poly_int: REG_OFFSET
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
42
43 /* Register Transfer Language EXPRESSIONS CODES */
44
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
47
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
51
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
55
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
63
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
65
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
68
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
75
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
78
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
82
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
86
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
90 };
91
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
106
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
109
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
112
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
115
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
122 \f
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
126 {
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
143 };
144
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
149 {
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
154
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
158
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
162
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
165
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
170
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
173
174 /* True if OFFSET is known. */
175 bool offset_known_p;
176
177 /* True if SIZE is known. */
178 bool size_known_p;
179 };
180
181 /* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
187
188 struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 poly_int64 offset; /* Offset from start of DECL. */
191 };
192
193 /* Common union for an element of an rtx. */
194
195 union rtunion
196 {
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
210 };
211
212 /* Describes the properties of a REG. */
213 struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
216
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
220
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
223 };
224
225 /* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228 struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
231
232 /* The block that contains this object. */
233 struct object_block *block;
234
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
238 };
239
240 /* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242 struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
245
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
248
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
251
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
255
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
261
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
265
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
271 };
272
273 struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
275 };
276
277 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278 #define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
282
283 struct GTY((variable_size)) const_poly_int_def {
284 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
285 };
286
287 /* RTL expression ("rtx"). */
288
289 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
290 field for gengtype to recognize that inheritance is occurring,
291 so that all subclasses are redirected to the traversal hook for the
292 base class.
293 However, all of the fields are in the base class, and special-casing
294 is at work. Hence we use desc and tag of 0, generating a switch
295 statement of the form:
296 switch (0)
297 {
298 case 0: // all the work happens here
299 }
300 in order to work with the existing special-casing in gengtype. */
301
302 struct GTY((desc("0"), tag("0"),
303 chain_next ("RTX_NEXT (&%h)"),
304 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
305 /* The kind of expression this is. */
306 ENUM_BITFIELD(rtx_code) code: 16;
307
308 /* The kind of value the expression has. */
309 ENUM_BITFIELD(machine_mode) mode : 8;
310
311 /* 1 in a MEM if we should keep the alias set for this mem unchanged
312 when we access a component.
313 1 in a JUMP_INSN if it is a crossing jump.
314 1 in a CALL_INSN if it is a sibling call.
315 1 in a SET that is for a return.
316 In a CODE_LABEL, part of the two-bit alternate entry field.
317 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
318 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
319 1 in a SUBREG generated by LRA for reload insns.
320 1 in a REG if this is a static chain register.
321 1 in a CALL for calls instrumented by Pointer Bounds Checker.
322 Dumped as "/j" in RTL dumps. */
323 unsigned int jump : 1;
324 /* In a CODE_LABEL, part of the two-bit alternate entry field.
325 1 in a MEM if it cannot trap.
326 1 in a CALL_INSN logically equivalent to
327 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
328 Dumped as "/c" in RTL dumps. */
329 unsigned int call : 1;
330 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
331 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
332 1 in a SYMBOL_REF if it addresses something in the per-function
333 constants pool.
334 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
335 1 in a NOTE, or EXPR_LIST for a const call.
336 1 in a JUMP_INSN of an annulling branch.
337 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
338 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
339 1 in a clobber temporarily created for LRA.
340 Dumped as "/u" in RTL dumps. */
341 unsigned int unchanging : 1;
342 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
343 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
344 if it has been deleted.
345 1 in a REG expression if corresponds to a variable declared by the user,
346 0 for an internally generated temporary.
347 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
348 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
349 non-local label.
350 In a SYMBOL_REF, this flag is used for machine-specific purposes.
351 In a PREFETCH, this flag indicates that it should be considered a
352 scheduling barrier.
353 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
354 Dumped as "/v" in RTL dumps. */
355 unsigned int volatil : 1;
356 /* 1 in a REG if the register is used only in exit code a loop.
357 1 in a SUBREG expression if was generated from a variable with a
358 promoted mode.
359 1 in a CODE_LABEL if the label is used for nonlocal gotos
360 and must not be deleted even if its count is zero.
361 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
362 together with the preceding insn. Valid only within sched.
363 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
364 from the target of a branch. Valid from reorg until end of compilation;
365 cleared before used.
366
367 The name of the field is historical. It used to be used in MEMs
368 to record whether the MEM accessed part of a structure.
369 Dumped as "/s" in RTL dumps. */
370 unsigned int in_struct : 1;
371 /* At the end of RTL generation, 1 if this rtx is used. This is used for
372 copying shared structure. See `unshare_all_rtl'.
373 In a REG, this is not needed for that purpose, and used instead
374 in `leaf_renumber_regs_insn'.
375 1 in a SYMBOL_REF, means that emit_library_call
376 has used it as the function.
377 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
378 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
379 unsigned int used : 1;
380 /* 1 in an INSN or a SET if this rtx is related to the call frame,
381 either changing how we compute the frame address or saving and
382 restoring registers in the prologue and epilogue.
383 1 in a REG or MEM if it is a pointer.
384 1 in a SYMBOL_REF if it addresses something in the per-function
385 constant string pool.
386 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
387 Dumped as "/f" in RTL dumps. */
388 unsigned frame_related : 1;
389 /* 1 in a REG or PARALLEL that is the current function's return value.
390 1 in a SYMBOL_REF for a weak symbol.
391 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
392 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
393 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
394 Dumped as "/i" in RTL dumps. */
395 unsigned return_val : 1;
396
397 union {
398 /* The final union field is aligned to 64 bits on LP64 hosts,
399 giving a 32-bit gap after the fields above. We optimize the
400 layout for that case and use the gap for extra code-specific
401 information. */
402
403 /* The ORIGINAL_REGNO of a REG. */
404 unsigned int original_regno;
405
406 /* The INSN_UID of an RTX_INSN-class code. */
407 int insn_uid;
408
409 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
410 unsigned int symbol_ref_flags;
411
412 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
413 enum var_init_status var_location_status;
414
415 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
416 HOST_WIDE_INTs in the hwivec_def. */
417 unsigned int num_elem;
418 } GTY ((skip)) u2;
419
420 /* The first element of the operands of this rtx.
421 The number of operands and their types are controlled
422 by the `code' field, according to rtl.def. */
423 union u {
424 rtunion fld[1];
425 HOST_WIDE_INT hwint[1];
426 struct reg_info reg;
427 struct block_symbol block_sym;
428 struct real_value rv;
429 struct fixed_value fv;
430 struct hwivec_def hwiv;
431 struct const_poly_int_def cpi;
432 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
433 };
434
435 /* A node for constructing singly-linked lists of rtx. */
436
437 class GTY(()) rtx_expr_list : public rtx_def
438 {
439 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
440
441 public:
442 /* Get next in list. */
443 rtx_expr_list *next () const;
444
445 /* Get at the underlying rtx. */
446 rtx element () const;
447 };
448
449 template <>
450 template <>
451 inline bool
452 is_a_helper <rtx_expr_list *>::test (rtx rt)
453 {
454 return rt->code == EXPR_LIST;
455 }
456
457 class GTY(()) rtx_insn_list : public rtx_def
458 {
459 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
460
461 This is an instance of:
462
463 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
464
465 i.e. a node for constructing singly-linked lists of rtx_insn *, where
466 the list is "external" to the insn (as opposed to the doubly-linked
467 list embedded within rtx_insn itself). */
468
469 public:
470 /* Get next in list. */
471 rtx_insn_list *next () const;
472
473 /* Get at the underlying instruction. */
474 rtx_insn *insn () const;
475
476 };
477
478 template <>
479 template <>
480 inline bool
481 is_a_helper <rtx_insn_list *>::test (rtx rt)
482 {
483 return rt->code == INSN_LIST;
484 }
485
486 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
487 typically (but not always) of rtx_insn *, used in the late passes. */
488
489 class GTY(()) rtx_sequence : public rtx_def
490 {
491 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
492
493 public:
494 /* Get number of elements in sequence. */
495 int len () const;
496
497 /* Get i-th element of the sequence. */
498 rtx element (int index) const;
499
500 /* Get i-th element of the sequence, with a checked cast to
501 rtx_insn *. */
502 rtx_insn *insn (int index) const;
503 };
504
505 template <>
506 template <>
507 inline bool
508 is_a_helper <rtx_sequence *>::test (rtx rt)
509 {
510 return rt->code == SEQUENCE;
511 }
512
513 template <>
514 template <>
515 inline bool
516 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
517 {
518 return rt->code == SEQUENCE;
519 }
520
521 class GTY(()) rtx_insn : public rtx_def
522 {
523 public:
524 /* No extra fields, but adds the invariant:
525
526 (INSN_P (X)
527 || NOTE_P (X)
528 || JUMP_TABLE_DATA_P (X)
529 || BARRIER_P (X)
530 || LABEL_P (X))
531
532 i.e. that we must be able to use the following:
533 INSN_UID ()
534 NEXT_INSN ()
535 PREV_INSN ()
536 i.e. we have an rtx that has an INSN_UID field and can be part of
537 a linked list of insns.
538 */
539
540 /* Returns true if this insn has been deleted. */
541
542 bool deleted () const { return volatil; }
543
544 /* Mark this insn as deleted. */
545
546 void set_deleted () { volatil = true; }
547
548 /* Mark this insn as not deleted. */
549
550 void set_undeleted () { volatil = false; }
551 };
552
553 /* Subclasses of rtx_insn. */
554
555 class GTY(()) rtx_debug_insn : public rtx_insn
556 {
557 /* No extra fields, but adds the invariant:
558 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
559 i.e. an annotation for tracking variable assignments.
560
561 This is an instance of:
562 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
563 from rtl.def. */
564 };
565
566 class GTY(()) rtx_nonjump_insn : public rtx_insn
567 {
568 /* No extra fields, but adds the invariant:
569 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
570 i.e an instruction that cannot jump.
571
572 This is an instance of:
573 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
574 from rtl.def. */
575 };
576
577 class GTY(()) rtx_jump_insn : public rtx_insn
578 {
579 public:
580 /* No extra fields, but adds the invariant:
581 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
582 i.e. an instruction that can possibly jump.
583
584 This is an instance of:
585 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
586 from rtl.def. */
587
588 /* Returns jump target of this instruction. The returned value is not
589 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
590 expression. Also, when the code label is marked "deleted", it is
591 replaced by a NOTE. In some cases the value is NULL_RTX. */
592
593 inline rtx jump_label () const;
594
595 /* Returns jump target cast to rtx_code_label *. */
596
597 inline rtx_code_label *jump_target () const;
598
599 /* Set jump target. */
600
601 inline void set_jump_target (rtx_code_label *);
602 };
603
604 class GTY(()) rtx_call_insn : public rtx_insn
605 {
606 /* No extra fields, but adds the invariant:
607 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
608 i.e. an instruction that can possibly call a subroutine
609 but which will not change which instruction comes next
610 in the current function.
611
612 This is an instance of:
613 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
614 from rtl.def. */
615 };
616
617 class GTY(()) rtx_jump_table_data : public rtx_insn
618 {
619 /* No extra fields, but adds the invariant:
620 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
621 i.e. a data for a jump table, considered an instruction for
622 historical reasons.
623
624 This is an instance of:
625 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
626 from rtl.def. */
627
628 public:
629
630 /* This can be either:
631
632 (a) a table of absolute jumps, in which case PATTERN (this) is an
633 ADDR_VEC with arg 0 a vector of labels, or
634
635 (b) a table of relative jumps (e.g. for -fPIC), in which case
636 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
637 arg 1 the vector of labels.
638
639 This method gets the underlying vec. */
640
641 inline rtvec get_labels () const;
642 inline scalar_int_mode get_data_mode () const;
643 };
644
645 class GTY(()) rtx_barrier : public rtx_insn
646 {
647 /* No extra fields, but adds the invariant:
648 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
649 i.e. a marker that indicates that control will not flow through.
650
651 This is an instance of:
652 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
653 from rtl.def. */
654 };
655
656 class GTY(()) rtx_code_label : public rtx_insn
657 {
658 /* No extra fields, but adds the invariant:
659 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
660 i.e. a label in the assembler.
661
662 This is an instance of:
663 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
664 from rtl.def. */
665 };
666
667 class GTY(()) rtx_note : public rtx_insn
668 {
669 /* No extra fields, but adds the invariant:
670 NOTE_P(X) aka (GET_CODE (X) == NOTE)
671 i.e. a note about the corresponding source code.
672
673 This is an instance of:
674 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
675 from rtl.def. */
676 };
677
678 /* The size in bytes of an rtx header (code, mode and flags). */
679 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
680
681 /* The size in bytes of an rtx with code CODE. */
682 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
683
684 #define NULL_RTX (rtx) 0
685
686 /* The "next" and "previous" RTX, relative to this one. */
687
688 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
689 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
690
691 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
692 */
693 #define RTX_PREV(X) ((INSN_P (X) \
694 || NOTE_P (X) \
695 || JUMP_TABLE_DATA_P (X) \
696 || BARRIER_P (X) \
697 || LABEL_P (X)) \
698 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
699 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
700 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
701
702 /* Define macros to access the `code' field of the rtx. */
703
704 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
705 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
706
707 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
708 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
709
710 /* RTL vector. These appear inside RTX's when there is a need
711 for a variable number of things. The principle use is inside
712 PARALLEL expressions. */
713
714 struct GTY(()) rtvec_def {
715 int num_elem; /* number of elements */
716 rtx GTY ((length ("%h.num_elem"))) elem[1];
717 };
718
719 #define NULL_RTVEC (rtvec) 0
720
721 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
722 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
723
724 /* Predicate yielding nonzero iff X is an rtx for a register. */
725 #define REG_P(X) (GET_CODE (X) == REG)
726
727 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
728 #define MEM_P(X) (GET_CODE (X) == MEM)
729
730 #if TARGET_SUPPORTS_WIDE_INT
731
732 /* Match CONST_*s that can represent compile-time constant integers. */
733 #define CASE_CONST_SCALAR_INT \
734 case CONST_INT: \
735 case CONST_WIDE_INT
736
737 /* Match CONST_*s for which pointer equality corresponds to value
738 equality. */
739 #define CASE_CONST_UNIQUE \
740 case CONST_INT: \
741 case CONST_WIDE_INT: \
742 case CONST_POLY_INT: \
743 case CONST_DOUBLE: \
744 case CONST_FIXED
745
746 /* Match all CONST_* rtxes. */
747 #define CASE_CONST_ANY \
748 case CONST_INT: \
749 case CONST_WIDE_INT: \
750 case CONST_POLY_INT: \
751 case CONST_DOUBLE: \
752 case CONST_FIXED: \
753 case CONST_VECTOR
754
755 #else
756
757 /* Match CONST_*s that can represent compile-time constant integers. */
758 #define CASE_CONST_SCALAR_INT \
759 case CONST_INT: \
760 case CONST_DOUBLE
761
762 /* Match CONST_*s for which pointer equality corresponds to value
763 equality. */
764 #define CASE_CONST_UNIQUE \
765 case CONST_INT: \
766 case CONST_DOUBLE: \
767 case CONST_FIXED
768
769 /* Match all CONST_* rtxes. */
770 #define CASE_CONST_ANY \
771 case CONST_INT: \
772 case CONST_DOUBLE: \
773 case CONST_FIXED: \
774 case CONST_VECTOR
775 #endif
776
777 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
778 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
779
780 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
781 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
782
783 /* Predicate yielding nonzero iff X is an rtx for a polynomial constant
784 integer. */
785 #define CONST_POLY_INT_P(X) \
786 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
787
788 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
789 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
790
791 /* Predicate yielding true iff X is an rtx for a double-int
792 or floating point constant. */
793 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
794
795 /* Predicate yielding true iff X is an rtx for a double-int. */
796 #define CONST_DOUBLE_AS_INT_P(X) \
797 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
798
799 /* Predicate yielding true iff X is an rtx for a integer const. */
800 #if TARGET_SUPPORTS_WIDE_INT
801 #define CONST_SCALAR_INT_P(X) \
802 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
803 #else
804 #define CONST_SCALAR_INT_P(X) \
805 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
806 #endif
807
808 /* Predicate yielding true iff X is an rtx for a double-int. */
809 #define CONST_DOUBLE_AS_FLOAT_P(X) \
810 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
811
812 /* Predicate yielding nonzero iff X is a label insn. */
813 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
814
815 /* Predicate yielding nonzero iff X is a jump insn. */
816 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
817
818 /* Predicate yielding nonzero iff X is a call insn. */
819 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
820
821 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
822 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
823
824 /* Predicate yielding nonzero iff X is a debug note/insn. */
825 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
826
827 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
828 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
829
830 /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
831 #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
832 /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
833 #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
834 /* Nonzero if DEBUG_INSN_P may possibly hold. */
835 #define MAY_HAVE_DEBUG_INSNS \
836 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
837
838 /* Predicate yielding nonzero iff X is a real insn. */
839 #define INSN_P(X) \
840 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
841
842 /* Predicate yielding nonzero iff X is a note insn. */
843 #define NOTE_P(X) (GET_CODE (X) == NOTE)
844
845 /* Predicate yielding nonzero iff X is a barrier insn. */
846 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
847
848 /* Predicate yielding nonzero iff X is a data for a jump table. */
849 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
850
851 /* Predicate yielding nonzero iff RTX is a subreg. */
852 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
853
854 /* Predicate yielding true iff RTX is a symbol ref. */
855 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
856
857 template <>
858 template <>
859 inline bool
860 is_a_helper <rtx_insn *>::test (rtx rt)
861 {
862 return (INSN_P (rt)
863 || NOTE_P (rt)
864 || JUMP_TABLE_DATA_P (rt)
865 || BARRIER_P (rt)
866 || LABEL_P (rt));
867 }
868
869 template <>
870 template <>
871 inline bool
872 is_a_helper <const rtx_insn *>::test (const_rtx rt)
873 {
874 return (INSN_P (rt)
875 || NOTE_P (rt)
876 || JUMP_TABLE_DATA_P (rt)
877 || BARRIER_P (rt)
878 || LABEL_P (rt));
879 }
880
881 template <>
882 template <>
883 inline bool
884 is_a_helper <rtx_debug_insn *>::test (rtx rt)
885 {
886 return DEBUG_INSN_P (rt);
887 }
888
889 template <>
890 template <>
891 inline bool
892 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
893 {
894 return NONJUMP_INSN_P (rt);
895 }
896
897 template <>
898 template <>
899 inline bool
900 is_a_helper <rtx_jump_insn *>::test (rtx rt)
901 {
902 return JUMP_P (rt);
903 }
904
905 template <>
906 template <>
907 inline bool
908 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
909 {
910 return JUMP_P (insn);
911 }
912
913 template <>
914 template <>
915 inline bool
916 is_a_helper <rtx_call_insn *>::test (rtx rt)
917 {
918 return CALL_P (rt);
919 }
920
921 template <>
922 template <>
923 inline bool
924 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
925 {
926 return CALL_P (insn);
927 }
928
929 template <>
930 template <>
931 inline bool
932 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
933 {
934 return JUMP_TABLE_DATA_P (rt);
935 }
936
937 template <>
938 template <>
939 inline bool
940 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
941 {
942 return JUMP_TABLE_DATA_P (insn);
943 }
944
945 template <>
946 template <>
947 inline bool
948 is_a_helper <rtx_barrier *>::test (rtx rt)
949 {
950 return BARRIER_P (rt);
951 }
952
953 template <>
954 template <>
955 inline bool
956 is_a_helper <rtx_code_label *>::test (rtx rt)
957 {
958 return LABEL_P (rt);
959 }
960
961 template <>
962 template <>
963 inline bool
964 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
965 {
966 return LABEL_P (insn);
967 }
968
969 template <>
970 template <>
971 inline bool
972 is_a_helper <rtx_note *>::test (rtx rt)
973 {
974 return NOTE_P (rt);
975 }
976
977 template <>
978 template <>
979 inline bool
980 is_a_helper <rtx_note *>::test (rtx_insn *insn)
981 {
982 return NOTE_P (insn);
983 }
984
985 /* Predicate yielding nonzero iff X is a return or simple_return. */
986 #define ANY_RETURN_P(X) \
987 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
988
989 /* 1 if X is a unary operator. */
990
991 #define UNARY_P(X) \
992 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
993
994 /* 1 if X is a binary operator. */
995
996 #define BINARY_P(X) \
997 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
998
999 /* 1 if X is an arithmetic operator. */
1000
1001 #define ARITHMETIC_P(X) \
1002 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1003 == RTX_ARITHMETIC_RESULT)
1004
1005 /* 1 if X is an arithmetic operator. */
1006
1007 #define COMMUTATIVE_ARITH_P(X) \
1008 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1009
1010 /* 1 if X is a commutative arithmetic operator or a comparison operator.
1011 These two are sometimes selected together because it is possible to
1012 swap the two operands. */
1013
1014 #define SWAPPABLE_OPERANDS_P(X) \
1015 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1016 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1017 | (1 << RTX_COMPARE)))
1018
1019 /* 1 if X is a non-commutative operator. */
1020
1021 #define NON_COMMUTATIVE_P(X) \
1022 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1023 == RTX_NON_COMMUTATIVE_RESULT)
1024
1025 /* 1 if X is a commutative operator on integers. */
1026
1027 #define COMMUTATIVE_P(X) \
1028 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1029 == RTX_COMMUTATIVE_RESULT)
1030
1031 /* 1 if X is a relational operator. */
1032
1033 #define COMPARISON_P(X) \
1034 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1035
1036 /* 1 if X is a constant value that is an integer. */
1037
1038 #define CONSTANT_P(X) \
1039 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1040
1041 /* 1 if X can be used to represent an object. */
1042 #define OBJECT_P(X) \
1043 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1044
1045 /* General accessor macros for accessing the fields of an rtx. */
1046
1047 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1048 /* The bit with a star outside the statement expr and an & inside is
1049 so that N can be evaluated only once. */
1050 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1051 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1052 const enum rtx_code _code = GET_CODE (_rtx); \
1053 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1054 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1055 __FUNCTION__); \
1056 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1057 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1058 __FUNCTION__); \
1059 &_rtx->u.fld[_n]; }))
1060
1061 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1062 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1063 const enum rtx_code _code = GET_CODE (_rtx); \
1064 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1065 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1066 __FUNCTION__); \
1067 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1068 && GET_RTX_FORMAT (_code)[_n] != C2) \
1069 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1070 __FUNCTION__); \
1071 &_rtx->u.fld[_n]; }))
1072
1073 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1074 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1075 if (GET_CODE (_rtx) != (C)) \
1076 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1077 __FUNCTION__); \
1078 &_rtx->u.fld[_n]; }))
1079
1080 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1081 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1082 const enum rtx_code _code = GET_CODE (_rtx); \
1083 if (_code != (C1) && _code != (C2)) \
1084 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1085 __FUNCTION__); \
1086 &_rtx->u.fld[_n]; }))
1087
1088 #define RTVEC_ELT(RTVEC, I) __extension__ \
1089 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1090 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1091 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1092 __FUNCTION__); \
1093 &_rtvec->elem[_i]; }))
1094
1095 #define XWINT(RTX, N) __extension__ \
1096 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1097 const enum rtx_code _code = GET_CODE (_rtx); \
1098 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1099 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1100 __FUNCTION__); \
1101 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1102 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1103 __FUNCTION__); \
1104 &_rtx->u.hwint[_n]; }))
1105
1106 #define CWI_ELT(RTX, I) __extension__ \
1107 (*({ __typeof (RTX) const _cwi = (RTX); \
1108 int _max = CWI_GET_NUM_ELEM (_cwi); \
1109 const int _i = (I); \
1110 if (_i < 0 || _i >= _max) \
1111 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1112 __FUNCTION__); \
1113 &_cwi->u.hwiv.elem[_i]; }))
1114
1115 #define XCWINT(RTX, N, C) __extension__ \
1116 (*({ __typeof (RTX) const _rtx = (RTX); \
1117 if (GET_CODE (_rtx) != (C)) \
1118 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1119 __FUNCTION__); \
1120 &_rtx->u.hwint[N]; }))
1121
1122 #define XCMWINT(RTX, N, C, M) __extension__ \
1123 (*({ __typeof (RTX) const _rtx = (RTX); \
1124 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1125 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1126 __LINE__, __FUNCTION__); \
1127 &_rtx->u.hwint[N]; }))
1128
1129 #define XCNMPRV(RTX, C, M) __extension__ \
1130 ({ __typeof (RTX) const _rtx = (RTX); \
1131 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1132 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1133 __LINE__, __FUNCTION__); \
1134 &_rtx->u.rv; })
1135
1136 #define XCNMPFV(RTX, C, M) __extension__ \
1137 ({ __typeof (RTX) const _rtx = (RTX); \
1138 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1139 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1140 __LINE__, __FUNCTION__); \
1141 &_rtx->u.fv; })
1142
1143 #define REG_CHECK(RTX) __extension__ \
1144 ({ __typeof (RTX) const _rtx = (RTX); \
1145 if (GET_CODE (_rtx) != REG) \
1146 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1147 __FUNCTION__); \
1148 &_rtx->u.reg; })
1149
1150 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1151 ({ __typeof (RTX) const _symbol = (RTX); \
1152 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1153 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1154 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1155 __FUNCTION__); \
1156 &_symbol->u.block_sym; })
1157
1158 #define HWIVEC_CHECK(RTX,C) __extension__ \
1159 ({ __typeof (RTX) const _symbol = (RTX); \
1160 RTL_CHECKC1 (_symbol, 0, C); \
1161 &_symbol->u.hwiv; })
1162
1163 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1164 const char *)
1165 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1166 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1167 const char *)
1168 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1169 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1170 int, const char *)
1171 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1172 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1173 int, const char *)
1174 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1175 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1176 const char *, int, const char *)
1177 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1178 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1179 bool, const char *, int, const char *)
1180 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1181 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1182 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1183 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1184 const char *)
1185 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1186 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1187 const char *)
1188 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1189
1190 #else /* not ENABLE_RTL_CHECKING */
1191
1192 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1193 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1194 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1195 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1196 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1197 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1198 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1199 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1200 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1201 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1202 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1203 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1204 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1205 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1206 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1207
1208 #endif
1209
1210 /* General accessor macros for accessing the flags of an rtx. */
1211
1212 /* Access an individual rtx flag, with no checking of any kind. */
1213 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1214
1215 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1216 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1217 ({ __typeof (RTX) const _rtx = (RTX); \
1218 if (GET_CODE (_rtx) != C1) \
1219 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1220 __FUNCTION__); \
1221 _rtx; })
1222
1223 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1224 ({ __typeof (RTX) const _rtx = (RTX); \
1225 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1226 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1227 __FUNCTION__); \
1228 _rtx; })
1229
1230 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1231 ({ __typeof (RTX) const _rtx = (RTX); \
1232 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1233 && GET_CODE (_rtx) != C3) \
1234 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1235 __FUNCTION__); \
1236 _rtx; })
1237
1238 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1239 ({ __typeof (RTX) const _rtx = (RTX); \
1240 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1241 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1242 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1243 __FUNCTION__); \
1244 _rtx; })
1245
1246 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1247 ({ __typeof (RTX) const _rtx = (RTX); \
1248 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1249 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1250 && GET_CODE (_rtx) != C5) \
1251 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1252 __FUNCTION__); \
1253 _rtx; })
1254
1255 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1256 __extension__ \
1257 ({ __typeof (RTX) const _rtx = (RTX); \
1258 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1259 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1260 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1261 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1262 __FUNCTION__); \
1263 _rtx; })
1264
1265 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1266 __extension__ \
1267 ({ __typeof (RTX) const _rtx = (RTX); \
1268 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1269 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1270 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1271 && GET_CODE (_rtx) != C7) \
1272 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1273 __FUNCTION__); \
1274 _rtx; })
1275
1276 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1277 __extension__ \
1278 ({ __typeof (RTX) const _rtx = (RTX); \
1279 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1280 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1281 __FUNCTION__); \
1282 _rtx; })
1283
1284 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1285 int, const char *)
1286 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1287 ;
1288
1289 #else /* not ENABLE_RTL_FLAG_CHECKING */
1290
1291 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1292 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1293 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1294 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1295 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1296 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1297 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1298 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1299 #endif
1300
1301 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1302 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1303 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1304 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1305 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1306 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1307 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1308 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1309 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1310 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1311
1312 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1313 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1314
1315 /* These are like XINT, etc. except that they expect a '0' field instead
1316 of the normal type code. */
1317
1318 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1319 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1320 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1321 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1322 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1323 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1324 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1325 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1326 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1327 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1328 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1329 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1330
1331 /* Access a '0' field with any type. */
1332 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1333
1334 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1335 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1336 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1337 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1338 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1339 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1340 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1341 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1342 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1343 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1344
1345 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1346 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1347
1348 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1349 \f
1350
1351 /* Methods of rtx_expr_list. */
1352
1353 inline rtx_expr_list *rtx_expr_list::next () const
1354 {
1355 rtx tmp = XEXP (this, 1);
1356 return safe_as_a <rtx_expr_list *> (tmp);
1357 }
1358
1359 inline rtx rtx_expr_list::element () const
1360 {
1361 return XEXP (this, 0);
1362 }
1363
1364 /* Methods of rtx_insn_list. */
1365
1366 inline rtx_insn_list *rtx_insn_list::next () const
1367 {
1368 rtx tmp = XEXP (this, 1);
1369 return safe_as_a <rtx_insn_list *> (tmp);
1370 }
1371
1372 inline rtx_insn *rtx_insn_list::insn () const
1373 {
1374 rtx tmp = XEXP (this, 0);
1375 return safe_as_a <rtx_insn *> (tmp);
1376 }
1377
1378 /* Methods of rtx_sequence. */
1379
1380 inline int rtx_sequence::len () const
1381 {
1382 return XVECLEN (this, 0);
1383 }
1384
1385 inline rtx rtx_sequence::element (int index) const
1386 {
1387 return XVECEXP (this, 0, index);
1388 }
1389
1390 inline rtx_insn *rtx_sequence::insn (int index) const
1391 {
1392 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1393 }
1394
1395 /* ACCESS MACROS for particular fields of insns. */
1396
1397 /* Holds a unique number for each insn.
1398 These are not necessarily sequentially increasing. */
1399 inline int INSN_UID (const_rtx insn)
1400 {
1401 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1402 (insn))->u2.insn_uid;
1403 }
1404 inline int& INSN_UID (rtx insn)
1405 {
1406 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1407 (insn))->u2.insn_uid;
1408 }
1409
1410 /* Chain insns together in sequence. */
1411
1412 /* For now these are split in two: an rvalue form:
1413 PREV_INSN/NEXT_INSN
1414 and an lvalue form:
1415 SET_NEXT_INSN/SET_PREV_INSN. */
1416
1417 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1418 {
1419 rtx prev = XEXP (insn, 0);
1420 return safe_as_a <rtx_insn *> (prev);
1421 }
1422
1423 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1424 {
1425 return XEXP (insn, 0);
1426 }
1427
1428 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1429 {
1430 rtx next = XEXP (insn, 1);
1431 return safe_as_a <rtx_insn *> (next);
1432 }
1433
1434 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1435 {
1436 return XEXP (insn, 1);
1437 }
1438
1439 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1440 {
1441 return XBBDEF (insn, 2);
1442 }
1443
1444 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1445 {
1446 return XBBDEF (insn, 2);
1447 }
1448
1449 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1450 {
1451 BLOCK_FOR_INSN (insn) = bb;
1452 }
1453
1454 /* The body of an insn. */
1455 inline rtx PATTERN (const_rtx insn)
1456 {
1457 return XEXP (insn, 3);
1458 }
1459
1460 inline rtx& PATTERN (rtx insn)
1461 {
1462 return XEXP (insn, 3);
1463 }
1464
1465 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1466 {
1467 return XUINT (insn, 4);
1468 }
1469
1470 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1471 {
1472 return XUINT (insn, 4);
1473 }
1474
1475 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1476 {
1477 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1478 }
1479
1480 /* LOCATION of an RTX if relevant. */
1481 #define RTL_LOCATION(X) (INSN_P (X) ? \
1482 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1483 : UNKNOWN_LOCATION)
1484
1485 /* Code number of instruction, from when it was recognized.
1486 -1 means this instruction has not been recognized yet. */
1487 #define INSN_CODE(INSN) XINT (INSN, 5)
1488
1489 inline rtvec rtx_jump_table_data::get_labels () const
1490 {
1491 rtx pat = PATTERN (this);
1492 if (GET_CODE (pat) == ADDR_VEC)
1493 return XVEC (pat, 0);
1494 else
1495 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1496 }
1497
1498 /* Return the mode of the data in the table, which is always a scalar
1499 integer. */
1500
1501 inline scalar_int_mode
1502 rtx_jump_table_data::get_data_mode () const
1503 {
1504 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1505 }
1506
1507 /* If LABEL is followed by a jump table, return the table, otherwise
1508 return null. */
1509
1510 inline rtx_jump_table_data *
1511 jump_table_for_label (const rtx_code_label *label)
1512 {
1513 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1514 }
1515
1516 #define RTX_FRAME_RELATED_P(RTX) \
1517 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1518 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1519
1520 /* 1 if JUMP RTX is a crossing jump. */
1521 #define CROSSING_JUMP_P(RTX) \
1522 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1523
1524 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1525 TREE_READONLY. */
1526 #define RTL_CONST_CALL_P(RTX) \
1527 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1528
1529 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1530 DECL_PURE_P. */
1531 #define RTL_PURE_CALL_P(RTX) \
1532 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1533
1534 /* 1 if RTX is a call to a const or pure function. */
1535 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1536 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1537
1538 /* 1 if RTX is a call to a looping const or pure function. Built from
1539 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1540 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1541 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1542
1543 /* 1 if RTX is a call_insn for a sibling call. */
1544 #define SIBLING_CALL_P(RTX) \
1545 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1546
1547 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1548 #define INSN_ANNULLED_BRANCH_P(RTX) \
1549 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1550
1551 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1552 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1553 executed if the branch is taken. For annulled branches with this bit
1554 clear, the insn should be executed only if the branch is not taken. */
1555 #define INSN_FROM_TARGET_P(RTX) \
1556 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1557 CALL_INSN)->in_struct)
1558
1559 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1560 See the comments for ADDR_DIFF_VEC in rtl.def. */
1561 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1562
1563 /* In a VALUE, the value cselib has assigned to RTX.
1564 This is a "struct cselib_val", see cselib.h. */
1565 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1566
1567 /* Holds a list of notes on what this insn does to various REGs.
1568 It is a chain of EXPR_LIST rtx's, where the second operand is the
1569 chain pointer and the first operand is the REG being described.
1570 The mode field of the EXPR_LIST contains not a real machine mode
1571 but a value from enum reg_note. */
1572 #define REG_NOTES(INSN) XEXP(INSN, 6)
1573
1574 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1575 question. */
1576 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1577
1578 enum reg_note
1579 {
1580 #define DEF_REG_NOTE(NAME) NAME,
1581 #include "reg-notes.def"
1582 #undef DEF_REG_NOTE
1583 REG_NOTE_MAX
1584 };
1585
1586 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1587 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1588 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1589 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1590
1591 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1592
1593 extern const char * const reg_note_name[];
1594 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1595
1596 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1597 USE and CLOBBER expressions.
1598 USE expressions list the registers filled with arguments that
1599 are passed to the function.
1600 CLOBBER expressions document the registers explicitly clobbered
1601 by this CALL_INSN.
1602 Pseudo registers can not be mentioned in this list. */
1603 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1604
1605 /* The label-number of a code-label. The assembler label
1606 is made from `L' and the label-number printed in decimal.
1607 Label numbers are unique in a compilation. */
1608 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1609
1610 /* In a NOTE that is a line number, this is a string for the file name that the
1611 line is in. We use the same field to record block numbers temporarily in
1612 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1613 between ints and pointers if we use a different macro for the block number.)
1614 */
1615
1616 /* Opaque data. */
1617 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1618 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1619 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1620 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1621 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1622 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1623 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1624 #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE)
1625 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1626 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1627
1628 /* In a NOTE that is a line number, this is the line number.
1629 Other kinds of NOTEs are identified by negative numbers here. */
1630 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1631
1632 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1633 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1634 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1635
1636 /* Nonzero if INSN is a debug nonbind marker note,
1637 for which NOTE_MARKER_LOCATION can be used. */
1638 #define NOTE_MARKER_P(INSN) \
1639 (NOTE_P (INSN) && \
1640 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT))
1641
1642 /* Variable declaration and the location of a variable. */
1643 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1644 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1645
1646 /* Initialization status of the variable in the location. Status
1647 can be unknown, uninitialized or initialized. See enumeration
1648 type below. */
1649 #define PAT_VAR_LOCATION_STATUS(PAT) \
1650 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1651 ->u2.var_location_status)
1652
1653 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1654 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1655 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1656 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1657 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1658 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1659 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1660
1661 /* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1662 location/value tracking annotation. */
1663 #define DEBUG_BIND_INSN_P(INSN) \
1664 (DEBUG_INSN_P (INSN) \
1665 && (GET_CODE (PATTERN (INSN)) \
1666 == VAR_LOCATION))
1667 /* Evaluate to TRUE if INSN is a debug insn that denotes a program
1668 source location marker. */
1669 #define DEBUG_MARKER_INSN_P(INSN) \
1670 (DEBUG_INSN_P (INSN) \
1671 && (GET_CODE (PATTERN (INSN)) \
1672 != VAR_LOCATION))
1673 /* Evaluate to the marker kind. */
1674 #define INSN_DEBUG_MARKER_KIND(INSN) \
1675 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1676 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1677 ? NOTE_INSN_BEGIN_STMT \
1678 : (enum insn_note)-1) \
1679 : (enum insn_note)-1)
1680 /* Create patterns for debug markers. These and the above abstract
1681 the representation, so that it's easier to get rid of the abuse of
1682 the mode to hold the marker kind. Other marker types are
1683 envisioned, so a single bit flag won't do; maybe separate RTL codes
1684 wouldn't be a problem. */
1685 #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1686 gen_rtx_DEBUG_MARKER (VOIDmode)
1687
1688 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1689 #define INSN_VAR_LOCATION(INSN) \
1690 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1691 /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1692 #define INSN_VAR_LOCATION_PTR(INSN) \
1693 (&PATTERN (INSN))
1694
1695 /* Accessors for a tree-expanded var location debug insn. */
1696 #define INSN_VAR_LOCATION_DECL(INSN) \
1697 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1698 #define INSN_VAR_LOCATION_LOC(INSN) \
1699 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1700 #define INSN_VAR_LOCATION_STATUS(INSN) \
1701 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1702
1703 /* Expand to the RTL that denotes an unknown variable location in a
1704 DEBUG_INSN. */
1705 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1706
1707 /* Determine whether X is such an unknown location. */
1708 #define VAR_LOC_UNKNOWN_P(X) \
1709 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1710
1711 /* 1 if RTX is emitted after a call, but it should take effect before
1712 the call returns. */
1713 #define NOTE_DURING_CALL_P(RTX) \
1714 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1715
1716 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1717 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1718
1719 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1720 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1721
1722 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1723 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1724
1725 /* Codes that appear in the NOTE_KIND field for kinds of notes
1726 that are not line numbers. These codes are all negative.
1727
1728 Notice that we do not try to use zero here for any of
1729 the special note codes because sometimes the source line
1730 actually can be zero! This happens (for example) when we
1731 are generating code for the per-translation-unit constructor
1732 and destructor routines for some C++ translation unit. */
1733
1734 enum insn_note
1735 {
1736 #define DEF_INSN_NOTE(NAME) NAME,
1737 #include "insn-notes.def"
1738 #undef DEF_INSN_NOTE
1739
1740 NOTE_INSN_MAX
1741 };
1742
1743 /* Names for NOTE insn's other than line numbers. */
1744
1745 extern const char * const note_insn_name[NOTE_INSN_MAX];
1746 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1747 (note_insn_name[(NOTE_CODE)])
1748
1749 /* The name of a label, in case it corresponds to an explicit label
1750 in the input source code. */
1751 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1752
1753 /* In jump.c, each label contains a count of the number
1754 of LABEL_REFs that point at it, so unused labels can be deleted. */
1755 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1756
1757 /* Labels carry a two-bit field composed of the ->jump and ->call
1758 bits. This field indicates whether the label is an alternate
1759 entry point, and if so, what kind. */
1760 enum label_kind
1761 {
1762 LABEL_NORMAL = 0, /* ordinary label */
1763 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1764 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1765 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1766 };
1767
1768 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1769
1770 /* Retrieve the kind of LABEL. */
1771 #define LABEL_KIND(LABEL) __extension__ \
1772 ({ __typeof (LABEL) const _label = (LABEL); \
1773 if (! LABEL_P (_label)) \
1774 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1775 __FUNCTION__); \
1776 (enum label_kind) ((_label->jump << 1) | _label->call); })
1777
1778 /* Set the kind of LABEL. */
1779 #define SET_LABEL_KIND(LABEL, KIND) do { \
1780 __typeof (LABEL) const _label = (LABEL); \
1781 const unsigned int _kind = (KIND); \
1782 if (! LABEL_P (_label)) \
1783 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1784 __FUNCTION__); \
1785 _label->jump = ((_kind >> 1) & 1); \
1786 _label->call = (_kind & 1); \
1787 } while (0)
1788
1789 #else
1790
1791 /* Retrieve the kind of LABEL. */
1792 #define LABEL_KIND(LABEL) \
1793 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1794
1795 /* Set the kind of LABEL. */
1796 #define SET_LABEL_KIND(LABEL, KIND) do { \
1797 rtx const _label = (LABEL); \
1798 const unsigned int _kind = (KIND); \
1799 _label->jump = ((_kind >> 1) & 1); \
1800 _label->call = (_kind & 1); \
1801 } while (0)
1802
1803 #endif /* rtl flag checking */
1804
1805 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1806
1807 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1808 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1809 be decremented and possibly the label can be deleted. */
1810 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1811
1812 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1813 {
1814 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1815 }
1816
1817 /* Methods of rtx_jump_insn. */
1818
1819 inline rtx rtx_jump_insn::jump_label () const
1820 {
1821 return JUMP_LABEL (this);
1822 }
1823
1824 inline rtx_code_label *rtx_jump_insn::jump_target () const
1825 {
1826 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1827 }
1828
1829 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1830 {
1831 JUMP_LABEL (this) = target;
1832 }
1833
1834 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1835 goes through all the LABEL_REFs that jump to that label. The chain
1836 eventually winds up at the CODE_LABEL: it is circular. */
1837 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1838
1839 /* Get the label that a LABEL_REF references. */
1840 static inline rtx_insn *
1841 label_ref_label (const_rtx ref)
1842 {
1843 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1844 }
1845
1846 /* Set the label that LABEL_REF ref refers to. */
1847
1848 static inline void
1849 set_label_ref_label (rtx ref, rtx_insn *label)
1850 {
1851 XCEXP (ref, 0, LABEL_REF) = label;
1852 }
1853 \f
1854 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1855 be used on RHS. Use SET_REGNO to change the value. */
1856 #define REGNO(RTX) (rhs_regno(RTX))
1857 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1858
1859 /* Return the number of consecutive registers in a REG. This is always
1860 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1861 hard registers. */
1862 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1863
1864 /* ORIGINAL_REGNO holds the number the register originally had; for a
1865 pseudo register turned into a hard reg this will hold the old pseudo
1866 register number. */
1867 #define ORIGINAL_REGNO(RTX) \
1868 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1869
1870 /* Force the REGNO macro to only be used on the lhs. */
1871 static inline unsigned int
1872 rhs_regno (const_rtx x)
1873 {
1874 return REG_CHECK (x)->regno;
1875 }
1876
1877 /* Return the final register in REG X plus one. */
1878 static inline unsigned int
1879 END_REGNO (const_rtx x)
1880 {
1881 return REGNO (x) + REG_NREGS (x);
1882 }
1883
1884 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1885 bypassing the df machinery. */
1886 static inline void
1887 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1888 {
1889 reg_info *reg = REG_CHECK (x);
1890 reg->regno = regno;
1891 reg->nregs = nregs;
1892 }
1893
1894 /* 1 if RTX is a reg or parallel that is the current function's return
1895 value. */
1896 #define REG_FUNCTION_VALUE_P(RTX) \
1897 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1898
1899 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1900 #define REG_USERVAR_P(RTX) \
1901 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1902
1903 /* 1 if RTX is a reg that holds a pointer value. */
1904 #define REG_POINTER(RTX) \
1905 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1906
1907 /* 1 if RTX is a mem that holds a pointer value. */
1908 #define MEM_POINTER(RTX) \
1909 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1910
1911 /* 1 if the given register REG corresponds to a hard register. */
1912 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1913
1914 /* 1 if the given register number REG_NO corresponds to a hard register. */
1915 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1916
1917 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1918 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1919 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1920
1921 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1922 elements actually needed to represent the constant.
1923 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1924 significant HOST_WIDE_INT. */
1925 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1926 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1927 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1928
1929 /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
1930 individual coefficients, in the form of a trailing_wide_ints structure. */
1931 #define CONST_POLY_INT_COEFFS(RTX) \
1932 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
1933 CONST_POLY_INT)->u.cpi.coeffs)
1934
1935 /* For a CONST_DOUBLE:
1936 #if TARGET_SUPPORTS_WIDE_INT == 0
1937 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1938 low-order word and ..._HIGH the high-order.
1939 #endif
1940 For a float, there is a REAL_VALUE_TYPE structure, and
1941 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1942 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1943 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1944 #define CONST_DOUBLE_REAL_VALUE(r) \
1945 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1946
1947 #define CONST_FIXED_VALUE(r) \
1948 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1949 #define CONST_FIXED_VALUE_HIGH(r) \
1950 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1951 #define CONST_FIXED_VALUE_LOW(r) \
1952 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1953
1954 /* For a CONST_VECTOR, return element #n. */
1955 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1956
1957 /* For a CONST_VECTOR, return the number of elements in a vector. */
1958 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1959
1960 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1961 SUBREG_BYTE extracts the byte-number. */
1962
1963 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1964 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1965
1966 /* in rtlanal.c */
1967 /* Return the right cost to give to an operation
1968 to make the cost of the corresponding register-to-register instruction
1969 N times that of a fast register-to-register instruction. */
1970 #define COSTS_N_INSNS(N) ((N) * 4)
1971
1972 /* Maximum cost of an rtl expression. This value has the special meaning
1973 not to use an rtx with this cost under any circumstances. */
1974 #define MAX_COST INT_MAX
1975
1976 /* Return true if CODE always has VOIDmode. */
1977
1978 static inline bool
1979 always_void_p (enum rtx_code code)
1980 {
1981 return code == SET;
1982 }
1983
1984 /* A structure to hold all available cost information about an rtl
1985 expression. */
1986 struct full_rtx_costs
1987 {
1988 int speed;
1989 int size;
1990 };
1991
1992 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1993 static inline void
1994 init_costs_to_max (struct full_rtx_costs *c)
1995 {
1996 c->speed = MAX_COST;
1997 c->size = MAX_COST;
1998 }
1999
2000 /* Initialize a full_rtx_costs structure C to zero cost. */
2001 static inline void
2002 init_costs_to_zero (struct full_rtx_costs *c)
2003 {
2004 c->speed = 0;
2005 c->size = 0;
2006 }
2007
2008 /* Compare two full_rtx_costs structures A and B, returning true
2009 if A < B when optimizing for speed. */
2010 static inline bool
2011 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2012 bool speed)
2013 {
2014 if (speed)
2015 return (a->speed < b->speed
2016 || (a->speed == b->speed && a->size < b->size));
2017 else
2018 return (a->size < b->size
2019 || (a->size == b->size && a->speed < b->speed));
2020 }
2021
2022 /* Increase both members of the full_rtx_costs structure C by the
2023 cost of N insns. */
2024 static inline void
2025 costs_add_n_insns (struct full_rtx_costs *c, int n)
2026 {
2027 c->speed += COSTS_N_INSNS (n);
2028 c->size += COSTS_N_INSNS (n);
2029 }
2030
2031 /* Describes the shape of a subreg:
2032
2033 inner_mode == the mode of the SUBREG_REG
2034 offset == the SUBREG_BYTE
2035 outer_mode == the mode of the SUBREG itself. */
2036 struct subreg_shape {
2037 subreg_shape (machine_mode, unsigned int, machine_mode);
2038 bool operator == (const subreg_shape &) const;
2039 bool operator != (const subreg_shape &) const;
2040 unsigned int unique_id () const;
2041
2042 machine_mode inner_mode;
2043 unsigned int offset;
2044 machine_mode outer_mode;
2045 };
2046
2047 inline
2048 subreg_shape::subreg_shape (machine_mode inner_mode_in,
2049 unsigned int offset_in,
2050 machine_mode outer_mode_in)
2051 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2052 {}
2053
2054 inline bool
2055 subreg_shape::operator == (const subreg_shape &other) const
2056 {
2057 return (inner_mode == other.inner_mode
2058 && offset == other.offset
2059 && outer_mode == other.outer_mode);
2060 }
2061
2062 inline bool
2063 subreg_shape::operator != (const subreg_shape &other) const
2064 {
2065 return !operator == (other);
2066 }
2067
2068 /* Return an integer that uniquely identifies this shape. Structures
2069 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2070 current mode is anywhere near being 65536 bytes in size, so the
2071 id comfortably fits in an int. */
2072
2073 inline unsigned int
2074 subreg_shape::unique_id () const
2075 {
2076 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2077 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2078 }
2079
2080 /* Return the shape of a SUBREG rtx. */
2081
2082 static inline subreg_shape
2083 shape_of_subreg (const_rtx x)
2084 {
2085 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2086 SUBREG_BYTE (x), GET_MODE (x));
2087 }
2088
2089 /* Information about an address. This structure is supposed to be able
2090 to represent all supported target addresses. Please extend it if it
2091 is not yet general enough. */
2092 struct address_info {
2093 /* The mode of the value being addressed, or VOIDmode if this is
2094 a load-address operation with no known address mode. */
2095 machine_mode mode;
2096
2097 /* The address space. */
2098 addr_space_t as;
2099
2100 /* True if this is an RTX_AUTOINC address. */
2101 bool autoinc_p;
2102
2103 /* A pointer to the top-level address. */
2104 rtx *outer;
2105
2106 /* A pointer to the inner address, after all address mutations
2107 have been stripped from the top-level address. It can be one
2108 of the following:
2109
2110 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2111
2112 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2113 points to the step value, depending on whether the step is variable
2114 or constant respectively. SEGMENT is null.
2115
2116 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2117 with null fields evaluating to 0. */
2118 rtx *inner;
2119
2120 /* Components that make up *INNER. Each one may be null or nonnull.
2121 When nonnull, their meanings are as follows:
2122
2123 - *SEGMENT is the "segment" of memory to which the address refers.
2124 This value is entirely target-specific and is only called a "segment"
2125 because that's its most typical use. It contains exactly one UNSPEC,
2126 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2127 reloading.
2128
2129 - *BASE is a variable expression representing a base address.
2130 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2131
2132 - *INDEX is a variable expression representing an index value.
2133 It may be a scaled expression, such as a MULT. It has exactly
2134 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2135
2136 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2137 unmutated RTX_CONST_OBJ. */
2138 rtx *segment;
2139 rtx *base;
2140 rtx *index;
2141 rtx *disp;
2142
2143 rtx *segment_term;
2144 rtx *base_term;
2145 rtx *index_term;
2146 rtx *disp_term;
2147
2148 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2149 of BASE_TERM, otherwise it is null. */
2150 rtx *base_term2;
2151
2152 /* ADDRESS if this structure describes an address operand, MEM if
2153 it describes a MEM address. */
2154 enum rtx_code addr_outer_code;
2155
2156 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2157 enum rtx_code base_outer_code;
2158 };
2159
2160 /* This is used to bundle an rtx and a mode together so that the pair
2161 can be used with the wi:: routines. If we ever put modes into rtx
2162 integer constants, this should go away and then just pass an rtx in. */
2163 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2164
2165 namespace wi
2166 {
2167 template <>
2168 struct int_traits <rtx_mode_t>
2169 {
2170 static const enum precision_type precision_type = VAR_PRECISION;
2171 static const bool host_dependent_precision = false;
2172 /* This ought to be true, except for the special case that BImode
2173 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2174 static const bool is_sign_extended = false;
2175 static unsigned int get_precision (const rtx_mode_t &);
2176 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2177 const rtx_mode_t &);
2178 };
2179 }
2180
2181 inline unsigned int
2182 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2183 {
2184 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2185 }
2186
2187 inline wi::storage_ref
2188 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2189 unsigned int precision,
2190 const rtx_mode_t &x)
2191 {
2192 gcc_checking_assert (precision == get_precision (x));
2193 switch (GET_CODE (x.first))
2194 {
2195 case CONST_INT:
2196 if (precision < HOST_BITS_PER_WIDE_INT)
2197 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2198 targets is 1 rather than -1. */
2199 gcc_checking_assert (INTVAL (x.first)
2200 == sext_hwi (INTVAL (x.first), precision)
2201 || (x.second == BImode && INTVAL (x.first) == 1));
2202
2203 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2204
2205 case CONST_WIDE_INT:
2206 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2207 CONST_WIDE_INT_NUNITS (x.first), precision);
2208
2209 #if TARGET_SUPPORTS_WIDE_INT == 0
2210 case CONST_DOUBLE:
2211 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2212 #endif
2213
2214 default:
2215 gcc_unreachable ();
2216 }
2217 }
2218
2219 namespace wi
2220 {
2221 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2222 wide_int min_value (machine_mode, signop);
2223 wide_int max_value (machine_mode, signop);
2224 }
2225
2226 inline wi::hwi_with_prec
2227 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2228 {
2229 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2230 }
2231
2232 /* Produce the smallest number that is represented in MODE. The precision
2233 is taken from MODE and the sign from SGN. */
2234 inline wide_int
2235 wi::min_value (machine_mode mode, signop sgn)
2236 {
2237 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2238 }
2239
2240 /* Produce the largest number that is represented in MODE. The precision
2241 is taken from MODE and the sign from SGN. */
2242 inline wide_int
2243 wi::max_value (machine_mode mode, signop sgn)
2244 {
2245 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2246 }
2247
2248 namespace wi
2249 {
2250 typedef poly_int<NUM_POLY_INT_COEFFS,
2251 generic_wide_int <wide_int_ref_storage <false, false> > >
2252 rtx_to_poly_wide_ref;
2253 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2254 }
2255
2256 /* Return the value of a CONST_POLY_INT in its native precision. */
2257
2258 inline wi::rtx_to_poly_wide_ref
2259 const_poly_int_value (const_rtx x)
2260 {
2261 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2262 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2263 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2264 return res;
2265 }
2266
2267 /* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2268 can then be extracted using wi::to_poly_wide. */
2269
2270 inline bool
2271 poly_int_rtx_p (const_rtx x)
2272 {
2273 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2274 }
2275
2276 /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2277 MODE is the mode of X. */
2278
2279 inline wi::rtx_to_poly_wide_ref
2280 wi::to_poly_wide (const_rtx x, machine_mode mode)
2281 {
2282 if (CONST_POLY_INT_P (x))
2283 return const_poly_int_value (x);
2284 return rtx_mode_t (const_cast<rtx> (x), mode);
2285 }
2286
2287 /* Return the value of X as a poly_int64. */
2288
2289 inline poly_int64
2290 rtx_to_poly_int64 (const_rtx x)
2291 {
2292 if (CONST_POLY_INT_P (x))
2293 {
2294 poly_int64 res;
2295 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2296 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2297 return res;
2298 }
2299 return INTVAL (x);
2300 }
2301
2302 /* Return true if arbitrary value X is an integer constant that can
2303 be represented as a poly_int64. Store the value in *RES if so,
2304 otherwise leave it unmodified. */
2305
2306 inline bool
2307 poly_int_rtx_p (const_rtx x, poly_int64_pod *res)
2308 {
2309 if (CONST_INT_P (x))
2310 {
2311 *res = INTVAL (x);
2312 return true;
2313 }
2314 if (CONST_POLY_INT_P (x))
2315 {
2316 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2317 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2318 return false;
2319 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2320 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2321 return true;
2322 }
2323 return false;
2324 }
2325
2326 extern void init_rtlanal (void);
2327 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2328 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2329 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2330 struct full_rtx_costs *);
2331 extern unsigned int subreg_lsb (const_rtx);
2332 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2333 unsigned int);
2334 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2335 unsigned int);
2336 extern bool read_modify_subreg_p (const_rtx);
2337
2338 /* Return the subreg byte offset for a subreg whose outer mode is
2339 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2340 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2341 the inner value. This is the inverse of subreg_lsb_1 (which converts
2342 byte offsets to bit shifts). */
2343
2344 inline unsigned int
2345 subreg_offset_from_lsb (machine_mode outer_mode,
2346 machine_mode inner_mode,
2347 unsigned int lsb_shift)
2348 {
2349 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2350 GET_MODE_SIZE (inner_mode), lsb_shift);
2351 }
2352
2353 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2354 unsigned int, machine_mode);
2355 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2356 unsigned int, machine_mode);
2357 extern unsigned int subreg_regno (const_rtx);
2358 extern int simplify_subreg_regno (unsigned int, machine_mode,
2359 unsigned int, machine_mode);
2360 extern unsigned int subreg_nregs (const_rtx);
2361 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2362 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2363 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2364 extern bool constant_pool_constant_p (rtx);
2365 extern bool truncated_to_mode (machine_mode, const_rtx);
2366 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2367 extern void split_double (rtx, rtx *, rtx *);
2368 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2369 extern void decompose_address (struct address_info *, rtx *,
2370 machine_mode, addr_space_t, enum rtx_code);
2371 extern void decompose_lea_address (struct address_info *, rtx *);
2372 extern void decompose_mem_address (struct address_info *, rtx);
2373 extern void update_address (struct address_info *);
2374 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2375 extern enum rtx_code get_index_code (const struct address_info *);
2376
2377 /* 1 if RTX is a subreg containing a reg that is already known to be
2378 sign- or zero-extended from the mode of the subreg to the mode of
2379 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2380 extension.
2381
2382 When used as a LHS, is means that this extension must be done
2383 when assigning to SUBREG_REG. */
2384
2385 #define SUBREG_PROMOTED_VAR_P(RTX) \
2386 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2387
2388 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2389 this gives the necessary extensions:
2390 0 - signed (SPR_SIGNED)
2391 1 - normal unsigned (SPR_UNSIGNED)
2392 2 - value is both sign and unsign extended for mode
2393 (SPR_SIGNED_AND_UNSIGNED).
2394 -1 - pointer unsigned, which most often can be handled like unsigned
2395 extension, except for generating instructions where we need to
2396 emit special code (ptr_extend insns) on some architectures
2397 (SPR_POINTER). */
2398
2399 const int SRP_POINTER = -1;
2400 const int SRP_SIGNED = 0;
2401 const int SRP_UNSIGNED = 1;
2402 const int SRP_SIGNED_AND_UNSIGNED = 2;
2403
2404 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2405 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2406 do { \
2407 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2408 (RTX), SUBREG); \
2409 switch (VAL) \
2410 { \
2411 case SRP_POINTER: \
2412 _rtx->volatil = 0; \
2413 _rtx->unchanging = 0; \
2414 break; \
2415 case SRP_SIGNED: \
2416 _rtx->volatil = 0; \
2417 _rtx->unchanging = 1; \
2418 break; \
2419 case SRP_UNSIGNED: \
2420 _rtx->volatil = 1; \
2421 _rtx->unchanging = 0; \
2422 break; \
2423 case SRP_SIGNED_AND_UNSIGNED: \
2424 _rtx->volatil = 1; \
2425 _rtx->unchanging = 1; \
2426 break; \
2427 } \
2428 } while (0)
2429
2430 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2431 including SRP_SIGNED_AND_UNSIGNED if promoted for
2432 both signed and unsigned. */
2433 #define SUBREG_PROMOTED_GET(RTX) \
2434 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2435 + (RTX)->unchanging - 1)
2436
2437 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2438 #define SUBREG_PROMOTED_SIGN(RTX) \
2439 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2440 : (RTX)->unchanging - 1)
2441
2442 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2443 for SIGNED type. */
2444 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2445 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2446
2447 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2448 for UNSIGNED type. */
2449 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2450 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2451
2452 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2453 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2454 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2455 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2456 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2457
2458 /* True if the REG is the static chain register for some CALL_INSN. */
2459 #define STATIC_CHAIN_REG_P(RTX) \
2460 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2461
2462 /* True if the subreg was generated by LRA for reload insns. Such
2463 subregs are valid only during LRA. */
2464 #define LRA_SUBREG_P(RTX) \
2465 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2466
2467 /* True if call is instrumented by Pointer Bounds Checker. */
2468 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2469 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2470
2471 /* Access various components of an ASM_OPERANDS rtx. */
2472
2473 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2474 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2475 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2476 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2477 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2478 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2479 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2480 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2481 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2482 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2483 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2484 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2485 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2486 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2487 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2488 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2489 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2490 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2491
2492 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2493 #define MEM_READONLY_P(RTX) \
2494 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2495
2496 /* 1 if RTX is a mem and we should keep the alias set for this mem
2497 unchanged when we access a component. Set to 1, or example, when we
2498 are already in a non-addressable component of an aggregate. */
2499 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2500 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2501
2502 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2503 #define MEM_VOLATILE_P(RTX) \
2504 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2505 ASM_INPUT)->volatil)
2506
2507 /* 1 if RTX is a mem that cannot trap. */
2508 #define MEM_NOTRAP_P(RTX) \
2509 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2510
2511 /* The memory attribute block. We provide access macros for each value
2512 in the block and provide defaults if none specified. */
2513 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2514
2515 /* The register attribute block. We provide access macros for each value
2516 in the block and provide defaults if none specified. */
2517 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2518
2519 #ifndef GENERATOR_FILE
2520 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2521 set, and may alias anything. Otherwise, the MEM can only alias
2522 MEMs in a conflicting alias set. This value is set in a
2523 language-dependent manner in the front-end, and should not be
2524 altered in the back-end. These set numbers are tested with
2525 alias_sets_conflict_p. */
2526 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2527
2528 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2529 refer to part of a DECL. It may also be a COMPONENT_REF. */
2530 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2531
2532 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2533 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2534
2535 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2536 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2537
2538 /* For a MEM rtx, the address space. */
2539 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2540
2541 /* For a MEM rtx, true if its MEM_SIZE is known. */
2542 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2543
2544 /* For a MEM rtx, the size in bytes of the MEM. */
2545 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2546
2547 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2548 mode as a default when STRICT_ALIGNMENT, but not if not. */
2549 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2550 #else
2551 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2552 #endif
2553
2554 /* For a REG rtx, the decl it is known to refer to, if it is known to
2555 refer to part of a DECL. */
2556 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2557
2558 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2559 HOST_WIDE_INT. */
2560 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2561
2562 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2563 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2564 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2565 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2566 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2567 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2568 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2569 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2570
2571 /* 1 if RTX is a label_ref for a nonlocal label. */
2572 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2573 REG_LABEL_TARGET note. */
2574 #define LABEL_REF_NONLOCAL_P(RTX) \
2575 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2576
2577 /* 1 if RTX is a code_label that should always be considered to be needed. */
2578 #define LABEL_PRESERVE_P(RTX) \
2579 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2580
2581 /* During sched, 1 if RTX is an insn that must be scheduled together
2582 with the preceding insn. */
2583 #define SCHED_GROUP_P(RTX) \
2584 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2585 JUMP_INSN, CALL_INSN)->in_struct)
2586
2587 /* For a SET rtx, SET_DEST is the place that is set
2588 and SET_SRC is the value it is set to. */
2589 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2590 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2591 #define SET_IS_RETURN_P(RTX) \
2592 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2593
2594 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2595 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2596 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2597
2598 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2599 conditionally executing the code on, COND_EXEC_CODE is the code
2600 to execute if the condition is true. */
2601 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2602 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2603
2604 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2605 constants pool. */
2606 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2607 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2608
2609 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2610 tree constant pool. This information is private to varasm.c. */
2611 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2612 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2613 (RTX), SYMBOL_REF)->frame_related)
2614
2615 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2616 #define SYMBOL_REF_FLAG(RTX) \
2617 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2618
2619 /* 1 if RTX is a symbol_ref that has been the library function in
2620 emit_library_call. */
2621 #define SYMBOL_REF_USED(RTX) \
2622 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2623
2624 /* 1 if RTX is a symbol_ref for a weak symbol. */
2625 #define SYMBOL_REF_WEAK(RTX) \
2626 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2627
2628 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2629 SYMBOL_REF_CONSTANT. */
2630 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2631
2632 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2633 pool symbol. */
2634 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2635 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2636
2637 /* The tree (decl or constant) associated with the symbol, or null. */
2638 #define SYMBOL_REF_DECL(RTX) \
2639 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2640
2641 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2642 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2643 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2644
2645 /* The rtx constant pool entry for a symbol, or null. */
2646 #define SYMBOL_REF_CONSTANT(RTX) \
2647 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2648
2649 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2650 information derivable from the tree decl associated with this symbol.
2651 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2652 decl. In some cases this is a bug. But beyond that, it's nice to cache
2653 this information to avoid recomputing it. Finally, this allows space for
2654 the target to store more than one bit of information, as with
2655 SYMBOL_REF_FLAG. */
2656 #define SYMBOL_REF_FLAGS(RTX) \
2657 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2658 ->u2.symbol_ref_flags)
2659
2660 /* These flags are common enough to be defined for all targets. They
2661 are computed by the default version of targetm.encode_section_info. */
2662
2663 /* Set if this symbol is a function. */
2664 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2665 #define SYMBOL_REF_FUNCTION_P(RTX) \
2666 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2667 /* Set if targetm.binds_local_p is true. */
2668 #define SYMBOL_FLAG_LOCAL (1 << 1)
2669 #define SYMBOL_REF_LOCAL_P(RTX) \
2670 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2671 /* Set if targetm.in_small_data_p is true. */
2672 #define SYMBOL_FLAG_SMALL (1 << 2)
2673 #define SYMBOL_REF_SMALL_P(RTX) \
2674 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2675 /* The three-bit field at [5:3] is true for TLS variables; use
2676 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2677 #define SYMBOL_FLAG_TLS_SHIFT 3
2678 #define SYMBOL_REF_TLS_MODEL(RTX) \
2679 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2680 /* Set if this symbol is not defined in this translation unit. */
2681 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2682 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2683 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2684 /* Set if this symbol has a block_symbol structure associated with it. */
2685 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2686 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2687 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2688 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2689 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2690 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2691 #define SYMBOL_REF_ANCHOR_P(RTX) \
2692 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2693
2694 /* Subsequent bits are available for the target to use. */
2695 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2696 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2697
2698 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2699 structure to which the symbol belongs, or NULL if it has not been
2700 assigned a block. */
2701 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2702
2703 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2704 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2705 RTX has not yet been assigned to a block, or it has not been given an
2706 offset within that block. */
2707 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2708
2709 /* True if RTX is flagged to be a scheduling barrier. */
2710 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2711 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2712
2713 /* Indicate whether the machine has any sort of auto increment addressing.
2714 If not, we can avoid checking for REG_INC notes. */
2715
2716 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2717 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2718 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2719 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2720 #define AUTO_INC_DEC 1
2721 #else
2722 #define AUTO_INC_DEC 0
2723 #endif
2724
2725 /* Define a macro to look for REG_INC notes,
2726 but save time on machines where they never exist. */
2727
2728 #if AUTO_INC_DEC
2729 #define FIND_REG_INC_NOTE(INSN, REG) \
2730 ((REG) != NULL_RTX && REG_P ((REG)) \
2731 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2732 : find_reg_note ((INSN), REG_INC, (REG)))
2733 #else
2734 #define FIND_REG_INC_NOTE(INSN, REG) 0
2735 #endif
2736
2737 #ifndef HAVE_PRE_INCREMENT
2738 #define HAVE_PRE_INCREMENT 0
2739 #endif
2740
2741 #ifndef HAVE_PRE_DECREMENT
2742 #define HAVE_PRE_DECREMENT 0
2743 #endif
2744
2745 #ifndef HAVE_POST_INCREMENT
2746 #define HAVE_POST_INCREMENT 0
2747 #endif
2748
2749 #ifndef HAVE_POST_DECREMENT
2750 #define HAVE_POST_DECREMENT 0
2751 #endif
2752
2753 #ifndef HAVE_POST_MODIFY_DISP
2754 #define HAVE_POST_MODIFY_DISP 0
2755 #endif
2756
2757 #ifndef HAVE_POST_MODIFY_REG
2758 #define HAVE_POST_MODIFY_REG 0
2759 #endif
2760
2761 #ifndef HAVE_PRE_MODIFY_DISP
2762 #define HAVE_PRE_MODIFY_DISP 0
2763 #endif
2764
2765 #ifndef HAVE_PRE_MODIFY_REG
2766 #define HAVE_PRE_MODIFY_REG 0
2767 #endif
2768
2769
2770 /* Some architectures do not have complete pre/post increment/decrement
2771 instruction sets, or only move some modes efficiently. These macros
2772 allow us to tune autoincrement generation. */
2773
2774 #ifndef USE_LOAD_POST_INCREMENT
2775 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2776 #endif
2777
2778 #ifndef USE_LOAD_POST_DECREMENT
2779 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2780 #endif
2781
2782 #ifndef USE_LOAD_PRE_INCREMENT
2783 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2784 #endif
2785
2786 #ifndef USE_LOAD_PRE_DECREMENT
2787 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2788 #endif
2789
2790 #ifndef USE_STORE_POST_INCREMENT
2791 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2792 #endif
2793
2794 #ifndef USE_STORE_POST_DECREMENT
2795 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2796 #endif
2797
2798 #ifndef USE_STORE_PRE_INCREMENT
2799 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2800 #endif
2801
2802 #ifndef USE_STORE_PRE_DECREMENT
2803 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2804 #endif
2805 \f
2806 /* Nonzero when we are generating CONCATs. */
2807 extern int generating_concat_p;
2808
2809 /* Nonzero when we are expanding trees to RTL. */
2810 extern int currently_expanding_to_rtl;
2811
2812 /* Generally useful functions. */
2813
2814 #ifndef GENERATOR_FILE
2815 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2816 rather than size. */
2817
2818 static inline int
2819 set_rtx_cost (rtx x, bool speed_p)
2820 {
2821 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2822 }
2823
2824 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2825
2826 static inline void
2827 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2828 {
2829 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2830 }
2831
2832 /* Return the cost of moving X into a register, relative to the cost
2833 of a register move. SPEED_P is true if optimizing for speed rather
2834 than size. */
2835
2836 static inline int
2837 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2838 {
2839 return rtx_cost (x, mode, SET, 1, speed_p);
2840 }
2841
2842 /* Like set_src_cost, but return both the speed and size costs in C. */
2843
2844 static inline void
2845 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2846 {
2847 get_full_rtx_cost (x, mode, SET, 1, c);
2848 }
2849 #endif
2850
2851 /* A convenience macro to validate the arguments of a zero_extract
2852 expression. It determines whether SIZE lies inclusively within
2853 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2854 and the sum lies inclusively within [1, RANGE]. RANGE must be
2855 >= 1, but SIZE and POS may be negative. */
2856 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2857 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2858 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2859 - (unsigned HOST_WIDE_INT)(POS)))
2860
2861 /* In explow.c */
2862 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2863 extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
2864 extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
2865 extern HOST_WIDE_INT get_stack_check_protect (void);
2866
2867 /* In rtl.c */
2868 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2869 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2870 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2871 #define const_wide_int_alloc(NWORDS) \
2872 rtx_alloc_v (CONST_WIDE_INT, \
2873 (sizeof (struct hwivec_def) \
2874 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2875
2876 extern rtvec rtvec_alloc (int);
2877 extern rtvec shallow_copy_rtvec (rtvec);
2878 extern bool shared_const_p (const_rtx);
2879 extern rtx copy_rtx (rtx);
2880 extern enum rtx_code classify_insn (rtx);
2881 extern void dump_rtx_statistics (void);
2882
2883 /* In emit-rtl.c */
2884 extern rtx copy_rtx_if_shared (rtx);
2885
2886 /* In rtl.c */
2887 extern unsigned int rtx_size (const_rtx);
2888 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2889 extern int rtx_equal_p (const_rtx, const_rtx);
2890 extern bool rtvec_all_equal_p (const_rtvec);
2891
2892 /* Return true if X is some form of vector constant. */
2893
2894 inline bool
2895 const_vec_p (const_rtx x)
2896 {
2897 return VECTOR_MODE_P (GET_MODE (x)) && CONSTANT_P (x);
2898 }
2899
2900 /* Return true if X is a vector constant with a duplicated element value. */
2901
2902 inline bool
2903 const_vec_duplicate_p (const_rtx x)
2904 {
2905 return ((GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2906 || (GET_CODE (x) == CONST
2907 && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE));
2908 }
2909
2910 /* Return true if X is a vector constant with a duplicated element value.
2911 Store the duplicated element in *ELT if so. */
2912
2913 template <typename T>
2914 inline bool
2915 const_vec_duplicate_p (T x, T *elt)
2916 {
2917 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2918 {
2919 *elt = CONST_VECTOR_ELT (x, 0);
2920 return true;
2921 }
2922 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2923 {
2924 *elt = XEXP (XEXP (x, 0), 0);
2925 return true;
2926 }
2927 return false;
2928 }
2929
2930 /* Return true if X is a vector with a duplicated element value, either
2931 constant or nonconstant. Store the duplicated element in *ELT if so. */
2932
2933 template <typename T>
2934 inline bool
2935 vec_duplicate_p (T x, T *elt)
2936 {
2937 if (GET_CODE (x) == VEC_DUPLICATE)
2938 {
2939 *elt = XEXP (x, 0);
2940 return true;
2941 }
2942 return const_vec_duplicate_p (x, elt);
2943 }
2944
2945 /* If X is a vector constant with a duplicated element value, return that
2946 element value, otherwise return X. */
2947
2948 template <typename T>
2949 inline T
2950 unwrap_const_vec_duplicate (T x)
2951 {
2952 if (GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0)))
2953 return CONST_VECTOR_ELT (x, 0);
2954 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_DUPLICATE)
2955 return XEXP (XEXP (x, 0), 0);
2956 return x;
2957 }
2958
2959 /* In emit-rtl.c. */
2960 extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
2961
2962 /* Return true if X is a constant vector that contains a linear series
2963 of the form:
2964
2965 { B, B + S, B + 2 * S, B + 3 * S, ... }
2966
2967 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
2968
2969 inline bool
2970 const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2971 {
2972 if (GET_CODE (x) == CONST_VECTOR
2973 && GET_MODE_CLASS (GET_MODE (x)) == MODE_VECTOR_INT)
2974 return const_vec_series_p_1 (x, base_out, step_out);
2975 if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == VEC_SERIES)
2976 {
2977 *base_out = XEXP (XEXP (x, 0), 0);
2978 *step_out = XEXP (XEXP (x, 0), 1);
2979 return true;
2980 }
2981 return false;
2982 }
2983
2984 /* Return true if X is a vector that contains a linear series of the
2985 form:
2986
2987 { B, B + S, B + 2 * S, B + 3 * S, ... }
2988
2989 where B and S are constant or nonconstant. Store B and S in
2990 *BASE_OUT and *STEP_OUT on sucess. */
2991
2992 inline bool
2993 vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
2994 {
2995 if (GET_CODE (x) == VEC_SERIES)
2996 {
2997 *base_out = XEXP (x, 0);
2998 *step_out = XEXP (x, 1);
2999 return true;
3000 }
3001 return const_vec_series_p (x, base_out, step_out);
3002 }
3003
3004 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3005
3006 inline scalar_int_mode
3007 subreg_unpromoted_mode (rtx x)
3008 {
3009 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3010 return as_a <scalar_int_mode> (GET_MODE (x));
3011 }
3012
3013 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3014
3015 inline scalar_int_mode
3016 subreg_promoted_mode (rtx x)
3017 {
3018 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3019 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3020 }
3021
3022 /* In emit-rtl.c */
3023 extern rtvec gen_rtvec_v (int, rtx *);
3024 extern rtvec gen_rtvec_v (int, rtx_insn **);
3025 extern rtx gen_reg_rtx (machine_mode);
3026 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3027 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3028 extern rtx gen_reg_rtx_and_attrs (rtx);
3029 extern rtx_code_label *gen_label_rtx (void);
3030 extern rtx gen_lowpart_common (machine_mode, rtx);
3031
3032 /* In cse.c */
3033 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3034
3035 /* In emit-rtl.c */
3036 extern rtx gen_highpart (machine_mode, rtx);
3037 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3038 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
3039
3040 /* In emit-rtl.c */
3041 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
3042 extern int subreg_lowpart_p (const_rtx);
3043 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
3044
3045 /* Return true if a subreg of mode OUTERMODE would only access part of
3046 an inner register with mode INNERMODE. The other bits of the inner
3047 register would then be "don't care" on read. The behavior for writes
3048 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3049 chunk would be clobbered but other bits would be preserved. */
3050
3051 inline bool
3052 partial_subreg_p (machine_mode outermode, machine_mode innermode)
3053 {
3054 return GET_MODE_PRECISION (outermode) < GET_MODE_PRECISION (innermode);
3055 }
3056
3057 /* Likewise return true if X is a subreg that is smaller than the inner
3058 register. Use read_modify_subreg_p to test whether writing to such
3059 a subreg preserves any part of the inner register. */
3060
3061 inline bool
3062 partial_subreg_p (const_rtx x)
3063 {
3064 if (GET_CODE (x) != SUBREG)
3065 return false;
3066 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3067 }
3068
3069 /* Return true if a subreg with the given outer and inner modes is
3070 paradoxical. */
3071
3072 inline bool
3073 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3074 {
3075 return GET_MODE_PRECISION (outermode) > GET_MODE_PRECISION (innermode);
3076 }
3077
3078 /* Return true if X is a paradoxical subreg, false otherwise. */
3079
3080 inline bool
3081 paradoxical_subreg_p (const_rtx x)
3082 {
3083 if (GET_CODE (x) != SUBREG)
3084 return false;
3085 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3086 }
3087
3088 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3089
3090 inline unsigned int
3091 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3092 {
3093 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
3094 GET_MODE_SIZE (innermode));
3095 }
3096
3097 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3098 return the smaller of the two modes if they are different sizes,
3099 otherwise return the outer mode. */
3100
3101 inline machine_mode
3102 narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3103 {
3104 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3105 }
3106
3107 /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3108 return the mode that is big enough to hold both the outer and inner
3109 values. Prefer the outer mode in the event of a tie. */
3110
3111 inline machine_mode
3112 wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3113 {
3114 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3115 }
3116
3117 /* Likewise for subreg X. */
3118
3119 inline machine_mode
3120 wider_subreg_mode (const_rtx x)
3121 {
3122 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3123 }
3124
3125 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
3126
3127 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3128
3129 inline unsigned int
3130 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3131 {
3132 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
3133 GET_MODE_SIZE (innermode));
3134 }
3135
3136 extern int byte_lowpart_offset (machine_mode, machine_mode);
3137 extern int subreg_memory_offset (machine_mode, machine_mode, unsigned int);
3138 extern int subreg_memory_offset (const_rtx);
3139 extern rtx make_safe_from (rtx, rtx);
3140 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3141 addr_space_t, bool, bool);
3142 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3143 addr_space_t);
3144 #define convert_memory_address(to_mode,x) \
3145 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3146 extern const char *get_insn_name (int);
3147 extern rtx_insn *get_last_insn_anywhere (void);
3148 extern rtx_insn *get_first_nonnote_insn (void);
3149 extern rtx_insn *get_last_nonnote_insn (void);
3150 extern void start_sequence (void);
3151 extern void push_to_sequence (rtx_insn *);
3152 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3153 extern void end_sequence (void);
3154 #if TARGET_SUPPORTS_WIDE_INT == 0
3155 extern double_int rtx_to_double_int (const_rtx);
3156 #endif
3157 extern void cwi_output_hex (FILE *, const_rtx);
3158 #if TARGET_SUPPORTS_WIDE_INT == 0
3159 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3160 machine_mode);
3161 #endif
3162 extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3163
3164 /* In varasm.c */
3165 extern rtx force_const_mem (machine_mode, rtx);
3166
3167 /* In varasm.c */
3168
3169 struct function;
3170 extern rtx get_pool_constant (const_rtx);
3171 extern rtx get_pool_constant_mark (rtx, bool *);
3172 extern fixed_size_mode get_pool_mode (const_rtx);
3173 extern rtx simplify_subtraction (rtx);
3174 extern void decide_function_section (tree);
3175
3176 /* In emit-rtl.c */
3177 extern rtx_insn *emit_insn_before (rtx, rtx);
3178 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3179 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
3180 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
3181 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3182 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
3183 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3184 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3185 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
3186 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3187 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
3188 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
3189 extern rtx_barrier *emit_barrier_before (rtx);
3190 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
3191 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3192 extern rtx_insn *emit_insn_after (rtx, rtx);
3193 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
3194 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
3195 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
3196 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
3197 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
3198 extern rtx_insn *emit_call_insn_after (rtx, rtx);
3199 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
3200 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
3201 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
3202 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
3203 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
3204 extern rtx_barrier *emit_barrier_after (rtx);
3205 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
3206 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3207 extern rtx_insn *emit_insn (rtx);
3208 extern rtx_insn *emit_debug_insn (rtx);
3209 extern rtx_insn *emit_jump_insn (rtx);
3210 extern rtx_insn *emit_call_insn (rtx);
3211 extern rtx_code_label *emit_label (rtx);
3212 extern rtx_jump_table_data *emit_jump_table_data (rtx);
3213 extern rtx_barrier *emit_barrier (void);
3214 extern rtx_note *emit_note (enum insn_note);
3215 extern rtx_note *emit_note_copy (rtx_note *);
3216 extern rtx_insn *gen_clobber (rtx);
3217 extern rtx_insn *emit_clobber (rtx);
3218 extern rtx_insn *gen_use (rtx);
3219 extern rtx_insn *emit_use (rtx);
3220 extern rtx_insn *make_insn_raw (rtx);
3221 extern void add_function_usage_to (rtx, rtx);
3222 extern rtx_call_insn *last_call_insn (void);
3223 extern rtx_insn *previous_insn (rtx_insn *);
3224 extern rtx_insn *next_insn (rtx_insn *);
3225 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3226 extern rtx_insn *next_nonnote_insn (rtx_insn *);
3227 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3228 extern rtx_insn *next_nondebug_insn (rtx_insn *);
3229 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3230 extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3231 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3232 extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3233 extern rtx_insn *prev_real_insn (rtx_insn *);
3234 extern rtx_insn *next_real_insn (rtx);
3235 extern rtx_insn *prev_active_insn (rtx_insn *);
3236 extern rtx_insn *next_active_insn (rtx_insn *);
3237 extern int active_insn_p (const rtx_insn *);
3238 extern rtx_insn *next_cc0_user (rtx_insn *);
3239 extern rtx_insn *prev_cc0_setter (rtx_insn *);
3240
3241 /* In emit-rtl.c */
3242 extern int insn_line (const rtx_insn *);
3243 extern const char * insn_file (const rtx_insn *);
3244 extern tree insn_scope (const rtx_insn *);
3245 extern expanded_location insn_location (const rtx_insn *);
3246 extern location_t prologue_location, epilogue_location;
3247
3248 /* In jump.c */
3249 extern enum rtx_code reverse_condition (enum rtx_code);
3250 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3251 extern enum rtx_code swap_condition (enum rtx_code);
3252 extern enum rtx_code unsigned_condition (enum rtx_code);
3253 extern enum rtx_code signed_condition (enum rtx_code);
3254 extern void mark_jump_label (rtx, rtx_insn *, int);
3255
3256 /* In jump.c */
3257 extern rtx_insn *delete_related_insns (rtx);
3258
3259 /* In recog.c */
3260 extern rtx *find_constant_term_loc (rtx *);
3261
3262 /* In emit-rtl.c */
3263 extern rtx_insn *try_split (rtx, rtx_insn *, int);
3264
3265 /* In insn-recog.c (generated by genrecog). */
3266 extern rtx_insn *split_insns (rtx, rtx_insn *);
3267
3268 /* In simplify-rtx.c */
3269 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3270 rtx, machine_mode);
3271 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3272 machine_mode);
3273 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3274 rtx, rtx);
3275 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3276 rtx);
3277 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3278 machine_mode, rtx, rtx, rtx);
3279 extern rtx simplify_const_relational_operation (enum rtx_code,
3280 machine_mode, rtx, rtx);
3281 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3282 machine_mode, rtx, rtx);
3283 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3284 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3285 machine_mode);
3286 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3287 machine_mode, rtx, rtx, rtx);
3288 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3289 machine_mode, rtx, rtx);
3290 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
3291 unsigned int);
3292 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
3293 unsigned int);
3294 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3295 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3296 rtx (*fn) (rtx, const_rtx, void *), void *);
3297 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3298 extern rtx simplify_rtx (const_rtx);
3299 extern rtx avoid_constant_pool_reference (rtx);
3300 extern rtx delegitimize_mem_from_attrs (rtx);
3301 extern bool mode_signbit_p (machine_mode, const_rtx);
3302 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3303 extern bool val_signbit_known_set_p (machine_mode,
3304 unsigned HOST_WIDE_INT);
3305 extern bool val_signbit_known_clear_p (machine_mode,
3306 unsigned HOST_WIDE_INT);
3307
3308 /* In reginfo.c */
3309 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3310 bool);
3311 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3312
3313 /* In emit-rtl.c */
3314 extern rtx set_for_reg_notes (rtx);
3315 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3316 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3317 extern void set_insn_deleted (rtx);
3318
3319 /* Functions in rtlanal.c */
3320
3321 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3322 extern bool contains_symbol_ref_p (const_rtx);
3323 extern bool contains_symbolic_reference_p (const_rtx);
3324
3325 /* Handle the cheap and common cases inline for performance. */
3326
3327 inline rtx single_set (const rtx_insn *insn)
3328 {
3329 if (!INSN_P (insn))
3330 return NULL_RTX;
3331
3332 if (GET_CODE (PATTERN (insn)) == SET)
3333 return PATTERN (insn);
3334
3335 /* Defer to the more expensive case. */
3336 return single_set_2 (insn, PATTERN (insn));
3337 }
3338
3339 extern scalar_int_mode get_address_mode (rtx mem);
3340 extern int rtx_addr_can_trap_p (const_rtx);
3341 extern bool nonzero_address_p (const_rtx);
3342 extern int rtx_unstable_p (const_rtx);
3343 extern bool rtx_varies_p (const_rtx, bool);
3344 extern bool rtx_addr_varies_p (const_rtx, bool);
3345 extern rtx get_call_rtx_from (rtx);
3346 extern HOST_WIDE_INT get_integer_term (const_rtx);
3347 extern rtx get_related_value (const_rtx);
3348 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3349 extern void split_const (rtx, rtx *, rtx *);
3350 extern rtx strip_offset (rtx, poly_int64_pod *);
3351 extern bool unsigned_reg_p (rtx);
3352 extern int reg_mentioned_p (const_rtx, const_rtx);
3353 extern int count_occurrences (const_rtx, const_rtx, int);
3354 extern int reg_referenced_p (const_rtx, const_rtx);
3355 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3356 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3357 extern int commutative_operand_precedence (rtx);
3358 extern bool swap_commutative_operands_p (rtx, rtx);
3359 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3360 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3361 extern int modified_in_p (const_rtx, const_rtx);
3362 extern int reg_set_p (const_rtx, const_rtx);
3363 extern int multiple_sets (const_rtx);
3364 extern int set_noop_p (const_rtx);
3365 extern int noop_move_p (const rtx_insn *);
3366 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3367 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3368 extern const_rtx set_of (const_rtx, const_rtx);
3369 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3370 extern void record_hard_reg_uses (rtx *, void *);
3371 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3372 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3373 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3374 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3375 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3376 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3377 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3378 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3379 extern rtx find_reg_equal_equiv_note (const_rtx);
3380 extern rtx find_constant_src (const rtx_insn *);
3381 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3382 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3383 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3384 extern void add_reg_note (rtx, enum reg_note, rtx);
3385 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3386 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3387 extern rtx duplicate_reg_note (rtx);
3388 extern void remove_note (rtx_insn *, const_rtx);
3389 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3390 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3391 extern int side_effects_p (const_rtx);
3392 extern int volatile_refs_p (const_rtx);
3393 extern int volatile_insn_p (const_rtx);
3394 extern int may_trap_p_1 (const_rtx, unsigned);
3395 extern int may_trap_p (const_rtx);
3396 extern int may_trap_or_fault_p (const_rtx);
3397 extern bool can_throw_internal (const_rtx);
3398 extern bool can_throw_external (const_rtx);
3399 extern bool insn_could_throw_p (const_rtx);
3400 extern bool insn_nothrow_p (const_rtx);
3401 extern bool can_nonlocal_goto (const rtx_insn *);
3402 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3403 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3404 extern int inequality_comparisons_p (const_rtx);
3405 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3406 extern void replace_label (rtx *, rtx, rtx, bool);
3407 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3408 extern bool rtx_referenced_p (const_rtx, const_rtx);
3409 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3410 extern int computed_jump_p (const rtx_insn *);
3411 extern bool tls_referenced_p (const_rtx);
3412 extern bool contains_mem_rtx_p (rtx x);
3413
3414 /* Overload for refers_to_regno_p for checking a single register. */
3415 inline bool
3416 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3417 {
3418 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3419 }
3420
3421 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3422 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3423 NULL. The callback is passed the same opaque ARG passed to
3424 for_each_inc_dec. Return zero to continue looking for other
3425 autoinc operations or any other value to interrupt the traversal and
3426 return that value to the caller of for_each_inc_dec. */
3427 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3428 rtx srcoff, void *arg);
3429 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3430
3431 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3432 rtx *, rtx *);
3433 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3434 rtx_equal_p_callback_function);
3435
3436 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3437 machine_mode *);
3438 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3439 bool, hash_rtx_callback_function);
3440
3441 extern rtx regno_use_in (unsigned int, rtx);
3442 extern int auto_inc_p (const_rtx);
3443 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3444 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3445 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3446 extern int loc_mentioned_in_p (rtx *, const_rtx);
3447 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3448 extern bool keep_with_call_p (const rtx_insn *);
3449 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3450 extern int pattern_cost (rtx, bool);
3451 extern int insn_cost (rtx_insn *, bool);
3452 extern unsigned seq_cost (const rtx_insn *, bool);
3453
3454 /* Given an insn and condition, return a canonical description of
3455 the test being made. */
3456 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3457 int, int);
3458
3459 /* Given a JUMP_INSN, return a canonical description of the test
3460 being made. */
3461 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3462
3463 /* Information about a subreg of a hard register. */
3464 struct subreg_info
3465 {
3466 /* Offset of first hard register involved in the subreg. */
3467 int offset;
3468 /* Number of hard registers involved in the subreg. In the case of
3469 a paradoxical subreg, this is the number of registers that would
3470 be modified by writing to the subreg; some of them may be don't-care
3471 when reading from the subreg. */
3472 int nregs;
3473 /* Whether this subreg can be represented as a hard reg with the new
3474 mode (by adding OFFSET to the original hard register). */
3475 bool representable_p;
3476 };
3477
3478 extern void subreg_get_info (unsigned int, machine_mode,
3479 unsigned int, machine_mode,
3480 struct subreg_info *);
3481
3482 /* lists.c */
3483
3484 extern void free_EXPR_LIST_list (rtx_expr_list **);
3485 extern void free_INSN_LIST_list (rtx_insn_list **);
3486 extern void free_EXPR_LIST_node (rtx);
3487 extern void free_INSN_LIST_node (rtx);
3488 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3489 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3490 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3491 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3492 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3493 extern rtx remove_list_elem (rtx, rtx *);
3494 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3495 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3496
3497
3498 /* reginfo.c */
3499
3500 /* Resize reg info. */
3501 extern bool resize_reg_info (void);
3502 /* Free up register info memory. */
3503 extern void free_reg_info (void);
3504 extern void init_subregs_of_mode (void);
3505 extern void finish_subregs_of_mode (void);
3506
3507 /* recog.c */
3508 extern rtx extract_asm_operands (rtx);
3509 extern int asm_noperands (const_rtx);
3510 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3511 machine_mode *, location_t *);
3512 extern void get_referenced_operands (const char *, bool *, unsigned int);
3513
3514 extern enum reg_class reg_preferred_class (int);
3515 extern enum reg_class reg_alternate_class (int);
3516 extern enum reg_class reg_allocno_class (int);
3517 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3518 enum reg_class);
3519
3520 extern void split_all_insns (void);
3521 extern unsigned int split_all_insns_noflow (void);
3522
3523 #define MAX_SAVED_CONST_INT 64
3524 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3525
3526 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3527 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3528 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3529 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3530 extern GTY(()) rtx const_true_rtx;
3531
3532 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3533
3534 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3535 same as VOIDmode. */
3536
3537 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3538
3539 /* Likewise, for the constants 1 and 2 and -1. */
3540
3541 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3542 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3543 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3544
3545 extern GTY(()) rtx pc_rtx;
3546 extern GTY(()) rtx cc0_rtx;
3547 extern GTY(()) rtx ret_rtx;
3548 extern GTY(()) rtx simple_return_rtx;
3549 extern GTY(()) rtx_insn *invalid_insn_rtx;
3550
3551 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3552 is used to represent the frame pointer. This is because the
3553 hard frame pointer and the automatic variables are separated by an amount
3554 that cannot be determined until after register allocation. We can assume
3555 that in this case ELIMINABLE_REGS will be defined, one action of which
3556 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3557 #ifndef HARD_FRAME_POINTER_REGNUM
3558 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3559 #endif
3560
3561 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3562 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3563 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3564 #endif
3565
3566 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3567 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3568 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3569 #endif
3570
3571 /* Index labels for global_rtl. */
3572 enum global_rtl_index
3573 {
3574 GR_STACK_POINTER,
3575 GR_FRAME_POINTER,
3576 /* For register elimination to work properly these hard_frame_pointer_rtx,
3577 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3578 the same register. */
3579 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3580 GR_ARG_POINTER = GR_FRAME_POINTER,
3581 #endif
3582 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3583 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3584 #else
3585 GR_HARD_FRAME_POINTER,
3586 #endif
3587 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3588 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3589 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3590 #else
3591 GR_ARG_POINTER,
3592 #endif
3593 #endif
3594 GR_VIRTUAL_INCOMING_ARGS,
3595 GR_VIRTUAL_STACK_ARGS,
3596 GR_VIRTUAL_STACK_DYNAMIC,
3597 GR_VIRTUAL_OUTGOING_ARGS,
3598 GR_VIRTUAL_CFA,
3599 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3600
3601 GR_MAX
3602 };
3603
3604 /* Target-dependent globals. */
3605 struct GTY(()) target_rtl {
3606 /* All references to the hard registers in global_rtl_index go through
3607 these unique rtl objects. On machines where the frame-pointer and
3608 arg-pointer are the same register, they use the same unique object.
3609
3610 After register allocation, other rtl objects which used to be pseudo-regs
3611 may be clobbered to refer to the frame-pointer register.
3612 But references that were originally to the frame-pointer can be
3613 distinguished from the others because they contain frame_pointer_rtx.
3614
3615 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3616 tricky: until register elimination has taken place hard_frame_pointer_rtx
3617 should be used if it is being set, and frame_pointer_rtx otherwise. After
3618 register elimination hard_frame_pointer_rtx should always be used.
3619 On machines where the two registers are same (most) then these are the
3620 same. */
3621 rtx x_global_rtl[GR_MAX];
3622
3623 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3624 rtx x_pic_offset_table_rtx;
3625
3626 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3627 This is used to implement __builtin_return_address for some machines;
3628 see for instance the MIPS port. */
3629 rtx x_return_address_pointer_rtx;
3630
3631 /* Commonly used RTL for hard registers. These objects are not
3632 necessarily unique, so we allocate them separately from global_rtl.
3633 They are initialized once per compilation unit, then copied into
3634 regno_reg_rtx at the beginning of each function. */
3635 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3636
3637 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3638 rtx x_top_of_stack[MAX_MACHINE_MODE];
3639
3640 /* Static hunks of RTL used by the aliasing code; these are treated
3641 as persistent to avoid unnecessary RTL allocations. */
3642 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3643
3644 /* The default memory attributes for each mode. */
3645 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3646
3647 /* Track if RTL has been initialized. */
3648 bool target_specific_initialized;
3649 };
3650
3651 extern GTY(()) struct target_rtl default_target_rtl;
3652 #if SWITCHABLE_TARGET
3653 extern struct target_rtl *this_target_rtl;
3654 #else
3655 #define this_target_rtl (&default_target_rtl)
3656 #endif
3657
3658 #define global_rtl \
3659 (this_target_rtl->x_global_rtl)
3660 #define pic_offset_table_rtx \
3661 (this_target_rtl->x_pic_offset_table_rtx)
3662 #define return_address_pointer_rtx \
3663 (this_target_rtl->x_return_address_pointer_rtx)
3664 #define top_of_stack \
3665 (this_target_rtl->x_top_of_stack)
3666 #define mode_mem_attrs \
3667 (this_target_rtl->x_mode_mem_attrs)
3668
3669 /* All references to certain hard regs, except those created
3670 by allocating pseudo regs into them (when that's possible),
3671 go through these unique rtx objects. */
3672 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3673 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3674 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3675 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3676
3677 #ifndef GENERATOR_FILE
3678 /* Return the attributes of a MEM rtx. */
3679 static inline const struct mem_attrs *
3680 get_mem_attrs (const_rtx x)
3681 {
3682 struct mem_attrs *attrs;
3683
3684 attrs = MEM_ATTRS (x);
3685 if (!attrs)
3686 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3687 return attrs;
3688 }
3689 #endif
3690
3691 /* Include the RTL generation functions. */
3692
3693 #ifndef GENERATOR_FILE
3694 #include "genrtl.h"
3695 #undef gen_rtx_ASM_INPUT
3696 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3697 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3698 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3699 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3700 #endif
3701
3702 /* There are some RTL codes that require special attention; the
3703 generation functions included above do the raw handling. If you
3704 add to this list, modify special_rtx in gengenrtl.c as well. */
3705
3706 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3707 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3708 extern rtx_insn *
3709 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3710 basic_block bb, rtx pattern, int location, int code,
3711 rtx reg_notes);
3712 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3713 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3714 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3715 extern rtx gen_raw_REG (machine_mode, unsigned int);
3716 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3717 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3718 extern rtx gen_rtx_MEM (machine_mode, rtx);
3719 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3720 enum var_init_status);
3721
3722 #ifdef GENERATOR_FILE
3723 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3724 #else
3725 static inline void
3726 PUT_MODE (rtx x, machine_mode mode)
3727 {
3728 if (REG_P (x))
3729 set_mode_and_regno (x, mode, REGNO (x));
3730 else
3731 PUT_MODE_RAW (x, mode);
3732 }
3733 #endif
3734
3735 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3736
3737 /* Virtual registers are used during RTL generation to refer to locations into
3738 the stack frame when the actual location isn't known until RTL generation
3739 is complete. The routine instantiate_virtual_regs replaces these with
3740 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3741 a constant. */
3742
3743 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3744
3745 /* This points to the first word of the incoming arguments passed on the stack,
3746 either by the caller or by the callee when pretending it was passed by the
3747 caller. */
3748
3749 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3750
3751 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3752
3753 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3754 variable on the stack. Otherwise, it points to the first variable on
3755 the stack. */
3756
3757 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3758
3759 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3760
3761 /* This points to the location of dynamically-allocated memory on the stack
3762 immediately after the stack pointer has been adjusted by the amount
3763 desired. */
3764
3765 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3766
3767 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3768
3769 /* This points to the location in the stack at which outgoing arguments should
3770 be written when the stack is pre-pushed (arguments pushed using push
3771 insns always use sp). */
3772
3773 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3774
3775 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3776
3777 /* This points to the Canonical Frame Address of the function. This
3778 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3779 but is calculated relative to the arg pointer for simplicity; the
3780 frame pointer nor stack pointer are necessarily fixed relative to
3781 the CFA until after reload. */
3782
3783 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3784
3785 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3786
3787 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3788
3789 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3790 when finalized. */
3791
3792 #define virtual_preferred_stack_boundary_rtx \
3793 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3794
3795 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3796 ((FIRST_VIRTUAL_REGISTER) + 5)
3797
3798 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3799
3800 /* Nonzero if REGNUM is a pointer into the stack frame. */
3801 #define REGNO_PTR_FRAME_P(REGNUM) \
3802 ((REGNUM) == STACK_POINTER_REGNUM \
3803 || (REGNUM) == FRAME_POINTER_REGNUM \
3804 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3805 || (REGNUM) == ARG_POINTER_REGNUM \
3806 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3807 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3808
3809 /* REGNUM never really appearing in the INSN stream. */
3810 #define INVALID_REGNUM (~(unsigned int) 0)
3811
3812 /* REGNUM for which no debug information can be generated. */
3813 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3814
3815 extern rtx output_constant_def (tree, int);
3816 extern rtx lookup_constant_def (tree);
3817
3818 /* Nonzero after end of reload pass.
3819 Set to 1 or 0 by reload1.c. */
3820
3821 extern int reload_completed;
3822
3823 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3824 extern int epilogue_completed;
3825
3826 /* Set to 1 while reload_as_needed is operating.
3827 Required by some machines to handle any generated moves differently. */
3828
3829 extern int reload_in_progress;
3830
3831 /* Set to 1 while in lra. */
3832 extern int lra_in_progress;
3833
3834 /* This macro indicates whether you may create a new
3835 pseudo-register. */
3836
3837 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3838
3839 #ifdef STACK_REGS
3840 /* Nonzero after end of regstack pass.
3841 Set to 1 or 0 by reg-stack.c. */
3842 extern int regstack_completed;
3843 #endif
3844
3845 /* If this is nonzero, we do not bother generating VOLATILE
3846 around volatile memory references, and we are willing to
3847 output indirect addresses. If cse is to follow, we reject
3848 indirect addresses so a useful potential cse is generated;
3849 if it is used only once, instruction combination will produce
3850 the same indirect address eventually. */
3851 extern int cse_not_expected;
3852
3853 /* Translates rtx code to tree code, for those codes needed by
3854 real_arithmetic. The function returns an int because the caller may not
3855 know what `enum tree_code' means. */
3856
3857 extern int rtx_to_tree_code (enum rtx_code);
3858
3859 /* In cse.c */
3860 extern int delete_trivially_dead_insns (rtx_insn *, int);
3861 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3862 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3863
3864 /* In dse.c */
3865 extern bool check_for_inc_dec (rtx_insn *insn);
3866
3867 /* In jump.c */
3868 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3869 extern bool jump_to_label_p (const rtx_insn *);
3870 extern int condjump_p (const rtx_insn *);
3871 extern int any_condjump_p (const rtx_insn *);
3872 extern int any_uncondjump_p (const rtx_insn *);
3873 extern rtx pc_set (const rtx_insn *);
3874 extern rtx condjump_label (const rtx_insn *);
3875 extern int simplejump_p (const rtx_insn *);
3876 extern int returnjump_p (const rtx_insn *);
3877 extern int eh_returnjump_p (rtx_insn *);
3878 extern int onlyjump_p (const rtx_insn *);
3879 extern int only_sets_cc0_p (const_rtx);
3880 extern int sets_cc0_p (const_rtx);
3881 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3882 extern int invert_jump (rtx_jump_insn *, rtx, int);
3883 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3884 extern int true_regnum (const_rtx);
3885 extern unsigned int reg_or_subregno (const_rtx);
3886 extern int redirect_jump_1 (rtx_insn *, rtx);
3887 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3888 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3889 extern void rebuild_jump_labels (rtx_insn *);
3890 extern void rebuild_jump_labels_chain (rtx_insn *);
3891 extern rtx reversed_comparison (const_rtx, machine_mode);
3892 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3893 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3894 const_rtx, const rtx_insn *);
3895 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3896 extern int condjump_in_parallel_p (const rtx_insn *);
3897
3898 /* In emit-rtl.c. */
3899 extern int max_reg_num (void);
3900 extern int max_label_num (void);
3901 extern int get_first_label_num (void);
3902 extern void maybe_set_first_label_num (rtx_code_label *);
3903 extern void delete_insns_since (rtx_insn *);
3904 extern void mark_reg_pointer (rtx, int);
3905 extern void mark_user_reg (rtx);
3906 extern void reset_used_flags (rtx);
3907 extern void set_used_flags (rtx);
3908 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3909 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3910 extern int get_max_insn_count (void);
3911 extern int in_sequence_p (void);
3912 extern void init_emit (void);
3913 extern void init_emit_regs (void);
3914 extern void init_derived_machine_modes (void);
3915 extern void init_emit_once (void);
3916 extern void push_topmost_sequence (void);
3917 extern void pop_topmost_sequence (void);
3918 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3919 extern unsigned int unshare_all_rtl (void);
3920 extern void unshare_all_rtl_again (rtx_insn *);
3921 extern void unshare_all_rtl_in_chain (rtx_insn *);
3922 extern void verify_rtl_sharing (void);
3923 extern void add_insn (rtx_insn *);
3924 extern void add_insn_before (rtx, rtx, basic_block);
3925 extern void add_insn_after (rtx, rtx, basic_block);
3926 extern void remove_insn (rtx);
3927 extern rtx_insn *emit (rtx, bool = true);
3928 extern void emit_insn_at_entry (rtx);
3929 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3930 extern rtx gen_const_mem (machine_mode, rtx);
3931 extern rtx gen_frame_mem (machine_mode, rtx);
3932 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3933 extern bool validate_subreg (machine_mode, machine_mode,
3934 const_rtx, unsigned int);
3935
3936 /* In combine.c */
3937 extern unsigned int extended_count (const_rtx, machine_mode, int);
3938 extern rtx remove_death (unsigned int, rtx_insn *);
3939 extern void dump_combine_stats (FILE *);
3940 extern void dump_combine_total_stats (FILE *);
3941 extern rtx make_compound_operation (rtx, enum rtx_code);
3942
3943 /* In sched-rgn.c. */
3944 extern void schedule_insns (void);
3945
3946 /* In sched-ebb.c. */
3947 extern void schedule_ebbs (void);
3948
3949 /* In sel-sched-dump.c. */
3950 extern void sel_sched_fix_param (const char *param, const char *val);
3951
3952 /* In print-rtl.c */
3953 extern const char *print_rtx_head;
3954 extern void debug (const rtx_def &ref);
3955 extern void debug (const rtx_def *ptr);
3956 extern void debug_rtx (const_rtx);
3957 extern void debug_rtx_list (const rtx_insn *, int);
3958 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3959 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3960 extern void print_mem_expr (FILE *, const_tree);
3961 extern void print_rtl (FILE *, const_rtx);
3962 extern void print_simple_rtl (FILE *, const_rtx);
3963 extern int print_rtl_single (FILE *, const_rtx);
3964 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3965 extern void print_inline_rtx (FILE *, const_rtx, int);
3966
3967 /* In stmt.c */
3968 extern void expand_null_return (void);
3969 extern void expand_naked_return (void);
3970 extern void emit_jump (rtx);
3971
3972 /* In expr.c */
3973 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3974 unsigned int, int);
3975 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3976 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3977
3978 /* In expmed.c */
3979 extern void init_expmed (void);
3980 extern void expand_inc (rtx, rtx);
3981 extern void expand_dec (rtx, rtx);
3982
3983 /* In lower-subreg.c */
3984 extern void init_lower_subreg (void);
3985
3986 /* In gcse.c */
3987 extern bool can_copy_p (machine_mode);
3988 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3989 extern rtx fis_get_condition (rtx_insn *);
3990
3991 /* In ira.c */
3992 extern HARD_REG_SET eliminable_regset;
3993 extern void mark_elimination (int, int);
3994
3995 /* In reginfo.c */
3996 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3997 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3998 extern void globalize_reg (tree, int);
3999 extern void init_reg_modes_target (void);
4000 extern void init_regs (void);
4001 extern void reinit_regs (void);
4002 extern void init_fake_stack_mems (void);
4003 extern void save_register_info (void);
4004 extern void init_reg_sets (void);
4005 extern void regclass (rtx, int);
4006 extern void reg_scan (rtx_insn *, unsigned int);
4007 extern void fix_register (const char *, int, int);
4008 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4009
4010 /* In reload1.c */
4011 extern int function_invariant_p (const_rtx);
4012
4013 /* In calls.c */
4014 enum libcall_type
4015 {
4016 LCT_NORMAL = 0,
4017 LCT_CONST = 1,
4018 LCT_PURE = 2,
4019 LCT_NORETURN = 3,
4020 LCT_THROW = 4,
4021 LCT_RETURNS_TWICE = 5
4022 };
4023
4024 extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4025 machine_mode, int, rtx_mode_t *);
4026
4027 /* Output a library call and discard the returned value. FUN is the
4028 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4029 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4030 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4031 another LCT_ value for other types of library calls.
4032
4033 There are different overloads of this function for different numbers
4034 of arguments. In each case the argument value is followed by its mode. */
4035
4036 inline void
4037 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4038 {
4039 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4040 }
4041
4042 inline void
4043 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4044 rtx arg1, machine_mode arg1_mode)
4045 {
4046 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4047 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4048 }
4049
4050 inline void
4051 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4052 rtx arg1, machine_mode arg1_mode,
4053 rtx arg2, machine_mode arg2_mode)
4054 {
4055 rtx_mode_t args[] = {
4056 rtx_mode_t (arg1, arg1_mode),
4057 rtx_mode_t (arg2, arg2_mode)
4058 };
4059 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4060 }
4061
4062 inline void
4063 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4064 rtx arg1, machine_mode arg1_mode,
4065 rtx arg2, machine_mode arg2_mode,
4066 rtx arg3, machine_mode arg3_mode)
4067 {
4068 rtx_mode_t args[] = {
4069 rtx_mode_t (arg1, arg1_mode),
4070 rtx_mode_t (arg2, arg2_mode),
4071 rtx_mode_t (arg3, arg3_mode)
4072 };
4073 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4074 }
4075
4076 inline void
4077 emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4078 rtx arg1, machine_mode arg1_mode,
4079 rtx arg2, machine_mode arg2_mode,
4080 rtx arg3, machine_mode arg3_mode,
4081 rtx arg4, machine_mode arg4_mode)
4082 {
4083 rtx_mode_t args[] = {
4084 rtx_mode_t (arg1, arg1_mode),
4085 rtx_mode_t (arg2, arg2_mode),
4086 rtx_mode_t (arg3, arg3_mode),
4087 rtx_mode_t (arg4, arg4_mode)
4088 };
4089 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4090 }
4091
4092 /* Like emit_library_call, but return the value produced by the call.
4093 Use VALUE to store the result if it is nonnull, otherwise pick a
4094 convenient location. */
4095
4096 inline rtx
4097 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4098 machine_mode outmode)
4099 {
4100 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4101 }
4102
4103 inline rtx
4104 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4105 machine_mode outmode,
4106 rtx arg1, machine_mode arg1_mode)
4107 {
4108 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4109 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4110 }
4111
4112 inline rtx
4113 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4114 machine_mode outmode,
4115 rtx arg1, machine_mode arg1_mode,
4116 rtx arg2, machine_mode arg2_mode)
4117 {
4118 rtx_mode_t args[] = {
4119 rtx_mode_t (arg1, arg1_mode),
4120 rtx_mode_t (arg2, arg2_mode)
4121 };
4122 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4123 }
4124
4125 inline rtx
4126 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4127 machine_mode outmode,
4128 rtx arg1, machine_mode arg1_mode,
4129 rtx arg2, machine_mode arg2_mode,
4130 rtx arg3, machine_mode arg3_mode)
4131 {
4132 rtx_mode_t args[] = {
4133 rtx_mode_t (arg1, arg1_mode),
4134 rtx_mode_t (arg2, arg2_mode),
4135 rtx_mode_t (arg3, arg3_mode)
4136 };
4137 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4138 }
4139
4140 inline rtx
4141 emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4142 machine_mode outmode,
4143 rtx arg1, machine_mode arg1_mode,
4144 rtx arg2, machine_mode arg2_mode,
4145 rtx arg3, machine_mode arg3_mode,
4146 rtx arg4, machine_mode arg4_mode)
4147 {
4148 rtx_mode_t args[] = {
4149 rtx_mode_t (arg1, arg1_mode),
4150 rtx_mode_t (arg2, arg2_mode),
4151 rtx_mode_t (arg3, arg3_mode),
4152 rtx_mode_t (arg4, arg4_mode)
4153 };
4154 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4155 }
4156
4157 /* In varasm.c */
4158 extern void init_varasm_once (void);
4159
4160 extern rtx make_debug_expr_from_rtl (const_rtx);
4161
4162 /* In read-rtl.c */
4163 #ifdef GENERATOR_FILE
4164 extern bool read_rtx (const char *, vec<rtx> *);
4165 #endif
4166
4167 /* In alias.c */
4168 extern rtx canon_rtx (rtx);
4169 extern int true_dependence (const_rtx, machine_mode, const_rtx);
4170 extern rtx get_addr (rtx);
4171 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
4172 const_rtx, rtx);
4173 extern int read_dependence (const_rtx, const_rtx);
4174 extern int anti_dependence (const_rtx, const_rtx);
4175 extern int canon_anti_dependence (const_rtx, bool,
4176 const_rtx, machine_mode, rtx);
4177 extern int output_dependence (const_rtx, const_rtx);
4178 extern int canon_output_dependence (const_rtx, bool,
4179 const_rtx, machine_mode, rtx);
4180 extern int may_alias_p (const_rtx, const_rtx);
4181 extern void init_alias_target (void);
4182 extern void init_alias_analysis (void);
4183 extern void end_alias_analysis (void);
4184 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4185 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4186 extern bool may_be_sp_based_p (rtx);
4187 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4188 extern rtx get_reg_known_value (unsigned int);
4189 extern bool get_reg_known_equiv_p (unsigned int);
4190 extern rtx get_reg_base_value (unsigned int);
4191
4192 #ifdef STACK_REGS
4193 extern int stack_regs_mentioned (const_rtx insn);
4194 #endif
4195
4196 /* In toplev.c */
4197 extern GTY(()) rtx stack_limit_rtx;
4198
4199 /* In var-tracking.c */
4200 extern unsigned int variable_tracking_main (void);
4201
4202 /* In stor-layout.c. */
4203 extern void get_mode_bounds (scalar_int_mode, int,
4204 scalar_int_mode, rtx *, rtx *);
4205
4206 /* In loop-iv.c */
4207 extern rtx canon_condition (rtx);
4208 extern void simplify_using_condition (rtx, rtx *, bitmap);
4209
4210 /* In final.c */
4211 extern unsigned int compute_alignments (void);
4212 extern void update_alignments (vec<rtx> &);
4213 extern int asm_str_count (const char *templ);
4214 \f
4215 struct rtl_hooks
4216 {
4217 rtx (*gen_lowpart) (machine_mode, rtx);
4218 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4219 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4220 unsigned HOST_WIDE_INT *);
4221 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4222 unsigned int *);
4223 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4224
4225 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4226 };
4227
4228 /* Each pass can provide its own. */
4229 extern struct rtl_hooks rtl_hooks;
4230
4231 /* ... but then it has to restore these. */
4232 extern const struct rtl_hooks general_rtl_hooks;
4233
4234 /* Keep this for the nonce. */
4235 #define gen_lowpart rtl_hooks.gen_lowpart
4236
4237 extern void insn_locations_init (void);
4238 extern void insn_locations_finalize (void);
4239 extern void set_curr_insn_location (location_t);
4240 extern location_t curr_insn_location (void);
4241
4242 /* rtl-error.c */
4243 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4244 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4245 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4246 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4247
4248 #define fatal_insn(msgid, insn) \
4249 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4250 #define fatal_insn_not_found(insn) \
4251 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4252
4253 /* reginfo.c */
4254 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4255
4256 /* Information about the function that is propagated by the RTL backend.
4257 Available only for functions that has been already assembled. */
4258
4259 struct GTY(()) cgraph_rtl_info {
4260 unsigned int preferred_incoming_stack_boundary;
4261
4262 /* Call unsaved hard registers really used by the corresponding
4263 function (including ones used by functions called by the
4264 function). */
4265 HARD_REG_SET function_used_regs;
4266 /* Set if function_used_regs is valid. */
4267 unsigned function_used_regs_valid: 1;
4268 };
4269
4270 /* If loads from memories of mode MODE always sign or zero extend,
4271 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4272 otherwise. */
4273
4274 inline rtx_code
4275 load_extend_op (machine_mode mode)
4276 {
4277 scalar_int_mode int_mode;
4278 if (is_a <scalar_int_mode> (mode, &int_mode)
4279 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4280 return LOAD_EXTEND_OP (int_mode);
4281 return UNKNOWN;
4282 }
4283
4284 /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4285 and return the base. Return X otherwise. */
4286
4287 inline rtx
4288 strip_offset_and_add (rtx x, poly_int64_pod *offset)
4289 {
4290 if (GET_CODE (x) == PLUS)
4291 {
4292 poly_int64 suboffset;
4293 x = strip_offset (x, &suboffset);
4294 *offset += suboffset;
4295 }
4296 return x;
4297 }
4298
4299 /* gtype-desc.c. */
4300 extern void gt_ggc_mx (rtx &);
4301 extern void gt_pch_nx (rtx &);
4302 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4303
4304 #endif /* ! GCC_RTL_H */