Use rtx_expr_list in various places
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include <utility>
24 #include "statistics.h"
25 #include "machmode.h"
26 #include "input.h"
27 #include "real.h"
28 #include "vec.h"
29 #include "fixed-value.h"
30 #include "alias.h"
31 #include "hashtab.h"
32 #include "wide-int.h"
33 #include "flags.h"
34 #include "is-a.h"
35
36 /* Value used by some passes to "recognize" noop moves as valid
37 instructions. */
38 #define NOOP_MOVE_INSN_CODE INT_MAX
39
40 /* Register Transfer Language EXPRESSIONS CODES */
41
42 #define RTX_CODE enum rtx_code
43 enum rtx_code {
44
45 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
46 #include "rtl.def" /* rtl expressions are documented here */
47 #undef DEF_RTL_EXPR
48
49 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
50 NUM_RTX_CODE.
51 Assumes default enum value assignment. */
52
53 /* The cast here, saves many elsewhere. */
54 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
55
56 /* Similar, but since generator files get more entries... */
57 #ifdef GENERATOR_FILE
58 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
59 #endif
60
61 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
62
63 enum rtx_class {
64 /* We check bit 0-1 of some rtx class codes in the predicates below. */
65
66 /* Bit 0 = comparison if 0, arithmetic is 1
67 Bit 1 = 1 if commutative. */
68 RTX_COMPARE, /* 0 */
69 RTX_COMM_COMPARE,
70 RTX_BIN_ARITH,
71 RTX_COMM_ARITH,
72
73 /* Must follow the four preceding values. */
74 RTX_UNARY, /* 4 */
75
76 RTX_EXTRA,
77 RTX_MATCH,
78 RTX_INSN,
79
80 /* Bit 0 = 1 if constant. */
81 RTX_OBJ, /* 8 */
82 RTX_CONST_OBJ,
83
84 RTX_TERNARY,
85 RTX_BITFIELD_OPS,
86 RTX_AUTOINC
87 };
88
89 #define RTX_OBJ_MASK (~1)
90 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
91 #define RTX_COMPARE_MASK (~1)
92 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
93 #define RTX_ARITHMETIC_MASK (~1)
94 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
95 #define RTX_BINARY_MASK (~3)
96 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
97 #define RTX_COMMUTATIVE_MASK (~2)
98 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
99 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
100
101 extern const unsigned char rtx_length[NUM_RTX_CODE];
102 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
103
104 extern const char * const rtx_name[NUM_RTX_CODE];
105 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
106
107 extern const char * const rtx_format[NUM_RTX_CODE];
108 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
109
110 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
111 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
112
113 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
114 and NEXT_INSN fields). */
115 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
116
117 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
118 extern const unsigned char rtx_next[NUM_RTX_CODE];
119 \f
120 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
121 relative to which the offsets are calculated, as explained in rtl.def. */
122 struct addr_diff_vec_flags
123 {
124 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
125 unsigned min_align: 8;
126 /* Flags: */
127 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
128 unsigned min_after_vec: 1; /* minimum address target label is
129 after the ADDR_DIFF_VEC. */
130 unsigned max_after_vec: 1; /* maximum address target label is
131 after the ADDR_DIFF_VEC. */
132 unsigned min_after_base: 1; /* minimum address target label is
133 after BASE. */
134 unsigned max_after_base: 1; /* maximum address target label is
135 after BASE. */
136 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
137 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
138 unsigned : 2;
139 unsigned scale : 8;
140 };
141
142 /* Structure used to describe the attributes of a MEM. These are hashed
143 so MEMs that the same attributes share a data structure. This means
144 they cannot be modified in place. */
145 struct GTY(()) mem_attrs
146 {
147 /* The expression that the MEM accesses, or null if not known.
148 This expression might be larger than the memory reference itself.
149 (In other words, the MEM might access only part of the object.) */
150 tree expr;
151
152 /* The offset of the memory reference from the start of EXPR.
153 Only valid if OFFSET_KNOWN_P. */
154 HOST_WIDE_INT offset;
155
156 /* The size of the memory reference in bytes. Only valid if
157 SIZE_KNOWN_P. */
158 HOST_WIDE_INT size;
159
160 /* The alias set of the memory reference. */
161 alias_set_type alias;
162
163 /* The alignment of the reference in bits. Always a multiple of
164 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
165 than the memory reference itself. */
166 unsigned int align;
167
168 /* The address space that the memory reference uses. */
169 unsigned char addrspace;
170
171 /* True if OFFSET is known. */
172 bool offset_known_p;
173
174 /* True if SIZE is known. */
175 bool size_known_p;
176 };
177
178 /* Structure used to describe the attributes of a REG in similar way as
179 mem_attrs does for MEM above. Note that the OFFSET field is calculated
180 in the same way as for mem_attrs, rather than in the same way as a
181 SUBREG_BYTE. For example, if a big-endian target stores a byte
182 object in the low part of a 4-byte register, the OFFSET field
183 will be -3 rather than 0. */
184
185 struct GTY(()) reg_attrs {
186 tree decl; /* decl corresponding to REG. */
187 HOST_WIDE_INT offset; /* Offset from start of DECL. */
188 };
189
190 /* Common union for an element of an rtx. */
191
192 union rtunion
193 {
194 int rt_int;
195 unsigned int rt_uint;
196 const char *rt_str;
197 rtx rt_rtx;
198 rtvec rt_rtvec;
199 enum machine_mode rt_type;
200 addr_diff_vec_flags rt_addr_diff_vec_flags;
201 struct cselib_val *rt_cselib;
202 tree rt_tree;
203 basic_block rt_bb;
204 mem_attrs *rt_mem;
205 reg_attrs *rt_reg;
206 struct constant_descriptor_rtx *rt_constant;
207 struct dw_cfi_node *rt_cfi;
208 };
209
210 /* This structure remembers the position of a SYMBOL_REF within an
211 object_block structure. A SYMBOL_REF only provides this information
212 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
213 struct GTY(()) block_symbol {
214 /* The usual SYMBOL_REF fields. */
215 rtunion GTY ((skip)) fld[2];
216
217 /* The block that contains this object. */
218 struct object_block *block;
219
220 /* The offset of this object from the start of its block. It is negative
221 if the symbol has not yet been assigned an offset. */
222 HOST_WIDE_INT offset;
223 };
224
225 /* Describes a group of objects that are to be placed together in such
226 a way that their relative positions are known. */
227 struct GTY(()) object_block {
228 /* The section in which these objects should be placed. */
229 section *sect;
230
231 /* The alignment of the first object, measured in bits. */
232 unsigned int alignment;
233
234 /* The total size of the objects, measured in bytes. */
235 HOST_WIDE_INT size;
236
237 /* The SYMBOL_REFs for each object. The vector is sorted in
238 order of increasing offset and the following conditions will
239 hold for each element X:
240
241 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
242 !SYMBOL_REF_ANCHOR_P (X)
243 SYMBOL_REF_BLOCK (X) == [address of this structure]
244 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
245 vec<rtx, va_gc> *objects;
246
247 /* All the anchor SYMBOL_REFs used to address these objects, sorted
248 in order of increasing offset, and then increasing TLS model.
249 The following conditions will hold for each element X in this vector:
250
251 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
252 SYMBOL_REF_ANCHOR_P (X)
253 SYMBOL_REF_BLOCK (X) == [address of this structure]
254 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
255 vec<rtx, va_gc> *anchors;
256 };
257
258 struct GTY((variable_size)) hwivec_def {
259 HOST_WIDE_INT elem[1];
260 };
261
262 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
263 #define CWI_GET_NUM_ELEM(RTX) \
264 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
265 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
266 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
267
268 /* RTL expression ("rtx"). */
269
270 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
271 field for for gengtype to recognize that inheritance is occurring,
272 so that all subclasses are redirected to the traversal hook for the
273 base class.
274 However, all of the fields are in the base class, and special-casing
275 is at work. Hence we use desc and tag of 0, generating a switch
276 statement of the form:
277 switch (0)
278 {
279 case 0: // all the work happens here
280 }
281 in order to work with the existing special-casing in gengtype. */
282
283 struct GTY((desc("0"), tag("0"),
284 chain_next ("RTX_NEXT (&%h)"),
285 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
286 /* The kind of expression this is. */
287 ENUM_BITFIELD(rtx_code) code: 16;
288
289 /* The kind of value the expression has. */
290 ENUM_BITFIELD(machine_mode) mode : 8;
291
292 /* 1 in a MEM if we should keep the alias set for this mem unchanged
293 when we access a component.
294 1 in a JUMP_INSN if it is a crossing jump.
295 1 in a CALL_INSN if it is a sibling call.
296 1 in a SET that is for a return.
297 In a CODE_LABEL, part of the two-bit alternate entry field.
298 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
299 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
300 1 in a SUBREG generated by LRA for reload insns. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 /* No extra fields, but adds the invariant:
494
495 (INSN_P (X)
496 || NOTE_P (X)
497 || JUMP_TABLE_DATA_P (X)
498 || BARRIER_P (X)
499 || LABEL_P (X))
500
501 i.e. that we must be able to use the following:
502 INSN_UID ()
503 NEXT_INSN ()
504 PREV_INSN ()
505 i.e. we have an rtx that has an INSN_UID field and can be part of
506 a linked list of insns.
507 */
508 };
509
510 /* Subclasses of rtx_insn. */
511
512 class GTY(()) rtx_debug_insn : public rtx_insn
513 {
514 /* No extra fields, but adds the invariant:
515 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
516 i.e. an annotation for tracking variable assignments.
517
518 This is an instance of:
519 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
520 from rtl.def. */
521 };
522
523 class GTY(()) rtx_nonjump_insn : public rtx_insn
524 {
525 /* No extra fields, but adds the invariant:
526 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
527 i.e an instruction that cannot jump.
528
529 This is an instance of:
530 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
531 from rtl.def. */
532 };
533
534 class GTY(()) rtx_jump_insn : public rtx_insn
535 {
536 /* No extra fields, but adds the invariant:
537 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
538 i.e. an instruction that can possibly jump.
539
540 This is an instance of:
541 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
542 from rtl.def. */
543 };
544
545 class GTY(()) rtx_call_insn : public rtx_insn
546 {
547 /* No extra fields, but adds the invariant:
548 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
549 i.e. an instruction that can possibly call a subroutine
550 but which will not change which instruction comes next
551 in the current function.
552
553 This is an instance of:
554 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_jump_table_data : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
562 i.e. a data for a jump table, considered an instruction for
563 historical reasons.
564
565 This is an instance of:
566 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
567 from rtl.def. */
568
569 public:
570
571 /* This can be either:
572
573 (a) a table of absolute jumps, in which case PATTERN (this) is an
574 ADDR_VEC with arg 0 a vector of labels, or
575
576 (b) a table of relative jumps (e.g. for -fPIC), in which case
577 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
578 arg 1 the vector of labels.
579
580 This method gets the underlying vec. */
581
582 inline rtvec get_labels () const;
583 };
584
585 class GTY(()) rtx_barrier : public rtx_insn
586 {
587 /* No extra fields, but adds the invariant:
588 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
589 i.e. a marker that indicates that control will not flow through.
590
591 This is an instance of:
592 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
593 from rtl.def. */
594 };
595
596 class GTY(()) rtx_code_label : public rtx_insn
597 {
598 /* No extra fields, but adds the invariant:
599 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
600 i.e. a label in the assembler.
601
602 This is an instance of:
603 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
604 from rtl.def. */
605 };
606
607 class GTY(()) rtx_note : public rtx_insn
608 {
609 /* No extra fields, but adds the invariant:
610 NOTE_P(X) aka (GET_CODE (X) == NOTE)
611 i.e. a note about the corresponding source code.
612
613 This is an instance of:
614 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
615 from rtl.def. */
616 };
617
618 /* The size in bytes of an rtx header (code, mode and flags). */
619 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
620
621 /* The size in bytes of an rtx with code CODE. */
622 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
623
624 #define NULL_RTX (rtx) 0
625
626 /* The "next" and "previous" RTX, relative to this one. */
627
628 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
629 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
630
631 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
632 */
633 #define RTX_PREV(X) ((INSN_P (X) \
634 || NOTE_P (X) \
635 || JUMP_TABLE_DATA_P (X) \
636 || BARRIER_P (X) \
637 || LABEL_P (X)) \
638 && PREV_INSN (X) != NULL \
639 && NEXT_INSN (PREV_INSN (X)) == X \
640 ? PREV_INSN (X) : NULL)
641
642 /* Define macros to access the `code' field of the rtx. */
643
644 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
645 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
646
647 #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode)
648 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
649
650 /* RTL vector. These appear inside RTX's when there is a need
651 for a variable number of things. The principle use is inside
652 PARALLEL expressions. */
653
654 struct GTY(()) rtvec_def {
655 int num_elem; /* number of elements */
656 rtx GTY ((length ("%h.num_elem"))) elem[1];
657 };
658
659 #define NULL_RTVEC (rtvec) 0
660
661 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
662 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
663
664 /* Predicate yielding nonzero iff X is an rtx for a register. */
665 #define REG_P(X) (GET_CODE (X) == REG)
666
667 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
668 #define MEM_P(X) (GET_CODE (X) == MEM)
669
670 #if TARGET_SUPPORTS_WIDE_INT
671
672 /* Match CONST_*s that can represent compile-time constant integers. */
673 #define CASE_CONST_SCALAR_INT \
674 case CONST_INT: \
675 case CONST_WIDE_INT
676
677 /* Match CONST_*s for which pointer equality corresponds to value
678 equality. */
679 #define CASE_CONST_UNIQUE \
680 case CONST_INT: \
681 case CONST_WIDE_INT: \
682 case CONST_DOUBLE: \
683 case CONST_FIXED
684
685 /* Match all CONST_* rtxes. */
686 #define CASE_CONST_ANY \
687 case CONST_INT: \
688 case CONST_WIDE_INT: \
689 case CONST_DOUBLE: \
690 case CONST_FIXED: \
691 case CONST_VECTOR
692
693 #else
694
695 /* Match CONST_*s that can represent compile-time constant integers. */
696 #define CASE_CONST_SCALAR_INT \
697 case CONST_INT: \
698 case CONST_DOUBLE
699
700 /* Match CONST_*s for which pointer equality corresponds to value
701 equality. */
702 #define CASE_CONST_UNIQUE \
703 case CONST_INT: \
704 case CONST_DOUBLE: \
705 case CONST_FIXED
706
707 /* Match all CONST_* rtxes. */
708 #define CASE_CONST_ANY \
709 case CONST_INT: \
710 case CONST_DOUBLE: \
711 case CONST_FIXED: \
712 case CONST_VECTOR
713 #endif
714
715 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
716 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
717
718 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
719 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
720
721 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
722 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
723
724 /* Predicate yielding true iff X is an rtx for a double-int
725 or floating point constant. */
726 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
727
728 /* Predicate yielding true iff X is an rtx for a double-int. */
729 #define CONST_DOUBLE_AS_INT_P(X) \
730 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
731
732 /* Predicate yielding true iff X is an rtx for a integer const. */
733 #if TARGET_SUPPORTS_WIDE_INT
734 #define CONST_SCALAR_INT_P(X) \
735 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
736 #else
737 #define CONST_SCALAR_INT_P(X) \
738 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
739 #endif
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_FLOAT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
744
745 /* Predicate yielding nonzero iff X is a label insn. */
746 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
747
748 /* Predicate yielding nonzero iff X is a jump insn. */
749 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
750
751 /* Predicate yielding nonzero iff X is a call insn. */
752 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
753
754 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
755 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
756
757 /* Predicate yielding nonzero iff X is a debug note/insn. */
758 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
759
760 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
761 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
762
763 /* Nonzero if DEBUG_INSN_P may possibly hold. */
764 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
765
766 /* Predicate yielding nonzero iff X is a real insn. */
767 #define INSN_P(X) \
768 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
769
770 /* Predicate yielding nonzero iff X is a note insn. */
771 #define NOTE_P(X) (GET_CODE (X) == NOTE)
772
773 /* Predicate yielding nonzero iff X is a barrier insn. */
774 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
775
776 /* Predicate yielding nonzero iff X is a data for a jump table. */
777 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
778
779 template <>
780 template <>
781 inline bool
782 is_a_helper <rtx_insn *>::test (rtx rt)
783 {
784 return (INSN_P (rt)
785 || NOTE_P (rt)
786 || JUMP_TABLE_DATA_P (rt)
787 || BARRIER_P (rt)
788 || LABEL_P (rt));
789 }
790
791 template <>
792 template <>
793 inline bool
794 is_a_helper <const rtx_insn *>::test (const_rtx rt)
795 {
796 return (INSN_P (rt)
797 || NOTE_P (rt)
798 || JUMP_TABLE_DATA_P (rt)
799 || BARRIER_P (rt)
800 || LABEL_P (rt));
801 }
802
803 template <>
804 template <>
805 inline bool
806 is_a_helper <rtx_debug_insn *>::test (rtx rt)
807 {
808 return DEBUG_INSN_P (rt);
809 }
810
811 template <>
812 template <>
813 inline bool
814 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
815 {
816 return NONJUMP_INSN_P (rt);
817 }
818
819 template <>
820 template <>
821 inline bool
822 is_a_helper <rtx_jump_insn *>::test (rtx rt)
823 {
824 return JUMP_P (rt);
825 }
826
827 template <>
828 template <>
829 inline bool
830 is_a_helper <rtx_call_insn *>::test (rtx rt)
831 {
832 return CALL_P (rt);
833 }
834
835 template <>
836 template <>
837 inline bool
838 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
839 {
840 return CALL_P (insn);
841 }
842
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
847 {
848 return JUMP_TABLE_DATA_P (rt);
849 }
850
851 template <>
852 template <>
853 inline bool
854 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
855 {
856 return JUMP_TABLE_DATA_P (insn);
857 }
858
859 template <>
860 template <>
861 inline bool
862 is_a_helper <rtx_barrier *>::test (rtx rt)
863 {
864 return BARRIER_P (rt);
865 }
866
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_code_label *>::test (rtx rt)
871 {
872 return LABEL_P (rt);
873 }
874
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
879 {
880 return LABEL_P (insn);
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_note *>::test (rtx rt)
887 {
888 return NOTE_P (rt);
889 }
890
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_note *>::test (rtx_insn *insn)
895 {
896 return NOTE_P (insn);
897 }
898
899 /* Predicate yielding nonzero iff X is a return or simple_return. */
900 #define ANY_RETURN_P(X) \
901 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
902
903 /* 1 if X is a unary operator. */
904
905 #define UNARY_P(X) \
906 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
907
908 /* 1 if X is a binary operator. */
909
910 #define BINARY_P(X) \
911 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
912
913 /* 1 if X is an arithmetic operator. */
914
915 #define ARITHMETIC_P(X) \
916 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
917 == RTX_ARITHMETIC_RESULT)
918
919 /* 1 if X is an arithmetic operator. */
920
921 #define COMMUTATIVE_ARITH_P(X) \
922 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
923
924 /* 1 if X is a commutative arithmetic operator or a comparison operator.
925 These two are sometimes selected together because it is possible to
926 swap the two operands. */
927
928 #define SWAPPABLE_OPERANDS_P(X) \
929 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
930 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
931 | (1 << RTX_COMPARE)))
932
933 /* 1 if X is a non-commutative operator. */
934
935 #define NON_COMMUTATIVE_P(X) \
936 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
937 == RTX_NON_COMMUTATIVE_RESULT)
938
939 /* 1 if X is a commutative operator on integers. */
940
941 #define COMMUTATIVE_P(X) \
942 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
943 == RTX_COMMUTATIVE_RESULT)
944
945 /* 1 if X is a relational operator. */
946
947 #define COMPARISON_P(X) \
948 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
949
950 /* 1 if X is a constant value that is an integer. */
951
952 #define CONSTANT_P(X) \
953 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
954
955 /* 1 if X can be used to represent an object. */
956 #define OBJECT_P(X) \
957 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
958
959 /* General accessor macros for accessing the fields of an rtx. */
960
961 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
962 /* The bit with a star outside the statement expr and an & inside is
963 so that N can be evaluated only once. */
964 #define RTL_CHECK1(RTX, N, C1) __extension__ \
965 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
966 const enum rtx_code _code = GET_CODE (_rtx); \
967 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
968 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
969 __FUNCTION__); \
970 if (GET_RTX_FORMAT (_code)[_n] != C1) \
971 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
972 __FUNCTION__); \
973 &_rtx->u.fld[_n]; }))
974
975 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
976 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
977 const enum rtx_code _code = GET_CODE (_rtx); \
978 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
979 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
980 __FUNCTION__); \
981 if (GET_RTX_FORMAT (_code)[_n] != C1 \
982 && GET_RTX_FORMAT (_code)[_n] != C2) \
983 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
984 __FUNCTION__); \
985 &_rtx->u.fld[_n]; }))
986
987 #define RTL_CHECKC1(RTX, N, C) __extension__ \
988 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
989 if (GET_CODE (_rtx) != (C)) \
990 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
991 __FUNCTION__); \
992 &_rtx->u.fld[_n]; }))
993
994 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
995 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
996 const enum rtx_code _code = GET_CODE (_rtx); \
997 if (_code != (C1) && _code != (C2)) \
998 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
999 __FUNCTION__); \
1000 &_rtx->u.fld[_n]; }))
1001
1002 #define RTVEC_ELT(RTVEC, I) __extension__ \
1003 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1004 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1005 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1006 __FUNCTION__); \
1007 &_rtvec->elem[_i]; }))
1008
1009 #define XWINT(RTX, N) __extension__ \
1010 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1011 const enum rtx_code _code = GET_CODE (_rtx); \
1012 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1013 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1014 __FUNCTION__); \
1015 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1016 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1017 __FUNCTION__); \
1018 &_rtx->u.hwint[_n]; }))
1019
1020 #define CWI_ELT(RTX, I) __extension__ \
1021 (*({ __typeof (RTX) const _cwi = (RTX); \
1022 int _max = CWI_GET_NUM_ELEM (_cwi); \
1023 const int _i = (I); \
1024 if (_i < 0 || _i >= _max) \
1025 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1026 __FUNCTION__); \
1027 &_cwi->u.hwiv.elem[_i]; }))
1028
1029 #define XCWINT(RTX, N, C) __extension__ \
1030 (*({ __typeof (RTX) const _rtx = (RTX); \
1031 if (GET_CODE (_rtx) != (C)) \
1032 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtx->u.hwint[N]; }))
1035
1036 #define XCMWINT(RTX, N, C, M) __extension__ \
1037 (*({ __typeof (RTX) const _rtx = (RTX); \
1038 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1039 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1040 __LINE__, __FUNCTION__); \
1041 &_rtx->u.hwint[N]; }))
1042
1043 #define XCNMPRV(RTX, C, M) __extension__ \
1044 ({ __typeof (RTX) const _rtx = (RTX); \
1045 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1046 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1047 __LINE__, __FUNCTION__); \
1048 &_rtx->u.rv; })
1049
1050 #define XCNMPFV(RTX, C, M) __extension__ \
1051 ({ __typeof (RTX) const _rtx = (RTX); \
1052 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1053 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1054 __LINE__, __FUNCTION__); \
1055 &_rtx->u.fv; })
1056
1057 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1058 ({ __typeof (RTX) const _symbol = (RTX); \
1059 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1060 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1061 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1062 __FUNCTION__); \
1063 &_symbol->u.block_sym; })
1064
1065 #define HWIVEC_CHECK(RTX,C) __extension__ \
1066 ({ __typeof (RTX) const _symbol = (RTX); \
1067 RTL_CHECKC1 (_symbol, 0, C); \
1068 &_symbol->u.hwiv; })
1069
1070 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1071 const char *)
1072 ATTRIBUTE_NORETURN;
1073 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1074 const char *)
1075 ATTRIBUTE_NORETURN;
1076 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1077 int, const char *)
1078 ATTRIBUTE_NORETURN;
1079 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1080 int, const char *)
1081 ATTRIBUTE_NORETURN;
1082 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1083 const char *, int, const char *)
1084 ATTRIBUTE_NORETURN;
1085 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, enum machine_mode,
1086 bool, const char *, int, const char *)
1087 ATTRIBUTE_NORETURN;
1088 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1089 ATTRIBUTE_NORETURN;
1090 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1091 const char *)
1092 ATTRIBUTE_NORETURN;
1093 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1094 const char *)
1095 ATTRIBUTE_NORETURN;
1096
1097 #else /* not ENABLE_RTL_CHECKING */
1098
1099 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1100 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1101 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1102 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1103 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1104 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1105 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1106 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1107 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1108 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1109 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1110 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1111 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1112 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1113
1114 #endif
1115
1116 /* General accessor macros for accessing the flags of an rtx. */
1117
1118 /* Access an individual rtx flag, with no checking of any kind. */
1119 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1120
1121 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1122 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1123 ({ __typeof (RTX) const _rtx = (RTX); \
1124 if (GET_CODE (_rtx) != C1) \
1125 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1126 __FUNCTION__); \
1127 _rtx; })
1128
1129 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1130 ({ __typeof (RTX) const _rtx = (RTX); \
1131 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1132 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1133 __FUNCTION__); \
1134 _rtx; })
1135
1136 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1137 ({ __typeof (RTX) const _rtx = (RTX); \
1138 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1139 && GET_CODE (_rtx) != C3) \
1140 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1141 __FUNCTION__); \
1142 _rtx; })
1143
1144 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1145 ({ __typeof (RTX) const _rtx = (RTX); \
1146 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1147 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1148 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1149 __FUNCTION__); \
1150 _rtx; })
1151
1152 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1155 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1156 && GET_CODE (_rtx) != C5) \
1157 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1158 __FUNCTION__); \
1159 _rtx; })
1160
1161 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1162 __extension__ \
1163 ({ __typeof (RTX) const _rtx = (RTX); \
1164 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1165 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1166 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1167 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1168 __FUNCTION__); \
1169 _rtx; })
1170
1171 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1172 __extension__ \
1173 ({ __typeof (RTX) const _rtx = (RTX); \
1174 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1175 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1176 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1177 && GET_CODE (_rtx) != C7) \
1178 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1179 __FUNCTION__); \
1180 _rtx; })
1181
1182 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1183 __extension__ \
1184 ({ __typeof (RTX) const _rtx = (RTX); \
1185 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1186 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1187 __FUNCTION__); \
1188 _rtx; })
1189
1190 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1191 int, const char *)
1192 ATTRIBUTE_NORETURN
1193 ;
1194
1195 #else /* not ENABLE_RTL_FLAG_CHECKING */
1196
1197 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1198 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1199 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1200 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1201 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1202 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1203 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1204 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1205 #endif
1206
1207 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1208 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1209 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1210 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1211 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1212 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1213 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1214 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1215 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1216 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1217
1218 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1219 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1220
1221 /* These are like XINT, etc. except that they expect a '0' field instead
1222 of the normal type code. */
1223
1224 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1225 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1226 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1227 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1228 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1229 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1230 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1231 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1232 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1233 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1234 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1235 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1236 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1237
1238 /* Access a '0' field with any type. */
1239 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1240
1241 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1242 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1243 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1244 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1245 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1246 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1247 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1248 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1249 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1250 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1251
1252 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1253 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1254
1255 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1256 \f
1257
1258 /* Methods of rtx_expr_list. */
1259
1260 inline rtx_expr_list *rtx_expr_list::next () const
1261 {
1262 rtx tmp = XEXP (this, 1);
1263 return safe_as_a <rtx_expr_list *> (tmp);
1264 }
1265
1266 inline rtx rtx_expr_list::element () const
1267 {
1268 return XEXP (this, 0);
1269 }
1270
1271 /* Methods of rtx_insn_list. */
1272
1273 inline rtx_insn_list *rtx_insn_list::next () const
1274 {
1275 rtx tmp = XEXP (this, 1);
1276 return safe_as_a <rtx_insn_list *> (tmp);
1277 }
1278
1279 inline rtx_insn *rtx_insn_list::insn () const
1280 {
1281 rtx tmp = XEXP (this, 0);
1282 return safe_as_a <rtx_insn *> (tmp);
1283 }
1284
1285 /* Methods of rtx_sequence. */
1286
1287 inline int rtx_sequence::len () const
1288 {
1289 return XVECLEN (this, 0);
1290 }
1291
1292 inline rtx rtx_sequence::element (int index) const
1293 {
1294 return XVECEXP (this, 0, index);
1295 }
1296
1297 inline rtx_insn *rtx_sequence::insn (int index) const
1298 {
1299 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1300 }
1301
1302 /* ACCESS MACROS for particular fields of insns. */
1303
1304 /* Holds a unique number for each insn.
1305 These are not necessarily sequentially increasing. */
1306 inline int INSN_UID (const_rtx insn)
1307 {
1308 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1309 (insn))->u2.insn_uid;
1310 }
1311 inline int& INSN_UID (rtx insn)
1312 {
1313 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1314 (insn))->u2.insn_uid;
1315 }
1316
1317 /* Chain insns together in sequence. */
1318
1319 /* For now these are split in two: an rvalue form:
1320 PREV_INSN/NEXT_INSN
1321 and an lvalue form:
1322 SET_NEXT_INSN/SET_PREV_INSN. */
1323
1324 inline rtx_insn *PREV_INSN (const_rtx insn)
1325 {
1326 rtx prev = XEXP (insn, 0);
1327 return safe_as_a <rtx_insn *> (prev);
1328 }
1329
1330 inline rtx& SET_PREV_INSN (rtx insn)
1331 {
1332 return XEXP (insn, 0);
1333 }
1334
1335 inline rtx_insn *NEXT_INSN (const_rtx insn)
1336 {
1337 rtx next = XEXP (insn, 1);
1338 return safe_as_a <rtx_insn *> (next);
1339 }
1340
1341 inline rtx& SET_NEXT_INSN (rtx insn)
1342 {
1343 return XEXP (insn, 1);
1344 }
1345
1346 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1347 {
1348 return XBBDEF (insn, 2);
1349 }
1350
1351 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1352 {
1353 return XBBDEF (insn, 2);
1354 }
1355
1356 /* The body of an insn. */
1357 inline rtx PATTERN (const_rtx insn)
1358 {
1359 return XEXP (insn, 3);
1360 }
1361
1362 inline rtx& PATTERN (rtx insn)
1363 {
1364 return XEXP (insn, 3);
1365 }
1366
1367 inline unsigned int INSN_LOCATION (const_rtx insn)
1368 {
1369 return XUINT (insn, 4);
1370 }
1371
1372 inline unsigned int& INSN_LOCATION (rtx insn)
1373 {
1374 return XUINT (insn, 4);
1375 }
1376
1377 inline bool INSN_HAS_LOCATION (const_rtx insn)
1378 {
1379 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1380 }
1381
1382 /* LOCATION of an RTX if relevant. */
1383 #define RTL_LOCATION(X) (INSN_P (X) ? \
1384 INSN_LOCATION (X) : UNKNOWN_LOCATION)
1385
1386 /* Code number of instruction, from when it was recognized.
1387 -1 means this instruction has not been recognized yet. */
1388 #define INSN_CODE(INSN) XINT (INSN, 5)
1389
1390 inline rtvec rtx_jump_table_data::get_labels () const
1391 {
1392 rtx pat = PATTERN (this);
1393 if (GET_CODE (pat) == ADDR_VEC)
1394 return XVEC (pat, 0);
1395 else
1396 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1397 }
1398
1399 #define RTX_FRAME_RELATED_P(RTX) \
1400 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1401 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1402
1403 /* 1 if RTX is an insn that has been deleted. */
1404 #define INSN_DELETED_P(RTX) \
1405 (RTL_INSN_CHAIN_FLAG_CHECK ("INSN_DELETED_P", (RTX))->volatil)
1406
1407 /* 1 if JUMP RTX is a crossing jump. */
1408 #define CROSSING_JUMP_P(RTX) \
1409 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1410
1411 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1412 TREE_READONLY. */
1413 #define RTL_CONST_CALL_P(RTX) \
1414 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1415
1416 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1417 DECL_PURE_P. */
1418 #define RTL_PURE_CALL_P(RTX) \
1419 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1420
1421 /* 1 if RTX is a call to a const or pure function. */
1422 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1423 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1424
1425 /* 1 if RTX is a call to a looping const or pure function. Built from
1426 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1427 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1428 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1429
1430 /* 1 if RTX is a call_insn for a sibling call. */
1431 #define SIBLING_CALL_P(RTX) \
1432 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1433
1434 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1435 #define INSN_ANNULLED_BRANCH_P(RTX) \
1436 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1437
1438 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1439 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1440 executed if the branch is taken. For annulled branches with this bit
1441 clear, the insn should be executed only if the branch is not taken. */
1442 #define INSN_FROM_TARGET_P(RTX) \
1443 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1444 CALL_INSN)->in_struct)
1445
1446 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1447 See the comments for ADDR_DIFF_VEC in rtl.def. */
1448 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1449
1450 /* In a VALUE, the value cselib has assigned to RTX.
1451 This is a "struct cselib_val", see cselib.h. */
1452 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1453
1454 /* Holds a list of notes on what this insn does to various REGs.
1455 It is a chain of EXPR_LIST rtx's, where the second operand is the
1456 chain pointer and the first operand is the REG being described.
1457 The mode field of the EXPR_LIST contains not a real machine mode
1458 but a value from enum reg_note. */
1459 #define REG_NOTES(INSN) XEXP(INSN, 6)
1460
1461 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1462 question. */
1463 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1464
1465 enum reg_note
1466 {
1467 #define DEF_REG_NOTE(NAME) NAME,
1468 #include "reg-notes.def"
1469 #undef DEF_REG_NOTE
1470 REG_NOTE_MAX
1471 };
1472
1473 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1474 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1475 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1476 PUT_MODE (LINK, (enum machine_mode) (KIND))
1477
1478 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1479
1480 extern const char * const reg_note_name[];
1481 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1482
1483 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1484 USE and CLOBBER expressions.
1485 USE expressions list the registers filled with arguments that
1486 are passed to the function.
1487 CLOBBER expressions document the registers explicitly clobbered
1488 by this CALL_INSN.
1489 Pseudo registers can not be mentioned in this list. */
1490 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1491
1492 /* The label-number of a code-label. The assembler label
1493 is made from `L' and the label-number printed in decimal.
1494 Label numbers are unique in a compilation. */
1495 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1496
1497 /* In a NOTE that is a line number, this is a string for the file name that the
1498 line is in. We use the same field to record block numbers temporarily in
1499 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1500 between ints and pointers if we use a different macro for the block number.)
1501 */
1502
1503 /* Opaque data. */
1504 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1505 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1506 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1507 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1508 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1509 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1510 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1511 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1512 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1513
1514 /* In a NOTE that is a line number, this is the line number.
1515 Other kinds of NOTEs are identified by negative numbers here. */
1516 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1517
1518 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1519 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1520 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1521
1522 /* Variable declaration and the location of a variable. */
1523 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1524 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1525
1526 /* Initialization status of the variable in the location. Status
1527 can be unknown, uninitialized or initialized. See enumeration
1528 type below. */
1529 #define PAT_VAR_LOCATION_STATUS(PAT) \
1530 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1531 ->u2.var_location_status)
1532
1533 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1534 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1535 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1536 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1537 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1538 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1539 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1540
1541 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1542 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1543
1544 /* Accessors for a tree-expanded var location debug insn. */
1545 #define INSN_VAR_LOCATION_DECL(INSN) \
1546 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1547 #define INSN_VAR_LOCATION_LOC(INSN) \
1548 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1549 #define INSN_VAR_LOCATION_STATUS(INSN) \
1550 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1551
1552 /* Expand to the RTL that denotes an unknown variable location in a
1553 DEBUG_INSN. */
1554 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1555
1556 /* Determine whether X is such an unknown location. */
1557 #define VAR_LOC_UNKNOWN_P(X) \
1558 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1559
1560 /* 1 if RTX is emitted after a call, but it should take effect before
1561 the call returns. */
1562 #define NOTE_DURING_CALL_P(RTX) \
1563 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1564
1565 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1566 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1567
1568 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1569 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1570
1571 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1572 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1573
1574 /* Codes that appear in the NOTE_KIND field for kinds of notes
1575 that are not line numbers. These codes are all negative.
1576
1577 Notice that we do not try to use zero here for any of
1578 the special note codes because sometimes the source line
1579 actually can be zero! This happens (for example) when we
1580 are generating code for the per-translation-unit constructor
1581 and destructor routines for some C++ translation unit. */
1582
1583 enum insn_note
1584 {
1585 #define DEF_INSN_NOTE(NAME) NAME,
1586 #include "insn-notes.def"
1587 #undef DEF_INSN_NOTE
1588
1589 NOTE_INSN_MAX
1590 };
1591
1592 /* Names for NOTE insn's other than line numbers. */
1593
1594 extern const char * const note_insn_name[NOTE_INSN_MAX];
1595 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1596 (note_insn_name[(NOTE_CODE)])
1597
1598 /* The name of a label, in case it corresponds to an explicit label
1599 in the input source code. */
1600 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1601
1602 /* In jump.c, each label contains a count of the number
1603 of LABEL_REFs that point at it, so unused labels can be deleted. */
1604 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1605
1606 /* Labels carry a two-bit field composed of the ->jump and ->call
1607 bits. This field indicates whether the label is an alternate
1608 entry point, and if so, what kind. */
1609 enum label_kind
1610 {
1611 LABEL_NORMAL = 0, /* ordinary label */
1612 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1613 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1614 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1615 };
1616
1617 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1618
1619 /* Retrieve the kind of LABEL. */
1620 #define LABEL_KIND(LABEL) __extension__ \
1621 ({ __typeof (LABEL) const _label = (LABEL); \
1622 if (! LABEL_P (_label)) \
1623 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1624 __FUNCTION__); \
1625 (enum label_kind) ((_label->jump << 1) | _label->call); })
1626
1627 /* Set the kind of LABEL. */
1628 #define SET_LABEL_KIND(LABEL, KIND) do { \
1629 __typeof (LABEL) const _label = (LABEL); \
1630 const unsigned int _kind = (KIND); \
1631 if (! LABEL_P (_label)) \
1632 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1633 __FUNCTION__); \
1634 _label->jump = ((_kind >> 1) & 1); \
1635 _label->call = (_kind & 1); \
1636 } while (0)
1637
1638 #else
1639
1640 /* Retrieve the kind of LABEL. */
1641 #define LABEL_KIND(LABEL) \
1642 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1643
1644 /* Set the kind of LABEL. */
1645 #define SET_LABEL_KIND(LABEL, KIND) do { \
1646 rtx const _label = (LABEL); \
1647 const unsigned int _kind = (KIND); \
1648 _label->jump = ((_kind >> 1) & 1); \
1649 _label->call = (_kind & 1); \
1650 } while (0)
1651
1652 #endif /* rtl flag checking */
1653
1654 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1655
1656 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1657 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1658 be decremented and possibly the label can be deleted. */
1659 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1660
1661 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1662 goes through all the LABEL_REFs that jump to that label. The chain
1663 eventually winds up at the CODE_LABEL: it is circular. */
1664 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1665 \f
1666 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1667 be used on RHS. Use SET_REGNO to change the value. */
1668 #define REGNO(RTX) (rhs_regno(RTX))
1669 #define SET_REGNO(RTX,N) \
1670 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1671 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1672
1673 /* ORIGINAL_REGNO holds the number the register originally had; for a
1674 pseudo register turned into a hard reg this will hold the old pseudo
1675 register number. */
1676 #define ORIGINAL_REGNO(RTX) \
1677 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1678
1679 /* Force the REGNO macro to only be used on the lhs. */
1680 static inline unsigned int
1681 rhs_regno (const_rtx x)
1682 {
1683 return XCUINT (x, 0, REG);
1684 }
1685
1686
1687 /* 1 if RTX is a reg or parallel that is the current function's return
1688 value. */
1689 #define REG_FUNCTION_VALUE_P(RTX) \
1690 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1691
1692 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1693 #define REG_USERVAR_P(RTX) \
1694 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1695
1696 /* 1 if RTX is a reg that holds a pointer value. */
1697 #define REG_POINTER(RTX) \
1698 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1699
1700 /* 1 if RTX is a mem that holds a pointer value. */
1701 #define MEM_POINTER(RTX) \
1702 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1703
1704 /* 1 if the given register REG corresponds to a hard register. */
1705 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1706
1707 /* 1 if the given register number REG_NO corresponds to a hard register. */
1708 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1709
1710 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1711 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1712 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1713
1714 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1715 elements actually needed to represent the constant.
1716 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1717 significant HOST_WIDE_INT. */
1718 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1719 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1720 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1721
1722 /* For a CONST_DOUBLE:
1723 #if TARGET_SUPPORTS_WIDE_INT == 0
1724 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1725 low-order word and ..._HIGH the high-order.
1726 #endif
1727 For a float, there is a REAL_VALUE_TYPE structure, and
1728 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1729 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1730 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1731 #define CONST_DOUBLE_REAL_VALUE(r) \
1732 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1733
1734 #define CONST_FIXED_VALUE(r) \
1735 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1736 #define CONST_FIXED_VALUE_HIGH(r) \
1737 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1738 #define CONST_FIXED_VALUE_LOW(r) \
1739 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1740
1741 /* For a CONST_VECTOR, return element #n. */
1742 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1743
1744 /* For a CONST_VECTOR, return the number of elements in a vector. */
1745 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1746
1747 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1748 SUBREG_BYTE extracts the byte-number. */
1749
1750 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1751 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1752
1753 /* in rtlanal.c */
1754 /* Return the right cost to give to an operation
1755 to make the cost of the corresponding register-to-register instruction
1756 N times that of a fast register-to-register instruction. */
1757 #define COSTS_N_INSNS(N) ((N) * 4)
1758
1759 /* Maximum cost of an rtl expression. This value has the special meaning
1760 not to use an rtx with this cost under any circumstances. */
1761 #define MAX_COST INT_MAX
1762
1763 /* A structure to hold all available cost information about an rtl
1764 expression. */
1765 struct full_rtx_costs
1766 {
1767 int speed;
1768 int size;
1769 };
1770
1771 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1772 static inline void
1773 init_costs_to_max (struct full_rtx_costs *c)
1774 {
1775 c->speed = MAX_COST;
1776 c->size = MAX_COST;
1777 }
1778
1779 /* Initialize a full_rtx_costs structure C to zero cost. */
1780 static inline void
1781 init_costs_to_zero (struct full_rtx_costs *c)
1782 {
1783 c->speed = 0;
1784 c->size = 0;
1785 }
1786
1787 /* Compare two full_rtx_costs structures A and B, returning true
1788 if A < B when optimizing for speed. */
1789 static inline bool
1790 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1791 bool speed)
1792 {
1793 if (speed)
1794 return (a->speed < b->speed
1795 || (a->speed == b->speed && a->size < b->size));
1796 else
1797 return (a->size < b->size
1798 || (a->size == b->size && a->speed < b->speed));
1799 }
1800
1801 /* Increase both members of the full_rtx_costs structure C by the
1802 cost of N insns. */
1803 static inline void
1804 costs_add_n_insns (struct full_rtx_costs *c, int n)
1805 {
1806 c->speed += COSTS_N_INSNS (n);
1807 c->size += COSTS_N_INSNS (n);
1808 }
1809
1810 /* Information about an address. This structure is supposed to be able
1811 to represent all supported target addresses. Please extend it if it
1812 is not yet general enough. */
1813 struct address_info {
1814 /* The mode of the value being addressed, or VOIDmode if this is
1815 a load-address operation with no known address mode. */
1816 enum machine_mode mode;
1817
1818 /* The address space. */
1819 addr_space_t as;
1820
1821 /* A pointer to the top-level address. */
1822 rtx *outer;
1823
1824 /* A pointer to the inner address, after all address mutations
1825 have been stripped from the top-level address. It can be one
1826 of the following:
1827
1828 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1829
1830 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1831 points to the step value, depending on whether the step is variable
1832 or constant respectively. SEGMENT is null.
1833
1834 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1835 with null fields evaluating to 0. */
1836 rtx *inner;
1837
1838 /* Components that make up *INNER. Each one may be null or nonnull.
1839 When nonnull, their meanings are as follows:
1840
1841 - *SEGMENT is the "segment" of memory to which the address refers.
1842 This value is entirely target-specific and is only called a "segment"
1843 because that's its most typical use. It contains exactly one UNSPEC,
1844 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1845 reloading.
1846
1847 - *BASE is a variable expression representing a base address.
1848 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1849
1850 - *INDEX is a variable expression representing an index value.
1851 It may be a scaled expression, such as a MULT. It has exactly
1852 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1853
1854 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1855 unmutated RTX_CONST_OBJ. */
1856 rtx *segment;
1857 rtx *base;
1858 rtx *index;
1859 rtx *disp;
1860
1861 rtx *segment_term;
1862 rtx *base_term;
1863 rtx *index_term;
1864 rtx *disp_term;
1865
1866 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1867 of BASE_TERM, otherwise it is null. */
1868 rtx *base_term2;
1869
1870 /* ADDRESS if this structure describes an address operand, MEM if
1871 it describes a MEM address. */
1872 enum rtx_code addr_outer_code;
1873
1874 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1875 enum rtx_code base_outer_code;
1876
1877 /* True if this is an RTX_AUTOINC address. */
1878 bool autoinc_p;
1879 };
1880
1881 /* This is used to bundle an rtx and a mode together so that the pair
1882 can be used with the wi:: routines. If we ever put modes into rtx
1883 integer constants, this should go away and then just pass an rtx in. */
1884 typedef std::pair <rtx, enum machine_mode> rtx_mode_t;
1885
1886 namespace wi
1887 {
1888 template <>
1889 struct int_traits <rtx_mode_t>
1890 {
1891 static const enum precision_type precision_type = VAR_PRECISION;
1892 static const bool host_dependent_precision = false;
1893 /* This ought to be true, except for the special case that BImode
1894 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1895 static const bool is_sign_extended = false;
1896 static unsigned int get_precision (const rtx_mode_t &);
1897 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1898 const rtx_mode_t &);
1899 };
1900 }
1901
1902 inline unsigned int
1903 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1904 {
1905 return GET_MODE_PRECISION (x.second);
1906 }
1907
1908 inline wi::storage_ref
1909 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1910 unsigned int precision,
1911 const rtx_mode_t &x)
1912 {
1913 gcc_checking_assert (precision == get_precision (x));
1914 switch (GET_CODE (x.first))
1915 {
1916 case CONST_INT:
1917 if (precision < HOST_BITS_PER_WIDE_INT)
1918 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
1919 targets is 1 rather than -1. */
1920 gcc_checking_assert (INTVAL (x.first)
1921 == sext_hwi (INTVAL (x.first), precision)
1922 || (x.second == BImode && INTVAL (x.first) == 1));
1923
1924 return wi::storage_ref (&INTVAL (x.first), 1, precision);
1925
1926 case CONST_WIDE_INT:
1927 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
1928 CONST_WIDE_INT_NUNITS (x.first), precision);
1929
1930 #if TARGET_SUPPORTS_WIDE_INT == 0
1931 case CONST_DOUBLE:
1932 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
1933 #endif
1934
1935 default:
1936 gcc_unreachable ();
1937 }
1938 }
1939
1940 namespace wi
1941 {
1942 hwi_with_prec shwi (HOST_WIDE_INT, enum machine_mode mode);
1943 wide_int min_value (enum machine_mode, signop);
1944 wide_int max_value (enum machine_mode, signop);
1945 }
1946
1947 inline wi::hwi_with_prec
1948 wi::shwi (HOST_WIDE_INT val, enum machine_mode mode)
1949 {
1950 return shwi (val, GET_MODE_PRECISION (mode));
1951 }
1952
1953 /* Produce the smallest number that is represented in MODE. The precision
1954 is taken from MODE and the sign from SGN. */
1955 inline wide_int
1956 wi::min_value (enum machine_mode mode, signop sgn)
1957 {
1958 return min_value (GET_MODE_PRECISION (mode), sgn);
1959 }
1960
1961 /* Produce the largest number that is represented in MODE. The precision
1962 is taken from MODE and the sign from SGN. */
1963 inline wide_int
1964 wi::max_value (enum machine_mode mode, signop sgn)
1965 {
1966 return max_value (GET_MODE_PRECISION (mode), sgn);
1967 }
1968
1969 extern void init_rtlanal (void);
1970 extern int rtx_cost (rtx, enum rtx_code, int, bool);
1971 extern int address_cost (rtx, enum machine_mode, addr_space_t, bool);
1972 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
1973 struct full_rtx_costs *);
1974 extern unsigned int subreg_lsb (const_rtx);
1975 extern unsigned int subreg_lsb_1 (enum machine_mode, enum machine_mode,
1976 unsigned int);
1977 extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode,
1978 unsigned int, enum machine_mode);
1979 extern bool subreg_offset_representable_p (unsigned int, enum machine_mode,
1980 unsigned int, enum machine_mode);
1981 extern unsigned int subreg_regno (const_rtx);
1982 extern int simplify_subreg_regno (unsigned int, enum machine_mode,
1983 unsigned int, enum machine_mode);
1984 extern unsigned int subreg_nregs (const_rtx);
1985 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
1986 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, enum machine_mode);
1987 extern unsigned int num_sign_bit_copies (const_rtx, enum machine_mode);
1988 extern bool constant_pool_constant_p (rtx);
1989 extern bool truncated_to_mode (enum machine_mode, const_rtx);
1990 extern int low_bitmask_len (enum machine_mode, unsigned HOST_WIDE_INT);
1991 extern void split_double (rtx, rtx *, rtx *);
1992 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
1993 extern void decompose_address (struct address_info *, rtx *,
1994 enum machine_mode, addr_space_t, enum rtx_code);
1995 extern void decompose_lea_address (struct address_info *, rtx *);
1996 extern void decompose_mem_address (struct address_info *, rtx);
1997 extern void update_address (struct address_info *);
1998 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
1999 extern enum rtx_code get_index_code (const struct address_info *);
2000
2001 #ifndef GENERATOR_FILE
2002 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2003 rather than size. */
2004
2005 static inline int
2006 set_rtx_cost (rtx x, bool speed_p)
2007 {
2008 return rtx_cost (x, INSN, 4, speed_p);
2009 }
2010
2011 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2012
2013 static inline void
2014 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2015 {
2016 get_full_rtx_cost (x, INSN, 4, c);
2017 }
2018
2019 /* Return the cost of moving X into a register, relative to the cost
2020 of a register move. SPEED_P is true if optimizing for speed rather
2021 than size. */
2022
2023 static inline int
2024 set_src_cost (rtx x, bool speed_p)
2025 {
2026 return rtx_cost (x, SET, 1, speed_p);
2027 }
2028
2029 /* Like set_src_cost, but return both the speed and size costs in C. */
2030
2031 static inline void
2032 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2033 {
2034 get_full_rtx_cost (x, SET, 1, c);
2035 }
2036 #endif
2037
2038 /* 1 if RTX is a subreg containing a reg that is already known to be
2039 sign- or zero-extended from the mode of the subreg to the mode of
2040 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2041 extension.
2042
2043 When used as a LHS, is means that this extension must be done
2044 when assigning to SUBREG_REG. */
2045
2046 #define SUBREG_PROMOTED_VAR_P(RTX) \
2047 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2048
2049 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2050 this gives the necessary extensions:
2051 0 - signed (SPR_SIGNED)
2052 1 - normal unsigned (SPR_UNSIGNED)
2053 2 - value is both sign and unsign extended for mode
2054 (SPR_SIGNED_AND_UNSIGNED).
2055 -1 - pointer unsigned, which most often can be handled like unsigned
2056 extension, except for generating instructions where we need to
2057 emit special code (ptr_extend insns) on some architectures
2058 (SPR_POINTER). */
2059
2060 const int SRP_POINTER = -1;
2061 const int SRP_SIGNED = 0;
2062 const int SRP_UNSIGNED = 1;
2063 const int SRP_SIGNED_AND_UNSIGNED = 2;
2064
2065 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2066 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2067 do { \
2068 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2069 (RTX), SUBREG); \
2070 switch (VAL) \
2071 { \
2072 case SRP_POINTER: \
2073 _rtx->volatil = 0; \
2074 _rtx->unchanging = 0; \
2075 break; \
2076 case SRP_SIGNED: \
2077 _rtx->volatil = 0; \
2078 _rtx->unchanging = 1; \
2079 break; \
2080 case SRP_UNSIGNED: \
2081 _rtx->volatil = 1; \
2082 _rtx->unchanging = 0; \
2083 break; \
2084 case SRP_SIGNED_AND_UNSIGNED: \
2085 _rtx->volatil = 1; \
2086 _rtx->unchanging = 1; \
2087 break; \
2088 } \
2089 } while (0)
2090
2091 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2092 including SRP_SIGNED_AND_UNSIGNED if promoted for
2093 both signed and unsigned. */
2094 #define SUBREG_PROMOTED_GET(RTX) \
2095 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2096 + (RTX)->unchanging - 1)
2097
2098 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2099 #define SUBREG_PROMOTED_SIGN(RTX) \
2100 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2101 : (RTX)->unchanging - 1)
2102
2103 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2104 for SIGNED type. */
2105 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2106 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2107
2108 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2109 for UNSIGNED type. */
2110 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2111 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2112
2113 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2114 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2115 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2116 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2117 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2118
2119 /* True if the subreg was generated by LRA for reload insns. Such
2120 subregs are valid only during LRA. */
2121 #define LRA_SUBREG_P(RTX) \
2122 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2123
2124 /* Access various components of an ASM_OPERANDS rtx. */
2125
2126 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2127 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2128 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2129 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2130 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2131 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2132 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2133 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2134 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2135 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2136 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2137 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2138 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2139 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2140 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2141 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2142 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2143 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2144
2145 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2146 #define MEM_READONLY_P(RTX) \
2147 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2148
2149 /* 1 if RTX is a mem and we should keep the alias set for this mem
2150 unchanged when we access a component. Set to 1, or example, when we
2151 are already in a non-addressable component of an aggregate. */
2152 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2153 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2154
2155 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2156 #define MEM_VOLATILE_P(RTX) \
2157 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2158 ASM_INPUT)->volatil)
2159
2160 /* 1 if RTX is a mem that cannot trap. */
2161 #define MEM_NOTRAP_P(RTX) \
2162 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2163
2164 /* The memory attribute block. We provide access macros for each value
2165 in the block and provide defaults if none specified. */
2166 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2167
2168 /* The register attribute block. We provide access macros for each value
2169 in the block and provide defaults if none specified. */
2170 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2171
2172 #ifndef GENERATOR_FILE
2173 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2174 set, and may alias anything. Otherwise, the MEM can only alias
2175 MEMs in a conflicting alias set. This value is set in a
2176 language-dependent manner in the front-end, and should not be
2177 altered in the back-end. These set numbers are tested with
2178 alias_sets_conflict_p. */
2179 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2180
2181 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2182 refer to part of a DECL. It may also be a COMPONENT_REF. */
2183 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2184
2185 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2186 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2187
2188 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2189 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2190
2191 /* For a MEM rtx, the address space. */
2192 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2193
2194 /* For a MEM rtx, true if its MEM_SIZE is known. */
2195 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2196
2197 /* For a MEM rtx, the size in bytes of the MEM. */
2198 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2199
2200 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2201 mode as a default when STRICT_ALIGNMENT, but not if not. */
2202 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2203 #else
2204 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2205 #endif
2206
2207 /* For a REG rtx, the decl it is known to refer to, if it is known to
2208 refer to part of a DECL. */
2209 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2210
2211 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2212 HOST_WIDE_INT. */
2213 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2214
2215 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2216 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2217 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2218 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2219 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2220 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2221 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2222 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2223
2224 /* 1 if RTX is a label_ref for a nonlocal label. */
2225 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2226 REG_LABEL_TARGET note. */
2227 #define LABEL_REF_NONLOCAL_P(RTX) \
2228 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2229
2230 /* 1 if RTX is a code_label that should always be considered to be needed. */
2231 #define LABEL_PRESERVE_P(RTX) \
2232 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2233
2234 /* During sched, 1 if RTX is an insn that must be scheduled together
2235 with the preceding insn. */
2236 #define SCHED_GROUP_P(RTX) \
2237 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2238 JUMP_INSN, CALL_INSN)->in_struct)
2239
2240 /* For a SET rtx, SET_DEST is the place that is set
2241 and SET_SRC is the value it is set to. */
2242 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2243 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2244 #define SET_IS_RETURN_P(RTX) \
2245 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2246
2247 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2248 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2249 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2250
2251 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2252 conditionally executing the code on, COND_EXEC_CODE is the code
2253 to execute if the condition is true. */
2254 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2255 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2256
2257 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2258 constants pool. */
2259 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2260 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2261
2262 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2263 tree constant pool. This information is private to varasm.c. */
2264 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2265 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2266 (RTX), SYMBOL_REF)->frame_related)
2267
2268 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2269 #define SYMBOL_REF_FLAG(RTX) \
2270 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2271
2272 /* 1 if RTX is a symbol_ref that has been the library function in
2273 emit_library_call. */
2274 #define SYMBOL_REF_USED(RTX) \
2275 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2276
2277 /* 1 if RTX is a symbol_ref for a weak symbol. */
2278 #define SYMBOL_REF_WEAK(RTX) \
2279 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2280
2281 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2282 SYMBOL_REF_CONSTANT. */
2283 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2284
2285 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2286 pool symbol. */
2287 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2288 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2289
2290 /* The tree (decl or constant) associated with the symbol, or null. */
2291 #define SYMBOL_REF_DECL(RTX) \
2292 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2293
2294 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2295 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2296 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2297
2298 /* The rtx constant pool entry for a symbol, or null. */
2299 #define SYMBOL_REF_CONSTANT(RTX) \
2300 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2301
2302 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2303 information derivable from the tree decl associated with this symbol.
2304 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2305 decl. In some cases this is a bug. But beyond that, it's nice to cache
2306 this information to avoid recomputing it. Finally, this allows space for
2307 the target to store more than one bit of information, as with
2308 SYMBOL_REF_FLAG. */
2309 #define SYMBOL_REF_FLAGS(RTX) \
2310 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2311 ->u2.symbol_ref_flags)
2312
2313 /* These flags are common enough to be defined for all targets. They
2314 are computed by the default version of targetm.encode_section_info. */
2315
2316 /* Set if this symbol is a function. */
2317 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2318 #define SYMBOL_REF_FUNCTION_P(RTX) \
2319 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2320 /* Set if targetm.binds_local_p is true. */
2321 #define SYMBOL_FLAG_LOCAL (1 << 1)
2322 #define SYMBOL_REF_LOCAL_P(RTX) \
2323 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2324 /* Set if targetm.in_small_data_p is true. */
2325 #define SYMBOL_FLAG_SMALL (1 << 2)
2326 #define SYMBOL_REF_SMALL_P(RTX) \
2327 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2328 /* The three-bit field at [5:3] is true for TLS variables; use
2329 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2330 #define SYMBOL_FLAG_TLS_SHIFT 3
2331 #define SYMBOL_REF_TLS_MODEL(RTX) \
2332 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2333 /* Set if this symbol is not defined in this translation unit. */
2334 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2335 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2336 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2337 /* Set if this symbol has a block_symbol structure associated with it. */
2338 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2339 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2340 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2341 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2342 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2343 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2344 #define SYMBOL_REF_ANCHOR_P(RTX) \
2345 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2346
2347 /* Subsequent bits are available for the target to use. */
2348 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2349 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2350
2351 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2352 structure to which the symbol belongs, or NULL if it has not been
2353 assigned a block. */
2354 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2355
2356 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2357 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2358 RTX has not yet been assigned to a block, or it has not been given an
2359 offset within that block. */
2360 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2361
2362 /* True if RTX is flagged to be a scheduling barrier. */
2363 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2364 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2365
2366 /* Indicate whether the machine has any sort of auto increment addressing.
2367 If not, we can avoid checking for REG_INC notes. */
2368
2369 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2370 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2371 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2372 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2373 #define AUTO_INC_DEC
2374 #endif
2375
2376 /* Define a macro to look for REG_INC notes,
2377 but save time on machines where they never exist. */
2378
2379 #ifdef AUTO_INC_DEC
2380 #define FIND_REG_INC_NOTE(INSN, REG) \
2381 ((REG) != NULL_RTX && REG_P ((REG)) \
2382 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2383 : find_reg_note ((INSN), REG_INC, (REG)))
2384 #else
2385 #define FIND_REG_INC_NOTE(INSN, REG) 0
2386 #endif
2387
2388 #ifndef HAVE_PRE_INCREMENT
2389 #define HAVE_PRE_INCREMENT 0
2390 #endif
2391
2392 #ifndef HAVE_PRE_DECREMENT
2393 #define HAVE_PRE_DECREMENT 0
2394 #endif
2395
2396 #ifndef HAVE_POST_INCREMENT
2397 #define HAVE_POST_INCREMENT 0
2398 #endif
2399
2400 #ifndef HAVE_POST_DECREMENT
2401 #define HAVE_POST_DECREMENT 0
2402 #endif
2403
2404 #ifndef HAVE_POST_MODIFY_DISP
2405 #define HAVE_POST_MODIFY_DISP 0
2406 #endif
2407
2408 #ifndef HAVE_POST_MODIFY_REG
2409 #define HAVE_POST_MODIFY_REG 0
2410 #endif
2411
2412 #ifndef HAVE_PRE_MODIFY_DISP
2413 #define HAVE_PRE_MODIFY_DISP 0
2414 #endif
2415
2416 #ifndef HAVE_PRE_MODIFY_REG
2417 #define HAVE_PRE_MODIFY_REG 0
2418 #endif
2419
2420
2421 /* Some architectures do not have complete pre/post increment/decrement
2422 instruction sets, or only move some modes efficiently. These macros
2423 allow us to tune autoincrement generation. */
2424
2425 #ifndef USE_LOAD_POST_INCREMENT
2426 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2427 #endif
2428
2429 #ifndef USE_LOAD_POST_DECREMENT
2430 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2431 #endif
2432
2433 #ifndef USE_LOAD_PRE_INCREMENT
2434 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2435 #endif
2436
2437 #ifndef USE_LOAD_PRE_DECREMENT
2438 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2439 #endif
2440
2441 #ifndef USE_STORE_POST_INCREMENT
2442 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2443 #endif
2444
2445 #ifndef USE_STORE_POST_DECREMENT
2446 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2447 #endif
2448
2449 #ifndef USE_STORE_PRE_INCREMENT
2450 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2451 #endif
2452
2453 #ifndef USE_STORE_PRE_DECREMENT
2454 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2455 #endif
2456 \f
2457 /* Nonzero when we are generating CONCATs. */
2458 extern int generating_concat_p;
2459
2460 /* Nonzero when we are expanding trees to RTL. */
2461 extern int currently_expanding_to_rtl;
2462
2463 /* Generally useful functions. */
2464
2465 /* In explow.c */
2466 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode);
2467 extern rtx plus_constant (enum machine_mode, rtx, HOST_WIDE_INT, bool = false);
2468
2469 /* In rtl.c */
2470 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2471 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2472 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2473 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2474 #define const_wide_int_alloc(NWORDS) \
2475 rtx_alloc_v (CONST_WIDE_INT, \
2476 (sizeof (struct hwivec_def) \
2477 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2478
2479 extern rtvec rtvec_alloc (int);
2480 extern rtvec shallow_copy_rtvec (rtvec);
2481 extern bool shared_const_p (const_rtx);
2482 extern rtx copy_rtx (rtx);
2483 extern void dump_rtx_statistics (void);
2484
2485 /* In emit-rtl.c */
2486 extern rtx copy_rtx_if_shared (rtx);
2487
2488 /* In rtl.c */
2489 extern unsigned int rtx_size (const_rtx);
2490 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2491 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2492 extern int rtx_equal_p (const_rtx, const_rtx);
2493
2494 /* In emit-rtl.c */
2495 extern rtvec gen_rtvec_v (int, rtx *);
2496 extern rtx gen_reg_rtx (enum machine_mode);
2497 extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int);
2498 extern rtx gen_reg_rtx_offset (rtx, enum machine_mode, int);
2499 extern rtx gen_reg_rtx_and_attrs (rtx);
2500 extern rtx_code_label *gen_label_rtx (void);
2501 extern rtx gen_lowpart_common (enum machine_mode, rtx);
2502
2503 /* In cse.c */
2504 extern rtx gen_lowpart_if_possible (enum machine_mode, rtx);
2505
2506 /* In emit-rtl.c */
2507 extern rtx gen_highpart (enum machine_mode, rtx);
2508 extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx);
2509 extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode);
2510
2511 /* In emit-rtl.c */
2512 extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode);
2513 extern bool paradoxical_subreg_p (const_rtx);
2514 extern int subreg_lowpart_p (const_rtx);
2515 extern unsigned int subreg_lowpart_offset (enum machine_mode,
2516 enum machine_mode);
2517 extern unsigned int subreg_highpart_offset (enum machine_mode,
2518 enum machine_mode);
2519 extern int byte_lowpart_offset (enum machine_mode, enum machine_mode);
2520 extern rtx make_safe_from (rtx, rtx);
2521 extern rtx convert_memory_address_addr_space (enum machine_mode, rtx,
2522 addr_space_t);
2523 #define convert_memory_address(to_mode,x) \
2524 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2525 extern const char *get_insn_name (int);
2526 extern rtx_insn *get_last_insn_anywhere (void);
2527 extern rtx get_first_nonnote_insn (void);
2528 extern rtx get_last_nonnote_insn (void);
2529 extern void start_sequence (void);
2530 extern void push_to_sequence (rtx_insn *);
2531 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2532 extern void end_sequence (void);
2533 #if TARGET_SUPPORTS_WIDE_INT == 0
2534 extern double_int rtx_to_double_int (const_rtx);
2535 #endif
2536 extern void cwi_output_hex (FILE *, const_rtx);
2537 #ifndef GENERATOR_FILE
2538 extern rtx immed_wide_int_const (const wide_int_ref &, enum machine_mode);
2539 #endif
2540 #if TARGET_SUPPORTS_WIDE_INT == 0
2541 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2542 enum machine_mode);
2543 #endif
2544
2545 /* In loop-iv.c */
2546
2547 extern rtx lowpart_subreg (enum machine_mode, rtx, enum machine_mode);
2548
2549 /* In varasm.c */
2550 extern rtx force_const_mem (enum machine_mode, rtx);
2551
2552 /* In varasm.c */
2553
2554 struct function;
2555 extern rtx get_pool_constant (rtx);
2556 extern rtx get_pool_constant_mark (rtx, bool *);
2557 extern enum machine_mode get_pool_mode (const_rtx);
2558 extern rtx simplify_subtraction (rtx);
2559 extern void decide_function_section (tree);
2560
2561 /* In function.c */
2562 extern rtx assign_stack_local (enum machine_mode, HOST_WIDE_INT, int);
2563 #define ASLK_REDUCE_ALIGN 1
2564 #define ASLK_RECORD_PAD 2
2565 extern rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, int);
2566 extern rtx assign_stack_temp (enum machine_mode, HOST_WIDE_INT);
2567 extern rtx assign_stack_temp_for_type (enum machine_mode, HOST_WIDE_INT, tree);
2568 extern rtx assign_temp (tree, int, int);
2569
2570 /* In emit-rtl.c */
2571 extern rtx_insn *emit_insn_before (rtx, rtx);
2572 extern rtx_insn *emit_insn_before_noloc (rtx, rtx, basic_block);
2573 extern rtx_insn *emit_insn_before_setloc (rtx, rtx, int);
2574 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2575 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx);
2576 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx, int);
2577 extern rtx_insn *emit_call_insn_before (rtx, rtx);
2578 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx);
2579 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx, int);
2580 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2581 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2582 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2583 extern rtx_barrier *emit_barrier_before (rtx);
2584 extern rtx_insn *emit_label_before (rtx, rtx);
2585 extern rtx_note *emit_note_before (enum insn_note, rtx);
2586 extern rtx_insn *emit_insn_after (rtx, rtx);
2587 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2588 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2589 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2590 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2591 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2592 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2593 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2594 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2595 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2596 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2597 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2598 extern rtx_barrier *emit_barrier_after (rtx);
2599 extern rtx_insn *emit_label_after (rtx, rtx);
2600 extern rtx_note *emit_note_after (enum insn_note, rtx);
2601 extern rtx_insn *emit_insn (rtx);
2602 extern rtx_insn *emit_debug_insn (rtx);
2603 extern rtx_insn *emit_jump_insn (rtx);
2604 extern rtx_insn *emit_call_insn (rtx);
2605 extern rtx_insn *emit_label (rtx);
2606 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2607 extern rtx_barrier *emit_barrier (void);
2608 extern rtx_note *emit_note (enum insn_note);
2609 extern rtx_note *emit_note_copy (rtx_note *);
2610 extern rtx_insn *gen_clobber (rtx);
2611 extern rtx_insn *emit_clobber (rtx);
2612 extern rtx_insn *gen_use (rtx);
2613 extern rtx_insn *emit_use (rtx);
2614 extern rtx_insn *make_insn_raw (rtx);
2615 extern void add_function_usage_to (rtx, rtx);
2616 extern rtx_call_insn *last_call_insn (void);
2617 extern rtx_insn *previous_insn (rtx);
2618 extern rtx_insn *next_insn (rtx);
2619 extern rtx_insn *prev_nonnote_insn (rtx);
2620 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2621 extern rtx_insn *next_nonnote_insn (rtx);
2622 extern rtx_insn *next_nonnote_insn_bb (rtx);
2623 extern rtx_insn *prev_nondebug_insn (rtx);
2624 extern rtx_insn *next_nondebug_insn (rtx);
2625 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2626 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2627 extern rtx_insn *prev_real_insn (rtx);
2628 extern rtx_insn *next_real_insn (rtx);
2629 extern rtx_insn *prev_active_insn (rtx);
2630 extern rtx_insn *next_active_insn (rtx);
2631 extern int active_insn_p (const_rtx);
2632 extern rtx_insn *next_cc0_user (rtx);
2633 extern rtx_insn *prev_cc0_setter (rtx);
2634
2635 /* In emit-rtl.c */
2636 extern int insn_line (const_rtx);
2637 extern const char * insn_file (const_rtx);
2638 extern tree insn_scope (const_rtx);
2639 extern expanded_location insn_location (const_rtx);
2640 extern location_t prologue_location, epilogue_location;
2641
2642 /* In jump.c */
2643 extern enum rtx_code reverse_condition (enum rtx_code);
2644 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2645 extern enum rtx_code swap_condition (enum rtx_code);
2646 extern enum rtx_code unsigned_condition (enum rtx_code);
2647 extern enum rtx_code signed_condition (enum rtx_code);
2648 extern void mark_jump_label (rtx, rtx, int);
2649
2650 /* In jump.c */
2651 extern rtx_insn *delete_related_insns (rtx);
2652
2653 /* In recog.c */
2654 extern rtx *find_constant_term_loc (rtx *);
2655
2656 /* In emit-rtl.c */
2657 extern rtx_insn *try_split (rtx, rtx, int);
2658 extern int split_branch_probability;
2659
2660 /* In unknown file */
2661 extern rtx split_insns (rtx, rtx);
2662
2663 /* In simplify-rtx.c */
2664 extern rtx simplify_const_unary_operation (enum rtx_code, enum machine_mode,
2665 rtx, enum machine_mode);
2666 extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx,
2667 enum machine_mode);
2668 extern rtx simplify_const_binary_operation (enum rtx_code, enum machine_mode,
2669 rtx, rtx);
2670 extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx,
2671 rtx);
2672 extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode,
2673 enum machine_mode, rtx, rtx, rtx);
2674 extern rtx simplify_const_relational_operation (enum rtx_code,
2675 enum machine_mode, rtx, rtx);
2676 extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode,
2677 enum machine_mode, rtx, rtx);
2678 extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
2679 extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx,
2680 enum machine_mode);
2681 extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode,
2682 enum machine_mode, rtx, rtx, rtx);
2683 extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode,
2684 enum machine_mode, rtx, rtx);
2685 extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode,
2686 unsigned int);
2687 extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode,
2688 unsigned int);
2689 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2690 rtx (*fn) (rtx, const_rtx, void *), void *);
2691 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2692 extern rtx simplify_rtx (const_rtx);
2693 extern rtx avoid_constant_pool_reference (rtx);
2694 extern rtx delegitimize_mem_from_attrs (rtx);
2695 extern bool mode_signbit_p (enum machine_mode, const_rtx);
2696 extern bool val_signbit_p (enum machine_mode, unsigned HOST_WIDE_INT);
2697 extern bool val_signbit_known_set_p (enum machine_mode,
2698 unsigned HOST_WIDE_INT);
2699 extern bool val_signbit_known_clear_p (enum machine_mode,
2700 unsigned HOST_WIDE_INT);
2701
2702 /* In reginfo.c */
2703 extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2704 bool);
2705
2706 /* In emit-rtl.c */
2707 extern rtx set_for_reg_notes (rtx);
2708 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2709 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2710 extern void set_insn_deleted (rtx);
2711
2712 /* Functions in rtlanal.c */
2713
2714 /* Single set is implemented as macro for performance reasons. */
2715 #define single_set(I) (INSN_P (I) \
2716 ? (GET_CODE (PATTERN (I)) == SET \
2717 ? PATTERN (I) : single_set_1 (I)) \
2718 : NULL_RTX)
2719 #define single_set_1(I) single_set_2 (I, PATTERN (I))
2720
2721 /* Structure used for passing data to REPLACE_LABEL. */
2722 struct replace_label_data
2723 {
2724 rtx r1;
2725 rtx r2;
2726 bool update_label_nuses;
2727 };
2728
2729 extern enum machine_mode get_address_mode (rtx mem);
2730 extern int rtx_addr_can_trap_p (const_rtx);
2731 extern bool nonzero_address_p (const_rtx);
2732 extern int rtx_unstable_p (const_rtx);
2733 extern bool rtx_varies_p (const_rtx, bool);
2734 extern bool rtx_addr_varies_p (const_rtx, bool);
2735 extern rtx get_call_rtx_from (rtx);
2736 extern HOST_WIDE_INT get_integer_term (const_rtx);
2737 extern rtx get_related_value (const_rtx);
2738 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2739 extern void split_const (rtx, rtx *, rtx *);
2740 extern bool unsigned_reg_p (rtx);
2741 extern int reg_mentioned_p (const_rtx, const_rtx);
2742 extern int count_occurrences (const_rtx, const_rtx, int);
2743 extern int reg_referenced_p (const_rtx, const_rtx);
2744 extern int reg_used_between_p (const_rtx, const_rtx, const_rtx);
2745 extern int reg_set_between_p (const_rtx, const_rtx, const_rtx);
2746 extern int commutative_operand_precedence (rtx);
2747 extern bool swap_commutative_operands_p (rtx, rtx);
2748 extern int modified_between_p (const_rtx, const_rtx, const_rtx);
2749 extern int no_labels_between_p (const_rtx, const_rtx);
2750 extern int modified_in_p (const_rtx, const_rtx);
2751 extern int reg_set_p (const_rtx, const_rtx);
2752 extern rtx single_set_2 (const_rtx, const_rtx);
2753 extern int multiple_sets (const_rtx);
2754 extern int set_noop_p (const_rtx);
2755 extern int noop_move_p (const_rtx);
2756 extern rtx find_last_value (rtx, rtx *, rtx, int);
2757 extern int refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2758 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2759 extern const_rtx set_of (const_rtx, const_rtx);
2760 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2761 extern void record_hard_reg_uses (rtx *, void *);
2762 #ifdef HARD_CONST
2763 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2764 #endif
2765 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2766 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2767 extern int dead_or_set_p (const_rtx, const_rtx);
2768 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2769 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2770 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2771 extern rtx find_reg_equal_equiv_note (const_rtx);
2772 extern rtx find_constant_src (const_rtx);
2773 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2774 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2775 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2776 extern void add_reg_note (rtx, enum reg_note, rtx);
2777 extern void add_int_reg_note (rtx, enum reg_note, int);
2778 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2779 extern void remove_note (rtx, const_rtx);
2780 extern void remove_reg_equal_equiv_notes (rtx);
2781 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2782 extern int side_effects_p (const_rtx);
2783 extern int volatile_refs_p (const_rtx);
2784 extern int volatile_insn_p (const_rtx);
2785 extern int may_trap_p_1 (const_rtx, unsigned);
2786 extern int may_trap_p (const_rtx);
2787 extern int may_trap_or_fault_p (const_rtx);
2788 extern bool can_throw_internal (const_rtx);
2789 extern bool can_throw_external (const_rtx);
2790 extern bool insn_could_throw_p (const_rtx);
2791 extern bool insn_nothrow_p (const_rtx);
2792 extern bool can_nonlocal_goto (const_rtx);
2793 extern void copy_reg_eh_region_note_forward (rtx, rtx, rtx);
2794 extern void copy_reg_eh_region_note_backward (rtx, rtx, rtx);
2795 extern int inequality_comparisons_p (const_rtx);
2796 extern rtx replace_rtx (rtx, rtx, rtx);
2797 extern int replace_label (rtx *, void *);
2798 extern int rtx_referenced_p (rtx, rtx);
2799 extern bool tablejump_p (const_rtx, rtx *, rtx_jump_table_data **);
2800 extern int computed_jump_p (const_rtx);
2801 extern bool tls_referenced_p (rtx);
2802
2803 typedef int (*rtx_function) (rtx *, void *);
2804 extern int for_each_rtx (rtx *, rtx_function, void *);
2805 extern int for_each_rtx_in_insn (rtx_insn **, rtx_function, void *);
2806
2807 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2808 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2809 NULL. The callback is passed the same opaque ARG passed to
2810 for_each_inc_dec. Return zero to continue looking for other
2811 autoinc operations, -1 to skip OP's operands, and any other value
2812 to interrupt the traversal and return that value to the caller of
2813 for_each_inc_dec. */
2814 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2815 rtx srcoff, void *arg);
2816 extern int for_each_inc_dec (rtx_insn **, for_each_inc_dec_fn, void *arg);
2817
2818 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2819 rtx *, rtx *);
2820 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2821 rtx_equal_p_callback_function);
2822
2823 typedef int (*hash_rtx_callback_function) (const_rtx, enum machine_mode, rtx *,
2824 enum machine_mode *);
2825 extern unsigned hash_rtx_cb (const_rtx, enum machine_mode, int *, int *,
2826 bool, hash_rtx_callback_function);
2827
2828 extern rtx regno_use_in (unsigned int, rtx);
2829 extern int auto_inc_p (const_rtx);
2830 extern int in_expr_list_p (const_rtx, const_rtx);
2831 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2832 extern int loc_mentioned_in_p (rtx *, const_rtx);
2833 extern rtx_insn *find_first_parameter_load (rtx, rtx);
2834 extern bool keep_with_call_p (const_rtx);
2835 extern bool label_is_jump_target_p (const_rtx, const_rtx);
2836 extern int insn_rtx_cost (rtx, bool);
2837
2838 /* Given an insn and condition, return a canonical description of
2839 the test being made. */
2840 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2841 int, int);
2842
2843 /* Given a JUMP_INSN, return a canonical description of the test
2844 being made. */
2845 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2846
2847 /* Information about a subreg of a hard register. */
2848 struct subreg_info
2849 {
2850 /* Offset of first hard register involved in the subreg. */
2851 int offset;
2852 /* Number of hard registers involved in the subreg. */
2853 int nregs;
2854 /* Whether this subreg can be represented as a hard reg with the new
2855 mode. */
2856 bool representable_p;
2857 };
2858
2859 extern void subreg_get_info (unsigned int, enum machine_mode,
2860 unsigned int, enum machine_mode,
2861 struct subreg_info *);
2862
2863 /* lists.c */
2864
2865 extern void free_EXPR_LIST_list (rtx_expr_list **);
2866 extern void free_INSN_LIST_list (rtx_insn_list **);
2867 extern void free_EXPR_LIST_node (rtx);
2868 extern void free_INSN_LIST_node (rtx);
2869 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2870 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2871 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2872 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2873 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2874 extern rtx remove_list_elem (rtx, rtx *);
2875 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2876 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2877
2878
2879 /* reginfo.c */
2880
2881 /* Resize reg info. */
2882 extern bool resize_reg_info (void);
2883 /* Free up register info memory. */
2884 extern void free_reg_info (void);
2885 extern void init_subregs_of_mode (void);
2886 extern void finish_subregs_of_mode (void);
2887
2888 /* recog.c */
2889 extern rtx extract_asm_operands (rtx);
2890 extern int asm_noperands (const_rtx);
2891 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2892 enum machine_mode *, location_t *);
2893 extern void get_referenced_operands (const char *, bool *, unsigned int);
2894
2895 extern enum reg_class reg_preferred_class (int);
2896 extern enum reg_class reg_alternate_class (int);
2897 extern enum reg_class reg_allocno_class (int);
2898 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2899 enum reg_class);
2900
2901 extern void split_all_insns (void);
2902 extern unsigned int split_all_insns_noflow (void);
2903
2904 #define MAX_SAVED_CONST_INT 64
2905 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2906
2907 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
2908 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
2909 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
2910 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
2911 extern GTY(()) rtx const_true_rtx;
2912
2913 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
2914
2915 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
2916 same as VOIDmode. */
2917
2918 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
2919
2920 /* Likewise, for the constants 1 and 2 and -1. */
2921
2922 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
2923 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
2924 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
2925
2926 extern GTY(()) rtx pc_rtx;
2927 extern GTY(()) rtx cc0_rtx;
2928 extern GTY(()) rtx ret_rtx;
2929 extern GTY(()) rtx simple_return_rtx;
2930
2931 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
2932 is used to represent the frame pointer. This is because the
2933 hard frame pointer and the automatic variables are separated by an amount
2934 that cannot be determined until after register allocation. We can assume
2935 that in this case ELIMINABLE_REGS will be defined, one action of which
2936 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
2937 #ifndef HARD_FRAME_POINTER_REGNUM
2938 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
2939 #endif
2940
2941 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
2942 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
2943 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
2944 #endif
2945
2946 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
2947 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
2948 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
2949 #endif
2950
2951 /* Index labels for global_rtl. */
2952 enum global_rtl_index
2953 {
2954 GR_STACK_POINTER,
2955 GR_FRAME_POINTER,
2956 /* For register elimination to work properly these hard_frame_pointer_rtx,
2957 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
2958 the same register. */
2959 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2960 GR_ARG_POINTER = GR_FRAME_POINTER,
2961 #endif
2962 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
2963 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
2964 #else
2965 GR_HARD_FRAME_POINTER,
2966 #endif
2967 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2968 #if HARD_FRAME_POINTER_IS_ARG_POINTER
2969 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
2970 #else
2971 GR_ARG_POINTER,
2972 #endif
2973 #endif
2974 GR_VIRTUAL_INCOMING_ARGS,
2975 GR_VIRTUAL_STACK_ARGS,
2976 GR_VIRTUAL_STACK_DYNAMIC,
2977 GR_VIRTUAL_OUTGOING_ARGS,
2978 GR_VIRTUAL_CFA,
2979 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
2980
2981 GR_MAX
2982 };
2983
2984 /* Target-dependent globals. */
2985 struct GTY(()) target_rtl {
2986 /* All references to the hard registers in global_rtl_index go through
2987 these unique rtl objects. On machines where the frame-pointer and
2988 arg-pointer are the same register, they use the same unique object.
2989
2990 After register allocation, other rtl objects which used to be pseudo-regs
2991 may be clobbered to refer to the frame-pointer register.
2992 But references that were originally to the frame-pointer can be
2993 distinguished from the others because they contain frame_pointer_rtx.
2994
2995 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
2996 tricky: until register elimination has taken place hard_frame_pointer_rtx
2997 should be used if it is being set, and frame_pointer_rtx otherwise. After
2998 register elimination hard_frame_pointer_rtx should always be used.
2999 On machines where the two registers are same (most) then these are the
3000 same. */
3001 rtx x_global_rtl[GR_MAX];
3002
3003 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3004 rtx x_pic_offset_table_rtx;
3005
3006 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3007 This is used to implement __builtin_return_address for some machines;
3008 see for instance the MIPS port. */
3009 rtx x_return_address_pointer_rtx;
3010
3011 /* Commonly used RTL for hard registers. These objects are not
3012 necessarily unique, so we allocate them separately from global_rtl.
3013 They are initialized once per compilation unit, then copied into
3014 regno_reg_rtx at the beginning of each function. */
3015 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3016
3017 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3018 rtx x_top_of_stack[MAX_MACHINE_MODE];
3019
3020 /* Static hunks of RTL used by the aliasing code; these are treated
3021 as persistent to avoid unnecessary RTL allocations. */
3022 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3023
3024 /* The default memory attributes for each mode. */
3025 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3026
3027 /* Track if RTL has been initialized. */
3028 bool target_specific_initialized;
3029 };
3030
3031 extern GTY(()) struct target_rtl default_target_rtl;
3032 #if SWITCHABLE_TARGET
3033 extern struct target_rtl *this_target_rtl;
3034 #else
3035 #define this_target_rtl (&default_target_rtl)
3036 #endif
3037
3038 #define global_rtl \
3039 (this_target_rtl->x_global_rtl)
3040 #define pic_offset_table_rtx \
3041 (this_target_rtl->x_pic_offset_table_rtx)
3042 #define return_address_pointer_rtx \
3043 (this_target_rtl->x_return_address_pointer_rtx)
3044 #define top_of_stack \
3045 (this_target_rtl->x_top_of_stack)
3046 #define mode_mem_attrs \
3047 (this_target_rtl->x_mode_mem_attrs)
3048
3049 /* All references to certain hard regs, except those created
3050 by allocating pseudo regs into them (when that's possible),
3051 go through these unique rtx objects. */
3052 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3053 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3054 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3055 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3056
3057 #ifndef GENERATOR_FILE
3058 /* Return the attributes of a MEM rtx. */
3059 static inline struct mem_attrs *
3060 get_mem_attrs (const_rtx x)
3061 {
3062 struct mem_attrs *attrs;
3063
3064 attrs = MEM_ATTRS (x);
3065 if (!attrs)
3066 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3067 return attrs;
3068 }
3069 #endif
3070
3071 /* Include the RTL generation functions. */
3072
3073 #ifndef GENERATOR_FILE
3074 #include "genrtl.h"
3075 #undef gen_rtx_ASM_INPUT
3076 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3077 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3078 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3079 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3080 #endif
3081
3082 /* There are some RTL codes that require special attention; the
3083 generation functions included above do the raw handling. If you
3084 add to this list, modify special_rtx in gengenrtl.c as well. */
3085
3086 extern rtx_expr_list *gen_rtx_EXPR_LIST (enum machine_mode, rtx, rtx);
3087 extern rtx_insn_list *gen_rtx_INSN_LIST (enum machine_mode, rtx, rtx);
3088 extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT);
3089 extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec);
3090 extern rtx gen_raw_REG (enum machine_mode, int);
3091 extern rtx gen_rtx_REG (enum machine_mode, unsigned);
3092 extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int);
3093 extern rtx gen_rtx_MEM (enum machine_mode, rtx);
3094 extern rtx gen_rtx_VAR_LOCATION (enum machine_mode, tree, rtx,
3095 enum var_init_status);
3096
3097 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3098
3099 /* Virtual registers are used during RTL generation to refer to locations into
3100 the stack frame when the actual location isn't known until RTL generation
3101 is complete. The routine instantiate_virtual_regs replaces these with
3102 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3103 a constant. */
3104
3105 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3106
3107 /* This points to the first word of the incoming arguments passed on the stack,
3108 either by the caller or by the callee when pretending it was passed by the
3109 caller. */
3110
3111 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3112
3113 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3114
3115 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3116 variable on the stack. Otherwise, it points to the first variable on
3117 the stack. */
3118
3119 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3120
3121 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3122
3123 /* This points to the location of dynamically-allocated memory on the stack
3124 immediately after the stack pointer has been adjusted by the amount
3125 desired. */
3126
3127 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3128
3129 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3130
3131 /* This points to the location in the stack at which outgoing arguments should
3132 be written when the stack is pre-pushed (arguments pushed using push
3133 insns always use sp). */
3134
3135 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3136
3137 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3138
3139 /* This points to the Canonical Frame Address of the function. This
3140 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3141 but is calculated relative to the arg pointer for simplicity; the
3142 frame pointer nor stack pointer are necessarily fixed relative to
3143 the CFA until after reload. */
3144
3145 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3146
3147 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3148
3149 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3150
3151 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3152 when finalized. */
3153
3154 #define virtual_preferred_stack_boundary_rtx \
3155 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3156
3157 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3158 ((FIRST_VIRTUAL_REGISTER) + 5)
3159
3160 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3161
3162 /* Nonzero if REGNUM is a pointer into the stack frame. */
3163 #define REGNO_PTR_FRAME_P(REGNUM) \
3164 ((REGNUM) == STACK_POINTER_REGNUM \
3165 || (REGNUM) == FRAME_POINTER_REGNUM \
3166 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3167 || (REGNUM) == ARG_POINTER_REGNUM \
3168 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3169 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3170
3171 /* REGNUM never really appearing in the INSN stream. */
3172 #define INVALID_REGNUM (~(unsigned int) 0)
3173
3174 /* REGNUM for which no debug information can be generated. */
3175 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3176
3177 extern rtx output_constant_def (tree, int);
3178 extern rtx lookup_constant_def (tree);
3179
3180 /* Nonzero after end of reload pass.
3181 Set to 1 or 0 by reload1.c. */
3182
3183 extern int reload_completed;
3184
3185 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3186 extern int epilogue_completed;
3187
3188 /* Set to 1 while reload_as_needed is operating.
3189 Required by some machines to handle any generated moves differently. */
3190
3191 extern int reload_in_progress;
3192
3193 /* Set to 1 while in lra. */
3194 extern int lra_in_progress;
3195
3196 /* This macro indicates whether you may create a new
3197 pseudo-register. */
3198
3199 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3200
3201 #ifdef STACK_REGS
3202 /* Nonzero after end of regstack pass.
3203 Set to 1 or 0 by reg-stack.c. */
3204 extern int regstack_completed;
3205 #endif
3206
3207 /* If this is nonzero, we do not bother generating VOLATILE
3208 around volatile memory references, and we are willing to
3209 output indirect addresses. If cse is to follow, we reject
3210 indirect addresses so a useful potential cse is generated;
3211 if it is used only once, instruction combination will produce
3212 the same indirect address eventually. */
3213 extern int cse_not_expected;
3214
3215 /* Translates rtx code to tree code, for those codes needed by
3216 REAL_ARITHMETIC. The function returns an int because the caller may not
3217 know what `enum tree_code' means. */
3218
3219 extern int rtx_to_tree_code (enum rtx_code);
3220
3221 /* In cse.c */
3222 extern int delete_trivially_dead_insns (rtx_insn *, int);
3223 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3224 extern unsigned hash_rtx (const_rtx x, enum machine_mode, int *, int *, bool);
3225
3226 /* In dse.c */
3227 extern bool check_for_inc_dec (rtx_insn *insn);
3228
3229 /* In jump.c */
3230 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3231 extern bool jump_to_label_p (rtx);
3232 extern int condjump_p (const_rtx);
3233 extern int any_condjump_p (const_rtx);
3234 extern int any_uncondjump_p (const_rtx);
3235 extern rtx pc_set (const_rtx);
3236 extern rtx condjump_label (const_rtx);
3237 extern int simplejump_p (const_rtx);
3238 extern int returnjump_p (rtx);
3239 extern int eh_returnjump_p (rtx);
3240 extern int onlyjump_p (const_rtx);
3241 extern int only_sets_cc0_p (const_rtx);
3242 extern int sets_cc0_p (const_rtx);
3243 extern int invert_jump_1 (rtx, rtx);
3244 extern int invert_jump (rtx, rtx, int);
3245 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3246 extern int true_regnum (const_rtx);
3247 extern unsigned int reg_or_subregno (const_rtx);
3248 extern int redirect_jump_1 (rtx, rtx);
3249 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3250 extern int redirect_jump (rtx, rtx, int);
3251 extern void rebuild_jump_labels (rtx_insn *);
3252 extern void rebuild_jump_labels_chain (rtx_insn *);
3253 extern rtx reversed_comparison (const_rtx, enum machine_mode);
3254 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3255 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3256 const_rtx, const_rtx);
3257 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3258 extern int condjump_in_parallel_p (const_rtx);
3259
3260 /* In emit-rtl.c. */
3261 extern int max_reg_num (void);
3262 extern int max_label_num (void);
3263 extern int get_first_label_num (void);
3264 extern void maybe_set_first_label_num (rtx);
3265 extern void delete_insns_since (rtx_insn *);
3266 extern void mark_reg_pointer (rtx, int);
3267 extern void mark_user_reg (rtx);
3268 extern void reset_used_flags (rtx);
3269 extern void set_used_flags (rtx);
3270 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3271 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3272 extern int get_max_insn_count (void);
3273 extern int in_sequence_p (void);
3274 extern void init_emit (void);
3275 extern void init_emit_regs (void);
3276 extern void init_derived_machine_modes (void);
3277 extern void init_emit_once (void);
3278 extern void push_topmost_sequence (void);
3279 extern void pop_topmost_sequence (void);
3280 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3281 extern unsigned int unshare_all_rtl (void);
3282 extern void unshare_all_rtl_again (rtx_insn *);
3283 extern void unshare_all_rtl_in_chain (rtx);
3284 extern void verify_rtl_sharing (void);
3285 extern void add_insn (rtx_insn *);
3286 extern void add_insn_before (rtx, rtx, basic_block);
3287 extern void add_insn_after (rtx, rtx, basic_block);
3288 extern void remove_insn (rtx);
3289 extern rtx_insn *emit (rtx);
3290 extern void delete_insn (rtx);
3291 extern rtx_insn *entry_of_function (void);
3292 extern void emit_insn_at_entry (rtx);
3293 extern void delete_insn_chain (rtx, rtx, bool);
3294 extern rtx_insn *unlink_insn_chain (rtx_insn *, rtx_insn *);
3295 extern void delete_insn_and_edges (rtx_insn *);
3296 extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx);
3297 extern rtx gen_const_mem (enum machine_mode, rtx);
3298 extern rtx gen_frame_mem (enum machine_mode, rtx);
3299 extern rtx gen_tmp_stack_mem (enum machine_mode, rtx);
3300 extern bool validate_subreg (enum machine_mode, enum machine_mode,
3301 const_rtx, unsigned int);
3302
3303 /* In combine.c */
3304 extern unsigned int extended_count (const_rtx, enum machine_mode, int);
3305 extern rtx remove_death (unsigned int, rtx_insn *);
3306 extern void dump_combine_stats (FILE *);
3307 extern void dump_combine_total_stats (FILE *);
3308 extern rtx make_compound_operation (rtx, enum rtx_code);
3309
3310 /* In cfgcleanup.c */
3311 extern void delete_dead_jumptables (void);
3312
3313 /* In sched-rgn.c. */
3314 extern void schedule_insns (void);
3315
3316 /* In sched-ebb.c. */
3317 extern void schedule_ebbs (void);
3318
3319 /* In sel-sched-dump.c. */
3320 extern void sel_sched_fix_param (const char *param, const char *val);
3321
3322 /* In print-rtl.c */
3323 extern const char *print_rtx_head;
3324 extern void debug (const rtx_def &ref);
3325 extern void debug (const rtx_def *ptr);
3326 extern void debug_rtx (const_rtx);
3327 extern void debug_rtx_list (const rtx_insn *, int);
3328 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3329 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3330 extern void print_mem_expr (FILE *, const_tree);
3331 extern void print_rtl (FILE *, const_rtx);
3332 extern void print_simple_rtl (FILE *, const_rtx);
3333 extern int print_rtl_single (FILE *, const_rtx);
3334 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3335 extern void print_inline_rtx (FILE *, const_rtx, int);
3336
3337 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3338 not be in sched-vis.c but in rtl.c, because they are not only used
3339 by the scheduler anymore but for all "slim" RTL dumping. */
3340 extern void dump_value_slim (FILE *, const_rtx, int);
3341 extern void dump_insn_slim (FILE *, const_rtx);
3342 extern void dump_rtl_slim (FILE *, const_rtx, const_rtx, int, int);
3343 extern void print_value (pretty_printer *, const_rtx, int);
3344 extern void print_pattern (pretty_printer *, const_rtx, int);
3345 extern void print_insn (pretty_printer *, const_rtx, int);
3346 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3347 extern const char *str_pattern_slim (const_rtx);
3348
3349 /* In function.c */
3350 extern void reposition_prologue_and_epilogue_notes (void);
3351 extern int prologue_epilogue_contains (const_rtx);
3352 extern int sibcall_epilogue_contains (const_rtx);
3353 extern void update_temp_slot_address (rtx, rtx);
3354 extern void maybe_copy_prologue_epilogue_insn (rtx, rtx);
3355 extern void set_return_jump_label (rtx);
3356
3357 /* In stmt.c */
3358 extern void expand_null_return (void);
3359 extern void expand_naked_return (void);
3360 extern void emit_jump (rtx);
3361
3362 /* In expr.c */
3363 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3364 unsigned int, int);
3365 extern HOST_WIDE_INT find_args_size_adjust (rtx);
3366 extern int fixup_args_size_notes (rtx, rtx, int);
3367
3368 /* In cfgrtl.c */
3369 extern void print_rtl_with_bb (FILE *, const rtx_insn *, int);
3370 extern rtx_insn *duplicate_insn_chain (rtx_insn *, rtx_insn *);
3371
3372 /* In expmed.c */
3373 extern void init_expmed (void);
3374 extern void expand_inc (rtx, rtx);
3375 extern void expand_dec (rtx, rtx);
3376
3377 /* In lower-subreg.c */
3378 extern void init_lower_subreg (void);
3379
3380 /* In gcse.c */
3381 extern bool can_copy_p (enum machine_mode);
3382 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3383 extern rtx fis_get_condition (rtx_insn *);
3384
3385 /* In ira.c */
3386 #ifdef HARD_CONST
3387 extern HARD_REG_SET eliminable_regset;
3388 #endif
3389 extern void mark_elimination (int, int);
3390
3391 /* In reginfo.c */
3392 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3393 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3394 extern void globalize_reg (tree, int);
3395 extern void init_reg_modes_target (void);
3396 extern void init_regs (void);
3397 extern void reinit_regs (void);
3398 extern void init_fake_stack_mems (void);
3399 extern void save_register_info (void);
3400 extern void init_reg_sets (void);
3401 extern void regclass (rtx, int);
3402 extern void reg_scan (rtx_insn *, unsigned int);
3403 extern void fix_register (const char *, int, int);
3404 extern bool invalid_mode_change_p (unsigned int, enum reg_class);
3405
3406 /* In reload1.c */
3407 extern int function_invariant_p (const_rtx);
3408
3409 /* In calls.c */
3410 enum libcall_type
3411 {
3412 LCT_NORMAL = 0,
3413 LCT_CONST = 1,
3414 LCT_PURE = 2,
3415 LCT_NORETURN = 3,
3416 LCT_THROW = 4,
3417 LCT_RETURNS_TWICE = 5
3418 };
3419
3420 extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int,
3421 ...);
3422 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3423 enum machine_mode, int, ...);
3424
3425 /* In varasm.c */
3426 extern void init_varasm_once (void);
3427
3428 extern rtx make_debug_expr_from_rtl (const_rtx);
3429
3430 /* In read-rtl.c */
3431 extern bool read_rtx (const char *, rtx *);
3432
3433 /* In alias.c */
3434 extern rtx canon_rtx (rtx);
3435 extern int true_dependence (const_rtx, enum machine_mode, const_rtx);
3436 extern rtx get_addr (rtx);
3437 extern int canon_true_dependence (const_rtx, enum machine_mode, rtx,
3438 const_rtx, rtx);
3439 extern int read_dependence (const_rtx, const_rtx);
3440 extern int anti_dependence (const_rtx, const_rtx);
3441 extern int canon_anti_dependence (const_rtx, bool,
3442 const_rtx, enum machine_mode, rtx);
3443 extern int output_dependence (const_rtx, const_rtx);
3444 extern int may_alias_p (const_rtx, const_rtx);
3445 extern void init_alias_target (void);
3446 extern void init_alias_analysis (void);
3447 extern void end_alias_analysis (void);
3448 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3449 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3450 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3451 extern bool may_be_sp_based_p (rtx);
3452 extern rtx gen_hard_reg_clobber (enum machine_mode, unsigned int);
3453 extern rtx get_reg_known_value (unsigned int);
3454 extern bool get_reg_known_equiv_p (unsigned int);
3455 extern rtx get_reg_base_value (unsigned int);
3456
3457 #ifdef STACK_REGS
3458 extern int stack_regs_mentioned (const_rtx insn);
3459 #endif
3460
3461 /* In toplev.c */
3462 extern GTY(()) rtx stack_limit_rtx;
3463
3464 /* In predict.c */
3465 extern void invert_br_probabilities (rtx);
3466 extern bool expensive_function_p (int);
3467
3468 /* In var-tracking.c */
3469 extern unsigned int variable_tracking_main (void);
3470
3471 /* In stor-layout.c. */
3472 extern void get_mode_bounds (enum machine_mode, int, enum machine_mode,
3473 rtx *, rtx *);
3474
3475 /* In loop-iv.c */
3476 extern rtx canon_condition (rtx);
3477 extern void simplify_using_condition (rtx, rtx *, bitmap);
3478
3479 /* In final.c */
3480 extern unsigned int compute_alignments (void);
3481 extern void update_alignments (vec<rtx> &);
3482 extern int asm_str_count (const char *templ);
3483 \f
3484 struct rtl_hooks
3485 {
3486 rtx (*gen_lowpart) (enum machine_mode, rtx);
3487 rtx (*gen_lowpart_no_emit) (enum machine_mode, rtx);
3488 rtx (*reg_nonzero_bits) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3489 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3490 rtx (*reg_num_sign_bit_copies) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3491 unsigned int, unsigned int *);
3492 bool (*reg_truncated_to_mode) (enum machine_mode, const_rtx);
3493
3494 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3495 };
3496
3497 /* Each pass can provide its own. */
3498 extern struct rtl_hooks rtl_hooks;
3499
3500 /* ... but then it has to restore these. */
3501 extern const struct rtl_hooks general_rtl_hooks;
3502
3503 /* Keep this for the nonce. */
3504 #define gen_lowpart rtl_hooks.gen_lowpart
3505
3506 extern void insn_locations_init (void);
3507 extern void insn_locations_finalize (void);
3508 extern void set_curr_insn_location (location_t);
3509 extern location_t curr_insn_location (void);
3510 extern bool optimize_insn_for_size_p (void);
3511 extern bool optimize_insn_for_speed_p (void);
3512
3513 /* rtl-error.c */
3514 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3515 ATTRIBUTE_NORETURN;
3516 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3517 ATTRIBUTE_NORETURN;
3518
3519 #define fatal_insn(msgid, insn) \
3520 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3521 #define fatal_insn_not_found(insn) \
3522 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3523
3524 /* reginfo.c */
3525 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3526
3527
3528 #endif /* ! GCC_RTL_H */