rtl.h (PUT_MODE_RAW): New macro.
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include "statistics.h"
24 #include "machmode.h"
25 #include "input.h"
26 #include "real.h"
27 #include "vec.h"
28 #include "fixed-value.h"
29 #include "alias.h"
30 #include "hashtab.h"
31 #include "wide-int.h"
32 #include "flags.h"
33 #include "is-a.h"
34
35 /* Value used by some passes to "recognize" noop moves as valid
36 instructions. */
37 #define NOOP_MOVE_INSN_CODE INT_MAX
38
39 /* Register Transfer Language EXPRESSIONS CODES */
40
41 #define RTX_CODE enum rtx_code
42 enum rtx_code {
43
44 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
45 #include "rtl.def" /* rtl expressions are documented here */
46 #undef DEF_RTL_EXPR
47
48 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
49 NUM_RTX_CODE.
50 Assumes default enum value assignment. */
51
52 /* The cast here, saves many elsewhere. */
53 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
54
55 /* Similar, but since generator files get more entries... */
56 #ifdef GENERATOR_FILE
57 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
58 #endif
59
60 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
61
62 enum rtx_class {
63 /* We check bit 0-1 of some rtx class codes in the predicates below. */
64
65 /* Bit 0 = comparison if 0, arithmetic is 1
66 Bit 1 = 1 if commutative. */
67 RTX_COMPARE, /* 0 */
68 RTX_COMM_COMPARE,
69 RTX_BIN_ARITH,
70 RTX_COMM_ARITH,
71
72 /* Must follow the four preceding values. */
73 RTX_UNARY, /* 4 */
74
75 RTX_EXTRA,
76 RTX_MATCH,
77 RTX_INSN,
78
79 /* Bit 0 = 1 if constant. */
80 RTX_OBJ, /* 8 */
81 RTX_CONST_OBJ,
82
83 RTX_TERNARY,
84 RTX_BITFIELD_OPS,
85 RTX_AUTOINC
86 };
87
88 #define RTX_OBJ_MASK (~1)
89 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
90 #define RTX_COMPARE_MASK (~1)
91 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
92 #define RTX_ARITHMETIC_MASK (~1)
93 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
94 #define RTX_BINARY_MASK (~3)
95 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
96 #define RTX_COMMUTATIVE_MASK (~2)
97 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
98 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
99
100 extern const unsigned char rtx_length[NUM_RTX_CODE];
101 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
102
103 extern const char * const rtx_name[NUM_RTX_CODE];
104 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
105
106 extern const char * const rtx_format[NUM_RTX_CODE];
107 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
108
109 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
110 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
111
112 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
113 and NEXT_INSN fields). */
114 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
115
116 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
117 extern const unsigned char rtx_next[NUM_RTX_CODE];
118 \f
119 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
120 relative to which the offsets are calculated, as explained in rtl.def. */
121 struct addr_diff_vec_flags
122 {
123 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
124 unsigned min_align: 8;
125 /* Flags: */
126 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
127 unsigned min_after_vec: 1; /* minimum address target label is
128 after the ADDR_DIFF_VEC. */
129 unsigned max_after_vec: 1; /* maximum address target label is
130 after the ADDR_DIFF_VEC. */
131 unsigned min_after_base: 1; /* minimum address target label is
132 after BASE. */
133 unsigned max_after_base: 1; /* maximum address target label is
134 after BASE. */
135 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
136 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
137 unsigned : 2;
138 unsigned scale : 8;
139 };
140
141 /* Structure used to describe the attributes of a MEM. These are hashed
142 so MEMs that the same attributes share a data structure. This means
143 they cannot be modified in place. */
144 struct GTY(()) mem_attrs
145 {
146 /* The expression that the MEM accesses, or null if not known.
147 This expression might be larger than the memory reference itself.
148 (In other words, the MEM might access only part of the object.) */
149 tree expr;
150
151 /* The offset of the memory reference from the start of EXPR.
152 Only valid if OFFSET_KNOWN_P. */
153 HOST_WIDE_INT offset;
154
155 /* The size of the memory reference in bytes. Only valid if
156 SIZE_KNOWN_P. */
157 HOST_WIDE_INT size;
158
159 /* The alias set of the memory reference. */
160 alias_set_type alias;
161
162 /* The alignment of the reference in bits. Always a multiple of
163 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
164 than the memory reference itself. */
165 unsigned int align;
166
167 /* The address space that the memory reference uses. */
168 unsigned char addrspace;
169
170 /* True if OFFSET is known. */
171 bool offset_known_p;
172
173 /* True if SIZE is known. */
174 bool size_known_p;
175 };
176
177 /* Structure used to describe the attributes of a REG in similar way as
178 mem_attrs does for MEM above. Note that the OFFSET field is calculated
179 in the same way as for mem_attrs, rather than in the same way as a
180 SUBREG_BYTE. For example, if a big-endian target stores a byte
181 object in the low part of a 4-byte register, the OFFSET field
182 will be -3 rather than 0. */
183
184 struct GTY((for_user)) reg_attrs {
185 tree decl; /* decl corresponding to REG. */
186 HOST_WIDE_INT offset; /* Offset from start of DECL. */
187 };
188
189 /* Common union for an element of an rtx. */
190
191 union rtunion
192 {
193 int rt_int;
194 unsigned int rt_uint;
195 const char *rt_str;
196 rtx rt_rtx;
197 rtvec rt_rtvec;
198 machine_mode rt_type;
199 addr_diff_vec_flags rt_addr_diff_vec_flags;
200 struct cselib_val *rt_cselib;
201 tree rt_tree;
202 basic_block rt_bb;
203 mem_attrs *rt_mem;
204 struct constant_descriptor_rtx *rt_constant;
205 struct dw_cfi_node *rt_cfi;
206 };
207
208 /* Describes the properties of a REG. */
209 struct GTY(()) reg_info {
210 /* The value of REGNO. */
211 unsigned int regno;
212
213 unsigned int unused : 32;
214
215 /* The value of REG_ATTRS. */
216 reg_attrs *attrs;
217 };
218
219 /* This structure remembers the position of a SYMBOL_REF within an
220 object_block structure. A SYMBOL_REF only provides this information
221 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
222 struct GTY(()) block_symbol {
223 /* The usual SYMBOL_REF fields. */
224 rtunion GTY ((skip)) fld[2];
225
226 /* The block that contains this object. */
227 struct object_block *block;
228
229 /* The offset of this object from the start of its block. It is negative
230 if the symbol has not yet been assigned an offset. */
231 HOST_WIDE_INT offset;
232 };
233
234 /* Describes a group of objects that are to be placed together in such
235 a way that their relative positions are known. */
236 struct GTY((for_user)) object_block {
237 /* The section in which these objects should be placed. */
238 section *sect;
239
240 /* The alignment of the first object, measured in bits. */
241 unsigned int alignment;
242
243 /* The total size of the objects, measured in bytes. */
244 HOST_WIDE_INT size;
245
246 /* The SYMBOL_REFs for each object. The vector is sorted in
247 order of increasing offset and the following conditions will
248 hold for each element X:
249
250 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
251 !SYMBOL_REF_ANCHOR_P (X)
252 SYMBOL_REF_BLOCK (X) == [address of this structure]
253 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
254 vec<rtx, va_gc> *objects;
255
256 /* All the anchor SYMBOL_REFs used to address these objects, sorted
257 in order of increasing offset, and then increasing TLS model.
258 The following conditions will hold for each element X in this vector:
259
260 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
261 SYMBOL_REF_ANCHOR_P (X)
262 SYMBOL_REF_BLOCK (X) == [address of this structure]
263 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
264 vec<rtx, va_gc> *anchors;
265 };
266
267 struct GTY((variable_size)) hwivec_def {
268 HOST_WIDE_INT elem[1];
269 };
270
271 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
272 #define CWI_GET_NUM_ELEM(RTX) \
273 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
274 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
275 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
276
277 /* RTL expression ("rtx"). */
278
279 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
280 field for for gengtype to recognize that inheritance is occurring,
281 so that all subclasses are redirected to the traversal hook for the
282 base class.
283 However, all of the fields are in the base class, and special-casing
284 is at work. Hence we use desc and tag of 0, generating a switch
285 statement of the form:
286 switch (0)
287 {
288 case 0: // all the work happens here
289 }
290 in order to work with the existing special-casing in gengtype. */
291
292 struct GTY((desc("0"), tag("0"),
293 chain_next ("RTX_NEXT (&%h)"),
294 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
295 /* The kind of expression this is. */
296 ENUM_BITFIELD(rtx_code) code: 16;
297
298 /* The kind of value the expression has. */
299 ENUM_BITFIELD(machine_mode) mode : 8;
300
301 /* 1 in a MEM if we should keep the alias set for this mem unchanged
302 when we access a component.
303 1 in a JUMP_INSN if it is a crossing jump.
304 1 in a CALL_INSN if it is a sibling call.
305 1 in a SET that is for a return.
306 In a CODE_LABEL, part of the two-bit alternate entry field.
307 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
308 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
309 1 in a SUBREG generated by LRA for reload insns.
310 1 in a CALL for calls instrumented by Pointer Bounds Checker. */
311 unsigned int jump : 1;
312 /* In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a MEM if it cannot trap.
314 1 in a CALL_INSN logically equivalent to
315 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
316 unsigned int call : 1;
317 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
318 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
319 1 in a SYMBOL_REF if it addresses something in the per-function
320 constants pool.
321 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
322 1 in a NOTE, or EXPR_LIST for a const call.
323 1 in a JUMP_INSN of an annulling branch.
324 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
325 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
326 1 in a clobber temporarily created for LRA. */
327 unsigned int unchanging : 1;
328 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
329 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
330 if it has been deleted.
331 1 in a REG expression if corresponds to a variable declared by the user,
332 0 for an internally generated temporary.
333 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
334 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
335 non-local label.
336 In a SYMBOL_REF, this flag is used for machine-specific purposes.
337 In a PREFETCH, this flag indicates that it should be considered a scheduling
338 barrier.
339 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
340 unsigned int volatil : 1;
341 /* 1 in a REG if the register is used only in exit code a loop.
342 1 in a SUBREG expression if was generated from a variable with a
343 promoted mode.
344 1 in a CODE_LABEL if the label is used for nonlocal gotos
345 and must not be deleted even if its count is zero.
346 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
347 together with the preceding insn. Valid only within sched.
348 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
349 from the target of a branch. Valid from reorg until end of compilation;
350 cleared before used.
351
352 The name of the field is historical. It used to be used in MEMs
353 to record whether the MEM accessed part of a structure. */
354 unsigned int in_struct : 1;
355 /* At the end of RTL generation, 1 if this rtx is used. This is used for
356 copying shared structure. See `unshare_all_rtl'.
357 In a REG, this is not needed for that purpose, and used instead
358 in `leaf_renumber_regs_insn'.
359 1 in a SYMBOL_REF, means that emit_library_call
360 has used it as the function.
361 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
362 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
363 unsigned int used : 1;
364 /* 1 in an INSN or a SET if this rtx is related to the call frame,
365 either changing how we compute the frame address or saving and
366 restoring registers in the prologue and epilogue.
367 1 in a REG or MEM if it is a pointer.
368 1 in a SYMBOL_REF if it addresses something in the per-function
369 constant string pool.
370 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
371 unsigned frame_related : 1;
372 /* 1 in a REG or PARALLEL that is the current function's return value.
373 1 in a SYMBOL_REF for a weak symbol.
374 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
375 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
376 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
377 unsigned return_val : 1;
378
379 union {
380 /* The final union field is aligned to 64 bits on LP64 hosts,
381 giving a 32-bit gap after the fields above. We optimize the
382 layout for that case and use the gap for extra code-specific
383 information. */
384
385 /* The ORIGINAL_REGNO of a REG. */
386 unsigned int original_regno;
387
388 /* The INSN_UID of an RTX_INSN-class code. */
389 int insn_uid;
390
391 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
392 unsigned int symbol_ref_flags;
393
394 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
395 enum var_init_status var_location_status;
396
397 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
398 HOST_WIDE_INTs in the hwivec_def. */
399 unsigned int num_elem;
400 } GTY ((skip)) u2;
401
402 /* The first element of the operands of this rtx.
403 The number of operands and their types are controlled
404 by the `code' field, according to rtl.def. */
405 union u {
406 rtunion fld[1];
407 HOST_WIDE_INT hwint[1];
408 struct reg_info reg;
409 struct block_symbol block_sym;
410 struct real_value rv;
411 struct fixed_value fv;
412 struct hwivec_def hwiv;
413 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
414 };
415
416 /* A node for constructing singly-linked lists of rtx. */
417
418 class GTY(()) rtx_expr_list : public rtx_def
419 {
420 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
421
422 public:
423 /* Get next in list. */
424 rtx_expr_list *next () const;
425
426 /* Get at the underlying rtx. */
427 rtx element () const;
428 };
429
430 template <>
431 template <>
432 inline bool
433 is_a_helper <rtx_expr_list *>::test (rtx rt)
434 {
435 return rt->code == EXPR_LIST;
436 }
437
438 class GTY(()) rtx_insn_list : public rtx_def
439 {
440 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
441
442 This is an instance of:
443
444 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
445
446 i.e. a node for constructing singly-linked lists of rtx_insn *, where
447 the list is "external" to the insn (as opposed to the doubly-linked
448 list embedded within rtx_insn itself). */
449
450 public:
451 /* Get next in list. */
452 rtx_insn_list *next () const;
453
454 /* Get at the underlying instruction. */
455 rtx_insn *insn () const;
456
457 };
458
459 template <>
460 template <>
461 inline bool
462 is_a_helper <rtx_insn_list *>::test (rtx rt)
463 {
464 return rt->code == INSN_LIST;
465 }
466
467 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
468 typically (but not always) of rtx_insn *, used in the late passes. */
469
470 class GTY(()) rtx_sequence : public rtx_def
471 {
472 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
473
474 public:
475 /* Get number of elements in sequence. */
476 int len () const;
477
478 /* Get i-th element of the sequence. */
479 rtx element (int index) const;
480
481 /* Get i-th element of the sequence, with a checked cast to
482 rtx_insn *. */
483 rtx_insn *insn (int index) const;
484 };
485
486 template <>
487 template <>
488 inline bool
489 is_a_helper <rtx_sequence *>::test (rtx rt)
490 {
491 return rt->code == SEQUENCE;
492 }
493
494 template <>
495 template <>
496 inline bool
497 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
498 {
499 return rt->code == SEQUENCE;
500 }
501
502 class GTY(()) rtx_insn : public rtx_def
503 {
504 public:
505 /* No extra fields, but adds the invariant:
506
507 (INSN_P (X)
508 || NOTE_P (X)
509 || JUMP_TABLE_DATA_P (X)
510 || BARRIER_P (X)
511 || LABEL_P (X))
512
513 i.e. that we must be able to use the following:
514 INSN_UID ()
515 NEXT_INSN ()
516 PREV_INSN ()
517 i.e. we have an rtx that has an INSN_UID field and can be part of
518 a linked list of insns.
519 */
520
521 /* Returns true if this insn has been deleted. */
522
523 bool deleted () const { return volatil; }
524
525 /* Mark this insn as deleted. */
526
527 void set_deleted () { volatil = true; }
528
529 /* Mark this insn as not deleted. */
530
531 void set_undeleted () { volatil = false; }
532 };
533
534 /* Subclasses of rtx_insn. */
535
536 class GTY(()) rtx_debug_insn : public rtx_insn
537 {
538 /* No extra fields, but adds the invariant:
539 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
540 i.e. an annotation for tracking variable assignments.
541
542 This is an instance of:
543 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
544 from rtl.def. */
545 };
546
547 class GTY(()) rtx_nonjump_insn : public rtx_insn
548 {
549 /* No extra fields, but adds the invariant:
550 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
551 i.e an instruction that cannot jump.
552
553 This is an instance of:
554 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_jump_insn : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
562 i.e. an instruction that can possibly jump.
563
564 This is an instance of:
565 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
566 from rtl.def. */
567 };
568
569 class GTY(()) rtx_call_insn : public rtx_insn
570 {
571 /* No extra fields, but adds the invariant:
572 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
573 i.e. an instruction that can possibly call a subroutine
574 but which will not change which instruction comes next
575 in the current function.
576
577 This is an instance of:
578 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
579 from rtl.def. */
580 };
581
582 class GTY(()) rtx_jump_table_data : public rtx_insn
583 {
584 /* No extra fields, but adds the invariant:
585 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
586 i.e. a data for a jump table, considered an instruction for
587 historical reasons.
588
589 This is an instance of:
590 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
591 from rtl.def. */
592
593 public:
594
595 /* This can be either:
596
597 (a) a table of absolute jumps, in which case PATTERN (this) is an
598 ADDR_VEC with arg 0 a vector of labels, or
599
600 (b) a table of relative jumps (e.g. for -fPIC), in which case
601 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
602 arg 1 the vector of labels.
603
604 This method gets the underlying vec. */
605
606 inline rtvec get_labels () const;
607 };
608
609 class GTY(()) rtx_barrier : public rtx_insn
610 {
611 /* No extra fields, but adds the invariant:
612 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
613 i.e. a marker that indicates that control will not flow through.
614
615 This is an instance of:
616 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
617 from rtl.def. */
618 };
619
620 class GTY(()) rtx_code_label : public rtx_insn
621 {
622 /* No extra fields, but adds the invariant:
623 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
624 i.e. a label in the assembler.
625
626 This is an instance of:
627 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
628 from rtl.def. */
629 };
630
631 class GTY(()) rtx_note : public rtx_insn
632 {
633 /* No extra fields, but adds the invariant:
634 NOTE_P(X) aka (GET_CODE (X) == NOTE)
635 i.e. a note about the corresponding source code.
636
637 This is an instance of:
638 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
639 from rtl.def. */
640 };
641
642 /* The size in bytes of an rtx header (code, mode and flags). */
643 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
644
645 /* The size in bytes of an rtx with code CODE. */
646 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
647
648 #define NULL_RTX (rtx) 0
649
650 /* The "next" and "previous" RTX, relative to this one. */
651
652 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
653 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
654
655 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
656 */
657 #define RTX_PREV(X) ((INSN_P (X) \
658 || NOTE_P (X) \
659 || JUMP_TABLE_DATA_P (X) \
660 || BARRIER_P (X) \
661 || LABEL_P (X)) \
662 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
663 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
664 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
665
666 /* Define macros to access the `code' field of the rtx. */
667
668 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
669 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
670
671 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
672 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
673
674 /* RTL vector. These appear inside RTX's when there is a need
675 for a variable number of things. The principle use is inside
676 PARALLEL expressions. */
677
678 struct GTY(()) rtvec_def {
679 int num_elem; /* number of elements */
680 rtx GTY ((length ("%h.num_elem"))) elem[1];
681 };
682
683 #define NULL_RTVEC (rtvec) 0
684
685 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
686 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
687
688 /* Predicate yielding nonzero iff X is an rtx for a register. */
689 #define REG_P(X) (GET_CODE (X) == REG)
690
691 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
692 #define MEM_P(X) (GET_CODE (X) == MEM)
693
694 #if TARGET_SUPPORTS_WIDE_INT
695
696 /* Match CONST_*s that can represent compile-time constant integers. */
697 #define CASE_CONST_SCALAR_INT \
698 case CONST_INT: \
699 case CONST_WIDE_INT
700
701 /* Match CONST_*s for which pointer equality corresponds to value
702 equality. */
703 #define CASE_CONST_UNIQUE \
704 case CONST_INT: \
705 case CONST_WIDE_INT: \
706 case CONST_DOUBLE: \
707 case CONST_FIXED
708
709 /* Match all CONST_* rtxes. */
710 #define CASE_CONST_ANY \
711 case CONST_INT: \
712 case CONST_WIDE_INT: \
713 case CONST_DOUBLE: \
714 case CONST_FIXED: \
715 case CONST_VECTOR
716
717 #else
718
719 /* Match CONST_*s that can represent compile-time constant integers. */
720 #define CASE_CONST_SCALAR_INT \
721 case CONST_INT: \
722 case CONST_DOUBLE
723
724 /* Match CONST_*s for which pointer equality corresponds to value
725 equality. */
726 #define CASE_CONST_UNIQUE \
727 case CONST_INT: \
728 case CONST_DOUBLE: \
729 case CONST_FIXED
730
731 /* Match all CONST_* rtxes. */
732 #define CASE_CONST_ANY \
733 case CONST_INT: \
734 case CONST_DOUBLE: \
735 case CONST_FIXED: \
736 case CONST_VECTOR
737 #endif
738
739 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
740 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
741
742 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
743 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
744
745 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
746 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
747
748 /* Predicate yielding true iff X is an rtx for a double-int
749 or floating point constant. */
750 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
751
752 /* Predicate yielding true iff X is an rtx for a double-int. */
753 #define CONST_DOUBLE_AS_INT_P(X) \
754 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
755
756 /* Predicate yielding true iff X is an rtx for a integer const. */
757 #if TARGET_SUPPORTS_WIDE_INT
758 #define CONST_SCALAR_INT_P(X) \
759 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
760 #else
761 #define CONST_SCALAR_INT_P(X) \
762 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
763 #endif
764
765 /* Predicate yielding true iff X is an rtx for a double-int. */
766 #define CONST_DOUBLE_AS_FLOAT_P(X) \
767 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
768
769 /* Predicate yielding nonzero iff X is a label insn. */
770 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
771
772 /* Predicate yielding nonzero iff X is a jump insn. */
773 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
774
775 /* Predicate yielding nonzero iff X is a call insn. */
776 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
777
778 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
779 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
780
781 /* Predicate yielding nonzero iff X is a debug note/insn. */
782 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
783
784 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
785 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
786
787 /* Nonzero if DEBUG_INSN_P may possibly hold. */
788 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
789
790 /* Predicate yielding nonzero iff X is a real insn. */
791 #define INSN_P(X) \
792 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
793
794 /* Predicate yielding nonzero iff X is a note insn. */
795 #define NOTE_P(X) (GET_CODE (X) == NOTE)
796
797 /* Predicate yielding nonzero iff X is a barrier insn. */
798 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
799
800 /* Predicate yielding nonzero iff X is a data for a jump table. */
801 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
802
803 /* Predicate yielding nonzero iff RTX is a subreg. */
804 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
805
806 template <>
807 template <>
808 inline bool
809 is_a_helper <rtx_insn *>::test (rtx rt)
810 {
811 return (INSN_P (rt)
812 || NOTE_P (rt)
813 || JUMP_TABLE_DATA_P (rt)
814 || BARRIER_P (rt)
815 || LABEL_P (rt));
816 }
817
818 template <>
819 template <>
820 inline bool
821 is_a_helper <const rtx_insn *>::test (const_rtx rt)
822 {
823 return (INSN_P (rt)
824 || NOTE_P (rt)
825 || JUMP_TABLE_DATA_P (rt)
826 || BARRIER_P (rt)
827 || LABEL_P (rt));
828 }
829
830 template <>
831 template <>
832 inline bool
833 is_a_helper <rtx_debug_insn *>::test (rtx rt)
834 {
835 return DEBUG_INSN_P (rt);
836 }
837
838 template <>
839 template <>
840 inline bool
841 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
842 {
843 return NONJUMP_INSN_P (rt);
844 }
845
846 template <>
847 template <>
848 inline bool
849 is_a_helper <rtx_jump_insn *>::test (rtx rt)
850 {
851 return JUMP_P (rt);
852 }
853
854 template <>
855 template <>
856 inline bool
857 is_a_helper <rtx_call_insn *>::test (rtx rt)
858 {
859 return CALL_P (rt);
860 }
861
862 template <>
863 template <>
864 inline bool
865 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
866 {
867 return CALL_P (insn);
868 }
869
870 template <>
871 template <>
872 inline bool
873 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
874 {
875 return JUMP_TABLE_DATA_P (rt);
876 }
877
878 template <>
879 template <>
880 inline bool
881 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
882 {
883 return JUMP_TABLE_DATA_P (insn);
884 }
885
886 template <>
887 template <>
888 inline bool
889 is_a_helper <rtx_barrier *>::test (rtx rt)
890 {
891 return BARRIER_P (rt);
892 }
893
894 template <>
895 template <>
896 inline bool
897 is_a_helper <rtx_code_label *>::test (rtx rt)
898 {
899 return LABEL_P (rt);
900 }
901
902 template <>
903 template <>
904 inline bool
905 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
906 {
907 return LABEL_P (insn);
908 }
909
910 template <>
911 template <>
912 inline bool
913 is_a_helper <rtx_note *>::test (rtx rt)
914 {
915 return NOTE_P (rt);
916 }
917
918 template <>
919 template <>
920 inline bool
921 is_a_helper <rtx_note *>::test (rtx_insn *insn)
922 {
923 return NOTE_P (insn);
924 }
925
926 /* Predicate yielding nonzero iff X is a return or simple_return. */
927 #define ANY_RETURN_P(X) \
928 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
929
930 /* 1 if X is a unary operator. */
931
932 #define UNARY_P(X) \
933 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
934
935 /* 1 if X is a binary operator. */
936
937 #define BINARY_P(X) \
938 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
939
940 /* 1 if X is an arithmetic operator. */
941
942 #define ARITHMETIC_P(X) \
943 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
944 == RTX_ARITHMETIC_RESULT)
945
946 /* 1 if X is an arithmetic operator. */
947
948 #define COMMUTATIVE_ARITH_P(X) \
949 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
950
951 /* 1 if X is a commutative arithmetic operator or a comparison operator.
952 These two are sometimes selected together because it is possible to
953 swap the two operands. */
954
955 #define SWAPPABLE_OPERANDS_P(X) \
956 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
957 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
958 | (1 << RTX_COMPARE)))
959
960 /* 1 if X is a non-commutative operator. */
961
962 #define NON_COMMUTATIVE_P(X) \
963 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
964 == RTX_NON_COMMUTATIVE_RESULT)
965
966 /* 1 if X is a commutative operator on integers. */
967
968 #define COMMUTATIVE_P(X) \
969 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
970 == RTX_COMMUTATIVE_RESULT)
971
972 /* 1 if X is a relational operator. */
973
974 #define COMPARISON_P(X) \
975 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
976
977 /* 1 if X is a constant value that is an integer. */
978
979 #define CONSTANT_P(X) \
980 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
981
982 /* 1 if X can be used to represent an object. */
983 #define OBJECT_P(X) \
984 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
985
986 /* General accessor macros for accessing the fields of an rtx. */
987
988 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
989 /* The bit with a star outside the statement expr and an & inside is
990 so that N can be evaluated only once. */
991 #define RTL_CHECK1(RTX, N, C1) __extension__ \
992 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
993 const enum rtx_code _code = GET_CODE (_rtx); \
994 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
995 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
996 __FUNCTION__); \
997 if (GET_RTX_FORMAT (_code)[_n] != C1) \
998 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
999 __FUNCTION__); \
1000 &_rtx->u.fld[_n]; }))
1001
1002 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1003 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1004 const enum rtx_code _code = GET_CODE (_rtx); \
1005 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1006 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1007 __FUNCTION__); \
1008 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1009 && GET_RTX_FORMAT (_code)[_n] != C2) \
1010 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1011 __FUNCTION__); \
1012 &_rtx->u.fld[_n]; }))
1013
1014 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1015 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1016 if (GET_CODE (_rtx) != (C)) \
1017 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1018 __FUNCTION__); \
1019 &_rtx->u.fld[_n]; }))
1020
1021 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1022 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1023 const enum rtx_code _code = GET_CODE (_rtx); \
1024 if (_code != (C1) && _code != (C2)) \
1025 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1026 __FUNCTION__); \
1027 &_rtx->u.fld[_n]; }))
1028
1029 #define RTVEC_ELT(RTVEC, I) __extension__ \
1030 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1031 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1032 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtvec->elem[_i]; }))
1035
1036 #define XWINT(RTX, N) __extension__ \
1037 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1038 const enum rtx_code _code = GET_CODE (_rtx); \
1039 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1040 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1041 __FUNCTION__); \
1042 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1043 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1044 __FUNCTION__); \
1045 &_rtx->u.hwint[_n]; }))
1046
1047 #define CWI_ELT(RTX, I) __extension__ \
1048 (*({ __typeof (RTX) const _cwi = (RTX); \
1049 int _max = CWI_GET_NUM_ELEM (_cwi); \
1050 const int _i = (I); \
1051 if (_i < 0 || _i >= _max) \
1052 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1053 __FUNCTION__); \
1054 &_cwi->u.hwiv.elem[_i]; }))
1055
1056 #define XCWINT(RTX, N, C) __extension__ \
1057 (*({ __typeof (RTX) const _rtx = (RTX); \
1058 if (GET_CODE (_rtx) != (C)) \
1059 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1060 __FUNCTION__); \
1061 &_rtx->u.hwint[N]; }))
1062
1063 #define XCMWINT(RTX, N, C, M) __extension__ \
1064 (*({ __typeof (RTX) const _rtx = (RTX); \
1065 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1066 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1067 __LINE__, __FUNCTION__); \
1068 &_rtx->u.hwint[N]; }))
1069
1070 #define XCNMPRV(RTX, C, M) __extension__ \
1071 ({ __typeof (RTX) const _rtx = (RTX); \
1072 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1073 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1074 __LINE__, __FUNCTION__); \
1075 &_rtx->u.rv; })
1076
1077 #define XCNMPFV(RTX, C, M) __extension__ \
1078 ({ __typeof (RTX) const _rtx = (RTX); \
1079 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1080 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1081 __LINE__, __FUNCTION__); \
1082 &_rtx->u.fv; })
1083
1084 #define REG_CHECK(RTX) __extension__ \
1085 ({ __typeof (RTX) const _rtx = (RTX); \
1086 if (GET_CODE (_rtx) != REG) \
1087 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1088 __FUNCTION__); \
1089 &_rtx->u.reg; })
1090
1091 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1092 ({ __typeof (RTX) const _symbol = (RTX); \
1093 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1094 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1095 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1096 __FUNCTION__); \
1097 &_symbol->u.block_sym; })
1098
1099 #define HWIVEC_CHECK(RTX,C) __extension__ \
1100 ({ __typeof (RTX) const _symbol = (RTX); \
1101 RTL_CHECKC1 (_symbol, 0, C); \
1102 &_symbol->u.hwiv; })
1103
1104 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1105 const char *)
1106 ATTRIBUTE_NORETURN;
1107 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1108 const char *)
1109 ATTRIBUTE_NORETURN;
1110 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1111 int, const char *)
1112 ATTRIBUTE_NORETURN;
1113 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1114 int, const char *)
1115 ATTRIBUTE_NORETURN;
1116 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1117 const char *, int, const char *)
1118 ATTRIBUTE_NORETURN;
1119 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1120 bool, const char *, int, const char *)
1121 ATTRIBUTE_NORETURN;
1122 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1123 ATTRIBUTE_NORETURN;
1124 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1125 const char *)
1126 ATTRIBUTE_NORETURN;
1127 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1128 const char *)
1129 ATTRIBUTE_NORETURN;
1130
1131 #else /* not ENABLE_RTL_CHECKING */
1132
1133 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1134 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1135 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1136 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1137 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1138 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1139 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1140 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1141 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1142 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1143 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1144 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1145 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1146 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1147 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1148
1149 #endif
1150
1151 /* General accessor macros for accessing the flags of an rtx. */
1152
1153 /* Access an individual rtx flag, with no checking of any kind. */
1154 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1155
1156 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1157 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1158 ({ __typeof (RTX) const _rtx = (RTX); \
1159 if (GET_CODE (_rtx) != C1) \
1160 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1161 __FUNCTION__); \
1162 _rtx; })
1163
1164 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1165 ({ __typeof (RTX) const _rtx = (RTX); \
1166 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1167 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1168 __FUNCTION__); \
1169 _rtx; })
1170
1171 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1172 ({ __typeof (RTX) const _rtx = (RTX); \
1173 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1174 && GET_CODE (_rtx) != C3) \
1175 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1176 __FUNCTION__); \
1177 _rtx; })
1178
1179 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1180 ({ __typeof (RTX) const _rtx = (RTX); \
1181 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1182 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1183 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1184 __FUNCTION__); \
1185 _rtx; })
1186
1187 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1188 ({ __typeof (RTX) const _rtx = (RTX); \
1189 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1190 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1191 && GET_CODE (_rtx) != C5) \
1192 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1193 __FUNCTION__); \
1194 _rtx; })
1195
1196 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1197 __extension__ \
1198 ({ __typeof (RTX) const _rtx = (RTX); \
1199 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1200 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1201 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1202 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1203 __FUNCTION__); \
1204 _rtx; })
1205
1206 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1207 __extension__ \
1208 ({ __typeof (RTX) const _rtx = (RTX); \
1209 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1210 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1211 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1212 && GET_CODE (_rtx) != C7) \
1213 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1214 __FUNCTION__); \
1215 _rtx; })
1216
1217 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1218 __extension__ \
1219 ({ __typeof (RTX) const _rtx = (RTX); \
1220 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1221 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1222 __FUNCTION__); \
1223 _rtx; })
1224
1225 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1226 int, const char *)
1227 ATTRIBUTE_NORETURN
1228 ;
1229
1230 #else /* not ENABLE_RTL_FLAG_CHECKING */
1231
1232 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1233 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1234 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1235 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1236 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1237 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1238 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1239 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1240 #endif
1241
1242 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1243 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1244 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1245 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1246 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1247 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1248 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1249 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1250 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1251 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1252
1253 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1254 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1255
1256 /* These are like XINT, etc. except that they expect a '0' field instead
1257 of the normal type code. */
1258
1259 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1260 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1261 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1262 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1263 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1264 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1265 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1266 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1267 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1268 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1269 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1270 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1271
1272 /* Access a '0' field with any type. */
1273 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1274
1275 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1276 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1277 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1278 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1279 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1280 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1281 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1282 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1283 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1284 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1285
1286 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1287 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1288
1289 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1290 \f
1291
1292 /* Methods of rtx_expr_list. */
1293
1294 inline rtx_expr_list *rtx_expr_list::next () const
1295 {
1296 rtx tmp = XEXP (this, 1);
1297 return safe_as_a <rtx_expr_list *> (tmp);
1298 }
1299
1300 inline rtx rtx_expr_list::element () const
1301 {
1302 return XEXP (this, 0);
1303 }
1304
1305 /* Methods of rtx_insn_list. */
1306
1307 inline rtx_insn_list *rtx_insn_list::next () const
1308 {
1309 rtx tmp = XEXP (this, 1);
1310 return safe_as_a <rtx_insn_list *> (tmp);
1311 }
1312
1313 inline rtx_insn *rtx_insn_list::insn () const
1314 {
1315 rtx tmp = XEXP (this, 0);
1316 return safe_as_a <rtx_insn *> (tmp);
1317 }
1318
1319 /* Methods of rtx_sequence. */
1320
1321 inline int rtx_sequence::len () const
1322 {
1323 return XVECLEN (this, 0);
1324 }
1325
1326 inline rtx rtx_sequence::element (int index) const
1327 {
1328 return XVECEXP (this, 0, index);
1329 }
1330
1331 inline rtx_insn *rtx_sequence::insn (int index) const
1332 {
1333 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1334 }
1335
1336 /* ACCESS MACROS for particular fields of insns. */
1337
1338 /* Holds a unique number for each insn.
1339 These are not necessarily sequentially increasing. */
1340 inline int INSN_UID (const_rtx insn)
1341 {
1342 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1343 (insn))->u2.insn_uid;
1344 }
1345 inline int& INSN_UID (rtx insn)
1346 {
1347 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1348 (insn))->u2.insn_uid;
1349 }
1350
1351 /* Chain insns together in sequence. */
1352
1353 /* For now these are split in two: an rvalue form:
1354 PREV_INSN/NEXT_INSN
1355 and an lvalue form:
1356 SET_NEXT_INSN/SET_PREV_INSN. */
1357
1358 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1359 {
1360 rtx prev = XEXP (insn, 0);
1361 return safe_as_a <rtx_insn *> (prev);
1362 }
1363
1364 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1365 {
1366 return XEXP (insn, 0);
1367 }
1368
1369 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1370 {
1371 rtx next = XEXP (insn, 1);
1372 return safe_as_a <rtx_insn *> (next);
1373 }
1374
1375 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1376 {
1377 return XEXP (insn, 1);
1378 }
1379
1380 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1381 {
1382 return XBBDEF (insn, 2);
1383 }
1384
1385 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1386 {
1387 return XBBDEF (insn, 2);
1388 }
1389
1390 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1391 {
1392 BLOCK_FOR_INSN (insn) = bb;
1393 }
1394
1395 /* The body of an insn. */
1396 inline rtx PATTERN (const_rtx insn)
1397 {
1398 return XEXP (insn, 3);
1399 }
1400
1401 inline rtx& PATTERN (rtx insn)
1402 {
1403 return XEXP (insn, 3);
1404 }
1405
1406 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1407 {
1408 return XUINT (insn, 4);
1409 }
1410
1411 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1412 {
1413 return XUINT (insn, 4);
1414 }
1415
1416 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1417 {
1418 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1419 }
1420
1421 /* LOCATION of an RTX if relevant. */
1422 #define RTL_LOCATION(X) (INSN_P (X) ? \
1423 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1424 : UNKNOWN_LOCATION)
1425
1426 /* Code number of instruction, from when it was recognized.
1427 -1 means this instruction has not been recognized yet. */
1428 #define INSN_CODE(INSN) XINT (INSN, 5)
1429
1430 inline rtvec rtx_jump_table_data::get_labels () const
1431 {
1432 rtx pat = PATTERN (this);
1433 if (GET_CODE (pat) == ADDR_VEC)
1434 return XVEC (pat, 0);
1435 else
1436 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1437 }
1438
1439 #define RTX_FRAME_RELATED_P(RTX) \
1440 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1441 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1442
1443 /* 1 if JUMP RTX is a crossing jump. */
1444 #define CROSSING_JUMP_P(RTX) \
1445 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1446
1447 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1448 TREE_READONLY. */
1449 #define RTL_CONST_CALL_P(RTX) \
1450 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1451
1452 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1453 DECL_PURE_P. */
1454 #define RTL_PURE_CALL_P(RTX) \
1455 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1456
1457 /* 1 if RTX is a call to a const or pure function. */
1458 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1459 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1460
1461 /* 1 if RTX is a call to a looping const or pure function. Built from
1462 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1463 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1464 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1465
1466 /* 1 if RTX is a call_insn for a sibling call. */
1467 #define SIBLING_CALL_P(RTX) \
1468 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1469
1470 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1471 #define INSN_ANNULLED_BRANCH_P(RTX) \
1472 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1473
1474 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1475 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1476 executed if the branch is taken. For annulled branches with this bit
1477 clear, the insn should be executed only if the branch is not taken. */
1478 #define INSN_FROM_TARGET_P(RTX) \
1479 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1480 CALL_INSN)->in_struct)
1481
1482 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1483 See the comments for ADDR_DIFF_VEC in rtl.def. */
1484 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1485
1486 /* In a VALUE, the value cselib has assigned to RTX.
1487 This is a "struct cselib_val", see cselib.h. */
1488 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1489
1490 /* Holds a list of notes on what this insn does to various REGs.
1491 It is a chain of EXPR_LIST rtx's, where the second operand is the
1492 chain pointer and the first operand is the REG being described.
1493 The mode field of the EXPR_LIST contains not a real machine mode
1494 but a value from enum reg_note. */
1495 #define REG_NOTES(INSN) XEXP(INSN, 6)
1496
1497 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1498 question. */
1499 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1500
1501 enum reg_note
1502 {
1503 #define DEF_REG_NOTE(NAME) NAME,
1504 #include "reg-notes.def"
1505 #undef DEF_REG_NOTE
1506 REG_NOTE_MAX
1507 };
1508
1509 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1510 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1511 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1512 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1513
1514 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1515
1516 extern const char * const reg_note_name[];
1517 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1518
1519 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1520 USE and CLOBBER expressions.
1521 USE expressions list the registers filled with arguments that
1522 are passed to the function.
1523 CLOBBER expressions document the registers explicitly clobbered
1524 by this CALL_INSN.
1525 Pseudo registers can not be mentioned in this list. */
1526 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1527
1528 /* The label-number of a code-label. The assembler label
1529 is made from `L' and the label-number printed in decimal.
1530 Label numbers are unique in a compilation. */
1531 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1532
1533 /* In a NOTE that is a line number, this is a string for the file name that the
1534 line is in. We use the same field to record block numbers temporarily in
1535 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1536 between ints and pointers if we use a different macro for the block number.)
1537 */
1538
1539 /* Opaque data. */
1540 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1541 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1542 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1543 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1544 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1545 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1546 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1547 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1548 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1549
1550 /* In a NOTE that is a line number, this is the line number.
1551 Other kinds of NOTEs are identified by negative numbers here. */
1552 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1553
1554 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1555 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1556 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1557
1558 /* Variable declaration and the location of a variable. */
1559 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1560 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1561
1562 /* Initialization status of the variable in the location. Status
1563 can be unknown, uninitialized or initialized. See enumeration
1564 type below. */
1565 #define PAT_VAR_LOCATION_STATUS(PAT) \
1566 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1567 ->u2.var_location_status)
1568
1569 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1570 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1571 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1572 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1573 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1574 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1575 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1576
1577 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1578 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1579
1580 /* Accessors for a tree-expanded var location debug insn. */
1581 #define INSN_VAR_LOCATION_DECL(INSN) \
1582 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1583 #define INSN_VAR_LOCATION_LOC(INSN) \
1584 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1585 #define INSN_VAR_LOCATION_STATUS(INSN) \
1586 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1587
1588 /* Expand to the RTL that denotes an unknown variable location in a
1589 DEBUG_INSN. */
1590 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1591
1592 /* Determine whether X is such an unknown location. */
1593 #define VAR_LOC_UNKNOWN_P(X) \
1594 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1595
1596 /* 1 if RTX is emitted after a call, but it should take effect before
1597 the call returns. */
1598 #define NOTE_DURING_CALL_P(RTX) \
1599 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1600
1601 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1602 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1603
1604 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1605 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1606
1607 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1608 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1609
1610 /* Codes that appear in the NOTE_KIND field for kinds of notes
1611 that are not line numbers. These codes are all negative.
1612
1613 Notice that we do not try to use zero here for any of
1614 the special note codes because sometimes the source line
1615 actually can be zero! This happens (for example) when we
1616 are generating code for the per-translation-unit constructor
1617 and destructor routines for some C++ translation unit. */
1618
1619 enum insn_note
1620 {
1621 #define DEF_INSN_NOTE(NAME) NAME,
1622 #include "insn-notes.def"
1623 #undef DEF_INSN_NOTE
1624
1625 NOTE_INSN_MAX
1626 };
1627
1628 /* Names for NOTE insn's other than line numbers. */
1629
1630 extern const char * const note_insn_name[NOTE_INSN_MAX];
1631 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1632 (note_insn_name[(NOTE_CODE)])
1633
1634 /* The name of a label, in case it corresponds to an explicit label
1635 in the input source code. */
1636 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1637
1638 /* In jump.c, each label contains a count of the number
1639 of LABEL_REFs that point at it, so unused labels can be deleted. */
1640 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1641
1642 /* Labels carry a two-bit field composed of the ->jump and ->call
1643 bits. This field indicates whether the label is an alternate
1644 entry point, and if so, what kind. */
1645 enum label_kind
1646 {
1647 LABEL_NORMAL = 0, /* ordinary label */
1648 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1649 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1650 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1651 };
1652
1653 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1654
1655 /* Retrieve the kind of LABEL. */
1656 #define LABEL_KIND(LABEL) __extension__ \
1657 ({ __typeof (LABEL) const _label = (LABEL); \
1658 if (! LABEL_P (_label)) \
1659 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1660 __FUNCTION__); \
1661 (enum label_kind) ((_label->jump << 1) | _label->call); })
1662
1663 /* Set the kind of LABEL. */
1664 #define SET_LABEL_KIND(LABEL, KIND) do { \
1665 __typeof (LABEL) const _label = (LABEL); \
1666 const unsigned int _kind = (KIND); \
1667 if (! LABEL_P (_label)) \
1668 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1669 __FUNCTION__); \
1670 _label->jump = ((_kind >> 1) & 1); \
1671 _label->call = (_kind & 1); \
1672 } while (0)
1673
1674 #else
1675
1676 /* Retrieve the kind of LABEL. */
1677 #define LABEL_KIND(LABEL) \
1678 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1679
1680 /* Set the kind of LABEL. */
1681 #define SET_LABEL_KIND(LABEL, KIND) do { \
1682 rtx const _label = (LABEL); \
1683 const unsigned int _kind = (KIND); \
1684 _label->jump = ((_kind >> 1) & 1); \
1685 _label->call = (_kind & 1); \
1686 } while (0)
1687
1688 #endif /* rtl flag checking */
1689
1690 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1691
1692 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1693 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1694 be decremented and possibly the label can be deleted. */
1695 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1696
1697 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1698 {
1699 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1700 }
1701
1702 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1703 goes through all the LABEL_REFs that jump to that label. The chain
1704 eventually winds up at the CODE_LABEL: it is circular. */
1705 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1706
1707 /* Get the label that a LABEL_REF references. */
1708 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1709
1710 \f
1711 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1712 be used on RHS. Use SET_REGNO to change the value. */
1713 #define REGNO(RTX) (rhs_regno(RTX))
1714 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1715 #define SET_REGNO_RAW(RTX, N) (REG_CHECK (RTX)->regno = N)
1716
1717 /* Return the number of consecutive registers in a REG. This is always
1718 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1719 hard registers. */
1720 #define REG_NREGS(RTX) \
1721 (REGNO (RTX) < FIRST_PSEUDO_REGISTER \
1722 ? (unsigned int) hard_regno_nregs[REGNO (RTX)][GET_MODE (RTX)] \
1723 : 1)
1724
1725 /* ORIGINAL_REGNO holds the number the register originally had; for a
1726 pseudo register turned into a hard reg this will hold the old pseudo
1727 register number. */
1728 #define ORIGINAL_REGNO(RTX) \
1729 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1730
1731 /* Force the REGNO macro to only be used on the lhs. */
1732 static inline unsigned int
1733 rhs_regno (const_rtx x)
1734 {
1735 return REG_CHECK (x)->regno;
1736 }
1737
1738
1739 /* 1 if RTX is a reg or parallel that is the current function's return
1740 value. */
1741 #define REG_FUNCTION_VALUE_P(RTX) \
1742 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1743
1744 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1745 #define REG_USERVAR_P(RTX) \
1746 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1747
1748 /* 1 if RTX is a reg that holds a pointer value. */
1749 #define REG_POINTER(RTX) \
1750 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1751
1752 /* 1 if RTX is a mem that holds a pointer value. */
1753 #define MEM_POINTER(RTX) \
1754 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1755
1756 /* 1 if the given register REG corresponds to a hard register. */
1757 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1758
1759 /* 1 if the given register number REG_NO corresponds to a hard register. */
1760 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1761
1762 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1763 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1764 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1765
1766 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1767 elements actually needed to represent the constant.
1768 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1769 significant HOST_WIDE_INT. */
1770 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1771 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1772 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1773
1774 /* For a CONST_DOUBLE:
1775 #if TARGET_SUPPORTS_WIDE_INT == 0
1776 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1777 low-order word and ..._HIGH the high-order.
1778 #endif
1779 For a float, there is a REAL_VALUE_TYPE structure, and
1780 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1781 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1782 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1783 #define CONST_DOUBLE_REAL_VALUE(r) \
1784 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1785
1786 #define CONST_FIXED_VALUE(r) \
1787 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1788 #define CONST_FIXED_VALUE_HIGH(r) \
1789 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1790 #define CONST_FIXED_VALUE_LOW(r) \
1791 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1792
1793 /* For a CONST_VECTOR, return element #n. */
1794 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1795
1796 /* For a CONST_VECTOR, return the number of elements in a vector. */
1797 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1798
1799 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1800 SUBREG_BYTE extracts the byte-number. */
1801
1802 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1803 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1804
1805 /* in rtlanal.c */
1806 /* Return the right cost to give to an operation
1807 to make the cost of the corresponding register-to-register instruction
1808 N times that of a fast register-to-register instruction. */
1809 #define COSTS_N_INSNS(N) ((N) * 4)
1810
1811 /* Maximum cost of an rtl expression. This value has the special meaning
1812 not to use an rtx with this cost under any circumstances. */
1813 #define MAX_COST INT_MAX
1814
1815 /* Return true if CODE always has VOIDmode. */
1816
1817 static inline bool
1818 always_void_p (enum rtx_code code)
1819 {
1820 return code == SET;
1821 }
1822
1823 /* A structure to hold all available cost information about an rtl
1824 expression. */
1825 struct full_rtx_costs
1826 {
1827 int speed;
1828 int size;
1829 };
1830
1831 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1832 static inline void
1833 init_costs_to_max (struct full_rtx_costs *c)
1834 {
1835 c->speed = MAX_COST;
1836 c->size = MAX_COST;
1837 }
1838
1839 /* Initialize a full_rtx_costs structure C to zero cost. */
1840 static inline void
1841 init_costs_to_zero (struct full_rtx_costs *c)
1842 {
1843 c->speed = 0;
1844 c->size = 0;
1845 }
1846
1847 /* Compare two full_rtx_costs structures A and B, returning true
1848 if A < B when optimizing for speed. */
1849 static inline bool
1850 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1851 bool speed)
1852 {
1853 if (speed)
1854 return (a->speed < b->speed
1855 || (a->speed == b->speed && a->size < b->size));
1856 else
1857 return (a->size < b->size
1858 || (a->size == b->size && a->speed < b->speed));
1859 }
1860
1861 /* Increase both members of the full_rtx_costs structure C by the
1862 cost of N insns. */
1863 static inline void
1864 costs_add_n_insns (struct full_rtx_costs *c, int n)
1865 {
1866 c->speed += COSTS_N_INSNS (n);
1867 c->size += COSTS_N_INSNS (n);
1868 }
1869
1870 /* Describes the shape of a subreg:
1871
1872 inner_mode == the mode of the SUBREG_REG
1873 offset == the SUBREG_BYTE
1874 outer_mode == the mode of the SUBREG itself. */
1875 struct subreg_shape {
1876 subreg_shape (machine_mode, unsigned int, machine_mode);
1877 bool operator == (const subreg_shape &) const;
1878 bool operator != (const subreg_shape &) const;
1879 unsigned int unique_id () const;
1880
1881 machine_mode inner_mode;
1882 unsigned int offset;
1883 machine_mode outer_mode;
1884 };
1885
1886 inline
1887 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1888 unsigned int offset_in,
1889 machine_mode outer_mode_in)
1890 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1891 {}
1892
1893 inline bool
1894 subreg_shape::operator == (const subreg_shape &other) const
1895 {
1896 return (inner_mode == other.inner_mode
1897 && offset == other.offset
1898 && outer_mode == other.outer_mode);
1899 }
1900
1901 inline bool
1902 subreg_shape::operator != (const subreg_shape &other) const
1903 {
1904 return !operator == (other);
1905 }
1906
1907 /* Return an integer that uniquely identifies this shape. Structures
1908 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1909 current mode is anywhere near being 65536 bytes in size, so the
1910 id comfortably fits in an int. */
1911
1912 inline unsigned int
1913 subreg_shape::unique_id () const
1914 {
1915 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1916 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1917 }
1918
1919 /* Return the shape of a SUBREG rtx. */
1920
1921 static inline subreg_shape
1922 shape_of_subreg (const_rtx x)
1923 {
1924 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1925 SUBREG_BYTE (x), GET_MODE (x));
1926 }
1927
1928 /* Information about an address. This structure is supposed to be able
1929 to represent all supported target addresses. Please extend it if it
1930 is not yet general enough. */
1931 struct address_info {
1932 /* The mode of the value being addressed, or VOIDmode if this is
1933 a load-address operation with no known address mode. */
1934 machine_mode mode;
1935
1936 /* The address space. */
1937 addr_space_t as;
1938
1939 /* A pointer to the top-level address. */
1940 rtx *outer;
1941
1942 /* A pointer to the inner address, after all address mutations
1943 have been stripped from the top-level address. It can be one
1944 of the following:
1945
1946 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1947
1948 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1949 points to the step value, depending on whether the step is variable
1950 or constant respectively. SEGMENT is null.
1951
1952 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1953 with null fields evaluating to 0. */
1954 rtx *inner;
1955
1956 /* Components that make up *INNER. Each one may be null or nonnull.
1957 When nonnull, their meanings are as follows:
1958
1959 - *SEGMENT is the "segment" of memory to which the address refers.
1960 This value is entirely target-specific and is only called a "segment"
1961 because that's its most typical use. It contains exactly one UNSPEC,
1962 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1963 reloading.
1964
1965 - *BASE is a variable expression representing a base address.
1966 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1967
1968 - *INDEX is a variable expression representing an index value.
1969 It may be a scaled expression, such as a MULT. It has exactly
1970 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1971
1972 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1973 unmutated RTX_CONST_OBJ. */
1974 rtx *segment;
1975 rtx *base;
1976 rtx *index;
1977 rtx *disp;
1978
1979 rtx *segment_term;
1980 rtx *base_term;
1981 rtx *index_term;
1982 rtx *disp_term;
1983
1984 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1985 of BASE_TERM, otherwise it is null. */
1986 rtx *base_term2;
1987
1988 /* ADDRESS if this structure describes an address operand, MEM if
1989 it describes a MEM address. */
1990 enum rtx_code addr_outer_code;
1991
1992 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1993 enum rtx_code base_outer_code;
1994
1995 /* True if this is an RTX_AUTOINC address. */
1996 bool autoinc_p;
1997 };
1998
1999 /* This is used to bundle an rtx and a mode together so that the pair
2000 can be used with the wi:: routines. If we ever put modes into rtx
2001 integer constants, this should go away and then just pass an rtx in. */
2002 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2003
2004 namespace wi
2005 {
2006 template <>
2007 struct int_traits <rtx_mode_t>
2008 {
2009 static const enum precision_type precision_type = VAR_PRECISION;
2010 static const bool host_dependent_precision = false;
2011 /* This ought to be true, except for the special case that BImode
2012 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2013 static const bool is_sign_extended = false;
2014 static unsigned int get_precision (const rtx_mode_t &);
2015 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2016 const rtx_mode_t &);
2017 };
2018 }
2019
2020 inline unsigned int
2021 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2022 {
2023 return GET_MODE_PRECISION (x.second);
2024 }
2025
2026 inline wi::storage_ref
2027 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2028 unsigned int precision,
2029 const rtx_mode_t &x)
2030 {
2031 gcc_checking_assert (precision == get_precision (x));
2032 switch (GET_CODE (x.first))
2033 {
2034 case CONST_INT:
2035 if (precision < HOST_BITS_PER_WIDE_INT)
2036 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2037 targets is 1 rather than -1. */
2038 gcc_checking_assert (INTVAL (x.first)
2039 == sext_hwi (INTVAL (x.first), precision)
2040 || (x.second == BImode && INTVAL (x.first) == 1));
2041
2042 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2043
2044 case CONST_WIDE_INT:
2045 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2046 CONST_WIDE_INT_NUNITS (x.first), precision);
2047
2048 #if TARGET_SUPPORTS_WIDE_INT == 0
2049 case CONST_DOUBLE:
2050 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2051 #endif
2052
2053 default:
2054 gcc_unreachable ();
2055 }
2056 }
2057
2058 namespace wi
2059 {
2060 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2061 wide_int min_value (machine_mode, signop);
2062 wide_int max_value (machine_mode, signop);
2063 }
2064
2065 inline wi::hwi_with_prec
2066 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2067 {
2068 return shwi (val, GET_MODE_PRECISION (mode));
2069 }
2070
2071 /* Produce the smallest number that is represented in MODE. The precision
2072 is taken from MODE and the sign from SGN. */
2073 inline wide_int
2074 wi::min_value (machine_mode mode, signop sgn)
2075 {
2076 return min_value (GET_MODE_PRECISION (mode), sgn);
2077 }
2078
2079 /* Produce the largest number that is represented in MODE. The precision
2080 is taken from MODE and the sign from SGN. */
2081 inline wide_int
2082 wi::max_value (machine_mode mode, signop sgn)
2083 {
2084 return max_value (GET_MODE_PRECISION (mode), sgn);
2085 }
2086
2087 extern void init_rtlanal (void);
2088 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2089 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2090 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2091 struct full_rtx_costs *);
2092 extern unsigned int subreg_lsb (const_rtx);
2093 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2094 unsigned int);
2095 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2096 unsigned int, machine_mode);
2097 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2098 unsigned int, machine_mode);
2099 extern unsigned int subreg_regno (const_rtx);
2100 extern int simplify_subreg_regno (unsigned int, machine_mode,
2101 unsigned int, machine_mode);
2102 extern unsigned int subreg_nregs (const_rtx);
2103 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2104 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2105 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2106 extern bool constant_pool_constant_p (rtx);
2107 extern bool truncated_to_mode (machine_mode, const_rtx);
2108 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2109 extern void split_double (rtx, rtx *, rtx *);
2110 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2111 extern void decompose_address (struct address_info *, rtx *,
2112 machine_mode, addr_space_t, enum rtx_code);
2113 extern void decompose_lea_address (struct address_info *, rtx *);
2114 extern void decompose_mem_address (struct address_info *, rtx);
2115 extern void update_address (struct address_info *);
2116 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2117 extern enum rtx_code get_index_code (const struct address_info *);
2118
2119 #ifndef GENERATOR_FILE
2120 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2121 rather than size. */
2122
2123 static inline int
2124 set_rtx_cost (rtx x, bool speed_p)
2125 {
2126 return rtx_cost (x, INSN, 4, speed_p);
2127 }
2128
2129 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2130
2131 static inline void
2132 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2133 {
2134 get_full_rtx_cost (x, INSN, 4, c);
2135 }
2136
2137 /* Return the cost of moving X into a register, relative to the cost
2138 of a register move. SPEED_P is true if optimizing for speed rather
2139 than size. */
2140
2141 static inline int
2142 set_src_cost (rtx x, bool speed_p)
2143 {
2144 return rtx_cost (x, SET, 1, speed_p);
2145 }
2146
2147 /* Like set_src_cost, but return both the speed and size costs in C. */
2148
2149 static inline void
2150 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2151 {
2152 get_full_rtx_cost (x, SET, 1, c);
2153 }
2154 #endif
2155
2156 /* 1 if RTX is a subreg containing a reg that is already known to be
2157 sign- or zero-extended from the mode of the subreg to the mode of
2158 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2159 extension.
2160
2161 When used as a LHS, is means that this extension must be done
2162 when assigning to SUBREG_REG. */
2163
2164 #define SUBREG_PROMOTED_VAR_P(RTX) \
2165 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2166
2167 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2168 this gives the necessary extensions:
2169 0 - signed (SPR_SIGNED)
2170 1 - normal unsigned (SPR_UNSIGNED)
2171 2 - value is both sign and unsign extended for mode
2172 (SPR_SIGNED_AND_UNSIGNED).
2173 -1 - pointer unsigned, which most often can be handled like unsigned
2174 extension, except for generating instructions where we need to
2175 emit special code (ptr_extend insns) on some architectures
2176 (SPR_POINTER). */
2177
2178 const int SRP_POINTER = -1;
2179 const int SRP_SIGNED = 0;
2180 const int SRP_UNSIGNED = 1;
2181 const int SRP_SIGNED_AND_UNSIGNED = 2;
2182
2183 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2184 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2185 do { \
2186 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2187 (RTX), SUBREG); \
2188 switch (VAL) \
2189 { \
2190 case SRP_POINTER: \
2191 _rtx->volatil = 0; \
2192 _rtx->unchanging = 0; \
2193 break; \
2194 case SRP_SIGNED: \
2195 _rtx->volatil = 0; \
2196 _rtx->unchanging = 1; \
2197 break; \
2198 case SRP_UNSIGNED: \
2199 _rtx->volatil = 1; \
2200 _rtx->unchanging = 0; \
2201 break; \
2202 case SRP_SIGNED_AND_UNSIGNED: \
2203 _rtx->volatil = 1; \
2204 _rtx->unchanging = 1; \
2205 break; \
2206 } \
2207 } while (0)
2208
2209 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2210 including SRP_SIGNED_AND_UNSIGNED if promoted for
2211 both signed and unsigned. */
2212 #define SUBREG_PROMOTED_GET(RTX) \
2213 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2214 + (RTX)->unchanging - 1)
2215
2216 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2217 #define SUBREG_PROMOTED_SIGN(RTX) \
2218 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2219 : (RTX)->unchanging - 1)
2220
2221 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2222 for SIGNED type. */
2223 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2224 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2225
2226 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2227 for UNSIGNED type. */
2228 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2229 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2230
2231 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2232 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2233 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2234 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2235 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2236
2237 /* True if the subreg was generated by LRA for reload insns. Such
2238 subregs are valid only during LRA. */
2239 #define LRA_SUBREG_P(RTX) \
2240 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2241
2242 /* True if call is instrumented by Pointer Bounds Checker. */
2243 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2244 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2245
2246 /* Access various components of an ASM_OPERANDS rtx. */
2247
2248 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2249 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2250 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2251 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2252 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2253 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2254 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2255 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2256 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2257 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2258 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2259 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2260 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2261 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2262 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2263 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2264 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2265 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2266
2267 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2268 #define MEM_READONLY_P(RTX) \
2269 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2270
2271 /* 1 if RTX is a mem and we should keep the alias set for this mem
2272 unchanged when we access a component. Set to 1, or example, when we
2273 are already in a non-addressable component of an aggregate. */
2274 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2275 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2276
2277 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2278 #define MEM_VOLATILE_P(RTX) \
2279 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2280 ASM_INPUT)->volatil)
2281
2282 /* 1 if RTX is a mem that cannot trap. */
2283 #define MEM_NOTRAP_P(RTX) \
2284 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2285
2286 /* The memory attribute block. We provide access macros for each value
2287 in the block and provide defaults if none specified. */
2288 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2289
2290 /* The register attribute block. We provide access macros for each value
2291 in the block and provide defaults if none specified. */
2292 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2293
2294 #ifndef GENERATOR_FILE
2295 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2296 set, and may alias anything. Otherwise, the MEM can only alias
2297 MEMs in a conflicting alias set. This value is set in a
2298 language-dependent manner in the front-end, and should not be
2299 altered in the back-end. These set numbers are tested with
2300 alias_sets_conflict_p. */
2301 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2302
2303 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2304 refer to part of a DECL. It may also be a COMPONENT_REF. */
2305 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2306
2307 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2308 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2309
2310 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2311 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2312
2313 /* For a MEM rtx, the address space. */
2314 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2315
2316 /* For a MEM rtx, true if its MEM_SIZE is known. */
2317 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2318
2319 /* For a MEM rtx, the size in bytes of the MEM. */
2320 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2321
2322 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2323 mode as a default when STRICT_ALIGNMENT, but not if not. */
2324 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2325 #else
2326 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2327 #endif
2328
2329 /* For a REG rtx, the decl it is known to refer to, if it is known to
2330 refer to part of a DECL. */
2331 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2332
2333 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2334 HOST_WIDE_INT. */
2335 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2336
2337 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2338 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2339 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2340 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2341 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2342 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2343 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2344 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2345
2346 /* 1 if RTX is a label_ref for a nonlocal label. */
2347 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2348 REG_LABEL_TARGET note. */
2349 #define LABEL_REF_NONLOCAL_P(RTX) \
2350 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2351
2352 /* 1 if RTX is a code_label that should always be considered to be needed. */
2353 #define LABEL_PRESERVE_P(RTX) \
2354 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2355
2356 /* During sched, 1 if RTX is an insn that must be scheduled together
2357 with the preceding insn. */
2358 #define SCHED_GROUP_P(RTX) \
2359 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2360 JUMP_INSN, CALL_INSN)->in_struct)
2361
2362 /* For a SET rtx, SET_DEST is the place that is set
2363 and SET_SRC is the value it is set to. */
2364 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2365 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2366 #define SET_IS_RETURN_P(RTX) \
2367 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2368
2369 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2370 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2371 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2372
2373 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2374 conditionally executing the code on, COND_EXEC_CODE is the code
2375 to execute if the condition is true. */
2376 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2377 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2378
2379 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2380 constants pool. */
2381 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2382 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2383
2384 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2385 tree constant pool. This information is private to varasm.c. */
2386 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2387 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2388 (RTX), SYMBOL_REF)->frame_related)
2389
2390 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2391 #define SYMBOL_REF_FLAG(RTX) \
2392 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2393
2394 /* 1 if RTX is a symbol_ref that has been the library function in
2395 emit_library_call. */
2396 #define SYMBOL_REF_USED(RTX) \
2397 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2398
2399 /* 1 if RTX is a symbol_ref for a weak symbol. */
2400 #define SYMBOL_REF_WEAK(RTX) \
2401 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2402
2403 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2404 SYMBOL_REF_CONSTANT. */
2405 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2406
2407 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2408 pool symbol. */
2409 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2410 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2411
2412 /* The tree (decl or constant) associated with the symbol, or null. */
2413 #define SYMBOL_REF_DECL(RTX) \
2414 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2415
2416 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2417 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2418 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2419
2420 /* The rtx constant pool entry for a symbol, or null. */
2421 #define SYMBOL_REF_CONSTANT(RTX) \
2422 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2423
2424 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2425 information derivable from the tree decl associated with this symbol.
2426 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2427 decl. In some cases this is a bug. But beyond that, it's nice to cache
2428 this information to avoid recomputing it. Finally, this allows space for
2429 the target to store more than one bit of information, as with
2430 SYMBOL_REF_FLAG. */
2431 #define SYMBOL_REF_FLAGS(RTX) \
2432 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2433 ->u2.symbol_ref_flags)
2434
2435 /* These flags are common enough to be defined for all targets. They
2436 are computed by the default version of targetm.encode_section_info. */
2437
2438 /* Set if this symbol is a function. */
2439 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2440 #define SYMBOL_REF_FUNCTION_P(RTX) \
2441 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2442 /* Set if targetm.binds_local_p is true. */
2443 #define SYMBOL_FLAG_LOCAL (1 << 1)
2444 #define SYMBOL_REF_LOCAL_P(RTX) \
2445 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2446 /* Set if targetm.in_small_data_p is true. */
2447 #define SYMBOL_FLAG_SMALL (1 << 2)
2448 #define SYMBOL_REF_SMALL_P(RTX) \
2449 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2450 /* The three-bit field at [5:3] is true for TLS variables; use
2451 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2452 #define SYMBOL_FLAG_TLS_SHIFT 3
2453 #define SYMBOL_REF_TLS_MODEL(RTX) \
2454 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2455 /* Set if this symbol is not defined in this translation unit. */
2456 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2457 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2458 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2459 /* Set if this symbol has a block_symbol structure associated with it. */
2460 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2461 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2462 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2463 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2464 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2465 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2466 #define SYMBOL_REF_ANCHOR_P(RTX) \
2467 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2468
2469 /* Subsequent bits are available for the target to use. */
2470 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2471 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2472
2473 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2474 structure to which the symbol belongs, or NULL if it has not been
2475 assigned a block. */
2476 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2477
2478 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2479 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2480 RTX has not yet been assigned to a block, or it has not been given an
2481 offset within that block. */
2482 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2483
2484 /* True if RTX is flagged to be a scheduling barrier. */
2485 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2486 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2487
2488 /* Indicate whether the machine has any sort of auto increment addressing.
2489 If not, we can avoid checking for REG_INC notes. */
2490
2491 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2492 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2493 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2494 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2495 #define AUTO_INC_DEC
2496 #endif
2497
2498 /* Define a macro to look for REG_INC notes,
2499 but save time on machines where they never exist. */
2500
2501 #ifdef AUTO_INC_DEC
2502 #define FIND_REG_INC_NOTE(INSN, REG) \
2503 ((REG) != NULL_RTX && REG_P ((REG)) \
2504 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2505 : find_reg_note ((INSN), REG_INC, (REG)))
2506 #else
2507 #define FIND_REG_INC_NOTE(INSN, REG) 0
2508 #endif
2509
2510 #ifndef HAVE_PRE_INCREMENT
2511 #define HAVE_PRE_INCREMENT 0
2512 #endif
2513
2514 #ifndef HAVE_PRE_DECREMENT
2515 #define HAVE_PRE_DECREMENT 0
2516 #endif
2517
2518 #ifndef HAVE_POST_INCREMENT
2519 #define HAVE_POST_INCREMENT 0
2520 #endif
2521
2522 #ifndef HAVE_POST_DECREMENT
2523 #define HAVE_POST_DECREMENT 0
2524 #endif
2525
2526 #ifndef HAVE_POST_MODIFY_DISP
2527 #define HAVE_POST_MODIFY_DISP 0
2528 #endif
2529
2530 #ifndef HAVE_POST_MODIFY_REG
2531 #define HAVE_POST_MODIFY_REG 0
2532 #endif
2533
2534 #ifndef HAVE_PRE_MODIFY_DISP
2535 #define HAVE_PRE_MODIFY_DISP 0
2536 #endif
2537
2538 #ifndef HAVE_PRE_MODIFY_REG
2539 #define HAVE_PRE_MODIFY_REG 0
2540 #endif
2541
2542
2543 /* Some architectures do not have complete pre/post increment/decrement
2544 instruction sets, or only move some modes efficiently. These macros
2545 allow us to tune autoincrement generation. */
2546
2547 #ifndef USE_LOAD_POST_INCREMENT
2548 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2549 #endif
2550
2551 #ifndef USE_LOAD_POST_DECREMENT
2552 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2553 #endif
2554
2555 #ifndef USE_LOAD_PRE_INCREMENT
2556 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2557 #endif
2558
2559 #ifndef USE_LOAD_PRE_DECREMENT
2560 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2561 #endif
2562
2563 #ifndef USE_STORE_POST_INCREMENT
2564 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2565 #endif
2566
2567 #ifndef USE_STORE_POST_DECREMENT
2568 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2569 #endif
2570
2571 #ifndef USE_STORE_PRE_INCREMENT
2572 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2573 #endif
2574
2575 #ifndef USE_STORE_PRE_DECREMENT
2576 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2577 #endif
2578 \f
2579 /* Nonzero when we are generating CONCATs. */
2580 extern int generating_concat_p;
2581
2582 /* Nonzero when we are expanding trees to RTL. */
2583 extern int currently_expanding_to_rtl;
2584
2585 /* Generally useful functions. */
2586
2587 /* In explow.c */
2588 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2589 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2590
2591 /* In rtl.c */
2592 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2593 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2594 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2595 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2596 #define const_wide_int_alloc(NWORDS) \
2597 rtx_alloc_v (CONST_WIDE_INT, \
2598 (sizeof (struct hwivec_def) \
2599 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2600
2601 extern rtvec rtvec_alloc (int);
2602 extern rtvec shallow_copy_rtvec (rtvec);
2603 extern bool shared_const_p (const_rtx);
2604 extern rtx copy_rtx (rtx);
2605 extern void dump_rtx_statistics (void);
2606
2607 /* In emit-rtl.c */
2608 extern rtx copy_rtx_if_shared (rtx);
2609
2610 /* In rtl.c */
2611 extern unsigned int rtx_size (const_rtx);
2612 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2613 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2614 extern int rtx_equal_p (const_rtx, const_rtx);
2615
2616 /* In emit-rtl.c */
2617 extern rtvec gen_rtvec_v (int, rtx *);
2618 extern rtvec gen_rtvec_v (int, rtx_insn **);
2619 extern rtx gen_reg_rtx (machine_mode);
2620 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2621 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2622 extern rtx gen_reg_rtx_and_attrs (rtx);
2623 extern rtx_code_label *gen_label_rtx (void);
2624 extern rtx gen_lowpart_common (machine_mode, rtx);
2625
2626 /* In cse.c */
2627 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2628
2629 /* In emit-rtl.c */
2630 extern rtx gen_highpart (machine_mode, rtx);
2631 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2632 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2633
2634 /* In emit-rtl.c */
2635 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2636 extern bool paradoxical_subreg_p (const_rtx);
2637 extern int subreg_lowpart_p (const_rtx);
2638 extern unsigned int subreg_lowpart_offset (machine_mode,
2639 machine_mode);
2640 extern unsigned int subreg_highpart_offset (machine_mode,
2641 machine_mode);
2642 extern int byte_lowpart_offset (machine_mode, machine_mode);
2643 extern rtx make_safe_from (rtx, rtx);
2644 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2645 addr_space_t);
2646 #define convert_memory_address(to_mode,x) \
2647 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2648 extern const char *get_insn_name (int);
2649 extern rtx_insn *get_last_insn_anywhere (void);
2650 extern rtx_insn *get_first_nonnote_insn (void);
2651 extern rtx_insn *get_last_nonnote_insn (void);
2652 extern void start_sequence (void);
2653 extern void push_to_sequence (rtx_insn *);
2654 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2655 extern void end_sequence (void);
2656 #if TARGET_SUPPORTS_WIDE_INT == 0
2657 extern double_int rtx_to_double_int (const_rtx);
2658 #endif
2659 extern void cwi_output_hex (FILE *, const_rtx);
2660 #ifndef GENERATOR_FILE
2661 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2662 #endif
2663 #if TARGET_SUPPORTS_WIDE_INT == 0
2664 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2665 machine_mode);
2666 #endif
2667
2668 /* In loop-iv.c */
2669
2670 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2671
2672 /* In varasm.c */
2673 extern rtx force_const_mem (machine_mode, rtx);
2674
2675 /* In varasm.c */
2676
2677 struct function;
2678 extern rtx get_pool_constant (const_rtx);
2679 extern rtx get_pool_constant_mark (rtx, bool *);
2680 extern machine_mode get_pool_mode (const_rtx);
2681 extern rtx simplify_subtraction (rtx);
2682 extern void decide_function_section (tree);
2683
2684 /* In emit-rtl.c */
2685 extern rtx_insn *emit_insn_before (rtx, rtx);
2686 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2687 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2688 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2689 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2690 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2691 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2692 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2693 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2694 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2695 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2696 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2697 extern rtx_barrier *emit_barrier_before (rtx);
2698 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2699 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2700 extern rtx_insn *emit_insn_after (rtx, rtx);
2701 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2702 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2703 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2704 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2705 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2706 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2707 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2708 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2709 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2710 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2711 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2712 extern rtx_barrier *emit_barrier_after (rtx);
2713 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2714 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2715 extern rtx_insn *emit_insn (rtx);
2716 extern rtx_insn *emit_debug_insn (rtx);
2717 extern rtx_insn *emit_jump_insn (rtx);
2718 extern rtx_insn *emit_call_insn (rtx);
2719 extern rtx_insn *emit_label (rtx);
2720 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2721 extern rtx_barrier *emit_barrier (void);
2722 extern rtx_note *emit_note (enum insn_note);
2723 extern rtx_note *emit_note_copy (rtx_note *);
2724 extern rtx_insn *gen_clobber (rtx);
2725 extern rtx_insn *emit_clobber (rtx);
2726 extern rtx_insn *gen_use (rtx);
2727 extern rtx_insn *emit_use (rtx);
2728 extern rtx_insn *make_insn_raw (rtx);
2729 extern void add_function_usage_to (rtx, rtx);
2730 extern rtx_call_insn *last_call_insn (void);
2731 extern rtx_insn *previous_insn (rtx_insn *);
2732 extern rtx_insn *next_insn (rtx_insn *);
2733 extern rtx_insn *prev_nonnote_insn (rtx);
2734 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2735 extern rtx_insn *next_nonnote_insn (rtx);
2736 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2737 extern rtx_insn *prev_nondebug_insn (rtx);
2738 extern rtx_insn *next_nondebug_insn (rtx);
2739 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2740 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2741 extern rtx_insn *prev_real_insn (rtx);
2742 extern rtx_insn *next_real_insn (rtx);
2743 extern rtx_insn *prev_active_insn (rtx);
2744 extern rtx_insn *next_active_insn (rtx);
2745 extern int active_insn_p (const_rtx);
2746 extern rtx_insn *next_cc0_user (rtx);
2747 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2748
2749 /* In emit-rtl.c */
2750 extern int insn_line (const rtx_insn *);
2751 extern const char * insn_file (const rtx_insn *);
2752 extern tree insn_scope (const rtx_insn *);
2753 extern expanded_location insn_location (const rtx_insn *);
2754 extern location_t prologue_location, epilogue_location;
2755
2756 /* In jump.c */
2757 extern enum rtx_code reverse_condition (enum rtx_code);
2758 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2759 extern enum rtx_code swap_condition (enum rtx_code);
2760 extern enum rtx_code unsigned_condition (enum rtx_code);
2761 extern enum rtx_code signed_condition (enum rtx_code);
2762 extern void mark_jump_label (rtx, rtx_insn *, int);
2763
2764 /* In jump.c */
2765 extern rtx_insn *delete_related_insns (rtx);
2766
2767 /* In recog.c */
2768 extern rtx *find_constant_term_loc (rtx *);
2769
2770 /* In emit-rtl.c */
2771 extern rtx_insn *try_split (rtx, rtx, int);
2772 extern int split_branch_probability;
2773
2774 /* In unknown file */
2775 extern rtx split_insns (rtx, rtx);
2776
2777 /* In simplify-rtx.c */
2778 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2779 rtx, machine_mode);
2780 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2781 machine_mode);
2782 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2783 rtx, rtx);
2784 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2785 rtx);
2786 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2787 machine_mode, rtx, rtx, rtx);
2788 extern rtx simplify_const_relational_operation (enum rtx_code,
2789 machine_mode, rtx, rtx);
2790 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2791 machine_mode, rtx, rtx);
2792 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2793 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2794 machine_mode);
2795 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2796 machine_mode, rtx, rtx, rtx);
2797 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2798 machine_mode, rtx, rtx);
2799 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2800 unsigned int);
2801 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2802 unsigned int);
2803 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2804 rtx (*fn) (rtx, const_rtx, void *), void *);
2805 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2806 extern rtx simplify_rtx (const_rtx);
2807 extern rtx avoid_constant_pool_reference (rtx);
2808 extern rtx delegitimize_mem_from_attrs (rtx);
2809 extern bool mode_signbit_p (machine_mode, const_rtx);
2810 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2811 extern bool val_signbit_known_set_p (machine_mode,
2812 unsigned HOST_WIDE_INT);
2813 extern bool val_signbit_known_clear_p (machine_mode,
2814 unsigned HOST_WIDE_INT);
2815
2816 /* In reginfo.c */
2817 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2818 bool);
2819 #ifdef HARD_CONST
2820 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2821 #endif
2822
2823 /* In emit-rtl.c */
2824 extern rtx set_for_reg_notes (rtx);
2825 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2826 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2827 extern void set_insn_deleted (rtx);
2828
2829 /* Functions in rtlanal.c */
2830
2831 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2832
2833 /* Handle the cheap and common cases inline for performance. */
2834
2835 inline rtx single_set (const rtx_insn *insn)
2836 {
2837 if (!INSN_P (insn))
2838 return NULL_RTX;
2839
2840 if (GET_CODE (PATTERN (insn)) == SET)
2841 return PATTERN (insn);
2842
2843 /* Defer to the more expensive case. */
2844 return single_set_2 (insn, PATTERN (insn));
2845 }
2846
2847 extern machine_mode get_address_mode (rtx mem);
2848 extern int rtx_addr_can_trap_p (const_rtx);
2849 extern bool nonzero_address_p (const_rtx);
2850 extern int rtx_unstable_p (const_rtx);
2851 extern bool rtx_varies_p (const_rtx, bool);
2852 extern bool rtx_addr_varies_p (const_rtx, bool);
2853 extern rtx get_call_rtx_from (rtx);
2854 extern HOST_WIDE_INT get_integer_term (const_rtx);
2855 extern rtx get_related_value (const_rtx);
2856 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2857 extern void split_const (rtx, rtx *, rtx *);
2858 extern bool unsigned_reg_p (rtx);
2859 extern int reg_mentioned_p (const_rtx, const_rtx);
2860 extern int count_occurrences (const_rtx, const_rtx, int);
2861 extern int reg_referenced_p (const_rtx, const_rtx);
2862 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2863 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2864 extern int commutative_operand_precedence (rtx);
2865 extern bool swap_commutative_operands_p (rtx, rtx);
2866 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2867 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2868 extern int modified_in_p (const_rtx, const_rtx);
2869 extern int reg_set_p (const_rtx, const_rtx);
2870 extern int multiple_sets (const_rtx);
2871 extern int set_noop_p (const_rtx);
2872 extern int noop_move_p (const rtx_insn *);
2873 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2874 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2875 extern const_rtx set_of (const_rtx, const_rtx);
2876 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2877 extern void record_hard_reg_uses (rtx *, void *);
2878 #ifdef HARD_CONST
2879 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2880 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2881 #endif
2882 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2883 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2884 extern int dead_or_set_p (const_rtx, const_rtx);
2885 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2886 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2887 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2888 extern rtx find_reg_equal_equiv_note (const_rtx);
2889 extern rtx find_constant_src (const rtx_insn *);
2890 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2891 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2892 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2893 extern void add_reg_note (rtx, enum reg_note, rtx);
2894 extern void add_int_reg_note (rtx, enum reg_note, int);
2895 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2896 extern void remove_note (rtx, const_rtx);
2897 extern void remove_reg_equal_equiv_notes (rtx_insn *);
2898 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2899 extern int side_effects_p (const_rtx);
2900 extern int volatile_refs_p (const_rtx);
2901 extern int volatile_insn_p (const_rtx);
2902 extern int may_trap_p_1 (const_rtx, unsigned);
2903 extern int may_trap_p (const_rtx);
2904 extern int may_trap_or_fault_p (const_rtx);
2905 extern bool can_throw_internal (const_rtx);
2906 extern bool can_throw_external (const_rtx);
2907 extern bool insn_could_throw_p (const_rtx);
2908 extern bool insn_nothrow_p (const_rtx);
2909 extern bool can_nonlocal_goto (const rtx_insn *);
2910 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2911 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2912 extern int inequality_comparisons_p (const_rtx);
2913 extern rtx replace_rtx (rtx, rtx, rtx);
2914 extern void replace_label (rtx *, rtx, rtx, bool);
2915 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2916 extern bool rtx_referenced_p (const_rtx, const_rtx);
2917 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2918 extern int computed_jump_p (const rtx_insn *);
2919 extern bool tls_referenced_p (const_rtx);
2920
2921 /* Overload for refers_to_regno_p for checking a single register. */
2922 inline bool
2923 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2924 {
2925 return refers_to_regno_p (regnum, regnum + 1, x, loc);
2926 }
2927
2928 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2929 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2930 NULL. The callback is passed the same opaque ARG passed to
2931 for_each_inc_dec. Return zero to continue looking for other
2932 autoinc operations or any other value to interrupt the traversal and
2933 return that value to the caller of for_each_inc_dec. */
2934 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2935 rtx srcoff, void *arg);
2936 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2937
2938 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2939 rtx *, rtx *);
2940 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2941 rtx_equal_p_callback_function);
2942
2943 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
2944 machine_mode *);
2945 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
2946 bool, hash_rtx_callback_function);
2947
2948 extern rtx regno_use_in (unsigned int, rtx);
2949 extern int auto_inc_p (const_rtx);
2950 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
2951 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2952 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2953 extern int loc_mentioned_in_p (rtx *, const_rtx);
2954 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2955 extern bool keep_with_call_p (const rtx_insn *);
2956 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2957 extern int insn_rtx_cost (rtx, bool);
2958 extern unsigned seq_cost (const rtx_insn *, bool);
2959
2960 /* Given an insn and condition, return a canonical description of
2961 the test being made. */
2962 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2963 int, int);
2964
2965 /* Given a JUMP_INSN, return a canonical description of the test
2966 being made. */
2967 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2968
2969 /* Information about a subreg of a hard register. */
2970 struct subreg_info
2971 {
2972 /* Offset of first hard register involved in the subreg. */
2973 int offset;
2974 /* Number of hard registers involved in the subreg. In the case of
2975 a paradoxical subreg, this is the number of registers that would
2976 be modified by writing to the subreg; some of them may be don't-care
2977 when reading from the subreg. */
2978 int nregs;
2979 /* Whether this subreg can be represented as a hard reg with the new
2980 mode (by adding OFFSET to the original hard register). */
2981 bool representable_p;
2982 };
2983
2984 extern void subreg_get_info (unsigned int, machine_mode,
2985 unsigned int, machine_mode,
2986 struct subreg_info *);
2987
2988 /* lists.c */
2989
2990 extern void free_EXPR_LIST_list (rtx_expr_list **);
2991 extern void free_INSN_LIST_list (rtx_insn_list **);
2992 extern void free_EXPR_LIST_node (rtx);
2993 extern void free_INSN_LIST_node (rtx);
2994 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2995 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2996 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2997 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2998 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2999 extern rtx remove_list_elem (rtx, rtx *);
3000 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3001 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3002
3003
3004 /* reginfo.c */
3005
3006 /* Resize reg info. */
3007 extern bool resize_reg_info (void);
3008 /* Free up register info memory. */
3009 extern void free_reg_info (void);
3010 extern void init_subregs_of_mode (void);
3011 extern void finish_subregs_of_mode (void);
3012
3013 /* recog.c */
3014 extern rtx extract_asm_operands (rtx);
3015 extern int asm_noperands (const_rtx);
3016 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3017 machine_mode *, location_t *);
3018 extern void get_referenced_operands (const char *, bool *, unsigned int);
3019
3020 extern enum reg_class reg_preferred_class (int);
3021 extern enum reg_class reg_alternate_class (int);
3022 extern enum reg_class reg_allocno_class (int);
3023 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3024 enum reg_class);
3025
3026 extern void split_all_insns (void);
3027 extern unsigned int split_all_insns_noflow (void);
3028
3029 #define MAX_SAVED_CONST_INT 64
3030 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3031
3032 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3033 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3034 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3035 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3036 extern GTY(()) rtx const_true_rtx;
3037
3038 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3039
3040 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3041 same as VOIDmode. */
3042
3043 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3044
3045 /* Likewise, for the constants 1 and 2 and -1. */
3046
3047 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3048 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3049 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3050
3051 extern GTY(()) rtx pc_rtx;
3052 extern GTY(()) rtx cc0_rtx;
3053 extern GTY(()) rtx ret_rtx;
3054 extern GTY(()) rtx simple_return_rtx;
3055
3056 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3057 is used to represent the frame pointer. This is because the
3058 hard frame pointer and the automatic variables are separated by an amount
3059 that cannot be determined until after register allocation. We can assume
3060 that in this case ELIMINABLE_REGS will be defined, one action of which
3061 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3062 #ifndef HARD_FRAME_POINTER_REGNUM
3063 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3064 #endif
3065
3066 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3067 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3068 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3069 #endif
3070
3071 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3072 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3073 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3074 #endif
3075
3076 /* Index labels for global_rtl. */
3077 enum global_rtl_index
3078 {
3079 GR_STACK_POINTER,
3080 GR_FRAME_POINTER,
3081 /* For register elimination to work properly these hard_frame_pointer_rtx,
3082 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3083 the same register. */
3084 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3085 GR_ARG_POINTER = GR_FRAME_POINTER,
3086 #endif
3087 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3088 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3089 #else
3090 GR_HARD_FRAME_POINTER,
3091 #endif
3092 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3093 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3094 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3095 #else
3096 GR_ARG_POINTER,
3097 #endif
3098 #endif
3099 GR_VIRTUAL_INCOMING_ARGS,
3100 GR_VIRTUAL_STACK_ARGS,
3101 GR_VIRTUAL_STACK_DYNAMIC,
3102 GR_VIRTUAL_OUTGOING_ARGS,
3103 GR_VIRTUAL_CFA,
3104 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3105
3106 GR_MAX
3107 };
3108
3109 /* Target-dependent globals. */
3110 struct GTY(()) target_rtl {
3111 /* All references to the hard registers in global_rtl_index go through
3112 these unique rtl objects. On machines where the frame-pointer and
3113 arg-pointer are the same register, they use the same unique object.
3114
3115 After register allocation, other rtl objects which used to be pseudo-regs
3116 may be clobbered to refer to the frame-pointer register.
3117 But references that were originally to the frame-pointer can be
3118 distinguished from the others because they contain frame_pointer_rtx.
3119
3120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3121 tricky: until register elimination has taken place hard_frame_pointer_rtx
3122 should be used if it is being set, and frame_pointer_rtx otherwise. After
3123 register elimination hard_frame_pointer_rtx should always be used.
3124 On machines where the two registers are same (most) then these are the
3125 same. */
3126 rtx x_global_rtl[GR_MAX];
3127
3128 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3129 rtx x_pic_offset_table_rtx;
3130
3131 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3132 This is used to implement __builtin_return_address for some machines;
3133 see for instance the MIPS port. */
3134 rtx x_return_address_pointer_rtx;
3135
3136 /* Commonly used RTL for hard registers. These objects are not
3137 necessarily unique, so we allocate them separately from global_rtl.
3138 They are initialized once per compilation unit, then copied into
3139 regno_reg_rtx at the beginning of each function. */
3140 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3141
3142 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3143 rtx x_top_of_stack[MAX_MACHINE_MODE];
3144
3145 /* Static hunks of RTL used by the aliasing code; these are treated
3146 as persistent to avoid unnecessary RTL allocations. */
3147 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3148
3149 /* The default memory attributes for each mode. */
3150 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3151
3152 /* Track if RTL has been initialized. */
3153 bool target_specific_initialized;
3154 };
3155
3156 extern GTY(()) struct target_rtl default_target_rtl;
3157 #if SWITCHABLE_TARGET
3158 extern struct target_rtl *this_target_rtl;
3159 #else
3160 #define this_target_rtl (&default_target_rtl)
3161 #endif
3162
3163 #define global_rtl \
3164 (this_target_rtl->x_global_rtl)
3165 #define pic_offset_table_rtx \
3166 (this_target_rtl->x_pic_offset_table_rtx)
3167 #define return_address_pointer_rtx \
3168 (this_target_rtl->x_return_address_pointer_rtx)
3169 #define top_of_stack \
3170 (this_target_rtl->x_top_of_stack)
3171 #define mode_mem_attrs \
3172 (this_target_rtl->x_mode_mem_attrs)
3173
3174 /* All references to certain hard regs, except those created
3175 by allocating pseudo regs into them (when that's possible),
3176 go through these unique rtx objects. */
3177 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3178 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3179 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3180 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3181
3182 #ifndef GENERATOR_FILE
3183 /* Return the attributes of a MEM rtx. */
3184 static inline struct mem_attrs *
3185 get_mem_attrs (const_rtx x)
3186 {
3187 struct mem_attrs *attrs;
3188
3189 attrs = MEM_ATTRS (x);
3190 if (!attrs)
3191 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3192 return attrs;
3193 }
3194 #endif
3195
3196 /* Include the RTL generation functions. */
3197
3198 #ifndef GENERATOR_FILE
3199 #include "genrtl.h"
3200 #undef gen_rtx_ASM_INPUT
3201 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3202 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3203 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3204 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3205 #endif
3206
3207 /* There are some RTL codes that require special attention; the
3208 generation functions included above do the raw handling. If you
3209 add to this list, modify special_rtx in gengenrtl.c as well. */
3210
3211 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3212 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3213 extern rtx_insn *
3214 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3215 basic_block bb, rtx pattern, int location, int code,
3216 rtx reg_notes);
3217 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3218 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3219 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3220 extern rtx gen_raw_REG (machine_mode, unsigned int);
3221 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3222 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3223 extern rtx gen_rtx_MEM (machine_mode, rtx);
3224 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3225 enum var_init_status);
3226
3227 #ifdef GENERATOR_FILE
3228 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3229 #else
3230 static inline void
3231 PUT_MODE (rtx x, machine_mode mode)
3232 {
3233 if (REG_P (x))
3234 set_mode_and_regno (x, mode, REGNO (x));
3235 else
3236 PUT_MODE_RAW (x, mode);
3237 }
3238 #endif
3239
3240 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3241
3242 /* Virtual registers are used during RTL generation to refer to locations into
3243 the stack frame when the actual location isn't known until RTL generation
3244 is complete. The routine instantiate_virtual_regs replaces these with
3245 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3246 a constant. */
3247
3248 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3249
3250 /* This points to the first word of the incoming arguments passed on the stack,
3251 either by the caller or by the callee when pretending it was passed by the
3252 caller. */
3253
3254 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3255
3256 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3257
3258 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3259 variable on the stack. Otherwise, it points to the first variable on
3260 the stack. */
3261
3262 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3263
3264 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3265
3266 /* This points to the location of dynamically-allocated memory on the stack
3267 immediately after the stack pointer has been adjusted by the amount
3268 desired. */
3269
3270 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3271
3272 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3273
3274 /* This points to the location in the stack at which outgoing arguments should
3275 be written when the stack is pre-pushed (arguments pushed using push
3276 insns always use sp). */
3277
3278 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3279
3280 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3281
3282 /* This points to the Canonical Frame Address of the function. This
3283 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3284 but is calculated relative to the arg pointer for simplicity; the
3285 frame pointer nor stack pointer are necessarily fixed relative to
3286 the CFA until after reload. */
3287
3288 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3289
3290 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3291
3292 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3293
3294 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3295 when finalized. */
3296
3297 #define virtual_preferred_stack_boundary_rtx \
3298 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3299
3300 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3301 ((FIRST_VIRTUAL_REGISTER) + 5)
3302
3303 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3304
3305 /* Nonzero if REGNUM is a pointer into the stack frame. */
3306 #define REGNO_PTR_FRAME_P(REGNUM) \
3307 ((REGNUM) == STACK_POINTER_REGNUM \
3308 || (REGNUM) == FRAME_POINTER_REGNUM \
3309 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3310 || (REGNUM) == ARG_POINTER_REGNUM \
3311 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3312 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3313
3314 /* REGNUM never really appearing in the INSN stream. */
3315 #define INVALID_REGNUM (~(unsigned int) 0)
3316
3317 /* REGNUM for which no debug information can be generated. */
3318 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3319
3320 extern rtx output_constant_def (tree, int);
3321 extern rtx lookup_constant_def (tree);
3322
3323 /* Nonzero after end of reload pass.
3324 Set to 1 or 0 by reload1.c. */
3325
3326 extern int reload_completed;
3327
3328 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3329 extern int epilogue_completed;
3330
3331 /* Set to 1 while reload_as_needed is operating.
3332 Required by some machines to handle any generated moves differently. */
3333
3334 extern int reload_in_progress;
3335
3336 /* Set to 1 while in lra. */
3337 extern int lra_in_progress;
3338
3339 /* This macro indicates whether you may create a new
3340 pseudo-register. */
3341
3342 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3343
3344 #ifdef STACK_REGS
3345 /* Nonzero after end of regstack pass.
3346 Set to 1 or 0 by reg-stack.c. */
3347 extern int regstack_completed;
3348 #endif
3349
3350 /* If this is nonzero, we do not bother generating VOLATILE
3351 around volatile memory references, and we are willing to
3352 output indirect addresses. If cse is to follow, we reject
3353 indirect addresses so a useful potential cse is generated;
3354 if it is used only once, instruction combination will produce
3355 the same indirect address eventually. */
3356 extern int cse_not_expected;
3357
3358 /* Translates rtx code to tree code, for those codes needed by
3359 REAL_ARITHMETIC. The function returns an int because the caller may not
3360 know what `enum tree_code' means. */
3361
3362 extern int rtx_to_tree_code (enum rtx_code);
3363
3364 /* In cse.c */
3365 extern int delete_trivially_dead_insns (rtx_insn *, int);
3366 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3367 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3368
3369 /* In dse.c */
3370 extern bool check_for_inc_dec (rtx_insn *insn);
3371
3372 /* In jump.c */
3373 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3374 extern bool jump_to_label_p (const rtx_insn *);
3375 extern int condjump_p (const rtx_insn *);
3376 extern int any_condjump_p (const rtx_insn *);
3377 extern int any_uncondjump_p (const rtx_insn *);
3378 extern rtx pc_set (const rtx_insn *);
3379 extern rtx condjump_label (const rtx_insn *);
3380 extern int simplejump_p (const rtx_insn *);
3381 extern int returnjump_p (const rtx_insn *);
3382 extern int eh_returnjump_p (rtx_insn *);
3383 extern int onlyjump_p (const rtx_insn *);
3384 extern int only_sets_cc0_p (const_rtx);
3385 extern int sets_cc0_p (const_rtx);
3386 extern int invert_jump_1 (rtx_insn *, rtx);
3387 extern int invert_jump (rtx_insn *, rtx, int);
3388 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3389 extern int true_regnum (const_rtx);
3390 extern unsigned int reg_or_subregno (const_rtx);
3391 extern int redirect_jump_1 (rtx_insn *, rtx);
3392 extern void redirect_jump_2 (rtx_insn *, rtx, rtx, int, int);
3393 extern int redirect_jump (rtx_insn *, rtx, int);
3394 extern void rebuild_jump_labels (rtx_insn *);
3395 extern void rebuild_jump_labels_chain (rtx_insn *);
3396 extern rtx reversed_comparison (const_rtx, machine_mode);
3397 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3398 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3399 const_rtx, const_rtx);
3400 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3401 extern int condjump_in_parallel_p (const rtx_insn *);
3402
3403 /* In emit-rtl.c. */
3404 extern int max_reg_num (void);
3405 extern int max_label_num (void);
3406 extern int get_first_label_num (void);
3407 extern void maybe_set_first_label_num (rtx);
3408 extern void delete_insns_since (rtx_insn *);
3409 extern void mark_reg_pointer (rtx, int);
3410 extern void mark_user_reg (rtx);
3411 extern void reset_used_flags (rtx);
3412 extern void set_used_flags (rtx);
3413 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3414 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3415 extern int get_max_insn_count (void);
3416 extern int in_sequence_p (void);
3417 extern void init_emit (void);
3418 extern void init_emit_regs (void);
3419 extern void init_derived_machine_modes (void);
3420 extern void init_emit_once (void);
3421 extern void push_topmost_sequence (void);
3422 extern void pop_topmost_sequence (void);
3423 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3424 extern unsigned int unshare_all_rtl (void);
3425 extern void unshare_all_rtl_again (rtx_insn *);
3426 extern void unshare_all_rtl_in_chain (rtx_insn *);
3427 extern void verify_rtl_sharing (void);
3428 extern void add_insn (rtx_insn *);
3429 extern void add_insn_before (rtx, rtx, basic_block);
3430 extern void add_insn_after (rtx, rtx, basic_block);
3431 extern void remove_insn (rtx);
3432 extern rtx_insn *emit (rtx);
3433 extern void emit_insn_at_entry (rtx);
3434 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3435 extern rtx gen_const_mem (machine_mode, rtx);
3436 extern rtx gen_frame_mem (machine_mode, rtx);
3437 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3438 extern bool validate_subreg (machine_mode, machine_mode,
3439 const_rtx, unsigned int);
3440
3441 /* In combine.c */
3442 extern unsigned int extended_count (const_rtx, machine_mode, int);
3443 extern rtx remove_death (unsigned int, rtx_insn *);
3444 extern void dump_combine_stats (FILE *);
3445 extern void dump_combine_total_stats (FILE *);
3446 extern rtx make_compound_operation (rtx, enum rtx_code);
3447
3448 /* In sched-rgn.c. */
3449 extern void schedule_insns (void);
3450
3451 /* In sched-ebb.c. */
3452 extern void schedule_ebbs (void);
3453
3454 /* In sel-sched-dump.c. */
3455 extern void sel_sched_fix_param (const char *param, const char *val);
3456
3457 /* In print-rtl.c */
3458 extern const char *print_rtx_head;
3459 extern void debug (const rtx_def &ref);
3460 extern void debug (const rtx_def *ptr);
3461 extern void debug_rtx (const_rtx);
3462 extern void debug_rtx_list (const rtx_insn *, int);
3463 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3464 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3465 extern void print_mem_expr (FILE *, const_tree);
3466 extern void print_rtl (FILE *, const_rtx);
3467 extern void print_simple_rtl (FILE *, const_rtx);
3468 extern int print_rtl_single (FILE *, const_rtx);
3469 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3470 extern void print_inline_rtx (FILE *, const_rtx, int);
3471
3472 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3473 not be in sched-vis.c but in rtl.c, because they are not only used
3474 by the scheduler anymore but for all "slim" RTL dumping. */
3475 extern void dump_value_slim (FILE *, const_rtx, int);
3476 extern void dump_insn_slim (FILE *, const_rtx);
3477 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3478 int, int);
3479 extern void print_value (pretty_printer *, const_rtx, int);
3480 extern void print_pattern (pretty_printer *, const_rtx, int);
3481 extern void print_insn (pretty_printer *, const_rtx, int);
3482 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3483 extern const char *str_pattern_slim (const_rtx);
3484
3485 /* In stmt.c */
3486 extern void expand_null_return (void);
3487 extern void expand_naked_return (void);
3488 extern void emit_jump (rtx);
3489
3490 /* In expr.c */
3491 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3492 unsigned int, int);
3493 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3494 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3495
3496 /* In expmed.c */
3497 extern void init_expmed (void);
3498 extern void expand_inc (rtx, rtx);
3499 extern void expand_dec (rtx, rtx);
3500
3501 /* In lower-subreg.c */
3502 extern void init_lower_subreg (void);
3503
3504 /* In gcse.c */
3505 extern bool can_copy_p (machine_mode);
3506 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3507 extern rtx fis_get_condition (rtx_insn *);
3508
3509 /* In ira.c */
3510 #ifdef HARD_CONST
3511 extern HARD_REG_SET eliminable_regset;
3512 #endif
3513 extern void mark_elimination (int, int);
3514
3515 /* In reginfo.c */
3516 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3517 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3518 extern void globalize_reg (tree, int);
3519 extern void init_reg_modes_target (void);
3520 extern void init_regs (void);
3521 extern void reinit_regs (void);
3522 extern void init_fake_stack_mems (void);
3523 extern void save_register_info (void);
3524 extern void init_reg_sets (void);
3525 extern void regclass (rtx, int);
3526 extern void reg_scan (rtx_insn *, unsigned int);
3527 extern void fix_register (const char *, int, int);
3528 #ifdef HARD_CONST
3529 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3530 #endif
3531
3532 /* In reload1.c */
3533 extern int function_invariant_p (const_rtx);
3534
3535 /* In calls.c */
3536 enum libcall_type
3537 {
3538 LCT_NORMAL = 0,
3539 LCT_CONST = 1,
3540 LCT_PURE = 2,
3541 LCT_NORETURN = 3,
3542 LCT_THROW = 4,
3543 LCT_RETURNS_TWICE = 5
3544 };
3545
3546 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3547 ...);
3548 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3549 machine_mode, int, ...);
3550
3551 /* In varasm.c */
3552 extern void init_varasm_once (void);
3553
3554 extern rtx make_debug_expr_from_rtl (const_rtx);
3555
3556 /* In read-rtl.c */
3557 extern bool read_rtx (const char *, rtx *);
3558
3559 /* In alias.c */
3560 extern rtx canon_rtx (rtx);
3561 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3562 extern rtx get_addr (rtx);
3563 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3564 const_rtx, rtx);
3565 extern int read_dependence (const_rtx, const_rtx);
3566 extern int anti_dependence (const_rtx, const_rtx);
3567 extern int canon_anti_dependence (const_rtx, bool,
3568 const_rtx, machine_mode, rtx);
3569 extern int output_dependence (const_rtx, const_rtx);
3570 extern int may_alias_p (const_rtx, const_rtx);
3571 extern void init_alias_target (void);
3572 extern void init_alias_analysis (void);
3573 extern void end_alias_analysis (void);
3574 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3575 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3576 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3577 extern bool may_be_sp_based_p (rtx);
3578 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3579 extern rtx get_reg_known_value (unsigned int);
3580 extern bool get_reg_known_equiv_p (unsigned int);
3581 extern rtx get_reg_base_value (unsigned int);
3582
3583 #ifdef STACK_REGS
3584 extern int stack_regs_mentioned (const_rtx insn);
3585 #endif
3586
3587 /* In toplev.c */
3588 extern GTY(()) rtx stack_limit_rtx;
3589
3590 /* In var-tracking.c */
3591 extern unsigned int variable_tracking_main (void);
3592
3593 /* In stor-layout.c. */
3594 extern void get_mode_bounds (machine_mode, int, machine_mode,
3595 rtx *, rtx *);
3596
3597 /* In loop-iv.c */
3598 extern rtx canon_condition (rtx);
3599 extern void simplify_using_condition (rtx, rtx *, bitmap);
3600
3601 /* In final.c */
3602 extern unsigned int compute_alignments (void);
3603 extern void update_alignments (vec<rtx> &);
3604 extern int asm_str_count (const char *templ);
3605 \f
3606 struct rtl_hooks
3607 {
3608 rtx (*gen_lowpart) (machine_mode, rtx);
3609 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3610 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3611 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3612 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3613 unsigned int, unsigned int *);
3614 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3615
3616 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3617 };
3618
3619 /* Each pass can provide its own. */
3620 extern struct rtl_hooks rtl_hooks;
3621
3622 /* ... but then it has to restore these. */
3623 extern const struct rtl_hooks general_rtl_hooks;
3624
3625 /* Keep this for the nonce. */
3626 #define gen_lowpart rtl_hooks.gen_lowpart
3627
3628 extern void insn_locations_init (void);
3629 extern void insn_locations_finalize (void);
3630 extern void set_curr_insn_location (location_t);
3631 extern location_t curr_insn_location (void);
3632
3633 /* rtl-error.c */
3634 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3635 ATTRIBUTE_NORETURN;
3636 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3637 ATTRIBUTE_NORETURN;
3638
3639 #define fatal_insn(msgid, insn) \
3640 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3641 #define fatal_insn_not_found(insn) \
3642 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3643
3644 /* reginfo.c */
3645 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3646
3647 #endif /* ! GCC_RTL_H */