replace rtx_alloc_stat with c++
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
42
43 /* Register Transfer Language EXPRESSIONS CODES */
44
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
47
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
51
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
55
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
63
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
65
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
68
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
75
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
78
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
82
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
86
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
90 };
91
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
106
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
109
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
112
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
115
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
122 \f
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
126 {
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
143 };
144
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
149 {
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
154
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
158
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
162
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
165
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
170
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
173
174 /* True if OFFSET is known. */
175 bool offset_known_p;
176
177 /* True if SIZE is known. */
178 bool size_known_p;
179 };
180
181 /* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
187
188 struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 HOST_WIDE_INT offset; /* Offset from start of DECL. */
191 };
192
193 /* Common union for an element of an rtx. */
194
195 union rtunion
196 {
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
210 };
211
212 /* Describes the properties of a REG. */
213 struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
216
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
220
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
223 };
224
225 /* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228 struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
231
232 /* The block that contains this object. */
233 struct object_block *block;
234
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
238 };
239
240 /* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242 struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
245
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
248
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
251
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
255
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
261
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
265
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
271 };
272
273 struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
275 };
276
277 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278 #define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
282
283 /* RTL expression ("rtx"). */
284
285 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
286 field for gengtype to recognize that inheritance is occurring,
287 so that all subclasses are redirected to the traversal hook for the
288 base class.
289 However, all of the fields are in the base class, and special-casing
290 is at work. Hence we use desc and tag of 0, generating a switch
291 statement of the form:
292 switch (0)
293 {
294 case 0: // all the work happens here
295 }
296 in order to work with the existing special-casing in gengtype. */
297
298 struct GTY((desc("0"), tag("0"),
299 chain_next ("RTX_NEXT (&%h)"),
300 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
301 /* The kind of expression this is. */
302 ENUM_BITFIELD(rtx_code) code: 16;
303
304 /* The kind of value the expression has. */
305 ENUM_BITFIELD(machine_mode) mode : 8;
306
307 /* 1 in a MEM if we should keep the alias set for this mem unchanged
308 when we access a component.
309 1 in a JUMP_INSN if it is a crossing jump.
310 1 in a CALL_INSN if it is a sibling call.
311 1 in a SET that is for a return.
312 In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
314 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
315 1 in a SUBREG generated by LRA for reload insns.
316 1 in a REG if this is a static chain register.
317 1 in a CALL for calls instrumented by Pointer Bounds Checker.
318 Dumped as "/j" in RTL dumps. */
319 unsigned int jump : 1;
320 /* In a CODE_LABEL, part of the two-bit alternate entry field.
321 1 in a MEM if it cannot trap.
322 1 in a CALL_INSN logically equivalent to
323 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
324 Dumped as "/c" in RTL dumps. */
325 unsigned int call : 1;
326 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
327 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
328 1 in a SYMBOL_REF if it addresses something in the per-function
329 constants pool.
330 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
331 1 in a NOTE, or EXPR_LIST for a const call.
332 1 in a JUMP_INSN of an annulling branch.
333 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
334 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
335 1 in a clobber temporarily created for LRA.
336 Dumped as "/u" in RTL dumps. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a
348 scheduling barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
350 Dumped as "/v" in RTL dumps. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
362
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure.
365 Dumped as "/s" in RTL dumps. */
366 unsigned int in_struct : 1;
367 /* At the end of RTL generation, 1 if this rtx is used. This is used for
368 copying shared structure. See `unshare_all_rtl'.
369 In a REG, this is not needed for that purpose, and used instead
370 in `leaf_renumber_regs_insn'.
371 1 in a SYMBOL_REF, means that emit_library_call
372 has used it as the function.
373 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
374 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
375 unsigned int used : 1;
376 /* 1 in an INSN or a SET if this rtx is related to the call frame,
377 either changing how we compute the frame address or saving and
378 restoring registers in the prologue and epilogue.
379 1 in a REG or MEM if it is a pointer.
380 1 in a SYMBOL_REF if it addresses something in the per-function
381 constant string pool.
382 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
383 Dumped as "/f" in RTL dumps. */
384 unsigned frame_related : 1;
385 /* 1 in a REG or PARALLEL that is the current function's return value.
386 1 in a SYMBOL_REF for a weak symbol.
387 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
388 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
389 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
390 Dumped as "/i" in RTL dumps. */
391 unsigned return_val : 1;
392
393 union {
394 /* The final union field is aligned to 64 bits on LP64 hosts,
395 giving a 32-bit gap after the fields above. We optimize the
396 layout for that case and use the gap for extra code-specific
397 information. */
398
399 /* The ORIGINAL_REGNO of a REG. */
400 unsigned int original_regno;
401
402 /* The INSN_UID of an RTX_INSN-class code. */
403 int insn_uid;
404
405 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
406 unsigned int symbol_ref_flags;
407
408 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
409 enum var_init_status var_location_status;
410
411 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
412 HOST_WIDE_INTs in the hwivec_def. */
413 unsigned int num_elem;
414 } GTY ((skip)) u2;
415
416 /* The first element of the operands of this rtx.
417 The number of operands and their types are controlled
418 by the `code' field, according to rtl.def. */
419 union u {
420 rtunion fld[1];
421 HOST_WIDE_INT hwint[1];
422 struct reg_info reg;
423 struct block_symbol block_sym;
424 struct real_value rv;
425 struct fixed_value fv;
426 struct hwivec_def hwiv;
427 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
428 };
429
430 /* A node for constructing singly-linked lists of rtx. */
431
432 class GTY(()) rtx_expr_list : public rtx_def
433 {
434 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
435
436 public:
437 /* Get next in list. */
438 rtx_expr_list *next () const;
439
440 /* Get at the underlying rtx. */
441 rtx element () const;
442 };
443
444 template <>
445 template <>
446 inline bool
447 is_a_helper <rtx_expr_list *>::test (rtx rt)
448 {
449 return rt->code == EXPR_LIST;
450 }
451
452 class GTY(()) rtx_insn_list : public rtx_def
453 {
454 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
455
456 This is an instance of:
457
458 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
459
460 i.e. a node for constructing singly-linked lists of rtx_insn *, where
461 the list is "external" to the insn (as opposed to the doubly-linked
462 list embedded within rtx_insn itself). */
463
464 public:
465 /* Get next in list. */
466 rtx_insn_list *next () const;
467
468 /* Get at the underlying instruction. */
469 rtx_insn *insn () const;
470
471 };
472
473 template <>
474 template <>
475 inline bool
476 is_a_helper <rtx_insn_list *>::test (rtx rt)
477 {
478 return rt->code == INSN_LIST;
479 }
480
481 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
482 typically (but not always) of rtx_insn *, used in the late passes. */
483
484 class GTY(()) rtx_sequence : public rtx_def
485 {
486 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
487
488 public:
489 /* Get number of elements in sequence. */
490 int len () const;
491
492 /* Get i-th element of the sequence. */
493 rtx element (int index) const;
494
495 /* Get i-th element of the sequence, with a checked cast to
496 rtx_insn *. */
497 rtx_insn *insn (int index) const;
498 };
499
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_sequence *>::test (rtx rt)
504 {
505 return rt->code == SEQUENCE;
506 }
507
508 template <>
509 template <>
510 inline bool
511 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
512 {
513 return rt->code == SEQUENCE;
514 }
515
516 class GTY(()) rtx_insn : public rtx_def
517 {
518 public:
519 /* No extra fields, but adds the invariant:
520
521 (INSN_P (X)
522 || NOTE_P (X)
523 || JUMP_TABLE_DATA_P (X)
524 || BARRIER_P (X)
525 || LABEL_P (X))
526
527 i.e. that we must be able to use the following:
528 INSN_UID ()
529 NEXT_INSN ()
530 PREV_INSN ()
531 i.e. we have an rtx that has an INSN_UID field and can be part of
532 a linked list of insns.
533 */
534
535 /* Returns true if this insn has been deleted. */
536
537 bool deleted () const { return volatil; }
538
539 /* Mark this insn as deleted. */
540
541 void set_deleted () { volatil = true; }
542
543 /* Mark this insn as not deleted. */
544
545 void set_undeleted () { volatil = false; }
546 };
547
548 /* Subclasses of rtx_insn. */
549
550 class GTY(()) rtx_debug_insn : public rtx_insn
551 {
552 /* No extra fields, but adds the invariant:
553 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
554 i.e. an annotation for tracking variable assignments.
555
556 This is an instance of:
557 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
558 from rtl.def. */
559 };
560
561 class GTY(()) rtx_nonjump_insn : public rtx_insn
562 {
563 /* No extra fields, but adds the invariant:
564 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
565 i.e an instruction that cannot jump.
566
567 This is an instance of:
568 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
569 from rtl.def. */
570 };
571
572 class GTY(()) rtx_jump_insn : public rtx_insn
573 {
574 public:
575 /* No extra fields, but adds the invariant:
576 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
577 i.e. an instruction that can possibly jump.
578
579 This is an instance of:
580 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
581 from rtl.def. */
582
583 /* Returns jump target of this instruction. The returned value is not
584 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
585 expression. Also, when the code label is marked "deleted", it is
586 replaced by a NOTE. In some cases the value is NULL_RTX. */
587
588 inline rtx jump_label () const;
589
590 /* Returns jump target cast to rtx_code_label *. */
591
592 inline rtx_code_label *jump_target () const;
593
594 /* Set jump target. */
595
596 inline void set_jump_target (rtx_code_label *);
597 };
598
599 class GTY(()) rtx_call_insn : public rtx_insn
600 {
601 /* No extra fields, but adds the invariant:
602 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
603 i.e. an instruction that can possibly call a subroutine
604 but which will not change which instruction comes next
605 in the current function.
606
607 This is an instance of:
608 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
609 from rtl.def. */
610 };
611
612 class GTY(()) rtx_jump_table_data : public rtx_insn
613 {
614 /* No extra fields, but adds the invariant:
615 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
616 i.e. a data for a jump table, considered an instruction for
617 historical reasons.
618
619 This is an instance of:
620 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
621 from rtl.def. */
622
623 public:
624
625 /* This can be either:
626
627 (a) a table of absolute jumps, in which case PATTERN (this) is an
628 ADDR_VEC with arg 0 a vector of labels, or
629
630 (b) a table of relative jumps (e.g. for -fPIC), in which case
631 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
632 arg 1 the vector of labels.
633
634 This method gets the underlying vec. */
635
636 inline rtvec get_labels () const;
637 };
638
639 class GTY(()) rtx_barrier : public rtx_insn
640 {
641 /* No extra fields, but adds the invariant:
642 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
643 i.e. a marker that indicates that control will not flow through.
644
645 This is an instance of:
646 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
647 from rtl.def. */
648 };
649
650 class GTY(()) rtx_code_label : public rtx_insn
651 {
652 /* No extra fields, but adds the invariant:
653 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
654 i.e. a label in the assembler.
655
656 This is an instance of:
657 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
658 from rtl.def. */
659 };
660
661 class GTY(()) rtx_note : public rtx_insn
662 {
663 /* No extra fields, but adds the invariant:
664 NOTE_P(X) aka (GET_CODE (X) == NOTE)
665 i.e. a note about the corresponding source code.
666
667 This is an instance of:
668 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
669 from rtl.def. */
670 };
671
672 /* The size in bytes of an rtx header (code, mode and flags). */
673 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
674
675 /* The size in bytes of an rtx with code CODE. */
676 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
677
678 #define NULL_RTX (rtx) 0
679
680 /* The "next" and "previous" RTX, relative to this one. */
681
682 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
683 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
684
685 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
686 */
687 #define RTX_PREV(X) ((INSN_P (X) \
688 || NOTE_P (X) \
689 || JUMP_TABLE_DATA_P (X) \
690 || BARRIER_P (X) \
691 || LABEL_P (X)) \
692 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
693 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
694 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
695
696 /* Define macros to access the `code' field of the rtx. */
697
698 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
699 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
700
701 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
702 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
703
704 /* RTL vector. These appear inside RTX's when there is a need
705 for a variable number of things. The principle use is inside
706 PARALLEL expressions. */
707
708 struct GTY(()) rtvec_def {
709 int num_elem; /* number of elements */
710 rtx GTY ((length ("%h.num_elem"))) elem[1];
711 };
712
713 #define NULL_RTVEC (rtvec) 0
714
715 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
716 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
717
718 /* Predicate yielding nonzero iff X is an rtx for a register. */
719 #define REG_P(X) (GET_CODE (X) == REG)
720
721 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
722 #define MEM_P(X) (GET_CODE (X) == MEM)
723
724 #if TARGET_SUPPORTS_WIDE_INT
725
726 /* Match CONST_*s that can represent compile-time constant integers. */
727 #define CASE_CONST_SCALAR_INT \
728 case CONST_INT: \
729 case CONST_WIDE_INT
730
731 /* Match CONST_*s for which pointer equality corresponds to value
732 equality. */
733 #define CASE_CONST_UNIQUE \
734 case CONST_INT: \
735 case CONST_WIDE_INT: \
736 case CONST_DOUBLE: \
737 case CONST_FIXED
738
739 /* Match all CONST_* rtxes. */
740 #define CASE_CONST_ANY \
741 case CONST_INT: \
742 case CONST_WIDE_INT: \
743 case CONST_DOUBLE: \
744 case CONST_FIXED: \
745 case CONST_VECTOR
746
747 #else
748
749 /* Match CONST_*s that can represent compile-time constant integers. */
750 #define CASE_CONST_SCALAR_INT \
751 case CONST_INT: \
752 case CONST_DOUBLE
753
754 /* Match CONST_*s for which pointer equality corresponds to value
755 equality. */
756 #define CASE_CONST_UNIQUE \
757 case CONST_INT: \
758 case CONST_DOUBLE: \
759 case CONST_FIXED
760
761 /* Match all CONST_* rtxes. */
762 #define CASE_CONST_ANY \
763 case CONST_INT: \
764 case CONST_DOUBLE: \
765 case CONST_FIXED: \
766 case CONST_VECTOR
767 #endif
768
769 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
770 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
771
772 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
773 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
774
775 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
776 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
777
778 /* Predicate yielding true iff X is an rtx for a double-int
779 or floating point constant. */
780 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
781
782 /* Predicate yielding true iff X is an rtx for a double-int. */
783 #define CONST_DOUBLE_AS_INT_P(X) \
784 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
785
786 /* Predicate yielding true iff X is an rtx for a integer const. */
787 #if TARGET_SUPPORTS_WIDE_INT
788 #define CONST_SCALAR_INT_P(X) \
789 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
790 #else
791 #define CONST_SCALAR_INT_P(X) \
792 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
793 #endif
794
795 /* Predicate yielding true iff X is an rtx for a double-int. */
796 #define CONST_DOUBLE_AS_FLOAT_P(X) \
797 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
798
799 /* Predicate yielding nonzero iff X is a label insn. */
800 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
801
802 /* Predicate yielding nonzero iff X is a jump insn. */
803 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
804
805 /* Predicate yielding nonzero iff X is a call insn. */
806 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
807
808 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
809 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
810
811 /* Predicate yielding nonzero iff X is a debug note/insn. */
812 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
813
814 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
815 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
816
817 /* Nonzero if DEBUG_INSN_P may possibly hold. */
818 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
819
820 /* Predicate yielding nonzero iff X is a real insn. */
821 #define INSN_P(X) \
822 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
823
824 /* Predicate yielding nonzero iff X is a note insn. */
825 #define NOTE_P(X) (GET_CODE (X) == NOTE)
826
827 /* Predicate yielding nonzero iff X is a barrier insn. */
828 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
829
830 /* Predicate yielding nonzero iff X is a data for a jump table. */
831 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
832
833 /* Predicate yielding nonzero iff RTX is a subreg. */
834 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
835
836 /* Predicate yielding true iff RTX is a symbol ref. */
837 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
838
839 template <>
840 template <>
841 inline bool
842 is_a_helper <rtx_insn *>::test (rtx rt)
843 {
844 return (INSN_P (rt)
845 || NOTE_P (rt)
846 || JUMP_TABLE_DATA_P (rt)
847 || BARRIER_P (rt)
848 || LABEL_P (rt));
849 }
850
851 template <>
852 template <>
853 inline bool
854 is_a_helper <const rtx_insn *>::test (const_rtx rt)
855 {
856 return (INSN_P (rt)
857 || NOTE_P (rt)
858 || JUMP_TABLE_DATA_P (rt)
859 || BARRIER_P (rt)
860 || LABEL_P (rt));
861 }
862
863 template <>
864 template <>
865 inline bool
866 is_a_helper <rtx_debug_insn *>::test (rtx rt)
867 {
868 return DEBUG_INSN_P (rt);
869 }
870
871 template <>
872 template <>
873 inline bool
874 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
875 {
876 return NONJUMP_INSN_P (rt);
877 }
878
879 template <>
880 template <>
881 inline bool
882 is_a_helper <rtx_jump_insn *>::test (rtx rt)
883 {
884 return JUMP_P (rt);
885 }
886
887 template <>
888 template <>
889 inline bool
890 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
891 {
892 return JUMP_P (insn);
893 }
894
895 template <>
896 template <>
897 inline bool
898 is_a_helper <rtx_call_insn *>::test (rtx rt)
899 {
900 return CALL_P (rt);
901 }
902
903 template <>
904 template <>
905 inline bool
906 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
907 {
908 return CALL_P (insn);
909 }
910
911 template <>
912 template <>
913 inline bool
914 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
915 {
916 return JUMP_TABLE_DATA_P (rt);
917 }
918
919 template <>
920 template <>
921 inline bool
922 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
923 {
924 return JUMP_TABLE_DATA_P (insn);
925 }
926
927 template <>
928 template <>
929 inline bool
930 is_a_helper <rtx_barrier *>::test (rtx rt)
931 {
932 return BARRIER_P (rt);
933 }
934
935 template <>
936 template <>
937 inline bool
938 is_a_helper <rtx_code_label *>::test (rtx rt)
939 {
940 return LABEL_P (rt);
941 }
942
943 template <>
944 template <>
945 inline bool
946 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
947 {
948 return LABEL_P (insn);
949 }
950
951 template <>
952 template <>
953 inline bool
954 is_a_helper <rtx_note *>::test (rtx rt)
955 {
956 return NOTE_P (rt);
957 }
958
959 template <>
960 template <>
961 inline bool
962 is_a_helper <rtx_note *>::test (rtx_insn *insn)
963 {
964 return NOTE_P (insn);
965 }
966
967 /* Predicate yielding nonzero iff X is a return or simple_return. */
968 #define ANY_RETURN_P(X) \
969 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
970
971 /* 1 if X is a unary operator. */
972
973 #define UNARY_P(X) \
974 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
975
976 /* 1 if X is a binary operator. */
977
978 #define BINARY_P(X) \
979 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
980
981 /* 1 if X is an arithmetic operator. */
982
983 #define ARITHMETIC_P(X) \
984 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
985 == RTX_ARITHMETIC_RESULT)
986
987 /* 1 if X is an arithmetic operator. */
988
989 #define COMMUTATIVE_ARITH_P(X) \
990 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
991
992 /* 1 if X is a commutative arithmetic operator or a comparison operator.
993 These two are sometimes selected together because it is possible to
994 swap the two operands. */
995
996 #define SWAPPABLE_OPERANDS_P(X) \
997 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
998 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
999 | (1 << RTX_COMPARE)))
1000
1001 /* 1 if X is a non-commutative operator. */
1002
1003 #define NON_COMMUTATIVE_P(X) \
1004 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1005 == RTX_NON_COMMUTATIVE_RESULT)
1006
1007 /* 1 if X is a commutative operator on integers. */
1008
1009 #define COMMUTATIVE_P(X) \
1010 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1011 == RTX_COMMUTATIVE_RESULT)
1012
1013 /* 1 if X is a relational operator. */
1014
1015 #define COMPARISON_P(X) \
1016 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1017
1018 /* 1 if X is a constant value that is an integer. */
1019
1020 #define CONSTANT_P(X) \
1021 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1022
1023 /* 1 if X can be used to represent an object. */
1024 #define OBJECT_P(X) \
1025 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1026
1027 /* General accessor macros for accessing the fields of an rtx. */
1028
1029 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1030 /* The bit with a star outside the statement expr and an & inside is
1031 so that N can be evaluated only once. */
1032 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1033 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1034 const enum rtx_code _code = GET_CODE (_rtx); \
1035 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1036 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1037 __FUNCTION__); \
1038 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1039 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1040 __FUNCTION__); \
1041 &_rtx->u.fld[_n]; }))
1042
1043 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1044 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1045 const enum rtx_code _code = GET_CODE (_rtx); \
1046 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1047 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1048 __FUNCTION__); \
1049 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1050 && GET_RTX_FORMAT (_code)[_n] != C2) \
1051 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1052 __FUNCTION__); \
1053 &_rtx->u.fld[_n]; }))
1054
1055 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1056 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1057 if (GET_CODE (_rtx) != (C)) \
1058 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1059 __FUNCTION__); \
1060 &_rtx->u.fld[_n]; }))
1061
1062 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1063 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1064 const enum rtx_code _code = GET_CODE (_rtx); \
1065 if (_code != (C1) && _code != (C2)) \
1066 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1067 __FUNCTION__); \
1068 &_rtx->u.fld[_n]; }))
1069
1070 #define RTVEC_ELT(RTVEC, I) __extension__ \
1071 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1072 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1073 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1074 __FUNCTION__); \
1075 &_rtvec->elem[_i]; }))
1076
1077 #define XWINT(RTX, N) __extension__ \
1078 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1079 const enum rtx_code _code = GET_CODE (_rtx); \
1080 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1081 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1082 __FUNCTION__); \
1083 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1084 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1085 __FUNCTION__); \
1086 &_rtx->u.hwint[_n]; }))
1087
1088 #define CWI_ELT(RTX, I) __extension__ \
1089 (*({ __typeof (RTX) const _cwi = (RTX); \
1090 int _max = CWI_GET_NUM_ELEM (_cwi); \
1091 const int _i = (I); \
1092 if (_i < 0 || _i >= _max) \
1093 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1094 __FUNCTION__); \
1095 &_cwi->u.hwiv.elem[_i]; }))
1096
1097 #define XCWINT(RTX, N, C) __extension__ \
1098 (*({ __typeof (RTX) const _rtx = (RTX); \
1099 if (GET_CODE (_rtx) != (C)) \
1100 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1101 __FUNCTION__); \
1102 &_rtx->u.hwint[N]; }))
1103
1104 #define XCMWINT(RTX, N, C, M) __extension__ \
1105 (*({ __typeof (RTX) const _rtx = (RTX); \
1106 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1107 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1108 __LINE__, __FUNCTION__); \
1109 &_rtx->u.hwint[N]; }))
1110
1111 #define XCNMPRV(RTX, C, M) __extension__ \
1112 ({ __typeof (RTX) const _rtx = (RTX); \
1113 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1114 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1115 __LINE__, __FUNCTION__); \
1116 &_rtx->u.rv; })
1117
1118 #define XCNMPFV(RTX, C, M) __extension__ \
1119 ({ __typeof (RTX) const _rtx = (RTX); \
1120 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1121 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1122 __LINE__, __FUNCTION__); \
1123 &_rtx->u.fv; })
1124
1125 #define REG_CHECK(RTX) __extension__ \
1126 ({ __typeof (RTX) const _rtx = (RTX); \
1127 if (GET_CODE (_rtx) != REG) \
1128 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1129 __FUNCTION__); \
1130 &_rtx->u.reg; })
1131
1132 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1133 ({ __typeof (RTX) const _symbol = (RTX); \
1134 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1135 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1136 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1137 __FUNCTION__); \
1138 &_symbol->u.block_sym; })
1139
1140 #define HWIVEC_CHECK(RTX,C) __extension__ \
1141 ({ __typeof (RTX) const _symbol = (RTX); \
1142 RTL_CHECKC1 (_symbol, 0, C); \
1143 &_symbol->u.hwiv; })
1144
1145 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1146 const char *)
1147 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1148 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1149 const char *)
1150 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1151 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1152 int, const char *)
1153 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1154 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1155 int, const char *)
1156 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1157 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1158 const char *, int, const char *)
1159 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1160 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1161 bool, const char *, int, const char *)
1162 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1163 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1164 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1165 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1166 const char *)
1167 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1168 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1169 const char *)
1170 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1171
1172 #else /* not ENABLE_RTL_CHECKING */
1173
1174 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1175 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1176 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1177 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1178 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1179 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1180 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1181 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1182 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1183 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1184 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1185 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1186 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1187 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1188 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1189
1190 #endif
1191
1192 /* General accessor macros for accessing the flags of an rtx. */
1193
1194 /* Access an individual rtx flag, with no checking of any kind. */
1195 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1196
1197 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1198 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1199 ({ __typeof (RTX) const _rtx = (RTX); \
1200 if (GET_CODE (_rtx) != C1) \
1201 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1202 __FUNCTION__); \
1203 _rtx; })
1204
1205 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1206 ({ __typeof (RTX) const _rtx = (RTX); \
1207 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1208 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1209 __FUNCTION__); \
1210 _rtx; })
1211
1212 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1213 ({ __typeof (RTX) const _rtx = (RTX); \
1214 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1215 && GET_CODE (_rtx) != C3) \
1216 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1217 __FUNCTION__); \
1218 _rtx; })
1219
1220 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1221 ({ __typeof (RTX) const _rtx = (RTX); \
1222 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1223 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1224 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1225 __FUNCTION__); \
1226 _rtx; })
1227
1228 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1229 ({ __typeof (RTX) const _rtx = (RTX); \
1230 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1231 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1232 && GET_CODE (_rtx) != C5) \
1233 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1234 __FUNCTION__); \
1235 _rtx; })
1236
1237 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1238 __extension__ \
1239 ({ __typeof (RTX) const _rtx = (RTX); \
1240 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1241 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1242 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1243 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1244 __FUNCTION__); \
1245 _rtx; })
1246
1247 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1248 __extension__ \
1249 ({ __typeof (RTX) const _rtx = (RTX); \
1250 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1251 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1252 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1253 && GET_CODE (_rtx) != C7) \
1254 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1255 __FUNCTION__); \
1256 _rtx; })
1257
1258 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1259 __extension__ \
1260 ({ __typeof (RTX) const _rtx = (RTX); \
1261 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1262 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1263 __FUNCTION__); \
1264 _rtx; })
1265
1266 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1267 int, const char *)
1268 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1269 ;
1270
1271 #else /* not ENABLE_RTL_FLAG_CHECKING */
1272
1273 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1274 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1275 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1276 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1277 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1278 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1279 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1280 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1281 #endif
1282
1283 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1284 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1285 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1286 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1287 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1288 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1289 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1290 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1291 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1292 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1293
1294 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1295 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1296
1297 /* These are like XINT, etc. except that they expect a '0' field instead
1298 of the normal type code. */
1299
1300 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1301 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1302 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1303 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1304 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1305 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1306 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1307 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1308 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1309 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1310 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1311 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1312
1313 /* Access a '0' field with any type. */
1314 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1315
1316 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1317 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1318 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1319 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1320 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1321 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1322 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1323 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1324 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1325 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1326
1327 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1328 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1329
1330 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1331 \f
1332
1333 /* Methods of rtx_expr_list. */
1334
1335 inline rtx_expr_list *rtx_expr_list::next () const
1336 {
1337 rtx tmp = XEXP (this, 1);
1338 return safe_as_a <rtx_expr_list *> (tmp);
1339 }
1340
1341 inline rtx rtx_expr_list::element () const
1342 {
1343 return XEXP (this, 0);
1344 }
1345
1346 /* Methods of rtx_insn_list. */
1347
1348 inline rtx_insn_list *rtx_insn_list::next () const
1349 {
1350 rtx tmp = XEXP (this, 1);
1351 return safe_as_a <rtx_insn_list *> (tmp);
1352 }
1353
1354 inline rtx_insn *rtx_insn_list::insn () const
1355 {
1356 rtx tmp = XEXP (this, 0);
1357 return safe_as_a <rtx_insn *> (tmp);
1358 }
1359
1360 /* Methods of rtx_sequence. */
1361
1362 inline int rtx_sequence::len () const
1363 {
1364 return XVECLEN (this, 0);
1365 }
1366
1367 inline rtx rtx_sequence::element (int index) const
1368 {
1369 return XVECEXP (this, 0, index);
1370 }
1371
1372 inline rtx_insn *rtx_sequence::insn (int index) const
1373 {
1374 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1375 }
1376
1377 /* ACCESS MACROS for particular fields of insns. */
1378
1379 /* Holds a unique number for each insn.
1380 These are not necessarily sequentially increasing. */
1381 inline int INSN_UID (const_rtx insn)
1382 {
1383 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1384 (insn))->u2.insn_uid;
1385 }
1386 inline int& INSN_UID (rtx insn)
1387 {
1388 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1389 (insn))->u2.insn_uid;
1390 }
1391
1392 /* Chain insns together in sequence. */
1393
1394 /* For now these are split in two: an rvalue form:
1395 PREV_INSN/NEXT_INSN
1396 and an lvalue form:
1397 SET_NEXT_INSN/SET_PREV_INSN. */
1398
1399 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1400 {
1401 rtx prev = XEXP (insn, 0);
1402 return safe_as_a <rtx_insn *> (prev);
1403 }
1404
1405 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1406 {
1407 return XEXP (insn, 0);
1408 }
1409
1410 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1411 {
1412 rtx next = XEXP (insn, 1);
1413 return safe_as_a <rtx_insn *> (next);
1414 }
1415
1416 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1417 {
1418 return XEXP (insn, 1);
1419 }
1420
1421 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1422 {
1423 return XBBDEF (insn, 2);
1424 }
1425
1426 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1427 {
1428 return XBBDEF (insn, 2);
1429 }
1430
1431 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1432 {
1433 BLOCK_FOR_INSN (insn) = bb;
1434 }
1435
1436 /* The body of an insn. */
1437 inline rtx PATTERN (const_rtx insn)
1438 {
1439 return XEXP (insn, 3);
1440 }
1441
1442 inline rtx& PATTERN (rtx insn)
1443 {
1444 return XEXP (insn, 3);
1445 }
1446
1447 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1448 {
1449 return XUINT (insn, 4);
1450 }
1451
1452 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1453 {
1454 return XUINT (insn, 4);
1455 }
1456
1457 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1458 {
1459 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1460 }
1461
1462 /* LOCATION of an RTX if relevant. */
1463 #define RTL_LOCATION(X) (INSN_P (X) ? \
1464 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1465 : UNKNOWN_LOCATION)
1466
1467 /* Code number of instruction, from when it was recognized.
1468 -1 means this instruction has not been recognized yet. */
1469 #define INSN_CODE(INSN) XINT (INSN, 5)
1470
1471 inline rtvec rtx_jump_table_data::get_labels () const
1472 {
1473 rtx pat = PATTERN (this);
1474 if (GET_CODE (pat) == ADDR_VEC)
1475 return XVEC (pat, 0);
1476 else
1477 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1478 }
1479
1480 #define RTX_FRAME_RELATED_P(RTX) \
1481 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1482 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1483
1484 /* 1 if JUMP RTX is a crossing jump. */
1485 #define CROSSING_JUMP_P(RTX) \
1486 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1487
1488 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1489 TREE_READONLY. */
1490 #define RTL_CONST_CALL_P(RTX) \
1491 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1492
1493 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1494 DECL_PURE_P. */
1495 #define RTL_PURE_CALL_P(RTX) \
1496 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1497
1498 /* 1 if RTX is a call to a const or pure function. */
1499 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1500 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1501
1502 /* 1 if RTX is a call to a looping const or pure function. Built from
1503 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1504 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1505 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1506
1507 /* 1 if RTX is a call_insn for a sibling call. */
1508 #define SIBLING_CALL_P(RTX) \
1509 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1510
1511 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1512 #define INSN_ANNULLED_BRANCH_P(RTX) \
1513 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1514
1515 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1516 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1517 executed if the branch is taken. For annulled branches with this bit
1518 clear, the insn should be executed only if the branch is not taken. */
1519 #define INSN_FROM_TARGET_P(RTX) \
1520 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1521 CALL_INSN)->in_struct)
1522
1523 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1524 See the comments for ADDR_DIFF_VEC in rtl.def. */
1525 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1526
1527 /* In a VALUE, the value cselib has assigned to RTX.
1528 This is a "struct cselib_val", see cselib.h. */
1529 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1530
1531 /* Holds a list of notes on what this insn does to various REGs.
1532 It is a chain of EXPR_LIST rtx's, where the second operand is the
1533 chain pointer and the first operand is the REG being described.
1534 The mode field of the EXPR_LIST contains not a real machine mode
1535 but a value from enum reg_note. */
1536 #define REG_NOTES(INSN) XEXP(INSN, 6)
1537
1538 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1539 question. */
1540 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1541
1542 enum reg_note
1543 {
1544 #define DEF_REG_NOTE(NAME) NAME,
1545 #include "reg-notes.def"
1546 #undef DEF_REG_NOTE
1547 REG_NOTE_MAX
1548 };
1549
1550 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1551 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1552 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1553 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1554
1555 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1556
1557 extern const char * const reg_note_name[];
1558 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1559
1560 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1561 USE and CLOBBER expressions.
1562 USE expressions list the registers filled with arguments that
1563 are passed to the function.
1564 CLOBBER expressions document the registers explicitly clobbered
1565 by this CALL_INSN.
1566 Pseudo registers can not be mentioned in this list. */
1567 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1568
1569 /* The label-number of a code-label. The assembler label
1570 is made from `L' and the label-number printed in decimal.
1571 Label numbers are unique in a compilation. */
1572 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1573
1574 /* In a NOTE that is a line number, this is a string for the file name that the
1575 line is in. We use the same field to record block numbers temporarily in
1576 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1577 between ints and pointers if we use a different macro for the block number.)
1578 */
1579
1580 /* Opaque data. */
1581 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1582 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1583 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1584 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1585 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1586 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1587 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1588 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1589 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1590
1591 /* In a NOTE that is a line number, this is the line number.
1592 Other kinds of NOTEs are identified by negative numbers here. */
1593 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1594
1595 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1596 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1597 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1598
1599 /* Variable declaration and the location of a variable. */
1600 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1601 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1602
1603 /* Initialization status of the variable in the location. Status
1604 can be unknown, uninitialized or initialized. See enumeration
1605 type below. */
1606 #define PAT_VAR_LOCATION_STATUS(PAT) \
1607 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1608 ->u2.var_location_status)
1609
1610 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1611 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1612 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1613 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1614 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1615 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1616 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1617
1618 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1619 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1620
1621 /* Accessors for a tree-expanded var location debug insn. */
1622 #define INSN_VAR_LOCATION_DECL(INSN) \
1623 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1624 #define INSN_VAR_LOCATION_LOC(INSN) \
1625 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1626 #define INSN_VAR_LOCATION_STATUS(INSN) \
1627 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1628
1629 /* Expand to the RTL that denotes an unknown variable location in a
1630 DEBUG_INSN. */
1631 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1632
1633 /* Determine whether X is such an unknown location. */
1634 #define VAR_LOC_UNKNOWN_P(X) \
1635 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1636
1637 /* 1 if RTX is emitted after a call, but it should take effect before
1638 the call returns. */
1639 #define NOTE_DURING_CALL_P(RTX) \
1640 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1641
1642 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1643 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1644
1645 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1646 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1647
1648 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1649 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1650
1651 /* Codes that appear in the NOTE_KIND field for kinds of notes
1652 that are not line numbers. These codes are all negative.
1653
1654 Notice that we do not try to use zero here for any of
1655 the special note codes because sometimes the source line
1656 actually can be zero! This happens (for example) when we
1657 are generating code for the per-translation-unit constructor
1658 and destructor routines for some C++ translation unit. */
1659
1660 enum insn_note
1661 {
1662 #define DEF_INSN_NOTE(NAME) NAME,
1663 #include "insn-notes.def"
1664 #undef DEF_INSN_NOTE
1665
1666 NOTE_INSN_MAX
1667 };
1668
1669 /* Names for NOTE insn's other than line numbers. */
1670
1671 extern const char * const note_insn_name[NOTE_INSN_MAX];
1672 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1673 (note_insn_name[(NOTE_CODE)])
1674
1675 /* The name of a label, in case it corresponds to an explicit label
1676 in the input source code. */
1677 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1678
1679 /* In jump.c, each label contains a count of the number
1680 of LABEL_REFs that point at it, so unused labels can be deleted. */
1681 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1682
1683 /* Labels carry a two-bit field composed of the ->jump and ->call
1684 bits. This field indicates whether the label is an alternate
1685 entry point, and if so, what kind. */
1686 enum label_kind
1687 {
1688 LABEL_NORMAL = 0, /* ordinary label */
1689 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1690 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1691 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1692 };
1693
1694 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1695
1696 /* Retrieve the kind of LABEL. */
1697 #define LABEL_KIND(LABEL) __extension__ \
1698 ({ __typeof (LABEL) const _label = (LABEL); \
1699 if (! LABEL_P (_label)) \
1700 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1701 __FUNCTION__); \
1702 (enum label_kind) ((_label->jump << 1) | _label->call); })
1703
1704 /* Set the kind of LABEL. */
1705 #define SET_LABEL_KIND(LABEL, KIND) do { \
1706 __typeof (LABEL) const _label = (LABEL); \
1707 const unsigned int _kind = (KIND); \
1708 if (! LABEL_P (_label)) \
1709 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1710 __FUNCTION__); \
1711 _label->jump = ((_kind >> 1) & 1); \
1712 _label->call = (_kind & 1); \
1713 } while (0)
1714
1715 #else
1716
1717 /* Retrieve the kind of LABEL. */
1718 #define LABEL_KIND(LABEL) \
1719 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1720
1721 /* Set the kind of LABEL. */
1722 #define SET_LABEL_KIND(LABEL, KIND) do { \
1723 rtx const _label = (LABEL); \
1724 const unsigned int _kind = (KIND); \
1725 _label->jump = ((_kind >> 1) & 1); \
1726 _label->call = (_kind & 1); \
1727 } while (0)
1728
1729 #endif /* rtl flag checking */
1730
1731 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1732
1733 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1734 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1735 be decremented and possibly the label can be deleted. */
1736 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1737
1738 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1739 {
1740 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1741 }
1742
1743 /* Methods of rtx_jump_insn. */
1744
1745 inline rtx rtx_jump_insn::jump_label () const
1746 {
1747 return JUMP_LABEL (this);
1748 }
1749
1750 inline rtx_code_label *rtx_jump_insn::jump_target () const
1751 {
1752 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1753 }
1754
1755 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1756 {
1757 JUMP_LABEL (this) = target;
1758 }
1759
1760 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1761 goes through all the LABEL_REFs that jump to that label. The chain
1762 eventually winds up at the CODE_LABEL: it is circular. */
1763 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1764
1765 /* Get the label that a LABEL_REF references. */
1766 static inline rtx_insn *
1767 label_ref_label (const_rtx ref)
1768 {
1769 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1770 }
1771
1772 /* Set the label that LABEL_REF ref refers to. */
1773
1774 static inline void
1775 set_label_ref_label (rtx ref, rtx_insn *label)
1776 {
1777 XCEXP (ref, 0, LABEL_REF) = label;
1778 }
1779 \f
1780 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1781 be used on RHS. Use SET_REGNO to change the value. */
1782 #define REGNO(RTX) (rhs_regno(RTX))
1783 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1784
1785 /* Return the number of consecutive registers in a REG. This is always
1786 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1787 hard registers. */
1788 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1789
1790 /* ORIGINAL_REGNO holds the number the register originally had; for a
1791 pseudo register turned into a hard reg this will hold the old pseudo
1792 register number. */
1793 #define ORIGINAL_REGNO(RTX) \
1794 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1795
1796 /* Force the REGNO macro to only be used on the lhs. */
1797 static inline unsigned int
1798 rhs_regno (const_rtx x)
1799 {
1800 return REG_CHECK (x)->regno;
1801 }
1802
1803 /* Return the final register in REG X plus one. */
1804 static inline unsigned int
1805 END_REGNO (const_rtx x)
1806 {
1807 return REGNO (x) + REG_NREGS (x);
1808 }
1809
1810 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1811 bypassing the df machinery. */
1812 static inline void
1813 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1814 {
1815 reg_info *reg = REG_CHECK (x);
1816 reg->regno = regno;
1817 reg->nregs = nregs;
1818 }
1819
1820 /* 1 if RTX is a reg or parallel that is the current function's return
1821 value. */
1822 #define REG_FUNCTION_VALUE_P(RTX) \
1823 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1824
1825 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1826 #define REG_USERVAR_P(RTX) \
1827 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1828
1829 /* 1 if RTX is a reg that holds a pointer value. */
1830 #define REG_POINTER(RTX) \
1831 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1832
1833 /* 1 if RTX is a mem that holds a pointer value. */
1834 #define MEM_POINTER(RTX) \
1835 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1836
1837 /* 1 if the given register REG corresponds to a hard register. */
1838 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1839
1840 /* 1 if the given register number REG_NO corresponds to a hard register. */
1841 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1842
1843 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1844 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1845 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1846
1847 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1848 elements actually needed to represent the constant.
1849 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1850 significant HOST_WIDE_INT. */
1851 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1852 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1853 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1854
1855 /* For a CONST_DOUBLE:
1856 #if TARGET_SUPPORTS_WIDE_INT == 0
1857 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1858 low-order word and ..._HIGH the high-order.
1859 #endif
1860 For a float, there is a REAL_VALUE_TYPE structure, and
1861 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1862 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1863 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1864 #define CONST_DOUBLE_REAL_VALUE(r) \
1865 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1866
1867 #define CONST_FIXED_VALUE(r) \
1868 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1869 #define CONST_FIXED_VALUE_HIGH(r) \
1870 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1871 #define CONST_FIXED_VALUE_LOW(r) \
1872 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1873
1874 /* For a CONST_VECTOR, return element #n. */
1875 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1876
1877 /* For a CONST_VECTOR, return the number of elements in a vector. */
1878 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1879
1880 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1881 SUBREG_BYTE extracts the byte-number. */
1882
1883 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1884 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1885
1886 /* in rtlanal.c */
1887 /* Return the right cost to give to an operation
1888 to make the cost of the corresponding register-to-register instruction
1889 N times that of a fast register-to-register instruction. */
1890 #define COSTS_N_INSNS(N) ((N) * 4)
1891
1892 /* Maximum cost of an rtl expression. This value has the special meaning
1893 not to use an rtx with this cost under any circumstances. */
1894 #define MAX_COST INT_MAX
1895
1896 /* Return true if CODE always has VOIDmode. */
1897
1898 static inline bool
1899 always_void_p (enum rtx_code code)
1900 {
1901 return code == SET;
1902 }
1903
1904 /* A structure to hold all available cost information about an rtl
1905 expression. */
1906 struct full_rtx_costs
1907 {
1908 int speed;
1909 int size;
1910 };
1911
1912 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1913 static inline void
1914 init_costs_to_max (struct full_rtx_costs *c)
1915 {
1916 c->speed = MAX_COST;
1917 c->size = MAX_COST;
1918 }
1919
1920 /* Initialize a full_rtx_costs structure C to zero cost. */
1921 static inline void
1922 init_costs_to_zero (struct full_rtx_costs *c)
1923 {
1924 c->speed = 0;
1925 c->size = 0;
1926 }
1927
1928 /* Compare two full_rtx_costs structures A and B, returning true
1929 if A < B when optimizing for speed. */
1930 static inline bool
1931 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1932 bool speed)
1933 {
1934 if (speed)
1935 return (a->speed < b->speed
1936 || (a->speed == b->speed && a->size < b->size));
1937 else
1938 return (a->size < b->size
1939 || (a->size == b->size && a->speed < b->speed));
1940 }
1941
1942 /* Increase both members of the full_rtx_costs structure C by the
1943 cost of N insns. */
1944 static inline void
1945 costs_add_n_insns (struct full_rtx_costs *c, int n)
1946 {
1947 c->speed += COSTS_N_INSNS (n);
1948 c->size += COSTS_N_INSNS (n);
1949 }
1950
1951 /* Describes the shape of a subreg:
1952
1953 inner_mode == the mode of the SUBREG_REG
1954 offset == the SUBREG_BYTE
1955 outer_mode == the mode of the SUBREG itself. */
1956 struct subreg_shape {
1957 subreg_shape (machine_mode, unsigned int, machine_mode);
1958 bool operator == (const subreg_shape &) const;
1959 bool operator != (const subreg_shape &) const;
1960 unsigned int unique_id () const;
1961
1962 machine_mode inner_mode;
1963 unsigned int offset;
1964 machine_mode outer_mode;
1965 };
1966
1967 inline
1968 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1969 unsigned int offset_in,
1970 machine_mode outer_mode_in)
1971 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1972 {}
1973
1974 inline bool
1975 subreg_shape::operator == (const subreg_shape &other) const
1976 {
1977 return (inner_mode == other.inner_mode
1978 && offset == other.offset
1979 && outer_mode == other.outer_mode);
1980 }
1981
1982 inline bool
1983 subreg_shape::operator != (const subreg_shape &other) const
1984 {
1985 return !operator == (other);
1986 }
1987
1988 /* Return an integer that uniquely identifies this shape. Structures
1989 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1990 current mode is anywhere near being 65536 bytes in size, so the
1991 id comfortably fits in an int. */
1992
1993 inline unsigned int
1994 subreg_shape::unique_id () const
1995 {
1996 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1997 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1998 }
1999
2000 /* Return the shape of a SUBREG rtx. */
2001
2002 static inline subreg_shape
2003 shape_of_subreg (const_rtx x)
2004 {
2005 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2006 SUBREG_BYTE (x), GET_MODE (x));
2007 }
2008
2009 /* Information about an address. This structure is supposed to be able
2010 to represent all supported target addresses. Please extend it if it
2011 is not yet general enough. */
2012 struct address_info {
2013 /* The mode of the value being addressed, or VOIDmode if this is
2014 a load-address operation with no known address mode. */
2015 machine_mode mode;
2016
2017 /* The address space. */
2018 addr_space_t as;
2019
2020 /* True if this is an RTX_AUTOINC address. */
2021 bool autoinc_p;
2022
2023 /* A pointer to the top-level address. */
2024 rtx *outer;
2025
2026 /* A pointer to the inner address, after all address mutations
2027 have been stripped from the top-level address. It can be one
2028 of the following:
2029
2030 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2031
2032 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2033 points to the step value, depending on whether the step is variable
2034 or constant respectively. SEGMENT is null.
2035
2036 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2037 with null fields evaluating to 0. */
2038 rtx *inner;
2039
2040 /* Components that make up *INNER. Each one may be null or nonnull.
2041 When nonnull, their meanings are as follows:
2042
2043 - *SEGMENT is the "segment" of memory to which the address refers.
2044 This value is entirely target-specific and is only called a "segment"
2045 because that's its most typical use. It contains exactly one UNSPEC,
2046 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2047 reloading.
2048
2049 - *BASE is a variable expression representing a base address.
2050 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2051
2052 - *INDEX is a variable expression representing an index value.
2053 It may be a scaled expression, such as a MULT. It has exactly
2054 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2055
2056 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2057 unmutated RTX_CONST_OBJ. */
2058 rtx *segment;
2059 rtx *base;
2060 rtx *index;
2061 rtx *disp;
2062
2063 rtx *segment_term;
2064 rtx *base_term;
2065 rtx *index_term;
2066 rtx *disp_term;
2067
2068 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2069 of BASE_TERM, otherwise it is null. */
2070 rtx *base_term2;
2071
2072 /* ADDRESS if this structure describes an address operand, MEM if
2073 it describes a MEM address. */
2074 enum rtx_code addr_outer_code;
2075
2076 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2077 enum rtx_code base_outer_code;
2078 };
2079
2080 /* This is used to bundle an rtx and a mode together so that the pair
2081 can be used with the wi:: routines. If we ever put modes into rtx
2082 integer constants, this should go away and then just pass an rtx in. */
2083 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2084
2085 namespace wi
2086 {
2087 template <>
2088 struct int_traits <rtx_mode_t>
2089 {
2090 static const enum precision_type precision_type = VAR_PRECISION;
2091 static const bool host_dependent_precision = false;
2092 /* This ought to be true, except for the special case that BImode
2093 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2094 static const bool is_sign_extended = false;
2095 static unsigned int get_precision (const rtx_mode_t &);
2096 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2097 const rtx_mode_t &);
2098 };
2099 }
2100
2101 inline unsigned int
2102 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2103 {
2104 gcc_checking_assert (x.second != BLKmode && x.second != VOIDmode);
2105 return GET_MODE_PRECISION (x.second);
2106 }
2107
2108 inline wi::storage_ref
2109 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2110 unsigned int precision,
2111 const rtx_mode_t &x)
2112 {
2113 gcc_checking_assert (precision == get_precision (x));
2114 switch (GET_CODE (x.first))
2115 {
2116 case CONST_INT:
2117 if (precision < HOST_BITS_PER_WIDE_INT)
2118 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2119 targets is 1 rather than -1. */
2120 gcc_checking_assert (INTVAL (x.first)
2121 == sext_hwi (INTVAL (x.first), precision)
2122 || (x.second == BImode && INTVAL (x.first) == 1));
2123
2124 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2125
2126 case CONST_WIDE_INT:
2127 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2128 CONST_WIDE_INT_NUNITS (x.first), precision);
2129
2130 #if TARGET_SUPPORTS_WIDE_INT == 0
2131 case CONST_DOUBLE:
2132 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2133 #endif
2134
2135 default:
2136 gcc_unreachable ();
2137 }
2138 }
2139
2140 namespace wi
2141 {
2142 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2143 wide_int min_value (machine_mode, signop);
2144 wide_int max_value (machine_mode, signop);
2145 }
2146
2147 inline wi::hwi_with_prec
2148 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2149 {
2150 return shwi (val, GET_MODE_PRECISION (mode));
2151 }
2152
2153 /* Produce the smallest number that is represented in MODE. The precision
2154 is taken from MODE and the sign from SGN. */
2155 inline wide_int
2156 wi::min_value (machine_mode mode, signop sgn)
2157 {
2158 return min_value (GET_MODE_PRECISION (mode), sgn);
2159 }
2160
2161 /* Produce the largest number that is represented in MODE. The precision
2162 is taken from MODE and the sign from SGN. */
2163 inline wide_int
2164 wi::max_value (machine_mode mode, signop sgn)
2165 {
2166 return max_value (GET_MODE_PRECISION (mode), sgn);
2167 }
2168
2169 extern void init_rtlanal (void);
2170 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2171 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2172 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2173 struct full_rtx_costs *);
2174 extern unsigned int subreg_lsb (const_rtx);
2175 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2176 unsigned int);
2177 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2178 unsigned int);
2179
2180 /* Return the subreg byte offset for a subreg whose outer mode is
2181 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2182 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2183 the inner value. This is the inverse of subreg_lsb_1 (which converts
2184 byte offsets to bit shifts). */
2185
2186 inline unsigned int
2187 subreg_offset_from_lsb (machine_mode outer_mode,
2188 machine_mode inner_mode,
2189 unsigned int lsb_shift)
2190 {
2191 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2192 GET_MODE_SIZE (inner_mode), lsb_shift);
2193 }
2194
2195 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2196 unsigned int, machine_mode);
2197 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2198 unsigned int, machine_mode);
2199 extern unsigned int subreg_regno (const_rtx);
2200 extern int simplify_subreg_regno (unsigned int, machine_mode,
2201 unsigned int, machine_mode);
2202 extern unsigned int subreg_nregs (const_rtx);
2203 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2204 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2205 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2206 extern bool constant_pool_constant_p (rtx);
2207 extern bool truncated_to_mode (machine_mode, const_rtx);
2208 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2209 extern void split_double (rtx, rtx *, rtx *);
2210 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2211 extern void decompose_address (struct address_info *, rtx *,
2212 machine_mode, addr_space_t, enum rtx_code);
2213 extern void decompose_lea_address (struct address_info *, rtx *);
2214 extern void decompose_mem_address (struct address_info *, rtx);
2215 extern void update_address (struct address_info *);
2216 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2217 extern enum rtx_code get_index_code (const struct address_info *);
2218
2219 /* 1 if RTX is a subreg containing a reg that is already known to be
2220 sign- or zero-extended from the mode of the subreg to the mode of
2221 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2222 extension.
2223
2224 When used as a LHS, is means that this extension must be done
2225 when assigning to SUBREG_REG. */
2226
2227 #define SUBREG_PROMOTED_VAR_P(RTX) \
2228 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2229
2230 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2231 this gives the necessary extensions:
2232 0 - signed (SPR_SIGNED)
2233 1 - normal unsigned (SPR_UNSIGNED)
2234 2 - value is both sign and unsign extended for mode
2235 (SPR_SIGNED_AND_UNSIGNED).
2236 -1 - pointer unsigned, which most often can be handled like unsigned
2237 extension, except for generating instructions where we need to
2238 emit special code (ptr_extend insns) on some architectures
2239 (SPR_POINTER). */
2240
2241 const int SRP_POINTER = -1;
2242 const int SRP_SIGNED = 0;
2243 const int SRP_UNSIGNED = 1;
2244 const int SRP_SIGNED_AND_UNSIGNED = 2;
2245
2246 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2247 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2248 do { \
2249 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2250 (RTX), SUBREG); \
2251 switch (VAL) \
2252 { \
2253 case SRP_POINTER: \
2254 _rtx->volatil = 0; \
2255 _rtx->unchanging = 0; \
2256 break; \
2257 case SRP_SIGNED: \
2258 _rtx->volatil = 0; \
2259 _rtx->unchanging = 1; \
2260 break; \
2261 case SRP_UNSIGNED: \
2262 _rtx->volatil = 1; \
2263 _rtx->unchanging = 0; \
2264 break; \
2265 case SRP_SIGNED_AND_UNSIGNED: \
2266 _rtx->volatil = 1; \
2267 _rtx->unchanging = 1; \
2268 break; \
2269 } \
2270 } while (0)
2271
2272 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2273 including SRP_SIGNED_AND_UNSIGNED if promoted for
2274 both signed and unsigned. */
2275 #define SUBREG_PROMOTED_GET(RTX) \
2276 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2277 + (RTX)->unchanging - 1)
2278
2279 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2280 #define SUBREG_PROMOTED_SIGN(RTX) \
2281 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2282 : (RTX)->unchanging - 1)
2283
2284 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2285 for SIGNED type. */
2286 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2287 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2288
2289 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2290 for UNSIGNED type. */
2291 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2292 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2293
2294 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2295 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2296 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2297 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2298 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2299
2300 /* True if the REG is the static chain register for some CALL_INSN. */
2301 #define STATIC_CHAIN_REG_P(RTX) \
2302 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2303
2304 /* True if the subreg was generated by LRA for reload insns. Such
2305 subregs are valid only during LRA. */
2306 #define LRA_SUBREG_P(RTX) \
2307 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2308
2309 /* True if call is instrumented by Pointer Bounds Checker. */
2310 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2311 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2312
2313 /* Access various components of an ASM_OPERANDS rtx. */
2314
2315 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2316 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2317 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2318 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2319 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2320 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2321 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2322 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2323 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2324 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2325 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2326 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2327 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2328 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2329 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2330 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2331 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2332 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2333
2334 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2335 #define MEM_READONLY_P(RTX) \
2336 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2337
2338 /* 1 if RTX is a mem and we should keep the alias set for this mem
2339 unchanged when we access a component. Set to 1, or example, when we
2340 are already in a non-addressable component of an aggregate. */
2341 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2342 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2343
2344 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2345 #define MEM_VOLATILE_P(RTX) \
2346 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2347 ASM_INPUT)->volatil)
2348
2349 /* 1 if RTX is a mem that cannot trap. */
2350 #define MEM_NOTRAP_P(RTX) \
2351 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2352
2353 /* The memory attribute block. We provide access macros for each value
2354 in the block and provide defaults if none specified. */
2355 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2356
2357 /* The register attribute block. We provide access macros for each value
2358 in the block and provide defaults if none specified. */
2359 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2360
2361 #ifndef GENERATOR_FILE
2362 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2363 set, and may alias anything. Otherwise, the MEM can only alias
2364 MEMs in a conflicting alias set. This value is set in a
2365 language-dependent manner in the front-end, and should not be
2366 altered in the back-end. These set numbers are tested with
2367 alias_sets_conflict_p. */
2368 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2369
2370 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2371 refer to part of a DECL. It may also be a COMPONENT_REF. */
2372 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2373
2374 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2375 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2376
2377 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2378 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2379
2380 /* For a MEM rtx, the address space. */
2381 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2382
2383 /* For a MEM rtx, true if its MEM_SIZE is known. */
2384 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2385
2386 /* For a MEM rtx, the size in bytes of the MEM. */
2387 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2388
2389 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2390 mode as a default when STRICT_ALIGNMENT, but not if not. */
2391 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2392 #else
2393 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2394 #endif
2395
2396 /* For a REG rtx, the decl it is known to refer to, if it is known to
2397 refer to part of a DECL. */
2398 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2399
2400 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2401 HOST_WIDE_INT. */
2402 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2403
2404 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2405 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2406 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2407 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2408 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2409 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2410 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2411 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2412
2413 /* 1 if RTX is a label_ref for a nonlocal label. */
2414 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2415 REG_LABEL_TARGET note. */
2416 #define LABEL_REF_NONLOCAL_P(RTX) \
2417 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2418
2419 /* 1 if RTX is a code_label that should always be considered to be needed. */
2420 #define LABEL_PRESERVE_P(RTX) \
2421 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2422
2423 /* During sched, 1 if RTX is an insn that must be scheduled together
2424 with the preceding insn. */
2425 #define SCHED_GROUP_P(RTX) \
2426 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2427 JUMP_INSN, CALL_INSN)->in_struct)
2428
2429 /* For a SET rtx, SET_DEST is the place that is set
2430 and SET_SRC is the value it is set to. */
2431 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2432 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2433 #define SET_IS_RETURN_P(RTX) \
2434 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2435
2436 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2437 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2438 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2439
2440 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2441 conditionally executing the code on, COND_EXEC_CODE is the code
2442 to execute if the condition is true. */
2443 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2444 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2445
2446 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2447 constants pool. */
2448 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2449 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2450
2451 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2452 tree constant pool. This information is private to varasm.c. */
2453 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2454 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2455 (RTX), SYMBOL_REF)->frame_related)
2456
2457 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2458 #define SYMBOL_REF_FLAG(RTX) \
2459 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2460
2461 /* 1 if RTX is a symbol_ref that has been the library function in
2462 emit_library_call. */
2463 #define SYMBOL_REF_USED(RTX) \
2464 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2465
2466 /* 1 if RTX is a symbol_ref for a weak symbol. */
2467 #define SYMBOL_REF_WEAK(RTX) \
2468 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2469
2470 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2471 SYMBOL_REF_CONSTANT. */
2472 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2473
2474 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2475 pool symbol. */
2476 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2477 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2478
2479 /* The tree (decl or constant) associated with the symbol, or null. */
2480 #define SYMBOL_REF_DECL(RTX) \
2481 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2482
2483 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2484 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2485 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2486
2487 /* The rtx constant pool entry for a symbol, or null. */
2488 #define SYMBOL_REF_CONSTANT(RTX) \
2489 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2490
2491 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2492 information derivable from the tree decl associated with this symbol.
2493 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2494 decl. In some cases this is a bug. But beyond that, it's nice to cache
2495 this information to avoid recomputing it. Finally, this allows space for
2496 the target to store more than one bit of information, as with
2497 SYMBOL_REF_FLAG. */
2498 #define SYMBOL_REF_FLAGS(RTX) \
2499 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2500 ->u2.symbol_ref_flags)
2501
2502 /* These flags are common enough to be defined for all targets. They
2503 are computed by the default version of targetm.encode_section_info. */
2504
2505 /* Set if this symbol is a function. */
2506 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2507 #define SYMBOL_REF_FUNCTION_P(RTX) \
2508 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2509 /* Set if targetm.binds_local_p is true. */
2510 #define SYMBOL_FLAG_LOCAL (1 << 1)
2511 #define SYMBOL_REF_LOCAL_P(RTX) \
2512 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2513 /* Set if targetm.in_small_data_p is true. */
2514 #define SYMBOL_FLAG_SMALL (1 << 2)
2515 #define SYMBOL_REF_SMALL_P(RTX) \
2516 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2517 /* The three-bit field at [5:3] is true for TLS variables; use
2518 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2519 #define SYMBOL_FLAG_TLS_SHIFT 3
2520 #define SYMBOL_REF_TLS_MODEL(RTX) \
2521 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2522 /* Set if this symbol is not defined in this translation unit. */
2523 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2524 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2525 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2526 /* Set if this symbol has a block_symbol structure associated with it. */
2527 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2528 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2529 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2530 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2531 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2532 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2533 #define SYMBOL_REF_ANCHOR_P(RTX) \
2534 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2535
2536 /* Subsequent bits are available for the target to use. */
2537 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2538 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2539
2540 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2541 structure to which the symbol belongs, or NULL if it has not been
2542 assigned a block. */
2543 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2544
2545 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2546 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2547 RTX has not yet been assigned to a block, or it has not been given an
2548 offset within that block. */
2549 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2550
2551 /* True if RTX is flagged to be a scheduling barrier. */
2552 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2553 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2554
2555 /* Indicate whether the machine has any sort of auto increment addressing.
2556 If not, we can avoid checking for REG_INC notes. */
2557
2558 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2559 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2560 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2561 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2562 #define AUTO_INC_DEC 1
2563 #else
2564 #define AUTO_INC_DEC 0
2565 #endif
2566
2567 /* Define a macro to look for REG_INC notes,
2568 but save time on machines where they never exist. */
2569
2570 #if AUTO_INC_DEC
2571 #define FIND_REG_INC_NOTE(INSN, REG) \
2572 ((REG) != NULL_RTX && REG_P ((REG)) \
2573 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2574 : find_reg_note ((INSN), REG_INC, (REG)))
2575 #else
2576 #define FIND_REG_INC_NOTE(INSN, REG) 0
2577 #endif
2578
2579 #ifndef HAVE_PRE_INCREMENT
2580 #define HAVE_PRE_INCREMENT 0
2581 #endif
2582
2583 #ifndef HAVE_PRE_DECREMENT
2584 #define HAVE_PRE_DECREMENT 0
2585 #endif
2586
2587 #ifndef HAVE_POST_INCREMENT
2588 #define HAVE_POST_INCREMENT 0
2589 #endif
2590
2591 #ifndef HAVE_POST_DECREMENT
2592 #define HAVE_POST_DECREMENT 0
2593 #endif
2594
2595 #ifndef HAVE_POST_MODIFY_DISP
2596 #define HAVE_POST_MODIFY_DISP 0
2597 #endif
2598
2599 #ifndef HAVE_POST_MODIFY_REG
2600 #define HAVE_POST_MODIFY_REG 0
2601 #endif
2602
2603 #ifndef HAVE_PRE_MODIFY_DISP
2604 #define HAVE_PRE_MODIFY_DISP 0
2605 #endif
2606
2607 #ifndef HAVE_PRE_MODIFY_REG
2608 #define HAVE_PRE_MODIFY_REG 0
2609 #endif
2610
2611
2612 /* Some architectures do not have complete pre/post increment/decrement
2613 instruction sets, or only move some modes efficiently. These macros
2614 allow us to tune autoincrement generation. */
2615
2616 #ifndef USE_LOAD_POST_INCREMENT
2617 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2618 #endif
2619
2620 #ifndef USE_LOAD_POST_DECREMENT
2621 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2622 #endif
2623
2624 #ifndef USE_LOAD_PRE_INCREMENT
2625 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2626 #endif
2627
2628 #ifndef USE_LOAD_PRE_DECREMENT
2629 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2630 #endif
2631
2632 #ifndef USE_STORE_POST_INCREMENT
2633 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2634 #endif
2635
2636 #ifndef USE_STORE_POST_DECREMENT
2637 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2638 #endif
2639
2640 #ifndef USE_STORE_PRE_INCREMENT
2641 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2642 #endif
2643
2644 #ifndef USE_STORE_PRE_DECREMENT
2645 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2646 #endif
2647 \f
2648 /* Nonzero when we are generating CONCATs. */
2649 extern int generating_concat_p;
2650
2651 /* Nonzero when we are expanding trees to RTL. */
2652 extern int currently_expanding_to_rtl;
2653
2654 /* Generally useful functions. */
2655
2656 #ifndef GENERATOR_FILE
2657 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2658 rather than size. */
2659
2660 static inline int
2661 set_rtx_cost (rtx x, bool speed_p)
2662 {
2663 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2664 }
2665
2666 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2667
2668 static inline void
2669 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2670 {
2671 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2672 }
2673
2674 /* Return the cost of moving X into a register, relative to the cost
2675 of a register move. SPEED_P is true if optimizing for speed rather
2676 than size. */
2677
2678 static inline int
2679 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2680 {
2681 return rtx_cost (x, mode, SET, 1, speed_p);
2682 }
2683
2684 /* Like set_src_cost, but return both the speed and size costs in C. */
2685
2686 static inline void
2687 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2688 {
2689 get_full_rtx_cost (x, mode, SET, 1, c);
2690 }
2691 #endif
2692
2693 /* A convenience macro to validate the arguments of a zero_extract
2694 expression. It determines whether SIZE lies inclusively within
2695 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2696 and the sum lies inclusively within [1, RANGE]. RANGE must be
2697 >= 1, but SIZE and POS may be negative. */
2698 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2699 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2700 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2701 - (unsigned HOST_WIDE_INT)(POS)))
2702
2703 /* In explow.c */
2704 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2705 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2706
2707 /* In rtl.c */
2708 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2709 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2710 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2711 #define const_wide_int_alloc(NWORDS) \
2712 rtx_alloc_v (CONST_WIDE_INT, \
2713 (sizeof (struct hwivec_def) \
2714 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2715
2716 extern rtvec rtvec_alloc (int);
2717 extern rtvec shallow_copy_rtvec (rtvec);
2718 extern bool shared_const_p (const_rtx);
2719 extern rtx copy_rtx (rtx);
2720 extern enum rtx_code classify_insn (rtx);
2721 extern void dump_rtx_statistics (void);
2722
2723 /* In emit-rtl.c */
2724 extern rtx copy_rtx_if_shared (rtx);
2725
2726 /* In rtl.c */
2727 extern unsigned int rtx_size (const_rtx);
2728 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2729 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2730 extern int rtx_equal_p (const_rtx, const_rtx);
2731 extern bool rtvec_all_equal_p (const_rtvec);
2732
2733 /* Return true if X is a vector constant with a duplicated element value. */
2734
2735 inline bool
2736 const_vec_duplicate_p (const_rtx x)
2737 {
2738 return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
2739 }
2740
2741 /* Return true if X is a vector constant with a duplicated element value.
2742 Store the duplicated element in *ELT if so. */
2743
2744 template <typename T>
2745 inline bool
2746 const_vec_duplicate_p (T x, T *elt)
2747 {
2748 if (const_vec_duplicate_p (x))
2749 {
2750 *elt = CONST_VECTOR_ELT (x, 0);
2751 return true;
2752 }
2753 return false;
2754 }
2755
2756 /* If X is a vector constant with a duplicated element value, return that
2757 element value, otherwise return X. */
2758
2759 template <typename T>
2760 inline T
2761 unwrap_const_vec_duplicate (T x)
2762 {
2763 if (const_vec_duplicate_p (x))
2764 x = CONST_VECTOR_ELT (x, 0);
2765 return x;
2766 }
2767
2768 /* In emit-rtl.c */
2769 extern rtvec gen_rtvec_v (int, rtx *);
2770 extern rtvec gen_rtvec_v (int, rtx_insn **);
2771 extern rtx gen_reg_rtx (machine_mode);
2772 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2773 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2774 extern rtx gen_reg_rtx_and_attrs (rtx);
2775 extern rtx_code_label *gen_label_rtx (void);
2776 extern rtx gen_lowpart_common (machine_mode, rtx);
2777
2778 /* In cse.c */
2779 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2780
2781 /* In emit-rtl.c */
2782 extern rtx gen_highpart (machine_mode, rtx);
2783 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2784 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2785
2786 /* In emit-rtl.c */
2787 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2788 extern bool paradoxical_subreg_p (const_rtx);
2789 extern int subreg_lowpart_p (const_rtx);
2790 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2791
2792 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2793
2794 inline unsigned int
2795 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2796 {
2797 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2798 GET_MODE_SIZE (innermode));
2799 }
2800
2801 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
2802
2803 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
2804
2805 inline unsigned int
2806 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
2807 {
2808 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
2809 GET_MODE_SIZE (innermode));
2810 }
2811
2812 extern int byte_lowpart_offset (machine_mode, machine_mode);
2813 extern rtx make_safe_from (rtx, rtx);
2814 extern rtx convert_memory_address_addr_space_1 (machine_mode, rtx,
2815 addr_space_t, bool, bool);
2816 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2817 addr_space_t);
2818 #define convert_memory_address(to_mode,x) \
2819 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2820 extern const char *get_insn_name (int);
2821 extern rtx_insn *get_last_insn_anywhere (void);
2822 extern rtx_insn *get_first_nonnote_insn (void);
2823 extern rtx_insn *get_last_nonnote_insn (void);
2824 extern void start_sequence (void);
2825 extern void push_to_sequence (rtx_insn *);
2826 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2827 extern void end_sequence (void);
2828 #if TARGET_SUPPORTS_WIDE_INT == 0
2829 extern double_int rtx_to_double_int (const_rtx);
2830 #endif
2831 extern void cwi_output_hex (FILE *, const_rtx);
2832 #ifndef GENERATOR_FILE
2833 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2834 #endif
2835 #if TARGET_SUPPORTS_WIDE_INT == 0
2836 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2837 machine_mode);
2838 #endif
2839
2840 /* In varasm.c */
2841 extern rtx force_const_mem (machine_mode, rtx);
2842
2843 /* In varasm.c */
2844
2845 struct function;
2846 extern rtx get_pool_constant (const_rtx);
2847 extern rtx get_pool_constant_mark (rtx, bool *);
2848 extern machine_mode get_pool_mode (const_rtx);
2849 extern rtx simplify_subtraction (rtx);
2850 extern void decide_function_section (tree);
2851
2852 /* In emit-rtl.c */
2853 extern rtx_insn *emit_insn_before (rtx, rtx);
2854 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2855 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2856 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2857 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2858 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2859 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2860 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2861 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2862 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2863 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2864 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2865 extern rtx_barrier *emit_barrier_before (rtx);
2866 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2867 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2868 extern rtx_insn *emit_insn_after (rtx, rtx);
2869 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2870 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2871 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2872 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2873 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2874 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2875 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2876 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2877 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2878 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2879 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2880 extern rtx_barrier *emit_barrier_after (rtx);
2881 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2882 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2883 extern rtx_insn *emit_insn (rtx);
2884 extern rtx_insn *emit_debug_insn (rtx);
2885 extern rtx_insn *emit_jump_insn (rtx);
2886 extern rtx_insn *emit_call_insn (rtx);
2887 extern rtx_code_label *emit_label (rtx);
2888 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2889 extern rtx_barrier *emit_barrier (void);
2890 extern rtx_note *emit_note (enum insn_note);
2891 extern rtx_note *emit_note_copy (rtx_note *);
2892 extern rtx_insn *gen_clobber (rtx);
2893 extern rtx_insn *emit_clobber (rtx);
2894 extern rtx_insn *gen_use (rtx);
2895 extern rtx_insn *emit_use (rtx);
2896 extern rtx_insn *make_insn_raw (rtx);
2897 extern void add_function_usage_to (rtx, rtx);
2898 extern rtx_call_insn *last_call_insn (void);
2899 extern rtx_insn *previous_insn (rtx_insn *);
2900 extern rtx_insn *next_insn (rtx_insn *);
2901 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
2902 extern rtx_insn *prev_nonnote_insn_bb (rtx_insn *);
2903 extern rtx_insn *next_nonnote_insn (rtx_insn *);
2904 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2905 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
2906 extern rtx_insn *next_nondebug_insn (rtx_insn *);
2907 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
2908 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
2909 extern rtx_insn *prev_real_insn (rtx_insn *);
2910 extern rtx_insn *next_real_insn (rtx);
2911 extern rtx_insn *prev_active_insn (rtx_insn *);
2912 extern rtx_insn *next_active_insn (rtx_insn *);
2913 extern int active_insn_p (const rtx_insn *);
2914 extern rtx_insn *next_cc0_user (rtx_insn *);
2915 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2916
2917 /* In emit-rtl.c */
2918 extern int insn_line (const rtx_insn *);
2919 extern const char * insn_file (const rtx_insn *);
2920 extern tree insn_scope (const rtx_insn *);
2921 extern expanded_location insn_location (const rtx_insn *);
2922 extern location_t prologue_location, epilogue_location;
2923
2924 /* In jump.c */
2925 extern enum rtx_code reverse_condition (enum rtx_code);
2926 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2927 extern enum rtx_code swap_condition (enum rtx_code);
2928 extern enum rtx_code unsigned_condition (enum rtx_code);
2929 extern enum rtx_code signed_condition (enum rtx_code);
2930 extern void mark_jump_label (rtx, rtx_insn *, int);
2931
2932 /* In jump.c */
2933 extern rtx_insn *delete_related_insns (rtx);
2934
2935 /* In recog.c */
2936 extern rtx *find_constant_term_loc (rtx *);
2937
2938 /* In emit-rtl.c */
2939 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2940
2941 /* In insn-recog.c (generated by genrecog). */
2942 extern rtx_insn *split_insns (rtx, rtx_insn *);
2943
2944 /* In simplify-rtx.c */
2945 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2946 rtx, machine_mode);
2947 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2948 machine_mode);
2949 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2950 rtx, rtx);
2951 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2952 rtx);
2953 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2954 machine_mode, rtx, rtx, rtx);
2955 extern rtx simplify_const_relational_operation (enum rtx_code,
2956 machine_mode, rtx, rtx);
2957 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2958 machine_mode, rtx, rtx);
2959 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2960 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2961 machine_mode);
2962 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2963 machine_mode, rtx, rtx, rtx);
2964 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2965 machine_mode, rtx, rtx);
2966 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2967 unsigned int);
2968 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2969 unsigned int);
2970 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2971 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2972 rtx (*fn) (rtx, const_rtx, void *), void *);
2973 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2974 extern rtx simplify_rtx (const_rtx);
2975 extern rtx avoid_constant_pool_reference (rtx);
2976 extern rtx delegitimize_mem_from_attrs (rtx);
2977 extern bool mode_signbit_p (machine_mode, const_rtx);
2978 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2979 extern bool val_signbit_known_set_p (machine_mode,
2980 unsigned HOST_WIDE_INT);
2981 extern bool val_signbit_known_clear_p (machine_mode,
2982 unsigned HOST_WIDE_INT);
2983
2984 /* In reginfo.c */
2985 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2986 bool);
2987 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2988
2989 /* In emit-rtl.c */
2990 extern rtx set_for_reg_notes (rtx);
2991 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2992 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2993 extern void set_insn_deleted (rtx);
2994
2995 /* Functions in rtlanal.c */
2996
2997 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2998 extern bool contains_symbol_ref_p (const_rtx);
2999 extern bool contains_symbolic_reference_p (const_rtx);
3000
3001 /* Handle the cheap and common cases inline for performance. */
3002
3003 inline rtx single_set (const rtx_insn *insn)
3004 {
3005 if (!INSN_P (insn))
3006 return NULL_RTX;
3007
3008 if (GET_CODE (PATTERN (insn)) == SET)
3009 return PATTERN (insn);
3010
3011 /* Defer to the more expensive case. */
3012 return single_set_2 (insn, PATTERN (insn));
3013 }
3014
3015 extern machine_mode get_address_mode (rtx mem);
3016 extern int rtx_addr_can_trap_p (const_rtx);
3017 extern bool nonzero_address_p (const_rtx);
3018 extern int rtx_unstable_p (const_rtx);
3019 extern bool rtx_varies_p (const_rtx, bool);
3020 extern bool rtx_addr_varies_p (const_rtx, bool);
3021 extern rtx get_call_rtx_from (rtx);
3022 extern HOST_WIDE_INT get_integer_term (const_rtx);
3023 extern rtx get_related_value (const_rtx);
3024 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3025 extern void split_const (rtx, rtx *, rtx *);
3026 extern bool unsigned_reg_p (rtx);
3027 extern int reg_mentioned_p (const_rtx, const_rtx);
3028 extern int count_occurrences (const_rtx, const_rtx, int);
3029 extern int reg_referenced_p (const_rtx, const_rtx);
3030 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3031 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3032 extern int commutative_operand_precedence (rtx);
3033 extern bool swap_commutative_operands_p (rtx, rtx);
3034 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3035 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3036 extern int modified_in_p (const_rtx, const_rtx);
3037 extern int reg_set_p (const_rtx, const_rtx);
3038 extern int multiple_sets (const_rtx);
3039 extern int set_noop_p (const_rtx);
3040 extern int noop_move_p (const rtx_insn *);
3041 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3042 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3043 extern const_rtx set_of (const_rtx, const_rtx);
3044 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3045 extern void record_hard_reg_uses (rtx *, void *);
3046 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3047 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3048 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3049 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3050 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3051 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3052 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3053 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3054 extern rtx find_reg_equal_equiv_note (const_rtx);
3055 extern rtx find_constant_src (const rtx_insn *);
3056 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3057 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3058 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3059 extern void add_reg_note (rtx, enum reg_note, rtx);
3060 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3061 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3062 extern rtx duplicate_reg_note (rtx);
3063 extern void remove_note (rtx_insn *, const_rtx);
3064 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3065 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3066 extern int side_effects_p (const_rtx);
3067 extern int volatile_refs_p (const_rtx);
3068 extern int volatile_insn_p (const_rtx);
3069 extern int may_trap_p_1 (const_rtx, unsigned);
3070 extern int may_trap_p (const_rtx);
3071 extern int may_trap_or_fault_p (const_rtx);
3072 extern bool can_throw_internal (const_rtx);
3073 extern bool can_throw_external (const_rtx);
3074 extern bool insn_could_throw_p (const_rtx);
3075 extern bool insn_nothrow_p (const_rtx);
3076 extern bool can_nonlocal_goto (const rtx_insn *);
3077 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3078 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3079 extern int inequality_comparisons_p (const_rtx);
3080 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3081 extern void replace_label (rtx *, rtx, rtx, bool);
3082 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3083 extern bool rtx_referenced_p (const_rtx, const_rtx);
3084 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3085 extern int computed_jump_p (const rtx_insn *);
3086 extern bool tls_referenced_p (const_rtx);
3087 extern bool contains_mem_rtx_p (rtx x);
3088
3089 /* Overload for refers_to_regno_p for checking a single register. */
3090 inline bool
3091 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3092 {
3093 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3094 }
3095
3096 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3097 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3098 NULL. The callback is passed the same opaque ARG passed to
3099 for_each_inc_dec. Return zero to continue looking for other
3100 autoinc operations or any other value to interrupt the traversal and
3101 return that value to the caller of for_each_inc_dec. */
3102 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3103 rtx srcoff, void *arg);
3104 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3105
3106 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3107 rtx *, rtx *);
3108 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3109 rtx_equal_p_callback_function);
3110
3111 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3112 machine_mode *);
3113 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3114 bool, hash_rtx_callback_function);
3115
3116 extern rtx regno_use_in (unsigned int, rtx);
3117 extern int auto_inc_p (const_rtx);
3118 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3119 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3120 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3121 extern int loc_mentioned_in_p (rtx *, const_rtx);
3122 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3123 extern bool keep_with_call_p (const rtx_insn *);
3124 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3125 extern int insn_rtx_cost (rtx, bool);
3126 extern unsigned seq_cost (const rtx_insn *, bool);
3127
3128 /* Given an insn and condition, return a canonical description of
3129 the test being made. */
3130 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3131 int, int);
3132
3133 /* Given a JUMP_INSN, return a canonical description of the test
3134 being made. */
3135 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3136
3137 /* Information about a subreg of a hard register. */
3138 struct subreg_info
3139 {
3140 /* Offset of first hard register involved in the subreg. */
3141 int offset;
3142 /* Number of hard registers involved in the subreg. In the case of
3143 a paradoxical subreg, this is the number of registers that would
3144 be modified by writing to the subreg; some of them may be don't-care
3145 when reading from the subreg. */
3146 int nregs;
3147 /* Whether this subreg can be represented as a hard reg with the new
3148 mode (by adding OFFSET to the original hard register). */
3149 bool representable_p;
3150 };
3151
3152 extern void subreg_get_info (unsigned int, machine_mode,
3153 unsigned int, machine_mode,
3154 struct subreg_info *);
3155
3156 /* lists.c */
3157
3158 extern void free_EXPR_LIST_list (rtx_expr_list **);
3159 extern void free_INSN_LIST_list (rtx_insn_list **);
3160 extern void free_EXPR_LIST_node (rtx);
3161 extern void free_INSN_LIST_node (rtx);
3162 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3163 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3164 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3165 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3166 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3167 extern rtx remove_list_elem (rtx, rtx *);
3168 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3169 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3170
3171
3172 /* reginfo.c */
3173
3174 /* Resize reg info. */
3175 extern bool resize_reg_info (void);
3176 /* Free up register info memory. */
3177 extern void free_reg_info (void);
3178 extern void init_subregs_of_mode (void);
3179 extern void finish_subregs_of_mode (void);
3180
3181 /* recog.c */
3182 extern rtx extract_asm_operands (rtx);
3183 extern int asm_noperands (const_rtx);
3184 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3185 machine_mode *, location_t *);
3186 extern void get_referenced_operands (const char *, bool *, unsigned int);
3187
3188 extern enum reg_class reg_preferred_class (int);
3189 extern enum reg_class reg_alternate_class (int);
3190 extern enum reg_class reg_allocno_class (int);
3191 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3192 enum reg_class);
3193
3194 extern void split_all_insns (void);
3195 extern unsigned int split_all_insns_noflow (void);
3196
3197 #define MAX_SAVED_CONST_INT 64
3198 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3199
3200 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3201 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3202 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3203 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3204 extern GTY(()) rtx const_true_rtx;
3205
3206 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3207
3208 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3209 same as VOIDmode. */
3210
3211 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3212
3213 /* Likewise, for the constants 1 and 2 and -1. */
3214
3215 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3216 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3217 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3218
3219 extern GTY(()) rtx pc_rtx;
3220 extern GTY(()) rtx cc0_rtx;
3221 extern GTY(()) rtx ret_rtx;
3222 extern GTY(()) rtx simple_return_rtx;
3223 extern GTY(()) rtx_insn *invalid_insn_rtx;
3224
3225 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3226 is used to represent the frame pointer. This is because the
3227 hard frame pointer and the automatic variables are separated by an amount
3228 that cannot be determined until after register allocation. We can assume
3229 that in this case ELIMINABLE_REGS will be defined, one action of which
3230 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3231 #ifndef HARD_FRAME_POINTER_REGNUM
3232 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3233 #endif
3234
3235 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3236 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3237 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3238 #endif
3239
3240 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3241 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3242 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3243 #endif
3244
3245 /* Index labels for global_rtl. */
3246 enum global_rtl_index
3247 {
3248 GR_STACK_POINTER,
3249 GR_FRAME_POINTER,
3250 /* For register elimination to work properly these hard_frame_pointer_rtx,
3251 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3252 the same register. */
3253 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3254 GR_ARG_POINTER = GR_FRAME_POINTER,
3255 #endif
3256 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3257 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3258 #else
3259 GR_HARD_FRAME_POINTER,
3260 #endif
3261 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3262 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3263 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3264 #else
3265 GR_ARG_POINTER,
3266 #endif
3267 #endif
3268 GR_VIRTUAL_INCOMING_ARGS,
3269 GR_VIRTUAL_STACK_ARGS,
3270 GR_VIRTUAL_STACK_DYNAMIC,
3271 GR_VIRTUAL_OUTGOING_ARGS,
3272 GR_VIRTUAL_CFA,
3273 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3274
3275 GR_MAX
3276 };
3277
3278 /* Target-dependent globals. */
3279 struct GTY(()) target_rtl {
3280 /* All references to the hard registers in global_rtl_index go through
3281 these unique rtl objects. On machines where the frame-pointer and
3282 arg-pointer are the same register, they use the same unique object.
3283
3284 After register allocation, other rtl objects which used to be pseudo-regs
3285 may be clobbered to refer to the frame-pointer register.
3286 But references that were originally to the frame-pointer can be
3287 distinguished from the others because they contain frame_pointer_rtx.
3288
3289 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3290 tricky: until register elimination has taken place hard_frame_pointer_rtx
3291 should be used if it is being set, and frame_pointer_rtx otherwise. After
3292 register elimination hard_frame_pointer_rtx should always be used.
3293 On machines where the two registers are same (most) then these are the
3294 same. */
3295 rtx x_global_rtl[GR_MAX];
3296
3297 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3298 rtx x_pic_offset_table_rtx;
3299
3300 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3301 This is used to implement __builtin_return_address for some machines;
3302 see for instance the MIPS port. */
3303 rtx x_return_address_pointer_rtx;
3304
3305 /* Commonly used RTL for hard registers. These objects are not
3306 necessarily unique, so we allocate them separately from global_rtl.
3307 They are initialized once per compilation unit, then copied into
3308 regno_reg_rtx at the beginning of each function. */
3309 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3310
3311 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3312 rtx x_top_of_stack[MAX_MACHINE_MODE];
3313
3314 /* Static hunks of RTL used by the aliasing code; these are treated
3315 as persistent to avoid unnecessary RTL allocations. */
3316 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3317
3318 /* The default memory attributes for each mode. */
3319 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3320
3321 /* Track if RTL has been initialized. */
3322 bool target_specific_initialized;
3323 };
3324
3325 extern GTY(()) struct target_rtl default_target_rtl;
3326 #if SWITCHABLE_TARGET
3327 extern struct target_rtl *this_target_rtl;
3328 #else
3329 #define this_target_rtl (&default_target_rtl)
3330 #endif
3331
3332 #define global_rtl \
3333 (this_target_rtl->x_global_rtl)
3334 #define pic_offset_table_rtx \
3335 (this_target_rtl->x_pic_offset_table_rtx)
3336 #define return_address_pointer_rtx \
3337 (this_target_rtl->x_return_address_pointer_rtx)
3338 #define top_of_stack \
3339 (this_target_rtl->x_top_of_stack)
3340 #define mode_mem_attrs \
3341 (this_target_rtl->x_mode_mem_attrs)
3342
3343 /* All references to certain hard regs, except those created
3344 by allocating pseudo regs into them (when that's possible),
3345 go through these unique rtx objects. */
3346 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3347 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3348 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3349 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3350
3351 #ifndef GENERATOR_FILE
3352 /* Return the attributes of a MEM rtx. */
3353 static inline const struct mem_attrs *
3354 get_mem_attrs (const_rtx x)
3355 {
3356 struct mem_attrs *attrs;
3357
3358 attrs = MEM_ATTRS (x);
3359 if (!attrs)
3360 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3361 return attrs;
3362 }
3363 #endif
3364
3365 /* Include the RTL generation functions. */
3366
3367 #ifndef GENERATOR_FILE
3368 #include "genrtl.h"
3369 #undef gen_rtx_ASM_INPUT
3370 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3371 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3372 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3373 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3374 #endif
3375
3376 /* There are some RTL codes that require special attention; the
3377 generation functions included above do the raw handling. If you
3378 add to this list, modify special_rtx in gengenrtl.c as well. */
3379
3380 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3381 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3382 extern rtx_insn *
3383 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3384 basic_block bb, rtx pattern, int location, int code,
3385 rtx reg_notes);
3386 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3387 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3388 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3389 extern rtx gen_raw_REG (machine_mode, unsigned int);
3390 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3391 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3392 extern rtx gen_rtx_MEM (machine_mode, rtx);
3393 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3394 enum var_init_status);
3395
3396 #ifdef GENERATOR_FILE
3397 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3398 #else
3399 static inline void
3400 PUT_MODE (rtx x, machine_mode mode)
3401 {
3402 if (REG_P (x))
3403 set_mode_and_regno (x, mode, REGNO (x));
3404 else
3405 PUT_MODE_RAW (x, mode);
3406 }
3407 #endif
3408
3409 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3410
3411 /* Virtual registers are used during RTL generation to refer to locations into
3412 the stack frame when the actual location isn't known until RTL generation
3413 is complete. The routine instantiate_virtual_regs replaces these with
3414 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3415 a constant. */
3416
3417 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3418
3419 /* This points to the first word of the incoming arguments passed on the stack,
3420 either by the caller or by the callee when pretending it was passed by the
3421 caller. */
3422
3423 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3424
3425 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3426
3427 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3428 variable on the stack. Otherwise, it points to the first variable on
3429 the stack. */
3430
3431 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3432
3433 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3434
3435 /* This points to the location of dynamically-allocated memory on the stack
3436 immediately after the stack pointer has been adjusted by the amount
3437 desired. */
3438
3439 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3440
3441 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3442
3443 /* This points to the location in the stack at which outgoing arguments should
3444 be written when the stack is pre-pushed (arguments pushed using push
3445 insns always use sp). */
3446
3447 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3448
3449 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3450
3451 /* This points to the Canonical Frame Address of the function. This
3452 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3453 but is calculated relative to the arg pointer for simplicity; the
3454 frame pointer nor stack pointer are necessarily fixed relative to
3455 the CFA until after reload. */
3456
3457 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3458
3459 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3460
3461 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3462
3463 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3464 when finalized. */
3465
3466 #define virtual_preferred_stack_boundary_rtx \
3467 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3468
3469 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3470 ((FIRST_VIRTUAL_REGISTER) + 5)
3471
3472 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3473
3474 /* Nonzero if REGNUM is a pointer into the stack frame. */
3475 #define REGNO_PTR_FRAME_P(REGNUM) \
3476 ((REGNUM) == STACK_POINTER_REGNUM \
3477 || (REGNUM) == FRAME_POINTER_REGNUM \
3478 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3479 || (REGNUM) == ARG_POINTER_REGNUM \
3480 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3481 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3482
3483 /* REGNUM never really appearing in the INSN stream. */
3484 #define INVALID_REGNUM (~(unsigned int) 0)
3485
3486 /* REGNUM for which no debug information can be generated. */
3487 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3488
3489 extern rtx output_constant_def (tree, int);
3490 extern rtx lookup_constant_def (tree);
3491
3492 /* Nonzero after end of reload pass.
3493 Set to 1 or 0 by reload1.c. */
3494
3495 extern int reload_completed;
3496
3497 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3498 extern int epilogue_completed;
3499
3500 /* Set to 1 while reload_as_needed is operating.
3501 Required by some machines to handle any generated moves differently. */
3502
3503 extern int reload_in_progress;
3504
3505 /* Set to 1 while in lra. */
3506 extern int lra_in_progress;
3507
3508 /* This macro indicates whether you may create a new
3509 pseudo-register. */
3510
3511 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3512
3513 #ifdef STACK_REGS
3514 /* Nonzero after end of regstack pass.
3515 Set to 1 or 0 by reg-stack.c. */
3516 extern int regstack_completed;
3517 #endif
3518
3519 /* If this is nonzero, we do not bother generating VOLATILE
3520 around volatile memory references, and we are willing to
3521 output indirect addresses. If cse is to follow, we reject
3522 indirect addresses so a useful potential cse is generated;
3523 if it is used only once, instruction combination will produce
3524 the same indirect address eventually. */
3525 extern int cse_not_expected;
3526
3527 /* Translates rtx code to tree code, for those codes needed by
3528 real_arithmetic. The function returns an int because the caller may not
3529 know what `enum tree_code' means. */
3530
3531 extern int rtx_to_tree_code (enum rtx_code);
3532
3533 /* In cse.c */
3534 extern int delete_trivially_dead_insns (rtx_insn *, int);
3535 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3536 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3537
3538 /* In dse.c */
3539 extern bool check_for_inc_dec (rtx_insn *insn);
3540
3541 /* In jump.c */
3542 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3543 extern bool jump_to_label_p (const rtx_insn *);
3544 extern int condjump_p (const rtx_insn *);
3545 extern int any_condjump_p (const rtx_insn *);
3546 extern int any_uncondjump_p (const rtx_insn *);
3547 extern rtx pc_set (const rtx_insn *);
3548 extern rtx condjump_label (const rtx_insn *);
3549 extern int simplejump_p (const rtx_insn *);
3550 extern int returnjump_p (const rtx_insn *);
3551 extern int eh_returnjump_p (rtx_insn *);
3552 extern int onlyjump_p (const rtx_insn *);
3553 extern int only_sets_cc0_p (const_rtx);
3554 extern int sets_cc0_p (const_rtx);
3555 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3556 extern int invert_jump (rtx_jump_insn *, rtx, int);
3557 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3558 extern int true_regnum (const_rtx);
3559 extern unsigned int reg_or_subregno (const_rtx);
3560 extern int redirect_jump_1 (rtx_insn *, rtx);
3561 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3562 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3563 extern void rebuild_jump_labels (rtx_insn *);
3564 extern void rebuild_jump_labels_chain (rtx_insn *);
3565 extern rtx reversed_comparison (const_rtx, machine_mode);
3566 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3567 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3568 const_rtx, const rtx_insn *);
3569 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3570 extern int condjump_in_parallel_p (const rtx_insn *);
3571
3572 /* In emit-rtl.c. */
3573 extern int max_reg_num (void);
3574 extern int max_label_num (void);
3575 extern int get_first_label_num (void);
3576 extern void maybe_set_first_label_num (rtx_code_label *);
3577 extern void delete_insns_since (rtx_insn *);
3578 extern void mark_reg_pointer (rtx, int);
3579 extern void mark_user_reg (rtx);
3580 extern void reset_used_flags (rtx);
3581 extern void set_used_flags (rtx);
3582 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3583 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3584 extern int get_max_insn_count (void);
3585 extern int in_sequence_p (void);
3586 extern void init_emit (void);
3587 extern void init_emit_regs (void);
3588 extern void init_derived_machine_modes (void);
3589 extern void init_emit_once (void);
3590 extern void push_topmost_sequence (void);
3591 extern void pop_topmost_sequence (void);
3592 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3593 extern unsigned int unshare_all_rtl (void);
3594 extern void unshare_all_rtl_again (rtx_insn *);
3595 extern void unshare_all_rtl_in_chain (rtx_insn *);
3596 extern void verify_rtl_sharing (void);
3597 extern void add_insn (rtx_insn *);
3598 extern void add_insn_before (rtx, rtx, basic_block);
3599 extern void add_insn_after (rtx, rtx, basic_block);
3600 extern void remove_insn (rtx);
3601 extern rtx_insn *emit (rtx, bool = true);
3602 extern void emit_insn_at_entry (rtx);
3603 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3604 extern rtx gen_const_mem (machine_mode, rtx);
3605 extern rtx gen_frame_mem (machine_mode, rtx);
3606 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3607 extern bool validate_subreg (machine_mode, machine_mode,
3608 const_rtx, unsigned int);
3609
3610 /* In combine.c */
3611 extern unsigned int extended_count (const_rtx, machine_mode, int);
3612 extern rtx remove_death (unsigned int, rtx_insn *);
3613 extern void dump_combine_stats (FILE *);
3614 extern void dump_combine_total_stats (FILE *);
3615 extern rtx make_compound_operation (rtx, enum rtx_code);
3616
3617 /* In sched-rgn.c. */
3618 extern void schedule_insns (void);
3619
3620 /* In sched-ebb.c. */
3621 extern void schedule_ebbs (void);
3622
3623 /* In sel-sched-dump.c. */
3624 extern void sel_sched_fix_param (const char *param, const char *val);
3625
3626 /* In print-rtl.c */
3627 extern const char *print_rtx_head;
3628 extern void debug (const rtx_def &ref);
3629 extern void debug (const rtx_def *ptr);
3630 extern void debug_rtx (const_rtx);
3631 extern void debug_rtx_list (const rtx_insn *, int);
3632 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3633 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3634 extern void print_mem_expr (FILE *, const_tree);
3635 extern void print_rtl (FILE *, const_rtx);
3636 extern void print_simple_rtl (FILE *, const_rtx);
3637 extern int print_rtl_single (FILE *, const_rtx);
3638 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3639 extern void print_inline_rtx (FILE *, const_rtx, int);
3640
3641 /* In stmt.c */
3642 extern void expand_null_return (void);
3643 extern void expand_naked_return (void);
3644 extern void emit_jump (rtx);
3645
3646 /* In expr.c */
3647 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3648 unsigned int, int);
3649 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3650 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3651
3652 /* In expmed.c */
3653 extern void init_expmed (void);
3654 extern void expand_inc (rtx, rtx);
3655 extern void expand_dec (rtx, rtx);
3656
3657 /* In lower-subreg.c */
3658 extern void init_lower_subreg (void);
3659
3660 /* In gcse.c */
3661 extern bool can_copy_p (machine_mode);
3662 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3663 extern rtx fis_get_condition (rtx_insn *);
3664
3665 /* In ira.c */
3666 extern HARD_REG_SET eliminable_regset;
3667 extern void mark_elimination (int, int);
3668
3669 /* In reginfo.c */
3670 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3671 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3672 extern void globalize_reg (tree, int);
3673 extern void init_reg_modes_target (void);
3674 extern void init_regs (void);
3675 extern void reinit_regs (void);
3676 extern void init_fake_stack_mems (void);
3677 extern void save_register_info (void);
3678 extern void init_reg_sets (void);
3679 extern void regclass (rtx, int);
3680 extern void reg_scan (rtx_insn *, unsigned int);
3681 extern void fix_register (const char *, int, int);
3682 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3683
3684 /* In reload1.c */
3685 extern int function_invariant_p (const_rtx);
3686
3687 /* In calls.c */
3688 enum libcall_type
3689 {
3690 LCT_NORMAL = 0,
3691 LCT_CONST = 1,
3692 LCT_PURE = 2,
3693 LCT_NORETURN = 3,
3694 LCT_THROW = 4,
3695 LCT_RETURNS_TWICE = 5
3696 };
3697
3698 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3699 ...);
3700 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3701 machine_mode, int, ...);
3702
3703 /* In varasm.c */
3704 extern void init_varasm_once (void);
3705
3706 extern rtx make_debug_expr_from_rtl (const_rtx);
3707
3708 /* In read-rtl.c */
3709 #ifdef GENERATOR_FILE
3710 extern bool read_rtx (const char *, vec<rtx> *);
3711 #endif
3712
3713 /* In alias.c */
3714 extern rtx canon_rtx (rtx);
3715 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3716 extern rtx get_addr (rtx);
3717 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3718 const_rtx, rtx);
3719 extern int read_dependence (const_rtx, const_rtx);
3720 extern int anti_dependence (const_rtx, const_rtx);
3721 extern int canon_anti_dependence (const_rtx, bool,
3722 const_rtx, machine_mode, rtx);
3723 extern int output_dependence (const_rtx, const_rtx);
3724 extern int canon_output_dependence (const_rtx, bool,
3725 const_rtx, machine_mode, rtx);
3726 extern int may_alias_p (const_rtx, const_rtx);
3727 extern void init_alias_target (void);
3728 extern void init_alias_analysis (void);
3729 extern void end_alias_analysis (void);
3730 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3731 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3732 extern bool may_be_sp_based_p (rtx);
3733 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3734 extern rtx get_reg_known_value (unsigned int);
3735 extern bool get_reg_known_equiv_p (unsigned int);
3736 extern rtx get_reg_base_value (unsigned int);
3737
3738 #ifdef STACK_REGS
3739 extern int stack_regs_mentioned (const_rtx insn);
3740 #endif
3741
3742 /* In toplev.c */
3743 extern GTY(()) rtx stack_limit_rtx;
3744
3745 /* In var-tracking.c */
3746 extern unsigned int variable_tracking_main (void);
3747
3748 /* In stor-layout.c. */
3749 extern void get_mode_bounds (machine_mode, int, machine_mode,
3750 rtx *, rtx *);
3751
3752 /* In loop-iv.c */
3753 extern rtx canon_condition (rtx);
3754 extern void simplify_using_condition (rtx, rtx *, bitmap);
3755
3756 /* In final.c */
3757 extern unsigned int compute_alignments (void);
3758 extern void update_alignments (vec<rtx> &);
3759 extern int asm_str_count (const char *templ);
3760 \f
3761 struct rtl_hooks
3762 {
3763 rtx (*gen_lowpart) (machine_mode, rtx);
3764 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3765 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3766 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3767 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3768 unsigned int, unsigned int *);
3769 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3770
3771 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3772 };
3773
3774 /* Each pass can provide its own. */
3775 extern struct rtl_hooks rtl_hooks;
3776
3777 /* ... but then it has to restore these. */
3778 extern const struct rtl_hooks general_rtl_hooks;
3779
3780 /* Keep this for the nonce. */
3781 #define gen_lowpart rtl_hooks.gen_lowpart
3782
3783 extern void insn_locations_init (void);
3784 extern void insn_locations_finalize (void);
3785 extern void set_curr_insn_location (location_t);
3786 extern location_t curr_insn_location (void);
3787
3788 /* rtl-error.c */
3789 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3790 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
3791 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3792 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
3793
3794 #define fatal_insn(msgid, insn) \
3795 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3796 #define fatal_insn_not_found(insn) \
3797 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3798
3799 /* reginfo.c */
3800 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3801
3802 /* Information about the function that is propagated by the RTL backend.
3803 Available only for functions that has been already assembled. */
3804
3805 struct GTY(()) cgraph_rtl_info {
3806 unsigned int preferred_incoming_stack_boundary;
3807
3808 /* Call unsaved hard registers really used by the corresponding
3809 function (including ones used by functions called by the
3810 function). */
3811 HARD_REG_SET function_used_regs;
3812 /* Set if function_used_regs is valid. */
3813 unsigned function_used_regs_valid: 1;
3814 };
3815
3816 /* If loads from memories of mode MODE always sign or zero extend,
3817 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
3818 otherwise. */
3819
3820 inline rtx_code
3821 load_extend_op (machine_mode mode)
3822 {
3823 if (SCALAR_INT_MODE_P (mode)
3824 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
3825 return LOAD_EXTEND_OP (mode);
3826 return UNKNOWN;
3827 }
3828
3829 /* gtype-desc.c. */
3830 extern void gt_ggc_mx (rtx &);
3831 extern void gt_pch_nx (rtx &);
3832 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
3833
3834 #endif /* ! GCC_RTL_H */