fold-const.c (fold_binary_loc): Fix copy-and-pasto.
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include <utility>
24 #include "statistics.h"
25 #include "machmode.h"
26 #include "input.h"
27 #include "real.h"
28 #include "vec.h"
29 #include "fixed-value.h"
30 #include "alias.h"
31 #include "hashtab.h"
32 #include "wide-int.h"
33 #include "flags.h"
34 #include "is-a.h"
35
36 /* Value used by some passes to "recognize" noop moves as valid
37 instructions. */
38 #define NOOP_MOVE_INSN_CODE INT_MAX
39
40 /* Register Transfer Language EXPRESSIONS CODES */
41
42 #define RTX_CODE enum rtx_code
43 enum rtx_code {
44
45 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
46 #include "rtl.def" /* rtl expressions are documented here */
47 #undef DEF_RTL_EXPR
48
49 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
50 NUM_RTX_CODE.
51 Assumes default enum value assignment. */
52
53 /* The cast here, saves many elsewhere. */
54 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
55
56 /* Similar, but since generator files get more entries... */
57 #ifdef GENERATOR_FILE
58 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
59 #endif
60
61 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
62
63 enum rtx_class {
64 /* We check bit 0-1 of some rtx class codes in the predicates below. */
65
66 /* Bit 0 = comparison if 0, arithmetic is 1
67 Bit 1 = 1 if commutative. */
68 RTX_COMPARE, /* 0 */
69 RTX_COMM_COMPARE,
70 RTX_BIN_ARITH,
71 RTX_COMM_ARITH,
72
73 /* Must follow the four preceding values. */
74 RTX_UNARY, /* 4 */
75
76 RTX_EXTRA,
77 RTX_MATCH,
78 RTX_INSN,
79
80 /* Bit 0 = 1 if constant. */
81 RTX_OBJ, /* 8 */
82 RTX_CONST_OBJ,
83
84 RTX_TERNARY,
85 RTX_BITFIELD_OPS,
86 RTX_AUTOINC
87 };
88
89 #define RTX_OBJ_MASK (~1)
90 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
91 #define RTX_COMPARE_MASK (~1)
92 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
93 #define RTX_ARITHMETIC_MASK (~1)
94 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
95 #define RTX_BINARY_MASK (~3)
96 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
97 #define RTX_COMMUTATIVE_MASK (~2)
98 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
99 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
100
101 extern const unsigned char rtx_length[NUM_RTX_CODE];
102 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
103
104 extern const char * const rtx_name[NUM_RTX_CODE];
105 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
106
107 extern const char * const rtx_format[NUM_RTX_CODE];
108 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
109
110 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
111 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
112
113 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
114 and NEXT_INSN fields). */
115 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
116
117 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
118 extern const unsigned char rtx_next[NUM_RTX_CODE];
119 \f
120 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
121 relative to which the offsets are calculated, as explained in rtl.def. */
122 struct addr_diff_vec_flags
123 {
124 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
125 unsigned min_align: 8;
126 /* Flags: */
127 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
128 unsigned min_after_vec: 1; /* minimum address target label is
129 after the ADDR_DIFF_VEC. */
130 unsigned max_after_vec: 1; /* maximum address target label is
131 after the ADDR_DIFF_VEC. */
132 unsigned min_after_base: 1; /* minimum address target label is
133 after BASE. */
134 unsigned max_after_base: 1; /* maximum address target label is
135 after BASE. */
136 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
137 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
138 unsigned : 2;
139 unsigned scale : 8;
140 };
141
142 /* Structure used to describe the attributes of a MEM. These are hashed
143 so MEMs that the same attributes share a data structure. This means
144 they cannot be modified in place. */
145 struct GTY(()) mem_attrs
146 {
147 /* The expression that the MEM accesses, or null if not known.
148 This expression might be larger than the memory reference itself.
149 (In other words, the MEM might access only part of the object.) */
150 tree expr;
151
152 /* The offset of the memory reference from the start of EXPR.
153 Only valid if OFFSET_KNOWN_P. */
154 HOST_WIDE_INT offset;
155
156 /* The size of the memory reference in bytes. Only valid if
157 SIZE_KNOWN_P. */
158 HOST_WIDE_INT size;
159
160 /* The alias set of the memory reference. */
161 alias_set_type alias;
162
163 /* The alignment of the reference in bits. Always a multiple of
164 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
165 than the memory reference itself. */
166 unsigned int align;
167
168 /* The address space that the memory reference uses. */
169 unsigned char addrspace;
170
171 /* True if OFFSET is known. */
172 bool offset_known_p;
173
174 /* True if SIZE is known. */
175 bool size_known_p;
176 };
177
178 /* Structure used to describe the attributes of a REG in similar way as
179 mem_attrs does for MEM above. Note that the OFFSET field is calculated
180 in the same way as for mem_attrs, rather than in the same way as a
181 SUBREG_BYTE. For example, if a big-endian target stores a byte
182 object in the low part of a 4-byte register, the OFFSET field
183 will be -3 rather than 0. */
184
185 struct GTY(()) reg_attrs {
186 tree decl; /* decl corresponding to REG. */
187 HOST_WIDE_INT offset; /* Offset from start of DECL. */
188 };
189
190 /* Common union for an element of an rtx. */
191
192 union rtunion
193 {
194 int rt_int;
195 unsigned int rt_uint;
196 const char *rt_str;
197 rtx rt_rtx;
198 rtvec rt_rtvec;
199 enum machine_mode rt_type;
200 addr_diff_vec_flags rt_addr_diff_vec_flags;
201 struct cselib_val *rt_cselib;
202 tree rt_tree;
203 basic_block rt_bb;
204 mem_attrs *rt_mem;
205 reg_attrs *rt_reg;
206 struct constant_descriptor_rtx *rt_constant;
207 struct dw_cfi_node *rt_cfi;
208 };
209
210 /* This structure remembers the position of a SYMBOL_REF within an
211 object_block structure. A SYMBOL_REF only provides this information
212 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
213 struct GTY(()) block_symbol {
214 /* The usual SYMBOL_REF fields. */
215 rtunion GTY ((skip)) fld[2];
216
217 /* The block that contains this object. */
218 struct object_block *block;
219
220 /* The offset of this object from the start of its block. It is negative
221 if the symbol has not yet been assigned an offset. */
222 HOST_WIDE_INT offset;
223 };
224
225 /* Describes a group of objects that are to be placed together in such
226 a way that their relative positions are known. */
227 struct GTY((for_user)) object_block {
228 /* The section in which these objects should be placed. */
229 section *sect;
230
231 /* The alignment of the first object, measured in bits. */
232 unsigned int alignment;
233
234 /* The total size of the objects, measured in bytes. */
235 HOST_WIDE_INT size;
236
237 /* The SYMBOL_REFs for each object. The vector is sorted in
238 order of increasing offset and the following conditions will
239 hold for each element X:
240
241 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
242 !SYMBOL_REF_ANCHOR_P (X)
243 SYMBOL_REF_BLOCK (X) == [address of this structure]
244 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
245 vec<rtx, va_gc> *objects;
246
247 /* All the anchor SYMBOL_REFs used to address these objects, sorted
248 in order of increasing offset, and then increasing TLS model.
249 The following conditions will hold for each element X in this vector:
250
251 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
252 SYMBOL_REF_ANCHOR_P (X)
253 SYMBOL_REF_BLOCK (X) == [address of this structure]
254 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
255 vec<rtx, va_gc> *anchors;
256 };
257
258 struct GTY((variable_size)) hwivec_def {
259 HOST_WIDE_INT elem[1];
260 };
261
262 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
263 #define CWI_GET_NUM_ELEM(RTX) \
264 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
265 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
266 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
267
268 /* RTL expression ("rtx"). */
269
270 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
271 field for for gengtype to recognize that inheritance is occurring,
272 so that all subclasses are redirected to the traversal hook for the
273 base class.
274 However, all of the fields are in the base class, and special-casing
275 is at work. Hence we use desc and tag of 0, generating a switch
276 statement of the form:
277 switch (0)
278 {
279 case 0: // all the work happens here
280 }
281 in order to work with the existing special-casing in gengtype. */
282
283 struct GTY((desc("0"), tag("0"),
284 chain_next ("RTX_NEXT (&%h)"),
285 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
286 /* The kind of expression this is. */
287 ENUM_BITFIELD(rtx_code) code: 16;
288
289 /* The kind of value the expression has. */
290 ENUM_BITFIELD(machine_mode) mode : 8;
291
292 /* 1 in a MEM if we should keep the alias set for this mem unchanged
293 when we access a component.
294 1 in a JUMP_INSN if it is a crossing jump.
295 1 in a CALL_INSN if it is a sibling call.
296 1 in a SET that is for a return.
297 In a CODE_LABEL, part of the two-bit alternate entry field.
298 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
299 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
300 1 in a SUBREG generated by LRA for reload insns. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 public:
494 /* No extra fields, but adds the invariant:
495
496 (INSN_P (X)
497 || NOTE_P (X)
498 || JUMP_TABLE_DATA_P (X)
499 || BARRIER_P (X)
500 || LABEL_P (X))
501
502 i.e. that we must be able to use the following:
503 INSN_UID ()
504 NEXT_INSN ()
505 PREV_INSN ()
506 i.e. we have an rtx that has an INSN_UID field and can be part of
507 a linked list of insns.
508 */
509
510 /* Returns true if this insn has been deleted. */
511
512 bool deleted () const { return volatil; }
513
514 /* Mark this insn as deleted. */
515
516 void set_deleted () { volatil = true; }
517
518 /* Mark this insn as not deleted. */
519
520 void set_undeleted () { volatil = false; }
521 };
522
523 /* Subclasses of rtx_insn. */
524
525 class GTY(()) rtx_debug_insn : public rtx_insn
526 {
527 /* No extra fields, but adds the invariant:
528 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
529 i.e. an annotation for tracking variable assignments.
530
531 This is an instance of:
532 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
533 from rtl.def. */
534 };
535
536 class GTY(()) rtx_nonjump_insn : public rtx_insn
537 {
538 /* No extra fields, but adds the invariant:
539 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
540 i.e an instruction that cannot jump.
541
542 This is an instance of:
543 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
544 from rtl.def. */
545 };
546
547 class GTY(()) rtx_jump_insn : public rtx_insn
548 {
549 /* No extra fields, but adds the invariant:
550 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
551 i.e. an instruction that can possibly jump.
552
553 This is an instance of:
554 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_call_insn : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
562 i.e. an instruction that can possibly call a subroutine
563 but which will not change which instruction comes next
564 in the current function.
565
566 This is an instance of:
567 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
568 from rtl.def. */
569 };
570
571 class GTY(()) rtx_jump_table_data : public rtx_insn
572 {
573 /* No extra fields, but adds the invariant:
574 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
575 i.e. a data for a jump table, considered an instruction for
576 historical reasons.
577
578 This is an instance of:
579 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
580 from rtl.def. */
581
582 public:
583
584 /* This can be either:
585
586 (a) a table of absolute jumps, in which case PATTERN (this) is an
587 ADDR_VEC with arg 0 a vector of labels, or
588
589 (b) a table of relative jumps (e.g. for -fPIC), in which case
590 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
591 arg 1 the vector of labels.
592
593 This method gets the underlying vec. */
594
595 inline rtvec get_labels () const;
596 };
597
598 class GTY(()) rtx_barrier : public rtx_insn
599 {
600 /* No extra fields, but adds the invariant:
601 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
602 i.e. a marker that indicates that control will not flow through.
603
604 This is an instance of:
605 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
606 from rtl.def. */
607 };
608
609 class GTY(()) rtx_code_label : public rtx_insn
610 {
611 /* No extra fields, but adds the invariant:
612 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
613 i.e. a label in the assembler.
614
615 This is an instance of:
616 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
617 from rtl.def. */
618 };
619
620 class GTY(()) rtx_note : public rtx_insn
621 {
622 /* No extra fields, but adds the invariant:
623 NOTE_P(X) aka (GET_CODE (X) == NOTE)
624 i.e. a note about the corresponding source code.
625
626 This is an instance of:
627 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
628 from rtl.def. */
629 };
630
631 /* The size in bytes of an rtx header (code, mode and flags). */
632 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
633
634 /* The size in bytes of an rtx with code CODE. */
635 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
636
637 #define NULL_RTX (rtx) 0
638
639 /* The "next" and "previous" RTX, relative to this one. */
640
641 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
642 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
643
644 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
645 */
646 #define RTX_PREV(X) ((INSN_P (X) \
647 || NOTE_P (X) \
648 || JUMP_TABLE_DATA_P (X) \
649 || BARRIER_P (X) \
650 || LABEL_P (X)) \
651 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
652 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
653 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
654
655 /* Define macros to access the `code' field of the rtx. */
656
657 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
658 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
659
660 #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode)
661 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
662
663 /* RTL vector. These appear inside RTX's when there is a need
664 for a variable number of things. The principle use is inside
665 PARALLEL expressions. */
666
667 struct GTY(()) rtvec_def {
668 int num_elem; /* number of elements */
669 rtx GTY ((length ("%h.num_elem"))) elem[1];
670 };
671
672 #define NULL_RTVEC (rtvec) 0
673
674 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
675 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
676
677 /* Predicate yielding nonzero iff X is an rtx for a register. */
678 #define REG_P(X) (GET_CODE (X) == REG)
679
680 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
681 #define MEM_P(X) (GET_CODE (X) == MEM)
682
683 #if TARGET_SUPPORTS_WIDE_INT
684
685 /* Match CONST_*s that can represent compile-time constant integers. */
686 #define CASE_CONST_SCALAR_INT \
687 case CONST_INT: \
688 case CONST_WIDE_INT
689
690 /* Match CONST_*s for which pointer equality corresponds to value
691 equality. */
692 #define CASE_CONST_UNIQUE \
693 case CONST_INT: \
694 case CONST_WIDE_INT: \
695 case CONST_DOUBLE: \
696 case CONST_FIXED
697
698 /* Match all CONST_* rtxes. */
699 #define CASE_CONST_ANY \
700 case CONST_INT: \
701 case CONST_WIDE_INT: \
702 case CONST_DOUBLE: \
703 case CONST_FIXED: \
704 case CONST_VECTOR
705
706 #else
707
708 /* Match CONST_*s that can represent compile-time constant integers. */
709 #define CASE_CONST_SCALAR_INT \
710 case CONST_INT: \
711 case CONST_DOUBLE
712
713 /* Match CONST_*s for which pointer equality corresponds to value
714 equality. */
715 #define CASE_CONST_UNIQUE \
716 case CONST_INT: \
717 case CONST_DOUBLE: \
718 case CONST_FIXED
719
720 /* Match all CONST_* rtxes. */
721 #define CASE_CONST_ANY \
722 case CONST_INT: \
723 case CONST_DOUBLE: \
724 case CONST_FIXED: \
725 case CONST_VECTOR
726 #endif
727
728 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
729 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
730
731 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
732 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
733
734 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
735 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
736
737 /* Predicate yielding true iff X is an rtx for a double-int
738 or floating point constant. */
739 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_INT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
744
745 /* Predicate yielding true iff X is an rtx for a integer const. */
746 #if TARGET_SUPPORTS_WIDE_INT
747 #define CONST_SCALAR_INT_P(X) \
748 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
749 #else
750 #define CONST_SCALAR_INT_P(X) \
751 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
752 #endif
753
754 /* Predicate yielding true iff X is an rtx for a double-int. */
755 #define CONST_DOUBLE_AS_FLOAT_P(X) \
756 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
757
758 /* Predicate yielding nonzero iff X is a label insn. */
759 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
760
761 /* Predicate yielding nonzero iff X is a jump insn. */
762 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
763
764 /* Predicate yielding nonzero iff X is a call insn. */
765 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
766
767 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
768 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
769
770 /* Predicate yielding nonzero iff X is a debug note/insn. */
771 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
772
773 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
774 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
775
776 /* Nonzero if DEBUG_INSN_P may possibly hold. */
777 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
778
779 /* Predicate yielding nonzero iff X is a real insn. */
780 #define INSN_P(X) \
781 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
782
783 /* Predicate yielding nonzero iff X is a note insn. */
784 #define NOTE_P(X) (GET_CODE (X) == NOTE)
785
786 /* Predicate yielding nonzero iff X is a barrier insn. */
787 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
788
789 /* Predicate yielding nonzero iff X is a data for a jump table. */
790 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
791
792 template <>
793 template <>
794 inline bool
795 is_a_helper <rtx_insn *>::test (rtx rt)
796 {
797 return (INSN_P (rt)
798 || NOTE_P (rt)
799 || JUMP_TABLE_DATA_P (rt)
800 || BARRIER_P (rt)
801 || LABEL_P (rt));
802 }
803
804 template <>
805 template <>
806 inline bool
807 is_a_helper <const rtx_insn *>::test (const_rtx rt)
808 {
809 return (INSN_P (rt)
810 || NOTE_P (rt)
811 || JUMP_TABLE_DATA_P (rt)
812 || BARRIER_P (rt)
813 || LABEL_P (rt));
814 }
815
816 template <>
817 template <>
818 inline bool
819 is_a_helper <rtx_debug_insn *>::test (rtx rt)
820 {
821 return DEBUG_INSN_P (rt);
822 }
823
824 template <>
825 template <>
826 inline bool
827 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
828 {
829 return NONJUMP_INSN_P (rt);
830 }
831
832 template <>
833 template <>
834 inline bool
835 is_a_helper <rtx_jump_insn *>::test (rtx rt)
836 {
837 return JUMP_P (rt);
838 }
839
840 template <>
841 template <>
842 inline bool
843 is_a_helper <rtx_call_insn *>::test (rtx rt)
844 {
845 return CALL_P (rt);
846 }
847
848 template <>
849 template <>
850 inline bool
851 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
852 {
853 return CALL_P (insn);
854 }
855
856 template <>
857 template <>
858 inline bool
859 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
860 {
861 return JUMP_TABLE_DATA_P (rt);
862 }
863
864 template <>
865 template <>
866 inline bool
867 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
868 {
869 return JUMP_TABLE_DATA_P (insn);
870 }
871
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_barrier *>::test (rtx rt)
876 {
877 return BARRIER_P (rt);
878 }
879
880 template <>
881 template <>
882 inline bool
883 is_a_helper <rtx_code_label *>::test (rtx rt)
884 {
885 return LABEL_P (rt);
886 }
887
888 template <>
889 template <>
890 inline bool
891 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
892 {
893 return LABEL_P (insn);
894 }
895
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_note *>::test (rtx rt)
900 {
901 return NOTE_P (rt);
902 }
903
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_note *>::test (rtx_insn *insn)
908 {
909 return NOTE_P (insn);
910 }
911
912 /* Predicate yielding nonzero iff X is a return or simple_return. */
913 #define ANY_RETURN_P(X) \
914 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
915
916 /* 1 if X is a unary operator. */
917
918 #define UNARY_P(X) \
919 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
920
921 /* 1 if X is a binary operator. */
922
923 #define BINARY_P(X) \
924 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
925
926 /* 1 if X is an arithmetic operator. */
927
928 #define ARITHMETIC_P(X) \
929 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
930 == RTX_ARITHMETIC_RESULT)
931
932 /* 1 if X is an arithmetic operator. */
933
934 #define COMMUTATIVE_ARITH_P(X) \
935 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
936
937 /* 1 if X is a commutative arithmetic operator or a comparison operator.
938 These two are sometimes selected together because it is possible to
939 swap the two operands. */
940
941 #define SWAPPABLE_OPERANDS_P(X) \
942 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
943 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
944 | (1 << RTX_COMPARE)))
945
946 /* 1 if X is a non-commutative operator. */
947
948 #define NON_COMMUTATIVE_P(X) \
949 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
950 == RTX_NON_COMMUTATIVE_RESULT)
951
952 /* 1 if X is a commutative operator on integers. */
953
954 #define COMMUTATIVE_P(X) \
955 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
956 == RTX_COMMUTATIVE_RESULT)
957
958 /* 1 if X is a relational operator. */
959
960 #define COMPARISON_P(X) \
961 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
962
963 /* 1 if X is a constant value that is an integer. */
964
965 #define CONSTANT_P(X) \
966 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
967
968 /* 1 if X can be used to represent an object. */
969 #define OBJECT_P(X) \
970 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
971
972 /* General accessor macros for accessing the fields of an rtx. */
973
974 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
975 /* The bit with a star outside the statement expr and an & inside is
976 so that N can be evaluated only once. */
977 #define RTL_CHECK1(RTX, N, C1) __extension__ \
978 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
979 const enum rtx_code _code = GET_CODE (_rtx); \
980 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
981 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
982 __FUNCTION__); \
983 if (GET_RTX_FORMAT (_code)[_n] != C1) \
984 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
985 __FUNCTION__); \
986 &_rtx->u.fld[_n]; }))
987
988 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
989 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
990 const enum rtx_code _code = GET_CODE (_rtx); \
991 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
992 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
993 __FUNCTION__); \
994 if (GET_RTX_FORMAT (_code)[_n] != C1 \
995 && GET_RTX_FORMAT (_code)[_n] != C2) \
996 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
997 __FUNCTION__); \
998 &_rtx->u.fld[_n]; }))
999
1000 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1001 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1002 if (GET_CODE (_rtx) != (C)) \
1003 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1004 __FUNCTION__); \
1005 &_rtx->u.fld[_n]; }))
1006
1007 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1008 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1009 const enum rtx_code _code = GET_CODE (_rtx); \
1010 if (_code != (C1) && _code != (C2)) \
1011 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1012 __FUNCTION__); \
1013 &_rtx->u.fld[_n]; }))
1014
1015 #define RTVEC_ELT(RTVEC, I) __extension__ \
1016 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1017 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1018 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1019 __FUNCTION__); \
1020 &_rtvec->elem[_i]; }))
1021
1022 #define XWINT(RTX, N) __extension__ \
1023 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1024 const enum rtx_code _code = GET_CODE (_rtx); \
1025 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1026 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1027 __FUNCTION__); \
1028 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1029 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1030 __FUNCTION__); \
1031 &_rtx->u.hwint[_n]; }))
1032
1033 #define CWI_ELT(RTX, I) __extension__ \
1034 (*({ __typeof (RTX) const _cwi = (RTX); \
1035 int _max = CWI_GET_NUM_ELEM (_cwi); \
1036 const int _i = (I); \
1037 if (_i < 0 || _i >= _max) \
1038 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1039 __FUNCTION__); \
1040 &_cwi->u.hwiv.elem[_i]; }))
1041
1042 #define XCWINT(RTX, N, C) __extension__ \
1043 (*({ __typeof (RTX) const _rtx = (RTX); \
1044 if (GET_CODE (_rtx) != (C)) \
1045 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1046 __FUNCTION__); \
1047 &_rtx->u.hwint[N]; }))
1048
1049 #define XCMWINT(RTX, N, C, M) __extension__ \
1050 (*({ __typeof (RTX) const _rtx = (RTX); \
1051 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1052 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1053 __LINE__, __FUNCTION__); \
1054 &_rtx->u.hwint[N]; }))
1055
1056 #define XCNMPRV(RTX, C, M) __extension__ \
1057 ({ __typeof (RTX) const _rtx = (RTX); \
1058 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1059 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1060 __LINE__, __FUNCTION__); \
1061 &_rtx->u.rv; })
1062
1063 #define XCNMPFV(RTX, C, M) __extension__ \
1064 ({ __typeof (RTX) const _rtx = (RTX); \
1065 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1066 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1067 __LINE__, __FUNCTION__); \
1068 &_rtx->u.fv; })
1069
1070 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1071 ({ __typeof (RTX) const _symbol = (RTX); \
1072 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1073 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1074 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1075 __FUNCTION__); \
1076 &_symbol->u.block_sym; })
1077
1078 #define HWIVEC_CHECK(RTX,C) __extension__ \
1079 ({ __typeof (RTX) const _symbol = (RTX); \
1080 RTL_CHECKC1 (_symbol, 0, C); \
1081 &_symbol->u.hwiv; })
1082
1083 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1084 const char *)
1085 ATTRIBUTE_NORETURN;
1086 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1087 const char *)
1088 ATTRIBUTE_NORETURN;
1089 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1090 int, const char *)
1091 ATTRIBUTE_NORETURN;
1092 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1093 int, const char *)
1094 ATTRIBUTE_NORETURN;
1095 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1096 const char *, int, const char *)
1097 ATTRIBUTE_NORETURN;
1098 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, enum machine_mode,
1099 bool, const char *, int, const char *)
1100 ATTRIBUTE_NORETURN;
1101 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1102 ATTRIBUTE_NORETURN;
1103 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1104 const char *)
1105 ATTRIBUTE_NORETURN;
1106 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1107 const char *)
1108 ATTRIBUTE_NORETURN;
1109
1110 #else /* not ENABLE_RTL_CHECKING */
1111
1112 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1113 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1114 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1115 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1116 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1117 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1118 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1119 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1120 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1121 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1122 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1123 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1124 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1125 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1126
1127 #endif
1128
1129 /* General accessor macros for accessing the flags of an rtx. */
1130
1131 /* Access an individual rtx flag, with no checking of any kind. */
1132 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1133
1134 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1135 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1136 ({ __typeof (RTX) const _rtx = (RTX); \
1137 if (GET_CODE (_rtx) != C1) \
1138 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1139 __FUNCTION__); \
1140 _rtx; })
1141
1142 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1143 ({ __typeof (RTX) const _rtx = (RTX); \
1144 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1145 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1146 __FUNCTION__); \
1147 _rtx; })
1148
1149 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1150 ({ __typeof (RTX) const _rtx = (RTX); \
1151 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1152 && GET_CODE (_rtx) != C3) \
1153 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1154 __FUNCTION__); \
1155 _rtx; })
1156
1157 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1158 ({ __typeof (RTX) const _rtx = (RTX); \
1159 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1160 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1161 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1162 __FUNCTION__); \
1163 _rtx; })
1164
1165 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1166 ({ __typeof (RTX) const _rtx = (RTX); \
1167 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1168 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1169 && GET_CODE (_rtx) != C5) \
1170 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1171 __FUNCTION__); \
1172 _rtx; })
1173
1174 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1175 __extension__ \
1176 ({ __typeof (RTX) const _rtx = (RTX); \
1177 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1178 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1179 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1180 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1181 __FUNCTION__); \
1182 _rtx; })
1183
1184 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1185 __extension__ \
1186 ({ __typeof (RTX) const _rtx = (RTX); \
1187 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1188 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1189 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1190 && GET_CODE (_rtx) != C7) \
1191 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1192 __FUNCTION__); \
1193 _rtx; })
1194
1195 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1196 __extension__ \
1197 ({ __typeof (RTX) const _rtx = (RTX); \
1198 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1199 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1200 __FUNCTION__); \
1201 _rtx; })
1202
1203 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1204 int, const char *)
1205 ATTRIBUTE_NORETURN
1206 ;
1207
1208 #else /* not ENABLE_RTL_FLAG_CHECKING */
1209
1210 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1211 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1212 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1213 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1214 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1215 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1216 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1217 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1218 #endif
1219
1220 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1221 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1222 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1223 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1224 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1225 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1226 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1227 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1228 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1229 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1230
1231 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1232 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1233
1234 /* These are like XINT, etc. except that they expect a '0' field instead
1235 of the normal type code. */
1236
1237 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1238 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1239 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1240 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1241 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1242 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1243 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1244 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1245 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1246 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1247 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1248 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1249 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1250
1251 /* Access a '0' field with any type. */
1252 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1253
1254 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1255 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1256 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1257 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1258 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1259 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1260 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1261 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1262 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1263 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1264
1265 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1266 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1267
1268 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1269 \f
1270
1271 /* Methods of rtx_expr_list. */
1272
1273 inline rtx_expr_list *rtx_expr_list::next () const
1274 {
1275 rtx tmp = XEXP (this, 1);
1276 return safe_as_a <rtx_expr_list *> (tmp);
1277 }
1278
1279 inline rtx rtx_expr_list::element () const
1280 {
1281 return XEXP (this, 0);
1282 }
1283
1284 /* Methods of rtx_insn_list. */
1285
1286 inline rtx_insn_list *rtx_insn_list::next () const
1287 {
1288 rtx tmp = XEXP (this, 1);
1289 return safe_as_a <rtx_insn_list *> (tmp);
1290 }
1291
1292 inline rtx_insn *rtx_insn_list::insn () const
1293 {
1294 rtx tmp = XEXP (this, 0);
1295 return safe_as_a <rtx_insn *> (tmp);
1296 }
1297
1298 /* Methods of rtx_sequence. */
1299
1300 inline int rtx_sequence::len () const
1301 {
1302 return XVECLEN (this, 0);
1303 }
1304
1305 inline rtx rtx_sequence::element (int index) const
1306 {
1307 return XVECEXP (this, 0, index);
1308 }
1309
1310 inline rtx_insn *rtx_sequence::insn (int index) const
1311 {
1312 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1313 }
1314
1315 /* ACCESS MACROS for particular fields of insns. */
1316
1317 /* Holds a unique number for each insn.
1318 These are not necessarily sequentially increasing. */
1319 inline int INSN_UID (const_rtx insn)
1320 {
1321 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1322 (insn))->u2.insn_uid;
1323 }
1324 inline int& INSN_UID (rtx insn)
1325 {
1326 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1327 (insn))->u2.insn_uid;
1328 }
1329
1330 /* Chain insns together in sequence. */
1331
1332 /* For now these are split in two: an rvalue form:
1333 PREV_INSN/NEXT_INSN
1334 and an lvalue form:
1335 SET_NEXT_INSN/SET_PREV_INSN. */
1336
1337 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1338 {
1339 rtx prev = XEXP (insn, 0);
1340 return safe_as_a <rtx_insn *> (prev);
1341 }
1342
1343 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1344 {
1345 return XEXP (insn, 0);
1346 }
1347
1348 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1349 {
1350 rtx next = XEXP (insn, 1);
1351 return safe_as_a <rtx_insn *> (next);
1352 }
1353
1354 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1355 {
1356 return XEXP (insn, 1);
1357 }
1358
1359 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1360 {
1361 return XBBDEF (insn, 2);
1362 }
1363
1364 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1365 {
1366 return XBBDEF (insn, 2);
1367 }
1368
1369 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1370 {
1371 BLOCK_FOR_INSN (insn) = bb;
1372 }
1373
1374 /* The body of an insn. */
1375 inline rtx PATTERN (const_rtx insn)
1376 {
1377 return XEXP (insn, 3);
1378 }
1379
1380 inline rtx& PATTERN (rtx insn)
1381 {
1382 return XEXP (insn, 3);
1383 }
1384
1385 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1386 {
1387 return XUINT (insn, 4);
1388 }
1389
1390 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1391 {
1392 return XUINT (insn, 4);
1393 }
1394
1395 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1396 {
1397 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1398 }
1399
1400 /* LOCATION of an RTX if relevant. */
1401 #define RTL_LOCATION(X) (INSN_P (X) ? \
1402 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1403 : UNKNOWN_LOCATION)
1404
1405 /* Code number of instruction, from when it was recognized.
1406 -1 means this instruction has not been recognized yet. */
1407 #define INSN_CODE(INSN) XINT (INSN, 5)
1408
1409 inline rtvec rtx_jump_table_data::get_labels () const
1410 {
1411 rtx pat = PATTERN (this);
1412 if (GET_CODE (pat) == ADDR_VEC)
1413 return XVEC (pat, 0);
1414 else
1415 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1416 }
1417
1418 #define RTX_FRAME_RELATED_P(RTX) \
1419 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1420 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1421
1422 /* 1 if JUMP RTX is a crossing jump. */
1423 #define CROSSING_JUMP_P(RTX) \
1424 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1425
1426 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1427 TREE_READONLY. */
1428 #define RTL_CONST_CALL_P(RTX) \
1429 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1430
1431 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1432 DECL_PURE_P. */
1433 #define RTL_PURE_CALL_P(RTX) \
1434 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1435
1436 /* 1 if RTX is a call to a const or pure function. */
1437 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1438 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1439
1440 /* 1 if RTX is a call to a looping const or pure function. Built from
1441 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1442 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1443 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1444
1445 /* 1 if RTX is a call_insn for a sibling call. */
1446 #define SIBLING_CALL_P(RTX) \
1447 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1448
1449 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1450 #define INSN_ANNULLED_BRANCH_P(RTX) \
1451 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1452
1453 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1454 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1455 executed if the branch is taken. For annulled branches with this bit
1456 clear, the insn should be executed only if the branch is not taken. */
1457 #define INSN_FROM_TARGET_P(RTX) \
1458 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1459 CALL_INSN)->in_struct)
1460
1461 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1462 See the comments for ADDR_DIFF_VEC in rtl.def. */
1463 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1464
1465 /* In a VALUE, the value cselib has assigned to RTX.
1466 This is a "struct cselib_val", see cselib.h. */
1467 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1468
1469 /* Holds a list of notes on what this insn does to various REGs.
1470 It is a chain of EXPR_LIST rtx's, where the second operand is the
1471 chain pointer and the first operand is the REG being described.
1472 The mode field of the EXPR_LIST contains not a real machine mode
1473 but a value from enum reg_note. */
1474 #define REG_NOTES(INSN) XEXP(INSN, 6)
1475
1476 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1477 question. */
1478 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1479
1480 enum reg_note
1481 {
1482 #define DEF_REG_NOTE(NAME) NAME,
1483 #include "reg-notes.def"
1484 #undef DEF_REG_NOTE
1485 REG_NOTE_MAX
1486 };
1487
1488 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1489 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1490 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1491 PUT_MODE (LINK, (enum machine_mode) (KIND))
1492
1493 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1494
1495 extern const char * const reg_note_name[];
1496 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1497
1498 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1499 USE and CLOBBER expressions.
1500 USE expressions list the registers filled with arguments that
1501 are passed to the function.
1502 CLOBBER expressions document the registers explicitly clobbered
1503 by this CALL_INSN.
1504 Pseudo registers can not be mentioned in this list. */
1505 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1506
1507 /* The label-number of a code-label. The assembler label
1508 is made from `L' and the label-number printed in decimal.
1509 Label numbers are unique in a compilation. */
1510 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1511
1512 /* In a NOTE that is a line number, this is a string for the file name that the
1513 line is in. We use the same field to record block numbers temporarily in
1514 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1515 between ints and pointers if we use a different macro for the block number.)
1516 */
1517
1518 /* Opaque data. */
1519 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1520 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1521 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1522 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1523 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1524 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1525 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1526 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1527 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1528
1529 /* In a NOTE that is a line number, this is the line number.
1530 Other kinds of NOTEs are identified by negative numbers here. */
1531 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1532
1533 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1534 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1535 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1536
1537 /* Variable declaration and the location of a variable. */
1538 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1539 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1540
1541 /* Initialization status of the variable in the location. Status
1542 can be unknown, uninitialized or initialized. See enumeration
1543 type below. */
1544 #define PAT_VAR_LOCATION_STATUS(PAT) \
1545 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1546 ->u2.var_location_status)
1547
1548 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1549 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1550 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1551 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1552 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1553 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1554 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1555
1556 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1557 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1558
1559 /* Accessors for a tree-expanded var location debug insn. */
1560 #define INSN_VAR_LOCATION_DECL(INSN) \
1561 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1562 #define INSN_VAR_LOCATION_LOC(INSN) \
1563 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1564 #define INSN_VAR_LOCATION_STATUS(INSN) \
1565 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1566
1567 /* Expand to the RTL that denotes an unknown variable location in a
1568 DEBUG_INSN. */
1569 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1570
1571 /* Determine whether X is such an unknown location. */
1572 #define VAR_LOC_UNKNOWN_P(X) \
1573 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1574
1575 /* 1 if RTX is emitted after a call, but it should take effect before
1576 the call returns. */
1577 #define NOTE_DURING_CALL_P(RTX) \
1578 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1579
1580 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1581 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1582
1583 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1584 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1585
1586 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1587 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1588
1589 /* Codes that appear in the NOTE_KIND field for kinds of notes
1590 that are not line numbers. These codes are all negative.
1591
1592 Notice that we do not try to use zero here for any of
1593 the special note codes because sometimes the source line
1594 actually can be zero! This happens (for example) when we
1595 are generating code for the per-translation-unit constructor
1596 and destructor routines for some C++ translation unit. */
1597
1598 enum insn_note
1599 {
1600 #define DEF_INSN_NOTE(NAME) NAME,
1601 #include "insn-notes.def"
1602 #undef DEF_INSN_NOTE
1603
1604 NOTE_INSN_MAX
1605 };
1606
1607 /* Names for NOTE insn's other than line numbers. */
1608
1609 extern const char * const note_insn_name[NOTE_INSN_MAX];
1610 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1611 (note_insn_name[(NOTE_CODE)])
1612
1613 /* The name of a label, in case it corresponds to an explicit label
1614 in the input source code. */
1615 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1616
1617 /* In jump.c, each label contains a count of the number
1618 of LABEL_REFs that point at it, so unused labels can be deleted. */
1619 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1620
1621 /* Labels carry a two-bit field composed of the ->jump and ->call
1622 bits. This field indicates whether the label is an alternate
1623 entry point, and if so, what kind. */
1624 enum label_kind
1625 {
1626 LABEL_NORMAL = 0, /* ordinary label */
1627 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1628 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1629 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1630 };
1631
1632 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1633
1634 /* Retrieve the kind of LABEL. */
1635 #define LABEL_KIND(LABEL) __extension__ \
1636 ({ __typeof (LABEL) const _label = (LABEL); \
1637 if (! LABEL_P (_label)) \
1638 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1639 __FUNCTION__); \
1640 (enum label_kind) ((_label->jump << 1) | _label->call); })
1641
1642 /* Set the kind of LABEL. */
1643 #define SET_LABEL_KIND(LABEL, KIND) do { \
1644 __typeof (LABEL) const _label = (LABEL); \
1645 const unsigned int _kind = (KIND); \
1646 if (! LABEL_P (_label)) \
1647 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1648 __FUNCTION__); \
1649 _label->jump = ((_kind >> 1) & 1); \
1650 _label->call = (_kind & 1); \
1651 } while (0)
1652
1653 #else
1654
1655 /* Retrieve the kind of LABEL. */
1656 #define LABEL_KIND(LABEL) \
1657 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1658
1659 /* Set the kind of LABEL. */
1660 #define SET_LABEL_KIND(LABEL, KIND) do { \
1661 rtx const _label = (LABEL); \
1662 const unsigned int _kind = (KIND); \
1663 _label->jump = ((_kind >> 1) & 1); \
1664 _label->call = (_kind & 1); \
1665 } while (0)
1666
1667 #endif /* rtl flag checking */
1668
1669 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1670
1671 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1672 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1673 be decremented and possibly the label can be deleted. */
1674 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1675
1676 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1677 {
1678 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1679 }
1680
1681 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1682 goes through all the LABEL_REFs that jump to that label. The chain
1683 eventually winds up at the CODE_LABEL: it is circular. */
1684 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1685
1686 /* Get the label that a LABEL_REF references. */
1687 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1688
1689 \f
1690 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1691 be used on RHS. Use SET_REGNO to change the value. */
1692 #define REGNO(RTX) (rhs_regno(RTX))
1693 #define SET_REGNO(RTX,N) \
1694 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1695 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1696
1697 /* ORIGINAL_REGNO holds the number the register originally had; for a
1698 pseudo register turned into a hard reg this will hold the old pseudo
1699 register number. */
1700 #define ORIGINAL_REGNO(RTX) \
1701 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1702
1703 /* Force the REGNO macro to only be used on the lhs. */
1704 static inline unsigned int
1705 rhs_regno (const_rtx x)
1706 {
1707 return XCUINT (x, 0, REG);
1708 }
1709
1710
1711 /* 1 if RTX is a reg or parallel that is the current function's return
1712 value. */
1713 #define REG_FUNCTION_VALUE_P(RTX) \
1714 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1715
1716 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1717 #define REG_USERVAR_P(RTX) \
1718 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1719
1720 /* 1 if RTX is a reg that holds a pointer value. */
1721 #define REG_POINTER(RTX) \
1722 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1723
1724 /* 1 if RTX is a mem that holds a pointer value. */
1725 #define MEM_POINTER(RTX) \
1726 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1727
1728 /* 1 if the given register REG corresponds to a hard register. */
1729 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1730
1731 /* 1 if the given register number REG_NO corresponds to a hard register. */
1732 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1733
1734 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1735 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1736 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1737
1738 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1739 elements actually needed to represent the constant.
1740 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1741 significant HOST_WIDE_INT. */
1742 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1743 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1744 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1745
1746 /* For a CONST_DOUBLE:
1747 #if TARGET_SUPPORTS_WIDE_INT == 0
1748 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1749 low-order word and ..._HIGH the high-order.
1750 #endif
1751 For a float, there is a REAL_VALUE_TYPE structure, and
1752 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1753 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1754 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1755 #define CONST_DOUBLE_REAL_VALUE(r) \
1756 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1757
1758 #define CONST_FIXED_VALUE(r) \
1759 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1760 #define CONST_FIXED_VALUE_HIGH(r) \
1761 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1762 #define CONST_FIXED_VALUE_LOW(r) \
1763 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1764
1765 /* For a CONST_VECTOR, return element #n. */
1766 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1767
1768 /* For a CONST_VECTOR, return the number of elements in a vector. */
1769 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1770
1771 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1772 SUBREG_BYTE extracts the byte-number. */
1773
1774 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1775 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1776
1777 /* in rtlanal.c */
1778 /* Return the right cost to give to an operation
1779 to make the cost of the corresponding register-to-register instruction
1780 N times that of a fast register-to-register instruction. */
1781 #define COSTS_N_INSNS(N) ((N) * 4)
1782
1783 /* Maximum cost of an rtl expression. This value has the special meaning
1784 not to use an rtx with this cost under any circumstances. */
1785 #define MAX_COST INT_MAX
1786
1787 /* A structure to hold all available cost information about an rtl
1788 expression. */
1789 struct full_rtx_costs
1790 {
1791 int speed;
1792 int size;
1793 };
1794
1795 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1796 static inline void
1797 init_costs_to_max (struct full_rtx_costs *c)
1798 {
1799 c->speed = MAX_COST;
1800 c->size = MAX_COST;
1801 }
1802
1803 /* Initialize a full_rtx_costs structure C to zero cost. */
1804 static inline void
1805 init_costs_to_zero (struct full_rtx_costs *c)
1806 {
1807 c->speed = 0;
1808 c->size = 0;
1809 }
1810
1811 /* Compare two full_rtx_costs structures A and B, returning true
1812 if A < B when optimizing for speed. */
1813 static inline bool
1814 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1815 bool speed)
1816 {
1817 if (speed)
1818 return (a->speed < b->speed
1819 || (a->speed == b->speed && a->size < b->size));
1820 else
1821 return (a->size < b->size
1822 || (a->size == b->size && a->speed < b->speed));
1823 }
1824
1825 /* Increase both members of the full_rtx_costs structure C by the
1826 cost of N insns. */
1827 static inline void
1828 costs_add_n_insns (struct full_rtx_costs *c, int n)
1829 {
1830 c->speed += COSTS_N_INSNS (n);
1831 c->size += COSTS_N_INSNS (n);
1832 }
1833
1834 /* Describes the shape of a subreg:
1835
1836 inner_mode == the mode of the SUBREG_REG
1837 offset == the SUBREG_BYTE
1838 outer_mode == the mode of the SUBREG itself. */
1839 struct subreg_shape {
1840 subreg_shape (enum machine_mode, unsigned int, enum machine_mode);
1841 bool operator == (const subreg_shape &) const;
1842 bool operator != (const subreg_shape &) const;
1843 unsigned int unique_id () const;
1844
1845 enum machine_mode inner_mode;
1846 unsigned int offset;
1847 enum machine_mode outer_mode;
1848 };
1849
1850 inline
1851 subreg_shape::subreg_shape (enum machine_mode inner_mode_in,
1852 unsigned int offset_in,
1853 enum machine_mode outer_mode_in)
1854 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1855 {}
1856
1857 inline bool
1858 subreg_shape::operator == (const subreg_shape &other) const
1859 {
1860 return (inner_mode == other.inner_mode
1861 && offset == other.offset
1862 && outer_mode == other.outer_mode);
1863 }
1864
1865 inline bool
1866 subreg_shape::operator != (const subreg_shape &other) const
1867 {
1868 return !operator == (other);
1869 }
1870
1871 /* Return an integer that uniquely identifies this shape. Structures
1872 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1873 current mode is anywhere near being 65536 bytes in size, so the
1874 id comfortably fits in an int. */
1875
1876 inline unsigned int
1877 subreg_shape::unique_id () const
1878 {
1879 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1880 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1881 }
1882
1883 /* Return the shape of a SUBREG rtx. */
1884
1885 static inline subreg_shape
1886 shape_of_subreg (const_rtx x)
1887 {
1888 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1889 SUBREG_BYTE (x), GET_MODE (x));
1890 }
1891
1892 /* Information about an address. This structure is supposed to be able
1893 to represent all supported target addresses. Please extend it if it
1894 is not yet general enough. */
1895 struct address_info {
1896 /* The mode of the value being addressed, or VOIDmode if this is
1897 a load-address operation with no known address mode. */
1898 enum machine_mode mode;
1899
1900 /* The address space. */
1901 addr_space_t as;
1902
1903 /* A pointer to the top-level address. */
1904 rtx *outer;
1905
1906 /* A pointer to the inner address, after all address mutations
1907 have been stripped from the top-level address. It can be one
1908 of the following:
1909
1910 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1911
1912 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1913 points to the step value, depending on whether the step is variable
1914 or constant respectively. SEGMENT is null.
1915
1916 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1917 with null fields evaluating to 0. */
1918 rtx *inner;
1919
1920 /* Components that make up *INNER. Each one may be null or nonnull.
1921 When nonnull, their meanings are as follows:
1922
1923 - *SEGMENT is the "segment" of memory to which the address refers.
1924 This value is entirely target-specific and is only called a "segment"
1925 because that's its most typical use. It contains exactly one UNSPEC,
1926 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1927 reloading.
1928
1929 - *BASE is a variable expression representing a base address.
1930 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1931
1932 - *INDEX is a variable expression representing an index value.
1933 It may be a scaled expression, such as a MULT. It has exactly
1934 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1935
1936 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1937 unmutated RTX_CONST_OBJ. */
1938 rtx *segment;
1939 rtx *base;
1940 rtx *index;
1941 rtx *disp;
1942
1943 rtx *segment_term;
1944 rtx *base_term;
1945 rtx *index_term;
1946 rtx *disp_term;
1947
1948 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1949 of BASE_TERM, otherwise it is null. */
1950 rtx *base_term2;
1951
1952 /* ADDRESS if this structure describes an address operand, MEM if
1953 it describes a MEM address. */
1954 enum rtx_code addr_outer_code;
1955
1956 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1957 enum rtx_code base_outer_code;
1958
1959 /* True if this is an RTX_AUTOINC address. */
1960 bool autoinc_p;
1961 };
1962
1963 /* This is used to bundle an rtx and a mode together so that the pair
1964 can be used with the wi:: routines. If we ever put modes into rtx
1965 integer constants, this should go away and then just pass an rtx in. */
1966 typedef std::pair <rtx, enum machine_mode> rtx_mode_t;
1967
1968 namespace wi
1969 {
1970 template <>
1971 struct int_traits <rtx_mode_t>
1972 {
1973 static const enum precision_type precision_type = VAR_PRECISION;
1974 static const bool host_dependent_precision = false;
1975 /* This ought to be true, except for the special case that BImode
1976 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1977 static const bool is_sign_extended = false;
1978 static unsigned int get_precision (const rtx_mode_t &);
1979 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1980 const rtx_mode_t &);
1981 };
1982 }
1983
1984 inline unsigned int
1985 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1986 {
1987 return GET_MODE_PRECISION (x.second);
1988 }
1989
1990 inline wi::storage_ref
1991 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1992 unsigned int precision,
1993 const rtx_mode_t &x)
1994 {
1995 gcc_checking_assert (precision == get_precision (x));
1996 switch (GET_CODE (x.first))
1997 {
1998 case CONST_INT:
1999 if (precision < HOST_BITS_PER_WIDE_INT)
2000 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2001 targets is 1 rather than -1. */
2002 gcc_checking_assert (INTVAL (x.first)
2003 == sext_hwi (INTVAL (x.first), precision)
2004 || (x.second == BImode && INTVAL (x.first) == 1));
2005
2006 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2007
2008 case CONST_WIDE_INT:
2009 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2010 CONST_WIDE_INT_NUNITS (x.first), precision);
2011
2012 #if TARGET_SUPPORTS_WIDE_INT == 0
2013 case CONST_DOUBLE:
2014 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2015 #endif
2016
2017 default:
2018 gcc_unreachable ();
2019 }
2020 }
2021
2022 namespace wi
2023 {
2024 hwi_with_prec shwi (HOST_WIDE_INT, enum machine_mode mode);
2025 wide_int min_value (enum machine_mode, signop);
2026 wide_int max_value (enum machine_mode, signop);
2027 }
2028
2029 inline wi::hwi_with_prec
2030 wi::shwi (HOST_WIDE_INT val, enum machine_mode mode)
2031 {
2032 return shwi (val, GET_MODE_PRECISION (mode));
2033 }
2034
2035 /* Produce the smallest number that is represented in MODE. The precision
2036 is taken from MODE and the sign from SGN. */
2037 inline wide_int
2038 wi::min_value (enum machine_mode mode, signop sgn)
2039 {
2040 return min_value (GET_MODE_PRECISION (mode), sgn);
2041 }
2042
2043 /* Produce the largest number that is represented in MODE. The precision
2044 is taken from MODE and the sign from SGN. */
2045 inline wide_int
2046 wi::max_value (enum machine_mode mode, signop sgn)
2047 {
2048 return max_value (GET_MODE_PRECISION (mode), sgn);
2049 }
2050
2051 extern void init_rtlanal (void);
2052 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2053 extern int address_cost (rtx, enum machine_mode, addr_space_t, bool);
2054 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2055 struct full_rtx_costs *);
2056 extern unsigned int subreg_lsb (const_rtx);
2057 extern unsigned int subreg_lsb_1 (enum machine_mode, enum machine_mode,
2058 unsigned int);
2059 extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode,
2060 unsigned int, enum machine_mode);
2061 extern bool subreg_offset_representable_p (unsigned int, enum machine_mode,
2062 unsigned int, enum machine_mode);
2063 extern unsigned int subreg_regno (const_rtx);
2064 extern int simplify_subreg_regno (unsigned int, enum machine_mode,
2065 unsigned int, enum machine_mode);
2066 extern unsigned int subreg_nregs (const_rtx);
2067 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2068 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, enum machine_mode);
2069 extern unsigned int num_sign_bit_copies (const_rtx, enum machine_mode);
2070 extern bool constant_pool_constant_p (rtx);
2071 extern bool truncated_to_mode (enum machine_mode, const_rtx);
2072 extern int low_bitmask_len (enum machine_mode, unsigned HOST_WIDE_INT);
2073 extern void split_double (rtx, rtx *, rtx *);
2074 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2075 extern void decompose_address (struct address_info *, rtx *,
2076 enum machine_mode, addr_space_t, enum rtx_code);
2077 extern void decompose_lea_address (struct address_info *, rtx *);
2078 extern void decompose_mem_address (struct address_info *, rtx);
2079 extern void update_address (struct address_info *);
2080 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2081 extern enum rtx_code get_index_code (const struct address_info *);
2082
2083 #ifndef GENERATOR_FILE
2084 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2085 rather than size. */
2086
2087 static inline int
2088 set_rtx_cost (rtx x, bool speed_p)
2089 {
2090 return rtx_cost (x, INSN, 4, speed_p);
2091 }
2092
2093 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2094
2095 static inline void
2096 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2097 {
2098 get_full_rtx_cost (x, INSN, 4, c);
2099 }
2100
2101 /* Return the cost of moving X into a register, relative to the cost
2102 of a register move. SPEED_P is true if optimizing for speed rather
2103 than size. */
2104
2105 static inline int
2106 set_src_cost (rtx x, bool speed_p)
2107 {
2108 return rtx_cost (x, SET, 1, speed_p);
2109 }
2110
2111 /* Like set_src_cost, but return both the speed and size costs in C. */
2112
2113 static inline void
2114 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2115 {
2116 get_full_rtx_cost (x, SET, 1, c);
2117 }
2118 #endif
2119
2120 /* 1 if RTX is a subreg containing a reg that is already known to be
2121 sign- or zero-extended from the mode of the subreg to the mode of
2122 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2123 extension.
2124
2125 When used as a LHS, is means that this extension must be done
2126 when assigning to SUBREG_REG. */
2127
2128 #define SUBREG_PROMOTED_VAR_P(RTX) \
2129 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2130
2131 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2132 this gives the necessary extensions:
2133 0 - signed (SPR_SIGNED)
2134 1 - normal unsigned (SPR_UNSIGNED)
2135 2 - value is both sign and unsign extended for mode
2136 (SPR_SIGNED_AND_UNSIGNED).
2137 -1 - pointer unsigned, which most often can be handled like unsigned
2138 extension, except for generating instructions where we need to
2139 emit special code (ptr_extend insns) on some architectures
2140 (SPR_POINTER). */
2141
2142 const int SRP_POINTER = -1;
2143 const int SRP_SIGNED = 0;
2144 const int SRP_UNSIGNED = 1;
2145 const int SRP_SIGNED_AND_UNSIGNED = 2;
2146
2147 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2148 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2149 do { \
2150 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2151 (RTX), SUBREG); \
2152 switch (VAL) \
2153 { \
2154 case SRP_POINTER: \
2155 _rtx->volatil = 0; \
2156 _rtx->unchanging = 0; \
2157 break; \
2158 case SRP_SIGNED: \
2159 _rtx->volatil = 0; \
2160 _rtx->unchanging = 1; \
2161 break; \
2162 case SRP_UNSIGNED: \
2163 _rtx->volatil = 1; \
2164 _rtx->unchanging = 0; \
2165 break; \
2166 case SRP_SIGNED_AND_UNSIGNED: \
2167 _rtx->volatil = 1; \
2168 _rtx->unchanging = 1; \
2169 break; \
2170 } \
2171 } while (0)
2172
2173 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2174 including SRP_SIGNED_AND_UNSIGNED if promoted for
2175 both signed and unsigned. */
2176 #define SUBREG_PROMOTED_GET(RTX) \
2177 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2178 + (RTX)->unchanging - 1)
2179
2180 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2181 #define SUBREG_PROMOTED_SIGN(RTX) \
2182 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2183 : (RTX)->unchanging - 1)
2184
2185 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2186 for SIGNED type. */
2187 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2188 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2189
2190 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2191 for UNSIGNED type. */
2192 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2193 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2194
2195 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2196 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2197 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2198 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2199 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2200
2201 /* True if the subreg was generated by LRA for reload insns. Such
2202 subregs are valid only during LRA. */
2203 #define LRA_SUBREG_P(RTX) \
2204 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2205
2206 /* Access various components of an ASM_OPERANDS rtx. */
2207
2208 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2209 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2210 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2211 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2212 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2213 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2214 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2215 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2216 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2217 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2218 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2219 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2220 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2221 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2222 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2223 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2224 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2225 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2226
2227 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2228 #define MEM_READONLY_P(RTX) \
2229 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2230
2231 /* 1 if RTX is a mem and we should keep the alias set for this mem
2232 unchanged when we access a component. Set to 1, or example, when we
2233 are already in a non-addressable component of an aggregate. */
2234 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2235 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2236
2237 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2238 #define MEM_VOLATILE_P(RTX) \
2239 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2240 ASM_INPUT)->volatil)
2241
2242 /* 1 if RTX is a mem that cannot trap. */
2243 #define MEM_NOTRAP_P(RTX) \
2244 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2245
2246 /* The memory attribute block. We provide access macros for each value
2247 in the block and provide defaults if none specified. */
2248 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2249
2250 /* The register attribute block. We provide access macros for each value
2251 in the block and provide defaults if none specified. */
2252 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2253
2254 #ifndef GENERATOR_FILE
2255 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2256 set, and may alias anything. Otherwise, the MEM can only alias
2257 MEMs in a conflicting alias set. This value is set in a
2258 language-dependent manner in the front-end, and should not be
2259 altered in the back-end. These set numbers are tested with
2260 alias_sets_conflict_p. */
2261 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2262
2263 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2264 refer to part of a DECL. It may also be a COMPONENT_REF. */
2265 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2266
2267 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2268 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2269
2270 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2271 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2272
2273 /* For a MEM rtx, the address space. */
2274 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2275
2276 /* For a MEM rtx, true if its MEM_SIZE is known. */
2277 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2278
2279 /* For a MEM rtx, the size in bytes of the MEM. */
2280 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2281
2282 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2283 mode as a default when STRICT_ALIGNMENT, but not if not. */
2284 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2285 #else
2286 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2287 #endif
2288
2289 /* For a REG rtx, the decl it is known to refer to, if it is known to
2290 refer to part of a DECL. */
2291 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2292
2293 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2294 HOST_WIDE_INT. */
2295 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2296
2297 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2298 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2299 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2300 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2301 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2302 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2303 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2304 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2305
2306 /* 1 if RTX is a label_ref for a nonlocal label. */
2307 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2308 REG_LABEL_TARGET note. */
2309 #define LABEL_REF_NONLOCAL_P(RTX) \
2310 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2311
2312 /* 1 if RTX is a code_label that should always be considered to be needed. */
2313 #define LABEL_PRESERVE_P(RTX) \
2314 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2315
2316 /* During sched, 1 if RTX is an insn that must be scheduled together
2317 with the preceding insn. */
2318 #define SCHED_GROUP_P(RTX) \
2319 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2320 JUMP_INSN, CALL_INSN)->in_struct)
2321
2322 /* For a SET rtx, SET_DEST is the place that is set
2323 and SET_SRC is the value it is set to. */
2324 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2325 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2326 #define SET_IS_RETURN_P(RTX) \
2327 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2328
2329 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2330 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2331 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2332
2333 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2334 conditionally executing the code on, COND_EXEC_CODE is the code
2335 to execute if the condition is true. */
2336 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2337 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2338
2339 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2340 constants pool. */
2341 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2342 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2343
2344 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2345 tree constant pool. This information is private to varasm.c. */
2346 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2347 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2348 (RTX), SYMBOL_REF)->frame_related)
2349
2350 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2351 #define SYMBOL_REF_FLAG(RTX) \
2352 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2353
2354 /* 1 if RTX is a symbol_ref that has been the library function in
2355 emit_library_call. */
2356 #define SYMBOL_REF_USED(RTX) \
2357 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2358
2359 /* 1 if RTX is a symbol_ref for a weak symbol. */
2360 #define SYMBOL_REF_WEAK(RTX) \
2361 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2362
2363 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2364 SYMBOL_REF_CONSTANT. */
2365 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2366
2367 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2368 pool symbol. */
2369 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2370 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2371
2372 /* The tree (decl or constant) associated with the symbol, or null. */
2373 #define SYMBOL_REF_DECL(RTX) \
2374 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2375
2376 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2377 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2378 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2379
2380 /* The rtx constant pool entry for a symbol, or null. */
2381 #define SYMBOL_REF_CONSTANT(RTX) \
2382 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2383
2384 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2385 information derivable from the tree decl associated with this symbol.
2386 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2387 decl. In some cases this is a bug. But beyond that, it's nice to cache
2388 this information to avoid recomputing it. Finally, this allows space for
2389 the target to store more than one bit of information, as with
2390 SYMBOL_REF_FLAG. */
2391 #define SYMBOL_REF_FLAGS(RTX) \
2392 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2393 ->u2.symbol_ref_flags)
2394
2395 /* These flags are common enough to be defined for all targets. They
2396 are computed by the default version of targetm.encode_section_info. */
2397
2398 /* Set if this symbol is a function. */
2399 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2400 #define SYMBOL_REF_FUNCTION_P(RTX) \
2401 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2402 /* Set if targetm.binds_local_p is true. */
2403 #define SYMBOL_FLAG_LOCAL (1 << 1)
2404 #define SYMBOL_REF_LOCAL_P(RTX) \
2405 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2406 /* Set if targetm.in_small_data_p is true. */
2407 #define SYMBOL_FLAG_SMALL (1 << 2)
2408 #define SYMBOL_REF_SMALL_P(RTX) \
2409 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2410 /* The three-bit field at [5:3] is true for TLS variables; use
2411 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2412 #define SYMBOL_FLAG_TLS_SHIFT 3
2413 #define SYMBOL_REF_TLS_MODEL(RTX) \
2414 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2415 /* Set if this symbol is not defined in this translation unit. */
2416 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2417 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2418 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2419 /* Set if this symbol has a block_symbol structure associated with it. */
2420 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2421 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2422 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2423 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2424 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2425 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2426 #define SYMBOL_REF_ANCHOR_P(RTX) \
2427 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2428
2429 /* Subsequent bits are available for the target to use. */
2430 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2431 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2432
2433 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2434 structure to which the symbol belongs, or NULL if it has not been
2435 assigned a block. */
2436 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2437
2438 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2439 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2440 RTX has not yet been assigned to a block, or it has not been given an
2441 offset within that block. */
2442 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2443
2444 /* True if RTX is flagged to be a scheduling barrier. */
2445 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2446 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2447
2448 /* Indicate whether the machine has any sort of auto increment addressing.
2449 If not, we can avoid checking for REG_INC notes. */
2450
2451 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2452 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2453 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2454 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2455 #define AUTO_INC_DEC
2456 #endif
2457
2458 /* Define a macro to look for REG_INC notes,
2459 but save time on machines where they never exist. */
2460
2461 #ifdef AUTO_INC_DEC
2462 #define FIND_REG_INC_NOTE(INSN, REG) \
2463 ((REG) != NULL_RTX && REG_P ((REG)) \
2464 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2465 : find_reg_note ((INSN), REG_INC, (REG)))
2466 #else
2467 #define FIND_REG_INC_NOTE(INSN, REG) 0
2468 #endif
2469
2470 #ifndef HAVE_PRE_INCREMENT
2471 #define HAVE_PRE_INCREMENT 0
2472 #endif
2473
2474 #ifndef HAVE_PRE_DECREMENT
2475 #define HAVE_PRE_DECREMENT 0
2476 #endif
2477
2478 #ifndef HAVE_POST_INCREMENT
2479 #define HAVE_POST_INCREMENT 0
2480 #endif
2481
2482 #ifndef HAVE_POST_DECREMENT
2483 #define HAVE_POST_DECREMENT 0
2484 #endif
2485
2486 #ifndef HAVE_POST_MODIFY_DISP
2487 #define HAVE_POST_MODIFY_DISP 0
2488 #endif
2489
2490 #ifndef HAVE_POST_MODIFY_REG
2491 #define HAVE_POST_MODIFY_REG 0
2492 #endif
2493
2494 #ifndef HAVE_PRE_MODIFY_DISP
2495 #define HAVE_PRE_MODIFY_DISP 0
2496 #endif
2497
2498 #ifndef HAVE_PRE_MODIFY_REG
2499 #define HAVE_PRE_MODIFY_REG 0
2500 #endif
2501
2502
2503 /* Some architectures do not have complete pre/post increment/decrement
2504 instruction sets, or only move some modes efficiently. These macros
2505 allow us to tune autoincrement generation. */
2506
2507 #ifndef USE_LOAD_POST_INCREMENT
2508 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2509 #endif
2510
2511 #ifndef USE_LOAD_POST_DECREMENT
2512 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2513 #endif
2514
2515 #ifndef USE_LOAD_PRE_INCREMENT
2516 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2517 #endif
2518
2519 #ifndef USE_LOAD_PRE_DECREMENT
2520 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2521 #endif
2522
2523 #ifndef USE_STORE_POST_INCREMENT
2524 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2525 #endif
2526
2527 #ifndef USE_STORE_POST_DECREMENT
2528 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2529 #endif
2530
2531 #ifndef USE_STORE_PRE_INCREMENT
2532 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2533 #endif
2534
2535 #ifndef USE_STORE_PRE_DECREMENT
2536 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2537 #endif
2538 \f
2539 /* Nonzero when we are generating CONCATs. */
2540 extern int generating_concat_p;
2541
2542 /* Nonzero when we are expanding trees to RTL. */
2543 extern int currently_expanding_to_rtl;
2544
2545 /* Generally useful functions. */
2546
2547 /* In explow.c */
2548 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode);
2549 extern rtx plus_constant (enum machine_mode, rtx, HOST_WIDE_INT, bool = false);
2550
2551 /* In rtl.c */
2552 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2553 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2554 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2555 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2556 #define const_wide_int_alloc(NWORDS) \
2557 rtx_alloc_v (CONST_WIDE_INT, \
2558 (sizeof (struct hwivec_def) \
2559 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2560
2561 extern rtvec rtvec_alloc (int);
2562 extern rtvec shallow_copy_rtvec (rtvec);
2563 extern bool shared_const_p (const_rtx);
2564 extern rtx copy_rtx (rtx);
2565 extern void dump_rtx_statistics (void);
2566
2567 /* In emit-rtl.c */
2568 extern rtx copy_rtx_if_shared (rtx);
2569
2570 /* In rtl.c */
2571 extern unsigned int rtx_size (const_rtx);
2572 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2573 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2574 extern int rtx_equal_p (const_rtx, const_rtx);
2575
2576 /* In emit-rtl.c */
2577 extern rtvec gen_rtvec_v (int, rtx *);
2578 extern rtvec gen_rtvec_v (int, rtx_insn **);
2579 extern rtx gen_reg_rtx (enum machine_mode);
2580 extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int);
2581 extern rtx gen_reg_rtx_offset (rtx, enum machine_mode, int);
2582 extern rtx gen_reg_rtx_and_attrs (rtx);
2583 extern rtx_code_label *gen_label_rtx (void);
2584 extern rtx gen_lowpart_common (enum machine_mode, rtx);
2585
2586 /* In cse.c */
2587 extern rtx gen_lowpart_if_possible (enum machine_mode, rtx);
2588
2589 /* In emit-rtl.c */
2590 extern rtx gen_highpart (enum machine_mode, rtx);
2591 extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx);
2592 extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode);
2593
2594 /* In emit-rtl.c */
2595 extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode);
2596 extern bool paradoxical_subreg_p (const_rtx);
2597 extern int subreg_lowpart_p (const_rtx);
2598 extern unsigned int subreg_lowpart_offset (enum machine_mode,
2599 enum machine_mode);
2600 extern unsigned int subreg_highpart_offset (enum machine_mode,
2601 enum machine_mode);
2602 extern int byte_lowpart_offset (enum machine_mode, enum machine_mode);
2603 extern rtx make_safe_from (rtx, rtx);
2604 extern rtx convert_memory_address_addr_space (enum machine_mode, rtx,
2605 addr_space_t);
2606 #define convert_memory_address(to_mode,x) \
2607 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2608 extern const char *get_insn_name (int);
2609 extern rtx_insn *get_last_insn_anywhere (void);
2610 extern rtx_insn *get_first_nonnote_insn (void);
2611 extern rtx_insn *get_last_nonnote_insn (void);
2612 extern void start_sequence (void);
2613 extern void push_to_sequence (rtx_insn *);
2614 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2615 extern void end_sequence (void);
2616 #if TARGET_SUPPORTS_WIDE_INT == 0
2617 extern double_int rtx_to_double_int (const_rtx);
2618 #endif
2619 extern void cwi_output_hex (FILE *, const_rtx);
2620 #ifndef GENERATOR_FILE
2621 extern rtx immed_wide_int_const (const wide_int_ref &, enum machine_mode);
2622 #endif
2623 #if TARGET_SUPPORTS_WIDE_INT == 0
2624 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2625 enum machine_mode);
2626 #endif
2627
2628 /* In loop-iv.c */
2629
2630 extern rtx lowpart_subreg (enum machine_mode, rtx, enum machine_mode);
2631
2632 /* In varasm.c */
2633 extern rtx force_const_mem (enum machine_mode, rtx);
2634
2635 /* In varasm.c */
2636
2637 struct function;
2638 extern rtx get_pool_constant (const_rtx);
2639 extern rtx get_pool_constant_mark (rtx, bool *);
2640 extern enum machine_mode get_pool_mode (const_rtx);
2641 extern rtx simplify_subtraction (rtx);
2642 extern void decide_function_section (tree);
2643
2644 /* In emit-rtl.c */
2645 extern rtx_insn *emit_insn_before (rtx, rtx);
2646 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2647 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2648 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2649 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2650 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2651 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2652 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2653 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2654 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2655 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2656 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2657 extern rtx_barrier *emit_barrier_before (rtx);
2658 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2659 extern rtx_note *emit_note_before (enum insn_note, rtx);
2660 extern rtx_insn *emit_insn_after (rtx, rtx);
2661 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2662 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2663 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2664 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2665 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2666 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2667 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2668 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2669 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2670 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2671 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2672 extern rtx_barrier *emit_barrier_after (rtx);
2673 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2674 extern rtx_note *emit_note_after (enum insn_note, rtx);
2675 extern rtx_insn *emit_insn (rtx);
2676 extern rtx_insn *emit_debug_insn (rtx);
2677 extern rtx_insn *emit_jump_insn (rtx);
2678 extern rtx_insn *emit_call_insn (rtx);
2679 extern rtx_insn *emit_label (rtx);
2680 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2681 extern rtx_barrier *emit_barrier (void);
2682 extern rtx_note *emit_note (enum insn_note);
2683 extern rtx_note *emit_note_copy (rtx_note *);
2684 extern rtx_insn *gen_clobber (rtx);
2685 extern rtx_insn *emit_clobber (rtx);
2686 extern rtx_insn *gen_use (rtx);
2687 extern rtx_insn *emit_use (rtx);
2688 extern rtx_insn *make_insn_raw (rtx);
2689 extern void add_function_usage_to (rtx, rtx);
2690 extern rtx_call_insn *last_call_insn (void);
2691 extern rtx_insn *previous_insn (rtx_insn *);
2692 extern rtx_insn *next_insn (rtx_insn *);
2693 extern rtx_insn *prev_nonnote_insn (rtx);
2694 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2695 extern rtx_insn *next_nonnote_insn (rtx);
2696 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2697 extern rtx_insn *prev_nondebug_insn (rtx);
2698 extern rtx_insn *next_nondebug_insn (rtx);
2699 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2700 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2701 extern rtx_insn *prev_real_insn (rtx);
2702 extern rtx_insn *next_real_insn (rtx);
2703 extern rtx_insn *prev_active_insn (rtx);
2704 extern rtx_insn *next_active_insn (rtx);
2705 extern int active_insn_p (const_rtx);
2706 extern rtx_insn *next_cc0_user (rtx);
2707 extern rtx_insn *prev_cc0_setter (rtx);
2708
2709 /* In emit-rtl.c */
2710 extern int insn_line (const rtx_insn *);
2711 extern const char * insn_file (const rtx_insn *);
2712 extern tree insn_scope (const rtx_insn *);
2713 extern expanded_location insn_location (const rtx_insn *);
2714 extern location_t prologue_location, epilogue_location;
2715
2716 /* In jump.c */
2717 extern enum rtx_code reverse_condition (enum rtx_code);
2718 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2719 extern enum rtx_code swap_condition (enum rtx_code);
2720 extern enum rtx_code unsigned_condition (enum rtx_code);
2721 extern enum rtx_code signed_condition (enum rtx_code);
2722 extern void mark_jump_label (rtx, rtx_insn *, int);
2723
2724 /* In jump.c */
2725 extern rtx_insn *delete_related_insns (rtx);
2726
2727 /* In recog.c */
2728 extern rtx *find_constant_term_loc (rtx *);
2729
2730 /* In emit-rtl.c */
2731 extern rtx_insn *try_split (rtx, rtx, int);
2732 extern int split_branch_probability;
2733
2734 /* In unknown file */
2735 extern rtx split_insns (rtx, rtx);
2736
2737 /* In simplify-rtx.c */
2738 extern rtx simplify_const_unary_operation (enum rtx_code, enum machine_mode,
2739 rtx, enum machine_mode);
2740 extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx,
2741 enum machine_mode);
2742 extern rtx simplify_const_binary_operation (enum rtx_code, enum machine_mode,
2743 rtx, rtx);
2744 extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx,
2745 rtx);
2746 extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode,
2747 enum machine_mode, rtx, rtx, rtx);
2748 extern rtx simplify_const_relational_operation (enum rtx_code,
2749 enum machine_mode, rtx, rtx);
2750 extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode,
2751 enum machine_mode, rtx, rtx);
2752 extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
2753 extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx,
2754 enum machine_mode);
2755 extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode,
2756 enum machine_mode, rtx, rtx, rtx);
2757 extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode,
2758 enum machine_mode, rtx, rtx);
2759 extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode,
2760 unsigned int);
2761 extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode,
2762 unsigned int);
2763 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2764 rtx (*fn) (rtx, const_rtx, void *), void *);
2765 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2766 extern rtx simplify_rtx (const_rtx);
2767 extern rtx avoid_constant_pool_reference (rtx);
2768 extern rtx delegitimize_mem_from_attrs (rtx);
2769 extern bool mode_signbit_p (enum machine_mode, const_rtx);
2770 extern bool val_signbit_p (enum machine_mode, unsigned HOST_WIDE_INT);
2771 extern bool val_signbit_known_set_p (enum machine_mode,
2772 unsigned HOST_WIDE_INT);
2773 extern bool val_signbit_known_clear_p (enum machine_mode,
2774 unsigned HOST_WIDE_INT);
2775
2776 /* In reginfo.c */
2777 extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2778 bool);
2779 #ifdef HARD_CONST
2780 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2781 #endif
2782
2783 /* In emit-rtl.c */
2784 extern rtx set_for_reg_notes (rtx);
2785 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2786 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2787 extern void set_insn_deleted (rtx);
2788
2789 /* Functions in rtlanal.c */
2790
2791 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2792
2793 /* Handle the cheap and common cases inline for performance. */
2794
2795 inline rtx single_set (const rtx_insn *insn)
2796 {
2797 if (!INSN_P (insn))
2798 return NULL_RTX;
2799
2800 if (GET_CODE (PATTERN (insn)) == SET)
2801 return PATTERN (insn);
2802
2803 /* Defer to the more expensive case. */
2804 return single_set_2 (insn, PATTERN (insn));
2805 }
2806
2807 extern enum machine_mode get_address_mode (rtx mem);
2808 extern int rtx_addr_can_trap_p (const_rtx);
2809 extern bool nonzero_address_p (const_rtx);
2810 extern int rtx_unstable_p (const_rtx);
2811 extern bool rtx_varies_p (const_rtx, bool);
2812 extern bool rtx_addr_varies_p (const_rtx, bool);
2813 extern rtx get_call_rtx_from (rtx);
2814 extern HOST_WIDE_INT get_integer_term (const_rtx);
2815 extern rtx get_related_value (const_rtx);
2816 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2817 extern void split_const (rtx, rtx *, rtx *);
2818 extern bool unsigned_reg_p (rtx);
2819 extern int reg_mentioned_p (const_rtx, const_rtx);
2820 extern int count_occurrences (const_rtx, const_rtx, int);
2821 extern int reg_referenced_p (const_rtx, const_rtx);
2822 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2823 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2824 extern int commutative_operand_precedence (rtx);
2825 extern bool swap_commutative_operands_p (rtx, rtx);
2826 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2827 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2828 extern int modified_in_p (const_rtx, const_rtx);
2829 extern int reg_set_p (const_rtx, const_rtx);
2830 extern int multiple_sets (const_rtx);
2831 extern int set_noop_p (const_rtx);
2832 extern int noop_move_p (const_rtx);
2833 extern int refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2834 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2835 extern const_rtx set_of (const_rtx, const_rtx);
2836 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2837 extern void record_hard_reg_uses (rtx *, void *);
2838 #ifdef HARD_CONST
2839 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2840 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2841 #endif
2842 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2843 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2844 extern int dead_or_set_p (const_rtx, const_rtx);
2845 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2846 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2847 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2848 extern rtx find_reg_equal_equiv_note (const_rtx);
2849 extern rtx find_constant_src (const rtx_insn *);
2850 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2851 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2852 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2853 extern void add_reg_note (rtx, enum reg_note, rtx);
2854 extern void add_int_reg_note (rtx, enum reg_note, int);
2855 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2856 extern void remove_note (rtx, const_rtx);
2857 extern void remove_reg_equal_equiv_notes (rtx);
2858 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2859 extern int side_effects_p (const_rtx);
2860 extern int volatile_refs_p (const_rtx);
2861 extern int volatile_insn_p (const_rtx);
2862 extern int may_trap_p_1 (const_rtx, unsigned);
2863 extern int may_trap_p (const_rtx);
2864 extern int may_trap_or_fault_p (const_rtx);
2865 extern bool can_throw_internal (const_rtx);
2866 extern bool can_throw_external (const_rtx);
2867 extern bool insn_could_throw_p (const_rtx);
2868 extern bool insn_nothrow_p (const_rtx);
2869 extern bool can_nonlocal_goto (const_rtx);
2870 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2871 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2872 extern int inequality_comparisons_p (const_rtx);
2873 extern rtx replace_rtx (rtx, rtx, rtx);
2874 extern void replace_label (rtx *, rtx, rtx, bool);
2875 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2876 extern bool rtx_referenced_p (const_rtx, const_rtx);
2877 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2878 extern int computed_jump_p (const_rtx);
2879 extern bool tls_referenced_p (const_rtx);
2880
2881 typedef int (*rtx_function) (rtx *, void *);
2882 extern int for_each_rtx (rtx *, rtx_function, void *);
2883 extern int for_each_rtx_in_insn (rtx_insn **, rtx_function, void *);
2884
2885 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2886 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2887 NULL. The callback is passed the same opaque ARG passed to
2888 for_each_inc_dec. Return zero to continue looking for other
2889 autoinc operations or any other value to interrupt the traversal and
2890 return that value to the caller of for_each_inc_dec. */
2891 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2892 rtx srcoff, void *arg);
2893 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2894
2895 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2896 rtx *, rtx *);
2897 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2898 rtx_equal_p_callback_function);
2899
2900 typedef int (*hash_rtx_callback_function) (const_rtx, enum machine_mode, rtx *,
2901 enum machine_mode *);
2902 extern unsigned hash_rtx_cb (const_rtx, enum machine_mode, int *, int *,
2903 bool, hash_rtx_callback_function);
2904
2905 extern rtx regno_use_in (unsigned int, rtx);
2906 extern int auto_inc_p (const_rtx);
2907 extern int in_expr_list_p (const_rtx, const_rtx);
2908 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2909 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2910 extern int loc_mentioned_in_p (rtx *, const_rtx);
2911 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2912 extern bool keep_with_call_p (const rtx_insn *);
2913 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2914 extern int insn_rtx_cost (rtx, bool);
2915 extern unsigned seq_cost (const rtx_insn *, bool);
2916
2917 /* Given an insn and condition, return a canonical description of
2918 the test being made. */
2919 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2920 int, int);
2921
2922 /* Given a JUMP_INSN, return a canonical description of the test
2923 being made. */
2924 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2925
2926 /* Information about a subreg of a hard register. */
2927 struct subreg_info
2928 {
2929 /* Offset of first hard register involved in the subreg. */
2930 int offset;
2931 /* Number of hard registers involved in the subreg. In the case of
2932 a paradoxical subreg, this is the number of registers that would
2933 be modified by writing to the subreg; some of them may be don't-care
2934 when reading from the subreg. */
2935 int nregs;
2936 /* Whether this subreg can be represented as a hard reg with the new
2937 mode (by adding OFFSET to the original hard register). */
2938 bool representable_p;
2939 };
2940
2941 extern void subreg_get_info (unsigned int, enum machine_mode,
2942 unsigned int, enum machine_mode,
2943 struct subreg_info *);
2944
2945 /* lists.c */
2946
2947 extern void free_EXPR_LIST_list (rtx_expr_list **);
2948 extern void free_INSN_LIST_list (rtx_insn_list **);
2949 extern void free_EXPR_LIST_node (rtx);
2950 extern void free_INSN_LIST_node (rtx);
2951 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2952 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2953 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2954 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2955 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2956 extern rtx remove_list_elem (rtx, rtx *);
2957 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2958 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2959
2960
2961 /* reginfo.c */
2962
2963 /* Resize reg info. */
2964 extern bool resize_reg_info (void);
2965 /* Free up register info memory. */
2966 extern void free_reg_info (void);
2967 extern void init_subregs_of_mode (void);
2968 extern void finish_subregs_of_mode (void);
2969
2970 /* recog.c */
2971 extern rtx extract_asm_operands (rtx);
2972 extern int asm_noperands (const_rtx);
2973 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2974 enum machine_mode *, location_t *);
2975 extern void get_referenced_operands (const char *, bool *, unsigned int);
2976
2977 extern enum reg_class reg_preferred_class (int);
2978 extern enum reg_class reg_alternate_class (int);
2979 extern enum reg_class reg_allocno_class (int);
2980 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2981 enum reg_class);
2982
2983 extern void split_all_insns (void);
2984 extern unsigned int split_all_insns_noflow (void);
2985
2986 #define MAX_SAVED_CONST_INT 64
2987 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2988
2989 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
2990 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
2991 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
2992 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
2993 extern GTY(()) rtx const_true_rtx;
2994
2995 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
2996
2997 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
2998 same as VOIDmode. */
2999
3000 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3001
3002 /* Likewise, for the constants 1 and 2 and -1. */
3003
3004 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3005 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3006 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3007
3008 extern GTY(()) rtx pc_rtx;
3009 extern GTY(()) rtx cc0_rtx;
3010 extern GTY(()) rtx ret_rtx;
3011 extern GTY(()) rtx simple_return_rtx;
3012
3013 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3014 is used to represent the frame pointer. This is because the
3015 hard frame pointer and the automatic variables are separated by an amount
3016 that cannot be determined until after register allocation. We can assume
3017 that in this case ELIMINABLE_REGS will be defined, one action of which
3018 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3019 #ifndef HARD_FRAME_POINTER_REGNUM
3020 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3021 #endif
3022
3023 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3024 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3025 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3026 #endif
3027
3028 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3029 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3030 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3031 #endif
3032
3033 /* Index labels for global_rtl. */
3034 enum global_rtl_index
3035 {
3036 GR_STACK_POINTER,
3037 GR_FRAME_POINTER,
3038 /* For register elimination to work properly these hard_frame_pointer_rtx,
3039 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3040 the same register. */
3041 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3042 GR_ARG_POINTER = GR_FRAME_POINTER,
3043 #endif
3044 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3045 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3046 #else
3047 GR_HARD_FRAME_POINTER,
3048 #endif
3049 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3050 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3051 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3052 #else
3053 GR_ARG_POINTER,
3054 #endif
3055 #endif
3056 GR_VIRTUAL_INCOMING_ARGS,
3057 GR_VIRTUAL_STACK_ARGS,
3058 GR_VIRTUAL_STACK_DYNAMIC,
3059 GR_VIRTUAL_OUTGOING_ARGS,
3060 GR_VIRTUAL_CFA,
3061 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3062
3063 GR_MAX
3064 };
3065
3066 /* Target-dependent globals. */
3067 struct GTY(()) target_rtl {
3068 /* All references to the hard registers in global_rtl_index go through
3069 these unique rtl objects. On machines where the frame-pointer and
3070 arg-pointer are the same register, they use the same unique object.
3071
3072 After register allocation, other rtl objects which used to be pseudo-regs
3073 may be clobbered to refer to the frame-pointer register.
3074 But references that were originally to the frame-pointer can be
3075 distinguished from the others because they contain frame_pointer_rtx.
3076
3077 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3078 tricky: until register elimination has taken place hard_frame_pointer_rtx
3079 should be used if it is being set, and frame_pointer_rtx otherwise. After
3080 register elimination hard_frame_pointer_rtx should always be used.
3081 On machines where the two registers are same (most) then these are the
3082 same. */
3083 rtx x_global_rtl[GR_MAX];
3084
3085 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3086 rtx x_pic_offset_table_rtx;
3087
3088 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3089 This is used to implement __builtin_return_address for some machines;
3090 see for instance the MIPS port. */
3091 rtx x_return_address_pointer_rtx;
3092
3093 /* Commonly used RTL for hard registers. These objects are not
3094 necessarily unique, so we allocate them separately from global_rtl.
3095 They are initialized once per compilation unit, then copied into
3096 regno_reg_rtx at the beginning of each function. */
3097 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3098
3099 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3100 rtx x_top_of_stack[MAX_MACHINE_MODE];
3101
3102 /* Static hunks of RTL used by the aliasing code; these are treated
3103 as persistent to avoid unnecessary RTL allocations. */
3104 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3105
3106 /* The default memory attributes for each mode. */
3107 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3108
3109 /* Track if RTL has been initialized. */
3110 bool target_specific_initialized;
3111 };
3112
3113 extern GTY(()) struct target_rtl default_target_rtl;
3114 #if SWITCHABLE_TARGET
3115 extern struct target_rtl *this_target_rtl;
3116 #else
3117 #define this_target_rtl (&default_target_rtl)
3118 #endif
3119
3120 #define global_rtl \
3121 (this_target_rtl->x_global_rtl)
3122 #define pic_offset_table_rtx \
3123 (this_target_rtl->x_pic_offset_table_rtx)
3124 #define return_address_pointer_rtx \
3125 (this_target_rtl->x_return_address_pointer_rtx)
3126 #define top_of_stack \
3127 (this_target_rtl->x_top_of_stack)
3128 #define mode_mem_attrs \
3129 (this_target_rtl->x_mode_mem_attrs)
3130
3131 /* All references to certain hard regs, except those created
3132 by allocating pseudo regs into them (when that's possible),
3133 go through these unique rtx objects. */
3134 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3135 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3136 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3137 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3138
3139 #ifndef GENERATOR_FILE
3140 /* Return the attributes of a MEM rtx. */
3141 static inline struct mem_attrs *
3142 get_mem_attrs (const_rtx x)
3143 {
3144 struct mem_attrs *attrs;
3145
3146 attrs = MEM_ATTRS (x);
3147 if (!attrs)
3148 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3149 return attrs;
3150 }
3151 #endif
3152
3153 /* Include the RTL generation functions. */
3154
3155 #ifndef GENERATOR_FILE
3156 #include "genrtl.h"
3157 #undef gen_rtx_ASM_INPUT
3158 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3159 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3160 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3161 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3162 #endif
3163
3164 /* There are some RTL codes that require special attention; the
3165 generation functions included above do the raw handling. If you
3166 add to this list, modify special_rtx in gengenrtl.c as well. */
3167
3168 extern rtx_expr_list *gen_rtx_EXPR_LIST (enum machine_mode, rtx, rtx);
3169 extern rtx_insn_list *gen_rtx_INSN_LIST (enum machine_mode, rtx, rtx);
3170 extern rtx_insn *
3171 gen_rtx_INSN (enum machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3172 basic_block bb, rtx pattern, int location, int code,
3173 rtx reg_notes);
3174 extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT);
3175 extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec);
3176 extern rtx gen_raw_REG (enum machine_mode, int);
3177 extern rtx gen_rtx_REG (enum machine_mode, unsigned);
3178 extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int);
3179 extern rtx gen_rtx_MEM (enum machine_mode, rtx);
3180 extern rtx gen_rtx_VAR_LOCATION (enum machine_mode, tree, rtx,
3181 enum var_init_status);
3182
3183 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3184
3185 /* Virtual registers are used during RTL generation to refer to locations into
3186 the stack frame when the actual location isn't known until RTL generation
3187 is complete. The routine instantiate_virtual_regs replaces these with
3188 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3189 a constant. */
3190
3191 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3192
3193 /* This points to the first word of the incoming arguments passed on the stack,
3194 either by the caller or by the callee when pretending it was passed by the
3195 caller. */
3196
3197 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3198
3199 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3200
3201 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3202 variable on the stack. Otherwise, it points to the first variable on
3203 the stack. */
3204
3205 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3206
3207 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3208
3209 /* This points to the location of dynamically-allocated memory on the stack
3210 immediately after the stack pointer has been adjusted by the amount
3211 desired. */
3212
3213 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3214
3215 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3216
3217 /* This points to the location in the stack at which outgoing arguments should
3218 be written when the stack is pre-pushed (arguments pushed using push
3219 insns always use sp). */
3220
3221 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3222
3223 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3224
3225 /* This points to the Canonical Frame Address of the function. This
3226 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3227 but is calculated relative to the arg pointer for simplicity; the
3228 frame pointer nor stack pointer are necessarily fixed relative to
3229 the CFA until after reload. */
3230
3231 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3232
3233 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3234
3235 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3236
3237 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3238 when finalized. */
3239
3240 #define virtual_preferred_stack_boundary_rtx \
3241 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3242
3243 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3244 ((FIRST_VIRTUAL_REGISTER) + 5)
3245
3246 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3247
3248 /* Nonzero if REGNUM is a pointer into the stack frame. */
3249 #define REGNO_PTR_FRAME_P(REGNUM) \
3250 ((REGNUM) == STACK_POINTER_REGNUM \
3251 || (REGNUM) == FRAME_POINTER_REGNUM \
3252 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3253 || (REGNUM) == ARG_POINTER_REGNUM \
3254 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3255 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3256
3257 /* REGNUM never really appearing in the INSN stream. */
3258 #define INVALID_REGNUM (~(unsigned int) 0)
3259
3260 /* REGNUM for which no debug information can be generated. */
3261 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3262
3263 extern rtx output_constant_def (tree, int);
3264 extern rtx lookup_constant_def (tree);
3265
3266 /* Nonzero after end of reload pass.
3267 Set to 1 or 0 by reload1.c. */
3268
3269 extern int reload_completed;
3270
3271 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3272 extern int epilogue_completed;
3273
3274 /* Set to 1 while reload_as_needed is operating.
3275 Required by some machines to handle any generated moves differently. */
3276
3277 extern int reload_in_progress;
3278
3279 /* Set to 1 while in lra. */
3280 extern int lra_in_progress;
3281
3282 /* This macro indicates whether you may create a new
3283 pseudo-register. */
3284
3285 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3286
3287 #ifdef STACK_REGS
3288 /* Nonzero after end of regstack pass.
3289 Set to 1 or 0 by reg-stack.c. */
3290 extern int regstack_completed;
3291 #endif
3292
3293 /* If this is nonzero, we do not bother generating VOLATILE
3294 around volatile memory references, and we are willing to
3295 output indirect addresses. If cse is to follow, we reject
3296 indirect addresses so a useful potential cse is generated;
3297 if it is used only once, instruction combination will produce
3298 the same indirect address eventually. */
3299 extern int cse_not_expected;
3300
3301 /* Translates rtx code to tree code, for those codes needed by
3302 REAL_ARITHMETIC. The function returns an int because the caller may not
3303 know what `enum tree_code' means. */
3304
3305 extern int rtx_to_tree_code (enum rtx_code);
3306
3307 /* In cse.c */
3308 extern int delete_trivially_dead_insns (rtx_insn *, int);
3309 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3310 extern unsigned hash_rtx (const_rtx x, enum machine_mode, int *, int *, bool);
3311
3312 /* In dse.c */
3313 extern bool check_for_inc_dec (rtx_insn *insn);
3314
3315 /* In jump.c */
3316 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3317 extern bool jump_to_label_p (const rtx_insn *);
3318 extern int condjump_p (const rtx_insn *);
3319 extern int any_condjump_p (const rtx_insn *);
3320 extern int any_uncondjump_p (const rtx_insn *);
3321 extern rtx pc_set (const rtx_insn *);
3322 extern rtx condjump_label (const rtx_insn *);
3323 extern int simplejump_p (const rtx_insn *);
3324 extern int returnjump_p (const rtx_insn *);
3325 extern int eh_returnjump_p (rtx_insn *);
3326 extern int onlyjump_p (const rtx_insn *);
3327 extern int only_sets_cc0_p (const_rtx);
3328 extern int sets_cc0_p (const_rtx);
3329 extern int invert_jump_1 (rtx_insn *, rtx);
3330 extern int invert_jump (rtx_insn *, rtx, int);
3331 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3332 extern int true_regnum (const_rtx);
3333 extern unsigned int reg_or_subregno (const_rtx);
3334 extern int redirect_jump_1 (rtx, rtx);
3335 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3336 extern int redirect_jump (rtx, rtx, int);
3337 extern void rebuild_jump_labels (rtx_insn *);
3338 extern void rebuild_jump_labels_chain (rtx_insn *);
3339 extern rtx reversed_comparison (const_rtx, enum machine_mode);
3340 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3341 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3342 const_rtx, const_rtx);
3343 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3344 extern int condjump_in_parallel_p (const rtx_insn *);
3345
3346 /* In emit-rtl.c. */
3347 extern int max_reg_num (void);
3348 extern int max_label_num (void);
3349 extern int get_first_label_num (void);
3350 extern void maybe_set_first_label_num (rtx);
3351 extern void delete_insns_since (rtx_insn *);
3352 extern void mark_reg_pointer (rtx, int);
3353 extern void mark_user_reg (rtx);
3354 extern void reset_used_flags (rtx);
3355 extern void set_used_flags (rtx);
3356 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3357 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3358 extern int get_max_insn_count (void);
3359 extern int in_sequence_p (void);
3360 extern void init_emit (void);
3361 extern void init_emit_regs (void);
3362 extern void init_derived_machine_modes (void);
3363 extern void init_emit_once (void);
3364 extern void push_topmost_sequence (void);
3365 extern void pop_topmost_sequence (void);
3366 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3367 extern unsigned int unshare_all_rtl (void);
3368 extern void unshare_all_rtl_again (rtx_insn *);
3369 extern void unshare_all_rtl_in_chain (rtx_insn *);
3370 extern void verify_rtl_sharing (void);
3371 extern void add_insn (rtx_insn *);
3372 extern void add_insn_before (rtx, rtx, basic_block);
3373 extern void add_insn_after (rtx, rtx, basic_block);
3374 extern void remove_insn (rtx);
3375 extern rtx_insn *emit (rtx);
3376 extern void emit_insn_at_entry (rtx);
3377 extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx);
3378 extern rtx gen_const_mem (enum machine_mode, rtx);
3379 extern rtx gen_frame_mem (enum machine_mode, rtx);
3380 extern rtx gen_tmp_stack_mem (enum machine_mode, rtx);
3381 extern bool validate_subreg (enum machine_mode, enum machine_mode,
3382 const_rtx, unsigned int);
3383
3384 /* In combine.c */
3385 extern unsigned int extended_count (const_rtx, enum machine_mode, int);
3386 extern rtx remove_death (unsigned int, rtx_insn *);
3387 extern void dump_combine_stats (FILE *);
3388 extern void dump_combine_total_stats (FILE *);
3389 extern rtx make_compound_operation (rtx, enum rtx_code);
3390
3391 /* In sched-rgn.c. */
3392 extern void schedule_insns (void);
3393
3394 /* In sched-ebb.c. */
3395 extern void schedule_ebbs (void);
3396
3397 /* In sel-sched-dump.c. */
3398 extern void sel_sched_fix_param (const char *param, const char *val);
3399
3400 /* In print-rtl.c */
3401 extern const char *print_rtx_head;
3402 extern void debug (const rtx_def &ref);
3403 extern void debug (const rtx_def *ptr);
3404 extern void debug_rtx (const_rtx);
3405 extern void debug_rtx_list (const rtx_insn *, int);
3406 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3407 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3408 extern void print_mem_expr (FILE *, const_tree);
3409 extern void print_rtl (FILE *, const_rtx);
3410 extern void print_simple_rtl (FILE *, const_rtx);
3411 extern int print_rtl_single (FILE *, const_rtx);
3412 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3413 extern void print_inline_rtx (FILE *, const_rtx, int);
3414
3415 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3416 not be in sched-vis.c but in rtl.c, because they are not only used
3417 by the scheduler anymore but for all "slim" RTL dumping. */
3418 extern void dump_value_slim (FILE *, const_rtx, int);
3419 extern void dump_insn_slim (FILE *, const_rtx);
3420 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3421 int, int);
3422 extern void print_value (pretty_printer *, const_rtx, int);
3423 extern void print_pattern (pretty_printer *, const_rtx, int);
3424 extern void print_insn (pretty_printer *, const_rtx, int);
3425 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3426 extern const char *str_pattern_slim (const_rtx);
3427
3428 /* In stmt.c */
3429 extern void expand_null_return (void);
3430 extern void expand_naked_return (void);
3431 extern void emit_jump (rtx);
3432
3433 /* In expr.c */
3434 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3435 unsigned int, int);
3436 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3437 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3438
3439 /* In expmed.c */
3440 extern void init_expmed (void);
3441 extern void expand_inc (rtx, rtx);
3442 extern void expand_dec (rtx, rtx);
3443
3444 /* In lower-subreg.c */
3445 extern void init_lower_subreg (void);
3446
3447 /* In gcse.c */
3448 extern bool can_copy_p (enum machine_mode);
3449 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3450 extern rtx fis_get_condition (rtx_insn *);
3451
3452 /* In ira.c */
3453 #ifdef HARD_CONST
3454 extern HARD_REG_SET eliminable_regset;
3455 #endif
3456 extern void mark_elimination (int, int);
3457
3458 /* In reginfo.c */
3459 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3460 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3461 extern void globalize_reg (tree, int);
3462 extern void init_reg_modes_target (void);
3463 extern void init_regs (void);
3464 extern void reinit_regs (void);
3465 extern void init_fake_stack_mems (void);
3466 extern void save_register_info (void);
3467 extern void init_reg_sets (void);
3468 extern void regclass (rtx, int);
3469 extern void reg_scan (rtx_insn *, unsigned int);
3470 extern void fix_register (const char *, int, int);
3471 extern bool invalid_mode_change_p (unsigned int, enum reg_class);
3472
3473 /* In reload1.c */
3474 extern int function_invariant_p (const_rtx);
3475
3476 /* In calls.c */
3477 enum libcall_type
3478 {
3479 LCT_NORMAL = 0,
3480 LCT_CONST = 1,
3481 LCT_PURE = 2,
3482 LCT_NORETURN = 3,
3483 LCT_THROW = 4,
3484 LCT_RETURNS_TWICE = 5
3485 };
3486
3487 extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int,
3488 ...);
3489 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3490 enum machine_mode, int, ...);
3491
3492 /* In varasm.c */
3493 extern void init_varasm_once (void);
3494
3495 extern rtx make_debug_expr_from_rtl (const_rtx);
3496
3497 /* In read-rtl.c */
3498 extern bool read_rtx (const char *, rtx *);
3499
3500 /* In alias.c */
3501 extern rtx canon_rtx (rtx);
3502 extern int true_dependence (const_rtx, enum machine_mode, const_rtx);
3503 extern rtx get_addr (rtx);
3504 extern int canon_true_dependence (const_rtx, enum machine_mode, rtx,
3505 const_rtx, rtx);
3506 extern int read_dependence (const_rtx, const_rtx);
3507 extern int anti_dependence (const_rtx, const_rtx);
3508 extern int canon_anti_dependence (const_rtx, bool,
3509 const_rtx, enum machine_mode, rtx);
3510 extern int output_dependence (const_rtx, const_rtx);
3511 extern int may_alias_p (const_rtx, const_rtx);
3512 extern void init_alias_target (void);
3513 extern void init_alias_analysis (void);
3514 extern void end_alias_analysis (void);
3515 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3516 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3517 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3518 extern bool may_be_sp_based_p (rtx);
3519 extern rtx gen_hard_reg_clobber (enum machine_mode, unsigned int);
3520 extern rtx get_reg_known_value (unsigned int);
3521 extern bool get_reg_known_equiv_p (unsigned int);
3522 extern rtx get_reg_base_value (unsigned int);
3523
3524 #ifdef STACK_REGS
3525 extern int stack_regs_mentioned (const_rtx insn);
3526 #endif
3527
3528 /* In toplev.c */
3529 extern GTY(()) rtx stack_limit_rtx;
3530
3531 /* In var-tracking.c */
3532 extern unsigned int variable_tracking_main (void);
3533
3534 /* In stor-layout.c. */
3535 extern void get_mode_bounds (enum machine_mode, int, enum machine_mode,
3536 rtx *, rtx *);
3537
3538 /* In loop-iv.c */
3539 extern rtx canon_condition (rtx);
3540 extern void simplify_using_condition (rtx, rtx *, bitmap);
3541
3542 /* In final.c */
3543 extern unsigned int compute_alignments (void);
3544 extern void update_alignments (vec<rtx> &);
3545 extern int asm_str_count (const char *templ);
3546 \f
3547 struct rtl_hooks
3548 {
3549 rtx (*gen_lowpart) (enum machine_mode, rtx);
3550 rtx (*gen_lowpart_no_emit) (enum machine_mode, rtx);
3551 rtx (*reg_nonzero_bits) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3552 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3553 rtx (*reg_num_sign_bit_copies) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3554 unsigned int, unsigned int *);
3555 bool (*reg_truncated_to_mode) (enum machine_mode, const_rtx);
3556
3557 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3558 };
3559
3560 /* Each pass can provide its own. */
3561 extern struct rtl_hooks rtl_hooks;
3562
3563 /* ... but then it has to restore these. */
3564 extern const struct rtl_hooks general_rtl_hooks;
3565
3566 /* Keep this for the nonce. */
3567 #define gen_lowpart rtl_hooks.gen_lowpart
3568
3569 extern void insn_locations_init (void);
3570 extern void insn_locations_finalize (void);
3571 extern void set_curr_insn_location (location_t);
3572 extern location_t curr_insn_location (void);
3573
3574 /* rtl-error.c */
3575 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3576 ATTRIBUTE_NORETURN;
3577 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3578 ATTRIBUTE_NORETURN;
3579
3580 #define fatal_insn(msgid, insn) \
3581 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3582 #define fatal_insn_not_found(insn) \
3583 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3584
3585 /* reginfo.c */
3586 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3587
3588
3589 #endif /* ! GCC_RTL_H */