is used in both cases, this
989 test will not be true. */
990 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
991 && INSN_FROM_TARGET_P (insn))
992 continue;
993
994 /* If this insn is a USE made by update_block, we care about the
995 underlying insn. */
996 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
997 && INSN_P (XEXP (PATTERN (insn), 0)))
998 real_insn = XEXP (PATTERN (insn), 0);
999
1000 if (CALL_P (real_insn))
1001 {
1002 /* CALL clobbers all call-used regs that aren't fixed except
1003 sp, ap, and fp. Do this before setting the result of the
1004 call live. */
1005 AND_COMPL_HARD_REG_SET (current_live_regs,
1006 regs_invalidated_by_call);
1007
1008 /* A CALL_INSN sets any global register live, since it may
1009 have been modified by the call. */
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (global_regs[i])
1012 SET_HARD_REG_BIT (current_live_regs, i);
1013 }
1014
1015 /* Mark anything killed in an insn to be deadened at the next
1016 label. Ignore USE insns; the only REG_DEAD notes will be for
1017 parameters. But they might be early. A CALL_INSN will usually
1018 clobber registers used for parameters. It isn't worth bothering
1019 with the unlikely case when it won't. */
1020 if ((NONJUMP_INSN_P (real_insn)
1021 && GET_CODE (PATTERN (real_insn)) != USE
1022 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1023 || JUMP_P (real_insn)
1024 || CALL_P (real_insn))
1025 {
1026 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1027 if (REG_NOTE_KIND (link) == REG_DEAD
1028 && REG_P (XEXP (link, 0))
1029 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1030 add_to_hard_reg_set (&pending_dead_regs,
1031 GET_MODE (XEXP (link, 0)),
1032 REGNO (XEXP (link, 0)));
1033
1034 note_stores (PATTERN (real_insn), update_live_status, NULL);
1035
1036 /* If any registers were unused after this insn, kill them.
1037 These notes will always be accurate. */
1038 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1039 if (REG_NOTE_KIND (link) == REG_UNUSED
1040 && REG_P (XEXP (link, 0))
1041 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1042 remove_from_hard_reg_set (&current_live_regs,
1043 GET_MODE (XEXP (link, 0)),
1044 REGNO (XEXP (link, 0)));
1045 }
1046
1047 else if (LABEL_P (real_insn))
1048 {
1049 basic_block bb;
1050
1051 /* A label clobbers the pending dead registers since neither
1052 reload nor jump will propagate a value across a label. */
1053 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1054 CLEAR_HARD_REG_SET (pending_dead_regs);
1055
1056 /* We must conservatively assume that all registers that used
1057 to be live here still are. The fallthrough edge may have
1058 left a live register uninitialized. */
1059 bb = BLOCK_FOR_INSN (real_insn);
1060 if (bb)
1061 {
1062 HARD_REG_SET extra_live;
1063
1064 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1065 IOR_HARD_REG_SET (current_live_regs, extra_live);
1066 }
1067 }
1068
1069 /* The beginning of the epilogue corresponds to the end of the
1070 RTL chain when there are no epilogue insns. Certain resources
1071 are implicitly required at that point. */
1072 else if (NOTE_P (real_insn)
1073 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1074 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1075 }
1076
1077 COPY_HARD_REG_SET (res->regs, current_live_regs);
1078 if (tinfo != NULL)
1079 {
1080 tinfo->block = b;
1081 tinfo->bb_tick = bb_ticks[b];
1082 }
1083 }
1084 else
1085 /* We didn't find the start of a basic block. Assume everything
1086 in use. This should happen only extremely rarely. */
1087 SET_HARD_REG_SET (res->regs);
1088
1089 CLEAR_RESOURCE (&set);
1090 CLEAR_RESOURCE (&needed);
1091
1092 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1093 set, needed);
1094
1095 /* If we hit an unconditional branch, we have another way of finding out
1096 what is live: we can see what is live at the branch target and include
1097 anything used but not set before the branch. We add the live
1098 resources found using the test below to those found until now. */
1099
1100 if (jump_insn)
1101 {
1102 struct resources new_resources;
1103 rtx stop_insn = next_active_insn (jump_insn);
1104
1105 if (!ANY_RETURN_P (jump_target))
1106 jump_target = next_active_insn (jump_target);
1107 mark_target_live_regs (insns, jump_target, &new_resources);
1108 CLEAR_RESOURCE (&set);
1109 CLEAR_RESOURCE (&needed);
1110
1111 /* Include JUMP_INSN in the needed registers. */
1112 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1113 {
1114 mark_referenced_resources (insn, &needed, true);
1115
1116 COPY_HARD_REG_SET (scratch, needed.regs);
1117 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1118 IOR_HARD_REG_SET (new_resources.regs, scratch);
1119
1120 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1121 }
1122
1123 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1124 }
1125
1126 if (tinfo != NULL)
1127 {
1128 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1129 }
1130 }
1131 \f
1132 /* Initialize the resources required by mark_target_live_regs ().
1133 This should be invoked before the first call to mark_target_live_regs. */
1134
1135 void
1136 init_resource_info (rtx epilogue_insn)
1137 {
1138 int i;
1139 basic_block bb;
1140
1141 /* Indicate what resources are required to be valid at the end of the current
1142 function. The condition code never is and memory always is.
1143 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1144 and there is an epilogue that restores the original stack pointer
1145 from the frame pointer. Registers used to return the function value
1146 are needed. Registers holding global variables are needed. */
1147
1148 end_of_function_needs.cc = 0;
1149 end_of_function_needs.memory = 1;
1150 end_of_function_needs.unch_memory = 0;
1151 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1152
1153 if (frame_pointer_needed)
1154 {
1155 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1156 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1157 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1158 #endif
1159 }
1160 if (!(frame_pointer_needed
1161 && EXIT_IGNORE_STACK
1162 && epilogue_insn
1163 && !crtl->sp_is_unchanging))
1164 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1165
1166 if (crtl->return_rtx != 0)
1167 mark_referenced_resources (crtl->return_rtx,
1168 &end_of_function_needs, true);
1169
1170 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1171 if (global_regs[i]
1172 #ifdef EPILOGUE_USES
1173 || EPILOGUE_USES (i)
1174 #endif
1175 )
1176 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1177
1178 /* The registers required to be live at the end of the function are
1179 represented in the flow information as being dead just prior to
1180 reaching the end of the function. For example, the return of a value
1181 might be represented by a USE of the return register immediately
1182 followed by an unconditional jump to the return label where the
1183 return label is the end of the RTL chain. The end of the RTL chain
1184 is then taken to mean that the return register is live.
1185
1186 This sequence is no longer maintained when epilogue instructions are
1187 added to the RTL chain. To reconstruct the original meaning, the
1188 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1189 point where these registers become live (start_of_epilogue_needs).
1190 If epilogue instructions are present, the registers set by those
1191 instructions won't have been processed by flow. Thus, those
1192 registers are additionally required at the end of the RTL chain
1193 (end_of_function_needs). */
1194
1195 start_of_epilogue_needs = end_of_function_needs;
1196
1197 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1198 {
1199 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1200 MARK_SRC_DEST_CALL);
1201 if (return_insn_p (epilogue_insn))
1202 break;
1203 }
1204
1205 /* Allocate and initialize the tables used by mark_target_live_regs. */
1206 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1207 bb_ticks = XCNEWVEC (int, last_basic_block);
1208
1209 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1210 FOR_EACH_BB (bb)
1211 if (LABEL_P (BB_HEAD (bb)))
1212 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1213 }
1214 \f
1215 /* Free up the resources allocated to mark_target_live_regs (). This
1216 should be invoked after the last call to mark_target_live_regs (). */
1217
1218 void
1219 free_resource_info (void)
1220 {
1221 basic_block bb;
1222
1223 if (target_hash_table != NULL)
1224 {
1225 int i;
1226
1227 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1228 {
1229 struct target_info *ti = target_hash_table[i];
1230
1231 while (ti)
1232 {
1233 struct target_info *next = ti->next;
1234 free (ti);
1235 ti = next;
1236 }
1237 }
1238
1239 free (target_hash_table);
1240 target_hash_table = NULL;
1241 }
1242
1243 if (bb_ticks != NULL)
1244 {
1245 free (bb_ticks);
1246 bb_ticks = NULL;
1247 }
1248
1249 FOR_EACH_BB (bb)
1250 if (LABEL_P (BB_HEAD (bb)))
1251 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1252 }
1253 \f
1254 /* Clear any hashed information that we have stored for INSN. */
1255
1256 void
1257 clear_hashed_info_for_insn (rtx insn)
1258 {
1259 struct target_info *tinfo;
1260
1261 if (target_hash_table != NULL)
1262 {
1263 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1264 tinfo; tinfo = tinfo->next)
1265 if (tinfo->uid == INSN_UID (insn))
1266 break;
1267
1268 if (tinfo)
1269 tinfo->block = -1;
1270 }
1271 }
1272 \f
1273 /* Increment the tick count for the basic block that contains INSN. */
1274
1275 void
1276 incr_ticks_for_insn (rtx insn)
1277 {
1278 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1279
1280 if (b != -1)
1281 bb_ticks[b]++;
1282 }
1283 \f
1284 /* Add TRIAL to the set of resources used at the end of the current
1285 function. */
1286 void
1287 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1288 {
1289 mark_referenced_resources (trial, &end_of_function_needs,
1290 include_delayed_effects);
1291 }