resource.c (mark_set_resources): Handle UNSPEC_VOLATILE...
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "config.h"
22 #include "toplev.h"
23 #include "rtl.h"
24 #include "hard-reg-set.h"
25 #include "system.h"
26 #include "basic-block.h"
27 #include "regs.h"
28 #include "flags.h"
29 #include "output.h"
30 #include "resource.h"
31
32 /* This structure is used to record liveness information at the targets or
33 fallthrough insns of branches. We will most likely need the information
34 at targets again, so save them in a hash table rather than recomputing them
35 each time. */
36
37 struct target_info
38 {
39 int uid; /* INSN_UID of target. */
40 struct target_info *next; /* Next info for same hash bucket. */
41 HARD_REG_SET live_regs; /* Registers live at target. */
42 int block; /* Basic block number containing target. */
43 int bb_tick; /* Generation count of basic block info. */
44 };
45
46 #define TARGET_HASH_PRIME 257
47
48 /* Indicates what resources are required at the beginning of the epilogue. */
49 static struct resources start_of_epilogue_needs;
50
51 /* Indicates what resources are required at function end. */
52 static struct resources end_of_function_needs;
53
54 /* Define the hash table itself. */
55 static struct target_info **target_hash_table = NULL;
56
57 /* For each basic block, we maintain a generation number of its basic
58 block info, which is updated each time we move an insn from the
59 target of a jump. This is the generation number indexed by block
60 number. */
61
62 static int *bb_ticks;
63
64 /* Marks registers possibly live at the current place being scanned by
65 mark_target_live_regs. Used only by next two function. */
66
67 static HARD_REG_SET current_live_regs;
68
69 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
70 Also only used by the next two functions. */
71
72 static HARD_REG_SET pending_dead_regs;
73 \f
74 static void update_live_status PROTO ((rtx, rtx));
75 static int find_basic_block PROTO ((rtx));
76 static rtx next_insn_no_annul PROTO ((rtx));
77 static rtx find_dead_or_set_registers PROTO ((rtx, struct resources*,
78 rtx*, int, struct resources,
79 struct resources));
80 \f
81 /* Utility function called from mark_target_live_regs via note_stores.
82 It deadens any CLOBBERed registers and livens any SET registers. */
83
84 static void
85 update_live_status (dest, x)
86 rtx dest;
87 rtx x;
88 {
89 int first_regno, last_regno;
90 int i;
91
92 if (GET_CODE (dest) != REG
93 && (GET_CODE (dest) != SUBREG || GET_CODE (SUBREG_REG (dest)) != REG))
94 return;
95
96 if (GET_CODE (dest) == SUBREG)
97 first_regno = REGNO (SUBREG_REG (dest)) + SUBREG_WORD (dest);
98 else
99 first_regno = REGNO (dest);
100
101 last_regno = first_regno + HARD_REGNO_NREGS (first_regno, GET_MODE (dest));
102
103 if (GET_CODE (x) == CLOBBER)
104 for (i = first_regno; i < last_regno; i++)
105 CLEAR_HARD_REG_BIT (current_live_regs, i);
106 else
107 for (i = first_regno; i < last_regno; i++)
108 {
109 SET_HARD_REG_BIT (current_live_regs, i);
110 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
111 }
112 }
113 /* Find the number of the basic block that starts closest to INSN. Return -1
114 if we couldn't find such a basic block. */
115
116 static int
117 find_basic_block (insn)
118 rtx insn;
119 {
120 int i;
121
122 /* Scan backwards to the previous BARRIER. Then see if we can find a
123 label that starts a basic block. Return the basic block number. */
124
125 for (insn = prev_nonnote_insn (insn);
126 insn && GET_CODE (insn) != BARRIER;
127 insn = prev_nonnote_insn (insn))
128 ;
129
130 /* The start of the function is basic block zero. */
131 if (insn == 0)
132 return 0;
133
134 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
135 anything other than a CODE_LABEL or note, we can't find this code. */
136 for (insn = next_nonnote_insn (insn);
137 insn && GET_CODE (insn) == CODE_LABEL;
138 insn = next_nonnote_insn (insn))
139 {
140 for (i = 0; i < n_basic_blocks; i++)
141 if (insn == BLOCK_HEAD (i))
142 return i;
143 }
144
145 return -1;
146 }
147 \f
148 /* Similar to next_insn, but ignores insns in the delay slots of
149 an annulled branch. */
150
151 static rtx
152 next_insn_no_annul (insn)
153 rtx insn;
154 {
155 if (insn)
156 {
157 /* If INSN is an annulled branch, skip any insns from the target
158 of the branch. */
159 if (INSN_ANNULLED_BRANCH_P (insn)
160 && NEXT_INSN (PREV_INSN (insn)) != insn)
161 while (INSN_FROM_TARGET_P (NEXT_INSN (insn)))
162 insn = NEXT_INSN (insn);
163
164 insn = NEXT_INSN (insn);
165 if (insn && GET_CODE (insn) == INSN
166 && GET_CODE (PATTERN (insn)) == SEQUENCE)
167 insn = XVECEXP (PATTERN (insn), 0, 0);
168 }
169
170 return insn;
171 }
172 \f
173 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
174 which resources are references by the insn. If INCLUDE_DELAYED_EFFECTS
175 is TRUE, resources used by the called routine will be included for
176 CALL_INSNs. */
177
178 void
179 mark_referenced_resources (x, res, include_delayed_effects)
180 register rtx x;
181 register struct resources *res;
182 register int include_delayed_effects;
183 {
184 register enum rtx_code code = GET_CODE (x);
185 register int i, j;
186 register char *format_ptr;
187
188 /* Handle leaf items for which we set resource flags. Also, special-case
189 CALL, SET and CLOBBER operators. */
190 switch (code)
191 {
192 case CONST:
193 case CONST_INT:
194 case CONST_DOUBLE:
195 case PC:
196 case SYMBOL_REF:
197 case LABEL_REF:
198 return;
199
200 case SUBREG:
201 if (GET_CODE (SUBREG_REG (x)) != REG)
202 mark_referenced_resources (SUBREG_REG (x), res, 0);
203 else
204 {
205 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
206 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
207 for (i = regno; i < last_regno; i++)
208 SET_HARD_REG_BIT (res->regs, i);
209 }
210 return;
211
212 case REG:
213 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
214 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
215 return;
216
217 case MEM:
218 /* If this memory shouldn't change, it really isn't referencing
219 memory. */
220 if (RTX_UNCHANGING_P (x))
221 res->unch_memory = 1;
222 else
223 res->memory = 1;
224 res->volatil = MEM_VOLATILE_P (x);
225
226 /* Mark registers used to access memory. */
227 mark_referenced_resources (XEXP (x, 0), res, 0);
228 return;
229
230 case CC0:
231 res->cc = 1;
232 return;
233
234 case UNSPEC_VOLATILE:
235 case ASM_INPUT:
236 /* Traditional asm's are always volatile. */
237 res->volatil = 1;
238 return;
239
240 case TRAP_IF:
241 res->volatil = 1;
242 break;
243
244 case ASM_OPERANDS:
245 res->volatil = MEM_VOLATILE_P (x);
246
247 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
248 We can not just fall through here since then we would be confused
249 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
250 traditional asms unlike their normal usage. */
251
252 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
253 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
254 return;
255
256 case CALL:
257 /* The first operand will be a (MEM (xxx)) but doesn't really reference
258 memory. The second operand may be referenced, though. */
259 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
260 mark_referenced_resources (XEXP (x, 1), res, 0);
261 return;
262
263 case SET:
264 /* Usually, the first operand of SET is set, not referenced. But
265 registers used to access memory are referenced. SET_DEST is
266 also referenced if it is a ZERO_EXTRACT or SIGN_EXTRACT. */
267
268 mark_referenced_resources (SET_SRC (x), res, 0);
269
270 x = SET_DEST (x);
271 if (GET_CODE (x) == SIGN_EXTRACT || GET_CODE (x) == ZERO_EXTRACT)
272 mark_referenced_resources (x, res, 0);
273 else if (GET_CODE (x) == SUBREG)
274 x = SUBREG_REG (x);
275 if (GET_CODE (x) == MEM)
276 mark_referenced_resources (XEXP (x, 0), res, 0);
277 return;
278
279 case CLOBBER:
280 return;
281
282 case CALL_INSN:
283 if (include_delayed_effects)
284 {
285 /* A CALL references memory, the frame pointer if it exists, the
286 stack pointer, any global registers and any registers given in
287 USE insns immediately in front of the CALL.
288
289 However, we may have moved some of the parameter loading insns
290 into the delay slot of this CALL. If so, the USE's for them
291 don't count and should be skipped. */
292 rtx insn = PREV_INSN (x);
293 rtx sequence = 0;
294 int seq_size = 0;
295 rtx next = NEXT_INSN (x);
296 int i;
297
298 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
299 if (NEXT_INSN (insn) != x)
300 {
301 next = NEXT_INSN (NEXT_INSN (insn));
302 sequence = PATTERN (NEXT_INSN (insn));
303 seq_size = XVECLEN (sequence, 0);
304 if (GET_CODE (sequence) != SEQUENCE)
305 abort ();
306 }
307
308 res->memory = 1;
309 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
310 if (frame_pointer_needed)
311 {
312 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
313 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
314 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
315 #endif
316 }
317
318 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
319 if (global_regs[i])
320 SET_HARD_REG_BIT (res->regs, i);
321
322 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
323 assume that this call can need any register.
324
325 This is done to be more conservative about how we handle setjmp.
326 We assume that they both use and set all registers. Using all
327 registers ensures that a register will not be considered dead
328 just because it crosses a setjmp call. A register should be
329 considered dead only if the setjmp call returns non-zero. */
330 if (next && GET_CODE (next) == NOTE
331 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
332 SET_HARD_REG_SET (res->regs);
333
334 {
335 rtx link;
336
337 for (link = CALL_INSN_FUNCTION_USAGE (x);
338 link;
339 link = XEXP (link, 1))
340 if (GET_CODE (XEXP (link, 0)) == USE)
341 {
342 for (i = 1; i < seq_size; i++)
343 {
344 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
345 if (GET_CODE (slot_pat) == SET
346 && rtx_equal_p (SET_DEST (slot_pat),
347 SET_DEST (XEXP (link, 0))))
348 break;
349 }
350 if (i >= seq_size)
351 mark_referenced_resources (SET_DEST (XEXP (link, 0)),
352 res, 0);
353 }
354 }
355 }
356
357 /* ... fall through to other INSN processing ... */
358
359 case INSN:
360 case JUMP_INSN:
361
362 #ifdef INSN_REFERENCES_ARE_DELAYED
363 if (! include_delayed_effects
364 && INSN_REFERENCES_ARE_DELAYED (x))
365 return;
366 #endif
367
368 /* No special processing, just speed up. */
369 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
370 return;
371
372 default:
373 break;
374 }
375
376 /* Process each sub-expression and flag what it needs. */
377 format_ptr = GET_RTX_FORMAT (code);
378 for (i = 0; i < GET_RTX_LENGTH (code); i++)
379 switch (*format_ptr++)
380 {
381 case 'e':
382 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
383 break;
384
385 case 'E':
386 for (j = 0; j < XVECLEN (x, i); j++)
387 mark_referenced_resources (XVECEXP (x, i, j), res,
388 include_delayed_effects);
389 break;
390 }
391 }
392 \f
393 /* A subroutine of mark_target_live_regs. Search forward from TARGET
394 looking for registers that are set before they are used. These are dead.
395 Stop after passing a few conditional jumps, and/or a small
396 number of unconditional branches. */
397
398 static rtx
399 find_dead_or_set_registers (target, res, jump_target, jump_count, set, needed)
400 rtx target;
401 struct resources *res;
402 rtx *jump_target;
403 int jump_count;
404 struct resources set, needed;
405 {
406 HARD_REG_SET scratch;
407 rtx insn, next;
408 rtx jump_insn = 0;
409 int i;
410
411 for (insn = target; insn; insn = next)
412 {
413 rtx this_jump_insn = insn;
414
415 next = NEXT_INSN (insn);
416 switch (GET_CODE (insn))
417 {
418 case CODE_LABEL:
419 /* After a label, any pending dead registers that weren't yet
420 used can be made dead. */
421 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
422 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
423 CLEAR_HARD_REG_SET (pending_dead_regs);
424
425 continue;
426
427 case BARRIER:
428 case NOTE:
429 continue;
430
431 case INSN:
432 if (GET_CODE (PATTERN (insn)) == USE)
433 {
434 /* If INSN is a USE made by update_block, we care about the
435 underlying insn. Any registers set by the underlying insn
436 are live since the insn is being done somewhere else. */
437 if (GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
438 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0, 1);
439
440 /* All other USE insns are to be ignored. */
441 continue;
442 }
443 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
444 continue;
445 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
446 {
447 /* An unconditional jump can be used to fill the delay slot
448 of a call, so search for a JUMP_INSN in any position. */
449 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
450 {
451 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
452 if (GET_CODE (this_jump_insn) == JUMP_INSN)
453 break;
454 }
455 }
456
457 default:
458 break;
459 }
460
461 if (GET_CODE (this_jump_insn) == JUMP_INSN)
462 {
463 if (jump_count++ < 10)
464 {
465 if (simplejump_p (this_jump_insn)
466 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
467 {
468 next = JUMP_LABEL (this_jump_insn);
469 if (jump_insn == 0)
470 {
471 jump_insn = insn;
472 if (jump_target)
473 *jump_target = JUMP_LABEL (this_jump_insn);
474 }
475 }
476 else if (condjump_p (this_jump_insn)
477 || condjump_in_parallel_p (this_jump_insn))
478 {
479 struct resources target_set, target_res;
480 struct resources fallthrough_res;
481
482 /* We can handle conditional branches here by following
483 both paths, and then IOR the results of the two paths
484 together, which will give us registers that are dead
485 on both paths. Since this is expensive, we give it
486 a much higher cost than unconditional branches. The
487 cost was chosen so that we will follow at most 1
488 conditional branch. */
489
490 jump_count += 4;
491 if (jump_count >= 10)
492 break;
493
494 mark_referenced_resources (insn, &needed, 1);
495
496 /* For an annulled branch, mark_set_resources ignores slots
497 filled by instructions from the target. This is correct
498 if the branch is not taken. Since we are following both
499 paths from the branch, we must also compute correct info
500 if the branch is taken. We do this by inverting all of
501 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
502 and then inverting the INSN_FROM_TARGET_P bits again. */
503
504 if (GET_CODE (PATTERN (insn)) == SEQUENCE
505 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
506 {
507 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
508 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
509 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
510
511 target_set = set;
512 mark_set_resources (insn, &target_set, 0, 1);
513
514 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
515 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
516 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
517
518 mark_set_resources (insn, &set, 0, 1);
519 }
520 else
521 {
522 mark_set_resources (insn, &set, 0, 1);
523 target_set = set;
524 }
525
526 target_res = *res;
527 COPY_HARD_REG_SET (scratch, target_set.regs);
528 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
529 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
530
531 fallthrough_res = *res;
532 COPY_HARD_REG_SET (scratch, set.regs);
533 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
534 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
535
536 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
537 &target_res, 0, jump_count,
538 target_set, needed);
539 find_dead_or_set_registers (next,
540 &fallthrough_res, 0, jump_count,
541 set, needed);
542 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
543 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
544 break;
545 }
546 else
547 break;
548 }
549 else
550 {
551 /* Don't try this optimization if we expired our jump count
552 above, since that would mean there may be an infinite loop
553 in the function being compiled. */
554 jump_insn = 0;
555 break;
556 }
557 }
558
559 mark_referenced_resources (insn, &needed, 1);
560 mark_set_resources (insn, &set, 0, 1);
561
562 COPY_HARD_REG_SET (scratch, set.regs);
563 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
564 AND_COMPL_HARD_REG_SET (res->regs, scratch);
565 }
566
567 return jump_insn;
568 }
569 \f
570 /* Given X, a part of an insn, and a pointer to a `struct resource',
571 RES, indicate which resources are modified by the insn. If
572 INCLUDE_DELAYED_EFFECTS is nonzero, also mark resources potentially
573 set by the called routine.
574
575 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
576 objects are being referenced instead of set.
577
578 We never mark the insn as modifying the condition code unless it explicitly
579 SETs CC0 even though this is not totally correct. The reason for this is
580 that we require a SET of CC0 to immediately precede the reference to CC0.
581 So if some other insn sets CC0 as a side-effect, we know it cannot affect
582 our computation and thus may be placed in a delay slot. */
583
584 void
585 mark_set_resources (x, res, in_dest, include_delayed_effects)
586 register rtx x;
587 register struct resources *res;
588 int in_dest;
589 int include_delayed_effects;
590 {
591 register enum rtx_code code;
592 register int i, j;
593 register char *format_ptr;
594
595 restart:
596
597 code = GET_CODE (x);
598
599 switch (code)
600 {
601 case NOTE:
602 case BARRIER:
603 case CODE_LABEL:
604 case USE:
605 case CONST_INT:
606 case CONST_DOUBLE:
607 case LABEL_REF:
608 case SYMBOL_REF:
609 case CONST:
610 case PC:
611 /* These don't set any resources. */
612 return;
613
614 case CC0:
615 if (in_dest)
616 res->cc = 1;
617 return;
618
619 case CALL_INSN:
620 /* Called routine modifies the condition code, memory, any registers
621 that aren't saved across calls, global registers and anything
622 explicitly CLOBBERed immediately after the CALL_INSN. */
623
624 if (include_delayed_effects)
625 {
626 rtx next = NEXT_INSN (x);
627 rtx prev = PREV_INSN (x);
628 rtx link;
629
630 res->cc = res->memory = 1;
631 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
632 if (call_used_regs[i] || global_regs[i])
633 SET_HARD_REG_BIT (res->regs, i);
634
635 /* If X is part of a delay slot sequence, then NEXT should be
636 the first insn after the sequence. */
637 if (NEXT_INSN (prev) != x)
638 next = NEXT_INSN (NEXT_INSN (prev));
639
640 for (link = CALL_INSN_FUNCTION_USAGE (x);
641 link; link = XEXP (link, 1))
642 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
643 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1, 0);
644
645 /* Check for a NOTE_INSN_SETJMP. If it exists, then we must
646 assume that this call can clobber any register. */
647 if (next && GET_CODE (next) == NOTE
648 && NOTE_LINE_NUMBER (next) == NOTE_INSN_SETJMP)
649 SET_HARD_REG_SET (res->regs);
650 }
651
652 /* ... and also what its RTL says it modifies, if anything. */
653
654 case JUMP_INSN:
655 case INSN:
656
657 /* An insn consisting of just a CLOBBER (or USE) is just for flow
658 and doesn't actually do anything, so we ignore it. */
659
660 #ifdef INSN_SETS_ARE_DELAYED
661 if (! include_delayed_effects
662 && INSN_SETS_ARE_DELAYED (x))
663 return;
664 #endif
665
666 x = PATTERN (x);
667 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
668 goto restart;
669 return;
670
671 case SET:
672 /* If the source of a SET is a CALL, this is actually done by
673 the called routine. So only include it if we are to include the
674 effects of the calling routine. */
675
676 mark_set_resources (SET_DEST (x), res,
677 (include_delayed_effects
678 || GET_CODE (SET_SRC (x)) != CALL),
679 0);
680
681 mark_set_resources (SET_SRC (x), res, 0, 0);
682 return;
683
684 case CLOBBER:
685 mark_set_resources (XEXP (x, 0), res, 1, 0);
686 return;
687
688 case SEQUENCE:
689 for (i = 0; i < XVECLEN (x, 0); i++)
690 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
691 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
692 mark_set_resources (XVECEXP (x, 0, i), res, 0,
693 include_delayed_effects);
694 return;
695
696 case POST_INC:
697 case PRE_INC:
698 case POST_DEC:
699 case PRE_DEC:
700 mark_set_resources (XEXP (x, 0), res, 1, 0);
701 return;
702
703 case ZERO_EXTRACT:
704 mark_set_resources (XEXP (x, 0), res, in_dest, 0);
705 mark_set_resources (XEXP (x, 1), res, 0, 0);
706 mark_set_resources (XEXP (x, 2), res, 0, 0);
707 return;
708
709 case MEM:
710 if (in_dest)
711 {
712 res->memory = 1;
713 res->unch_memory = RTX_UNCHANGING_P (x);
714 res->volatil = MEM_VOLATILE_P (x);
715 }
716
717 mark_set_resources (XEXP (x, 0), res, 0, 0);
718 return;
719
720 case SUBREG:
721 if (in_dest)
722 {
723 if (GET_CODE (SUBREG_REG (x)) != REG)
724 mark_set_resources (SUBREG_REG (x), res,
725 in_dest, include_delayed_effects);
726 else
727 {
728 int regno = REGNO (SUBREG_REG (x)) + SUBREG_WORD (x);
729 int last_regno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
730 for (i = regno; i < last_regno; i++)
731 SET_HARD_REG_BIT (res->regs, i);
732 }
733 }
734 return;
735
736 case REG:
737 if (in_dest)
738 for (i = 0; i < HARD_REGNO_NREGS (REGNO (x), GET_MODE (x)); i++)
739 SET_HARD_REG_BIT (res->regs, REGNO (x) + i);
740 return;
741
742 case UNSPEC_VOLATILE:
743 case ASM_INPUT:
744 /* Traditional asm's are always volatile. */
745 res->volatil = 1;
746 return;
747
748 case TRAP_IF:
749 res->volatil = 1;
750 break;
751
752 case ASM_OPERANDS:
753 res->volatil = MEM_VOLATILE_P (x);
754
755 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
756 We can not just fall through here since then we would be confused
757 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
758 traditional asms unlike their normal usage. */
759
760 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
761 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest, 0);
762 return;
763
764 default:
765 break;
766 }
767
768 /* Process each sub-expression and flag what it needs. */
769 format_ptr = GET_RTX_FORMAT (code);
770 for (i = 0; i < GET_RTX_LENGTH (code); i++)
771 switch (*format_ptr++)
772 {
773 case 'e':
774 mark_set_resources (XEXP (x, i), res, in_dest, include_delayed_effects);
775 break;
776
777 case 'E':
778 for (j = 0; j < XVECLEN (x, i); j++)
779 mark_set_resources (XVECEXP (x, i, j), res, in_dest,
780 include_delayed_effects);
781 break;
782 }
783 }
784 \f
785 /* Set the resources that are live at TARGET.
786
787 If TARGET is zero, we refer to the end of the current function and can
788 return our precomputed value.
789
790 Otherwise, we try to find out what is live by consulting the basic block
791 information. This is tricky, because we must consider the actions of
792 reload and jump optimization, which occur after the basic block information
793 has been computed.
794
795 Accordingly, we proceed as follows::
796
797 We find the previous BARRIER and look at all immediately following labels
798 (with no intervening active insns) to see if any of them start a basic
799 block. If we hit the start of the function first, we use block 0.
800
801 Once we have found a basic block and a corresponding first insns, we can
802 accurately compute the live status from basic_block_live_regs and
803 reg_renumber. (By starting at a label following a BARRIER, we are immune
804 to actions taken by reload and jump.) Then we scan all insns between
805 that point and our target. For each CLOBBER (or for call-clobbered regs
806 when we pass a CALL_INSN), mark the appropriate registers are dead. For
807 a SET, mark them as live.
808
809 We have to be careful when using REG_DEAD notes because they are not
810 updated by such things as find_equiv_reg. So keep track of registers
811 marked as dead that haven't been assigned to, and mark them dead at the
812 next CODE_LABEL since reload and jump won't propagate values across labels.
813
814 If we cannot find the start of a basic block (should be a very rare
815 case, if it can happen at all), mark everything as potentially live.
816
817 Next, scan forward from TARGET looking for things set or clobbered
818 before they are used. These are not live.
819
820 Because we can be called many times on the same target, save our results
821 in a hash table indexed by INSN_UID. This is only done if the function
822 init_resource_info () was invoked before we are called. */
823
824 void
825 mark_target_live_regs (insns, target, res)
826 rtx insns;
827 rtx target;
828 struct resources *res;
829 {
830 int b = -1;
831 int i;
832 struct target_info *tinfo = NULL;
833 rtx insn;
834 rtx jump_insn = 0;
835 rtx jump_target;
836 HARD_REG_SET scratch;
837 struct resources set, needed;
838
839 /* Handle end of function. */
840 if (target == 0)
841 {
842 *res = end_of_function_needs;
843 return;
844 }
845
846 /* We have to assume memory is needed, but the CC isn't. */
847 res->memory = 1;
848 res->volatil = res->unch_memory = 0;
849 res->cc = 0;
850
851 /* See if we have computed this value already. */
852 if (target_hash_table != NULL)
853 {
854 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
855 tinfo; tinfo = tinfo->next)
856 if (tinfo->uid == INSN_UID (target))
857 break;
858
859 /* Start by getting the basic block number. If we have saved
860 information, we can get it from there unless the insn at the
861 start of the basic block has been deleted. */
862 if (tinfo && tinfo->block != -1
863 && ! INSN_DELETED_P (BLOCK_HEAD (tinfo->block)))
864 b = tinfo->block;
865 }
866
867 if (b == -1)
868 b = find_basic_block (target);
869
870 if (target_hash_table != NULL)
871 {
872 if (tinfo)
873 {
874 /* If the information is up-to-date, use it. Otherwise, we will
875 update it below. */
876 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
877 {
878 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
879 return;
880 }
881 }
882 else
883 {
884 /* Allocate a place to put our results and chain it into the
885 hash table. */
886 tinfo = (struct target_info *) oballoc (sizeof (struct target_info));
887 tinfo->uid = INSN_UID (target);
888 tinfo->block = b;
889 tinfo->next = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
890 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
891 }
892 }
893
894 CLEAR_HARD_REG_SET (pending_dead_regs);
895
896 /* If we found a basic block, get the live registers from it and update
897 them with anything set or killed between its start and the insn before
898 TARGET. Otherwise, we must assume everything is live. */
899 if (b != -1)
900 {
901 regset regs_live = BASIC_BLOCK (b)->global_live_at_start;
902 int j;
903 int regno;
904 rtx start_insn, stop_insn;
905
906 /* Compute hard regs live at start of block -- this is the real hard regs
907 marked live, plus live pseudo regs that have been renumbered to
908 hard regs. */
909
910 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
911
912 EXECUTE_IF_SET_IN_REG_SET
913 (regs_live, FIRST_PSEUDO_REGISTER, i,
914 {
915 if ((regno = reg_renumber[i]) >= 0)
916 for (j = regno;
917 j < regno + HARD_REGNO_NREGS (regno,
918 PSEUDO_REGNO_MODE (i));
919 j++)
920 SET_HARD_REG_BIT (current_live_regs, j);
921 });
922
923 /* Get starting and ending insn, handling the case where each might
924 be a SEQUENCE. */
925 start_insn = (b == 0 ? insns : BLOCK_HEAD (b));
926 stop_insn = target;
927
928 if (GET_CODE (start_insn) == INSN
929 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
930 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
931
932 if (GET_CODE (stop_insn) == INSN
933 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
934 stop_insn = next_insn (PREV_INSN (stop_insn));
935
936 for (insn = start_insn; insn != stop_insn;
937 insn = next_insn_no_annul (insn))
938 {
939 rtx link;
940 rtx real_insn = insn;
941
942 /* If this insn is from the target of a branch, it isn't going to
943 be used in the sequel. If it is used in both cases, this
944 test will not be true. */
945 if (INSN_FROM_TARGET_P (insn))
946 continue;
947
948 /* If this insn is a USE made by update_block, we care about the
949 underlying insn. */
950 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == USE
951 && GET_RTX_CLASS (GET_CODE (XEXP (PATTERN (insn), 0))) == 'i')
952 real_insn = XEXP (PATTERN (insn), 0);
953
954 if (GET_CODE (real_insn) == CALL_INSN)
955 {
956 /* CALL clobbers all call-used regs that aren't fixed except
957 sp, ap, and fp. Do this before setting the result of the
958 call live. */
959 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
960 if (call_used_regs[i]
961 && i != STACK_POINTER_REGNUM && i != FRAME_POINTER_REGNUM
962 && i != ARG_POINTER_REGNUM
963 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
964 && i != HARD_FRAME_POINTER_REGNUM
965 #endif
966 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
967 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
968 #endif
969 #ifdef PIC_OFFSET_TABLE_REGNUM
970 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
971 #endif
972 )
973 CLEAR_HARD_REG_BIT (current_live_regs, i);
974
975 /* A CALL_INSN sets any global register live, since it may
976 have been modified by the call. */
977 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
978 if (global_regs[i])
979 SET_HARD_REG_BIT (current_live_regs, i);
980 }
981
982 /* Mark anything killed in an insn to be deadened at the next
983 label. Ignore USE insns; the only REG_DEAD notes will be for
984 parameters. But they might be early. A CALL_INSN will usually
985 clobber registers used for parameters. It isn't worth bothering
986 with the unlikely case when it won't. */
987 if ((GET_CODE (real_insn) == INSN
988 && GET_CODE (PATTERN (real_insn)) != USE
989 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
990 || GET_CODE (real_insn) == JUMP_INSN
991 || GET_CODE (real_insn) == CALL_INSN)
992 {
993 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
994 if (REG_NOTE_KIND (link) == REG_DEAD
995 && GET_CODE (XEXP (link, 0)) == REG
996 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
997 {
998 int first_regno = REGNO (XEXP (link, 0));
999 int last_regno
1000 = (first_regno
1001 + HARD_REGNO_NREGS (first_regno,
1002 GET_MODE (XEXP (link, 0))));
1003
1004 for (i = first_regno; i < last_regno; i++)
1005 SET_HARD_REG_BIT (pending_dead_regs, i);
1006 }
1007
1008 note_stores (PATTERN (real_insn), update_live_status);
1009
1010 /* If any registers were unused after this insn, kill them.
1011 These notes will always be accurate. */
1012 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1013 if (REG_NOTE_KIND (link) == REG_UNUSED
1014 && GET_CODE (XEXP (link, 0)) == REG
1015 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1016 {
1017 int first_regno = REGNO (XEXP (link, 0));
1018 int last_regno
1019 = (first_regno
1020 + HARD_REGNO_NREGS (first_regno,
1021 GET_MODE (XEXP (link, 0))));
1022
1023 for (i = first_regno; i < last_regno; i++)
1024 CLEAR_HARD_REG_BIT (current_live_regs, i);
1025 }
1026 }
1027
1028 else if (GET_CODE (real_insn) == CODE_LABEL)
1029 {
1030 /* A label clobbers the pending dead registers since neither
1031 reload nor jump will propagate a value across a label. */
1032 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1033 CLEAR_HARD_REG_SET (pending_dead_regs);
1034 }
1035
1036 /* The beginning of the epilogue corresponds to the end of the
1037 RTL chain when there are no epilogue insns. Certain resources
1038 are implicitly required at that point. */
1039 else if (GET_CODE (real_insn) == NOTE
1040 && NOTE_LINE_NUMBER (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1041 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1042 }
1043
1044 COPY_HARD_REG_SET (res->regs, current_live_regs);
1045 if (tinfo != NULL)
1046 {
1047 tinfo->block = b;
1048 tinfo->bb_tick = bb_ticks[b];
1049 }
1050 }
1051 else
1052 /* We didn't find the start of a basic block. Assume everything
1053 in use. This should happen only extremely rarely. */
1054 SET_HARD_REG_SET (res->regs);
1055
1056 CLEAR_RESOURCE (&set);
1057 CLEAR_RESOURCE (&needed);
1058
1059 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1060 set, needed);
1061
1062 /* If we hit an unconditional branch, we have another way of finding out
1063 what is live: we can see what is live at the branch target and include
1064 anything used but not set before the branch. The only things that are
1065 live are those that are live using the above test and the test below. */
1066
1067 if (jump_insn)
1068 {
1069 struct resources new_resources;
1070 rtx stop_insn = next_active_insn (jump_insn);
1071
1072 mark_target_live_regs (insns, next_active_insn (jump_target),
1073 &new_resources);
1074 CLEAR_RESOURCE (&set);
1075 CLEAR_RESOURCE (&needed);
1076
1077 /* Include JUMP_INSN in the needed registers. */
1078 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1079 {
1080 mark_referenced_resources (insn, &needed, 1);
1081
1082 COPY_HARD_REG_SET (scratch, needed.regs);
1083 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1084 IOR_HARD_REG_SET (new_resources.regs, scratch);
1085
1086 mark_set_resources (insn, &set, 0, 1);
1087 }
1088
1089 AND_HARD_REG_SET (res->regs, new_resources.regs);
1090 }
1091
1092 if (tinfo != NULL)
1093 {
1094 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1095 }
1096 }
1097 \f
1098 /* Initialize the resources required by mark_target_live_regs ().
1099 This should be invoked before the first call to mark_target_live_regs. */
1100
1101 void
1102 init_resource_info (epilogue_insn)
1103 rtx epilogue_insn;
1104 {
1105 int i;
1106
1107 /* Indicate what resources are required to be valid at the end of the current
1108 function. The condition code never is and memory always is. If the
1109 frame pointer is needed, it is and so is the stack pointer unless
1110 EXIT_IGNORE_STACK is non-zero. If the frame pointer is not needed, the
1111 stack pointer is. Registers used to return the function value are
1112 needed. Registers holding global variables are needed. */
1113
1114 end_of_function_needs.cc = 0;
1115 end_of_function_needs.memory = 1;
1116 end_of_function_needs.unch_memory = 0;
1117 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1118
1119 if (frame_pointer_needed)
1120 {
1121 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1122 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1123 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1124 #endif
1125 #ifdef EXIT_IGNORE_STACK
1126 if (! EXIT_IGNORE_STACK
1127 || current_function_sp_is_unchanging)
1128 #endif
1129 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1130 }
1131 else
1132 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1133
1134 if (current_function_return_rtx != 0)
1135 mark_referenced_resources (current_function_return_rtx,
1136 &end_of_function_needs, 1);
1137
1138 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1139 if (global_regs[i]
1140 #ifdef EPILOGUE_USES
1141 || EPILOGUE_USES (i)
1142 #endif
1143 )
1144 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1145
1146 /* The registers required to be live at the end of the function are
1147 represented in the flow information as being dead just prior to
1148 reaching the end of the function. For example, the return of a value
1149 might be represented by a USE of the return register immediately
1150 followed by an unconditional jump to the return label where the
1151 return label is the end of the RTL chain. The end of the RTL chain
1152 is then taken to mean that the return register is live.
1153
1154 This sequence is no longer maintained when epilogue instructions are
1155 added to the RTL chain. To reconstruct the original meaning, the
1156 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1157 point where these registers become live (start_of_epilogue_needs).
1158 If epilogue instructions are present, the registers set by those
1159 instructions won't have been processed by flow. Thus, those
1160 registers are additionally required at the end of the RTL chain
1161 (end_of_function_needs). */
1162
1163 start_of_epilogue_needs = end_of_function_needs;
1164
1165 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1166 mark_set_resources (epilogue_insn, &end_of_function_needs, 0, 1);
1167
1168 /* Allocate and initialize the tables used by mark_target_live_regs. */
1169 target_hash_table
1170 = (struct target_info **) xmalloc ((TARGET_HASH_PRIME
1171 * sizeof (struct target_info *)));
1172 bzero ((char *) target_hash_table,
1173 TARGET_HASH_PRIME * sizeof (struct target_info *));
1174
1175 bb_ticks = (int *) xmalloc (n_basic_blocks * sizeof (int));
1176 bzero ((char *) bb_ticks, n_basic_blocks * sizeof (int));
1177 }
1178 \f
1179 /* Free up the resources allcated to mark_target_live_regs (). This
1180 should be invoked after the last call to mark_target_live_regs (). */
1181
1182 void
1183 free_resource_info ()
1184 {
1185 if (target_hash_table != NULL)
1186 {
1187 free (target_hash_table);
1188 target_hash_table = NULL;
1189 }
1190
1191 if (bb_ticks != NULL)
1192 {
1193 free (bb_ticks);
1194 bb_ticks = NULL;
1195 }
1196 }
1197 \f
1198 /* Clear any hashed information that we have stored for INSN. */
1199
1200 void
1201 clear_hashed_info_for_insn (insn)
1202 rtx insn;
1203 {
1204 struct target_info *tinfo;
1205
1206 if (target_hash_table != NULL)
1207 {
1208 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1209 tinfo; tinfo = tinfo->next)
1210 if (tinfo->uid == INSN_UID (insn))
1211 break;
1212
1213 if (tinfo)
1214 tinfo->block = -1;
1215 }
1216 }
1217 \f
1218 /* Increment the tick count for the basic block that contains INSN. */
1219
1220 void
1221 incr_ticks_for_insn (insn)
1222 rtx insn;
1223 {
1224 int b = find_basic_block (insn);
1225
1226 if (b != -1)
1227 bb_ticks[b]++;
1228 }
1229 \f
1230 /* Add TRIAL to the set of resources used at the end of the current
1231 function. */
1232 void
1233 mark_end_of_function_resources (trial, include_delayed_effects)
1234 rtx trial;
1235 int include_delayed_effects;
1236 {
1237 mark_referenced_resources (trial, &end_of_function_needs,
1238 include_delayed_effects);
1239 }
1240 \f
1241 /* Try to find an available hard register of mode MODE at
1242 CURRENT_INSN, matching the register class in CLASS_STR. Registers
1243 that already have bits set in REG_SET will not be considered.
1244
1245 If an appropriate register is available, it will be returned and the
1246 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
1247 returned. */
1248
1249 rtx
1250 find_free_register (current_insn, class_str, mode, reg_set)
1251 rtx current_insn;
1252 char *class_str;
1253 int mode;
1254 HARD_REG_SET *reg_set;
1255 {
1256 int i, j;
1257 struct resources used;
1258 unsigned char clet = class_str[0];
1259 enum reg_class class
1260 = (clet == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (clet));
1261
1262 mark_target_live_regs (get_insns (), current_insn, &used);
1263
1264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1265 {
1266 int success = 1;
1267
1268 if (! TEST_HARD_REG_BIT (reg_class_contents[class], i))
1269 continue;
1270 for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
1271 {
1272 if (TEST_HARD_REG_BIT (*reg_set, i + j)
1273 || TEST_HARD_REG_BIT (used.regs, i + j))
1274 {
1275 success = 0;
1276 break;
1277 }
1278 }
1279 if (success)
1280 {
1281 for (j = HARD_REGNO_NREGS (i, mode) - 1; j >= 0; j--)
1282 {
1283 SET_HARD_REG_BIT (*reg_set, i + j);
1284 }
1285 return gen_rtx_REG (mode, i);
1286 }
1287 }
1288 return NULL_RTX;
1289 }