jump.c: Convert prototypes to ISO C90.
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "function.h"
32 #include "regs.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "resource.h"
36 #include "except.h"
37 #include "insn-attr.h"
38 #include "params.h"
39
40 /* This structure is used to record liveness information at the targets or
41 fallthrough insns of branches. We will most likely need the information
42 at targets again, so save them in a hash table rather than recomputing them
43 each time. */
44
45 struct target_info
46 {
47 int uid; /* INSN_UID of target. */
48 struct target_info *next; /* Next info for same hash bucket. */
49 HARD_REG_SET live_regs; /* Registers live at target. */
50 int block; /* Basic block number containing target. */
51 int bb_tick; /* Generation count of basic block info. */
52 };
53
54 #define TARGET_HASH_PRIME 257
55
56 /* Indicates what resources are required at the beginning of the epilogue. */
57 static struct resources start_of_epilogue_needs;
58
59 /* Indicates what resources are required at function end. */
60 static struct resources end_of_function_needs;
61
62 /* Define the hash table itself. */
63 static struct target_info **target_hash_table = NULL;
64
65 /* For each basic block, we maintain a generation number of its basic
66 block info, which is updated each time we move an insn from the
67 target of a jump. This is the generation number indexed by block
68 number. */
69
70 static int *bb_ticks;
71
72 /* Marks registers possibly live at the current place being scanned by
73 mark_target_live_regs. Also used by update_live_status. */
74
75 static HARD_REG_SET current_live_regs;
76
77 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
78 Also only used by the next two functions. */
79
80 static HARD_REG_SET pending_dead_regs;
81 \f
82 static void update_live_status (rtx, rtx, void *);
83 static int find_basic_block (rtx, int);
84 static rtx next_insn_no_annul (rtx);
85 static rtx find_dead_or_set_registers (rtx, struct resources*,
86 rtx*, int, struct resources,
87 struct resources);
88 \f
89 /* Utility function called from mark_target_live_regs via note_stores.
90 It deadens any CLOBBERed registers and livens any SET registers. */
91
92 static void
93 update_live_status (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
94 {
95 int first_regno, last_regno;
96 int i;
97
98 if (GET_CODE (dest) != REG
99 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
100 return;
101
102 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 else
105 first_regno = REGNO (dest);
106
107 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
108
109 if (GET_CODE (x) == CLOBBER)
110 for (i = first_regno; i < last_regno; i++)
111 CLEAR_HARD_REG_BIT (current_live_regs, i);
112 else
113 for (i = first_regno; i < last_regno; i++)
114 {
115 SET_HARD_REG_BIT (current_live_regs, i);
116 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
117 }
118 }
119
120 /* Find the number of the basic block with correct live register
121 information that starts closest to INSN. Return -1 if we couldn't
122 find such a basic block or the beginning is more than
123 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
124 an unlimited search.
125
126 The delay slot filling code destroys the control-flow graph so,
127 instead of finding the basic block containing INSN, we search
128 backwards toward a BARRIER where the live register information is
129 correct. */
130
131 static int
132 find_basic_block (rtx insn, int search_limit)
133 {
134 basic_block bb;
135
136 /* Scan backwards to the previous BARRIER. Then see if we can find a
137 label that starts a basic block. Return the basic block number. */
138 for (insn = prev_nonnote_insn (insn);
139 insn && GET_CODE (insn) != BARRIER && search_limit != 0;
140 insn = prev_nonnote_insn (insn), --search_limit)
141 ;
142
143 /* The closest BARRIER is too far away. */
144 if (search_limit == 0)
145 return -1;
146
147 /* The start of the function. */
148 else if (insn == 0)
149 return ENTRY_BLOCK_PTR->next_bb->index;
150
151 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
152 anything other than a CODE_LABEL or note, we can't find this code. */
153 for (insn = next_nonnote_insn (insn);
154 insn && GET_CODE (insn) == CODE_LABEL;
155 insn = next_nonnote_insn (insn))
156 {
157 FOR_EACH_BB (bb)
158 if (insn == bb->head)
159 return bb->index;
160 }
161
162 return -1;
163 }
164 \f
165 /* Similar to next_insn, but ignores insns in the delay slots of
166 an annulled branch. */
167
168 static rtx
169 next_insn_no_annul (rtx insn)
170 {
171 if (insn)
172 {
173 /* If INSN is an annulled branch, skip any insns from the target
174 of the branch. */
175 if ((GET_CODE (insn) == JUMP_INSN
176 || GET_CODE (insn) == CALL_INSN
177 || GET_CODE (insn) == INSN)
178 && INSN_ANNULLED_BRANCH_P (insn)
179 && NEXT_INSN (PREV_INSN (insn)) != insn)
180 {
181 rtx next = NEXT_INSN (insn);
182 enum rtx_code code = GET_CODE (next);
183
184 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
185 && INSN_FROM_TARGET_P (next))
186 {
187 insn = next;
188 next = NEXT_INSN (insn);
189 code = GET_CODE (next);
190 }
191 }
192
193 insn = NEXT_INSN (insn);
194 if (insn && GET_CODE (insn) == INSN
195 && GET_CODE (PATTERN (insn)) == SEQUENCE)
196 insn = XVECEXP (PATTERN (insn), 0, 0);
197 }
198
199 return insn;
200 }
201 \f
202 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
203 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
204 is TRUE, resources used by the called routine will be included for
205 CALL_INSNs. */
206
207 void
208 mark_referenced_resources (rtx x, struct resources *res,
209 int include_delayed_effects)
210 {
211 enum rtx_code code = GET_CODE (x);
212 int i, j;
213 unsigned int r;
214 const char *format_ptr;
215
216 /* Handle leaf items for which we set resource flags. Also, special-case
217 CALL, SET and CLOBBER operators. */
218 switch (code)
219 {
220 case CONST:
221 case CONST_INT:
222 case CONST_DOUBLE:
223 case CONST_VECTOR:
224 case PC:
225 case SYMBOL_REF:
226 case LABEL_REF:
227 return;
228
229 case SUBREG:
230 if (GET_CODE (SUBREG_REG (x)) != REG)
231 mark_referenced_resources (SUBREG_REG (x), res, 0);
232 else
233 {
234 unsigned int regno = subreg_regno (x);
235 unsigned int last_regno
236 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
237
238 if (last_regno > FIRST_PSEUDO_REGISTER)
239 abort ();
240 for (r = regno; r < last_regno; r++)
241 SET_HARD_REG_BIT (res->regs, r);
242 }
243 return;
244
245 case REG:
246 {
247 unsigned int regno = REGNO (x);
248 unsigned int last_regno
249 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
250
251 if (last_regno > FIRST_PSEUDO_REGISTER)
252 abort ();
253 for (r = regno; r < last_regno; r++)
254 SET_HARD_REG_BIT (res->regs, r);
255 }
256 return;
257
258 case MEM:
259 /* If this memory shouldn't change, it really isn't referencing
260 memory. */
261 if (RTX_UNCHANGING_P (x))
262 res->unch_memory = 1;
263 else
264 res->memory = 1;
265 res->volatil |= MEM_VOLATILE_P (x);
266
267 /* Mark registers used to access memory. */
268 mark_referenced_resources (XEXP (x, 0), res, 0);
269 return;
270
271 case CC0:
272 res->cc = 1;
273 return;
274
275 case UNSPEC_VOLATILE:
276 case ASM_INPUT:
277 /* Traditional asm's are always volatile. */
278 res->volatil = 1;
279 return;
280
281 case TRAP_IF:
282 res->volatil = 1;
283 break;
284
285 case ASM_OPERANDS:
286 res->volatil |= MEM_VOLATILE_P (x);
287
288 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
289 We can not just fall through here since then we would be confused
290 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
291 traditional asms unlike their normal usage. */
292
293 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
294 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
295 return;
296
297 case CALL:
298 /* The first operand will be a (MEM (xxx)) but doesn't really reference
299 memory. The second operand may be referenced, though. */
300 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
301 mark_referenced_resources (XEXP (x, 1), res, 0);
302 return;
303
304 case SET:
305 /* Usually, the first operand of SET is set, not referenced. But
306 registers used to access memory are referenced. SET_DEST is
307 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
308
309 mark_referenced_resources (SET_SRC (x), res, 0);
310
311 x = SET_DEST (x);
312 if (GET_CODE (x) == SIGN_EXTRACT
313 || GET_CODE (x) == ZERO_EXTRACT
314 || GET_CODE (x) == STRICT_LOW_PART)
315 mark_referenced_resources (x, res, 0);
316 else if (GET_CODE (x) == SUBREG)
317 x = SUBREG_REG (x);
318 if (GET_CODE (x) == MEM)
319 mark_referenced_resources (XEXP (x, 0), res, 0);
320 return;
321
322 case CLOBBER:
323 return;
324
325 case CALL_INSN:
326 if (include_delayed_effects)
327 {
328 /* A CALL references memory, the frame pointer if it exists, the
329 stack pointer, any global registers and any registers given in
330 USE insns immediately in front of the CALL.
331
332 However, we may have moved some of the parameter loading insns
333 into the delay slot of this CALL. If so, the USE's for them
334 don't count and should be skipped. */
335 rtx insn = PREV_INSN (x);
336 rtx sequence = 0;
337 int seq_size = 0;
338 int i;
339
340 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
341 if (NEXT_INSN (insn) != x)
342 {
343 sequence = PATTERN (NEXT_INSN (insn));
344 seq_size = XVECLEN (sequence, 0);
345 if (GET_CODE (sequence) != SEQUENCE)
346 abort ();
347 }
348
349 res->memory = 1;
350 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
351 if (frame_pointer_needed)
352 {
353 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
354 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
355 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
356 #endif
357 }
358
359 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
360 if (global_regs[i])
361 SET_HARD_REG_BIT (res->regs, i);
362
363 /* Check for a REG_SETJMP. If it exists, then we must
364 assume that this call can need any register.
365
366 This is done to be more conservative about how we handle setjmp.
367 We assume that they both use and set all registers. Using all
368 registers ensures that a register will not be considered dead
369 just because it crosses a setjmp call. A register should be
370 considered dead only if the setjmp call returns nonzero. */
371 if (find_reg_note (x, REG_SETJMP, NULL))
372 SET_HARD_REG_SET (res->regs);
373
374 {
375 rtx link;
376
377 for (link = CALL_INSN_FUNCTION_USAGE (x);
378 link;
379 link = XEXP (link, 1))
380 if (GET_CODE (XEXP (link, 0)) == USE)
381 {
382 for (i = 1; i < seq_size; i++)
383 {
384 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
385 if (GET_CODE (slot_pat) == SET
386 && rtx_equal_p (SET_DEST (slot_pat),
387 XEXP (XEXP (link, 0), 0)))
388 break;
389 }
390 if (i >= seq_size)
391 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
392 res, 0);
393 }
394 }
395 }
396
397 /* ... fall through to other INSN processing ... */
398
399 case INSN:
400 case JUMP_INSN:
401
402 #ifdef INSN_REFERENCES_ARE_DELAYED
403 if (! include_delayed_effects
404 && INSN_REFERENCES_ARE_DELAYED (x))
405 return;
406 #endif
407
408 /* No special processing, just speed up. */
409 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
410 return;
411
412 default:
413 break;
414 }
415
416 /* Process each sub-expression and flag what it needs. */
417 format_ptr = GET_RTX_FORMAT (code);
418 for (i = 0; i < GET_RTX_LENGTH (code); i++)
419 switch (*format_ptr++)
420 {
421 case 'e':
422 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
423 break;
424
425 case 'E':
426 for (j = 0; j < XVECLEN (x, i); j++)
427 mark_referenced_resources (XVECEXP (x, i, j), res,
428 include_delayed_effects);
429 break;
430 }
431 }
432 \f
433 /* A subroutine of mark_target_live_regs. Search forward from TARGET
434 looking for registers that are set before they are used. These are dead.
435 Stop after passing a few conditional jumps, and/or a small
436 number of unconditional branches. */
437
438 static rtx
439 find_dead_or_set_registers (rtx target, struct resources *res,
440 rtx *jump_target, int jump_count,
441 struct resources set, struct resources needed)
442 {
443 HARD_REG_SET scratch;
444 rtx insn, next;
445 rtx jump_insn = 0;
446 int i;
447
448 for (insn = target; insn; insn = next)
449 {
450 rtx this_jump_insn = insn;
451
452 next = NEXT_INSN (insn);
453
454 /* If this instruction can throw an exception, then we don't
455 know where we might end up next. That means that we have to
456 assume that whatever we have already marked as live really is
457 live. */
458 if (can_throw_internal (insn))
459 break;
460
461 switch (GET_CODE (insn))
462 {
463 case CODE_LABEL:
464 /* After a label, any pending dead registers that weren't yet
465 used can be made dead. */
466 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
467 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
468 CLEAR_HARD_REG_SET (pending_dead_regs);
469
470 continue;
471
472 case BARRIER:
473 case NOTE:
474 continue;
475
476 case INSN:
477 if (GET_CODE (PATTERN (insn)) == USE)
478 {
479 /* If INSN is a USE made by update_block, we care about the
480 underlying insn. Any registers set by the underlying insn
481 are live since the insn is being done somewhere else. */
482 if (INSN_P (XEXP (PATTERN (insn), 0)))
483 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
484 MARK_SRC_DEST_CALL);
485
486 /* All other USE insns are to be ignored. */
487 continue;
488 }
489 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
490 continue;
491 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
492 {
493 /* An unconditional jump can be used to fill the delay slot
494 of a call, so search for a JUMP_INSN in any position. */
495 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
496 {
497 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
498 if (GET_CODE (this_jump_insn) == JUMP_INSN)
499 break;
500 }
501 }
502
503 default:
504 break;
505 }
506
507 if (GET_CODE (this_jump_insn) == JUMP_INSN)
508 {
509 if (jump_count++ < 10)
510 {
511 if (any_uncondjump_p (this_jump_insn)
512 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
513 {
514 next = JUMP_LABEL (this_jump_insn);
515 if (jump_insn == 0)
516 {
517 jump_insn = insn;
518 if (jump_target)
519 *jump_target = JUMP_LABEL (this_jump_insn);
520 }
521 }
522 else if (any_condjump_p (this_jump_insn))
523 {
524 struct resources target_set, target_res;
525 struct resources fallthrough_res;
526
527 /* We can handle conditional branches here by following
528 both paths, and then IOR the results of the two paths
529 together, which will give us registers that are dead
530 on both paths. Since this is expensive, we give it
531 a much higher cost than unconditional branches. The
532 cost was chosen so that we will follow at most 1
533 conditional branch. */
534
535 jump_count += 4;
536 if (jump_count >= 10)
537 break;
538
539 mark_referenced_resources (insn, &needed, 1);
540
541 /* For an annulled branch, mark_set_resources ignores slots
542 filled by instructions from the target. This is correct
543 if the branch is not taken. Since we are following both
544 paths from the branch, we must also compute correct info
545 if the branch is taken. We do this by inverting all of
546 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
547 and then inverting the INSN_FROM_TARGET_P bits again. */
548
549 if (GET_CODE (PATTERN (insn)) == SEQUENCE
550 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
551 {
552 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
553 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
554 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
555
556 target_set = set;
557 mark_set_resources (insn, &target_set, 0,
558 MARK_SRC_DEST_CALL);
559
560 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
561 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
562 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
563
564 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
565 }
566 else
567 {
568 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
569 target_set = set;
570 }
571
572 target_res = *res;
573 COPY_HARD_REG_SET (scratch, target_set.regs);
574 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
575 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
576
577 fallthrough_res = *res;
578 COPY_HARD_REG_SET (scratch, set.regs);
579 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
580 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
581
582 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
583 &target_res, 0, jump_count,
584 target_set, needed);
585 find_dead_or_set_registers (next,
586 &fallthrough_res, 0, jump_count,
587 set, needed);
588 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
589 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
590 break;
591 }
592 else
593 break;
594 }
595 else
596 {
597 /* Don't try this optimization if we expired our jump count
598 above, since that would mean there may be an infinite loop
599 in the function being compiled. */
600 jump_insn = 0;
601 break;
602 }
603 }
604
605 mark_referenced_resources (insn, &needed, 1);
606 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
607
608 COPY_HARD_REG_SET (scratch, set.regs);
609 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
610 AND_COMPL_HARD_REG_SET (res->regs, scratch);
611 }
612
613 return jump_insn;
614 }
615 \f
616 /* Given X, a part of an insn, and a pointer to a `struct resource',
617 RES, indicate which resources are modified by the insn. If
618 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
619 set by the called routine. If MARK_TYPE is MARK_DEST, only mark SET_DESTs
620
621 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
622 objects are being referenced instead of set.
623
624 We never mark the insn as modifying the condition code unless it explicitly
625 SETs CC0 even though this is not totally correct. The reason for this is
626 that we require a SET of CC0 to immediately precede the reference to CC0.
627 So if some other insn sets CC0 as a side-effect, we know it cannot affect
628 our computation and thus may be placed in a delay slot. */
629
630 void
631 mark_set_resources (rtx x, struct resources *res, int in_dest,
632 enum mark_resource_type mark_type)
633 {
634 enum rtx_code code;
635 int i, j;
636 unsigned int r;
637 const char *format_ptr;
638
639 restart:
640
641 code = GET_CODE (x);
642
643 switch (code)
644 {
645 case NOTE:
646 case BARRIER:
647 case CODE_LABEL:
648 case USE:
649 case CONST_INT:
650 case CONST_DOUBLE:
651 case CONST_VECTOR:
652 case LABEL_REF:
653 case SYMBOL_REF:
654 case CONST:
655 case PC:
656 /* These don't set any resources. */
657 return;
658
659 case CC0:
660 if (in_dest)
661 res->cc = 1;
662 return;
663
664 case CALL_INSN:
665 /* Called routine modifies the condition code, memory, any registers
666 that aren't saved across calls, global registers and anything
667 explicitly CLOBBERed immediately after the CALL_INSN. */
668
669 if (mark_type == MARK_SRC_DEST_CALL)
670 {
671 rtx link;
672
673 res->cc = res->memory = 1;
674 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
675 if (call_used_regs[r] || global_regs[r])
676 SET_HARD_REG_BIT (res->regs, r);
677
678 for (link = CALL_INSN_FUNCTION_USAGE (x);
679 link; link = XEXP (link, 1))
680 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
681 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
682 MARK_SRC_DEST);
683
684 /* Check for a REG_SETJMP. If it exists, then we must
685 assume that this call can clobber any register. */
686 if (find_reg_note (x, REG_SETJMP, NULL))
687 SET_HARD_REG_SET (res->regs);
688 }
689
690 /* ... and also what its RTL says it modifies, if anything. */
691
692 case JUMP_INSN:
693 case INSN:
694
695 /* An insn consisting of just a CLOBBER (or USE) is just for flow
696 and doesn't actually do anything, so we ignore it. */
697
698 #ifdef INSN_SETS_ARE_DELAYED
699 if (mark_type != MARK_SRC_DEST_CALL
700 && INSN_SETS_ARE_DELAYED (x))
701 return;
702 #endif
703
704 x = PATTERN (x);
705 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
706 goto restart;
707 return;
708
709 case SET:
710 /* If the source of a SET is a CALL, this is actually done by
711 the called routine. So only include it if we are to include the
712 effects of the calling routine. */
713
714 mark_set_resources (SET_DEST (x), res,
715 (mark_type == MARK_SRC_DEST_CALL
716 || GET_CODE (SET_SRC (x)) != CALL),
717 mark_type);
718
719 if (mark_type != MARK_DEST)
720 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
721 return;
722
723 case CLOBBER:
724 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
725 return;
726
727 case SEQUENCE:
728 for (i = 0; i < XVECLEN (x, 0); i++)
729 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
730 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
731 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
732 return;
733
734 case POST_INC:
735 case PRE_INC:
736 case POST_DEC:
737 case PRE_DEC:
738 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
739 return;
740
741 case PRE_MODIFY:
742 case POST_MODIFY:
743 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
744 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
745 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
746 return;
747
748 case SIGN_EXTRACT:
749 case ZERO_EXTRACT:
750 if (! (mark_type == MARK_DEST && in_dest))
751 {
752 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
753 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
754 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
755 }
756 return;
757
758 case MEM:
759 if (in_dest)
760 {
761 res->memory = 1;
762 res->unch_memory |= RTX_UNCHANGING_P (x);
763 res->volatil |= MEM_VOLATILE_P (x);
764 }
765
766 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
767 return;
768
769 case SUBREG:
770 if (in_dest)
771 {
772 if (GET_CODE (SUBREG_REG (x)) != REG)
773 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
774 else
775 {
776 unsigned int regno = subreg_regno (x);
777 unsigned int last_regno
778 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
779
780 if (last_regno > FIRST_PSEUDO_REGISTER)
781 abort ();
782 for (r = regno; r < last_regno; r++)
783 SET_HARD_REG_BIT (res->regs, r);
784 }
785 }
786 return;
787
788 case REG:
789 if (in_dest)
790 {
791 unsigned int regno = REGNO (x);
792 unsigned int last_regno
793 = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
794
795 if (last_regno > FIRST_PSEUDO_REGISTER)
796 abort ();
797 for (r = regno; r < last_regno; r++)
798 SET_HARD_REG_BIT (res->regs, r);
799 }
800 return;
801
802 case STRICT_LOW_PART:
803 if (! (mark_type == MARK_DEST && in_dest))
804 {
805 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
806 return;
807 }
808
809 case UNSPEC_VOLATILE:
810 case ASM_INPUT:
811 /* Traditional asm's are always volatile. */
812 res->volatil = 1;
813 return;
814
815 case TRAP_IF:
816 res->volatil = 1;
817 break;
818
819 case ASM_OPERANDS:
820 res->volatil |= MEM_VOLATILE_P (x);
821
822 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
823 We can not just fall through here since then we would be confused
824 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
825 traditional asms unlike their normal usage. */
826
827 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
828 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
829 MARK_SRC_DEST);
830 return;
831
832 default:
833 break;
834 }
835
836 /* Process each sub-expression and flag what it needs. */
837 format_ptr = GET_RTX_FORMAT (code);
838 for (i = 0; i < GET_RTX_LENGTH (code); i++)
839 switch (*format_ptr++)
840 {
841 case 'e':
842 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
843 break;
844
845 case 'E':
846 for (j = 0; j < XVECLEN (x, i); j++)
847 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
848 break;
849 }
850 }
851 \f
852 /* Set the resources that are live at TARGET.
853
854 If TARGET is zero, we refer to the end of the current function and can
855 return our precomputed value.
856
857 Otherwise, we try to find out what is live by consulting the basic block
858 information. This is tricky, because we must consider the actions of
859 reload and jump optimization, which occur after the basic block information
860 has been computed.
861
862 Accordingly, we proceed as follows::
863
864 We find the previous BARRIER and look at all immediately following labels
865 (with no intervening active insns) to see if any of them start a basic
866 block. If we hit the start of the function first, we use block 0.
867
868 Once we have found a basic block and a corresponding first insns, we can
869 accurately compute the live status from basic_block_live_regs and
870 reg_renumber. (By starting at a label following a BARRIER, we are immune
871 to actions taken by reload and jump.) Then we scan all insns between
872 that point and our target. For each CLOBBER (or for call-clobbered regs
873 when we pass a CALL_INSN), mark the appropriate registers are dead. For
874 a SET, mark them as live.
875
876 We have to be careful when using REG_DEAD notes because they are not
877 updated by such things as find_equiv_reg. So keep track of registers
878 marked as dead that haven't been assigned to, and mark them dead at the
879 next CODE_LABEL since reload and jump won't propagate values across labels.
880
881 If we cannot find the start of a basic block (should be a very rare
882 case, if it can happen at all), mark everything as potentially live.
883
884 Next, scan forward from TARGET looking for things set or clobbered
885 before they are used. These are not live.
886
887 Because we can be called many times on the same target, save our results
888 in a hash table indexed by INSN_UID. This is only done if the function
889 init_resource_info () was invoked before we are called. */
890
891 void
892 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
893 {
894 int b = -1;
895 unsigned int i;
896 struct target_info *tinfo = NULL;
897 rtx insn;
898 rtx jump_insn = 0;
899 rtx jump_target;
900 HARD_REG_SET scratch;
901 struct resources set, needed;
902
903 /* Handle end of function. */
904 if (target == 0)
905 {
906 *res = end_of_function_needs;
907 return;
908 }
909
910 /* We have to assume memory is needed, but the CC isn't. */
911 res->memory = 1;
912 res->volatil = res->unch_memory = 0;
913 res->cc = 0;
914
915 /* See if we have computed this value already. */
916 if (target_hash_table != NULL)
917 {
918 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
919 tinfo; tinfo = tinfo->next)
920 if (tinfo->uid == INSN_UID (target))
921 break;
922
923 /* Start by getting the basic block number. If we have saved
924 information, we can get it from there unless the insn at the
925 start of the basic block has been deleted. */
926 if (tinfo && tinfo->block != -1
927 && ! INSN_DELETED_P (BLOCK_HEAD (tinfo->block)))
928 b = tinfo->block;
929 }
930
931 if (b == -1)
932 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
933
934 if (target_hash_table != NULL)
935 {
936 if (tinfo)
937 {
938 /* If the information is up-to-date, use it. Otherwise, we will
939 update it below. */
940 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
941 {
942 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
943 return;
944 }
945 }
946 else
947 {
948 /* Allocate a place to put our results and chain it into the
949 hash table. */
950 tinfo = (struct target_info *) xmalloc (sizeof (struct target_info));
951 tinfo->uid = INSN_UID (target);
952 tinfo->block = b;
953 tinfo->next
954 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
955 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
956 }
957 }
958
959 CLEAR_HARD_REG_SET (pending_dead_regs);
960
961 /* If we found a basic block, get the live registers from it and update
962 them with anything set or killed between its start and the insn before
963 TARGET. Otherwise, we must assume everything is live. */
964 if (b != -1)
965 {
966 regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
967 unsigned int j;
968 unsigned int regno;
969 rtx start_insn, stop_insn;
970
971 /* Compute hard regs live at start of block -- this is the real hard regs
972 marked live, plus live pseudo regs that have been renumbered to
973 hard regs. */
974
975 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
976
977 EXECUTE_IF_SET_IN_REG_SET
978 (regs_live, FIRST_PSEUDO_REGISTER, i,
979 {
980 if (reg_renumber[i] >= 0)
981 {
982 regno = reg_renumber[i];
983 for (j = regno;
984 j < regno + HARD_REGNO_NREGS (regno,
985 PSEUDO_REGNO_MODE (i));
986 j++)
987 SET_HARD_REG_BIT (current_live_regs, j);
988 }
989 });
990
991 /* Get starting and ending insn, handling the case where each might
992 be a SEQUENCE. */
993 start_insn = (b == 0 ? insns : BLOCK_HEAD (b));
994 stop_insn = target;
995
996 if (GET_CODE (start_insn) == INSN
997 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
998 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
999
1000 if (GET_CODE (stop_insn) == INSN
1001 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
1002 stop_insn = next_insn (PREV_INSN (stop_insn));
1003
1004 for (insn = start_insn; insn != stop_insn;
1005 insn = next_insn_no_annul (insn))
1006 {
1007 rtx link;
1008 rtx real_insn = insn;
1009 enum rtx_code code = GET_CODE (insn);
1010
1011 /* If this insn is from the target of a branch, it isn't going to
1012 be used in the sequel. If it is used in both cases, this
1013 test will not be true. */
1014 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1015 && INSN_FROM_TARGET_P (insn))
1016 continue;
1017
1018 /* If this insn is a USE made by update_block, we care about the
1019 underlying insn. */
1020 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1021 && INSN_P (XEXP (PATTERN (insn), 0)))
1022 real_insn = XEXP (PATTERN (insn), 0);
1023
1024 if (GET_CODE (real_insn) == CALL_INSN)
1025 {
1026 /* CALL clobbers all call-used regs that aren't fixed except
1027 sp, ap, and fp. Do this before setting the result of the
1028 call live. */
1029 AND_COMPL_HARD_REG_SET (current_live_regs,
1030 regs_invalidated_by_call);
1031
1032 /* A CALL_INSN sets any global register live, since it may
1033 have been modified by the call. */
1034 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1035 if (global_regs[i])
1036 SET_HARD_REG_BIT (current_live_regs, i);
1037 }
1038
1039 /* Mark anything killed in an insn to be deadened at the next
1040 label. Ignore USE insns; the only REG_DEAD notes will be for
1041 parameters. But they might be early. A CALL_INSN will usually
1042 clobber registers used for parameters. It isn't worth bothering
1043 with the unlikely case when it won't. */
1044 if ((GET_CODE (real_insn) == INSN
1045 && GET_CODE (PATTERN (real_insn)) != USE
1046 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1047 || GET_CODE (real_insn) == JUMP_INSN
1048 || GET_CODE (real_insn) == CALL_INSN)
1049 {
1050 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1051 if (REG_NOTE_KIND (link) == REG_DEAD
1052 && GET_CODE (XEXP (link, 0)) == REG
1053 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1054 {
1055 unsigned int first_regno = REGNO (XEXP (link, 0));
1056 unsigned int last_regno
1057 = (first_regno
1058 + HARD_REGNO_NREGS (first_regno,
1059 GET_MODE (XEXP (link, 0))));
1060
1061 for (i = first_regno; i < last_regno; i++)
1062 SET_HARD_REG_BIT (pending_dead_regs, i);
1063 }
1064
1065 note_stores (PATTERN (real_insn), update_live_status, NULL);
1066
1067 /* If any registers were unused after this insn, kill them.
1068 These notes will always be accurate. */
1069 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1070 if (REG_NOTE_KIND (link) == REG_UNUSED
1071 && GET_CODE (XEXP (link, 0)) == REG
1072 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1073 {
1074 unsigned int first_regno = REGNO (XEXP (link, 0));
1075 unsigned int last_regno
1076 = (first_regno
1077 + HARD_REGNO_NREGS (first_regno,
1078 GET_MODE (XEXP (link, 0))));
1079
1080 for (i = first_regno; i < last_regno; i++)
1081 CLEAR_HARD_REG_BIT (current_live_regs, i);
1082 }
1083 }
1084
1085 else if (GET_CODE (real_insn) == CODE_LABEL)
1086 {
1087 /* A label clobbers the pending dead registers since neither
1088 reload nor jump will propagate a value across a label. */
1089 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1090 CLEAR_HARD_REG_SET (pending_dead_regs);
1091 }
1092
1093 /* The beginning of the epilogue corresponds to the end of the
1094 RTL chain when there are no epilogue insns. Certain resources
1095 are implicitly required at that point. */
1096 else if (GET_CODE (real_insn) == NOTE
1097 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1098 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1099 }
1100
1101 COPY_HARD_REG_SET (res->regs, current_live_regs);
1102 if (tinfo != NULL)
1103 {
1104 tinfo->block = b;
1105 tinfo->bb_tick = bb_ticks[b];
1106 }
1107 }
1108 else
1109 /* We didn't find the start of a basic block. Assume everything
1110 in use. This should happen only extremely rarely. */
1111 SET_HARD_REG_SET (res->regs);
1112
1113 CLEAR_RESOURCE (&set);
1114 CLEAR_RESOURCE (&needed);
1115
1116 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1117 set, needed);
1118
1119 /* If we hit an unconditional branch, we have another way of finding out
1120 what is live: we can see what is live at the branch target and include
1121 anything used but not set before the branch. We add the live
1122 resources found using the test below to those found until now. */
1123
1124 if (jump_insn)
1125 {
1126 struct resources new_resources;
1127 rtx stop_insn = next_active_insn (jump_insn);
1128
1129 mark_target_live_regs (insns, next_active_insn (jump_target),
1130 &new_resources);
1131 CLEAR_RESOURCE (&set);
1132 CLEAR_RESOURCE (&needed);
1133
1134 /* Include JUMP_INSN in the needed registers. */
1135 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1136 {
1137 mark_referenced_resources (insn, &needed, 1);
1138
1139 COPY_HARD_REG_SET (scratch, needed.regs);
1140 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1141 IOR_HARD_REG_SET (new_resources.regs, scratch);
1142
1143 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1144 }
1145
1146 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1147 }
1148
1149 if (tinfo != NULL)
1150 {
1151 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1152 }
1153 }
1154 \f
1155 /* Initialize the resources required by mark_target_live_regs ().
1156 This should be invoked before the first call to mark_target_live_regs. */
1157
1158 void
1159 init_resource_info (rtx epilogue_insn)
1160 {
1161 int i;
1162
1163 /* Indicate what resources are required to be valid at the end of the current
1164 function. The condition code never is and memory always is. If the
1165 frame pointer is needed, it is and so is the stack pointer unless
1166 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1167 stack pointer is. Registers used to return the function value are
1168 needed. Registers holding global variables are needed. */
1169
1170 end_of_function_needs.cc = 0;
1171 end_of_function_needs.memory = 1;
1172 end_of_function_needs.unch_memory = 0;
1173 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1174
1175 if (frame_pointer_needed)
1176 {
1177 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1178 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1179 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1180 #endif
1181 #ifdef EXIT_IGNORE_STACK
1182 if (! EXIT_IGNORE_STACK
1183 || current_function_sp_is_unchanging)
1184 #endif
1185 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1186 }
1187 else
1188 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1189
1190 if (current_function_return_rtx != 0)
1191 mark_referenced_resources (current_function_return_rtx,
1192 &end_of_function_needs, 1);
1193
1194 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1195 if (global_regs[i]
1196 #ifdef EPILOGUE_USES
1197 || EPILOGUE_USES (i)
1198 #endif
1199 )
1200 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1201
1202 /* The registers required to be live at the end of the function are
1203 represented in the flow information as being dead just prior to
1204 reaching the end of the function. For example, the return of a value
1205 might be represented by a USE of the return register immediately
1206 followed by an unconditional jump to the return label where the
1207 return label is the end of the RTL chain. The end of the RTL chain
1208 is then taken to mean that the return register is live.
1209
1210 This sequence is no longer maintained when epilogue instructions are
1211 added to the RTL chain. To reconstruct the original meaning, the
1212 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1213 point where these registers become live (start_of_epilogue_needs).
1214 If epilogue instructions are present, the registers set by those
1215 instructions won't have been processed by flow. Thus, those
1216 registers are additionally required at the end of the RTL chain
1217 (end_of_function_needs). */
1218
1219 start_of_epilogue_needs = end_of_function_needs;
1220
1221 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1222 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1223 MARK_SRC_DEST_CALL);
1224
1225 /* Allocate and initialize the tables used by mark_target_live_regs. */
1226 target_hash_table = (struct target_info **)
1227 xcalloc (TARGET_HASH_PRIME, sizeof (struct target_info *));
1228 bb_ticks = (int *) xcalloc (last_basic_block, sizeof (int));
1229 }
1230 \f
1231 /* Free up the resources allocated to mark_target_live_regs (). This
1232 should be invoked after the last call to mark_target_live_regs (). */
1233
1234 void
1235 free_resource_info (void)
1236 {
1237 if (target_hash_table != NULL)
1238 {
1239 int i;
1240
1241 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1242 {
1243 struct target_info *ti = target_hash_table[i];
1244
1245 while (ti)
1246 {
1247 struct target_info *next = ti->next;
1248 free (ti);
1249 ti = next;
1250 }
1251 }
1252
1253 free (target_hash_table);
1254 target_hash_table = NULL;
1255 }
1256
1257 if (bb_ticks != NULL)
1258 {
1259 free (bb_ticks);
1260 bb_ticks = NULL;
1261 }
1262 }
1263 \f
1264 /* Clear any hashed information that we have stored for INSN. */
1265
1266 void
1267 clear_hashed_info_for_insn (rtx insn)
1268 {
1269 struct target_info *tinfo;
1270
1271 if (target_hash_table != NULL)
1272 {
1273 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1274 tinfo; tinfo = tinfo->next)
1275 if (tinfo->uid == INSN_UID (insn))
1276 break;
1277
1278 if (tinfo)
1279 tinfo->block = -1;
1280 }
1281 }
1282 \f
1283 /* Increment the tick count for the basic block that contains INSN. */
1284
1285 void
1286 incr_ticks_for_insn (rtx insn)
1287 {
1288 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1289
1290 if (b != -1)
1291 bb_ticks[b]++;
1292 }
1293 \f
1294 /* Add TRIAL to the set of resources used at the end of the current
1295 function. */
1296 void
1297 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1298 {
1299 mark_referenced_resources (trial, &end_of_function_needs,
1300 include_delayed_effects);
1301 }