resource.c (find_basic_block): Use BLOCK_FOR_INSN to look up a label's basic block.
[gcc.git] / gcc / resource.c
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
38
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
43
44 struct target_info
45 {
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
51 };
52
53 #define TARGET_HASH_PRIME 257
54
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
57
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
60
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
63
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
68
69 static int *bb_ticks;
70
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
73
74 static HARD_REG_SET current_live_regs;
75
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
78
79 static HARD_REG_SET pending_dead_regs;
80 \f
81 static void update_live_status (rtx, const_rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
87 \f
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
90
91 static void
92 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93 {
94 int first_regno, last_regno;
95 int i;
96
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
100
101 if (GET_CODE (dest) == SUBREG)
102 {
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
105
106 }
107 else
108 {
109 first_regno = REGNO (dest);
110 last_regno = END_HARD_REGNO (dest);
111 }
112
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
118 {
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
121 }
122 }
123
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
129
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
134
135 static int
136 find_basic_block (rtx insn, int search_limit)
137 {
138 /* Scan backwards to the previous BARRIER. Then see if we can find a
139 label that starts a basic block. Return the basic block number. */
140 for (insn = prev_nonnote_insn (insn);
141 insn && !BARRIER_P (insn) && search_limit != 0;
142 insn = prev_nonnote_insn (insn), --search_limit)
143 ;
144
145 /* The closest BARRIER is too far away. */
146 if (search_limit == 0)
147 return -1;
148
149 /* The start of the function. */
150 else if (insn == 0)
151 return ENTRY_BLOCK_PTR->next_bb->index;
152
153 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
154 anything other than a CODE_LABEL or note, we can't find this code. */
155 for (insn = next_nonnote_insn (insn);
156 insn && LABEL_P (insn);
157 insn = next_nonnote_insn (insn))
158 if (BLOCK_FOR_INSN (insn))
159 return BLOCK_FOR_INSN (insn)->index;
160
161 return -1;
162 }
163 \f
164 /* Similar to next_insn, but ignores insns in the delay slots of
165 an annulled branch. */
166
167 static rtx
168 next_insn_no_annul (rtx insn)
169 {
170 if (insn)
171 {
172 /* If INSN is an annulled branch, skip any insns from the target
173 of the branch. */
174 if (INSN_P (insn)
175 && INSN_ANNULLED_BRANCH_P (insn)
176 && NEXT_INSN (PREV_INSN (insn)) != insn)
177 {
178 rtx next = NEXT_INSN (insn);
179 enum rtx_code code = GET_CODE (next);
180
181 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
182 && INSN_FROM_TARGET_P (next))
183 {
184 insn = next;
185 next = NEXT_INSN (insn);
186 code = GET_CODE (next);
187 }
188 }
189
190 insn = NEXT_INSN (insn);
191 if (insn && NONJUMP_INSN_P (insn)
192 && GET_CODE (PATTERN (insn)) == SEQUENCE)
193 insn = XVECEXP (PATTERN (insn), 0, 0);
194 }
195
196 return insn;
197 }
198 \f
199 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
200 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
201 is TRUE, resources used by the called routine will be included for
202 CALL_INSNs. */
203
204 void
205 mark_referenced_resources (rtx x, struct resources *res,
206 int include_delayed_effects)
207 {
208 enum rtx_code code = GET_CODE (x);
209 int i, j;
210 unsigned int r;
211 const char *format_ptr;
212
213 /* Handle leaf items for which we set resource flags. Also, special-case
214 CALL, SET and CLOBBER operators. */
215 switch (code)
216 {
217 case CONST:
218 case CONST_INT:
219 case CONST_DOUBLE:
220 case CONST_FIXED:
221 case CONST_VECTOR:
222 case PC:
223 case SYMBOL_REF:
224 case LABEL_REF:
225 return;
226
227 case SUBREG:
228 if (!REG_P (SUBREG_REG (x)))
229 mark_referenced_resources (SUBREG_REG (x), res, 0);
230 else
231 {
232 unsigned int regno = subreg_regno (x);
233 unsigned int last_regno = regno + subreg_nregs (x);
234
235 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
236 for (r = regno; r < last_regno; r++)
237 SET_HARD_REG_BIT (res->regs, r);
238 }
239 return;
240
241 case REG:
242 gcc_assert (HARD_REGISTER_P (x));
243 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
244 return;
245
246 case MEM:
247 /* If this memory shouldn't change, it really isn't referencing
248 memory. */
249 if (MEM_READONLY_P (x))
250 res->unch_memory = 1;
251 else
252 res->memory = 1;
253 res->volatil |= MEM_VOLATILE_P (x);
254
255 /* Mark registers used to access memory. */
256 mark_referenced_resources (XEXP (x, 0), res, 0);
257 return;
258
259 case CC0:
260 res->cc = 1;
261 return;
262
263 case UNSPEC_VOLATILE:
264 case TRAP_IF:
265 case ASM_INPUT:
266 /* Traditional asm's are always volatile. */
267 res->volatil = 1;
268 break;
269
270 case ASM_OPERANDS:
271 res->volatil |= MEM_VOLATILE_P (x);
272
273 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
274 We can not just fall through here since then we would be confused
275 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
276 traditional asms unlike their normal usage. */
277
278 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
279 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
280 return;
281
282 case CALL:
283 /* The first operand will be a (MEM (xxx)) but doesn't really reference
284 memory. The second operand may be referenced, though. */
285 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
286 mark_referenced_resources (XEXP (x, 1), res, 0);
287 return;
288
289 case SET:
290 /* Usually, the first operand of SET is set, not referenced. But
291 registers used to access memory are referenced. SET_DEST is
292 also referenced if it is a ZERO_EXTRACT. */
293
294 mark_referenced_resources (SET_SRC (x), res, 0);
295
296 x = SET_DEST (x);
297 if (GET_CODE (x) == ZERO_EXTRACT
298 || GET_CODE (x) == STRICT_LOW_PART)
299 mark_referenced_resources (x, res, 0);
300 else if (GET_CODE (x) == SUBREG)
301 x = SUBREG_REG (x);
302 if (MEM_P (x))
303 mark_referenced_resources (XEXP (x, 0), res, 0);
304 return;
305
306 case CLOBBER:
307 return;
308
309 case CALL_INSN:
310 if (include_delayed_effects)
311 {
312 /* A CALL references memory, the frame pointer if it exists, the
313 stack pointer, any global registers and any registers given in
314 USE insns immediately in front of the CALL.
315
316 However, we may have moved some of the parameter loading insns
317 into the delay slot of this CALL. If so, the USE's for them
318 don't count and should be skipped. */
319 rtx insn = PREV_INSN (x);
320 rtx sequence = 0;
321 int seq_size = 0;
322 int i;
323
324 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
325 if (NEXT_INSN (insn) != x)
326 {
327 sequence = PATTERN (NEXT_INSN (insn));
328 seq_size = XVECLEN (sequence, 0);
329 gcc_assert (GET_CODE (sequence) == SEQUENCE);
330 }
331
332 res->memory = 1;
333 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
334 if (frame_pointer_needed)
335 {
336 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
337 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
338 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
339 #endif
340 }
341
342 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
343 if (global_regs[i])
344 SET_HARD_REG_BIT (res->regs, i);
345
346 /* Check for a REG_SETJMP. If it exists, then we must
347 assume that this call can need any register.
348
349 This is done to be more conservative about how we handle setjmp.
350 We assume that they both use and set all registers. Using all
351 registers ensures that a register will not be considered dead
352 just because it crosses a setjmp call. A register should be
353 considered dead only if the setjmp call returns nonzero. */
354 if (find_reg_note (x, REG_SETJMP, NULL))
355 SET_HARD_REG_SET (res->regs);
356
357 {
358 rtx link;
359
360 for (link = CALL_INSN_FUNCTION_USAGE (x);
361 link;
362 link = XEXP (link, 1))
363 if (GET_CODE (XEXP (link, 0)) == USE)
364 {
365 for (i = 1; i < seq_size; i++)
366 {
367 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
368 if (GET_CODE (slot_pat) == SET
369 && rtx_equal_p (SET_DEST (slot_pat),
370 XEXP (XEXP (link, 0), 0)))
371 break;
372 }
373 if (i >= seq_size)
374 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
375 res, 0);
376 }
377 }
378 }
379
380 /* ... fall through to other INSN processing ... */
381
382 case INSN:
383 case JUMP_INSN:
384
385 #ifdef INSN_REFERENCES_ARE_DELAYED
386 if (! include_delayed_effects
387 && INSN_REFERENCES_ARE_DELAYED (x))
388 return;
389 #endif
390
391 /* No special processing, just speed up. */
392 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
393 return;
394
395 default:
396 break;
397 }
398
399 /* Process each sub-expression and flag what it needs. */
400 format_ptr = GET_RTX_FORMAT (code);
401 for (i = 0; i < GET_RTX_LENGTH (code); i++)
402 switch (*format_ptr++)
403 {
404 case 'e':
405 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
406 break;
407
408 case 'E':
409 for (j = 0; j < XVECLEN (x, i); j++)
410 mark_referenced_resources (XVECEXP (x, i, j), res,
411 include_delayed_effects);
412 break;
413 }
414 }
415 \f
416 /* A subroutine of mark_target_live_regs. Search forward from TARGET
417 looking for registers that are set before they are used. These are dead.
418 Stop after passing a few conditional jumps, and/or a small
419 number of unconditional branches. */
420
421 static rtx
422 find_dead_or_set_registers (rtx target, struct resources *res,
423 rtx *jump_target, int jump_count,
424 struct resources set, struct resources needed)
425 {
426 HARD_REG_SET scratch;
427 rtx insn, next;
428 rtx jump_insn = 0;
429 int i;
430
431 for (insn = target; insn; insn = next)
432 {
433 rtx this_jump_insn = insn;
434
435 next = NEXT_INSN (insn);
436
437 /* If this instruction can throw an exception, then we don't
438 know where we might end up next. That means that we have to
439 assume that whatever we have already marked as live really is
440 live. */
441 if (can_throw_internal (insn))
442 break;
443
444 switch (GET_CODE (insn))
445 {
446 case CODE_LABEL:
447 /* After a label, any pending dead registers that weren't yet
448 used can be made dead. */
449 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
450 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
451 CLEAR_HARD_REG_SET (pending_dead_regs);
452
453 continue;
454
455 case BARRIER:
456 case NOTE:
457 continue;
458
459 case INSN:
460 if (GET_CODE (PATTERN (insn)) == USE)
461 {
462 /* If INSN is a USE made by update_block, we care about the
463 underlying insn. Any registers set by the underlying insn
464 are live since the insn is being done somewhere else. */
465 if (INSN_P (XEXP (PATTERN (insn), 0)))
466 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
467 MARK_SRC_DEST_CALL);
468
469 /* All other USE insns are to be ignored. */
470 continue;
471 }
472 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
473 continue;
474 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
475 {
476 /* An unconditional jump can be used to fill the delay slot
477 of a call, so search for a JUMP_INSN in any position. */
478 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
479 {
480 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
481 if (JUMP_P (this_jump_insn))
482 break;
483 }
484 }
485
486 default:
487 break;
488 }
489
490 if (JUMP_P (this_jump_insn))
491 {
492 if (jump_count++ < 10)
493 {
494 if (any_uncondjump_p (this_jump_insn)
495 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
496 {
497 next = JUMP_LABEL (this_jump_insn);
498 if (jump_insn == 0)
499 {
500 jump_insn = insn;
501 if (jump_target)
502 *jump_target = JUMP_LABEL (this_jump_insn);
503 }
504 }
505 else if (any_condjump_p (this_jump_insn))
506 {
507 struct resources target_set, target_res;
508 struct resources fallthrough_res;
509
510 /* We can handle conditional branches here by following
511 both paths, and then IOR the results of the two paths
512 together, which will give us registers that are dead
513 on both paths. Since this is expensive, we give it
514 a much higher cost than unconditional branches. The
515 cost was chosen so that we will follow at most 1
516 conditional branch. */
517
518 jump_count += 4;
519 if (jump_count >= 10)
520 break;
521
522 mark_referenced_resources (insn, &needed, 1);
523
524 /* For an annulled branch, mark_set_resources ignores slots
525 filled by instructions from the target. This is correct
526 if the branch is not taken. Since we are following both
527 paths from the branch, we must also compute correct info
528 if the branch is taken. We do this by inverting all of
529 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
530 and then inverting the INSN_FROM_TARGET_P bits again. */
531
532 if (GET_CODE (PATTERN (insn)) == SEQUENCE
533 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
534 {
535 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
536 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
537 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
538
539 target_set = set;
540 mark_set_resources (insn, &target_set, 0,
541 MARK_SRC_DEST_CALL);
542
543 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
546
547 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
548 }
549 else
550 {
551 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
552 target_set = set;
553 }
554
555 target_res = *res;
556 COPY_HARD_REG_SET (scratch, target_set.regs);
557 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
558 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
559
560 fallthrough_res = *res;
561 COPY_HARD_REG_SET (scratch, set.regs);
562 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
563 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
564
565 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
566 &target_res, 0, jump_count,
567 target_set, needed);
568 find_dead_or_set_registers (next,
569 &fallthrough_res, 0, jump_count,
570 set, needed);
571 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
572 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
573 break;
574 }
575 else
576 break;
577 }
578 else
579 {
580 /* Don't try this optimization if we expired our jump count
581 above, since that would mean there may be an infinite loop
582 in the function being compiled. */
583 jump_insn = 0;
584 break;
585 }
586 }
587
588 mark_referenced_resources (insn, &needed, 1);
589 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
590
591 COPY_HARD_REG_SET (scratch, set.regs);
592 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
593 AND_COMPL_HARD_REG_SET (res->regs, scratch);
594 }
595
596 return jump_insn;
597 }
598 \f
599 /* Given X, a part of an insn, and a pointer to a `struct resource',
600 RES, indicate which resources are modified by the insn. If
601 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
602 set by the called routine.
603
604 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
605 objects are being referenced instead of set.
606
607 We never mark the insn as modifying the condition code unless it explicitly
608 SETs CC0 even though this is not totally correct. The reason for this is
609 that we require a SET of CC0 to immediately precede the reference to CC0.
610 So if some other insn sets CC0 as a side-effect, we know it cannot affect
611 our computation and thus may be placed in a delay slot. */
612
613 void
614 mark_set_resources (rtx x, struct resources *res, int in_dest,
615 enum mark_resource_type mark_type)
616 {
617 enum rtx_code code;
618 int i, j;
619 unsigned int r;
620 const char *format_ptr;
621
622 restart:
623
624 code = GET_CODE (x);
625
626 switch (code)
627 {
628 case NOTE:
629 case BARRIER:
630 case CODE_LABEL:
631 case USE:
632 case CONST_INT:
633 case CONST_DOUBLE:
634 case CONST_FIXED:
635 case CONST_VECTOR:
636 case LABEL_REF:
637 case SYMBOL_REF:
638 case CONST:
639 case PC:
640 /* These don't set any resources. */
641 return;
642
643 case CC0:
644 if (in_dest)
645 res->cc = 1;
646 return;
647
648 case CALL_INSN:
649 /* Called routine modifies the condition code, memory, any registers
650 that aren't saved across calls, global registers and anything
651 explicitly CLOBBERed immediately after the CALL_INSN. */
652
653 if (mark_type == MARK_SRC_DEST_CALL)
654 {
655 rtx link;
656
657 res->cc = res->memory = 1;
658
659 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
660
661 for (link = CALL_INSN_FUNCTION_USAGE (x);
662 link; link = XEXP (link, 1))
663 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
664 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
665 MARK_SRC_DEST);
666
667 /* Check for a REG_SETJMP. If it exists, then we must
668 assume that this call can clobber any register. */
669 if (find_reg_note (x, REG_SETJMP, NULL))
670 SET_HARD_REG_SET (res->regs);
671 }
672
673 /* ... and also what its RTL says it modifies, if anything. */
674
675 case JUMP_INSN:
676 case INSN:
677
678 /* An insn consisting of just a CLOBBER (or USE) is just for flow
679 and doesn't actually do anything, so we ignore it. */
680
681 #ifdef INSN_SETS_ARE_DELAYED
682 if (mark_type != MARK_SRC_DEST_CALL
683 && INSN_SETS_ARE_DELAYED (x))
684 return;
685 #endif
686
687 x = PATTERN (x);
688 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
689 goto restart;
690 return;
691
692 case SET:
693 /* If the source of a SET is a CALL, this is actually done by
694 the called routine. So only include it if we are to include the
695 effects of the calling routine. */
696
697 mark_set_resources (SET_DEST (x), res,
698 (mark_type == MARK_SRC_DEST_CALL
699 || GET_CODE (SET_SRC (x)) != CALL),
700 mark_type);
701
702 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
703 return;
704
705 case CLOBBER:
706 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
707 return;
708
709 case SEQUENCE:
710 for (i = 0; i < XVECLEN (x, 0); i++)
711 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
712 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
713 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
714 return;
715
716 case POST_INC:
717 case PRE_INC:
718 case POST_DEC:
719 case PRE_DEC:
720 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
721 return;
722
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
726 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
727 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
728 return;
729
730 case SIGN_EXTRACT:
731 case ZERO_EXTRACT:
732 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
733 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
734 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
735 return;
736
737 case MEM:
738 if (in_dest)
739 {
740 res->memory = 1;
741 res->unch_memory |= MEM_READONLY_P (x);
742 res->volatil |= MEM_VOLATILE_P (x);
743 }
744
745 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
746 return;
747
748 case SUBREG:
749 if (in_dest)
750 {
751 if (!REG_P (SUBREG_REG (x)))
752 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
753 else
754 {
755 unsigned int regno = subreg_regno (x);
756 unsigned int last_regno = regno + subreg_nregs (x);
757
758 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
759 for (r = regno; r < last_regno; r++)
760 SET_HARD_REG_BIT (res->regs, r);
761 }
762 }
763 return;
764
765 case REG:
766 if (in_dest)
767 {
768 gcc_assert (HARD_REGISTER_P (x));
769 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
770 }
771 return;
772
773 case UNSPEC_VOLATILE:
774 case ASM_INPUT:
775 /* Traditional asm's are always volatile. */
776 res->volatil = 1;
777 return;
778
779 case TRAP_IF:
780 res->volatil = 1;
781 break;
782
783 case ASM_OPERANDS:
784 res->volatil |= MEM_VOLATILE_P (x);
785
786 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
787 We can not just fall through here since then we would be confused
788 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
789 traditional asms unlike their normal usage. */
790
791 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
792 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
793 MARK_SRC_DEST);
794 return;
795
796 default:
797 break;
798 }
799
800 /* Process each sub-expression and flag what it needs. */
801 format_ptr = GET_RTX_FORMAT (code);
802 for (i = 0; i < GET_RTX_LENGTH (code); i++)
803 switch (*format_ptr++)
804 {
805 case 'e':
806 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
807 break;
808
809 case 'E':
810 for (j = 0; j < XVECLEN (x, i); j++)
811 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
812 break;
813 }
814 }
815 \f
816 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
817
818 static bool
819 return_insn_p (const_rtx insn)
820 {
821 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
822 return true;
823
824 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
825 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
826
827 return false;
828 }
829
830 /* Set the resources that are live at TARGET.
831
832 If TARGET is zero, we refer to the end of the current function and can
833 return our precomputed value.
834
835 Otherwise, we try to find out what is live by consulting the basic block
836 information. This is tricky, because we must consider the actions of
837 reload and jump optimization, which occur after the basic block information
838 has been computed.
839
840 Accordingly, we proceed as follows::
841
842 We find the previous BARRIER and look at all immediately following labels
843 (with no intervening active insns) to see if any of them start a basic
844 block. If we hit the start of the function first, we use block 0.
845
846 Once we have found a basic block and a corresponding first insn, we can
847 accurately compute the live status (by starting at a label following a
848 BARRIER, we are immune to actions taken by reload and jump.) Then we
849 scan all insns between that point and our target. For each CLOBBER (or
850 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
851 registers are dead. For a SET, mark them as live.
852
853 We have to be careful when using REG_DEAD notes because they are not
854 updated by such things as find_equiv_reg. So keep track of registers
855 marked as dead that haven't been assigned to, and mark them dead at the
856 next CODE_LABEL since reload and jump won't propagate values across labels.
857
858 If we cannot find the start of a basic block (should be a very rare
859 case, if it can happen at all), mark everything as potentially live.
860
861 Next, scan forward from TARGET looking for things set or clobbered
862 before they are used. These are not live.
863
864 Because we can be called many times on the same target, save our results
865 in a hash table indexed by INSN_UID. This is only done if the function
866 init_resource_info () was invoked before we are called. */
867
868 void
869 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
870 {
871 int b = -1;
872 unsigned int i;
873 struct target_info *tinfo = NULL;
874 rtx insn;
875 rtx jump_insn = 0;
876 rtx jump_target;
877 HARD_REG_SET scratch;
878 struct resources set, needed;
879
880 /* Handle end of function. */
881 if (target == 0)
882 {
883 *res = end_of_function_needs;
884 return;
885 }
886
887 /* Handle return insn. */
888 else if (return_insn_p (target))
889 {
890 *res = end_of_function_needs;
891 mark_referenced_resources (target, res, 0);
892 return;
893 }
894
895 /* We have to assume memory is needed, but the CC isn't. */
896 res->memory = 1;
897 res->volatil = res->unch_memory = 0;
898 res->cc = 0;
899
900 /* See if we have computed this value already. */
901 if (target_hash_table != NULL)
902 {
903 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
904 tinfo; tinfo = tinfo->next)
905 if (tinfo->uid == INSN_UID (target))
906 break;
907
908 /* Start by getting the basic block number. If we have saved
909 information, we can get it from there unless the insn at the
910 start of the basic block has been deleted. */
911 if (tinfo && tinfo->block != -1
912 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
913 b = tinfo->block;
914 }
915
916 if (b == -1)
917 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
918
919 if (target_hash_table != NULL)
920 {
921 if (tinfo)
922 {
923 /* If the information is up-to-date, use it. Otherwise, we will
924 update it below. */
925 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
926 {
927 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
928 return;
929 }
930 }
931 else
932 {
933 /* Allocate a place to put our results and chain it into the
934 hash table. */
935 tinfo = XNEW (struct target_info);
936 tinfo->uid = INSN_UID (target);
937 tinfo->block = b;
938 tinfo->next
939 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
940 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
941 }
942 }
943
944 CLEAR_HARD_REG_SET (pending_dead_regs);
945
946 /* If we found a basic block, get the live registers from it and update
947 them with anything set or killed between its start and the insn before
948 TARGET. Otherwise, we must assume everything is live. */
949 if (b != -1)
950 {
951 regset regs_live = df_get_live_in (BASIC_BLOCK (b));
952 rtx start_insn, stop_insn;
953
954 /* Compute hard regs live at start of block. */
955 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
956
957 /* Get starting and ending insn, handling the case where each might
958 be a SEQUENCE. */
959 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
960 insns : BB_HEAD (BASIC_BLOCK (b)));
961 stop_insn = target;
962
963 if (NONJUMP_INSN_P (start_insn)
964 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
965 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
966
967 if (NONJUMP_INSN_P (stop_insn)
968 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
969 stop_insn = next_insn (PREV_INSN (stop_insn));
970
971 for (insn = start_insn; insn != stop_insn;
972 insn = next_insn_no_annul (insn))
973 {
974 rtx link;
975 rtx real_insn = insn;
976 enum rtx_code code = GET_CODE (insn);
977
978 /* If this insn is from the target of a branch, it isn't going to
979 be used in the sequel. If it is used in both cases, this
980 test will not be true. */
981 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
982 && INSN_FROM_TARGET_P (insn))
983 continue;
984
985 /* If this insn is a USE made by update_block, we care about the
986 underlying insn. */
987 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
988 && INSN_P (XEXP (PATTERN (insn), 0)))
989 real_insn = XEXP (PATTERN (insn), 0);
990
991 if (CALL_P (real_insn))
992 {
993 /* CALL clobbers all call-used regs that aren't fixed except
994 sp, ap, and fp. Do this before setting the result of the
995 call live. */
996 AND_COMPL_HARD_REG_SET (current_live_regs,
997 regs_invalidated_by_call);
998
999 /* A CALL_INSN sets any global register live, since it may
1000 have been modified by the call. */
1001 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1002 if (global_regs[i])
1003 SET_HARD_REG_BIT (current_live_regs, i);
1004 }
1005
1006 /* Mark anything killed in an insn to be deadened at the next
1007 label. Ignore USE insns; the only REG_DEAD notes will be for
1008 parameters. But they might be early. A CALL_INSN will usually
1009 clobber registers used for parameters. It isn't worth bothering
1010 with the unlikely case when it won't. */
1011 if ((NONJUMP_INSN_P (real_insn)
1012 && GET_CODE (PATTERN (real_insn)) != USE
1013 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1014 || JUMP_P (real_insn)
1015 || CALL_P (real_insn))
1016 {
1017 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1018 if (REG_NOTE_KIND (link) == REG_DEAD
1019 && REG_P (XEXP (link, 0))
1020 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1021 add_to_hard_reg_set (&pending_dead_regs,
1022 GET_MODE (XEXP (link, 0)),
1023 REGNO (XEXP (link, 0)));
1024
1025 note_stores (PATTERN (real_insn), update_live_status, NULL);
1026
1027 /* If any registers were unused after this insn, kill them.
1028 These notes will always be accurate. */
1029 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1030 if (REG_NOTE_KIND (link) == REG_UNUSED
1031 && REG_P (XEXP (link, 0))
1032 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1033 remove_from_hard_reg_set (&current_live_regs,
1034 GET_MODE (XEXP (link, 0)),
1035 REGNO (XEXP (link, 0)));
1036 }
1037
1038 else if (LABEL_P (real_insn))
1039 {
1040 basic_block bb;
1041
1042 /* A label clobbers the pending dead registers since neither
1043 reload nor jump will propagate a value across a label. */
1044 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1045 CLEAR_HARD_REG_SET (pending_dead_regs);
1046
1047 /* We must conservatively assume that all registers that used
1048 to be live here still are. The fallthrough edge may have
1049 left a live register uninitialized. */
1050 bb = BLOCK_FOR_INSN (real_insn);
1051 if (bb)
1052 {
1053 HARD_REG_SET extra_live;
1054
1055 REG_SET_TO_HARD_REG_SET (extra_live, df_get_live_in (bb));
1056 IOR_HARD_REG_SET (current_live_regs, extra_live);
1057 }
1058 }
1059
1060 /* The beginning of the epilogue corresponds to the end of the
1061 RTL chain when there are no epilogue insns. Certain resources
1062 are implicitly required at that point. */
1063 else if (NOTE_P (real_insn)
1064 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1065 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1066 }
1067
1068 COPY_HARD_REG_SET (res->regs, current_live_regs);
1069 if (tinfo != NULL)
1070 {
1071 tinfo->block = b;
1072 tinfo->bb_tick = bb_ticks[b];
1073 }
1074 }
1075 else
1076 /* We didn't find the start of a basic block. Assume everything
1077 in use. This should happen only extremely rarely. */
1078 SET_HARD_REG_SET (res->regs);
1079
1080 CLEAR_RESOURCE (&set);
1081 CLEAR_RESOURCE (&needed);
1082
1083 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1084 set, needed);
1085
1086 /* If we hit an unconditional branch, we have another way of finding out
1087 what is live: we can see what is live at the branch target and include
1088 anything used but not set before the branch. We add the live
1089 resources found using the test below to those found until now. */
1090
1091 if (jump_insn)
1092 {
1093 struct resources new_resources;
1094 rtx stop_insn = next_active_insn (jump_insn);
1095
1096 mark_target_live_regs (insns, next_active_insn (jump_target),
1097 &new_resources);
1098 CLEAR_RESOURCE (&set);
1099 CLEAR_RESOURCE (&needed);
1100
1101 /* Include JUMP_INSN in the needed registers. */
1102 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1103 {
1104 mark_referenced_resources (insn, &needed, 1);
1105
1106 COPY_HARD_REG_SET (scratch, needed.regs);
1107 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1108 IOR_HARD_REG_SET (new_resources.regs, scratch);
1109
1110 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1111 }
1112
1113 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1114 }
1115
1116 if (tinfo != NULL)
1117 {
1118 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1119 }
1120 }
1121 \f
1122 /* Initialize the resources required by mark_target_live_regs ().
1123 This should be invoked before the first call to mark_target_live_regs. */
1124
1125 void
1126 init_resource_info (rtx epilogue_insn)
1127 {
1128 int i;
1129 basic_block bb;
1130
1131 /* Indicate what resources are required to be valid at the end of the current
1132 function. The condition code never is and memory always is. If the
1133 frame pointer is needed, it is and so is the stack pointer unless
1134 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1135 stack pointer is. Registers used to return the function value are
1136 needed. Registers holding global variables are needed. */
1137
1138 end_of_function_needs.cc = 0;
1139 end_of_function_needs.memory = 1;
1140 end_of_function_needs.unch_memory = 0;
1141 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1142
1143 if (frame_pointer_needed)
1144 {
1145 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1146 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1147 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1148 #endif
1149 if (! EXIT_IGNORE_STACK
1150 || current_function_sp_is_unchanging)
1151 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1152 }
1153 else
1154 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1155
1156 if (crtl->return_rtx != 0)
1157 mark_referenced_resources (crtl->return_rtx,
1158 &end_of_function_needs, 1);
1159
1160 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1161 if (global_regs[i]
1162 #ifdef EPILOGUE_USES
1163 || EPILOGUE_USES (i)
1164 #endif
1165 )
1166 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1167
1168 /* The registers required to be live at the end of the function are
1169 represented in the flow information as being dead just prior to
1170 reaching the end of the function. For example, the return of a value
1171 might be represented by a USE of the return register immediately
1172 followed by an unconditional jump to the return label where the
1173 return label is the end of the RTL chain. The end of the RTL chain
1174 is then taken to mean that the return register is live.
1175
1176 This sequence is no longer maintained when epilogue instructions are
1177 added to the RTL chain. To reconstruct the original meaning, the
1178 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1179 point where these registers become live (start_of_epilogue_needs).
1180 If epilogue instructions are present, the registers set by those
1181 instructions won't have been processed by flow. Thus, those
1182 registers are additionally required at the end of the RTL chain
1183 (end_of_function_needs). */
1184
1185 start_of_epilogue_needs = end_of_function_needs;
1186
1187 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1188 {
1189 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1190 MARK_SRC_DEST_CALL);
1191 if (return_insn_p (epilogue_insn))
1192 break;
1193 }
1194
1195 /* Allocate and initialize the tables used by mark_target_live_regs. */
1196 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1197 bb_ticks = XCNEWVEC (int, last_basic_block);
1198
1199 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1200 FOR_EACH_BB (bb)
1201 if (LABEL_P (BB_HEAD (bb)))
1202 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1203 }
1204 \f
1205 /* Free up the resources allocated to mark_target_live_regs (). This
1206 should be invoked after the last call to mark_target_live_regs (). */
1207
1208 void
1209 free_resource_info (void)
1210 {
1211 basic_block bb;
1212
1213 if (target_hash_table != NULL)
1214 {
1215 int i;
1216
1217 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1218 {
1219 struct target_info *ti = target_hash_table[i];
1220
1221 while (ti)
1222 {
1223 struct target_info *next = ti->next;
1224 free (ti);
1225 ti = next;
1226 }
1227 }
1228
1229 free (target_hash_table);
1230 target_hash_table = NULL;
1231 }
1232
1233 if (bb_ticks != NULL)
1234 {
1235 free (bb_ticks);
1236 bb_ticks = NULL;
1237 }
1238
1239 FOR_EACH_BB (bb)
1240 if (LABEL_P (BB_HEAD (bb)))
1241 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1242 }
1243 \f
1244 /* Clear any hashed information that we have stored for INSN. */
1245
1246 void
1247 clear_hashed_info_for_insn (rtx insn)
1248 {
1249 struct target_info *tinfo;
1250
1251 if (target_hash_table != NULL)
1252 {
1253 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1254 tinfo; tinfo = tinfo->next)
1255 if (tinfo->uid == INSN_UID (insn))
1256 break;
1257
1258 if (tinfo)
1259 tinfo->block = -1;
1260 }
1261 }
1262 \f
1263 /* Increment the tick count for the basic block that contains INSN. */
1264
1265 void
1266 incr_ticks_for_insn (rtx insn)
1267 {
1268 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1269
1270 if (b != -1)
1271 bb_ticks[b]++;
1272 }
1273 \f
1274 /* Add TRIAL to the set of resources used at the end of the current
1275 function. */
1276 void
1277 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1278 {
1279 mark_referenced_resources (trial, &end_of_function_needs,
1280 include_delayed_effects);
1281 }