Convert set_block_for_insn from a macro to an inline function
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include <utility>
24 #include "statistics.h"
25 #include "machmode.h"
26 #include "input.h"
27 #include "real.h"
28 #include "vec.h"
29 #include "fixed-value.h"
30 #include "alias.h"
31 #include "hashtab.h"
32 #include "wide-int.h"
33 #include "flags.h"
34 #include "is-a.h"
35
36 /* Value used by some passes to "recognize" noop moves as valid
37 instructions. */
38 #define NOOP_MOVE_INSN_CODE INT_MAX
39
40 /* Register Transfer Language EXPRESSIONS CODES */
41
42 #define RTX_CODE enum rtx_code
43 enum rtx_code {
44
45 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
46 #include "rtl.def" /* rtl expressions are documented here */
47 #undef DEF_RTL_EXPR
48
49 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
50 NUM_RTX_CODE.
51 Assumes default enum value assignment. */
52
53 /* The cast here, saves many elsewhere. */
54 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
55
56 /* Similar, but since generator files get more entries... */
57 #ifdef GENERATOR_FILE
58 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
59 #endif
60
61 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
62
63 enum rtx_class {
64 /* We check bit 0-1 of some rtx class codes in the predicates below. */
65
66 /* Bit 0 = comparison if 0, arithmetic is 1
67 Bit 1 = 1 if commutative. */
68 RTX_COMPARE, /* 0 */
69 RTX_COMM_COMPARE,
70 RTX_BIN_ARITH,
71 RTX_COMM_ARITH,
72
73 /* Must follow the four preceding values. */
74 RTX_UNARY, /* 4 */
75
76 RTX_EXTRA,
77 RTX_MATCH,
78 RTX_INSN,
79
80 /* Bit 0 = 1 if constant. */
81 RTX_OBJ, /* 8 */
82 RTX_CONST_OBJ,
83
84 RTX_TERNARY,
85 RTX_BITFIELD_OPS,
86 RTX_AUTOINC
87 };
88
89 #define RTX_OBJ_MASK (~1)
90 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
91 #define RTX_COMPARE_MASK (~1)
92 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
93 #define RTX_ARITHMETIC_MASK (~1)
94 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
95 #define RTX_BINARY_MASK (~3)
96 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
97 #define RTX_COMMUTATIVE_MASK (~2)
98 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
99 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
100
101 extern const unsigned char rtx_length[NUM_RTX_CODE];
102 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
103
104 extern const char * const rtx_name[NUM_RTX_CODE];
105 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
106
107 extern const char * const rtx_format[NUM_RTX_CODE];
108 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
109
110 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
111 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
112
113 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
114 and NEXT_INSN fields). */
115 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
116
117 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
118 extern const unsigned char rtx_next[NUM_RTX_CODE];
119 \f
120 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
121 relative to which the offsets are calculated, as explained in rtl.def. */
122 struct addr_diff_vec_flags
123 {
124 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
125 unsigned min_align: 8;
126 /* Flags: */
127 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
128 unsigned min_after_vec: 1; /* minimum address target label is
129 after the ADDR_DIFF_VEC. */
130 unsigned max_after_vec: 1; /* maximum address target label is
131 after the ADDR_DIFF_VEC. */
132 unsigned min_after_base: 1; /* minimum address target label is
133 after BASE. */
134 unsigned max_after_base: 1; /* maximum address target label is
135 after BASE. */
136 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
137 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
138 unsigned : 2;
139 unsigned scale : 8;
140 };
141
142 /* Structure used to describe the attributes of a MEM. These are hashed
143 so MEMs that the same attributes share a data structure. This means
144 they cannot be modified in place. */
145 struct GTY(()) mem_attrs
146 {
147 /* The expression that the MEM accesses, or null if not known.
148 This expression might be larger than the memory reference itself.
149 (In other words, the MEM might access only part of the object.) */
150 tree expr;
151
152 /* The offset of the memory reference from the start of EXPR.
153 Only valid if OFFSET_KNOWN_P. */
154 HOST_WIDE_INT offset;
155
156 /* The size of the memory reference in bytes. Only valid if
157 SIZE_KNOWN_P. */
158 HOST_WIDE_INT size;
159
160 /* The alias set of the memory reference. */
161 alias_set_type alias;
162
163 /* The alignment of the reference in bits. Always a multiple of
164 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
165 than the memory reference itself. */
166 unsigned int align;
167
168 /* The address space that the memory reference uses. */
169 unsigned char addrspace;
170
171 /* True if OFFSET is known. */
172 bool offset_known_p;
173
174 /* True if SIZE is known. */
175 bool size_known_p;
176 };
177
178 /* Structure used to describe the attributes of a REG in similar way as
179 mem_attrs does for MEM above. Note that the OFFSET field is calculated
180 in the same way as for mem_attrs, rather than in the same way as a
181 SUBREG_BYTE. For example, if a big-endian target stores a byte
182 object in the low part of a 4-byte register, the OFFSET field
183 will be -3 rather than 0. */
184
185 struct GTY(()) reg_attrs {
186 tree decl; /* decl corresponding to REG. */
187 HOST_WIDE_INT offset; /* Offset from start of DECL. */
188 };
189
190 /* Common union for an element of an rtx. */
191
192 union rtunion
193 {
194 int rt_int;
195 unsigned int rt_uint;
196 const char *rt_str;
197 rtx rt_rtx;
198 rtvec rt_rtvec;
199 enum machine_mode rt_type;
200 addr_diff_vec_flags rt_addr_diff_vec_flags;
201 struct cselib_val *rt_cselib;
202 tree rt_tree;
203 basic_block rt_bb;
204 mem_attrs *rt_mem;
205 reg_attrs *rt_reg;
206 struct constant_descriptor_rtx *rt_constant;
207 struct dw_cfi_node *rt_cfi;
208 };
209
210 /* This structure remembers the position of a SYMBOL_REF within an
211 object_block structure. A SYMBOL_REF only provides this information
212 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
213 struct GTY(()) block_symbol {
214 /* The usual SYMBOL_REF fields. */
215 rtunion GTY ((skip)) fld[2];
216
217 /* The block that contains this object. */
218 struct object_block *block;
219
220 /* The offset of this object from the start of its block. It is negative
221 if the symbol has not yet been assigned an offset. */
222 HOST_WIDE_INT offset;
223 };
224
225 /* Describes a group of objects that are to be placed together in such
226 a way that their relative positions are known. */
227 struct GTY(()) object_block {
228 /* The section in which these objects should be placed. */
229 section *sect;
230
231 /* The alignment of the first object, measured in bits. */
232 unsigned int alignment;
233
234 /* The total size of the objects, measured in bytes. */
235 HOST_WIDE_INT size;
236
237 /* The SYMBOL_REFs for each object. The vector is sorted in
238 order of increasing offset and the following conditions will
239 hold for each element X:
240
241 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
242 !SYMBOL_REF_ANCHOR_P (X)
243 SYMBOL_REF_BLOCK (X) == [address of this structure]
244 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
245 vec<rtx, va_gc> *objects;
246
247 /* All the anchor SYMBOL_REFs used to address these objects, sorted
248 in order of increasing offset, and then increasing TLS model.
249 The following conditions will hold for each element X in this vector:
250
251 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
252 SYMBOL_REF_ANCHOR_P (X)
253 SYMBOL_REF_BLOCK (X) == [address of this structure]
254 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
255 vec<rtx, va_gc> *anchors;
256 };
257
258 struct GTY((variable_size)) hwivec_def {
259 HOST_WIDE_INT elem[1];
260 };
261
262 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
263 #define CWI_GET_NUM_ELEM(RTX) \
264 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
265 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
266 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
267
268 /* RTL expression ("rtx"). */
269
270 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
271 field for for gengtype to recognize that inheritance is occurring,
272 so that all subclasses are redirected to the traversal hook for the
273 base class.
274 However, all of the fields are in the base class, and special-casing
275 is at work. Hence we use desc and tag of 0, generating a switch
276 statement of the form:
277 switch (0)
278 {
279 case 0: // all the work happens here
280 }
281 in order to work with the existing special-casing in gengtype. */
282
283 struct GTY((desc("0"), tag("0"),
284 chain_next ("RTX_NEXT (&%h)"),
285 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
286 /* The kind of expression this is. */
287 ENUM_BITFIELD(rtx_code) code: 16;
288
289 /* The kind of value the expression has. */
290 ENUM_BITFIELD(machine_mode) mode : 8;
291
292 /* 1 in a MEM if we should keep the alias set for this mem unchanged
293 when we access a component.
294 1 in a JUMP_INSN if it is a crossing jump.
295 1 in a CALL_INSN if it is a sibling call.
296 1 in a SET that is for a return.
297 In a CODE_LABEL, part of the two-bit alternate entry field.
298 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
299 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
300 1 in a SUBREG generated by LRA for reload insns. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 /* No extra fields, but adds the invariant:
494
495 (INSN_P (X)
496 || NOTE_P (X)
497 || JUMP_TABLE_DATA_P (X)
498 || BARRIER_P (X)
499 || LABEL_P (X))
500
501 i.e. that we must be able to use the following:
502 INSN_UID ()
503 NEXT_INSN ()
504 PREV_INSN ()
505 i.e. we have an rtx that has an INSN_UID field and can be part of
506 a linked list of insns.
507 */
508 };
509
510 /* Subclasses of rtx_insn. */
511
512 class GTY(()) rtx_debug_insn : public rtx_insn
513 {
514 /* No extra fields, but adds the invariant:
515 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
516 i.e. an annotation for tracking variable assignments.
517
518 This is an instance of:
519 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
520 from rtl.def. */
521 };
522
523 class GTY(()) rtx_nonjump_insn : public rtx_insn
524 {
525 /* No extra fields, but adds the invariant:
526 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
527 i.e an instruction that cannot jump.
528
529 This is an instance of:
530 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
531 from rtl.def. */
532 };
533
534 class GTY(()) rtx_jump_insn : public rtx_insn
535 {
536 /* No extra fields, but adds the invariant:
537 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
538 i.e. an instruction that can possibly jump.
539
540 This is an instance of:
541 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
542 from rtl.def. */
543 };
544
545 class GTY(()) rtx_call_insn : public rtx_insn
546 {
547 /* No extra fields, but adds the invariant:
548 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
549 i.e. an instruction that can possibly call a subroutine
550 but which will not change which instruction comes next
551 in the current function.
552
553 This is an instance of:
554 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_jump_table_data : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
562 i.e. a data for a jump table, considered an instruction for
563 historical reasons.
564
565 This is an instance of:
566 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
567 from rtl.def. */
568
569 public:
570
571 /* This can be either:
572
573 (a) a table of absolute jumps, in which case PATTERN (this) is an
574 ADDR_VEC with arg 0 a vector of labels, or
575
576 (b) a table of relative jumps (e.g. for -fPIC), in which case
577 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
578 arg 1 the vector of labels.
579
580 This method gets the underlying vec. */
581
582 inline rtvec get_labels () const;
583 };
584
585 class GTY(()) rtx_barrier : public rtx_insn
586 {
587 /* No extra fields, but adds the invariant:
588 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
589 i.e. a marker that indicates that control will not flow through.
590
591 This is an instance of:
592 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
593 from rtl.def. */
594 };
595
596 class GTY(()) rtx_code_label : public rtx_insn
597 {
598 /* No extra fields, but adds the invariant:
599 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
600 i.e. a label in the assembler.
601
602 This is an instance of:
603 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
604 from rtl.def. */
605 };
606
607 class GTY(()) rtx_note : public rtx_insn
608 {
609 /* No extra fields, but adds the invariant:
610 NOTE_P(X) aka (GET_CODE (X) == NOTE)
611 i.e. a note about the corresponding source code.
612
613 This is an instance of:
614 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
615 from rtl.def. */
616 };
617
618 /* The size in bytes of an rtx header (code, mode and flags). */
619 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
620
621 /* The size in bytes of an rtx with code CODE. */
622 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
623
624 #define NULL_RTX (rtx) 0
625
626 /* The "next" and "previous" RTX, relative to this one. */
627
628 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
629 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
630
631 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
632 */
633 #define RTX_PREV(X) ((INSN_P (X) \
634 || NOTE_P (X) \
635 || JUMP_TABLE_DATA_P (X) \
636 || BARRIER_P (X) \
637 || LABEL_P (X)) \
638 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
639 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
640 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
641
642 /* Define macros to access the `code' field of the rtx. */
643
644 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
645 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
646
647 #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode)
648 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
649
650 /* RTL vector. These appear inside RTX's when there is a need
651 for a variable number of things. The principle use is inside
652 PARALLEL expressions. */
653
654 struct GTY(()) rtvec_def {
655 int num_elem; /* number of elements */
656 rtx GTY ((length ("%h.num_elem"))) elem[1];
657 };
658
659 #define NULL_RTVEC (rtvec) 0
660
661 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
662 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
663
664 /* Predicate yielding nonzero iff X is an rtx for a register. */
665 #define REG_P(X) (GET_CODE (X) == REG)
666
667 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
668 #define MEM_P(X) (GET_CODE (X) == MEM)
669
670 #if TARGET_SUPPORTS_WIDE_INT
671
672 /* Match CONST_*s that can represent compile-time constant integers. */
673 #define CASE_CONST_SCALAR_INT \
674 case CONST_INT: \
675 case CONST_WIDE_INT
676
677 /* Match CONST_*s for which pointer equality corresponds to value
678 equality. */
679 #define CASE_CONST_UNIQUE \
680 case CONST_INT: \
681 case CONST_WIDE_INT: \
682 case CONST_DOUBLE: \
683 case CONST_FIXED
684
685 /* Match all CONST_* rtxes. */
686 #define CASE_CONST_ANY \
687 case CONST_INT: \
688 case CONST_WIDE_INT: \
689 case CONST_DOUBLE: \
690 case CONST_FIXED: \
691 case CONST_VECTOR
692
693 #else
694
695 /* Match CONST_*s that can represent compile-time constant integers. */
696 #define CASE_CONST_SCALAR_INT \
697 case CONST_INT: \
698 case CONST_DOUBLE
699
700 /* Match CONST_*s for which pointer equality corresponds to value
701 equality. */
702 #define CASE_CONST_UNIQUE \
703 case CONST_INT: \
704 case CONST_DOUBLE: \
705 case CONST_FIXED
706
707 /* Match all CONST_* rtxes. */
708 #define CASE_CONST_ANY \
709 case CONST_INT: \
710 case CONST_DOUBLE: \
711 case CONST_FIXED: \
712 case CONST_VECTOR
713 #endif
714
715 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
716 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
717
718 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
719 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
720
721 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
722 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
723
724 /* Predicate yielding true iff X is an rtx for a double-int
725 or floating point constant. */
726 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
727
728 /* Predicate yielding true iff X is an rtx for a double-int. */
729 #define CONST_DOUBLE_AS_INT_P(X) \
730 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
731
732 /* Predicate yielding true iff X is an rtx for a integer const. */
733 #if TARGET_SUPPORTS_WIDE_INT
734 #define CONST_SCALAR_INT_P(X) \
735 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
736 #else
737 #define CONST_SCALAR_INT_P(X) \
738 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
739 #endif
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_FLOAT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
744
745 /* Predicate yielding nonzero iff X is a label insn. */
746 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
747
748 /* Predicate yielding nonzero iff X is a jump insn. */
749 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
750
751 /* Predicate yielding nonzero iff X is a call insn. */
752 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
753
754 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
755 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
756
757 /* Predicate yielding nonzero iff X is a debug note/insn. */
758 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
759
760 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
761 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
762
763 /* Nonzero if DEBUG_INSN_P may possibly hold. */
764 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
765
766 /* Predicate yielding nonzero iff X is a real insn. */
767 #define INSN_P(X) \
768 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
769
770 /* Predicate yielding nonzero iff X is a note insn. */
771 #define NOTE_P(X) (GET_CODE (X) == NOTE)
772
773 /* Predicate yielding nonzero iff X is a barrier insn. */
774 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
775
776 /* Predicate yielding nonzero iff X is a data for a jump table. */
777 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
778
779 template <>
780 template <>
781 inline bool
782 is_a_helper <rtx_insn *>::test (rtx rt)
783 {
784 return (INSN_P (rt)
785 || NOTE_P (rt)
786 || JUMP_TABLE_DATA_P (rt)
787 || BARRIER_P (rt)
788 || LABEL_P (rt));
789 }
790
791 template <>
792 template <>
793 inline bool
794 is_a_helper <const rtx_insn *>::test (const_rtx rt)
795 {
796 return (INSN_P (rt)
797 || NOTE_P (rt)
798 || JUMP_TABLE_DATA_P (rt)
799 || BARRIER_P (rt)
800 || LABEL_P (rt));
801 }
802
803 template <>
804 template <>
805 inline bool
806 is_a_helper <rtx_debug_insn *>::test (rtx rt)
807 {
808 return DEBUG_INSN_P (rt);
809 }
810
811 template <>
812 template <>
813 inline bool
814 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
815 {
816 return NONJUMP_INSN_P (rt);
817 }
818
819 template <>
820 template <>
821 inline bool
822 is_a_helper <rtx_jump_insn *>::test (rtx rt)
823 {
824 return JUMP_P (rt);
825 }
826
827 template <>
828 template <>
829 inline bool
830 is_a_helper <rtx_call_insn *>::test (rtx rt)
831 {
832 return CALL_P (rt);
833 }
834
835 template <>
836 template <>
837 inline bool
838 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
839 {
840 return CALL_P (insn);
841 }
842
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
847 {
848 return JUMP_TABLE_DATA_P (rt);
849 }
850
851 template <>
852 template <>
853 inline bool
854 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
855 {
856 return JUMP_TABLE_DATA_P (insn);
857 }
858
859 template <>
860 template <>
861 inline bool
862 is_a_helper <rtx_barrier *>::test (rtx rt)
863 {
864 return BARRIER_P (rt);
865 }
866
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_code_label *>::test (rtx rt)
871 {
872 return LABEL_P (rt);
873 }
874
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
879 {
880 return LABEL_P (insn);
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_note *>::test (rtx rt)
887 {
888 return NOTE_P (rt);
889 }
890
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_note *>::test (rtx_insn *insn)
895 {
896 return NOTE_P (insn);
897 }
898
899 /* Predicate yielding nonzero iff X is a return or simple_return. */
900 #define ANY_RETURN_P(X) \
901 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
902
903 /* 1 if X is a unary operator. */
904
905 #define UNARY_P(X) \
906 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
907
908 /* 1 if X is a binary operator. */
909
910 #define BINARY_P(X) \
911 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
912
913 /* 1 if X is an arithmetic operator. */
914
915 #define ARITHMETIC_P(X) \
916 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
917 == RTX_ARITHMETIC_RESULT)
918
919 /* 1 if X is an arithmetic operator. */
920
921 #define COMMUTATIVE_ARITH_P(X) \
922 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
923
924 /* 1 if X is a commutative arithmetic operator or a comparison operator.
925 These two are sometimes selected together because it is possible to
926 swap the two operands. */
927
928 #define SWAPPABLE_OPERANDS_P(X) \
929 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
930 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
931 | (1 << RTX_COMPARE)))
932
933 /* 1 if X is a non-commutative operator. */
934
935 #define NON_COMMUTATIVE_P(X) \
936 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
937 == RTX_NON_COMMUTATIVE_RESULT)
938
939 /* 1 if X is a commutative operator on integers. */
940
941 #define COMMUTATIVE_P(X) \
942 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
943 == RTX_COMMUTATIVE_RESULT)
944
945 /* 1 if X is a relational operator. */
946
947 #define COMPARISON_P(X) \
948 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
949
950 /* 1 if X is a constant value that is an integer. */
951
952 #define CONSTANT_P(X) \
953 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
954
955 /* 1 if X can be used to represent an object. */
956 #define OBJECT_P(X) \
957 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
958
959 /* General accessor macros for accessing the fields of an rtx. */
960
961 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
962 /* The bit with a star outside the statement expr and an & inside is
963 so that N can be evaluated only once. */
964 #define RTL_CHECK1(RTX, N, C1) __extension__ \
965 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
966 const enum rtx_code _code = GET_CODE (_rtx); \
967 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
968 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
969 __FUNCTION__); \
970 if (GET_RTX_FORMAT (_code)[_n] != C1) \
971 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
972 __FUNCTION__); \
973 &_rtx->u.fld[_n]; }))
974
975 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
976 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
977 const enum rtx_code _code = GET_CODE (_rtx); \
978 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
979 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
980 __FUNCTION__); \
981 if (GET_RTX_FORMAT (_code)[_n] != C1 \
982 && GET_RTX_FORMAT (_code)[_n] != C2) \
983 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
984 __FUNCTION__); \
985 &_rtx->u.fld[_n]; }))
986
987 #define RTL_CHECKC1(RTX, N, C) __extension__ \
988 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
989 if (GET_CODE (_rtx) != (C)) \
990 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
991 __FUNCTION__); \
992 &_rtx->u.fld[_n]; }))
993
994 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
995 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
996 const enum rtx_code _code = GET_CODE (_rtx); \
997 if (_code != (C1) && _code != (C2)) \
998 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
999 __FUNCTION__); \
1000 &_rtx->u.fld[_n]; }))
1001
1002 #define RTVEC_ELT(RTVEC, I) __extension__ \
1003 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1004 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1005 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1006 __FUNCTION__); \
1007 &_rtvec->elem[_i]; }))
1008
1009 #define XWINT(RTX, N) __extension__ \
1010 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1011 const enum rtx_code _code = GET_CODE (_rtx); \
1012 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1013 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1014 __FUNCTION__); \
1015 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1016 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1017 __FUNCTION__); \
1018 &_rtx->u.hwint[_n]; }))
1019
1020 #define CWI_ELT(RTX, I) __extension__ \
1021 (*({ __typeof (RTX) const _cwi = (RTX); \
1022 int _max = CWI_GET_NUM_ELEM (_cwi); \
1023 const int _i = (I); \
1024 if (_i < 0 || _i >= _max) \
1025 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1026 __FUNCTION__); \
1027 &_cwi->u.hwiv.elem[_i]; }))
1028
1029 #define XCWINT(RTX, N, C) __extension__ \
1030 (*({ __typeof (RTX) const _rtx = (RTX); \
1031 if (GET_CODE (_rtx) != (C)) \
1032 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtx->u.hwint[N]; }))
1035
1036 #define XCMWINT(RTX, N, C, M) __extension__ \
1037 (*({ __typeof (RTX) const _rtx = (RTX); \
1038 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1039 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1040 __LINE__, __FUNCTION__); \
1041 &_rtx->u.hwint[N]; }))
1042
1043 #define XCNMPRV(RTX, C, M) __extension__ \
1044 ({ __typeof (RTX) const _rtx = (RTX); \
1045 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1046 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1047 __LINE__, __FUNCTION__); \
1048 &_rtx->u.rv; })
1049
1050 #define XCNMPFV(RTX, C, M) __extension__ \
1051 ({ __typeof (RTX) const _rtx = (RTX); \
1052 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1053 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1054 __LINE__, __FUNCTION__); \
1055 &_rtx->u.fv; })
1056
1057 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1058 ({ __typeof (RTX) const _symbol = (RTX); \
1059 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1060 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1061 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1062 __FUNCTION__); \
1063 &_symbol->u.block_sym; })
1064
1065 #define HWIVEC_CHECK(RTX,C) __extension__ \
1066 ({ __typeof (RTX) const _symbol = (RTX); \
1067 RTL_CHECKC1 (_symbol, 0, C); \
1068 &_symbol->u.hwiv; })
1069
1070 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1071 const char *)
1072 ATTRIBUTE_NORETURN;
1073 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1074 const char *)
1075 ATTRIBUTE_NORETURN;
1076 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1077 int, const char *)
1078 ATTRIBUTE_NORETURN;
1079 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1080 int, const char *)
1081 ATTRIBUTE_NORETURN;
1082 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1083 const char *, int, const char *)
1084 ATTRIBUTE_NORETURN;
1085 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, enum machine_mode,
1086 bool, const char *, int, const char *)
1087 ATTRIBUTE_NORETURN;
1088 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1089 ATTRIBUTE_NORETURN;
1090 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1091 const char *)
1092 ATTRIBUTE_NORETURN;
1093 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1094 const char *)
1095 ATTRIBUTE_NORETURN;
1096
1097 #else /* not ENABLE_RTL_CHECKING */
1098
1099 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1100 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1101 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1102 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1103 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1104 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1105 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1106 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1107 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1108 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1109 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1110 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1111 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1112 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1113
1114 #endif
1115
1116 /* General accessor macros for accessing the flags of an rtx. */
1117
1118 /* Access an individual rtx flag, with no checking of any kind. */
1119 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1120
1121 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1122 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1123 ({ __typeof (RTX) const _rtx = (RTX); \
1124 if (GET_CODE (_rtx) != C1) \
1125 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1126 __FUNCTION__); \
1127 _rtx; })
1128
1129 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1130 ({ __typeof (RTX) const _rtx = (RTX); \
1131 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1132 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1133 __FUNCTION__); \
1134 _rtx; })
1135
1136 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1137 ({ __typeof (RTX) const _rtx = (RTX); \
1138 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1139 && GET_CODE (_rtx) != C3) \
1140 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1141 __FUNCTION__); \
1142 _rtx; })
1143
1144 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1145 ({ __typeof (RTX) const _rtx = (RTX); \
1146 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1147 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1148 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1149 __FUNCTION__); \
1150 _rtx; })
1151
1152 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1155 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1156 && GET_CODE (_rtx) != C5) \
1157 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1158 __FUNCTION__); \
1159 _rtx; })
1160
1161 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1162 __extension__ \
1163 ({ __typeof (RTX) const _rtx = (RTX); \
1164 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1165 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1166 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1167 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1168 __FUNCTION__); \
1169 _rtx; })
1170
1171 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1172 __extension__ \
1173 ({ __typeof (RTX) const _rtx = (RTX); \
1174 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1175 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1176 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1177 && GET_CODE (_rtx) != C7) \
1178 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1179 __FUNCTION__); \
1180 _rtx; })
1181
1182 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1183 __extension__ \
1184 ({ __typeof (RTX) const _rtx = (RTX); \
1185 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1186 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1187 __FUNCTION__); \
1188 _rtx; })
1189
1190 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1191 int, const char *)
1192 ATTRIBUTE_NORETURN
1193 ;
1194
1195 #else /* not ENABLE_RTL_FLAG_CHECKING */
1196
1197 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1198 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1199 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1200 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1201 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1202 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1203 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1204 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1205 #endif
1206
1207 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1208 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1209 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1210 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1211 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1212 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1213 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1214 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1215 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1216 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1217
1218 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1219 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1220
1221 /* These are like XINT, etc. except that they expect a '0' field instead
1222 of the normal type code. */
1223
1224 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1225 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1226 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1227 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1228 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1229 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1230 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1231 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1232 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1233 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1234 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1235 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1236 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1237
1238 /* Access a '0' field with any type. */
1239 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1240
1241 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1242 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1243 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1244 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1245 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1246 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1247 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1248 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1249 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1250 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1251
1252 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1253 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1254
1255 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1256 \f
1257
1258 /* Methods of rtx_expr_list. */
1259
1260 inline rtx_expr_list *rtx_expr_list::next () const
1261 {
1262 rtx tmp = XEXP (this, 1);
1263 return safe_as_a <rtx_expr_list *> (tmp);
1264 }
1265
1266 inline rtx rtx_expr_list::element () const
1267 {
1268 return XEXP (this, 0);
1269 }
1270
1271 /* Methods of rtx_insn_list. */
1272
1273 inline rtx_insn_list *rtx_insn_list::next () const
1274 {
1275 rtx tmp = XEXP (this, 1);
1276 return safe_as_a <rtx_insn_list *> (tmp);
1277 }
1278
1279 inline rtx_insn *rtx_insn_list::insn () const
1280 {
1281 rtx tmp = XEXP (this, 0);
1282 return safe_as_a <rtx_insn *> (tmp);
1283 }
1284
1285 /* Methods of rtx_sequence. */
1286
1287 inline int rtx_sequence::len () const
1288 {
1289 return XVECLEN (this, 0);
1290 }
1291
1292 inline rtx rtx_sequence::element (int index) const
1293 {
1294 return XVECEXP (this, 0, index);
1295 }
1296
1297 inline rtx_insn *rtx_sequence::insn (int index) const
1298 {
1299 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1300 }
1301
1302 /* ACCESS MACROS for particular fields of insns. */
1303
1304 /* Holds a unique number for each insn.
1305 These are not necessarily sequentially increasing. */
1306 inline int INSN_UID (const_rtx insn)
1307 {
1308 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1309 (insn))->u2.insn_uid;
1310 }
1311 inline int& INSN_UID (rtx insn)
1312 {
1313 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1314 (insn))->u2.insn_uid;
1315 }
1316
1317 /* Chain insns together in sequence. */
1318
1319 /* For now these are split in two: an rvalue form:
1320 PREV_INSN/NEXT_INSN
1321 and an lvalue form:
1322 SET_NEXT_INSN/SET_PREV_INSN. */
1323
1324 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1325 {
1326 rtx prev = XEXP (insn, 0);
1327 return safe_as_a <rtx_insn *> (prev);
1328 }
1329
1330 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1331 {
1332 return XEXP (insn, 0);
1333 }
1334
1335 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1336 {
1337 rtx next = XEXP (insn, 1);
1338 return safe_as_a <rtx_insn *> (next);
1339 }
1340
1341 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1342 {
1343 return XEXP (insn, 1);
1344 }
1345
1346 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1347 {
1348 return XBBDEF (insn, 2);
1349 }
1350
1351 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1352 {
1353 return XBBDEF (insn, 2);
1354 }
1355
1356 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1357 {
1358 BLOCK_FOR_INSN (insn) = bb;
1359 }
1360
1361 /* The body of an insn. */
1362 inline rtx PATTERN (const_rtx insn)
1363 {
1364 return XEXP (insn, 3);
1365 }
1366
1367 inline rtx& PATTERN (rtx insn)
1368 {
1369 return XEXP (insn, 3);
1370 }
1371
1372 inline unsigned int INSN_LOCATION (const_rtx insn)
1373 {
1374 return XUINT (insn, 4);
1375 }
1376
1377 inline unsigned int& INSN_LOCATION (rtx insn)
1378 {
1379 return XUINT (insn, 4);
1380 }
1381
1382 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1383 {
1384 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1385 }
1386
1387 /* LOCATION of an RTX if relevant. */
1388 #define RTL_LOCATION(X) (INSN_P (X) ? \
1389 INSN_LOCATION (X) : UNKNOWN_LOCATION)
1390
1391 /* Code number of instruction, from when it was recognized.
1392 -1 means this instruction has not been recognized yet. */
1393 #define INSN_CODE(INSN) XINT (INSN, 5)
1394
1395 inline rtvec rtx_jump_table_data::get_labels () const
1396 {
1397 rtx pat = PATTERN (this);
1398 if (GET_CODE (pat) == ADDR_VEC)
1399 return XVEC (pat, 0);
1400 else
1401 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1402 }
1403
1404 #define RTX_FRAME_RELATED_P(RTX) \
1405 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1406 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1407
1408 /* 1 if RTX is an insn that has been deleted. */
1409 #define INSN_DELETED_P(RTX) \
1410 (RTL_INSN_CHAIN_FLAG_CHECK ("INSN_DELETED_P", (RTX))->volatil)
1411
1412 /* 1 if JUMP RTX is a crossing jump. */
1413 #define CROSSING_JUMP_P(RTX) \
1414 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1415
1416 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1417 TREE_READONLY. */
1418 #define RTL_CONST_CALL_P(RTX) \
1419 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1420
1421 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1422 DECL_PURE_P. */
1423 #define RTL_PURE_CALL_P(RTX) \
1424 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1425
1426 /* 1 if RTX is a call to a const or pure function. */
1427 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1428 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1429
1430 /* 1 if RTX is a call to a looping const or pure function. Built from
1431 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1432 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1433 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1434
1435 /* 1 if RTX is a call_insn for a sibling call. */
1436 #define SIBLING_CALL_P(RTX) \
1437 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1438
1439 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1440 #define INSN_ANNULLED_BRANCH_P(RTX) \
1441 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1442
1443 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1444 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1445 executed if the branch is taken. For annulled branches with this bit
1446 clear, the insn should be executed only if the branch is not taken. */
1447 #define INSN_FROM_TARGET_P(RTX) \
1448 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1449 CALL_INSN)->in_struct)
1450
1451 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1452 See the comments for ADDR_DIFF_VEC in rtl.def. */
1453 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1454
1455 /* In a VALUE, the value cselib has assigned to RTX.
1456 This is a "struct cselib_val", see cselib.h. */
1457 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1458
1459 /* Holds a list of notes on what this insn does to various REGs.
1460 It is a chain of EXPR_LIST rtx's, where the second operand is the
1461 chain pointer and the first operand is the REG being described.
1462 The mode field of the EXPR_LIST contains not a real machine mode
1463 but a value from enum reg_note. */
1464 #define REG_NOTES(INSN) XEXP(INSN, 6)
1465
1466 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1467 question. */
1468 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1469
1470 enum reg_note
1471 {
1472 #define DEF_REG_NOTE(NAME) NAME,
1473 #include "reg-notes.def"
1474 #undef DEF_REG_NOTE
1475 REG_NOTE_MAX
1476 };
1477
1478 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1479 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1480 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1481 PUT_MODE (LINK, (enum machine_mode) (KIND))
1482
1483 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1484
1485 extern const char * const reg_note_name[];
1486 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1487
1488 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1489 USE and CLOBBER expressions.
1490 USE expressions list the registers filled with arguments that
1491 are passed to the function.
1492 CLOBBER expressions document the registers explicitly clobbered
1493 by this CALL_INSN.
1494 Pseudo registers can not be mentioned in this list. */
1495 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1496
1497 /* The label-number of a code-label. The assembler label
1498 is made from `L' and the label-number printed in decimal.
1499 Label numbers are unique in a compilation. */
1500 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1501
1502 /* In a NOTE that is a line number, this is a string for the file name that the
1503 line is in. We use the same field to record block numbers temporarily in
1504 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1505 between ints and pointers if we use a different macro for the block number.)
1506 */
1507
1508 /* Opaque data. */
1509 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1510 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1511 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1512 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1513 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1514 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1515 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1516 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1517 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1518
1519 /* In a NOTE that is a line number, this is the line number.
1520 Other kinds of NOTEs are identified by negative numbers here. */
1521 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1522
1523 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1524 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1525 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1526
1527 /* Variable declaration and the location of a variable. */
1528 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1529 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1530
1531 /* Initialization status of the variable in the location. Status
1532 can be unknown, uninitialized or initialized. See enumeration
1533 type below. */
1534 #define PAT_VAR_LOCATION_STATUS(PAT) \
1535 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1536 ->u2.var_location_status)
1537
1538 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1539 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1540 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1541 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1542 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1543 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1544 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1545
1546 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1547 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1548
1549 /* Accessors for a tree-expanded var location debug insn. */
1550 #define INSN_VAR_LOCATION_DECL(INSN) \
1551 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1552 #define INSN_VAR_LOCATION_LOC(INSN) \
1553 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1554 #define INSN_VAR_LOCATION_STATUS(INSN) \
1555 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1556
1557 /* Expand to the RTL that denotes an unknown variable location in a
1558 DEBUG_INSN. */
1559 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1560
1561 /* Determine whether X is such an unknown location. */
1562 #define VAR_LOC_UNKNOWN_P(X) \
1563 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1564
1565 /* 1 if RTX is emitted after a call, but it should take effect before
1566 the call returns. */
1567 #define NOTE_DURING_CALL_P(RTX) \
1568 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1569
1570 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1571 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1572
1573 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1574 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1575
1576 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1577 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1578
1579 /* Codes that appear in the NOTE_KIND field for kinds of notes
1580 that are not line numbers. These codes are all negative.
1581
1582 Notice that we do not try to use zero here for any of
1583 the special note codes because sometimes the source line
1584 actually can be zero! This happens (for example) when we
1585 are generating code for the per-translation-unit constructor
1586 and destructor routines for some C++ translation unit. */
1587
1588 enum insn_note
1589 {
1590 #define DEF_INSN_NOTE(NAME) NAME,
1591 #include "insn-notes.def"
1592 #undef DEF_INSN_NOTE
1593
1594 NOTE_INSN_MAX
1595 };
1596
1597 /* Names for NOTE insn's other than line numbers. */
1598
1599 extern const char * const note_insn_name[NOTE_INSN_MAX];
1600 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1601 (note_insn_name[(NOTE_CODE)])
1602
1603 /* The name of a label, in case it corresponds to an explicit label
1604 in the input source code. */
1605 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1606
1607 /* In jump.c, each label contains a count of the number
1608 of LABEL_REFs that point at it, so unused labels can be deleted. */
1609 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1610
1611 /* Labels carry a two-bit field composed of the ->jump and ->call
1612 bits. This field indicates whether the label is an alternate
1613 entry point, and if so, what kind. */
1614 enum label_kind
1615 {
1616 LABEL_NORMAL = 0, /* ordinary label */
1617 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1618 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1619 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1620 };
1621
1622 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1623
1624 /* Retrieve the kind of LABEL. */
1625 #define LABEL_KIND(LABEL) __extension__ \
1626 ({ __typeof (LABEL) const _label = (LABEL); \
1627 if (! LABEL_P (_label)) \
1628 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1629 __FUNCTION__); \
1630 (enum label_kind) ((_label->jump << 1) | _label->call); })
1631
1632 /* Set the kind of LABEL. */
1633 #define SET_LABEL_KIND(LABEL, KIND) do { \
1634 __typeof (LABEL) const _label = (LABEL); \
1635 const unsigned int _kind = (KIND); \
1636 if (! LABEL_P (_label)) \
1637 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1638 __FUNCTION__); \
1639 _label->jump = ((_kind >> 1) & 1); \
1640 _label->call = (_kind & 1); \
1641 } while (0)
1642
1643 #else
1644
1645 /* Retrieve the kind of LABEL. */
1646 #define LABEL_KIND(LABEL) \
1647 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1648
1649 /* Set the kind of LABEL. */
1650 #define SET_LABEL_KIND(LABEL, KIND) do { \
1651 rtx const _label = (LABEL); \
1652 const unsigned int _kind = (KIND); \
1653 _label->jump = ((_kind >> 1) & 1); \
1654 _label->call = (_kind & 1); \
1655 } while (0)
1656
1657 #endif /* rtl flag checking */
1658
1659 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1660
1661 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1662 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1663 be decremented and possibly the label can be deleted. */
1664 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1665
1666 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1667 {
1668 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1669 }
1670
1671 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1672 goes through all the LABEL_REFs that jump to that label. The chain
1673 eventually winds up at the CODE_LABEL: it is circular. */
1674 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1675 \f
1676 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1677 be used on RHS. Use SET_REGNO to change the value. */
1678 #define REGNO(RTX) (rhs_regno(RTX))
1679 #define SET_REGNO(RTX,N) \
1680 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1681 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1682
1683 /* ORIGINAL_REGNO holds the number the register originally had; for a
1684 pseudo register turned into a hard reg this will hold the old pseudo
1685 register number. */
1686 #define ORIGINAL_REGNO(RTX) \
1687 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1688
1689 /* Force the REGNO macro to only be used on the lhs. */
1690 static inline unsigned int
1691 rhs_regno (const_rtx x)
1692 {
1693 return XCUINT (x, 0, REG);
1694 }
1695
1696
1697 /* 1 if RTX is a reg or parallel that is the current function's return
1698 value. */
1699 #define REG_FUNCTION_VALUE_P(RTX) \
1700 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1701
1702 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1703 #define REG_USERVAR_P(RTX) \
1704 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1705
1706 /* 1 if RTX is a reg that holds a pointer value. */
1707 #define REG_POINTER(RTX) \
1708 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1709
1710 /* 1 if RTX is a mem that holds a pointer value. */
1711 #define MEM_POINTER(RTX) \
1712 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1713
1714 /* 1 if the given register REG corresponds to a hard register. */
1715 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1716
1717 /* 1 if the given register number REG_NO corresponds to a hard register. */
1718 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1719
1720 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1721 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1722 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1723
1724 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1725 elements actually needed to represent the constant.
1726 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1727 significant HOST_WIDE_INT. */
1728 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1729 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1730 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1731
1732 /* For a CONST_DOUBLE:
1733 #if TARGET_SUPPORTS_WIDE_INT == 0
1734 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1735 low-order word and ..._HIGH the high-order.
1736 #endif
1737 For a float, there is a REAL_VALUE_TYPE structure, and
1738 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1739 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1740 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1741 #define CONST_DOUBLE_REAL_VALUE(r) \
1742 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1743
1744 #define CONST_FIXED_VALUE(r) \
1745 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1746 #define CONST_FIXED_VALUE_HIGH(r) \
1747 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1748 #define CONST_FIXED_VALUE_LOW(r) \
1749 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1750
1751 /* For a CONST_VECTOR, return element #n. */
1752 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1753
1754 /* For a CONST_VECTOR, return the number of elements in a vector. */
1755 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1756
1757 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1758 SUBREG_BYTE extracts the byte-number. */
1759
1760 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1761 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1762
1763 /* in rtlanal.c */
1764 /* Return the right cost to give to an operation
1765 to make the cost of the corresponding register-to-register instruction
1766 N times that of a fast register-to-register instruction. */
1767 #define COSTS_N_INSNS(N) ((N) * 4)
1768
1769 /* Maximum cost of an rtl expression. This value has the special meaning
1770 not to use an rtx with this cost under any circumstances. */
1771 #define MAX_COST INT_MAX
1772
1773 /* A structure to hold all available cost information about an rtl
1774 expression. */
1775 struct full_rtx_costs
1776 {
1777 int speed;
1778 int size;
1779 };
1780
1781 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1782 static inline void
1783 init_costs_to_max (struct full_rtx_costs *c)
1784 {
1785 c->speed = MAX_COST;
1786 c->size = MAX_COST;
1787 }
1788
1789 /* Initialize a full_rtx_costs structure C to zero cost. */
1790 static inline void
1791 init_costs_to_zero (struct full_rtx_costs *c)
1792 {
1793 c->speed = 0;
1794 c->size = 0;
1795 }
1796
1797 /* Compare two full_rtx_costs structures A and B, returning true
1798 if A < B when optimizing for speed. */
1799 static inline bool
1800 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1801 bool speed)
1802 {
1803 if (speed)
1804 return (a->speed < b->speed
1805 || (a->speed == b->speed && a->size < b->size));
1806 else
1807 return (a->size < b->size
1808 || (a->size == b->size && a->speed < b->speed));
1809 }
1810
1811 /* Increase both members of the full_rtx_costs structure C by the
1812 cost of N insns. */
1813 static inline void
1814 costs_add_n_insns (struct full_rtx_costs *c, int n)
1815 {
1816 c->speed += COSTS_N_INSNS (n);
1817 c->size += COSTS_N_INSNS (n);
1818 }
1819
1820 /* Information about an address. This structure is supposed to be able
1821 to represent all supported target addresses. Please extend it if it
1822 is not yet general enough. */
1823 struct address_info {
1824 /* The mode of the value being addressed, or VOIDmode if this is
1825 a load-address operation with no known address mode. */
1826 enum machine_mode mode;
1827
1828 /* The address space. */
1829 addr_space_t as;
1830
1831 /* A pointer to the top-level address. */
1832 rtx *outer;
1833
1834 /* A pointer to the inner address, after all address mutations
1835 have been stripped from the top-level address. It can be one
1836 of the following:
1837
1838 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1839
1840 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1841 points to the step value, depending on whether the step is variable
1842 or constant respectively. SEGMENT is null.
1843
1844 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1845 with null fields evaluating to 0. */
1846 rtx *inner;
1847
1848 /* Components that make up *INNER. Each one may be null or nonnull.
1849 When nonnull, their meanings are as follows:
1850
1851 - *SEGMENT is the "segment" of memory to which the address refers.
1852 This value is entirely target-specific and is only called a "segment"
1853 because that's its most typical use. It contains exactly one UNSPEC,
1854 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1855 reloading.
1856
1857 - *BASE is a variable expression representing a base address.
1858 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1859
1860 - *INDEX is a variable expression representing an index value.
1861 It may be a scaled expression, such as a MULT. It has exactly
1862 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1863
1864 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1865 unmutated RTX_CONST_OBJ. */
1866 rtx *segment;
1867 rtx *base;
1868 rtx *index;
1869 rtx *disp;
1870
1871 rtx *segment_term;
1872 rtx *base_term;
1873 rtx *index_term;
1874 rtx *disp_term;
1875
1876 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1877 of BASE_TERM, otherwise it is null. */
1878 rtx *base_term2;
1879
1880 /* ADDRESS if this structure describes an address operand, MEM if
1881 it describes a MEM address. */
1882 enum rtx_code addr_outer_code;
1883
1884 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1885 enum rtx_code base_outer_code;
1886
1887 /* True if this is an RTX_AUTOINC address. */
1888 bool autoinc_p;
1889 };
1890
1891 /* This is used to bundle an rtx and a mode together so that the pair
1892 can be used with the wi:: routines. If we ever put modes into rtx
1893 integer constants, this should go away and then just pass an rtx in. */
1894 typedef std::pair <rtx, enum machine_mode> rtx_mode_t;
1895
1896 namespace wi
1897 {
1898 template <>
1899 struct int_traits <rtx_mode_t>
1900 {
1901 static const enum precision_type precision_type = VAR_PRECISION;
1902 static const bool host_dependent_precision = false;
1903 /* This ought to be true, except for the special case that BImode
1904 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1905 static const bool is_sign_extended = false;
1906 static unsigned int get_precision (const rtx_mode_t &);
1907 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1908 const rtx_mode_t &);
1909 };
1910 }
1911
1912 inline unsigned int
1913 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1914 {
1915 return GET_MODE_PRECISION (x.second);
1916 }
1917
1918 inline wi::storage_ref
1919 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1920 unsigned int precision,
1921 const rtx_mode_t &x)
1922 {
1923 gcc_checking_assert (precision == get_precision (x));
1924 switch (GET_CODE (x.first))
1925 {
1926 case CONST_INT:
1927 if (precision < HOST_BITS_PER_WIDE_INT)
1928 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
1929 targets is 1 rather than -1. */
1930 gcc_checking_assert (INTVAL (x.first)
1931 == sext_hwi (INTVAL (x.first), precision)
1932 || (x.second == BImode && INTVAL (x.first) == 1));
1933
1934 return wi::storage_ref (&INTVAL (x.first), 1, precision);
1935
1936 case CONST_WIDE_INT:
1937 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
1938 CONST_WIDE_INT_NUNITS (x.first), precision);
1939
1940 #if TARGET_SUPPORTS_WIDE_INT == 0
1941 case CONST_DOUBLE:
1942 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
1943 #endif
1944
1945 default:
1946 gcc_unreachable ();
1947 }
1948 }
1949
1950 namespace wi
1951 {
1952 hwi_with_prec shwi (HOST_WIDE_INT, enum machine_mode mode);
1953 wide_int min_value (enum machine_mode, signop);
1954 wide_int max_value (enum machine_mode, signop);
1955 }
1956
1957 inline wi::hwi_with_prec
1958 wi::shwi (HOST_WIDE_INT val, enum machine_mode mode)
1959 {
1960 return shwi (val, GET_MODE_PRECISION (mode));
1961 }
1962
1963 /* Produce the smallest number that is represented in MODE. The precision
1964 is taken from MODE and the sign from SGN. */
1965 inline wide_int
1966 wi::min_value (enum machine_mode mode, signop sgn)
1967 {
1968 return min_value (GET_MODE_PRECISION (mode), sgn);
1969 }
1970
1971 /* Produce the largest number that is represented in MODE. The precision
1972 is taken from MODE and the sign from SGN. */
1973 inline wide_int
1974 wi::max_value (enum machine_mode mode, signop sgn)
1975 {
1976 return max_value (GET_MODE_PRECISION (mode), sgn);
1977 }
1978
1979 extern void init_rtlanal (void);
1980 extern int rtx_cost (rtx, enum rtx_code, int, bool);
1981 extern int address_cost (rtx, enum machine_mode, addr_space_t, bool);
1982 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
1983 struct full_rtx_costs *);
1984 extern unsigned int subreg_lsb (const_rtx);
1985 extern unsigned int subreg_lsb_1 (enum machine_mode, enum machine_mode,
1986 unsigned int);
1987 extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode,
1988 unsigned int, enum machine_mode);
1989 extern bool subreg_offset_representable_p (unsigned int, enum machine_mode,
1990 unsigned int, enum machine_mode);
1991 extern unsigned int subreg_regno (const_rtx);
1992 extern int simplify_subreg_regno (unsigned int, enum machine_mode,
1993 unsigned int, enum machine_mode);
1994 extern unsigned int subreg_nregs (const_rtx);
1995 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
1996 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, enum machine_mode);
1997 extern unsigned int num_sign_bit_copies (const_rtx, enum machine_mode);
1998 extern bool constant_pool_constant_p (rtx);
1999 extern bool truncated_to_mode (enum machine_mode, const_rtx);
2000 extern int low_bitmask_len (enum machine_mode, unsigned HOST_WIDE_INT);
2001 extern void split_double (rtx, rtx *, rtx *);
2002 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2003 extern void decompose_address (struct address_info *, rtx *,
2004 enum machine_mode, addr_space_t, enum rtx_code);
2005 extern void decompose_lea_address (struct address_info *, rtx *);
2006 extern void decompose_mem_address (struct address_info *, rtx);
2007 extern void update_address (struct address_info *);
2008 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2009 extern enum rtx_code get_index_code (const struct address_info *);
2010
2011 #ifndef GENERATOR_FILE
2012 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2013 rather than size. */
2014
2015 static inline int
2016 set_rtx_cost (rtx x, bool speed_p)
2017 {
2018 return rtx_cost (x, INSN, 4, speed_p);
2019 }
2020
2021 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2022
2023 static inline void
2024 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2025 {
2026 get_full_rtx_cost (x, INSN, 4, c);
2027 }
2028
2029 /* Return the cost of moving X into a register, relative to the cost
2030 of a register move. SPEED_P is true if optimizing for speed rather
2031 than size. */
2032
2033 static inline int
2034 set_src_cost (rtx x, bool speed_p)
2035 {
2036 return rtx_cost (x, SET, 1, speed_p);
2037 }
2038
2039 /* Like set_src_cost, but return both the speed and size costs in C. */
2040
2041 static inline void
2042 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2043 {
2044 get_full_rtx_cost (x, SET, 1, c);
2045 }
2046 #endif
2047
2048 /* 1 if RTX is a subreg containing a reg that is already known to be
2049 sign- or zero-extended from the mode of the subreg to the mode of
2050 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2051 extension.
2052
2053 When used as a LHS, is means that this extension must be done
2054 when assigning to SUBREG_REG. */
2055
2056 #define SUBREG_PROMOTED_VAR_P(RTX) \
2057 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2058
2059 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2060 this gives the necessary extensions:
2061 0 - signed (SPR_SIGNED)
2062 1 - normal unsigned (SPR_UNSIGNED)
2063 2 - value is both sign and unsign extended for mode
2064 (SPR_SIGNED_AND_UNSIGNED).
2065 -1 - pointer unsigned, which most often can be handled like unsigned
2066 extension, except for generating instructions where we need to
2067 emit special code (ptr_extend insns) on some architectures
2068 (SPR_POINTER). */
2069
2070 const int SRP_POINTER = -1;
2071 const int SRP_SIGNED = 0;
2072 const int SRP_UNSIGNED = 1;
2073 const int SRP_SIGNED_AND_UNSIGNED = 2;
2074
2075 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2076 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2077 do { \
2078 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2079 (RTX), SUBREG); \
2080 switch (VAL) \
2081 { \
2082 case SRP_POINTER: \
2083 _rtx->volatil = 0; \
2084 _rtx->unchanging = 0; \
2085 break; \
2086 case SRP_SIGNED: \
2087 _rtx->volatil = 0; \
2088 _rtx->unchanging = 1; \
2089 break; \
2090 case SRP_UNSIGNED: \
2091 _rtx->volatil = 1; \
2092 _rtx->unchanging = 0; \
2093 break; \
2094 case SRP_SIGNED_AND_UNSIGNED: \
2095 _rtx->volatil = 1; \
2096 _rtx->unchanging = 1; \
2097 break; \
2098 } \
2099 } while (0)
2100
2101 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2102 including SRP_SIGNED_AND_UNSIGNED if promoted for
2103 both signed and unsigned. */
2104 #define SUBREG_PROMOTED_GET(RTX) \
2105 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2106 + (RTX)->unchanging - 1)
2107
2108 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2109 #define SUBREG_PROMOTED_SIGN(RTX) \
2110 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2111 : (RTX)->unchanging - 1)
2112
2113 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2114 for SIGNED type. */
2115 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2116 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2117
2118 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2119 for UNSIGNED type. */
2120 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2121 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2122
2123 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2124 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2125 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2126 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2127 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2128
2129 /* True if the subreg was generated by LRA for reload insns. Such
2130 subregs are valid only during LRA. */
2131 #define LRA_SUBREG_P(RTX) \
2132 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2133
2134 /* Access various components of an ASM_OPERANDS rtx. */
2135
2136 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2137 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2138 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2139 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2140 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2141 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2142 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2143 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2144 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2145 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2146 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2147 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2148 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2149 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2150 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2151 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2152 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2153 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2154
2155 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2156 #define MEM_READONLY_P(RTX) \
2157 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2158
2159 /* 1 if RTX is a mem and we should keep the alias set for this mem
2160 unchanged when we access a component. Set to 1, or example, when we
2161 are already in a non-addressable component of an aggregate. */
2162 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2163 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2164
2165 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2166 #define MEM_VOLATILE_P(RTX) \
2167 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2168 ASM_INPUT)->volatil)
2169
2170 /* 1 if RTX is a mem that cannot trap. */
2171 #define MEM_NOTRAP_P(RTX) \
2172 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2173
2174 /* The memory attribute block. We provide access macros for each value
2175 in the block and provide defaults if none specified. */
2176 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2177
2178 /* The register attribute block. We provide access macros for each value
2179 in the block and provide defaults if none specified. */
2180 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2181
2182 #ifndef GENERATOR_FILE
2183 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2184 set, and may alias anything. Otherwise, the MEM can only alias
2185 MEMs in a conflicting alias set. This value is set in a
2186 language-dependent manner in the front-end, and should not be
2187 altered in the back-end. These set numbers are tested with
2188 alias_sets_conflict_p. */
2189 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2190
2191 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2192 refer to part of a DECL. It may also be a COMPONENT_REF. */
2193 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2194
2195 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2196 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2197
2198 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2199 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2200
2201 /* For a MEM rtx, the address space. */
2202 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2203
2204 /* For a MEM rtx, true if its MEM_SIZE is known. */
2205 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2206
2207 /* For a MEM rtx, the size in bytes of the MEM. */
2208 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2209
2210 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2211 mode as a default when STRICT_ALIGNMENT, but not if not. */
2212 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2213 #else
2214 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2215 #endif
2216
2217 /* For a REG rtx, the decl it is known to refer to, if it is known to
2218 refer to part of a DECL. */
2219 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2220
2221 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2222 HOST_WIDE_INT. */
2223 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2224
2225 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2226 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2227 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2228 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2229 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2230 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2231 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2232 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2233
2234 /* 1 if RTX is a label_ref for a nonlocal label. */
2235 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2236 REG_LABEL_TARGET note. */
2237 #define LABEL_REF_NONLOCAL_P(RTX) \
2238 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2239
2240 /* 1 if RTX is a code_label that should always be considered to be needed. */
2241 #define LABEL_PRESERVE_P(RTX) \
2242 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2243
2244 /* During sched, 1 if RTX is an insn that must be scheduled together
2245 with the preceding insn. */
2246 #define SCHED_GROUP_P(RTX) \
2247 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2248 JUMP_INSN, CALL_INSN)->in_struct)
2249
2250 /* For a SET rtx, SET_DEST is the place that is set
2251 and SET_SRC is the value it is set to. */
2252 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2253 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2254 #define SET_IS_RETURN_P(RTX) \
2255 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2256
2257 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2258 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2259 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2260
2261 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2262 conditionally executing the code on, COND_EXEC_CODE is the code
2263 to execute if the condition is true. */
2264 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2265 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2266
2267 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2268 constants pool. */
2269 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2270 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2271
2272 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2273 tree constant pool. This information is private to varasm.c. */
2274 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2275 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2276 (RTX), SYMBOL_REF)->frame_related)
2277
2278 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2279 #define SYMBOL_REF_FLAG(RTX) \
2280 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2281
2282 /* 1 if RTX is a symbol_ref that has been the library function in
2283 emit_library_call. */
2284 #define SYMBOL_REF_USED(RTX) \
2285 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2286
2287 /* 1 if RTX is a symbol_ref for a weak symbol. */
2288 #define SYMBOL_REF_WEAK(RTX) \
2289 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2290
2291 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2292 SYMBOL_REF_CONSTANT. */
2293 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2294
2295 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2296 pool symbol. */
2297 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2298 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2299
2300 /* The tree (decl or constant) associated with the symbol, or null. */
2301 #define SYMBOL_REF_DECL(RTX) \
2302 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2303
2304 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2305 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2306 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2307
2308 /* The rtx constant pool entry for a symbol, or null. */
2309 #define SYMBOL_REF_CONSTANT(RTX) \
2310 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2311
2312 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2313 information derivable from the tree decl associated with this symbol.
2314 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2315 decl. In some cases this is a bug. But beyond that, it's nice to cache
2316 this information to avoid recomputing it. Finally, this allows space for
2317 the target to store more than one bit of information, as with
2318 SYMBOL_REF_FLAG. */
2319 #define SYMBOL_REF_FLAGS(RTX) \
2320 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2321 ->u2.symbol_ref_flags)
2322
2323 /* These flags are common enough to be defined for all targets. They
2324 are computed by the default version of targetm.encode_section_info. */
2325
2326 /* Set if this symbol is a function. */
2327 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2328 #define SYMBOL_REF_FUNCTION_P(RTX) \
2329 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2330 /* Set if targetm.binds_local_p is true. */
2331 #define SYMBOL_FLAG_LOCAL (1 << 1)
2332 #define SYMBOL_REF_LOCAL_P(RTX) \
2333 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2334 /* Set if targetm.in_small_data_p is true. */
2335 #define SYMBOL_FLAG_SMALL (1 << 2)
2336 #define SYMBOL_REF_SMALL_P(RTX) \
2337 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2338 /* The three-bit field at [5:3] is true for TLS variables; use
2339 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2340 #define SYMBOL_FLAG_TLS_SHIFT 3
2341 #define SYMBOL_REF_TLS_MODEL(RTX) \
2342 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2343 /* Set if this symbol is not defined in this translation unit. */
2344 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2345 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2346 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2347 /* Set if this symbol has a block_symbol structure associated with it. */
2348 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2349 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2350 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2351 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2352 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2353 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2354 #define SYMBOL_REF_ANCHOR_P(RTX) \
2355 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2356
2357 /* Subsequent bits are available for the target to use. */
2358 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2359 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2360
2361 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2362 structure to which the symbol belongs, or NULL if it has not been
2363 assigned a block. */
2364 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2365
2366 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2367 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2368 RTX has not yet been assigned to a block, or it has not been given an
2369 offset within that block. */
2370 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2371
2372 /* True if RTX is flagged to be a scheduling barrier. */
2373 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2374 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2375
2376 /* Indicate whether the machine has any sort of auto increment addressing.
2377 If not, we can avoid checking for REG_INC notes. */
2378
2379 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2380 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2381 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2382 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2383 #define AUTO_INC_DEC
2384 #endif
2385
2386 /* Define a macro to look for REG_INC notes,
2387 but save time on machines where they never exist. */
2388
2389 #ifdef AUTO_INC_DEC
2390 #define FIND_REG_INC_NOTE(INSN, REG) \
2391 ((REG) != NULL_RTX && REG_P ((REG)) \
2392 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2393 : find_reg_note ((INSN), REG_INC, (REG)))
2394 #else
2395 #define FIND_REG_INC_NOTE(INSN, REG) 0
2396 #endif
2397
2398 #ifndef HAVE_PRE_INCREMENT
2399 #define HAVE_PRE_INCREMENT 0
2400 #endif
2401
2402 #ifndef HAVE_PRE_DECREMENT
2403 #define HAVE_PRE_DECREMENT 0
2404 #endif
2405
2406 #ifndef HAVE_POST_INCREMENT
2407 #define HAVE_POST_INCREMENT 0
2408 #endif
2409
2410 #ifndef HAVE_POST_DECREMENT
2411 #define HAVE_POST_DECREMENT 0
2412 #endif
2413
2414 #ifndef HAVE_POST_MODIFY_DISP
2415 #define HAVE_POST_MODIFY_DISP 0
2416 #endif
2417
2418 #ifndef HAVE_POST_MODIFY_REG
2419 #define HAVE_POST_MODIFY_REG 0
2420 #endif
2421
2422 #ifndef HAVE_PRE_MODIFY_DISP
2423 #define HAVE_PRE_MODIFY_DISP 0
2424 #endif
2425
2426 #ifndef HAVE_PRE_MODIFY_REG
2427 #define HAVE_PRE_MODIFY_REG 0
2428 #endif
2429
2430
2431 /* Some architectures do not have complete pre/post increment/decrement
2432 instruction sets, or only move some modes efficiently. These macros
2433 allow us to tune autoincrement generation. */
2434
2435 #ifndef USE_LOAD_POST_INCREMENT
2436 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2437 #endif
2438
2439 #ifndef USE_LOAD_POST_DECREMENT
2440 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2441 #endif
2442
2443 #ifndef USE_LOAD_PRE_INCREMENT
2444 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2445 #endif
2446
2447 #ifndef USE_LOAD_PRE_DECREMENT
2448 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2449 #endif
2450
2451 #ifndef USE_STORE_POST_INCREMENT
2452 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2453 #endif
2454
2455 #ifndef USE_STORE_POST_DECREMENT
2456 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2457 #endif
2458
2459 #ifndef USE_STORE_PRE_INCREMENT
2460 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2461 #endif
2462
2463 #ifndef USE_STORE_PRE_DECREMENT
2464 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2465 #endif
2466 \f
2467 /* Nonzero when we are generating CONCATs. */
2468 extern int generating_concat_p;
2469
2470 /* Nonzero when we are expanding trees to RTL. */
2471 extern int currently_expanding_to_rtl;
2472
2473 /* Generally useful functions. */
2474
2475 /* In explow.c */
2476 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode);
2477 extern rtx plus_constant (enum machine_mode, rtx, HOST_WIDE_INT, bool = false);
2478
2479 /* In rtl.c */
2480 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2481 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2482 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2483 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2484 #define const_wide_int_alloc(NWORDS) \
2485 rtx_alloc_v (CONST_WIDE_INT, \
2486 (sizeof (struct hwivec_def) \
2487 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2488
2489 extern rtvec rtvec_alloc (int);
2490 extern rtvec shallow_copy_rtvec (rtvec);
2491 extern bool shared_const_p (const_rtx);
2492 extern rtx copy_rtx (rtx);
2493 extern void dump_rtx_statistics (void);
2494
2495 /* In emit-rtl.c */
2496 extern rtx copy_rtx_if_shared (rtx);
2497
2498 /* In rtl.c */
2499 extern unsigned int rtx_size (const_rtx);
2500 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2501 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2502 extern int rtx_equal_p (const_rtx, const_rtx);
2503
2504 /* In emit-rtl.c */
2505 extern rtvec gen_rtvec_v (int, rtx *);
2506 extern rtvec gen_rtvec_v (int, rtx_insn **);
2507 extern rtx gen_reg_rtx (enum machine_mode);
2508 extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int);
2509 extern rtx gen_reg_rtx_offset (rtx, enum machine_mode, int);
2510 extern rtx gen_reg_rtx_and_attrs (rtx);
2511 extern rtx_code_label *gen_label_rtx (void);
2512 extern rtx gen_lowpart_common (enum machine_mode, rtx);
2513
2514 /* In cse.c */
2515 extern rtx gen_lowpart_if_possible (enum machine_mode, rtx);
2516
2517 /* In emit-rtl.c */
2518 extern rtx gen_highpart (enum machine_mode, rtx);
2519 extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx);
2520 extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode);
2521
2522 /* In emit-rtl.c */
2523 extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode);
2524 extern bool paradoxical_subreg_p (const_rtx);
2525 extern int subreg_lowpart_p (const_rtx);
2526 extern unsigned int subreg_lowpart_offset (enum machine_mode,
2527 enum machine_mode);
2528 extern unsigned int subreg_highpart_offset (enum machine_mode,
2529 enum machine_mode);
2530 extern int byte_lowpart_offset (enum machine_mode, enum machine_mode);
2531 extern rtx make_safe_from (rtx, rtx);
2532 extern rtx convert_memory_address_addr_space (enum machine_mode, rtx,
2533 addr_space_t);
2534 #define convert_memory_address(to_mode,x) \
2535 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2536 extern const char *get_insn_name (int);
2537 extern rtx_insn *get_last_insn_anywhere (void);
2538 extern rtx_insn *get_first_nonnote_insn (void);
2539 extern rtx_insn *get_last_nonnote_insn (void);
2540 extern void start_sequence (void);
2541 extern void push_to_sequence (rtx_insn *);
2542 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2543 extern void end_sequence (void);
2544 #if TARGET_SUPPORTS_WIDE_INT == 0
2545 extern double_int rtx_to_double_int (const_rtx);
2546 #endif
2547 extern void cwi_output_hex (FILE *, const_rtx);
2548 #ifndef GENERATOR_FILE
2549 extern rtx immed_wide_int_const (const wide_int_ref &, enum machine_mode);
2550 #endif
2551 #if TARGET_SUPPORTS_WIDE_INT == 0
2552 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2553 enum machine_mode);
2554 #endif
2555
2556 /* In loop-iv.c */
2557
2558 extern rtx lowpart_subreg (enum machine_mode, rtx, enum machine_mode);
2559
2560 /* In varasm.c */
2561 extern rtx force_const_mem (enum machine_mode, rtx);
2562
2563 /* In varasm.c */
2564
2565 struct function;
2566 extern rtx get_pool_constant (const_rtx);
2567 extern rtx get_pool_constant_mark (rtx, bool *);
2568 extern enum machine_mode get_pool_mode (const_rtx);
2569 extern rtx simplify_subtraction (rtx);
2570 extern void decide_function_section (tree);
2571
2572 /* In function.c */
2573 extern rtx assign_stack_local (enum machine_mode, HOST_WIDE_INT, int);
2574 #define ASLK_REDUCE_ALIGN 1
2575 #define ASLK_RECORD_PAD 2
2576 extern rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, int);
2577 extern rtx assign_stack_temp (enum machine_mode, HOST_WIDE_INT);
2578 extern rtx assign_stack_temp_for_type (enum machine_mode, HOST_WIDE_INT, tree);
2579 extern rtx assign_temp (tree, int, int);
2580
2581 /* In emit-rtl.c */
2582 extern rtx_insn *emit_insn_before (rtx, rtx);
2583 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2584 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2585 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2586 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2587 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2588 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2589 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2590 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2591 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2592 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2593 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2594 extern rtx_barrier *emit_barrier_before (rtx);
2595 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2596 extern rtx_note *emit_note_before (enum insn_note, rtx);
2597 extern rtx_insn *emit_insn_after (rtx, rtx);
2598 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2599 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2600 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2601 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2602 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2603 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2604 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2605 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2606 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2607 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2608 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2609 extern rtx_barrier *emit_barrier_after (rtx);
2610 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2611 extern rtx_note *emit_note_after (enum insn_note, rtx);
2612 extern rtx_insn *emit_insn (rtx);
2613 extern rtx_insn *emit_debug_insn (rtx);
2614 extern rtx_insn *emit_jump_insn (rtx);
2615 extern rtx_insn *emit_call_insn (rtx);
2616 extern rtx_insn *emit_label (rtx);
2617 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2618 extern rtx_barrier *emit_barrier (void);
2619 extern rtx_note *emit_note (enum insn_note);
2620 extern rtx_note *emit_note_copy (rtx_note *);
2621 extern rtx_insn *gen_clobber (rtx);
2622 extern rtx_insn *emit_clobber (rtx);
2623 extern rtx_insn *gen_use (rtx);
2624 extern rtx_insn *emit_use (rtx);
2625 extern rtx_insn *make_insn_raw (rtx);
2626 extern void add_function_usage_to (rtx, rtx);
2627 extern rtx_call_insn *last_call_insn (void);
2628 extern rtx_insn *previous_insn (rtx_insn *);
2629 extern rtx_insn *next_insn (rtx_insn *);
2630 extern rtx_insn *prev_nonnote_insn (rtx);
2631 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2632 extern rtx_insn *next_nonnote_insn (rtx);
2633 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2634 extern rtx_insn *prev_nondebug_insn (rtx);
2635 extern rtx_insn *next_nondebug_insn (rtx);
2636 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2637 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2638 extern rtx_insn *prev_real_insn (rtx);
2639 extern rtx_insn *next_real_insn (rtx);
2640 extern rtx_insn *prev_active_insn (rtx);
2641 extern rtx_insn *next_active_insn (rtx);
2642 extern int active_insn_p (const_rtx);
2643 extern rtx_insn *next_cc0_user (rtx);
2644 extern rtx_insn *prev_cc0_setter (rtx);
2645
2646 /* In emit-rtl.c */
2647 extern int insn_line (const_rtx);
2648 extern const char * insn_file (const_rtx);
2649 extern tree insn_scope (const_rtx);
2650 extern expanded_location insn_location (const_rtx);
2651 extern location_t prologue_location, epilogue_location;
2652
2653 /* In jump.c */
2654 extern enum rtx_code reverse_condition (enum rtx_code);
2655 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2656 extern enum rtx_code swap_condition (enum rtx_code);
2657 extern enum rtx_code unsigned_condition (enum rtx_code);
2658 extern enum rtx_code signed_condition (enum rtx_code);
2659 extern void mark_jump_label (rtx, rtx, int);
2660
2661 /* In jump.c */
2662 extern rtx_insn *delete_related_insns (rtx);
2663
2664 /* In recog.c */
2665 extern rtx *find_constant_term_loc (rtx *);
2666
2667 /* In emit-rtl.c */
2668 extern rtx_insn *try_split (rtx, rtx, int);
2669 extern int split_branch_probability;
2670
2671 /* In unknown file */
2672 extern rtx split_insns (rtx, rtx);
2673
2674 /* In simplify-rtx.c */
2675 extern rtx simplify_const_unary_operation (enum rtx_code, enum machine_mode,
2676 rtx, enum machine_mode);
2677 extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx,
2678 enum machine_mode);
2679 extern rtx simplify_const_binary_operation (enum rtx_code, enum machine_mode,
2680 rtx, rtx);
2681 extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx,
2682 rtx);
2683 extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode,
2684 enum machine_mode, rtx, rtx, rtx);
2685 extern rtx simplify_const_relational_operation (enum rtx_code,
2686 enum machine_mode, rtx, rtx);
2687 extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode,
2688 enum machine_mode, rtx, rtx);
2689 extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
2690 extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx,
2691 enum machine_mode);
2692 extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode,
2693 enum machine_mode, rtx, rtx, rtx);
2694 extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode,
2695 enum machine_mode, rtx, rtx);
2696 extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode,
2697 unsigned int);
2698 extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode,
2699 unsigned int);
2700 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2701 rtx (*fn) (rtx, const_rtx, void *), void *);
2702 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2703 extern rtx simplify_rtx (const_rtx);
2704 extern rtx avoid_constant_pool_reference (rtx);
2705 extern rtx delegitimize_mem_from_attrs (rtx);
2706 extern bool mode_signbit_p (enum machine_mode, const_rtx);
2707 extern bool val_signbit_p (enum machine_mode, unsigned HOST_WIDE_INT);
2708 extern bool val_signbit_known_set_p (enum machine_mode,
2709 unsigned HOST_WIDE_INT);
2710 extern bool val_signbit_known_clear_p (enum machine_mode,
2711 unsigned HOST_WIDE_INT);
2712
2713 /* In reginfo.c */
2714 extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2715 bool);
2716
2717 /* In emit-rtl.c */
2718 extern rtx set_for_reg_notes (rtx);
2719 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2720 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2721 extern void set_insn_deleted (rtx);
2722
2723 /* Functions in rtlanal.c */
2724
2725 /* Single set is implemented as macro for performance reasons. */
2726 #define single_set(I) (INSN_P (I) \
2727 ? (GET_CODE (PATTERN (I)) == SET \
2728 ? PATTERN (I) : single_set_1 (I)) \
2729 : NULL_RTX)
2730 #define single_set_1(I) single_set_2 (I, PATTERN (I))
2731
2732 extern enum machine_mode get_address_mode (rtx mem);
2733 extern int rtx_addr_can_trap_p (const_rtx);
2734 extern bool nonzero_address_p (const_rtx);
2735 extern int rtx_unstable_p (const_rtx);
2736 extern bool rtx_varies_p (const_rtx, bool);
2737 extern bool rtx_addr_varies_p (const_rtx, bool);
2738 extern rtx get_call_rtx_from (rtx);
2739 extern HOST_WIDE_INT get_integer_term (const_rtx);
2740 extern rtx get_related_value (const_rtx);
2741 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2742 extern void split_const (rtx, rtx *, rtx *);
2743 extern bool unsigned_reg_p (rtx);
2744 extern int reg_mentioned_p (const_rtx, const_rtx);
2745 extern int count_occurrences (const_rtx, const_rtx, int);
2746 extern int reg_referenced_p (const_rtx, const_rtx);
2747 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2748 extern int reg_set_between_p (const_rtx, const_rtx, const_rtx);
2749 extern int commutative_operand_precedence (rtx);
2750 extern bool swap_commutative_operands_p (rtx, rtx);
2751 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2752 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2753 extern int modified_in_p (const_rtx, const_rtx);
2754 extern int reg_set_p (const_rtx, const_rtx);
2755 extern rtx single_set_2 (const_rtx, const_rtx);
2756 extern int multiple_sets (const_rtx);
2757 extern int set_noop_p (const_rtx);
2758 extern int noop_move_p (const_rtx);
2759 extern int refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2760 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2761 extern const_rtx set_of (const_rtx, const_rtx);
2762 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2763 extern void record_hard_reg_uses (rtx *, void *);
2764 #ifdef HARD_CONST
2765 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2766 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2767 #endif
2768 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2769 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2770 extern int dead_or_set_p (const_rtx, const_rtx);
2771 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2772 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2773 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2774 extern rtx find_reg_equal_equiv_note (const_rtx);
2775 extern rtx find_constant_src (const_rtx);
2776 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2777 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2778 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2779 extern void add_reg_note (rtx, enum reg_note, rtx);
2780 extern void add_int_reg_note (rtx, enum reg_note, int);
2781 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2782 extern void remove_note (rtx, const_rtx);
2783 extern void remove_reg_equal_equiv_notes (rtx);
2784 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2785 extern int side_effects_p (const_rtx);
2786 extern int volatile_refs_p (const_rtx);
2787 extern int volatile_insn_p (const_rtx);
2788 extern int may_trap_p_1 (const_rtx, unsigned);
2789 extern int may_trap_p (const_rtx);
2790 extern int may_trap_or_fault_p (const_rtx);
2791 extern bool can_throw_internal (const_rtx);
2792 extern bool can_throw_external (const_rtx);
2793 extern bool insn_could_throw_p (const_rtx);
2794 extern bool insn_nothrow_p (const_rtx);
2795 extern bool can_nonlocal_goto (const_rtx);
2796 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2797 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2798 extern int inequality_comparisons_p (const_rtx);
2799 extern rtx replace_rtx (rtx, rtx, rtx);
2800 extern void replace_label (rtx *, rtx, rtx, bool);
2801 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2802 extern bool rtx_referenced_p (const_rtx, const_rtx);
2803 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2804 extern int computed_jump_p (const_rtx);
2805 extern bool tls_referenced_p (const_rtx);
2806
2807 typedef int (*rtx_function) (rtx *, void *);
2808 extern int for_each_rtx (rtx *, rtx_function, void *);
2809 extern int for_each_rtx_in_insn (rtx_insn **, rtx_function, void *);
2810
2811 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2812 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2813 NULL. The callback is passed the same opaque ARG passed to
2814 for_each_inc_dec. Return zero to continue looking for other
2815 autoinc operations or any other value to interrupt the traversal and
2816 return that value to the caller of for_each_inc_dec. */
2817 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2818 rtx srcoff, void *arg);
2819 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2820
2821 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2822 rtx *, rtx *);
2823 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2824 rtx_equal_p_callback_function);
2825
2826 typedef int (*hash_rtx_callback_function) (const_rtx, enum machine_mode, rtx *,
2827 enum machine_mode *);
2828 extern unsigned hash_rtx_cb (const_rtx, enum machine_mode, int *, int *,
2829 bool, hash_rtx_callback_function);
2830
2831 extern rtx regno_use_in (unsigned int, rtx);
2832 extern int auto_inc_p (const_rtx);
2833 extern int in_expr_list_p (const_rtx, const_rtx);
2834 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2835 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2836 extern int loc_mentioned_in_p (rtx *, const_rtx);
2837 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2838 extern bool keep_with_call_p (const rtx_insn *);
2839 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2840 extern int insn_rtx_cost (rtx, bool);
2841
2842 /* Given an insn and condition, return a canonical description of
2843 the test being made. */
2844 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2845 int, int);
2846
2847 /* Given a JUMP_INSN, return a canonical description of the test
2848 being made. */
2849 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2850
2851 /* Information about a subreg of a hard register. */
2852 struct subreg_info
2853 {
2854 /* Offset of first hard register involved in the subreg. */
2855 int offset;
2856 /* Number of hard registers involved in the subreg. */
2857 int nregs;
2858 /* Whether this subreg can be represented as a hard reg with the new
2859 mode. */
2860 bool representable_p;
2861 };
2862
2863 extern void subreg_get_info (unsigned int, enum machine_mode,
2864 unsigned int, enum machine_mode,
2865 struct subreg_info *);
2866
2867 /* lists.c */
2868
2869 extern void free_EXPR_LIST_list (rtx_expr_list **);
2870 extern void free_INSN_LIST_list (rtx_insn_list **);
2871 extern void free_EXPR_LIST_node (rtx);
2872 extern void free_INSN_LIST_node (rtx);
2873 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2874 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2875 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2876 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2877 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2878 extern rtx remove_list_elem (rtx, rtx *);
2879 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2880 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2881
2882
2883 /* reginfo.c */
2884
2885 /* Resize reg info. */
2886 extern bool resize_reg_info (void);
2887 /* Free up register info memory. */
2888 extern void free_reg_info (void);
2889 extern void init_subregs_of_mode (void);
2890 extern void finish_subregs_of_mode (void);
2891
2892 /* recog.c */
2893 extern rtx extract_asm_operands (rtx);
2894 extern int asm_noperands (const_rtx);
2895 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2896 enum machine_mode *, location_t *);
2897 extern void get_referenced_operands (const char *, bool *, unsigned int);
2898
2899 extern enum reg_class reg_preferred_class (int);
2900 extern enum reg_class reg_alternate_class (int);
2901 extern enum reg_class reg_allocno_class (int);
2902 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2903 enum reg_class);
2904
2905 extern void split_all_insns (void);
2906 extern unsigned int split_all_insns_noflow (void);
2907
2908 #define MAX_SAVED_CONST_INT 64
2909 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2910
2911 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
2912 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
2913 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
2914 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
2915 extern GTY(()) rtx const_true_rtx;
2916
2917 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
2918
2919 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
2920 same as VOIDmode. */
2921
2922 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
2923
2924 /* Likewise, for the constants 1 and 2 and -1. */
2925
2926 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
2927 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
2928 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
2929
2930 extern GTY(()) rtx pc_rtx;
2931 extern GTY(()) rtx cc0_rtx;
2932 extern GTY(()) rtx ret_rtx;
2933 extern GTY(()) rtx simple_return_rtx;
2934
2935 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
2936 is used to represent the frame pointer. This is because the
2937 hard frame pointer and the automatic variables are separated by an amount
2938 that cannot be determined until after register allocation. We can assume
2939 that in this case ELIMINABLE_REGS will be defined, one action of which
2940 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
2941 #ifndef HARD_FRAME_POINTER_REGNUM
2942 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
2943 #endif
2944
2945 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
2946 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
2947 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
2948 #endif
2949
2950 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
2951 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
2952 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
2953 #endif
2954
2955 /* Index labels for global_rtl. */
2956 enum global_rtl_index
2957 {
2958 GR_STACK_POINTER,
2959 GR_FRAME_POINTER,
2960 /* For register elimination to work properly these hard_frame_pointer_rtx,
2961 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
2962 the same register. */
2963 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2964 GR_ARG_POINTER = GR_FRAME_POINTER,
2965 #endif
2966 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
2967 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
2968 #else
2969 GR_HARD_FRAME_POINTER,
2970 #endif
2971 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2972 #if HARD_FRAME_POINTER_IS_ARG_POINTER
2973 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
2974 #else
2975 GR_ARG_POINTER,
2976 #endif
2977 #endif
2978 GR_VIRTUAL_INCOMING_ARGS,
2979 GR_VIRTUAL_STACK_ARGS,
2980 GR_VIRTUAL_STACK_DYNAMIC,
2981 GR_VIRTUAL_OUTGOING_ARGS,
2982 GR_VIRTUAL_CFA,
2983 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
2984
2985 GR_MAX
2986 };
2987
2988 /* Target-dependent globals. */
2989 struct GTY(()) target_rtl {
2990 /* All references to the hard registers in global_rtl_index go through
2991 these unique rtl objects. On machines where the frame-pointer and
2992 arg-pointer are the same register, they use the same unique object.
2993
2994 After register allocation, other rtl objects which used to be pseudo-regs
2995 may be clobbered to refer to the frame-pointer register.
2996 But references that were originally to the frame-pointer can be
2997 distinguished from the others because they contain frame_pointer_rtx.
2998
2999 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3000 tricky: until register elimination has taken place hard_frame_pointer_rtx
3001 should be used if it is being set, and frame_pointer_rtx otherwise. After
3002 register elimination hard_frame_pointer_rtx should always be used.
3003 On machines where the two registers are same (most) then these are the
3004 same. */
3005 rtx x_global_rtl[GR_MAX];
3006
3007 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3008 rtx x_pic_offset_table_rtx;
3009
3010 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3011 This is used to implement __builtin_return_address for some machines;
3012 see for instance the MIPS port. */
3013 rtx x_return_address_pointer_rtx;
3014
3015 /* Commonly used RTL for hard registers. These objects are not
3016 necessarily unique, so we allocate them separately from global_rtl.
3017 They are initialized once per compilation unit, then copied into
3018 regno_reg_rtx at the beginning of each function. */
3019 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3020
3021 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3022 rtx x_top_of_stack[MAX_MACHINE_MODE];
3023
3024 /* Static hunks of RTL used by the aliasing code; these are treated
3025 as persistent to avoid unnecessary RTL allocations. */
3026 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3027
3028 /* The default memory attributes for each mode. */
3029 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3030
3031 /* Track if RTL has been initialized. */
3032 bool target_specific_initialized;
3033 };
3034
3035 extern GTY(()) struct target_rtl default_target_rtl;
3036 #if SWITCHABLE_TARGET
3037 extern struct target_rtl *this_target_rtl;
3038 #else
3039 #define this_target_rtl (&default_target_rtl)
3040 #endif
3041
3042 #define global_rtl \
3043 (this_target_rtl->x_global_rtl)
3044 #define pic_offset_table_rtx \
3045 (this_target_rtl->x_pic_offset_table_rtx)
3046 #define return_address_pointer_rtx \
3047 (this_target_rtl->x_return_address_pointer_rtx)
3048 #define top_of_stack \
3049 (this_target_rtl->x_top_of_stack)
3050 #define mode_mem_attrs \
3051 (this_target_rtl->x_mode_mem_attrs)
3052
3053 /* All references to certain hard regs, except those created
3054 by allocating pseudo regs into them (when that's possible),
3055 go through these unique rtx objects. */
3056 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3057 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3058 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3059 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3060
3061 #ifndef GENERATOR_FILE
3062 /* Return the attributes of a MEM rtx. */
3063 static inline struct mem_attrs *
3064 get_mem_attrs (const_rtx x)
3065 {
3066 struct mem_attrs *attrs;
3067
3068 attrs = MEM_ATTRS (x);
3069 if (!attrs)
3070 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3071 return attrs;
3072 }
3073 #endif
3074
3075 /* Include the RTL generation functions. */
3076
3077 #ifndef GENERATOR_FILE
3078 #include "genrtl.h"
3079 #undef gen_rtx_ASM_INPUT
3080 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3081 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3082 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3083 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3084 #endif
3085
3086 /* There are some RTL codes that require special attention; the
3087 generation functions included above do the raw handling. If you
3088 add to this list, modify special_rtx in gengenrtl.c as well. */
3089
3090 extern rtx_expr_list *gen_rtx_EXPR_LIST (enum machine_mode, rtx, rtx);
3091 extern rtx_insn_list *gen_rtx_INSN_LIST (enum machine_mode, rtx, rtx);
3092 extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT);
3093 extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec);
3094 extern rtx gen_raw_REG (enum machine_mode, int);
3095 extern rtx gen_rtx_REG (enum machine_mode, unsigned);
3096 extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int);
3097 extern rtx gen_rtx_MEM (enum machine_mode, rtx);
3098 extern rtx gen_rtx_VAR_LOCATION (enum machine_mode, tree, rtx,
3099 enum var_init_status);
3100
3101 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3102
3103 /* Virtual registers are used during RTL generation to refer to locations into
3104 the stack frame when the actual location isn't known until RTL generation
3105 is complete. The routine instantiate_virtual_regs replaces these with
3106 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3107 a constant. */
3108
3109 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3110
3111 /* This points to the first word of the incoming arguments passed on the stack,
3112 either by the caller or by the callee when pretending it was passed by the
3113 caller. */
3114
3115 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3116
3117 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3118
3119 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3120 variable on the stack. Otherwise, it points to the first variable on
3121 the stack. */
3122
3123 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3124
3125 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3126
3127 /* This points to the location of dynamically-allocated memory on the stack
3128 immediately after the stack pointer has been adjusted by the amount
3129 desired. */
3130
3131 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3132
3133 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3134
3135 /* This points to the location in the stack at which outgoing arguments should
3136 be written when the stack is pre-pushed (arguments pushed using push
3137 insns always use sp). */
3138
3139 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3140
3141 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3142
3143 /* This points to the Canonical Frame Address of the function. This
3144 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3145 but is calculated relative to the arg pointer for simplicity; the
3146 frame pointer nor stack pointer are necessarily fixed relative to
3147 the CFA until after reload. */
3148
3149 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3150
3151 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3152
3153 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3154
3155 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3156 when finalized. */
3157
3158 #define virtual_preferred_stack_boundary_rtx \
3159 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3160
3161 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3162 ((FIRST_VIRTUAL_REGISTER) + 5)
3163
3164 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3165
3166 /* Nonzero if REGNUM is a pointer into the stack frame. */
3167 #define REGNO_PTR_FRAME_P(REGNUM) \
3168 ((REGNUM) == STACK_POINTER_REGNUM \
3169 || (REGNUM) == FRAME_POINTER_REGNUM \
3170 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3171 || (REGNUM) == ARG_POINTER_REGNUM \
3172 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3173 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3174
3175 /* REGNUM never really appearing in the INSN stream. */
3176 #define INVALID_REGNUM (~(unsigned int) 0)
3177
3178 /* REGNUM for which no debug information can be generated. */
3179 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3180
3181 extern rtx output_constant_def (tree, int);
3182 extern rtx lookup_constant_def (tree);
3183
3184 /* Nonzero after end of reload pass.
3185 Set to 1 or 0 by reload1.c. */
3186
3187 extern int reload_completed;
3188
3189 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3190 extern int epilogue_completed;
3191
3192 /* Set to 1 while reload_as_needed is operating.
3193 Required by some machines to handle any generated moves differently. */
3194
3195 extern int reload_in_progress;
3196
3197 /* Set to 1 while in lra. */
3198 extern int lra_in_progress;
3199
3200 /* This macro indicates whether you may create a new
3201 pseudo-register. */
3202
3203 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3204
3205 #ifdef STACK_REGS
3206 /* Nonzero after end of regstack pass.
3207 Set to 1 or 0 by reg-stack.c. */
3208 extern int regstack_completed;
3209 #endif
3210
3211 /* If this is nonzero, we do not bother generating VOLATILE
3212 around volatile memory references, and we are willing to
3213 output indirect addresses. If cse is to follow, we reject
3214 indirect addresses so a useful potential cse is generated;
3215 if it is used only once, instruction combination will produce
3216 the same indirect address eventually. */
3217 extern int cse_not_expected;
3218
3219 /* Translates rtx code to tree code, for those codes needed by
3220 REAL_ARITHMETIC. The function returns an int because the caller may not
3221 know what `enum tree_code' means. */
3222
3223 extern int rtx_to_tree_code (enum rtx_code);
3224
3225 /* In cse.c */
3226 extern int delete_trivially_dead_insns (rtx_insn *, int);
3227 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3228 extern unsigned hash_rtx (const_rtx x, enum machine_mode, int *, int *, bool);
3229
3230 /* In dse.c */
3231 extern bool check_for_inc_dec (rtx_insn *insn);
3232
3233 /* In jump.c */
3234 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3235 extern bool jump_to_label_p (rtx);
3236 extern int condjump_p (const_rtx);
3237 extern int any_condjump_p (const_rtx);
3238 extern int any_uncondjump_p (const_rtx);
3239 extern rtx pc_set (const_rtx);
3240 extern rtx condjump_label (const_rtx);
3241 extern int simplejump_p (const_rtx);
3242 extern int returnjump_p (rtx);
3243 extern int eh_returnjump_p (rtx_insn *);
3244 extern int onlyjump_p (const_rtx);
3245 extern int only_sets_cc0_p (const_rtx);
3246 extern int sets_cc0_p (const_rtx);
3247 extern int invert_jump_1 (rtx, rtx);
3248 extern int invert_jump (rtx, rtx, int);
3249 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3250 extern int true_regnum (const_rtx);
3251 extern unsigned int reg_or_subregno (const_rtx);
3252 extern int redirect_jump_1 (rtx, rtx);
3253 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3254 extern int redirect_jump (rtx, rtx, int);
3255 extern void rebuild_jump_labels (rtx_insn *);
3256 extern void rebuild_jump_labels_chain (rtx_insn *);
3257 extern rtx reversed_comparison (const_rtx, enum machine_mode);
3258 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3259 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3260 const_rtx, const_rtx);
3261 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3262 extern int condjump_in_parallel_p (const_rtx);
3263
3264 /* In emit-rtl.c. */
3265 extern int max_reg_num (void);
3266 extern int max_label_num (void);
3267 extern int get_first_label_num (void);
3268 extern void maybe_set_first_label_num (rtx);
3269 extern void delete_insns_since (rtx_insn *);
3270 extern void mark_reg_pointer (rtx, int);
3271 extern void mark_user_reg (rtx);
3272 extern void reset_used_flags (rtx);
3273 extern void set_used_flags (rtx);
3274 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3275 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3276 extern int get_max_insn_count (void);
3277 extern int in_sequence_p (void);
3278 extern void init_emit (void);
3279 extern void init_emit_regs (void);
3280 extern void init_derived_machine_modes (void);
3281 extern void init_emit_once (void);
3282 extern void push_topmost_sequence (void);
3283 extern void pop_topmost_sequence (void);
3284 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3285 extern unsigned int unshare_all_rtl (void);
3286 extern void unshare_all_rtl_again (rtx_insn *);
3287 extern void unshare_all_rtl_in_chain (rtx_insn *);
3288 extern void verify_rtl_sharing (void);
3289 extern void add_insn (rtx_insn *);
3290 extern void add_insn_before (rtx, rtx, basic_block);
3291 extern void add_insn_after (rtx, rtx, basic_block);
3292 extern void remove_insn (rtx);
3293 extern rtx_insn *emit (rtx);
3294 extern void delete_insn (rtx);
3295 extern rtx_insn *entry_of_function (void);
3296 extern void emit_insn_at_entry (rtx);
3297 extern void delete_insn_chain (rtx, rtx, bool);
3298 extern rtx_insn *unlink_insn_chain (rtx_insn *, rtx_insn *);
3299 extern void delete_insn_and_edges (rtx_insn *);
3300 extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx);
3301 extern rtx gen_const_mem (enum machine_mode, rtx);
3302 extern rtx gen_frame_mem (enum machine_mode, rtx);
3303 extern rtx gen_tmp_stack_mem (enum machine_mode, rtx);
3304 extern bool validate_subreg (enum machine_mode, enum machine_mode,
3305 const_rtx, unsigned int);
3306
3307 /* In combine.c */
3308 extern unsigned int extended_count (const_rtx, enum machine_mode, int);
3309 extern rtx remove_death (unsigned int, rtx_insn *);
3310 extern void dump_combine_stats (FILE *);
3311 extern void dump_combine_total_stats (FILE *);
3312 extern rtx make_compound_operation (rtx, enum rtx_code);
3313
3314 /* In cfgcleanup.c */
3315 extern void delete_dead_jumptables (void);
3316
3317 /* In sched-rgn.c. */
3318 extern void schedule_insns (void);
3319
3320 /* In sched-ebb.c. */
3321 extern void schedule_ebbs (void);
3322
3323 /* In sel-sched-dump.c. */
3324 extern void sel_sched_fix_param (const char *param, const char *val);
3325
3326 /* In print-rtl.c */
3327 extern const char *print_rtx_head;
3328 extern void debug (const rtx_def &ref);
3329 extern void debug (const rtx_def *ptr);
3330 extern void debug_rtx (const_rtx);
3331 extern void debug_rtx_list (const rtx_insn *, int);
3332 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3333 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3334 extern void print_mem_expr (FILE *, const_tree);
3335 extern void print_rtl (FILE *, const_rtx);
3336 extern void print_simple_rtl (FILE *, const_rtx);
3337 extern int print_rtl_single (FILE *, const_rtx);
3338 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3339 extern void print_inline_rtx (FILE *, const_rtx, int);
3340
3341 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3342 not be in sched-vis.c but in rtl.c, because they are not only used
3343 by the scheduler anymore but for all "slim" RTL dumping. */
3344 extern void dump_value_slim (FILE *, const_rtx, int);
3345 extern void dump_insn_slim (FILE *, const_rtx);
3346 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3347 int, int);
3348 extern void print_value (pretty_printer *, const_rtx, int);
3349 extern void print_pattern (pretty_printer *, const_rtx, int);
3350 extern void print_insn (pretty_printer *, const_rtx, int);
3351 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3352 extern const char *str_pattern_slim (const_rtx);
3353
3354 /* In function.c */
3355 extern void reposition_prologue_and_epilogue_notes (void);
3356 extern int prologue_epilogue_contains (const_rtx);
3357 extern int sibcall_epilogue_contains (const_rtx);
3358 extern void update_temp_slot_address (rtx, rtx);
3359 extern void maybe_copy_prologue_epilogue_insn (rtx, rtx);
3360 extern void set_return_jump_label (rtx);
3361
3362 /* In stmt.c */
3363 extern void expand_null_return (void);
3364 extern void expand_naked_return (void);
3365 extern void emit_jump (rtx);
3366
3367 /* In expr.c */
3368 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3369 unsigned int, int);
3370 extern HOST_WIDE_INT find_args_size_adjust (rtx);
3371 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3372
3373 /* In cfgrtl.c */
3374 extern void print_rtl_with_bb (FILE *, const rtx_insn *, int);
3375 extern rtx_insn *duplicate_insn_chain (rtx_insn *, rtx_insn *);
3376
3377 /* In expmed.c */
3378 extern void init_expmed (void);
3379 extern void expand_inc (rtx, rtx);
3380 extern void expand_dec (rtx, rtx);
3381
3382 /* In lower-subreg.c */
3383 extern void init_lower_subreg (void);
3384
3385 /* In gcse.c */
3386 extern bool can_copy_p (enum machine_mode);
3387 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3388 extern rtx fis_get_condition (rtx_insn *);
3389
3390 /* In ira.c */
3391 #ifdef HARD_CONST
3392 extern HARD_REG_SET eliminable_regset;
3393 #endif
3394 extern void mark_elimination (int, int);
3395
3396 /* In reginfo.c */
3397 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3398 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3399 extern void globalize_reg (tree, int);
3400 extern void init_reg_modes_target (void);
3401 extern void init_regs (void);
3402 extern void reinit_regs (void);
3403 extern void init_fake_stack_mems (void);
3404 extern void save_register_info (void);
3405 extern void init_reg_sets (void);
3406 extern void regclass (rtx, int);
3407 extern void reg_scan (rtx_insn *, unsigned int);
3408 extern void fix_register (const char *, int, int);
3409 extern bool invalid_mode_change_p (unsigned int, enum reg_class);
3410
3411 /* In reload1.c */
3412 extern int function_invariant_p (const_rtx);
3413
3414 /* In calls.c */
3415 enum libcall_type
3416 {
3417 LCT_NORMAL = 0,
3418 LCT_CONST = 1,
3419 LCT_PURE = 2,
3420 LCT_NORETURN = 3,
3421 LCT_THROW = 4,
3422 LCT_RETURNS_TWICE = 5
3423 };
3424
3425 extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int,
3426 ...);
3427 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3428 enum machine_mode, int, ...);
3429
3430 /* In varasm.c */
3431 extern void init_varasm_once (void);
3432
3433 extern rtx make_debug_expr_from_rtl (const_rtx);
3434
3435 /* In read-rtl.c */
3436 extern bool read_rtx (const char *, rtx *);
3437
3438 /* In alias.c */
3439 extern rtx canon_rtx (rtx);
3440 extern int true_dependence (const_rtx, enum machine_mode, const_rtx);
3441 extern rtx get_addr (rtx);
3442 extern int canon_true_dependence (const_rtx, enum machine_mode, rtx,
3443 const_rtx, rtx);
3444 extern int read_dependence (const_rtx, const_rtx);
3445 extern int anti_dependence (const_rtx, const_rtx);
3446 extern int canon_anti_dependence (const_rtx, bool,
3447 const_rtx, enum machine_mode, rtx);
3448 extern int output_dependence (const_rtx, const_rtx);
3449 extern int may_alias_p (const_rtx, const_rtx);
3450 extern void init_alias_target (void);
3451 extern void init_alias_analysis (void);
3452 extern void end_alias_analysis (void);
3453 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3454 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3455 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3456 extern bool may_be_sp_based_p (rtx);
3457 extern rtx gen_hard_reg_clobber (enum machine_mode, unsigned int);
3458 extern rtx get_reg_known_value (unsigned int);
3459 extern bool get_reg_known_equiv_p (unsigned int);
3460 extern rtx get_reg_base_value (unsigned int);
3461
3462 #ifdef STACK_REGS
3463 extern int stack_regs_mentioned (const_rtx insn);
3464 #endif
3465
3466 /* In toplev.c */
3467 extern GTY(()) rtx stack_limit_rtx;
3468
3469 /* In predict.c */
3470 extern void invert_br_probabilities (rtx);
3471 extern bool expensive_function_p (int);
3472
3473 /* In var-tracking.c */
3474 extern unsigned int variable_tracking_main (void);
3475
3476 /* In stor-layout.c. */
3477 extern void get_mode_bounds (enum machine_mode, int, enum machine_mode,
3478 rtx *, rtx *);
3479
3480 /* In loop-iv.c */
3481 extern rtx canon_condition (rtx);
3482 extern void simplify_using_condition (rtx, rtx *, bitmap);
3483
3484 /* In final.c */
3485 extern unsigned int compute_alignments (void);
3486 extern void update_alignments (vec<rtx> &);
3487 extern int asm_str_count (const char *templ);
3488 \f
3489 struct rtl_hooks
3490 {
3491 rtx (*gen_lowpart) (enum machine_mode, rtx);
3492 rtx (*gen_lowpart_no_emit) (enum machine_mode, rtx);
3493 rtx (*reg_nonzero_bits) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3494 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3495 rtx (*reg_num_sign_bit_copies) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3496 unsigned int, unsigned int *);
3497 bool (*reg_truncated_to_mode) (enum machine_mode, const_rtx);
3498
3499 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3500 };
3501
3502 /* Each pass can provide its own. */
3503 extern struct rtl_hooks rtl_hooks;
3504
3505 /* ... but then it has to restore these. */
3506 extern const struct rtl_hooks general_rtl_hooks;
3507
3508 /* Keep this for the nonce. */
3509 #define gen_lowpart rtl_hooks.gen_lowpart
3510
3511 extern void insn_locations_init (void);
3512 extern void insn_locations_finalize (void);
3513 extern void set_curr_insn_location (location_t);
3514 extern location_t curr_insn_location (void);
3515 extern bool optimize_insn_for_size_p (void);
3516 extern bool optimize_insn_for_speed_p (void);
3517
3518 /* rtl-error.c */
3519 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3520 ATTRIBUTE_NORETURN;
3521 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3522 ATTRIBUTE_NORETURN;
3523
3524 #define fatal_insn(msgid, insn) \
3525 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3526 #define fatal_insn_not_found(insn) \
3527 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3528
3529 /* reginfo.c */
3530 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3531
3532
3533 #endif /* ! GCC_RTL_H */