* config/alpha/x-vms (version): Change "." to "_".
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 2, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "toplev.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "flags.h"
31 #include "output.h"
32 #include "resource.h"
33 #include "except.h"
34 #include "insn-attr.h"
35 #include "params.h"
36
37 /* This structure is used to record liveness information at the targets or
38 fallthrough insns of branches. We will most likely need the information
39 at targets again, so save them in a hash table rather than recomputing them
40 each time. */
41
42 struct target_info
43 {
44 int uid; /* INSN_UID of target. */
45 struct target_info *next; /* Next info for same hash bucket. */
46 HARD_REG_SET live_regs; /* Registers live at target. */
47 int block; /* Basic block number containing target. */
48 int bb_tick; /* Generation count of basic block info. */
49 };
50
51 #define TARGET_HASH_PRIME 257
52
53 /* Indicates what resources are required at the beginning of the epilogue. */
54 static struct resources start_of_epilogue_needs;
55
56 /* Indicates what resources are required at function end. */
57 static struct resources end_of_function_needs;
58
59 /* Define the hash table itself. */
60 static struct target_info **target_hash_table = NULL;
61
62 /* For each basic block, we maintain a generation number of its basic
63 block info, which is updated each time we move an insn from the
64 target of a jump. This is the generation number indexed by block
65 number. */
66
67 static int *bb_ticks;
68
69 /* Marks registers possibly live at the current place being scanned by
70 mark_target_live_regs. Also used by update_live_status. */
71
72 static HARD_REG_SET current_live_regs;
73
74 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
75 Also only used by the next two functions. */
76
77 static HARD_REG_SET pending_dead_regs;
78 \f
79 static void update_live_status PARAMS ((rtx, rtx, void *));
80 static int find_basic_block PARAMS ((rtx, int));
81 static rtx next_insn_no_annul PARAMS ((rtx));
82 static rtx find_dead_or_set_registers PARAMS ((rtx, struct resources*,
83 rtx*, int, struct resources,
84 struct resources));
85 \f
86 /* Utility function called from mark_target_live_regs via note_stores.
87 It deadens any CLOBBERed registers and livens any SET registers. */
88
89 static void
90 update_live_status (dest, x, data)
91 rtx dest;
92 rtx x;
93 void *data ATTRIBUTE_UNUSED;
94 {
95 int first_regno, last_regno;
96 int i;
97
98 if (GET_CODE (dest) != REG
99 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
100 return;
101
102 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 else
105 first_regno = REGNO (dest);
106
107 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
108
109 if (GET_CODE (x) == CLOBBER)
110 for (i = first_regno; i < last_regno; i++)
111 CLEAR_HARD_REG_BIT (current_live_regs, i);
112 else
113 for (i = first_regno; i < last_regno; i++)
114 {
115 SET_HARD_REG_BIT (current_live_regs, i);
116 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
117 }
118 }
119
120 /* Find the number of the basic block with correct live register
121 information that starts closest to INSN. Return -1 if we couldn't
122 find such a basic block or the beginning is more than
123 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
124 an unlimited search.
125
126 The delay slot filling code destroys the control-flow graph so,
127 instead of finding the basic block containing INSN, we search
128 backwards toward a BARRIER where the live register information is
129 correct. */
130
131 static int
132 find_basic_block (insn, search_limit)
133 rtx insn;
134 int search_limit;
135 {
136 int i;
137
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn = prev_nonnote_insn (insn);
141 insn && GET_CODE (insn) != BARRIER && search_limit != 0;
142 insn = prev_nonnote_insn (insn), --search_limit)
143 ;
144
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
148
149 /* The start of the function is basic block zero. */
150 else if (insn == 0)
151 return 0;
152
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
156 insn && GET_CODE (insn) == CODE_LABEL;
157 insn = next_nonnote_insn (insn))
158 {
159 for (i = 0; i < n_basic_blocks; i++)
160 if (insn == BLOCK_HEAD (i))
161 return i;
162 }
163
164 return -1;
165 }
166 \f
167 /* Similar to next_insn, but ignores insns in the delay slots of
168 an annulled branch. */
169
170 static rtx
171 next_insn_no_annul (insn)
172 rtx insn;
173 {
174 if (insn)
175 {
176 /* If INSN is an annulled branch, skip any insns from the target
177 of the branch. */
178 if (INSN_ANNULLED_BRANCH_P (insn)
179 && NEXT_INSN (PREV_INSN (insn)) != insn)
180 while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
181 insn = NEXT_INSN (insn);
182
183 insn = NEXT_INSN (insn);
184 if (insn && GET_CODE (insn) == INSN
185 && GET_CODE (PATTERN (insn)) == SEQUENCE)
186 insn = XVECEXP (PATTERN (insn), 0, 0);
187 }
188
189 return insn;
190 }
191 \f
192 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
193 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
194 is TRUE, resources used by the called routine will be included for
195 CALL_INSNs. */
196
197 void
198 mark_referenced_resources (x, res, include_delayed_effects)
199 rtx x;
200 struct resources *res;
201 int include_delayed_effects;
202 {
203 enum rtx_code code = GET_CODE (x);
204 int i, j;
205 unsigned int r;
206 const char *format_ptr;
207
208 /* Handle leaf items for which we set resource flags. Also, special-case
209 CALL, SET and CLOBBER operators. */
210 switch (code)
211 {
212 case CONST:
213 case CONST_INT:
214 case CONST_DOUBLE:
215 case PC:
216 case SYMBOL_REF:
217 case LABEL_REF:
218 return;
219
220 case SUBREG:
221 if (GET_CODE (SUBREG_REG (x)) != REG)
222 mark_referenced_resources (SUBREG_REG (x), res, 0);
223 else
224 {
225 unsigned int regno = subreg_regno (x);
226 unsigned int last_regno
227 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
228
229 if (last_regno > FIRST_PSEUDO_REGISTER)
230 abort ();
231 for (r = regno; r < last_regno; r++)
232 SET_HARD_REG_BIT (res->regs, r);
233 }
234 return;
235
236 case REG:
237 {
238 unsigned int regno = REGNO (x);
239 unsigned int last_regno
240 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
241
242 if (last_regno > FIRST_PSEUDO_REGISTER)
243 abort ();
244 for (r = regno; r < last_regno; r++)
245 SET_HARD_REG_BIT (res->regs, r);
246 }
247 return;
248
249 case MEM:
250 /* If this memory shouldn't change, it really isn't referencing
251 memory. */
252 if (RTX_UNCHANGING_P (x))
253 res->unch_memory = 1;
254 else
255 res->memory = 1;
256 res->volatil |= MEM_VOLATILE_P (x);
257
258 /* Mark registers used to access memory. */
259 mark_referenced_resources (XEXP (x, 0), res, 0);
260 return;
261
262 case CC0:
263 res->cc = 1;
264 return;
265
266 case UNSPEC_VOLATILE:
267 case ASM_INPUT:
268 /* Traditional asm's are always volatile. */
269 res->volatil = 1;
270 return;
271
272 case TRAP_IF:
273 res->volatil = 1;
274 break;
275
276 case ASM_OPERANDS:
277 res->volatil |= MEM_VOLATILE_P (x);
278
279 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
280 We can not just fall through here since then we would be confused
281 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
282 traditional asms unlike their normal usage. */
283
284 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
285 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
286 return;
287
288 case CALL:
289 /* The first operand will be a (MEM (xxx)) but doesn't really reference
290 memory. The second operand may be referenced, though. */
291 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
292 mark_referenced_resources (XEXP (x, 1), res, 0);
293 return;
294
295 case SET:
296 /* Usually, the first operand of SET is set, not referenced. But
297 registers used to access memory are referenced. SET_DEST is
298 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
299
300 mark_referenced_resources (SET_SRC (x), res, 0);
301
302 x = SET_DEST (x);
303 if (GET_CODE (x) == SIGN_EXTRACT
304 || GET_CODE (x) == ZERO_EXTRACT
305 || GET_CODE (x) == STRICT_LOW_PART)
306 mark_referenced_resources (x, res, 0);
307 else if (GET_CODE (x) == SUBREG)
308 x = SUBREG_REG (x);
309 if (GET_CODE (x) == MEM)
310 mark_referenced_resources (XEXP (x, 0), res, 0);
311 return;
312
313 case CLOBBER:
314 return;
315
316 case CALL_INSN:
317 if (include_delayed_effects)
318 {
319 /* A CALL references memory, the frame pointer if it exists, the
320 stack pointer, any global registers and any registers given in
321 USE insns immediately in front of the CALL.
322
323 However, we may have moved some of the parameter loading insns
324 into the delay slot of this CALL. If so, the USE's for them
325 don't count and should be skipped. */
326 rtx insn = PREV_INSN (x);
327 rtx sequence = 0;
328 int seq_size = 0;
329 int i;
330
331 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
332 if (NEXT_INSN (insn) != x)
333 {
334 sequence = PATTERN (NEXT_INSN (insn));
335 seq_size = XVECLEN (sequence, 0);
336 if (GET_CODE (sequence) != SEQUENCE)
337 abort ();
338 }
339
340 res->memory = 1;
341 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
342 if (frame_pointer_needed)
343 {
344 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
345 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
346 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
347 #endif
348 }
349
350 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
351 if (global_regs[i])
352 SET_HARD_REG_BIT (res->regs, i);
353
354 /* Check for a REG_SETJMP. If it exists, then we must
355 assume that this call can need any register.
356
357 This is done to be more conservative about how we handle setjmp.
358 We assume that they both use and set all registers. Using all
359 registers ensures that a register will not be considered dead
360 just because it crosses a setjmp call. A register should be
361 considered dead only if the setjmp call returns non-zero. */
362 if (find_reg_note (x, REG_SETJMP, NULL))
363 SET_HARD_REG_SET (res->regs);
364
365 {
366 rtx link;
367
368 for (link = CALL_INSN_FUNCTION_USAGE (x);
369 link;
370 link = XEXP (link, 1))
371 if (GET_CODE (XEXP (link, 0)) == USE)
372 {
373 for (i = 1; i < seq_size; i++)
374 {
375 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
376 if (GET_CODE (slot_pat) == SET
377 && rtx_equal_p (SET_DEST (slot_pat),
378 XEXP (XEXP (link, 0), 0)))
379 break;
380 }
381 if (i >= seq_size)
382 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
383 res, 0);
384 }
385 }
386 }
387
388 /* ... fall through to other INSN processing ... */
389
390 case INSN:
391 case JUMP_INSN:
392
393 #ifdef INSN_REFERENCES_ARE_DELAYED
394 if (! include_delayed_effects
395 && INSN_REFERENCES_ARE_DELAYED (x))
396 return;
397 #endif
398
399 /* No special processing, just speed up. */
400 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
401 return;
402
403 default:
404 break;
405 }
406
407 /* Process each sub-expression and flag what it needs. */
408 format_ptr = GET_RTX_FORMAT (code);
409 for (i = 0; i < GET_RTX_LENGTH (code); i++)
410 switch (*format_ptr++)
411 {
412 case 'e':
413 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
414 break;
415
416 case 'E':
417 for (j = 0; j < XVECLEN (x, i); j++)
418 mark_referenced_resources (XVECEXP (x, i, j), res,
419 include_delayed_effects);
420 break;
421 }
422 }
423 \f
424 /* A subroutine of mark_target_live_regs. Search forward from TARGET
425 looking for registers that are set before they are used. These are dead.
426 Stop after passing a few conditional jumps, and/or a small
427 number of unconditional branches. */
428
429 static rtx
430 find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
431 rtx target;
432 struct resources *res;
433 rtx *jump_target;
434 int jump_count;
435 struct resources set, needed;
436 {
437 HARD_REG_SET scratch;
438 rtx insn, next;
439 rtx jump_insn = 0;
440 int i;
441
442 for (insn = target; insn; insn = next)
443 {
444 rtx this_jump_insn = insn;
445
446 next = NEXT_INSN (insn);
447
448 /* If this instruction can throw an exception, then we don't
449 know where we might end up next. That means that we have to
450 assume that whatever we have already marked as live really is
451 live. */
452 if (can_throw_internal (insn))
453 break;
454
455 switch (GET_CODE (insn))
456 {
457 case CODE_LABEL:
458 /* After a label, any pending dead registers that weren't yet
459 used can be made dead. */
460 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
461 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
462 CLEAR_HARD_REG_SET (pending_dead_regs);
463
464 continue;
465
466 case BARRIER:
467 case NOTE:
468 continue;
469
470 case INSN:
471 if (GET_CODE (PATTERN (insn)) == USE)
472 {
473 /* If INSN is a USE made by update_block, we care about the
474 underlying insn. Any registers set by the underlying insn
475 are live since the insn is being done somewhere else. */
476 if (INSN_P (XEXP (PATTERN (insn), 0)))
477 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
478 MARK_SRC_DEST_CALL);
479
480 /* All other USE insns are to be ignored. */
481 continue;
482 }
483 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
484 continue;
485 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
486 {
487 /* An unconditional jump can be used to fill the delay slot
488 of a call, so search for a JUMP_INSN in any position. */
489 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
490 {
491 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
492 if (GET_CODE (this_jump_insn) == JUMP_INSN)
493 break;
494 }
495 }
496
497 default:
498 break;
499 }
500
501 if (GET_CODE (this_jump_insn) == JUMP_INSN)
502 {
503 if (jump_count++ < 10)
504 {
505 if (any_uncondjump_p (this_jump_insn)
506 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
507 {
508 next = JUMP_LABEL (this_jump_insn);
509 if (jump_insn == 0)
510 {
511 jump_insn = insn;
512 if (jump_target)
513 *jump_target = JUMP_LABEL (this_jump_insn);
514 }
515 }
516 else if (any_condjump_p (this_jump_insn))
517 {
518 struct resources target_set, target_res;
519 struct resources fallthrough_res;
520
521 /* We can handle conditional branches here by following
522 both paths, and then IOR the results of the two paths
523 together, which will give us registers that are dead
524 on both paths. Since this is expensive, we give it
525 a much higher cost than unconditional branches. The
526 cost was chosen so that we will follow at most 1
527 conditional branch. */
528
529 jump_count += 4;
530 if (jump_count >= 10)
531 break;
532
533 mark_referenced_resources (insn, &needed, 1);
534
535 /* For an annulled branch, mark_set_resources ignores slots
536 filled by instructions from the target. This is correct
537 if the branch is not taken. Since we are following both
538 paths from the branch, we must also compute correct info
539 if the branch is taken. We do this by inverting all of
540 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
541 and then inverting the INSN_FROM_TARGET_P bits again. */
542
543 if (GET_CODE (PATTERN (insn)) == SEQUENCE
544 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
545 {
546 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
547 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
548 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
549
550 target_set = set;
551 mark_set_resources (insn, &target_set, 0,
552 MARK_SRC_DEST_CALL);
553
554 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
555 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
556 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
557
558 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
559 }
560 else
561 {
562 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
563 target_set = set;
564 }
565
566 target_res = *res;
567 COPY_HARD_REG_SET (scratch, target_set.regs);
568 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
569 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
570
571 fallthrough_res = *res;
572 COPY_HARD_REG_SET (scratch, set.regs);
573 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
574 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
575
576 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
577 &target_res, 0, jump_count,
578 target_set, needed);
579 find_dead_or_set_registers (next,
580 &fallthrough_res, 0, jump_count,
581 set, needed);
582 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
583 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
584 break;
585 }
586 else
587 break;
588 }
589 else
590 {
591 /* Don't try this optimization if we expired our jump count
592 above, since that would mean there may be an infinite loop
593 in the function being compiled. */
594 jump_insn = 0;
595 break;
596 }
597 }
598
599 mark_referenced_resources (insn, &needed, 1);
600 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
601
602 COPY_HARD_REG_SET (scratch, set.regs);
603 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
604 AND_COMPL_HARD_REG_SET (res->regs, scratch);
605 }
606
607 return jump_insn;
608 }
609 \f
610 /* Given X, a part of an insn, and a pointer to a `struct resource',
611 RES, indicate which resources are modified by the insn. If
612 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
613 set by the called routine. If MARK_TYPE is MARK_DEST, only mark SET_DESTs
614
615 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
616 objects are being referenced instead of set.
617
618 We never mark the insn as modifying the condition code unless it explicitly
619 SETs CC0 even though this is not totally correct. The reason for this is
620 that we require a SET of CC0 to immediately precede the reference to CC0.
621 So if some other insn sets CC0 as a side-effect, we know it cannot affect
622 our computation and thus may be placed in a delay slot. */
623
624 void
625 mark_set_resources (x, res, in_dest, mark_type)
626 rtx x;
627 struct resources *res;
628 int in_dest;
629 enum mark_resource_type mark_type;
630 {
631 enum rtx_code code;
632 int i, j;
633 unsigned int r;
634 const char *format_ptr;
635
636 restart:
637
638 code = GET_CODE (x);
639
640 switch (code)
641 {
642 case NOTE:
643 case BARRIER:
644 case CODE_LABEL:
645 case USE:
646 case CONST_INT:
647 case CONST_DOUBLE:
648 case LABEL_REF:
649 case SYMBOL_REF:
650 case CONST:
651 case PC:
652 /* These don't set any resources. */
653 return;
654
655 case CC0:
656 if (in_dest)
657 res->cc = 1;
658 return;
659
660 case CALL_INSN:
661 /* Called routine modifies the condition code, memory, any registers
662 that aren't saved across calls, global registers and anything
663 explicitly CLOBBERed immediately after the CALL_INSN. */
664
665 if (mark_type == MARK_SRC_DEST_CALL)
666 {
667 rtx link;
668
669 res->cc = res->memory = 1;
670 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
671 if (call_used_regs[r] || global_regs[r])
672 SET_HARD_REG_BIT (res->regs, r);
673
674 for (link = CALL_INSN_FUNCTION_USAGE (x);
675 link; link = XEXP (link, 1))
676 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
677 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
678 MARK_SRC_DEST);
679
680 /* Check for a REG_SETJMP. If it exists, then we must
681 assume that this call can clobber any register. */
682 if (find_reg_note (x, REG_SETJMP, NULL))
683 SET_HARD_REG_SET (res->regs);
684 }
685
686 /* ... and also what its RTL says it modifies, if anything. */
687
688 case JUMP_INSN:
689 case INSN:
690
691 /* An insn consisting of just a CLOBBER (or USE) is just for flow
692 and doesn't actually do anything, so we ignore it. */
693
694 #ifdef INSN_SETS_ARE_DELAYED
695 if (mark_type != MARK_SRC_DEST_CALL
696 && INSN_SETS_ARE_DELAYED (x))
697 return;
698 #endif
699
700 x = PATTERN (x);
701 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
702 goto restart;
703 return;
704
705 case SET:
706 /* If the source of a SET is a CALL, this is actually done by
707 the called routine. So only include it if we are to include the
708 effects of the calling routine. */
709
710 mark_set_resources (SET_DEST (x), res,
711 (mark_type == MARK_SRC_DEST_CALL
712 || GET_CODE (SET_SRC (x)) != CALL),
713 mark_type);
714
715 if (mark_type != MARK_DEST)
716 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
717 return;
718
719 case CLOBBER:
720 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
721 return;
722
723 case SEQUENCE:
724 for (i = 0; i < XVECLEN (x, 0); i++)
725 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
726 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
727 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
728 return;
729
730 case POST_INC:
731 case PRE_INC:
732 case POST_DEC:
733 case PRE_DEC:
734 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
735 return;
736
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
740 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
741 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
742 return;
743
744 case SIGN_EXTRACT:
745 case ZERO_EXTRACT:
746 if (! (mark_type == MARK_DEST && in_dest))
747 {
748 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
749 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
750 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
751 }
752 return;
753
754 case MEM:
755 if (in_dest)
756 {
757 res->memory = 1;
758 res->unch_memory |= RTX_UNCHANGING_P (x);
759 res->volatil |= MEM_VOLATILE_P (x);
760 }
761
762 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
763 return;
764
765 case SUBREG:
766 if (in_dest)
767 {
768 if (GET_CODE (SUBREG_REG (x)) != REG)
769 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
770 else
771 {
772 unsigned int regno = subreg_regno (x);
773 unsigned int last_regno
774 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
775
776 if (last_regno > FIRST_PSEUDO_REGISTER)
777 abort ();
778 for (r = regno; r < last_regno; r++)
779 SET_HARD_REG_BIT (res->regs, r);
780 }
781 }
782 return;
783
784 case REG:
785 if (in_dest)
786 {
787 unsigned int regno = REGNO (x);
788 unsigned int last_regno
789 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
790
791 if (last_regno > FIRST_PSEUDO_REGISTER)
792 abort ();
793 for (r = regno; r < last_regno; r++)
794 SET_HARD_REG_BIT (res->regs, r);
795 }
796 return;
797
798 case STRICT_LOW_PART:
799 if (! (mark_type == MARK_DEST && in_dest))
800 {
801 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
802 return;
803 }
804
805 case UNSPEC_VOLATILE:
806 case ASM_INPUT:
807 /* Traditional asm's are always volatile. */
808 res->volatil = 1;
809 return;
810
811 case TRAP_IF:
812 res->volatil = 1;
813 break;
814
815 case ASM_OPERANDS:
816 res->volatil |= MEM_VOLATILE_P (x);
817
818 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
819 We can not just fall through here since then we would be confused
820 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
821 traditional asms unlike their normal usage. */
822
823 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
824 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
825 MARK_SRC_DEST);
826 return;
827
828 default:
829 break;
830 }
831
832 /* Process each sub-expression and flag what it needs. */
833 format_ptr = GET_RTX_FORMAT (code);
834 for (i = 0; i < GET_RTX_LENGTH (code); i++)
835 switch (*format_ptr++)
836 {
837 case 'e':
838 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
839 break;
840
841 case 'E':
842 for (j = 0; j < XVECLEN (x, i); j++)
843 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
844 break;
845 }
846 }
847 \f
848 /* Set the resources that are live at TARGET.
849
850 If TARGET is zero, we refer to the end of the current function and can
851 return our precomputed value.
852
853 Otherwise, we try to find out what is live by consulting the basic block
854 information. This is tricky, because we must consider the actions of
855 reload and jump optimization, which occur after the basic block information
856 has been computed.
857
858 Accordingly, we proceed as follows::
859
860 We find the previous BARRIER and look at all immediately following labels
861 (with no intervening active insns) to see if any of them start a basic
862 block. If we hit the start of the function first, we use block 0.
863
864 Once we have found a basic block and a corresponding first insns, we can
865 accurately compute the live status from basic_block_live_regs and
866 reg_renumber. (By starting at a label following a BARRIER, we are immune
867 to actions taken by reload and jump.) Then we scan all insns between
868 that point and our target. For each CLOBBER (or for call-clobbered regs
869 when we pass a CALL_INSN), mark the appropriate registers are dead. For
870 a SET, mark them as live.
871
872 We have to be careful when using REG_DEAD notes because they are not
873 updated by such things as find_equiv_reg. So keep track of registers
874 marked as dead that haven't been assigned to, and mark them dead at the
875 next CODE_LABEL since reload and jump won't propagate values across labels.
876
877 If we cannot find the start of a basic block (should be a very rare
878 case, if it can happen at all), mark everything as potentially live.
879
880 Next, scan forward from TARGET looking for things set or clobbered
881 before they are used. These are not live.
882
883 Because we can be called many times on the same target, save our results
884 in a hash table indexed by INSN_UID. This is only done if the function
885 init_resource_info () was invoked before we are called. */
886
887 void
888 mark_target_live_regs (insns, target, res)
889 rtx insns;
890 rtx target;
891 struct resources *res;
892 {
893 int b = -1;
894 unsigned int i;
895 struct target_info *tinfo = NULL;
896 rtx insn;
897 rtx jump_insn = 0;
898 rtx jump_target;
899 HARD_REG_SET scratch;
900 struct resources set, needed;
901
902 /* Handle end of function. */
903 if (target == 0)
904 {
905 *res = end_of_function_needs;
906 return;
907 }
908
909 /* We have to assume memory is needed, but the CC isn't. */
910 res->memory = 1;
911 res->volatil = res->unch_memory = 0;
912 res->cc = 0;
913
914 /* See if we have computed this value already. */
915 if (target_hash_table != NULL)
916 {
917 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
918 tinfo; tinfo = tinfo->next)
919 if (tinfo->uid == INSN_UID (target))
920 break;
921
922 /* Start by getting the basic block number. If we have saved
923 information, we can get it from there unless the insn at the
924 start of the basic block has been deleted. */
925 if (tinfo && tinfo->block != -1
926 && ! INSN_DELETED_P (BLOCK_HEAD (tinfo->block)))
927 b = tinfo->block;
928 }
929
930 if (b == -1)
931 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
932
933 if (target_hash_table != NULL)
934 {
935 if (tinfo)
936 {
937 /* If the information is up-to-date, use it. Otherwise, we will
938 update it below. */
939 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
940 {
941 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
942 return;
943 }
944 }
945 else
946 {
947 /* Allocate a place to put our results and chain it into the
948 hash table. */
949 tinfo = (struct target_info *) xmalloc (sizeof (struct target_info));
950 tinfo->uid = INSN_UID (target);
951 tinfo->block = b;
952 tinfo->next
953 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
954 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
955 }
956 }
957
958 CLEAR_HARD_REG_SET (pending_dead_regs);
959
960 /* If we found a basic block, get the live registers from it and update
961 them with anything set or killed between its start and the insn before
962 TARGET. Otherwise, we must assume everything is live. */
963 if (b != -1)
964 {
965 regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
966 unsigned int j;
967 unsigned int regno;
968 rtx start_insn, stop_insn;
969
970 /* Compute hard regs live at start of block -- this is the real hard regs
971 marked live, plus live pseudo regs that have been renumbered to
972 hard regs. */
973
974 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
975
976 EXECUTE_IF_SET_IN_REG_SET
977 (regs_live, FIRST_PSEUDO_REGISTER, i,
978 {
979 if (reg_renumber[i] >= 0)
980 {
981 regno = reg_renumber[i];
982 for (j = regno;
983 j < regno + HARD_REGNO_NREGS (regno,
984 PSEUDO_REGNO_MODE (i));
985 j++)
986 SET_HARD_REG_BIT (current_live_regs, j);
987 }
988 });
989
990 /* Get starting and ending insn, handling the case where each might
991 be a SEQUENCE. */
992 start_insn = (b == 0 ? insns : BLOCK_HEAD (b));
993 stop_insn = target;
994
995 if (GET_CODE (start_insn) == INSN
996 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
997 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
998
999 if (GET_CODE (stop_insn) == INSN
1000 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1001 stop_insn = next_insn (PREV_INSN (stop_insn));
1002
1003 for (insn = start_insn; insn != stop_insn;
1004 insn = next_insn_no_annul (insn))
1005 {
1006 rtx link;
1007 rtx real_insn = insn;
1008
1009 /* If this insn is from the target of a branch, it isn't going to
1010 be used in the sequel. If it is used in both cases, this
1011 test will not be true. */
1012 if (INSN_FROM_TARGET_P (insn))
1013 continue;
1014
1015 /* If this insn is a USE made by update_block, we care about the
1016 underlying insn. */
1017 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
1018 && INSN_P (XEXP (PATTERN (insn), 0)))
1019 real_insn = XEXP (PATTERN (insn), 0);
1020
1021 if (GET_CODE (real_insn) == CALL_INSN)
1022 {
1023 /* CALL clobbers all call-used regs that aren't fixed except
1024 sp, ap, and fp. Do this before setting the result of the
1025 call live. */
1026 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1027 if (call_used_regs[i]
1028 && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
1029 && i != ARG_POINTER_REGNUM
1030 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1031 && i != HARD_FRAME_POINTER_REGNUM
1032 #endif
1033 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1034 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
1035 #endif
1036 #if !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
1037 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
1038 #endif
1039 )
1040 CLEAR_HARD_REG_BIT (current_live_regs, i);
1041
1042 /* A CALL_INSN sets any global register live, since it may
1043 have been modified by the call. */
1044 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1045 if (global_regs[i])
1046 SET_HARD_REG_BIT (current_live_regs, i);
1047 }
1048
1049 /* Mark anything killed in an insn to be deadened at the next
1050 label. Ignore USE insns; the only REG_DEAD notes will be for
1051 parameters. But they might be early. A CALL_INSN will usually
1052 clobber registers used for parameters. It isn't worth bothering
1053 with the unlikely case when it won't. */
1054 if ((GET_CODE (real_insn) == INSN
1055 && GET_CODE (PATTERN (real_insn)) != USE
1056 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1057 || GET_CODE (real_insn) == JUMP_INSN
1058 || GET_CODE (real_insn) == CALL_INSN)
1059 {
1060 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1061 if (REG_NOTE_KIND (link) == REG_DEAD
1062 && GET_CODE (XEXP (link, 0)) == REG
1063 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1064 {
1065 unsigned int first_regno = REGNO (XEXP (link, 0));
1066 unsigned int last_regno
1067 = (first_regno
1068 + HARD_REGNO_NREGS (first_regno,
1069 GET_MODE (XEXP (link, 0))));
1070
1071 for (i = first_regno; i < last_regno; i++)
1072 SET_HARD_REG_BIT (pending_dead_regs, i);
1073 }
1074
1075 note_stores (PATTERN (real_insn), update_live_status, NULL);
1076
1077 /* If any registers were unused after this insn, kill them.
1078 These notes will always be accurate. */
1079 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1080 if (REG_NOTE_KIND (link) == REG_UNUSED
1081 && GET_CODE (XEXP (link, 0)) == REG
1082 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1083 {
1084 unsigned int first_regno = REGNO (XEXP (link, 0));
1085 unsigned int last_regno
1086 = (first_regno
1087 + HARD_REGNO_NREGS (first_regno,
1088 GET_MODE (XEXP (link, 0))));
1089
1090 for (i = first_regno; i < last_regno; i++)
1091 CLEAR_HARD_REG_BIT (current_live_regs, i);
1092 }
1093 }
1094
1095 else if (GET_CODE (real_insn) == CODE_LABEL)
1096 {
1097 /* A label clobbers the pending dead registers since neither
1098 reload nor jump will propagate a value across a label. */
1099 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1100 CLEAR_HARD_REG_SET (pending_dead_regs);
1101 }
1102
1103 /* The beginning of the epilogue corresponds to the end of the
1104 RTL chain when there are no epilogue insns. Certain resources
1105 are implicitly required at that point. */
1106 else if (GET_CODE (real_insn) == NOTE
1107 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1108 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1109 }
1110
1111 COPY_HARD_REG_SET (res->regs, current_live_regs);
1112 if (tinfo != NULL)
1113 {
1114 tinfo->block = b;
1115 tinfo->bb_tick = bb_ticks[b];
1116 }
1117 }
1118 else
1119 /* We didn't find the start of a basic block. Assume everything
1120 in use. This should happen only extremely rarely. */
1121 SET_HARD_REG_SET (res->regs);
1122
1123 CLEAR_RESOURCE (&set);
1124 CLEAR_RESOURCE (&needed);
1125
1126 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1127 set, needed);
1128
1129 /* If we hit an unconditional branch, we have another way of finding out
1130 what is live: we can see what is live at the branch target and include
1131 anything used but not set before the branch. We add the live
1132 resources found using the test below to those found until now. */
1133
1134 if (jump_insn)
1135 {
1136 struct resources new_resources;
1137 rtx stop_insn = next_active_insn (jump_insn);
1138
1139 mark_target_live_regs (insns, next_active_insn (jump_target),
1140 &new_resources);
1141 CLEAR_RESOURCE (&set);
1142 CLEAR_RESOURCE (&needed);
1143
1144 /* Include JUMP_INSN in the needed registers. */
1145 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1146 {
1147 mark_referenced_resources (insn, &needed, 1);
1148
1149 COPY_HARD_REG_SET (scratch, needed.regs);
1150 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1151 IOR_HARD_REG_SET (new_resources.regs, scratch);
1152
1153 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1154 }
1155
1156 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1157 }
1158
1159 if (tinfo != NULL)
1160 {
1161 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1162 }
1163 }
1164 \f
1165 /* Initialize the resources required by mark_target_live_regs ().
1166 This should be invoked before the first call to mark_target_live_regs. */
1167
1168 void
1169 init_resource_info (epilogue_insn)
1170 rtx epilogue_insn;
1171 {
1172 int i;
1173
1174 /* Indicate what resources are required to be valid at the end of the current
1175 function. The condition code never is and memory always is. If the
1176 frame pointer is needed, it is and so is the stack pointer unless
1177 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
1178 stack pointer is. Registers used to return the function value are
1179 needed. Registers holding global variables are needed. */
1180
1181 end_of_function_needs.cc = 0;
1182 end_of_function_needs.memory = 1;
1183 end_of_function_needs.unch_memory = 0;
1184 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1185
1186 if (frame_pointer_needed)
1187 {
1188 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1189 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1190 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1191 #endif
1192 #ifdef EXIT_IGNORE_STACK
1193 if (! EXIT_IGNORE_STACK
1194 || current_function_sp_is_unchanging)
1195 #endif
1196 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1197 }
1198 else
1199 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1200
1201 if (current_function_return_rtx != 0)
1202 mark_referenced_resources (current_function_return_rtx,
1203 &end_of_function_needs, 1);
1204
1205 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1206 if (global_regs[i]
1207 #ifdef EPILOGUE_USES
1208 || EPILOGUE_USES (i)
1209 #endif
1210 )
1211 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1212
1213 /* The registers required to be live at the end of the function are
1214 represented in the flow information as being dead just prior to
1215 reaching the end of the function. For example, the return of a value
1216 might be represented by a USE of the return register immediately
1217 followed by an unconditional jump to the return label where the
1218 return label is the end of the RTL chain. The end of the RTL chain
1219 is then taken to mean that the return register is live.
1220
1221 This sequence is no longer maintained when epilogue instructions are
1222 added to the RTL chain. To reconstruct the original meaning, the
1223 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1224 point where these registers become live (start_of_epilogue_needs).
1225 If epilogue instructions are present, the registers set by those
1226 instructions won't have been processed by flow. Thus, those
1227 registers are additionally required at the end of the RTL chain
1228 (end_of_function_needs). */
1229
1230 start_of_epilogue_needs = end_of_function_needs;
1231
1232 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1233 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1234 MARK_SRC_DEST_CALL);
1235
1236 /* Allocate and initialize the tables used by mark_target_live_regs. */
1237 target_hash_table = (struct target_info **)
1238 xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1239 bb_ticks = (int *) xcalloc (n_basic_blocks, sizeof (int));
1240 }
1241 \f
1242 /* Free up the resources allcated to mark_target_live_regs (). This
1243 should be invoked after the last call to mark_target_live_regs (). */
1244
1245 void
1246 free_resource_info ()
1247 {
1248 if (target_hash_table != NULL)
1249 {
1250 int i;
1251
1252 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1253 {
1254 struct target_info *ti = target_hash_table[i];
1255
1256 while (ti)
1257 {
1258 struct target_info *next = ti->next;
1259 free (ti);
1260 ti = next;
1261 }
1262 }
1263
1264 free (target_hash_table);
1265 target_hash_table = NULL;
1266 }
1267
1268 if (bb_ticks != NULL)
1269 {
1270 free (bb_ticks);
1271 bb_ticks = NULL;
1272 }
1273 }
1274 \f
1275 /* Clear any hashed information that we have stored for INSN. */
1276
1277 void
1278 clear_hashed_info_for_insn (insn)
1279 rtx insn;
1280 {
1281 struct target_info *tinfo;
1282
1283 if (target_hash_table != NULL)
1284 {
1285 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1286 tinfo; tinfo = tinfo->next)
1287 if (tinfo->uid == INSN_UID (insn))
1288 break;
1289
1290 if (tinfo)
1291 tinfo->block = -1;
1292 }
1293 }
1294 \f
1295 /* Increment the tick count for the basic block that contains INSN. */
1296
1297 void
1298 incr_ticks_for_insn (insn)
1299 rtx insn;
1300 {
1301 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1302
1303 if (b != -1)
1304 bb_ticks[b]++;
1305 }
1306 \f
1307 /* Add TRIAL to the set of resources used at the end of the current
1308 function. */
1309 void
1310 mark_end_of_function_resources (trial, include_delayed_effects)
1311 rtx trial;
1312 int include_delayed_effects;
1313 {
1314 mark_referenced_resources (trial, &end_of_function_needs,
1315 include_delayed_effects);
1316 }