Replace INSN_DELETED_P with rtx_insn member functions
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include <utility>
24 #include "statistics.h"
25 #include "machmode.h"
26 #include "input.h"
27 #include "real.h"
28 #include "vec.h"
29 #include "fixed-value.h"
30 #include "alias.h"
31 #include "hashtab.h"
32 #include "wide-int.h"
33 #include "flags.h"
34 #include "is-a.h"
35
36 /* Value used by some passes to "recognize" noop moves as valid
37 instructions. */
38 #define NOOP_MOVE_INSN_CODE INT_MAX
39
40 /* Register Transfer Language EXPRESSIONS CODES */
41
42 #define RTX_CODE enum rtx_code
43 enum rtx_code {
44
45 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
46 #include "rtl.def" /* rtl expressions are documented here */
47 #undef DEF_RTL_EXPR
48
49 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
50 NUM_RTX_CODE.
51 Assumes default enum value assignment. */
52
53 /* The cast here, saves many elsewhere. */
54 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
55
56 /* Similar, but since generator files get more entries... */
57 #ifdef GENERATOR_FILE
58 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
59 #endif
60
61 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
62
63 enum rtx_class {
64 /* We check bit 0-1 of some rtx class codes in the predicates below. */
65
66 /* Bit 0 = comparison if 0, arithmetic is 1
67 Bit 1 = 1 if commutative. */
68 RTX_COMPARE, /* 0 */
69 RTX_COMM_COMPARE,
70 RTX_BIN_ARITH,
71 RTX_COMM_ARITH,
72
73 /* Must follow the four preceding values. */
74 RTX_UNARY, /* 4 */
75
76 RTX_EXTRA,
77 RTX_MATCH,
78 RTX_INSN,
79
80 /* Bit 0 = 1 if constant. */
81 RTX_OBJ, /* 8 */
82 RTX_CONST_OBJ,
83
84 RTX_TERNARY,
85 RTX_BITFIELD_OPS,
86 RTX_AUTOINC
87 };
88
89 #define RTX_OBJ_MASK (~1)
90 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
91 #define RTX_COMPARE_MASK (~1)
92 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
93 #define RTX_ARITHMETIC_MASK (~1)
94 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
95 #define RTX_BINARY_MASK (~3)
96 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
97 #define RTX_COMMUTATIVE_MASK (~2)
98 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
99 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
100
101 extern const unsigned char rtx_length[NUM_RTX_CODE];
102 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
103
104 extern const char * const rtx_name[NUM_RTX_CODE];
105 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
106
107 extern const char * const rtx_format[NUM_RTX_CODE];
108 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
109
110 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
111 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
112
113 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
114 and NEXT_INSN fields). */
115 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
116
117 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
118 extern const unsigned char rtx_next[NUM_RTX_CODE];
119 \f
120 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
121 relative to which the offsets are calculated, as explained in rtl.def. */
122 struct addr_diff_vec_flags
123 {
124 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
125 unsigned min_align: 8;
126 /* Flags: */
127 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
128 unsigned min_after_vec: 1; /* minimum address target label is
129 after the ADDR_DIFF_VEC. */
130 unsigned max_after_vec: 1; /* maximum address target label is
131 after the ADDR_DIFF_VEC. */
132 unsigned min_after_base: 1; /* minimum address target label is
133 after BASE. */
134 unsigned max_after_base: 1; /* maximum address target label is
135 after BASE. */
136 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
137 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
138 unsigned : 2;
139 unsigned scale : 8;
140 };
141
142 /* Structure used to describe the attributes of a MEM. These are hashed
143 so MEMs that the same attributes share a data structure. This means
144 they cannot be modified in place. */
145 struct GTY(()) mem_attrs
146 {
147 /* The expression that the MEM accesses, or null if not known.
148 This expression might be larger than the memory reference itself.
149 (In other words, the MEM might access only part of the object.) */
150 tree expr;
151
152 /* The offset of the memory reference from the start of EXPR.
153 Only valid if OFFSET_KNOWN_P. */
154 HOST_WIDE_INT offset;
155
156 /* The size of the memory reference in bytes. Only valid if
157 SIZE_KNOWN_P. */
158 HOST_WIDE_INT size;
159
160 /* The alias set of the memory reference. */
161 alias_set_type alias;
162
163 /* The alignment of the reference in bits. Always a multiple of
164 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
165 than the memory reference itself. */
166 unsigned int align;
167
168 /* The address space that the memory reference uses. */
169 unsigned char addrspace;
170
171 /* True if OFFSET is known. */
172 bool offset_known_p;
173
174 /* True if SIZE is known. */
175 bool size_known_p;
176 };
177
178 /* Structure used to describe the attributes of a REG in similar way as
179 mem_attrs does for MEM above. Note that the OFFSET field is calculated
180 in the same way as for mem_attrs, rather than in the same way as a
181 SUBREG_BYTE. For example, if a big-endian target stores a byte
182 object in the low part of a 4-byte register, the OFFSET field
183 will be -3 rather than 0. */
184
185 struct GTY(()) reg_attrs {
186 tree decl; /* decl corresponding to REG. */
187 HOST_WIDE_INT offset; /* Offset from start of DECL. */
188 };
189
190 /* Common union for an element of an rtx. */
191
192 union rtunion
193 {
194 int rt_int;
195 unsigned int rt_uint;
196 const char *rt_str;
197 rtx rt_rtx;
198 rtvec rt_rtvec;
199 enum machine_mode rt_type;
200 addr_diff_vec_flags rt_addr_diff_vec_flags;
201 struct cselib_val *rt_cselib;
202 tree rt_tree;
203 basic_block rt_bb;
204 mem_attrs *rt_mem;
205 reg_attrs *rt_reg;
206 struct constant_descriptor_rtx *rt_constant;
207 struct dw_cfi_node *rt_cfi;
208 };
209
210 /* This structure remembers the position of a SYMBOL_REF within an
211 object_block structure. A SYMBOL_REF only provides this information
212 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
213 struct GTY(()) block_symbol {
214 /* The usual SYMBOL_REF fields. */
215 rtunion GTY ((skip)) fld[2];
216
217 /* The block that contains this object. */
218 struct object_block *block;
219
220 /* The offset of this object from the start of its block. It is negative
221 if the symbol has not yet been assigned an offset. */
222 HOST_WIDE_INT offset;
223 };
224
225 /* Describes a group of objects that are to be placed together in such
226 a way that their relative positions are known. */
227 struct GTY(()) object_block {
228 /* The section in which these objects should be placed. */
229 section *sect;
230
231 /* The alignment of the first object, measured in bits. */
232 unsigned int alignment;
233
234 /* The total size of the objects, measured in bytes. */
235 HOST_WIDE_INT size;
236
237 /* The SYMBOL_REFs for each object. The vector is sorted in
238 order of increasing offset and the following conditions will
239 hold for each element X:
240
241 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
242 !SYMBOL_REF_ANCHOR_P (X)
243 SYMBOL_REF_BLOCK (X) == [address of this structure]
244 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
245 vec<rtx, va_gc> *objects;
246
247 /* All the anchor SYMBOL_REFs used to address these objects, sorted
248 in order of increasing offset, and then increasing TLS model.
249 The following conditions will hold for each element X in this vector:
250
251 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
252 SYMBOL_REF_ANCHOR_P (X)
253 SYMBOL_REF_BLOCK (X) == [address of this structure]
254 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
255 vec<rtx, va_gc> *anchors;
256 };
257
258 struct GTY((variable_size)) hwivec_def {
259 HOST_WIDE_INT elem[1];
260 };
261
262 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
263 #define CWI_GET_NUM_ELEM(RTX) \
264 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
265 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
266 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
267
268 /* RTL expression ("rtx"). */
269
270 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
271 field for for gengtype to recognize that inheritance is occurring,
272 so that all subclasses are redirected to the traversal hook for the
273 base class.
274 However, all of the fields are in the base class, and special-casing
275 is at work. Hence we use desc and tag of 0, generating a switch
276 statement of the form:
277 switch (0)
278 {
279 case 0: // all the work happens here
280 }
281 in order to work with the existing special-casing in gengtype. */
282
283 struct GTY((desc("0"), tag("0"),
284 chain_next ("RTX_NEXT (&%h)"),
285 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
286 /* The kind of expression this is. */
287 ENUM_BITFIELD(rtx_code) code: 16;
288
289 /* The kind of value the expression has. */
290 ENUM_BITFIELD(machine_mode) mode : 8;
291
292 /* 1 in a MEM if we should keep the alias set for this mem unchanged
293 when we access a component.
294 1 in a JUMP_INSN if it is a crossing jump.
295 1 in a CALL_INSN if it is a sibling call.
296 1 in a SET that is for a return.
297 In a CODE_LABEL, part of the two-bit alternate entry field.
298 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
299 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
300 1 in a SUBREG generated by LRA for reload insns. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 public:
494 /* No extra fields, but adds the invariant:
495
496 (INSN_P (X)
497 || NOTE_P (X)
498 || JUMP_TABLE_DATA_P (X)
499 || BARRIER_P (X)
500 || LABEL_P (X))
501
502 i.e. that we must be able to use the following:
503 INSN_UID ()
504 NEXT_INSN ()
505 PREV_INSN ()
506 i.e. we have an rtx that has an INSN_UID field and can be part of
507 a linked list of insns.
508 */
509
510 /* Returns true if this insn has been deleted. */
511
512 bool deleted () const { return volatil; }
513
514 /* Mark this insn as deleted. */
515
516 void set_deleted () { volatil = true; }
517
518 /* Mark this insn as not deleted. */
519
520 void set_undeleted () { volatil = false; }
521 };
522
523 /* Subclasses of rtx_insn. */
524
525 class GTY(()) rtx_debug_insn : public rtx_insn
526 {
527 /* No extra fields, but adds the invariant:
528 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
529 i.e. an annotation for tracking variable assignments.
530
531 This is an instance of:
532 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
533 from rtl.def. */
534 };
535
536 class GTY(()) rtx_nonjump_insn : public rtx_insn
537 {
538 /* No extra fields, but adds the invariant:
539 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
540 i.e an instruction that cannot jump.
541
542 This is an instance of:
543 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
544 from rtl.def. */
545 };
546
547 class GTY(()) rtx_jump_insn : public rtx_insn
548 {
549 /* No extra fields, but adds the invariant:
550 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
551 i.e. an instruction that can possibly jump.
552
553 This is an instance of:
554 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_call_insn : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
562 i.e. an instruction that can possibly call a subroutine
563 but which will not change which instruction comes next
564 in the current function.
565
566 This is an instance of:
567 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
568 from rtl.def. */
569 };
570
571 class GTY(()) rtx_jump_table_data : public rtx_insn
572 {
573 /* No extra fields, but adds the invariant:
574 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
575 i.e. a data for a jump table, considered an instruction for
576 historical reasons.
577
578 This is an instance of:
579 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
580 from rtl.def. */
581
582 public:
583
584 /* This can be either:
585
586 (a) a table of absolute jumps, in which case PATTERN (this) is an
587 ADDR_VEC with arg 0 a vector of labels, or
588
589 (b) a table of relative jumps (e.g. for -fPIC), in which case
590 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
591 arg 1 the vector of labels.
592
593 This method gets the underlying vec. */
594
595 inline rtvec get_labels () const;
596 };
597
598 class GTY(()) rtx_barrier : public rtx_insn
599 {
600 /* No extra fields, but adds the invariant:
601 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
602 i.e. a marker that indicates that control will not flow through.
603
604 This is an instance of:
605 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
606 from rtl.def. */
607 };
608
609 class GTY(()) rtx_code_label : public rtx_insn
610 {
611 /* No extra fields, but adds the invariant:
612 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
613 i.e. a label in the assembler.
614
615 This is an instance of:
616 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
617 from rtl.def. */
618 };
619
620 class GTY(()) rtx_note : public rtx_insn
621 {
622 /* No extra fields, but adds the invariant:
623 NOTE_P(X) aka (GET_CODE (X) == NOTE)
624 i.e. a note about the corresponding source code.
625
626 This is an instance of:
627 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
628 from rtl.def. */
629 };
630
631 /* The size in bytes of an rtx header (code, mode and flags). */
632 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
633
634 /* The size in bytes of an rtx with code CODE. */
635 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
636
637 #define NULL_RTX (rtx) 0
638
639 /* The "next" and "previous" RTX, relative to this one. */
640
641 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
642 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
643
644 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
645 */
646 #define RTX_PREV(X) ((INSN_P (X) \
647 || NOTE_P (X) \
648 || JUMP_TABLE_DATA_P (X) \
649 || BARRIER_P (X) \
650 || LABEL_P (X)) \
651 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
652 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
653 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
654
655 /* Define macros to access the `code' field of the rtx. */
656
657 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
658 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
659
660 #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode)
661 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
662
663 /* RTL vector. These appear inside RTX's when there is a need
664 for a variable number of things. The principle use is inside
665 PARALLEL expressions. */
666
667 struct GTY(()) rtvec_def {
668 int num_elem; /* number of elements */
669 rtx GTY ((length ("%h.num_elem"))) elem[1];
670 };
671
672 #define NULL_RTVEC (rtvec) 0
673
674 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
675 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
676
677 /* Predicate yielding nonzero iff X is an rtx for a register. */
678 #define REG_P(X) (GET_CODE (X) == REG)
679
680 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
681 #define MEM_P(X) (GET_CODE (X) == MEM)
682
683 #if TARGET_SUPPORTS_WIDE_INT
684
685 /* Match CONST_*s that can represent compile-time constant integers. */
686 #define CASE_CONST_SCALAR_INT \
687 case CONST_INT: \
688 case CONST_WIDE_INT
689
690 /* Match CONST_*s for which pointer equality corresponds to value
691 equality. */
692 #define CASE_CONST_UNIQUE \
693 case CONST_INT: \
694 case CONST_WIDE_INT: \
695 case CONST_DOUBLE: \
696 case CONST_FIXED
697
698 /* Match all CONST_* rtxes. */
699 #define CASE_CONST_ANY \
700 case CONST_INT: \
701 case CONST_WIDE_INT: \
702 case CONST_DOUBLE: \
703 case CONST_FIXED: \
704 case CONST_VECTOR
705
706 #else
707
708 /* Match CONST_*s that can represent compile-time constant integers. */
709 #define CASE_CONST_SCALAR_INT \
710 case CONST_INT: \
711 case CONST_DOUBLE
712
713 /* Match CONST_*s for which pointer equality corresponds to value
714 equality. */
715 #define CASE_CONST_UNIQUE \
716 case CONST_INT: \
717 case CONST_DOUBLE: \
718 case CONST_FIXED
719
720 /* Match all CONST_* rtxes. */
721 #define CASE_CONST_ANY \
722 case CONST_INT: \
723 case CONST_DOUBLE: \
724 case CONST_FIXED: \
725 case CONST_VECTOR
726 #endif
727
728 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
729 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
730
731 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
732 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
733
734 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
735 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
736
737 /* Predicate yielding true iff X is an rtx for a double-int
738 or floating point constant. */
739 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_INT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
744
745 /* Predicate yielding true iff X is an rtx for a integer const. */
746 #if TARGET_SUPPORTS_WIDE_INT
747 #define CONST_SCALAR_INT_P(X) \
748 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
749 #else
750 #define CONST_SCALAR_INT_P(X) \
751 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
752 #endif
753
754 /* Predicate yielding true iff X is an rtx for a double-int. */
755 #define CONST_DOUBLE_AS_FLOAT_P(X) \
756 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
757
758 /* Predicate yielding nonzero iff X is a label insn. */
759 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
760
761 /* Predicate yielding nonzero iff X is a jump insn. */
762 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
763
764 /* Predicate yielding nonzero iff X is a call insn. */
765 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
766
767 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
768 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
769
770 /* Predicate yielding nonzero iff X is a debug note/insn. */
771 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
772
773 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
774 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
775
776 /* Nonzero if DEBUG_INSN_P may possibly hold. */
777 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
778
779 /* Predicate yielding nonzero iff X is a real insn. */
780 #define INSN_P(X) \
781 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
782
783 /* Predicate yielding nonzero iff X is a note insn. */
784 #define NOTE_P(X) (GET_CODE (X) == NOTE)
785
786 /* Predicate yielding nonzero iff X is a barrier insn. */
787 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
788
789 /* Predicate yielding nonzero iff X is a data for a jump table. */
790 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
791
792 template <>
793 template <>
794 inline bool
795 is_a_helper <rtx_insn *>::test (rtx rt)
796 {
797 return (INSN_P (rt)
798 || NOTE_P (rt)
799 || JUMP_TABLE_DATA_P (rt)
800 || BARRIER_P (rt)
801 || LABEL_P (rt));
802 }
803
804 template <>
805 template <>
806 inline bool
807 is_a_helper <const rtx_insn *>::test (const_rtx rt)
808 {
809 return (INSN_P (rt)
810 || NOTE_P (rt)
811 || JUMP_TABLE_DATA_P (rt)
812 || BARRIER_P (rt)
813 || LABEL_P (rt));
814 }
815
816 template <>
817 template <>
818 inline bool
819 is_a_helper <rtx_debug_insn *>::test (rtx rt)
820 {
821 return DEBUG_INSN_P (rt);
822 }
823
824 template <>
825 template <>
826 inline bool
827 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
828 {
829 return NONJUMP_INSN_P (rt);
830 }
831
832 template <>
833 template <>
834 inline bool
835 is_a_helper <rtx_jump_insn *>::test (rtx rt)
836 {
837 return JUMP_P (rt);
838 }
839
840 template <>
841 template <>
842 inline bool
843 is_a_helper <rtx_call_insn *>::test (rtx rt)
844 {
845 return CALL_P (rt);
846 }
847
848 template <>
849 template <>
850 inline bool
851 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
852 {
853 return CALL_P (insn);
854 }
855
856 template <>
857 template <>
858 inline bool
859 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
860 {
861 return JUMP_TABLE_DATA_P (rt);
862 }
863
864 template <>
865 template <>
866 inline bool
867 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
868 {
869 return JUMP_TABLE_DATA_P (insn);
870 }
871
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_barrier *>::test (rtx rt)
876 {
877 return BARRIER_P (rt);
878 }
879
880 template <>
881 template <>
882 inline bool
883 is_a_helper <rtx_code_label *>::test (rtx rt)
884 {
885 return LABEL_P (rt);
886 }
887
888 template <>
889 template <>
890 inline bool
891 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
892 {
893 return LABEL_P (insn);
894 }
895
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_note *>::test (rtx rt)
900 {
901 return NOTE_P (rt);
902 }
903
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_note *>::test (rtx_insn *insn)
908 {
909 return NOTE_P (insn);
910 }
911
912 /* Predicate yielding nonzero iff X is a return or simple_return. */
913 #define ANY_RETURN_P(X) \
914 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
915
916 /* 1 if X is a unary operator. */
917
918 #define UNARY_P(X) \
919 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
920
921 /* 1 if X is a binary operator. */
922
923 #define BINARY_P(X) \
924 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
925
926 /* 1 if X is an arithmetic operator. */
927
928 #define ARITHMETIC_P(X) \
929 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
930 == RTX_ARITHMETIC_RESULT)
931
932 /* 1 if X is an arithmetic operator. */
933
934 #define COMMUTATIVE_ARITH_P(X) \
935 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
936
937 /* 1 if X is a commutative arithmetic operator or a comparison operator.
938 These two are sometimes selected together because it is possible to
939 swap the two operands. */
940
941 #define SWAPPABLE_OPERANDS_P(X) \
942 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
943 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
944 | (1 << RTX_COMPARE)))
945
946 /* 1 if X is a non-commutative operator. */
947
948 #define NON_COMMUTATIVE_P(X) \
949 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
950 == RTX_NON_COMMUTATIVE_RESULT)
951
952 /* 1 if X is a commutative operator on integers. */
953
954 #define COMMUTATIVE_P(X) \
955 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
956 == RTX_COMMUTATIVE_RESULT)
957
958 /* 1 if X is a relational operator. */
959
960 #define COMPARISON_P(X) \
961 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
962
963 /* 1 if X is a constant value that is an integer. */
964
965 #define CONSTANT_P(X) \
966 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
967
968 /* 1 if X can be used to represent an object. */
969 #define OBJECT_P(X) \
970 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
971
972 /* General accessor macros for accessing the fields of an rtx. */
973
974 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
975 /* The bit with a star outside the statement expr and an & inside is
976 so that N can be evaluated only once. */
977 #define RTL_CHECK1(RTX, N, C1) __extension__ \
978 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
979 const enum rtx_code _code = GET_CODE (_rtx); \
980 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
981 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
982 __FUNCTION__); \
983 if (GET_RTX_FORMAT (_code)[_n] != C1) \
984 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
985 __FUNCTION__); \
986 &_rtx->u.fld[_n]; }))
987
988 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
989 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
990 const enum rtx_code _code = GET_CODE (_rtx); \
991 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
992 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
993 __FUNCTION__); \
994 if (GET_RTX_FORMAT (_code)[_n] != C1 \
995 && GET_RTX_FORMAT (_code)[_n] != C2) \
996 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
997 __FUNCTION__); \
998 &_rtx->u.fld[_n]; }))
999
1000 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1001 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1002 if (GET_CODE (_rtx) != (C)) \
1003 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1004 __FUNCTION__); \
1005 &_rtx->u.fld[_n]; }))
1006
1007 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1008 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1009 const enum rtx_code _code = GET_CODE (_rtx); \
1010 if (_code != (C1) && _code != (C2)) \
1011 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1012 __FUNCTION__); \
1013 &_rtx->u.fld[_n]; }))
1014
1015 #define RTVEC_ELT(RTVEC, I) __extension__ \
1016 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1017 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1018 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1019 __FUNCTION__); \
1020 &_rtvec->elem[_i]; }))
1021
1022 #define XWINT(RTX, N) __extension__ \
1023 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1024 const enum rtx_code _code = GET_CODE (_rtx); \
1025 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1026 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1027 __FUNCTION__); \
1028 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1029 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1030 __FUNCTION__); \
1031 &_rtx->u.hwint[_n]; }))
1032
1033 #define CWI_ELT(RTX, I) __extension__ \
1034 (*({ __typeof (RTX) const _cwi = (RTX); \
1035 int _max = CWI_GET_NUM_ELEM (_cwi); \
1036 const int _i = (I); \
1037 if (_i < 0 || _i >= _max) \
1038 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1039 __FUNCTION__); \
1040 &_cwi->u.hwiv.elem[_i]; }))
1041
1042 #define XCWINT(RTX, N, C) __extension__ \
1043 (*({ __typeof (RTX) const _rtx = (RTX); \
1044 if (GET_CODE (_rtx) != (C)) \
1045 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1046 __FUNCTION__); \
1047 &_rtx->u.hwint[N]; }))
1048
1049 #define XCMWINT(RTX, N, C, M) __extension__ \
1050 (*({ __typeof (RTX) const _rtx = (RTX); \
1051 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1052 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1053 __LINE__, __FUNCTION__); \
1054 &_rtx->u.hwint[N]; }))
1055
1056 #define XCNMPRV(RTX, C, M) __extension__ \
1057 ({ __typeof (RTX) const _rtx = (RTX); \
1058 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1059 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1060 __LINE__, __FUNCTION__); \
1061 &_rtx->u.rv; })
1062
1063 #define XCNMPFV(RTX, C, M) __extension__ \
1064 ({ __typeof (RTX) const _rtx = (RTX); \
1065 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1066 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1067 __LINE__, __FUNCTION__); \
1068 &_rtx->u.fv; })
1069
1070 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1071 ({ __typeof (RTX) const _symbol = (RTX); \
1072 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1073 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1074 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1075 __FUNCTION__); \
1076 &_symbol->u.block_sym; })
1077
1078 #define HWIVEC_CHECK(RTX,C) __extension__ \
1079 ({ __typeof (RTX) const _symbol = (RTX); \
1080 RTL_CHECKC1 (_symbol, 0, C); \
1081 &_symbol->u.hwiv; })
1082
1083 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1084 const char *)
1085 ATTRIBUTE_NORETURN;
1086 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1087 const char *)
1088 ATTRIBUTE_NORETURN;
1089 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1090 int, const char *)
1091 ATTRIBUTE_NORETURN;
1092 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1093 int, const char *)
1094 ATTRIBUTE_NORETURN;
1095 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1096 const char *, int, const char *)
1097 ATTRIBUTE_NORETURN;
1098 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, enum machine_mode,
1099 bool, const char *, int, const char *)
1100 ATTRIBUTE_NORETURN;
1101 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1102 ATTRIBUTE_NORETURN;
1103 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1104 const char *)
1105 ATTRIBUTE_NORETURN;
1106 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1107 const char *)
1108 ATTRIBUTE_NORETURN;
1109
1110 #else /* not ENABLE_RTL_CHECKING */
1111
1112 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1113 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1114 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1115 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1116 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1117 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1118 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1119 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1120 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1121 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1122 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1123 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1124 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1125 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1126
1127 #endif
1128
1129 /* General accessor macros for accessing the flags of an rtx. */
1130
1131 /* Access an individual rtx flag, with no checking of any kind. */
1132 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1133
1134 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1135 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1136 ({ __typeof (RTX) const _rtx = (RTX); \
1137 if (GET_CODE (_rtx) != C1) \
1138 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1139 __FUNCTION__); \
1140 _rtx; })
1141
1142 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1143 ({ __typeof (RTX) const _rtx = (RTX); \
1144 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1145 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1146 __FUNCTION__); \
1147 _rtx; })
1148
1149 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1150 ({ __typeof (RTX) const _rtx = (RTX); \
1151 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1152 && GET_CODE (_rtx) != C3) \
1153 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1154 __FUNCTION__); \
1155 _rtx; })
1156
1157 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1158 ({ __typeof (RTX) const _rtx = (RTX); \
1159 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1160 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1161 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1162 __FUNCTION__); \
1163 _rtx; })
1164
1165 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1166 ({ __typeof (RTX) const _rtx = (RTX); \
1167 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1168 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1169 && GET_CODE (_rtx) != C5) \
1170 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1171 __FUNCTION__); \
1172 _rtx; })
1173
1174 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1175 __extension__ \
1176 ({ __typeof (RTX) const _rtx = (RTX); \
1177 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1178 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1179 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1180 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1181 __FUNCTION__); \
1182 _rtx; })
1183
1184 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1185 __extension__ \
1186 ({ __typeof (RTX) const _rtx = (RTX); \
1187 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1188 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1189 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1190 && GET_CODE (_rtx) != C7) \
1191 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1192 __FUNCTION__); \
1193 _rtx; })
1194
1195 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1196 __extension__ \
1197 ({ __typeof (RTX) const _rtx = (RTX); \
1198 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1199 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1200 __FUNCTION__); \
1201 _rtx; })
1202
1203 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1204 int, const char *)
1205 ATTRIBUTE_NORETURN
1206 ;
1207
1208 #else /* not ENABLE_RTL_FLAG_CHECKING */
1209
1210 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1211 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1212 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1213 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1214 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1215 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1216 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1217 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1218 #endif
1219
1220 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1221 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1222 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1223 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1224 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1225 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1226 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1227 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1228 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1229 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1230
1231 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1232 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1233
1234 /* These are like XINT, etc. except that they expect a '0' field instead
1235 of the normal type code. */
1236
1237 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1238 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1239 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1240 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1241 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1242 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1243 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1244 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1245 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1246 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1247 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1248 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1249 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1250
1251 /* Access a '0' field with any type. */
1252 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1253
1254 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1255 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1256 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1257 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1258 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1259 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1260 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1261 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1262 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1263 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1264
1265 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1266 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1267
1268 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1269 \f
1270
1271 /* Methods of rtx_expr_list. */
1272
1273 inline rtx_expr_list *rtx_expr_list::next () const
1274 {
1275 rtx tmp = XEXP (this, 1);
1276 return safe_as_a <rtx_expr_list *> (tmp);
1277 }
1278
1279 inline rtx rtx_expr_list::element () const
1280 {
1281 return XEXP (this, 0);
1282 }
1283
1284 /* Methods of rtx_insn_list. */
1285
1286 inline rtx_insn_list *rtx_insn_list::next () const
1287 {
1288 rtx tmp = XEXP (this, 1);
1289 return safe_as_a <rtx_insn_list *> (tmp);
1290 }
1291
1292 inline rtx_insn *rtx_insn_list::insn () const
1293 {
1294 rtx tmp = XEXP (this, 0);
1295 return safe_as_a <rtx_insn *> (tmp);
1296 }
1297
1298 /* Methods of rtx_sequence. */
1299
1300 inline int rtx_sequence::len () const
1301 {
1302 return XVECLEN (this, 0);
1303 }
1304
1305 inline rtx rtx_sequence::element (int index) const
1306 {
1307 return XVECEXP (this, 0, index);
1308 }
1309
1310 inline rtx_insn *rtx_sequence::insn (int index) const
1311 {
1312 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1313 }
1314
1315 /* ACCESS MACROS for particular fields of insns. */
1316
1317 /* Holds a unique number for each insn.
1318 These are not necessarily sequentially increasing. */
1319 inline int INSN_UID (const_rtx insn)
1320 {
1321 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1322 (insn))->u2.insn_uid;
1323 }
1324 inline int& INSN_UID (rtx insn)
1325 {
1326 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1327 (insn))->u2.insn_uid;
1328 }
1329
1330 /* Chain insns together in sequence. */
1331
1332 /* For now these are split in two: an rvalue form:
1333 PREV_INSN/NEXT_INSN
1334 and an lvalue form:
1335 SET_NEXT_INSN/SET_PREV_INSN. */
1336
1337 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1338 {
1339 rtx prev = XEXP (insn, 0);
1340 return safe_as_a <rtx_insn *> (prev);
1341 }
1342
1343 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1344 {
1345 return XEXP (insn, 0);
1346 }
1347
1348 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1349 {
1350 rtx next = XEXP (insn, 1);
1351 return safe_as_a <rtx_insn *> (next);
1352 }
1353
1354 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1355 {
1356 return XEXP (insn, 1);
1357 }
1358
1359 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1360 {
1361 return XBBDEF (insn, 2);
1362 }
1363
1364 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1365 {
1366 return XBBDEF (insn, 2);
1367 }
1368
1369 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1370 {
1371 BLOCK_FOR_INSN (insn) = bb;
1372 }
1373
1374 /* The body of an insn. */
1375 inline rtx PATTERN (const_rtx insn)
1376 {
1377 return XEXP (insn, 3);
1378 }
1379
1380 inline rtx& PATTERN (rtx insn)
1381 {
1382 return XEXP (insn, 3);
1383 }
1384
1385 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1386 {
1387 return XUINT (insn, 4);
1388 }
1389
1390 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1391 {
1392 return XUINT (insn, 4);
1393 }
1394
1395 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1396 {
1397 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1398 }
1399
1400 /* LOCATION of an RTX if relevant. */
1401 #define RTL_LOCATION(X) (INSN_P (X) ? \
1402 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1403 : UNKNOWN_LOCATION)
1404
1405 /* Code number of instruction, from when it was recognized.
1406 -1 means this instruction has not been recognized yet. */
1407 #define INSN_CODE(INSN) XINT (INSN, 5)
1408
1409 inline rtvec rtx_jump_table_data::get_labels () const
1410 {
1411 rtx pat = PATTERN (this);
1412 if (GET_CODE (pat) == ADDR_VEC)
1413 return XVEC (pat, 0);
1414 else
1415 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1416 }
1417
1418 #define RTX_FRAME_RELATED_P(RTX) \
1419 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1420 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1421
1422 /* 1 if JUMP RTX is a crossing jump. */
1423 #define CROSSING_JUMP_P(RTX) \
1424 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1425
1426 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1427 TREE_READONLY. */
1428 #define RTL_CONST_CALL_P(RTX) \
1429 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1430
1431 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1432 DECL_PURE_P. */
1433 #define RTL_PURE_CALL_P(RTX) \
1434 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1435
1436 /* 1 if RTX is a call to a const or pure function. */
1437 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1438 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1439
1440 /* 1 if RTX is a call to a looping const or pure function. Built from
1441 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1442 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1443 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1444
1445 /* 1 if RTX is a call_insn for a sibling call. */
1446 #define SIBLING_CALL_P(RTX) \
1447 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1448
1449 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1450 #define INSN_ANNULLED_BRANCH_P(RTX) \
1451 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1452
1453 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1454 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1455 executed if the branch is taken. For annulled branches with this bit
1456 clear, the insn should be executed only if the branch is not taken. */
1457 #define INSN_FROM_TARGET_P(RTX) \
1458 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1459 CALL_INSN)->in_struct)
1460
1461 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1462 See the comments for ADDR_DIFF_VEC in rtl.def. */
1463 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1464
1465 /* In a VALUE, the value cselib has assigned to RTX.
1466 This is a "struct cselib_val", see cselib.h. */
1467 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1468
1469 /* Holds a list of notes on what this insn does to various REGs.
1470 It is a chain of EXPR_LIST rtx's, where the second operand is the
1471 chain pointer and the first operand is the REG being described.
1472 The mode field of the EXPR_LIST contains not a real machine mode
1473 but a value from enum reg_note. */
1474 #define REG_NOTES(INSN) XEXP(INSN, 6)
1475
1476 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1477 question. */
1478 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1479
1480 enum reg_note
1481 {
1482 #define DEF_REG_NOTE(NAME) NAME,
1483 #include "reg-notes.def"
1484 #undef DEF_REG_NOTE
1485 REG_NOTE_MAX
1486 };
1487
1488 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1489 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1490 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1491 PUT_MODE (LINK, (enum machine_mode) (KIND))
1492
1493 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1494
1495 extern const char * const reg_note_name[];
1496 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1497
1498 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1499 USE and CLOBBER expressions.
1500 USE expressions list the registers filled with arguments that
1501 are passed to the function.
1502 CLOBBER expressions document the registers explicitly clobbered
1503 by this CALL_INSN.
1504 Pseudo registers can not be mentioned in this list. */
1505 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1506
1507 /* The label-number of a code-label. The assembler label
1508 is made from `L' and the label-number printed in decimal.
1509 Label numbers are unique in a compilation. */
1510 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1511
1512 /* In a NOTE that is a line number, this is a string for the file name that the
1513 line is in. We use the same field to record block numbers temporarily in
1514 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1515 between ints and pointers if we use a different macro for the block number.)
1516 */
1517
1518 /* Opaque data. */
1519 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1520 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1521 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1522 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1523 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1524 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1525 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1526 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1527 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1528
1529 /* In a NOTE that is a line number, this is the line number.
1530 Other kinds of NOTEs are identified by negative numbers here. */
1531 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1532
1533 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1534 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1535 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1536
1537 /* Variable declaration and the location of a variable. */
1538 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1539 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1540
1541 /* Initialization status of the variable in the location. Status
1542 can be unknown, uninitialized or initialized. See enumeration
1543 type below. */
1544 #define PAT_VAR_LOCATION_STATUS(PAT) \
1545 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1546 ->u2.var_location_status)
1547
1548 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1549 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1550 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1551 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1552 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1553 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1554 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1555
1556 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1557 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1558
1559 /* Accessors for a tree-expanded var location debug insn. */
1560 #define INSN_VAR_LOCATION_DECL(INSN) \
1561 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1562 #define INSN_VAR_LOCATION_LOC(INSN) \
1563 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1564 #define INSN_VAR_LOCATION_STATUS(INSN) \
1565 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1566
1567 /* Expand to the RTL that denotes an unknown variable location in a
1568 DEBUG_INSN. */
1569 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1570
1571 /* Determine whether X is such an unknown location. */
1572 #define VAR_LOC_UNKNOWN_P(X) \
1573 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1574
1575 /* 1 if RTX is emitted after a call, but it should take effect before
1576 the call returns. */
1577 #define NOTE_DURING_CALL_P(RTX) \
1578 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1579
1580 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1581 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1582
1583 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1584 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1585
1586 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1587 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1588
1589 /* Codes that appear in the NOTE_KIND field for kinds of notes
1590 that are not line numbers. These codes are all negative.
1591
1592 Notice that we do not try to use zero here for any of
1593 the special note codes because sometimes the source line
1594 actually can be zero! This happens (for example) when we
1595 are generating code for the per-translation-unit constructor
1596 and destructor routines for some C++ translation unit. */
1597
1598 enum insn_note
1599 {
1600 #define DEF_INSN_NOTE(NAME) NAME,
1601 #include "insn-notes.def"
1602 #undef DEF_INSN_NOTE
1603
1604 NOTE_INSN_MAX
1605 };
1606
1607 /* Names for NOTE insn's other than line numbers. */
1608
1609 extern const char * const note_insn_name[NOTE_INSN_MAX];
1610 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1611 (note_insn_name[(NOTE_CODE)])
1612
1613 /* The name of a label, in case it corresponds to an explicit label
1614 in the input source code. */
1615 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1616
1617 /* In jump.c, each label contains a count of the number
1618 of LABEL_REFs that point at it, so unused labels can be deleted. */
1619 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1620
1621 /* Labels carry a two-bit field composed of the ->jump and ->call
1622 bits. This field indicates whether the label is an alternate
1623 entry point, and if so, what kind. */
1624 enum label_kind
1625 {
1626 LABEL_NORMAL = 0, /* ordinary label */
1627 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1628 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1629 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1630 };
1631
1632 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1633
1634 /* Retrieve the kind of LABEL. */
1635 #define LABEL_KIND(LABEL) __extension__ \
1636 ({ __typeof (LABEL) const _label = (LABEL); \
1637 if (! LABEL_P (_label)) \
1638 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1639 __FUNCTION__); \
1640 (enum label_kind) ((_label->jump << 1) | _label->call); })
1641
1642 /* Set the kind of LABEL. */
1643 #define SET_LABEL_KIND(LABEL, KIND) do { \
1644 __typeof (LABEL) const _label = (LABEL); \
1645 const unsigned int _kind = (KIND); \
1646 if (! LABEL_P (_label)) \
1647 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1648 __FUNCTION__); \
1649 _label->jump = ((_kind >> 1) & 1); \
1650 _label->call = (_kind & 1); \
1651 } while (0)
1652
1653 #else
1654
1655 /* Retrieve the kind of LABEL. */
1656 #define LABEL_KIND(LABEL) \
1657 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1658
1659 /* Set the kind of LABEL. */
1660 #define SET_LABEL_KIND(LABEL, KIND) do { \
1661 rtx const _label = (LABEL); \
1662 const unsigned int _kind = (KIND); \
1663 _label->jump = ((_kind >> 1) & 1); \
1664 _label->call = (_kind & 1); \
1665 } while (0)
1666
1667 #endif /* rtl flag checking */
1668
1669 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1670
1671 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1672 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1673 be decremented and possibly the label can be deleted. */
1674 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1675
1676 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1677 {
1678 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1679 }
1680
1681 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1682 goes through all the LABEL_REFs that jump to that label. The chain
1683 eventually winds up at the CODE_LABEL: it is circular. */
1684 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1685
1686 /* Get the label that a LABEL_REF references. */
1687 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1688
1689 \f
1690 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1691 be used on RHS. Use SET_REGNO to change the value. */
1692 #define REGNO(RTX) (rhs_regno(RTX))
1693 #define SET_REGNO(RTX,N) \
1694 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1695 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1696
1697 /* ORIGINAL_REGNO holds the number the register originally had; for a
1698 pseudo register turned into a hard reg this will hold the old pseudo
1699 register number. */
1700 #define ORIGINAL_REGNO(RTX) \
1701 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1702
1703 /* Force the REGNO macro to only be used on the lhs. */
1704 static inline unsigned int
1705 rhs_regno (const_rtx x)
1706 {
1707 return XCUINT (x, 0, REG);
1708 }
1709
1710
1711 /* 1 if RTX is a reg or parallel that is the current function's return
1712 value. */
1713 #define REG_FUNCTION_VALUE_P(RTX) \
1714 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1715
1716 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1717 #define REG_USERVAR_P(RTX) \
1718 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1719
1720 /* 1 if RTX is a reg that holds a pointer value. */
1721 #define REG_POINTER(RTX) \
1722 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1723
1724 /* 1 if RTX is a mem that holds a pointer value. */
1725 #define MEM_POINTER(RTX) \
1726 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1727
1728 /* 1 if the given register REG corresponds to a hard register. */
1729 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1730
1731 /* 1 if the given register number REG_NO corresponds to a hard register. */
1732 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1733
1734 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1735 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1736 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1737
1738 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1739 elements actually needed to represent the constant.
1740 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1741 significant HOST_WIDE_INT. */
1742 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1743 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1744 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1745
1746 /* For a CONST_DOUBLE:
1747 #if TARGET_SUPPORTS_WIDE_INT == 0
1748 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1749 low-order word and ..._HIGH the high-order.
1750 #endif
1751 For a float, there is a REAL_VALUE_TYPE structure, and
1752 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1753 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1754 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1755 #define CONST_DOUBLE_REAL_VALUE(r) \
1756 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1757
1758 #define CONST_FIXED_VALUE(r) \
1759 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1760 #define CONST_FIXED_VALUE_HIGH(r) \
1761 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1762 #define CONST_FIXED_VALUE_LOW(r) \
1763 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1764
1765 /* For a CONST_VECTOR, return element #n. */
1766 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1767
1768 /* For a CONST_VECTOR, return the number of elements in a vector. */
1769 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1770
1771 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1772 SUBREG_BYTE extracts the byte-number. */
1773
1774 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1775 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1776
1777 /* in rtlanal.c */
1778 /* Return the right cost to give to an operation
1779 to make the cost of the corresponding register-to-register instruction
1780 N times that of a fast register-to-register instruction. */
1781 #define COSTS_N_INSNS(N) ((N) * 4)
1782
1783 /* Maximum cost of an rtl expression. This value has the special meaning
1784 not to use an rtx with this cost under any circumstances. */
1785 #define MAX_COST INT_MAX
1786
1787 /* A structure to hold all available cost information about an rtl
1788 expression. */
1789 struct full_rtx_costs
1790 {
1791 int speed;
1792 int size;
1793 };
1794
1795 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1796 static inline void
1797 init_costs_to_max (struct full_rtx_costs *c)
1798 {
1799 c->speed = MAX_COST;
1800 c->size = MAX_COST;
1801 }
1802
1803 /* Initialize a full_rtx_costs structure C to zero cost. */
1804 static inline void
1805 init_costs_to_zero (struct full_rtx_costs *c)
1806 {
1807 c->speed = 0;
1808 c->size = 0;
1809 }
1810
1811 /* Compare two full_rtx_costs structures A and B, returning true
1812 if A < B when optimizing for speed. */
1813 static inline bool
1814 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1815 bool speed)
1816 {
1817 if (speed)
1818 return (a->speed < b->speed
1819 || (a->speed == b->speed && a->size < b->size));
1820 else
1821 return (a->size < b->size
1822 || (a->size == b->size && a->speed < b->speed));
1823 }
1824
1825 /* Increase both members of the full_rtx_costs structure C by the
1826 cost of N insns. */
1827 static inline void
1828 costs_add_n_insns (struct full_rtx_costs *c, int n)
1829 {
1830 c->speed += COSTS_N_INSNS (n);
1831 c->size += COSTS_N_INSNS (n);
1832 }
1833
1834 /* Information about an address. This structure is supposed to be able
1835 to represent all supported target addresses. Please extend it if it
1836 is not yet general enough. */
1837 struct address_info {
1838 /* The mode of the value being addressed, or VOIDmode if this is
1839 a load-address operation with no known address mode. */
1840 enum machine_mode mode;
1841
1842 /* The address space. */
1843 addr_space_t as;
1844
1845 /* A pointer to the top-level address. */
1846 rtx *outer;
1847
1848 /* A pointer to the inner address, after all address mutations
1849 have been stripped from the top-level address. It can be one
1850 of the following:
1851
1852 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1853
1854 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1855 points to the step value, depending on whether the step is variable
1856 or constant respectively. SEGMENT is null.
1857
1858 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1859 with null fields evaluating to 0. */
1860 rtx *inner;
1861
1862 /* Components that make up *INNER. Each one may be null or nonnull.
1863 When nonnull, their meanings are as follows:
1864
1865 - *SEGMENT is the "segment" of memory to which the address refers.
1866 This value is entirely target-specific and is only called a "segment"
1867 because that's its most typical use. It contains exactly one UNSPEC,
1868 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1869 reloading.
1870
1871 - *BASE is a variable expression representing a base address.
1872 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1873
1874 - *INDEX is a variable expression representing an index value.
1875 It may be a scaled expression, such as a MULT. It has exactly
1876 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1877
1878 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1879 unmutated RTX_CONST_OBJ. */
1880 rtx *segment;
1881 rtx *base;
1882 rtx *index;
1883 rtx *disp;
1884
1885 rtx *segment_term;
1886 rtx *base_term;
1887 rtx *index_term;
1888 rtx *disp_term;
1889
1890 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1891 of BASE_TERM, otherwise it is null. */
1892 rtx *base_term2;
1893
1894 /* ADDRESS if this structure describes an address operand, MEM if
1895 it describes a MEM address. */
1896 enum rtx_code addr_outer_code;
1897
1898 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1899 enum rtx_code base_outer_code;
1900
1901 /* True if this is an RTX_AUTOINC address. */
1902 bool autoinc_p;
1903 };
1904
1905 /* This is used to bundle an rtx and a mode together so that the pair
1906 can be used with the wi:: routines. If we ever put modes into rtx
1907 integer constants, this should go away and then just pass an rtx in. */
1908 typedef std::pair <rtx, enum machine_mode> rtx_mode_t;
1909
1910 namespace wi
1911 {
1912 template <>
1913 struct int_traits <rtx_mode_t>
1914 {
1915 static const enum precision_type precision_type = VAR_PRECISION;
1916 static const bool host_dependent_precision = false;
1917 /* This ought to be true, except for the special case that BImode
1918 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1919 static const bool is_sign_extended = false;
1920 static unsigned int get_precision (const rtx_mode_t &);
1921 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1922 const rtx_mode_t &);
1923 };
1924 }
1925
1926 inline unsigned int
1927 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1928 {
1929 return GET_MODE_PRECISION (x.second);
1930 }
1931
1932 inline wi::storage_ref
1933 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1934 unsigned int precision,
1935 const rtx_mode_t &x)
1936 {
1937 gcc_checking_assert (precision == get_precision (x));
1938 switch (GET_CODE (x.first))
1939 {
1940 case CONST_INT:
1941 if (precision < HOST_BITS_PER_WIDE_INT)
1942 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
1943 targets is 1 rather than -1. */
1944 gcc_checking_assert (INTVAL (x.first)
1945 == sext_hwi (INTVAL (x.first), precision)
1946 || (x.second == BImode && INTVAL (x.first) == 1));
1947
1948 return wi::storage_ref (&INTVAL (x.first), 1, precision);
1949
1950 case CONST_WIDE_INT:
1951 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
1952 CONST_WIDE_INT_NUNITS (x.first), precision);
1953
1954 #if TARGET_SUPPORTS_WIDE_INT == 0
1955 case CONST_DOUBLE:
1956 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
1957 #endif
1958
1959 default:
1960 gcc_unreachable ();
1961 }
1962 }
1963
1964 namespace wi
1965 {
1966 hwi_with_prec shwi (HOST_WIDE_INT, enum machine_mode mode);
1967 wide_int min_value (enum machine_mode, signop);
1968 wide_int max_value (enum machine_mode, signop);
1969 }
1970
1971 inline wi::hwi_with_prec
1972 wi::shwi (HOST_WIDE_INT val, enum machine_mode mode)
1973 {
1974 return shwi (val, GET_MODE_PRECISION (mode));
1975 }
1976
1977 /* Produce the smallest number that is represented in MODE. The precision
1978 is taken from MODE and the sign from SGN. */
1979 inline wide_int
1980 wi::min_value (enum machine_mode mode, signop sgn)
1981 {
1982 return min_value (GET_MODE_PRECISION (mode), sgn);
1983 }
1984
1985 /* Produce the largest number that is represented in MODE. The precision
1986 is taken from MODE and the sign from SGN. */
1987 inline wide_int
1988 wi::max_value (enum machine_mode mode, signop sgn)
1989 {
1990 return max_value (GET_MODE_PRECISION (mode), sgn);
1991 }
1992
1993 extern void init_rtlanal (void);
1994 extern int rtx_cost (rtx, enum rtx_code, int, bool);
1995 extern int address_cost (rtx, enum machine_mode, addr_space_t, bool);
1996 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
1997 struct full_rtx_costs *);
1998 extern unsigned int subreg_lsb (const_rtx);
1999 extern unsigned int subreg_lsb_1 (enum machine_mode, enum machine_mode,
2000 unsigned int);
2001 extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode,
2002 unsigned int, enum machine_mode);
2003 extern bool subreg_offset_representable_p (unsigned int, enum machine_mode,
2004 unsigned int, enum machine_mode);
2005 extern unsigned int subreg_regno (const_rtx);
2006 extern int simplify_subreg_regno (unsigned int, enum machine_mode,
2007 unsigned int, enum machine_mode);
2008 extern unsigned int subreg_nregs (const_rtx);
2009 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2010 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, enum machine_mode);
2011 extern unsigned int num_sign_bit_copies (const_rtx, enum machine_mode);
2012 extern bool constant_pool_constant_p (rtx);
2013 extern bool truncated_to_mode (enum machine_mode, const_rtx);
2014 extern int low_bitmask_len (enum machine_mode, unsigned HOST_WIDE_INT);
2015 extern void split_double (rtx, rtx *, rtx *);
2016 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2017 extern void decompose_address (struct address_info *, rtx *,
2018 enum machine_mode, addr_space_t, enum rtx_code);
2019 extern void decompose_lea_address (struct address_info *, rtx *);
2020 extern void decompose_mem_address (struct address_info *, rtx);
2021 extern void update_address (struct address_info *);
2022 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2023 extern enum rtx_code get_index_code (const struct address_info *);
2024
2025 #ifndef GENERATOR_FILE
2026 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2027 rather than size. */
2028
2029 static inline int
2030 set_rtx_cost (rtx x, bool speed_p)
2031 {
2032 return rtx_cost (x, INSN, 4, speed_p);
2033 }
2034
2035 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2036
2037 static inline void
2038 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2039 {
2040 get_full_rtx_cost (x, INSN, 4, c);
2041 }
2042
2043 /* Return the cost of moving X into a register, relative to the cost
2044 of a register move. SPEED_P is true if optimizing for speed rather
2045 than size. */
2046
2047 static inline int
2048 set_src_cost (rtx x, bool speed_p)
2049 {
2050 return rtx_cost (x, SET, 1, speed_p);
2051 }
2052
2053 /* Like set_src_cost, but return both the speed and size costs in C. */
2054
2055 static inline void
2056 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2057 {
2058 get_full_rtx_cost (x, SET, 1, c);
2059 }
2060 #endif
2061
2062 /* 1 if RTX is a subreg containing a reg that is already known to be
2063 sign- or zero-extended from the mode of the subreg to the mode of
2064 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2065 extension.
2066
2067 When used as a LHS, is means that this extension must be done
2068 when assigning to SUBREG_REG. */
2069
2070 #define SUBREG_PROMOTED_VAR_P(RTX) \
2071 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2072
2073 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2074 this gives the necessary extensions:
2075 0 - signed (SPR_SIGNED)
2076 1 - normal unsigned (SPR_UNSIGNED)
2077 2 - value is both sign and unsign extended for mode
2078 (SPR_SIGNED_AND_UNSIGNED).
2079 -1 - pointer unsigned, which most often can be handled like unsigned
2080 extension, except for generating instructions where we need to
2081 emit special code (ptr_extend insns) on some architectures
2082 (SPR_POINTER). */
2083
2084 const int SRP_POINTER = -1;
2085 const int SRP_SIGNED = 0;
2086 const int SRP_UNSIGNED = 1;
2087 const int SRP_SIGNED_AND_UNSIGNED = 2;
2088
2089 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2090 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2091 do { \
2092 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2093 (RTX), SUBREG); \
2094 switch (VAL) \
2095 { \
2096 case SRP_POINTER: \
2097 _rtx->volatil = 0; \
2098 _rtx->unchanging = 0; \
2099 break; \
2100 case SRP_SIGNED: \
2101 _rtx->volatil = 0; \
2102 _rtx->unchanging = 1; \
2103 break; \
2104 case SRP_UNSIGNED: \
2105 _rtx->volatil = 1; \
2106 _rtx->unchanging = 0; \
2107 break; \
2108 case SRP_SIGNED_AND_UNSIGNED: \
2109 _rtx->volatil = 1; \
2110 _rtx->unchanging = 1; \
2111 break; \
2112 } \
2113 } while (0)
2114
2115 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2116 including SRP_SIGNED_AND_UNSIGNED if promoted for
2117 both signed and unsigned. */
2118 #define SUBREG_PROMOTED_GET(RTX) \
2119 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2120 + (RTX)->unchanging - 1)
2121
2122 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2123 #define SUBREG_PROMOTED_SIGN(RTX) \
2124 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2125 : (RTX)->unchanging - 1)
2126
2127 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2128 for SIGNED type. */
2129 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2130 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2131
2132 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2133 for UNSIGNED type. */
2134 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2135 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2136
2137 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2138 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2139 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2140 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2141 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2142
2143 /* True if the subreg was generated by LRA for reload insns. Such
2144 subregs are valid only during LRA. */
2145 #define LRA_SUBREG_P(RTX) \
2146 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2147
2148 /* Access various components of an ASM_OPERANDS rtx. */
2149
2150 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2151 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2152 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2153 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2154 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2155 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2156 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2157 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2158 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2159 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2160 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2161 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2162 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2163 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2164 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2165 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2166 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2167 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2168
2169 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2170 #define MEM_READONLY_P(RTX) \
2171 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2172
2173 /* 1 if RTX is a mem and we should keep the alias set for this mem
2174 unchanged when we access a component. Set to 1, or example, when we
2175 are already in a non-addressable component of an aggregate. */
2176 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2177 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2178
2179 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2180 #define MEM_VOLATILE_P(RTX) \
2181 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2182 ASM_INPUT)->volatil)
2183
2184 /* 1 if RTX is a mem that cannot trap. */
2185 #define MEM_NOTRAP_P(RTX) \
2186 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2187
2188 /* The memory attribute block. We provide access macros for each value
2189 in the block and provide defaults if none specified. */
2190 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2191
2192 /* The register attribute block. We provide access macros for each value
2193 in the block and provide defaults if none specified. */
2194 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2195
2196 #ifndef GENERATOR_FILE
2197 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2198 set, and may alias anything. Otherwise, the MEM can only alias
2199 MEMs in a conflicting alias set. This value is set in a
2200 language-dependent manner in the front-end, and should not be
2201 altered in the back-end. These set numbers are tested with
2202 alias_sets_conflict_p. */
2203 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2204
2205 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2206 refer to part of a DECL. It may also be a COMPONENT_REF. */
2207 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2208
2209 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2210 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2211
2212 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2213 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2214
2215 /* For a MEM rtx, the address space. */
2216 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2217
2218 /* For a MEM rtx, true if its MEM_SIZE is known. */
2219 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2220
2221 /* For a MEM rtx, the size in bytes of the MEM. */
2222 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2223
2224 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2225 mode as a default when STRICT_ALIGNMENT, but not if not. */
2226 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2227 #else
2228 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2229 #endif
2230
2231 /* For a REG rtx, the decl it is known to refer to, if it is known to
2232 refer to part of a DECL. */
2233 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2234
2235 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2236 HOST_WIDE_INT. */
2237 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2238
2239 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2240 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2241 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2242 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2243 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2244 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2245 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2246 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2247
2248 /* 1 if RTX is a label_ref for a nonlocal label. */
2249 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2250 REG_LABEL_TARGET note. */
2251 #define LABEL_REF_NONLOCAL_P(RTX) \
2252 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2253
2254 /* 1 if RTX is a code_label that should always be considered to be needed. */
2255 #define LABEL_PRESERVE_P(RTX) \
2256 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2257
2258 /* During sched, 1 if RTX is an insn that must be scheduled together
2259 with the preceding insn. */
2260 #define SCHED_GROUP_P(RTX) \
2261 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2262 JUMP_INSN, CALL_INSN)->in_struct)
2263
2264 /* For a SET rtx, SET_DEST is the place that is set
2265 and SET_SRC is the value it is set to. */
2266 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2267 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2268 #define SET_IS_RETURN_P(RTX) \
2269 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2270
2271 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2272 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2273 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2274
2275 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2276 conditionally executing the code on, COND_EXEC_CODE is the code
2277 to execute if the condition is true. */
2278 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2279 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2280
2281 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2282 constants pool. */
2283 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2284 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2285
2286 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2287 tree constant pool. This information is private to varasm.c. */
2288 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2289 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2290 (RTX), SYMBOL_REF)->frame_related)
2291
2292 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2293 #define SYMBOL_REF_FLAG(RTX) \
2294 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2295
2296 /* 1 if RTX is a symbol_ref that has been the library function in
2297 emit_library_call. */
2298 #define SYMBOL_REF_USED(RTX) \
2299 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2300
2301 /* 1 if RTX is a symbol_ref for a weak symbol. */
2302 #define SYMBOL_REF_WEAK(RTX) \
2303 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2304
2305 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2306 SYMBOL_REF_CONSTANT. */
2307 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2308
2309 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2310 pool symbol. */
2311 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2312 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2313
2314 /* The tree (decl or constant) associated with the symbol, or null. */
2315 #define SYMBOL_REF_DECL(RTX) \
2316 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2317
2318 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2319 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2320 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2321
2322 /* The rtx constant pool entry for a symbol, or null. */
2323 #define SYMBOL_REF_CONSTANT(RTX) \
2324 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2325
2326 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2327 information derivable from the tree decl associated with this symbol.
2328 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2329 decl. In some cases this is a bug. But beyond that, it's nice to cache
2330 this information to avoid recomputing it. Finally, this allows space for
2331 the target to store more than one bit of information, as with
2332 SYMBOL_REF_FLAG. */
2333 #define SYMBOL_REF_FLAGS(RTX) \
2334 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2335 ->u2.symbol_ref_flags)
2336
2337 /* These flags are common enough to be defined for all targets. They
2338 are computed by the default version of targetm.encode_section_info. */
2339
2340 /* Set if this symbol is a function. */
2341 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2342 #define SYMBOL_REF_FUNCTION_P(RTX) \
2343 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2344 /* Set if targetm.binds_local_p is true. */
2345 #define SYMBOL_FLAG_LOCAL (1 << 1)
2346 #define SYMBOL_REF_LOCAL_P(RTX) \
2347 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2348 /* Set if targetm.in_small_data_p is true. */
2349 #define SYMBOL_FLAG_SMALL (1 << 2)
2350 #define SYMBOL_REF_SMALL_P(RTX) \
2351 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2352 /* The three-bit field at [5:3] is true for TLS variables; use
2353 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2354 #define SYMBOL_FLAG_TLS_SHIFT 3
2355 #define SYMBOL_REF_TLS_MODEL(RTX) \
2356 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2357 /* Set if this symbol is not defined in this translation unit. */
2358 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2359 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2360 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2361 /* Set if this symbol has a block_symbol structure associated with it. */
2362 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2363 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2364 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2365 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2366 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2367 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2368 #define SYMBOL_REF_ANCHOR_P(RTX) \
2369 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2370
2371 /* Subsequent bits are available for the target to use. */
2372 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2373 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2374
2375 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2376 structure to which the symbol belongs, or NULL if it has not been
2377 assigned a block. */
2378 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2379
2380 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2381 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2382 RTX has not yet been assigned to a block, or it has not been given an
2383 offset within that block. */
2384 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2385
2386 /* True if RTX is flagged to be a scheduling barrier. */
2387 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2388 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2389
2390 /* Indicate whether the machine has any sort of auto increment addressing.
2391 If not, we can avoid checking for REG_INC notes. */
2392
2393 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2394 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2395 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2396 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2397 #define AUTO_INC_DEC
2398 #endif
2399
2400 /* Define a macro to look for REG_INC notes,
2401 but save time on machines where they never exist. */
2402
2403 #ifdef AUTO_INC_DEC
2404 #define FIND_REG_INC_NOTE(INSN, REG) \
2405 ((REG) != NULL_RTX && REG_P ((REG)) \
2406 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2407 : find_reg_note ((INSN), REG_INC, (REG)))
2408 #else
2409 #define FIND_REG_INC_NOTE(INSN, REG) 0
2410 #endif
2411
2412 #ifndef HAVE_PRE_INCREMENT
2413 #define HAVE_PRE_INCREMENT 0
2414 #endif
2415
2416 #ifndef HAVE_PRE_DECREMENT
2417 #define HAVE_PRE_DECREMENT 0
2418 #endif
2419
2420 #ifndef HAVE_POST_INCREMENT
2421 #define HAVE_POST_INCREMENT 0
2422 #endif
2423
2424 #ifndef HAVE_POST_DECREMENT
2425 #define HAVE_POST_DECREMENT 0
2426 #endif
2427
2428 #ifndef HAVE_POST_MODIFY_DISP
2429 #define HAVE_POST_MODIFY_DISP 0
2430 #endif
2431
2432 #ifndef HAVE_POST_MODIFY_REG
2433 #define HAVE_POST_MODIFY_REG 0
2434 #endif
2435
2436 #ifndef HAVE_PRE_MODIFY_DISP
2437 #define HAVE_PRE_MODIFY_DISP 0
2438 #endif
2439
2440 #ifndef HAVE_PRE_MODIFY_REG
2441 #define HAVE_PRE_MODIFY_REG 0
2442 #endif
2443
2444
2445 /* Some architectures do not have complete pre/post increment/decrement
2446 instruction sets, or only move some modes efficiently. These macros
2447 allow us to tune autoincrement generation. */
2448
2449 #ifndef USE_LOAD_POST_INCREMENT
2450 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2451 #endif
2452
2453 #ifndef USE_LOAD_POST_DECREMENT
2454 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2455 #endif
2456
2457 #ifndef USE_LOAD_PRE_INCREMENT
2458 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2459 #endif
2460
2461 #ifndef USE_LOAD_PRE_DECREMENT
2462 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2463 #endif
2464
2465 #ifndef USE_STORE_POST_INCREMENT
2466 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2467 #endif
2468
2469 #ifndef USE_STORE_POST_DECREMENT
2470 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2471 #endif
2472
2473 #ifndef USE_STORE_PRE_INCREMENT
2474 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2475 #endif
2476
2477 #ifndef USE_STORE_PRE_DECREMENT
2478 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2479 #endif
2480 \f
2481 /* Nonzero when we are generating CONCATs. */
2482 extern int generating_concat_p;
2483
2484 /* Nonzero when we are expanding trees to RTL. */
2485 extern int currently_expanding_to_rtl;
2486
2487 /* Generally useful functions. */
2488
2489 /* In explow.c */
2490 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode);
2491 extern rtx plus_constant (enum machine_mode, rtx, HOST_WIDE_INT, bool = false);
2492
2493 /* In rtl.c */
2494 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2495 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2496 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2497 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2498 #define const_wide_int_alloc(NWORDS) \
2499 rtx_alloc_v (CONST_WIDE_INT, \
2500 (sizeof (struct hwivec_def) \
2501 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2502
2503 extern rtvec rtvec_alloc (int);
2504 extern rtvec shallow_copy_rtvec (rtvec);
2505 extern bool shared_const_p (const_rtx);
2506 extern rtx copy_rtx (rtx);
2507 extern void dump_rtx_statistics (void);
2508
2509 /* In emit-rtl.c */
2510 extern rtx copy_rtx_if_shared (rtx);
2511
2512 /* In rtl.c */
2513 extern unsigned int rtx_size (const_rtx);
2514 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2515 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2516 extern int rtx_equal_p (const_rtx, const_rtx);
2517
2518 /* In emit-rtl.c */
2519 extern rtvec gen_rtvec_v (int, rtx *);
2520 extern rtvec gen_rtvec_v (int, rtx_insn **);
2521 extern rtx gen_reg_rtx (enum machine_mode);
2522 extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int);
2523 extern rtx gen_reg_rtx_offset (rtx, enum machine_mode, int);
2524 extern rtx gen_reg_rtx_and_attrs (rtx);
2525 extern rtx_code_label *gen_label_rtx (void);
2526 extern rtx gen_lowpart_common (enum machine_mode, rtx);
2527
2528 /* In cse.c */
2529 extern rtx gen_lowpart_if_possible (enum machine_mode, rtx);
2530
2531 /* In emit-rtl.c */
2532 extern rtx gen_highpart (enum machine_mode, rtx);
2533 extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx);
2534 extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode);
2535
2536 /* In emit-rtl.c */
2537 extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode);
2538 extern bool paradoxical_subreg_p (const_rtx);
2539 extern int subreg_lowpart_p (const_rtx);
2540 extern unsigned int subreg_lowpart_offset (enum machine_mode,
2541 enum machine_mode);
2542 extern unsigned int subreg_highpart_offset (enum machine_mode,
2543 enum machine_mode);
2544 extern int byte_lowpart_offset (enum machine_mode, enum machine_mode);
2545 extern rtx make_safe_from (rtx, rtx);
2546 extern rtx convert_memory_address_addr_space (enum machine_mode, rtx,
2547 addr_space_t);
2548 #define convert_memory_address(to_mode,x) \
2549 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2550 extern const char *get_insn_name (int);
2551 extern rtx_insn *get_last_insn_anywhere (void);
2552 extern rtx_insn *get_first_nonnote_insn (void);
2553 extern rtx_insn *get_last_nonnote_insn (void);
2554 extern void start_sequence (void);
2555 extern void push_to_sequence (rtx_insn *);
2556 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2557 extern void end_sequence (void);
2558 #if TARGET_SUPPORTS_WIDE_INT == 0
2559 extern double_int rtx_to_double_int (const_rtx);
2560 #endif
2561 extern void cwi_output_hex (FILE *, const_rtx);
2562 #ifndef GENERATOR_FILE
2563 extern rtx immed_wide_int_const (const wide_int_ref &, enum machine_mode);
2564 #endif
2565 #if TARGET_SUPPORTS_WIDE_INT == 0
2566 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2567 enum machine_mode);
2568 #endif
2569
2570 /* In loop-iv.c */
2571
2572 extern rtx lowpart_subreg (enum machine_mode, rtx, enum machine_mode);
2573
2574 /* In varasm.c */
2575 extern rtx force_const_mem (enum machine_mode, rtx);
2576
2577 /* In varasm.c */
2578
2579 struct function;
2580 extern rtx get_pool_constant (const_rtx);
2581 extern rtx get_pool_constant_mark (rtx, bool *);
2582 extern enum machine_mode get_pool_mode (const_rtx);
2583 extern rtx simplify_subtraction (rtx);
2584 extern void decide_function_section (tree);
2585
2586 /* In function.c */
2587 extern rtx assign_stack_local (enum machine_mode, HOST_WIDE_INT, int);
2588 #define ASLK_REDUCE_ALIGN 1
2589 #define ASLK_RECORD_PAD 2
2590 extern rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, int);
2591 extern rtx assign_stack_temp (enum machine_mode, HOST_WIDE_INT);
2592 extern rtx assign_stack_temp_for_type (enum machine_mode, HOST_WIDE_INT, tree);
2593 extern rtx assign_temp (tree, int, int);
2594
2595 /* In emit-rtl.c */
2596 extern rtx_insn *emit_insn_before (rtx, rtx);
2597 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2598 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2599 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2600 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2601 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2602 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2603 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2604 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2605 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2606 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2607 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2608 extern rtx_barrier *emit_barrier_before (rtx);
2609 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2610 extern rtx_note *emit_note_before (enum insn_note, rtx);
2611 extern rtx_insn *emit_insn_after (rtx, rtx);
2612 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2613 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2614 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2615 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2616 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2617 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2618 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2619 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2620 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2621 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2622 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2623 extern rtx_barrier *emit_barrier_after (rtx);
2624 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2625 extern rtx_note *emit_note_after (enum insn_note, rtx);
2626 extern rtx_insn *emit_insn (rtx);
2627 extern rtx_insn *emit_debug_insn (rtx);
2628 extern rtx_insn *emit_jump_insn (rtx);
2629 extern rtx_insn *emit_call_insn (rtx);
2630 extern rtx_insn *emit_label (rtx);
2631 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2632 extern rtx_barrier *emit_barrier (void);
2633 extern rtx_note *emit_note (enum insn_note);
2634 extern rtx_note *emit_note_copy (rtx_note *);
2635 extern rtx_insn *gen_clobber (rtx);
2636 extern rtx_insn *emit_clobber (rtx);
2637 extern rtx_insn *gen_use (rtx);
2638 extern rtx_insn *emit_use (rtx);
2639 extern rtx_insn *make_insn_raw (rtx);
2640 extern void add_function_usage_to (rtx, rtx);
2641 extern rtx_call_insn *last_call_insn (void);
2642 extern rtx_insn *previous_insn (rtx_insn *);
2643 extern rtx_insn *next_insn (rtx_insn *);
2644 extern rtx_insn *prev_nonnote_insn (rtx);
2645 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2646 extern rtx_insn *next_nonnote_insn (rtx);
2647 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2648 extern rtx_insn *prev_nondebug_insn (rtx);
2649 extern rtx_insn *next_nondebug_insn (rtx);
2650 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2651 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2652 extern rtx_insn *prev_real_insn (rtx);
2653 extern rtx_insn *next_real_insn (rtx);
2654 extern rtx_insn *prev_active_insn (rtx);
2655 extern rtx_insn *next_active_insn (rtx);
2656 extern int active_insn_p (const_rtx);
2657 extern rtx_insn *next_cc0_user (rtx);
2658 extern rtx_insn *prev_cc0_setter (rtx);
2659
2660 /* In emit-rtl.c */
2661 extern int insn_line (const rtx_insn *);
2662 extern const char * insn_file (const rtx_insn *);
2663 extern tree insn_scope (const rtx_insn *);
2664 extern expanded_location insn_location (const rtx_insn *);
2665 extern location_t prologue_location, epilogue_location;
2666
2667 /* In jump.c */
2668 extern enum rtx_code reverse_condition (enum rtx_code);
2669 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2670 extern enum rtx_code swap_condition (enum rtx_code);
2671 extern enum rtx_code unsigned_condition (enum rtx_code);
2672 extern enum rtx_code signed_condition (enum rtx_code);
2673 extern void mark_jump_label (rtx, rtx_insn *, int);
2674
2675 /* In jump.c */
2676 extern rtx_insn *delete_related_insns (rtx);
2677
2678 /* In recog.c */
2679 extern rtx *find_constant_term_loc (rtx *);
2680
2681 /* In emit-rtl.c */
2682 extern rtx_insn *try_split (rtx, rtx, int);
2683 extern int split_branch_probability;
2684
2685 /* In unknown file */
2686 extern rtx split_insns (rtx, rtx);
2687
2688 /* In simplify-rtx.c */
2689 extern rtx simplify_const_unary_operation (enum rtx_code, enum machine_mode,
2690 rtx, enum machine_mode);
2691 extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx,
2692 enum machine_mode);
2693 extern rtx simplify_const_binary_operation (enum rtx_code, enum machine_mode,
2694 rtx, rtx);
2695 extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx,
2696 rtx);
2697 extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode,
2698 enum machine_mode, rtx, rtx, rtx);
2699 extern rtx simplify_const_relational_operation (enum rtx_code,
2700 enum machine_mode, rtx, rtx);
2701 extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode,
2702 enum machine_mode, rtx, rtx);
2703 extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
2704 extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx,
2705 enum machine_mode);
2706 extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode,
2707 enum machine_mode, rtx, rtx, rtx);
2708 extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode,
2709 enum machine_mode, rtx, rtx);
2710 extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode,
2711 unsigned int);
2712 extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode,
2713 unsigned int);
2714 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2715 rtx (*fn) (rtx, const_rtx, void *), void *);
2716 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2717 extern rtx simplify_rtx (const_rtx);
2718 extern rtx avoid_constant_pool_reference (rtx);
2719 extern rtx delegitimize_mem_from_attrs (rtx);
2720 extern bool mode_signbit_p (enum machine_mode, const_rtx);
2721 extern bool val_signbit_p (enum machine_mode, unsigned HOST_WIDE_INT);
2722 extern bool val_signbit_known_set_p (enum machine_mode,
2723 unsigned HOST_WIDE_INT);
2724 extern bool val_signbit_known_clear_p (enum machine_mode,
2725 unsigned HOST_WIDE_INT);
2726
2727 /* In reginfo.c */
2728 extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2729 bool);
2730
2731 /* In emit-rtl.c */
2732 extern rtx set_for_reg_notes (rtx);
2733 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2734 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2735 extern void set_insn_deleted (rtx);
2736
2737 /* Functions in rtlanal.c */
2738
2739 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2740
2741 /* Handle the cheap and common cases inline for performance. */
2742
2743 inline rtx single_set (const rtx_insn *insn)
2744 {
2745 if (!INSN_P (insn))
2746 return NULL_RTX;
2747
2748 if (GET_CODE (PATTERN (insn)) == SET)
2749 return PATTERN (insn);
2750
2751 /* Defer to the more expensive case. */
2752 return single_set_2 (insn, PATTERN (insn));
2753 }
2754
2755 extern enum machine_mode get_address_mode (rtx mem);
2756 extern int rtx_addr_can_trap_p (const_rtx);
2757 extern bool nonzero_address_p (const_rtx);
2758 extern int rtx_unstable_p (const_rtx);
2759 extern bool rtx_varies_p (const_rtx, bool);
2760 extern bool rtx_addr_varies_p (const_rtx, bool);
2761 extern rtx get_call_rtx_from (rtx);
2762 extern HOST_WIDE_INT get_integer_term (const_rtx);
2763 extern rtx get_related_value (const_rtx);
2764 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2765 extern void split_const (rtx, rtx *, rtx *);
2766 extern bool unsigned_reg_p (rtx);
2767 extern int reg_mentioned_p (const_rtx, const_rtx);
2768 extern int count_occurrences (const_rtx, const_rtx, int);
2769 extern int reg_referenced_p (const_rtx, const_rtx);
2770 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2771 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2772 extern int commutative_operand_precedence (rtx);
2773 extern bool swap_commutative_operands_p (rtx, rtx);
2774 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2775 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2776 extern int modified_in_p (const_rtx, const_rtx);
2777 extern int reg_set_p (const_rtx, const_rtx);
2778 extern int multiple_sets (const_rtx);
2779 extern int set_noop_p (const_rtx);
2780 extern int noop_move_p (const_rtx);
2781 extern int refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2782 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2783 extern const_rtx set_of (const_rtx, const_rtx);
2784 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2785 extern void record_hard_reg_uses (rtx *, void *);
2786 #ifdef HARD_CONST
2787 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2788 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2789 #endif
2790 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2791 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2792 extern int dead_or_set_p (const_rtx, const_rtx);
2793 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2794 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2795 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2796 extern rtx find_reg_equal_equiv_note (const_rtx);
2797 extern rtx find_constant_src (const rtx_insn *);
2798 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2799 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2800 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2801 extern void add_reg_note (rtx, enum reg_note, rtx);
2802 extern void add_int_reg_note (rtx, enum reg_note, int);
2803 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2804 extern void remove_note (rtx, const_rtx);
2805 extern void remove_reg_equal_equiv_notes (rtx);
2806 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2807 extern int side_effects_p (const_rtx);
2808 extern int volatile_refs_p (const_rtx);
2809 extern int volatile_insn_p (const_rtx);
2810 extern int may_trap_p_1 (const_rtx, unsigned);
2811 extern int may_trap_p (const_rtx);
2812 extern int may_trap_or_fault_p (const_rtx);
2813 extern bool can_throw_internal (const_rtx);
2814 extern bool can_throw_external (const_rtx);
2815 extern bool insn_could_throw_p (const_rtx);
2816 extern bool insn_nothrow_p (const_rtx);
2817 extern bool can_nonlocal_goto (const_rtx);
2818 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2819 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2820 extern int inequality_comparisons_p (const_rtx);
2821 extern rtx replace_rtx (rtx, rtx, rtx);
2822 extern void replace_label (rtx *, rtx, rtx, bool);
2823 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2824 extern bool rtx_referenced_p (const_rtx, const_rtx);
2825 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2826 extern int computed_jump_p (const_rtx);
2827 extern bool tls_referenced_p (const_rtx);
2828
2829 typedef int (*rtx_function) (rtx *, void *);
2830 extern int for_each_rtx (rtx *, rtx_function, void *);
2831 extern int for_each_rtx_in_insn (rtx_insn **, rtx_function, void *);
2832
2833 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2834 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2835 NULL. The callback is passed the same opaque ARG passed to
2836 for_each_inc_dec. Return zero to continue looking for other
2837 autoinc operations or any other value to interrupt the traversal and
2838 return that value to the caller of for_each_inc_dec. */
2839 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2840 rtx srcoff, void *arg);
2841 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2842
2843 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2844 rtx *, rtx *);
2845 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2846 rtx_equal_p_callback_function);
2847
2848 typedef int (*hash_rtx_callback_function) (const_rtx, enum machine_mode, rtx *,
2849 enum machine_mode *);
2850 extern unsigned hash_rtx_cb (const_rtx, enum machine_mode, int *, int *,
2851 bool, hash_rtx_callback_function);
2852
2853 extern rtx regno_use_in (unsigned int, rtx);
2854 extern int auto_inc_p (const_rtx);
2855 extern int in_expr_list_p (const_rtx, const_rtx);
2856 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2857 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2858 extern int loc_mentioned_in_p (rtx *, const_rtx);
2859 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2860 extern bool keep_with_call_p (const rtx_insn *);
2861 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2862 extern int insn_rtx_cost (rtx, bool);
2863
2864 /* Given an insn and condition, return a canonical description of
2865 the test being made. */
2866 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2867 int, int);
2868
2869 /* Given a JUMP_INSN, return a canonical description of the test
2870 being made. */
2871 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2872
2873 /* Information about a subreg of a hard register. */
2874 struct subreg_info
2875 {
2876 /* Offset of first hard register involved in the subreg. */
2877 int offset;
2878 /* Number of hard registers involved in the subreg. */
2879 int nregs;
2880 /* Whether this subreg can be represented as a hard reg with the new
2881 mode. */
2882 bool representable_p;
2883 };
2884
2885 extern void subreg_get_info (unsigned int, enum machine_mode,
2886 unsigned int, enum machine_mode,
2887 struct subreg_info *);
2888
2889 /* lists.c */
2890
2891 extern void free_EXPR_LIST_list (rtx_expr_list **);
2892 extern void free_INSN_LIST_list (rtx_insn_list **);
2893 extern void free_EXPR_LIST_node (rtx);
2894 extern void free_INSN_LIST_node (rtx);
2895 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2896 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2897 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2898 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2899 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2900 extern rtx remove_list_elem (rtx, rtx *);
2901 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2902 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2903
2904
2905 /* reginfo.c */
2906
2907 /* Resize reg info. */
2908 extern bool resize_reg_info (void);
2909 /* Free up register info memory. */
2910 extern void free_reg_info (void);
2911 extern void init_subregs_of_mode (void);
2912 extern void finish_subregs_of_mode (void);
2913
2914 /* recog.c */
2915 extern rtx extract_asm_operands (rtx);
2916 extern int asm_noperands (const_rtx);
2917 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2918 enum machine_mode *, location_t *);
2919 extern void get_referenced_operands (const char *, bool *, unsigned int);
2920
2921 extern enum reg_class reg_preferred_class (int);
2922 extern enum reg_class reg_alternate_class (int);
2923 extern enum reg_class reg_allocno_class (int);
2924 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2925 enum reg_class);
2926
2927 extern void split_all_insns (void);
2928 extern unsigned int split_all_insns_noflow (void);
2929
2930 #define MAX_SAVED_CONST_INT 64
2931 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2932
2933 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
2934 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
2935 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
2936 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
2937 extern GTY(()) rtx const_true_rtx;
2938
2939 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
2940
2941 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
2942 same as VOIDmode. */
2943
2944 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
2945
2946 /* Likewise, for the constants 1 and 2 and -1. */
2947
2948 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
2949 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
2950 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
2951
2952 extern GTY(()) rtx pc_rtx;
2953 extern GTY(()) rtx cc0_rtx;
2954 extern GTY(()) rtx ret_rtx;
2955 extern GTY(()) rtx simple_return_rtx;
2956
2957 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
2958 is used to represent the frame pointer. This is because the
2959 hard frame pointer and the automatic variables are separated by an amount
2960 that cannot be determined until after register allocation. We can assume
2961 that in this case ELIMINABLE_REGS will be defined, one action of which
2962 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
2963 #ifndef HARD_FRAME_POINTER_REGNUM
2964 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
2965 #endif
2966
2967 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
2968 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
2969 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
2970 #endif
2971
2972 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
2973 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
2974 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
2975 #endif
2976
2977 /* Index labels for global_rtl. */
2978 enum global_rtl_index
2979 {
2980 GR_STACK_POINTER,
2981 GR_FRAME_POINTER,
2982 /* For register elimination to work properly these hard_frame_pointer_rtx,
2983 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
2984 the same register. */
2985 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2986 GR_ARG_POINTER = GR_FRAME_POINTER,
2987 #endif
2988 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
2989 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
2990 #else
2991 GR_HARD_FRAME_POINTER,
2992 #endif
2993 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2994 #if HARD_FRAME_POINTER_IS_ARG_POINTER
2995 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
2996 #else
2997 GR_ARG_POINTER,
2998 #endif
2999 #endif
3000 GR_VIRTUAL_INCOMING_ARGS,
3001 GR_VIRTUAL_STACK_ARGS,
3002 GR_VIRTUAL_STACK_DYNAMIC,
3003 GR_VIRTUAL_OUTGOING_ARGS,
3004 GR_VIRTUAL_CFA,
3005 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3006
3007 GR_MAX
3008 };
3009
3010 /* Target-dependent globals. */
3011 struct GTY(()) target_rtl {
3012 /* All references to the hard registers in global_rtl_index go through
3013 these unique rtl objects. On machines where the frame-pointer and
3014 arg-pointer are the same register, they use the same unique object.
3015
3016 After register allocation, other rtl objects which used to be pseudo-regs
3017 may be clobbered to refer to the frame-pointer register.
3018 But references that were originally to the frame-pointer can be
3019 distinguished from the others because they contain frame_pointer_rtx.
3020
3021 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3022 tricky: until register elimination has taken place hard_frame_pointer_rtx
3023 should be used if it is being set, and frame_pointer_rtx otherwise. After
3024 register elimination hard_frame_pointer_rtx should always be used.
3025 On machines where the two registers are same (most) then these are the
3026 same. */
3027 rtx x_global_rtl[GR_MAX];
3028
3029 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3030 rtx x_pic_offset_table_rtx;
3031
3032 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3033 This is used to implement __builtin_return_address for some machines;
3034 see for instance the MIPS port. */
3035 rtx x_return_address_pointer_rtx;
3036
3037 /* Commonly used RTL for hard registers. These objects are not
3038 necessarily unique, so we allocate them separately from global_rtl.
3039 They are initialized once per compilation unit, then copied into
3040 regno_reg_rtx at the beginning of each function. */
3041 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3042
3043 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3044 rtx x_top_of_stack[MAX_MACHINE_MODE];
3045
3046 /* Static hunks of RTL used by the aliasing code; these are treated
3047 as persistent to avoid unnecessary RTL allocations. */
3048 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3049
3050 /* The default memory attributes for each mode. */
3051 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3052
3053 /* Track if RTL has been initialized. */
3054 bool target_specific_initialized;
3055 };
3056
3057 extern GTY(()) struct target_rtl default_target_rtl;
3058 #if SWITCHABLE_TARGET
3059 extern struct target_rtl *this_target_rtl;
3060 #else
3061 #define this_target_rtl (&default_target_rtl)
3062 #endif
3063
3064 #define global_rtl \
3065 (this_target_rtl->x_global_rtl)
3066 #define pic_offset_table_rtx \
3067 (this_target_rtl->x_pic_offset_table_rtx)
3068 #define return_address_pointer_rtx \
3069 (this_target_rtl->x_return_address_pointer_rtx)
3070 #define top_of_stack \
3071 (this_target_rtl->x_top_of_stack)
3072 #define mode_mem_attrs \
3073 (this_target_rtl->x_mode_mem_attrs)
3074
3075 /* All references to certain hard regs, except those created
3076 by allocating pseudo regs into them (when that's possible),
3077 go through these unique rtx objects. */
3078 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3079 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3080 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3081 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3082
3083 #ifndef GENERATOR_FILE
3084 /* Return the attributes of a MEM rtx. */
3085 static inline struct mem_attrs *
3086 get_mem_attrs (const_rtx x)
3087 {
3088 struct mem_attrs *attrs;
3089
3090 attrs = MEM_ATTRS (x);
3091 if (!attrs)
3092 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3093 return attrs;
3094 }
3095 #endif
3096
3097 /* Include the RTL generation functions. */
3098
3099 #ifndef GENERATOR_FILE
3100 #include "genrtl.h"
3101 #undef gen_rtx_ASM_INPUT
3102 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3103 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3104 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3105 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3106 #endif
3107
3108 /* There are some RTL codes that require special attention; the
3109 generation functions included above do the raw handling. If you
3110 add to this list, modify special_rtx in gengenrtl.c as well. */
3111
3112 extern rtx_expr_list *gen_rtx_EXPR_LIST (enum machine_mode, rtx, rtx);
3113 extern rtx_insn_list *gen_rtx_INSN_LIST (enum machine_mode, rtx, rtx);
3114 extern rtx_insn *
3115 gen_rtx_INSN (enum machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3116 basic_block bb, rtx pattern, int location, int code,
3117 rtx reg_notes);
3118 extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT);
3119 extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec);
3120 extern rtx gen_raw_REG (enum machine_mode, int);
3121 extern rtx gen_rtx_REG (enum machine_mode, unsigned);
3122 extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int);
3123 extern rtx gen_rtx_MEM (enum machine_mode, rtx);
3124 extern rtx gen_rtx_VAR_LOCATION (enum machine_mode, tree, rtx,
3125 enum var_init_status);
3126
3127 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3128
3129 /* Virtual registers are used during RTL generation to refer to locations into
3130 the stack frame when the actual location isn't known until RTL generation
3131 is complete. The routine instantiate_virtual_regs replaces these with
3132 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3133 a constant. */
3134
3135 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3136
3137 /* This points to the first word of the incoming arguments passed on the stack,
3138 either by the caller or by the callee when pretending it was passed by the
3139 caller. */
3140
3141 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3142
3143 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3144
3145 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3146 variable on the stack. Otherwise, it points to the first variable on
3147 the stack. */
3148
3149 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3150
3151 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3152
3153 /* This points to the location of dynamically-allocated memory on the stack
3154 immediately after the stack pointer has been adjusted by the amount
3155 desired. */
3156
3157 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3158
3159 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3160
3161 /* This points to the location in the stack at which outgoing arguments should
3162 be written when the stack is pre-pushed (arguments pushed using push
3163 insns always use sp). */
3164
3165 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3166
3167 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3168
3169 /* This points to the Canonical Frame Address of the function. This
3170 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3171 but is calculated relative to the arg pointer for simplicity; the
3172 frame pointer nor stack pointer are necessarily fixed relative to
3173 the CFA until after reload. */
3174
3175 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3176
3177 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3178
3179 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3180
3181 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3182 when finalized. */
3183
3184 #define virtual_preferred_stack_boundary_rtx \
3185 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3186
3187 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3188 ((FIRST_VIRTUAL_REGISTER) + 5)
3189
3190 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3191
3192 /* Nonzero if REGNUM is a pointer into the stack frame. */
3193 #define REGNO_PTR_FRAME_P(REGNUM) \
3194 ((REGNUM) == STACK_POINTER_REGNUM \
3195 || (REGNUM) == FRAME_POINTER_REGNUM \
3196 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3197 || (REGNUM) == ARG_POINTER_REGNUM \
3198 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3199 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3200
3201 /* REGNUM never really appearing in the INSN stream. */
3202 #define INVALID_REGNUM (~(unsigned int) 0)
3203
3204 /* REGNUM for which no debug information can be generated. */
3205 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3206
3207 extern rtx output_constant_def (tree, int);
3208 extern rtx lookup_constant_def (tree);
3209
3210 /* Nonzero after end of reload pass.
3211 Set to 1 or 0 by reload1.c. */
3212
3213 extern int reload_completed;
3214
3215 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3216 extern int epilogue_completed;
3217
3218 /* Set to 1 while reload_as_needed is operating.
3219 Required by some machines to handle any generated moves differently. */
3220
3221 extern int reload_in_progress;
3222
3223 /* Set to 1 while in lra. */
3224 extern int lra_in_progress;
3225
3226 /* This macro indicates whether you may create a new
3227 pseudo-register. */
3228
3229 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3230
3231 #ifdef STACK_REGS
3232 /* Nonzero after end of regstack pass.
3233 Set to 1 or 0 by reg-stack.c. */
3234 extern int regstack_completed;
3235 #endif
3236
3237 /* If this is nonzero, we do not bother generating VOLATILE
3238 around volatile memory references, and we are willing to
3239 output indirect addresses. If cse is to follow, we reject
3240 indirect addresses so a useful potential cse is generated;
3241 if it is used only once, instruction combination will produce
3242 the same indirect address eventually. */
3243 extern int cse_not_expected;
3244
3245 /* Translates rtx code to tree code, for those codes needed by
3246 REAL_ARITHMETIC. The function returns an int because the caller may not
3247 know what `enum tree_code' means. */
3248
3249 extern int rtx_to_tree_code (enum rtx_code);
3250
3251 /* In cse.c */
3252 extern int delete_trivially_dead_insns (rtx_insn *, int);
3253 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3254 extern unsigned hash_rtx (const_rtx x, enum machine_mode, int *, int *, bool);
3255
3256 /* In dse.c */
3257 extern bool check_for_inc_dec (rtx_insn *insn);
3258
3259 /* In jump.c */
3260 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3261 extern bool jump_to_label_p (const rtx_insn *);
3262 extern int condjump_p (const rtx_insn *);
3263 extern int any_condjump_p (const rtx_insn *);
3264 extern int any_uncondjump_p (const rtx_insn *);
3265 extern rtx pc_set (const rtx_insn *);
3266 extern rtx condjump_label (const rtx_insn *);
3267 extern int simplejump_p (const rtx_insn *);
3268 extern int returnjump_p (const rtx_insn *);
3269 extern int eh_returnjump_p (rtx_insn *);
3270 extern int onlyjump_p (const rtx_insn *);
3271 extern int only_sets_cc0_p (const_rtx);
3272 extern int sets_cc0_p (const_rtx);
3273 extern int invert_jump_1 (rtx_insn *, rtx);
3274 extern int invert_jump (rtx_insn *, rtx, int);
3275 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3276 extern int true_regnum (const_rtx);
3277 extern unsigned int reg_or_subregno (const_rtx);
3278 extern int redirect_jump_1 (rtx, rtx);
3279 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3280 extern int redirect_jump (rtx, rtx, int);
3281 extern void rebuild_jump_labels (rtx_insn *);
3282 extern void rebuild_jump_labels_chain (rtx_insn *);
3283 extern rtx reversed_comparison (const_rtx, enum machine_mode);
3284 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3285 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3286 const_rtx, const_rtx);
3287 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3288 extern int condjump_in_parallel_p (const rtx_insn *);
3289
3290 /* In emit-rtl.c. */
3291 extern int max_reg_num (void);
3292 extern int max_label_num (void);
3293 extern int get_first_label_num (void);
3294 extern void maybe_set_first_label_num (rtx);
3295 extern void delete_insns_since (rtx_insn *);
3296 extern void mark_reg_pointer (rtx, int);
3297 extern void mark_user_reg (rtx);
3298 extern void reset_used_flags (rtx);
3299 extern void set_used_flags (rtx);
3300 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3301 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3302 extern int get_max_insn_count (void);
3303 extern int in_sequence_p (void);
3304 extern void init_emit (void);
3305 extern void init_emit_regs (void);
3306 extern void init_derived_machine_modes (void);
3307 extern void init_emit_once (void);
3308 extern void push_topmost_sequence (void);
3309 extern void pop_topmost_sequence (void);
3310 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3311 extern unsigned int unshare_all_rtl (void);
3312 extern void unshare_all_rtl_again (rtx_insn *);
3313 extern void unshare_all_rtl_in_chain (rtx_insn *);
3314 extern void verify_rtl_sharing (void);
3315 extern void add_insn (rtx_insn *);
3316 extern void add_insn_before (rtx, rtx, basic_block);
3317 extern void add_insn_after (rtx, rtx, basic_block);
3318 extern void remove_insn (rtx);
3319 extern rtx_insn *emit (rtx);
3320 extern void delete_insn (rtx);
3321 extern rtx_insn *entry_of_function (void);
3322 extern void emit_insn_at_entry (rtx);
3323 extern void delete_insn_chain (rtx, rtx, bool);
3324 extern rtx_insn *unlink_insn_chain (rtx_insn *, rtx_insn *);
3325 extern void delete_insn_and_edges (rtx_insn *);
3326 extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx);
3327 extern rtx gen_const_mem (enum machine_mode, rtx);
3328 extern rtx gen_frame_mem (enum machine_mode, rtx);
3329 extern rtx gen_tmp_stack_mem (enum machine_mode, rtx);
3330 extern bool validate_subreg (enum machine_mode, enum machine_mode,
3331 const_rtx, unsigned int);
3332
3333 /* In combine.c */
3334 extern unsigned int extended_count (const_rtx, enum machine_mode, int);
3335 extern rtx remove_death (unsigned int, rtx_insn *);
3336 extern void dump_combine_stats (FILE *);
3337 extern void dump_combine_total_stats (FILE *);
3338 extern rtx make_compound_operation (rtx, enum rtx_code);
3339
3340 /* In cfgcleanup.c */
3341 extern void delete_dead_jumptables (void);
3342
3343 /* In sched-rgn.c. */
3344 extern void schedule_insns (void);
3345
3346 /* In sched-ebb.c. */
3347 extern void schedule_ebbs (void);
3348
3349 /* In sel-sched-dump.c. */
3350 extern void sel_sched_fix_param (const char *param, const char *val);
3351
3352 /* In print-rtl.c */
3353 extern const char *print_rtx_head;
3354 extern void debug (const rtx_def &ref);
3355 extern void debug (const rtx_def *ptr);
3356 extern void debug_rtx (const_rtx);
3357 extern void debug_rtx_list (const rtx_insn *, int);
3358 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3359 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3360 extern void print_mem_expr (FILE *, const_tree);
3361 extern void print_rtl (FILE *, const_rtx);
3362 extern void print_simple_rtl (FILE *, const_rtx);
3363 extern int print_rtl_single (FILE *, const_rtx);
3364 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3365 extern void print_inline_rtx (FILE *, const_rtx, int);
3366
3367 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3368 not be in sched-vis.c but in rtl.c, because they are not only used
3369 by the scheduler anymore but for all "slim" RTL dumping. */
3370 extern void dump_value_slim (FILE *, const_rtx, int);
3371 extern void dump_insn_slim (FILE *, const_rtx);
3372 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3373 int, int);
3374 extern void print_value (pretty_printer *, const_rtx, int);
3375 extern void print_pattern (pretty_printer *, const_rtx, int);
3376 extern void print_insn (pretty_printer *, const_rtx, int);
3377 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3378 extern const char *str_pattern_slim (const_rtx);
3379
3380 /* In function.c */
3381 extern void reposition_prologue_and_epilogue_notes (void);
3382 extern int prologue_epilogue_contains (const_rtx);
3383 extern int sibcall_epilogue_contains (const_rtx);
3384 extern void update_temp_slot_address (rtx, rtx);
3385 extern void maybe_copy_prologue_epilogue_insn (rtx, rtx);
3386 extern void set_return_jump_label (rtx);
3387
3388 /* In stmt.c */
3389 extern void expand_null_return (void);
3390 extern void expand_naked_return (void);
3391 extern void emit_jump (rtx);
3392
3393 /* In expr.c */
3394 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3395 unsigned int, int);
3396 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3397 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3398
3399 /* In cfgrtl.c */
3400 extern void print_rtl_with_bb (FILE *, const rtx_insn *, int);
3401 extern rtx_insn *duplicate_insn_chain (rtx_insn *, rtx_insn *);
3402
3403 /* In expmed.c */
3404 extern void init_expmed (void);
3405 extern void expand_inc (rtx, rtx);
3406 extern void expand_dec (rtx, rtx);
3407
3408 /* In lower-subreg.c */
3409 extern void init_lower_subreg (void);
3410
3411 /* In gcse.c */
3412 extern bool can_copy_p (enum machine_mode);
3413 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3414 extern rtx fis_get_condition (rtx_insn *);
3415
3416 /* In ira.c */
3417 #ifdef HARD_CONST
3418 extern HARD_REG_SET eliminable_regset;
3419 #endif
3420 extern void mark_elimination (int, int);
3421
3422 /* In reginfo.c */
3423 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3424 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3425 extern void globalize_reg (tree, int);
3426 extern void init_reg_modes_target (void);
3427 extern void init_regs (void);
3428 extern void reinit_regs (void);
3429 extern void init_fake_stack_mems (void);
3430 extern void save_register_info (void);
3431 extern void init_reg_sets (void);
3432 extern void regclass (rtx, int);
3433 extern void reg_scan (rtx_insn *, unsigned int);
3434 extern void fix_register (const char *, int, int);
3435 extern bool invalid_mode_change_p (unsigned int, enum reg_class);
3436
3437 /* In reload1.c */
3438 extern int function_invariant_p (const_rtx);
3439
3440 /* In calls.c */
3441 enum libcall_type
3442 {
3443 LCT_NORMAL = 0,
3444 LCT_CONST = 1,
3445 LCT_PURE = 2,
3446 LCT_NORETURN = 3,
3447 LCT_THROW = 4,
3448 LCT_RETURNS_TWICE = 5
3449 };
3450
3451 extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int,
3452 ...);
3453 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3454 enum machine_mode, int, ...);
3455
3456 /* In varasm.c */
3457 extern void init_varasm_once (void);
3458
3459 extern rtx make_debug_expr_from_rtl (const_rtx);
3460
3461 /* In read-rtl.c */
3462 extern bool read_rtx (const char *, rtx *);
3463
3464 /* In alias.c */
3465 extern rtx canon_rtx (rtx);
3466 extern int true_dependence (const_rtx, enum machine_mode, const_rtx);
3467 extern rtx get_addr (rtx);
3468 extern int canon_true_dependence (const_rtx, enum machine_mode, rtx,
3469 const_rtx, rtx);
3470 extern int read_dependence (const_rtx, const_rtx);
3471 extern int anti_dependence (const_rtx, const_rtx);
3472 extern int canon_anti_dependence (const_rtx, bool,
3473 const_rtx, enum machine_mode, rtx);
3474 extern int output_dependence (const_rtx, const_rtx);
3475 extern int may_alias_p (const_rtx, const_rtx);
3476 extern void init_alias_target (void);
3477 extern void init_alias_analysis (void);
3478 extern void end_alias_analysis (void);
3479 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3480 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3481 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3482 extern bool may_be_sp_based_p (rtx);
3483 extern rtx gen_hard_reg_clobber (enum machine_mode, unsigned int);
3484 extern rtx get_reg_known_value (unsigned int);
3485 extern bool get_reg_known_equiv_p (unsigned int);
3486 extern rtx get_reg_base_value (unsigned int);
3487
3488 #ifdef STACK_REGS
3489 extern int stack_regs_mentioned (const_rtx insn);
3490 #endif
3491
3492 /* In toplev.c */
3493 extern GTY(()) rtx stack_limit_rtx;
3494
3495 /* In predict.c */
3496 extern void invert_br_probabilities (rtx);
3497 extern bool expensive_function_p (int);
3498
3499 /* In var-tracking.c */
3500 extern unsigned int variable_tracking_main (void);
3501
3502 /* In stor-layout.c. */
3503 extern void get_mode_bounds (enum machine_mode, int, enum machine_mode,
3504 rtx *, rtx *);
3505
3506 /* In loop-iv.c */
3507 extern rtx canon_condition (rtx);
3508 extern void simplify_using_condition (rtx, rtx *, bitmap);
3509
3510 /* In final.c */
3511 extern unsigned int compute_alignments (void);
3512 extern void update_alignments (vec<rtx> &);
3513 extern int asm_str_count (const char *templ);
3514 \f
3515 struct rtl_hooks
3516 {
3517 rtx (*gen_lowpart) (enum machine_mode, rtx);
3518 rtx (*gen_lowpart_no_emit) (enum machine_mode, rtx);
3519 rtx (*reg_nonzero_bits) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3520 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3521 rtx (*reg_num_sign_bit_copies) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3522 unsigned int, unsigned int *);
3523 bool (*reg_truncated_to_mode) (enum machine_mode, const_rtx);
3524
3525 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3526 };
3527
3528 /* Each pass can provide its own. */
3529 extern struct rtl_hooks rtl_hooks;
3530
3531 /* ... but then it has to restore these. */
3532 extern const struct rtl_hooks general_rtl_hooks;
3533
3534 /* Keep this for the nonce. */
3535 #define gen_lowpart rtl_hooks.gen_lowpart
3536
3537 extern void insn_locations_init (void);
3538 extern void insn_locations_finalize (void);
3539 extern void set_curr_insn_location (location_t);
3540 extern location_t curr_insn_location (void);
3541 extern bool optimize_insn_for_size_p (void);
3542 extern bool optimize_insn_for_speed_p (void);
3543
3544 /* rtl-error.c */
3545 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3546 ATTRIBUTE_NORETURN;
3547 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3548 ATTRIBUTE_NORETURN;
3549
3550 #define fatal_insn(msgid, insn) \
3551 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3552 #define fatal_insn_not_found(insn) \
3553 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3554
3555 /* reginfo.c */
3556 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3557
3558
3559 #endif /* ! GCC_RTL_H */