rtl.h (reg_info): Add an nregs field.
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include "statistics.h"
24 #include "machmode.h"
25 #include "input.h"
26 #include "real.h"
27 #include "vec.h"
28 #include "fixed-value.h"
29 #include "alias.h"
30 #include "hashtab.h"
31 #include "wide-int.h"
32 #include "flags.h"
33 #include "is-a.h"
34
35 /* Value used by some passes to "recognize" noop moves as valid
36 instructions. */
37 #define NOOP_MOVE_INSN_CODE INT_MAX
38
39 /* Register Transfer Language EXPRESSIONS CODES */
40
41 #define RTX_CODE enum rtx_code
42 enum rtx_code {
43
44 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
45 #include "rtl.def" /* rtl expressions are documented here */
46 #undef DEF_RTL_EXPR
47
48 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
49 NUM_RTX_CODE.
50 Assumes default enum value assignment. */
51
52 /* The cast here, saves many elsewhere. */
53 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
54
55 /* Similar, but since generator files get more entries... */
56 #ifdef GENERATOR_FILE
57 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
58 #endif
59
60 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
61
62 enum rtx_class {
63 /* We check bit 0-1 of some rtx class codes in the predicates below. */
64
65 /* Bit 0 = comparison if 0, arithmetic is 1
66 Bit 1 = 1 if commutative. */
67 RTX_COMPARE, /* 0 */
68 RTX_COMM_COMPARE,
69 RTX_BIN_ARITH,
70 RTX_COMM_ARITH,
71
72 /* Must follow the four preceding values. */
73 RTX_UNARY, /* 4 */
74
75 RTX_EXTRA,
76 RTX_MATCH,
77 RTX_INSN,
78
79 /* Bit 0 = 1 if constant. */
80 RTX_OBJ, /* 8 */
81 RTX_CONST_OBJ,
82
83 RTX_TERNARY,
84 RTX_BITFIELD_OPS,
85 RTX_AUTOINC
86 };
87
88 #define RTX_OBJ_MASK (~1)
89 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
90 #define RTX_COMPARE_MASK (~1)
91 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
92 #define RTX_ARITHMETIC_MASK (~1)
93 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
94 #define RTX_BINARY_MASK (~3)
95 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
96 #define RTX_COMMUTATIVE_MASK (~2)
97 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
98 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
99
100 extern const unsigned char rtx_length[NUM_RTX_CODE];
101 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
102
103 extern const char * const rtx_name[NUM_RTX_CODE];
104 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
105
106 extern const char * const rtx_format[NUM_RTX_CODE];
107 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
108
109 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
110 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
111
112 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
113 and NEXT_INSN fields). */
114 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
115
116 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
117 extern const unsigned char rtx_next[NUM_RTX_CODE];
118 \f
119 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
120 relative to which the offsets are calculated, as explained in rtl.def. */
121 struct addr_diff_vec_flags
122 {
123 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
124 unsigned min_align: 8;
125 /* Flags: */
126 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
127 unsigned min_after_vec: 1; /* minimum address target label is
128 after the ADDR_DIFF_VEC. */
129 unsigned max_after_vec: 1; /* maximum address target label is
130 after the ADDR_DIFF_VEC. */
131 unsigned min_after_base: 1; /* minimum address target label is
132 after BASE. */
133 unsigned max_after_base: 1; /* maximum address target label is
134 after BASE. */
135 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
136 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
137 unsigned : 2;
138 unsigned scale : 8;
139 };
140
141 /* Structure used to describe the attributes of a MEM. These are hashed
142 so MEMs that the same attributes share a data structure. This means
143 they cannot be modified in place. */
144 struct GTY(()) mem_attrs
145 {
146 /* The expression that the MEM accesses, or null if not known.
147 This expression might be larger than the memory reference itself.
148 (In other words, the MEM might access only part of the object.) */
149 tree expr;
150
151 /* The offset of the memory reference from the start of EXPR.
152 Only valid if OFFSET_KNOWN_P. */
153 HOST_WIDE_INT offset;
154
155 /* The size of the memory reference in bytes. Only valid if
156 SIZE_KNOWN_P. */
157 HOST_WIDE_INT size;
158
159 /* The alias set of the memory reference. */
160 alias_set_type alias;
161
162 /* The alignment of the reference in bits. Always a multiple of
163 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
164 than the memory reference itself. */
165 unsigned int align;
166
167 /* The address space that the memory reference uses. */
168 unsigned char addrspace;
169
170 /* True if OFFSET is known. */
171 bool offset_known_p;
172
173 /* True if SIZE is known. */
174 bool size_known_p;
175 };
176
177 /* Structure used to describe the attributes of a REG in similar way as
178 mem_attrs does for MEM above. Note that the OFFSET field is calculated
179 in the same way as for mem_attrs, rather than in the same way as a
180 SUBREG_BYTE. For example, if a big-endian target stores a byte
181 object in the low part of a 4-byte register, the OFFSET field
182 will be -3 rather than 0. */
183
184 struct GTY((for_user)) reg_attrs {
185 tree decl; /* decl corresponding to REG. */
186 HOST_WIDE_INT offset; /* Offset from start of DECL. */
187 };
188
189 /* Common union for an element of an rtx. */
190
191 union rtunion
192 {
193 int rt_int;
194 unsigned int rt_uint;
195 const char *rt_str;
196 rtx rt_rtx;
197 rtvec rt_rtvec;
198 machine_mode rt_type;
199 addr_diff_vec_flags rt_addr_diff_vec_flags;
200 struct cselib_val *rt_cselib;
201 tree rt_tree;
202 basic_block rt_bb;
203 mem_attrs *rt_mem;
204 struct constant_descriptor_rtx *rt_constant;
205 struct dw_cfi_node *rt_cfi;
206 };
207
208 /* Describes the properties of a REG. */
209 struct GTY(()) reg_info {
210 /* The value of REGNO. */
211 unsigned int regno;
212
213 /* The value of REG_NREGS. */
214 unsigned int nregs : 8;
215 unsigned int unused : 24;
216
217 /* The value of REG_ATTRS. */
218 reg_attrs *attrs;
219 };
220
221 /* This structure remembers the position of a SYMBOL_REF within an
222 object_block structure. A SYMBOL_REF only provides this information
223 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
224 struct GTY(()) block_symbol {
225 /* The usual SYMBOL_REF fields. */
226 rtunion GTY ((skip)) fld[2];
227
228 /* The block that contains this object. */
229 struct object_block *block;
230
231 /* The offset of this object from the start of its block. It is negative
232 if the symbol has not yet been assigned an offset. */
233 HOST_WIDE_INT offset;
234 };
235
236 /* Describes a group of objects that are to be placed together in such
237 a way that their relative positions are known. */
238 struct GTY((for_user)) object_block {
239 /* The section in which these objects should be placed. */
240 section *sect;
241
242 /* The alignment of the first object, measured in bits. */
243 unsigned int alignment;
244
245 /* The total size of the objects, measured in bytes. */
246 HOST_WIDE_INT size;
247
248 /* The SYMBOL_REFs for each object. The vector is sorted in
249 order of increasing offset and the following conditions will
250 hold for each element X:
251
252 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
253 !SYMBOL_REF_ANCHOR_P (X)
254 SYMBOL_REF_BLOCK (X) == [address of this structure]
255 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
256 vec<rtx, va_gc> *objects;
257
258 /* All the anchor SYMBOL_REFs used to address these objects, sorted
259 in order of increasing offset, and then increasing TLS model.
260 The following conditions will hold for each element X in this vector:
261
262 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
263 SYMBOL_REF_ANCHOR_P (X)
264 SYMBOL_REF_BLOCK (X) == [address of this structure]
265 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
266 vec<rtx, va_gc> *anchors;
267 };
268
269 struct GTY((variable_size)) hwivec_def {
270 HOST_WIDE_INT elem[1];
271 };
272
273 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
274 #define CWI_GET_NUM_ELEM(RTX) \
275 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
276 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
277 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
278
279 /* RTL expression ("rtx"). */
280
281 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
282 field for for gengtype to recognize that inheritance is occurring,
283 so that all subclasses are redirected to the traversal hook for the
284 base class.
285 However, all of the fields are in the base class, and special-casing
286 is at work. Hence we use desc and tag of 0, generating a switch
287 statement of the form:
288 switch (0)
289 {
290 case 0: // all the work happens here
291 }
292 in order to work with the existing special-casing in gengtype. */
293
294 struct GTY((desc("0"), tag("0"),
295 chain_next ("RTX_NEXT (&%h)"),
296 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
297 /* The kind of expression this is. */
298 ENUM_BITFIELD(rtx_code) code: 16;
299
300 /* The kind of value the expression has. */
301 ENUM_BITFIELD(machine_mode) mode : 8;
302
303 /* 1 in a MEM if we should keep the alias set for this mem unchanged
304 when we access a component.
305 1 in a JUMP_INSN if it is a crossing jump.
306 1 in a CALL_INSN if it is a sibling call.
307 1 in a SET that is for a return.
308 In a CODE_LABEL, part of the two-bit alternate entry field.
309 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
310 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
311 1 in a SUBREG generated by LRA for reload insns.
312 1 in a CALL for calls instrumented by Pointer Bounds Checker. */
313 unsigned int jump : 1;
314 /* In a CODE_LABEL, part of the two-bit alternate entry field.
315 1 in a MEM if it cannot trap.
316 1 in a CALL_INSN logically equivalent to
317 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
318 unsigned int call : 1;
319 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
320 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
321 1 in a SYMBOL_REF if it addresses something in the per-function
322 constants pool.
323 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
324 1 in a NOTE, or EXPR_LIST for a const call.
325 1 in a JUMP_INSN of an annulling branch.
326 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
327 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
328 1 in a clobber temporarily created for LRA. */
329 unsigned int unchanging : 1;
330 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
331 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
332 if it has been deleted.
333 1 in a REG expression if corresponds to a variable declared by the user,
334 0 for an internally generated temporary.
335 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
336 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
337 non-local label.
338 In a SYMBOL_REF, this flag is used for machine-specific purposes.
339 In a PREFETCH, this flag indicates that it should be considered a scheduling
340 barrier.
341 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
342 unsigned int volatil : 1;
343 /* 1 in a REG if the register is used only in exit code a loop.
344 1 in a SUBREG expression if was generated from a variable with a
345 promoted mode.
346 1 in a CODE_LABEL if the label is used for nonlocal gotos
347 and must not be deleted even if its count is zero.
348 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
349 together with the preceding insn. Valid only within sched.
350 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
351 from the target of a branch. Valid from reorg until end of compilation;
352 cleared before used.
353
354 The name of the field is historical. It used to be used in MEMs
355 to record whether the MEM accessed part of a structure. */
356 unsigned int in_struct : 1;
357 /* At the end of RTL generation, 1 if this rtx is used. This is used for
358 copying shared structure. See `unshare_all_rtl'.
359 In a REG, this is not needed for that purpose, and used instead
360 in `leaf_renumber_regs_insn'.
361 1 in a SYMBOL_REF, means that emit_library_call
362 has used it as the function.
363 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
364 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
365 unsigned int used : 1;
366 /* 1 in an INSN or a SET if this rtx is related to the call frame,
367 either changing how we compute the frame address or saving and
368 restoring registers in the prologue and epilogue.
369 1 in a REG or MEM if it is a pointer.
370 1 in a SYMBOL_REF if it addresses something in the per-function
371 constant string pool.
372 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
373 unsigned frame_related : 1;
374 /* 1 in a REG or PARALLEL that is the current function's return value.
375 1 in a SYMBOL_REF for a weak symbol.
376 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
377 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
378 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
379 unsigned return_val : 1;
380
381 union {
382 /* The final union field is aligned to 64 bits on LP64 hosts,
383 giving a 32-bit gap after the fields above. We optimize the
384 layout for that case and use the gap for extra code-specific
385 information. */
386
387 /* The ORIGINAL_REGNO of a REG. */
388 unsigned int original_regno;
389
390 /* The INSN_UID of an RTX_INSN-class code. */
391 int insn_uid;
392
393 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
394 unsigned int symbol_ref_flags;
395
396 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
397 enum var_init_status var_location_status;
398
399 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
400 HOST_WIDE_INTs in the hwivec_def. */
401 unsigned int num_elem;
402 } GTY ((skip)) u2;
403
404 /* The first element of the operands of this rtx.
405 The number of operands and their types are controlled
406 by the `code' field, according to rtl.def. */
407 union u {
408 rtunion fld[1];
409 HOST_WIDE_INT hwint[1];
410 struct reg_info reg;
411 struct block_symbol block_sym;
412 struct real_value rv;
413 struct fixed_value fv;
414 struct hwivec_def hwiv;
415 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
416 };
417
418 /* A node for constructing singly-linked lists of rtx. */
419
420 class GTY(()) rtx_expr_list : public rtx_def
421 {
422 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
423
424 public:
425 /* Get next in list. */
426 rtx_expr_list *next () const;
427
428 /* Get at the underlying rtx. */
429 rtx element () const;
430 };
431
432 template <>
433 template <>
434 inline bool
435 is_a_helper <rtx_expr_list *>::test (rtx rt)
436 {
437 return rt->code == EXPR_LIST;
438 }
439
440 class GTY(()) rtx_insn_list : public rtx_def
441 {
442 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
443
444 This is an instance of:
445
446 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
447
448 i.e. a node for constructing singly-linked lists of rtx_insn *, where
449 the list is "external" to the insn (as opposed to the doubly-linked
450 list embedded within rtx_insn itself). */
451
452 public:
453 /* Get next in list. */
454 rtx_insn_list *next () const;
455
456 /* Get at the underlying instruction. */
457 rtx_insn *insn () const;
458
459 };
460
461 template <>
462 template <>
463 inline bool
464 is_a_helper <rtx_insn_list *>::test (rtx rt)
465 {
466 return rt->code == INSN_LIST;
467 }
468
469 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
470 typically (but not always) of rtx_insn *, used in the late passes. */
471
472 class GTY(()) rtx_sequence : public rtx_def
473 {
474 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
475
476 public:
477 /* Get number of elements in sequence. */
478 int len () const;
479
480 /* Get i-th element of the sequence. */
481 rtx element (int index) const;
482
483 /* Get i-th element of the sequence, with a checked cast to
484 rtx_insn *. */
485 rtx_insn *insn (int index) const;
486 };
487
488 template <>
489 template <>
490 inline bool
491 is_a_helper <rtx_sequence *>::test (rtx rt)
492 {
493 return rt->code == SEQUENCE;
494 }
495
496 template <>
497 template <>
498 inline bool
499 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
500 {
501 return rt->code == SEQUENCE;
502 }
503
504 class GTY(()) rtx_insn : public rtx_def
505 {
506 public:
507 /* No extra fields, but adds the invariant:
508
509 (INSN_P (X)
510 || NOTE_P (X)
511 || JUMP_TABLE_DATA_P (X)
512 || BARRIER_P (X)
513 || LABEL_P (X))
514
515 i.e. that we must be able to use the following:
516 INSN_UID ()
517 NEXT_INSN ()
518 PREV_INSN ()
519 i.e. we have an rtx that has an INSN_UID field and can be part of
520 a linked list of insns.
521 */
522
523 /* Returns true if this insn has been deleted. */
524
525 bool deleted () const { return volatil; }
526
527 /* Mark this insn as deleted. */
528
529 void set_deleted () { volatil = true; }
530
531 /* Mark this insn as not deleted. */
532
533 void set_undeleted () { volatil = false; }
534 };
535
536 /* Subclasses of rtx_insn. */
537
538 class GTY(()) rtx_debug_insn : public rtx_insn
539 {
540 /* No extra fields, but adds the invariant:
541 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
542 i.e. an annotation for tracking variable assignments.
543
544 This is an instance of:
545 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
546 from rtl.def. */
547 };
548
549 class GTY(()) rtx_nonjump_insn : public rtx_insn
550 {
551 /* No extra fields, but adds the invariant:
552 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
553 i.e an instruction that cannot jump.
554
555 This is an instance of:
556 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
557 from rtl.def. */
558 };
559
560 class GTY(()) rtx_jump_insn : public rtx_insn
561 {
562 /* No extra fields, but adds the invariant:
563 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
564 i.e. an instruction that can possibly jump.
565
566 This is an instance of:
567 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
568 from rtl.def. */
569 };
570
571 class GTY(()) rtx_call_insn : public rtx_insn
572 {
573 /* No extra fields, but adds the invariant:
574 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
575 i.e. an instruction that can possibly call a subroutine
576 but which will not change which instruction comes next
577 in the current function.
578
579 This is an instance of:
580 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
581 from rtl.def. */
582 };
583
584 class GTY(()) rtx_jump_table_data : public rtx_insn
585 {
586 /* No extra fields, but adds the invariant:
587 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
588 i.e. a data for a jump table, considered an instruction for
589 historical reasons.
590
591 This is an instance of:
592 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
593 from rtl.def. */
594
595 public:
596
597 /* This can be either:
598
599 (a) a table of absolute jumps, in which case PATTERN (this) is an
600 ADDR_VEC with arg 0 a vector of labels, or
601
602 (b) a table of relative jumps (e.g. for -fPIC), in which case
603 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
604 arg 1 the vector of labels.
605
606 This method gets the underlying vec. */
607
608 inline rtvec get_labels () const;
609 };
610
611 class GTY(()) rtx_barrier : public rtx_insn
612 {
613 /* No extra fields, but adds the invariant:
614 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
615 i.e. a marker that indicates that control will not flow through.
616
617 This is an instance of:
618 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
619 from rtl.def. */
620 };
621
622 class GTY(()) rtx_code_label : public rtx_insn
623 {
624 /* No extra fields, but adds the invariant:
625 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
626 i.e. a label in the assembler.
627
628 This is an instance of:
629 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
630 from rtl.def. */
631 };
632
633 class GTY(()) rtx_note : public rtx_insn
634 {
635 /* No extra fields, but adds the invariant:
636 NOTE_P(X) aka (GET_CODE (X) == NOTE)
637 i.e. a note about the corresponding source code.
638
639 This is an instance of:
640 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
641 from rtl.def. */
642 };
643
644 /* The size in bytes of an rtx header (code, mode and flags). */
645 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
646
647 /* The size in bytes of an rtx with code CODE. */
648 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
649
650 #define NULL_RTX (rtx) 0
651
652 /* The "next" and "previous" RTX, relative to this one. */
653
654 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
655 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
656
657 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
658 */
659 #define RTX_PREV(X) ((INSN_P (X) \
660 || NOTE_P (X) \
661 || JUMP_TABLE_DATA_P (X) \
662 || BARRIER_P (X) \
663 || LABEL_P (X)) \
664 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
665 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
666 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
667
668 /* Define macros to access the `code' field of the rtx. */
669
670 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
671 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
672
673 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
674 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
675
676 /* RTL vector. These appear inside RTX's when there is a need
677 for a variable number of things. The principle use is inside
678 PARALLEL expressions. */
679
680 struct GTY(()) rtvec_def {
681 int num_elem; /* number of elements */
682 rtx GTY ((length ("%h.num_elem"))) elem[1];
683 };
684
685 #define NULL_RTVEC (rtvec) 0
686
687 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
688 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
689
690 /* Predicate yielding nonzero iff X is an rtx for a register. */
691 #define REG_P(X) (GET_CODE (X) == REG)
692
693 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
694 #define MEM_P(X) (GET_CODE (X) == MEM)
695
696 #if TARGET_SUPPORTS_WIDE_INT
697
698 /* Match CONST_*s that can represent compile-time constant integers. */
699 #define CASE_CONST_SCALAR_INT \
700 case CONST_INT: \
701 case CONST_WIDE_INT
702
703 /* Match CONST_*s for which pointer equality corresponds to value
704 equality. */
705 #define CASE_CONST_UNIQUE \
706 case CONST_INT: \
707 case CONST_WIDE_INT: \
708 case CONST_DOUBLE: \
709 case CONST_FIXED
710
711 /* Match all CONST_* rtxes. */
712 #define CASE_CONST_ANY \
713 case CONST_INT: \
714 case CONST_WIDE_INT: \
715 case CONST_DOUBLE: \
716 case CONST_FIXED: \
717 case CONST_VECTOR
718
719 #else
720
721 /* Match CONST_*s that can represent compile-time constant integers. */
722 #define CASE_CONST_SCALAR_INT \
723 case CONST_INT: \
724 case CONST_DOUBLE
725
726 /* Match CONST_*s for which pointer equality corresponds to value
727 equality. */
728 #define CASE_CONST_UNIQUE \
729 case CONST_INT: \
730 case CONST_DOUBLE: \
731 case CONST_FIXED
732
733 /* Match all CONST_* rtxes. */
734 #define CASE_CONST_ANY \
735 case CONST_INT: \
736 case CONST_DOUBLE: \
737 case CONST_FIXED: \
738 case CONST_VECTOR
739 #endif
740
741 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
742 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
743
744 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
745 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
746
747 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
748 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
749
750 /* Predicate yielding true iff X is an rtx for a double-int
751 or floating point constant. */
752 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
753
754 /* Predicate yielding true iff X is an rtx for a double-int. */
755 #define CONST_DOUBLE_AS_INT_P(X) \
756 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
757
758 /* Predicate yielding true iff X is an rtx for a integer const. */
759 #if TARGET_SUPPORTS_WIDE_INT
760 #define CONST_SCALAR_INT_P(X) \
761 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
762 #else
763 #define CONST_SCALAR_INT_P(X) \
764 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
765 #endif
766
767 /* Predicate yielding true iff X is an rtx for a double-int. */
768 #define CONST_DOUBLE_AS_FLOAT_P(X) \
769 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
770
771 /* Predicate yielding nonzero iff X is a label insn. */
772 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
773
774 /* Predicate yielding nonzero iff X is a jump insn. */
775 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
776
777 /* Predicate yielding nonzero iff X is a call insn. */
778 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
779
780 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
781 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
782
783 /* Predicate yielding nonzero iff X is a debug note/insn. */
784 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
785
786 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
787 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
788
789 /* Nonzero if DEBUG_INSN_P may possibly hold. */
790 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
791
792 /* Predicate yielding nonzero iff X is a real insn. */
793 #define INSN_P(X) \
794 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
795
796 /* Predicate yielding nonzero iff X is a note insn. */
797 #define NOTE_P(X) (GET_CODE (X) == NOTE)
798
799 /* Predicate yielding nonzero iff X is a barrier insn. */
800 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
801
802 /* Predicate yielding nonzero iff X is a data for a jump table. */
803 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
804
805 /* Predicate yielding nonzero iff RTX is a subreg. */
806 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
807
808 template <>
809 template <>
810 inline bool
811 is_a_helper <rtx_insn *>::test (rtx rt)
812 {
813 return (INSN_P (rt)
814 || NOTE_P (rt)
815 || JUMP_TABLE_DATA_P (rt)
816 || BARRIER_P (rt)
817 || LABEL_P (rt));
818 }
819
820 template <>
821 template <>
822 inline bool
823 is_a_helper <const rtx_insn *>::test (const_rtx rt)
824 {
825 return (INSN_P (rt)
826 || NOTE_P (rt)
827 || JUMP_TABLE_DATA_P (rt)
828 || BARRIER_P (rt)
829 || LABEL_P (rt));
830 }
831
832 template <>
833 template <>
834 inline bool
835 is_a_helper <rtx_debug_insn *>::test (rtx rt)
836 {
837 return DEBUG_INSN_P (rt);
838 }
839
840 template <>
841 template <>
842 inline bool
843 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
844 {
845 return NONJUMP_INSN_P (rt);
846 }
847
848 template <>
849 template <>
850 inline bool
851 is_a_helper <rtx_jump_insn *>::test (rtx rt)
852 {
853 return JUMP_P (rt);
854 }
855
856 template <>
857 template <>
858 inline bool
859 is_a_helper <rtx_call_insn *>::test (rtx rt)
860 {
861 return CALL_P (rt);
862 }
863
864 template <>
865 template <>
866 inline bool
867 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
868 {
869 return CALL_P (insn);
870 }
871
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
876 {
877 return JUMP_TABLE_DATA_P (rt);
878 }
879
880 template <>
881 template <>
882 inline bool
883 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
884 {
885 return JUMP_TABLE_DATA_P (insn);
886 }
887
888 template <>
889 template <>
890 inline bool
891 is_a_helper <rtx_barrier *>::test (rtx rt)
892 {
893 return BARRIER_P (rt);
894 }
895
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_code_label *>::test (rtx rt)
900 {
901 return LABEL_P (rt);
902 }
903
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
908 {
909 return LABEL_P (insn);
910 }
911
912 template <>
913 template <>
914 inline bool
915 is_a_helper <rtx_note *>::test (rtx rt)
916 {
917 return NOTE_P (rt);
918 }
919
920 template <>
921 template <>
922 inline bool
923 is_a_helper <rtx_note *>::test (rtx_insn *insn)
924 {
925 return NOTE_P (insn);
926 }
927
928 /* Predicate yielding nonzero iff X is a return or simple_return. */
929 #define ANY_RETURN_P(X) \
930 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
931
932 /* 1 if X is a unary operator. */
933
934 #define UNARY_P(X) \
935 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
936
937 /* 1 if X is a binary operator. */
938
939 #define BINARY_P(X) \
940 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
941
942 /* 1 if X is an arithmetic operator. */
943
944 #define ARITHMETIC_P(X) \
945 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
946 == RTX_ARITHMETIC_RESULT)
947
948 /* 1 if X is an arithmetic operator. */
949
950 #define COMMUTATIVE_ARITH_P(X) \
951 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
952
953 /* 1 if X is a commutative arithmetic operator or a comparison operator.
954 These two are sometimes selected together because it is possible to
955 swap the two operands. */
956
957 #define SWAPPABLE_OPERANDS_P(X) \
958 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
959 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
960 | (1 << RTX_COMPARE)))
961
962 /* 1 if X is a non-commutative operator. */
963
964 #define NON_COMMUTATIVE_P(X) \
965 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
966 == RTX_NON_COMMUTATIVE_RESULT)
967
968 /* 1 if X is a commutative operator on integers. */
969
970 #define COMMUTATIVE_P(X) \
971 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
972 == RTX_COMMUTATIVE_RESULT)
973
974 /* 1 if X is a relational operator. */
975
976 #define COMPARISON_P(X) \
977 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
978
979 /* 1 if X is a constant value that is an integer. */
980
981 #define CONSTANT_P(X) \
982 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
983
984 /* 1 if X can be used to represent an object. */
985 #define OBJECT_P(X) \
986 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
987
988 /* General accessor macros for accessing the fields of an rtx. */
989
990 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
991 /* The bit with a star outside the statement expr and an & inside is
992 so that N can be evaluated only once. */
993 #define RTL_CHECK1(RTX, N, C1) __extension__ \
994 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
995 const enum rtx_code _code = GET_CODE (_rtx); \
996 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
997 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
998 __FUNCTION__); \
999 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1000 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1001 __FUNCTION__); \
1002 &_rtx->u.fld[_n]; }))
1003
1004 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1005 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1006 const enum rtx_code _code = GET_CODE (_rtx); \
1007 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1008 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1009 __FUNCTION__); \
1010 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1011 && GET_RTX_FORMAT (_code)[_n] != C2) \
1012 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1013 __FUNCTION__); \
1014 &_rtx->u.fld[_n]; }))
1015
1016 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1017 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1018 if (GET_CODE (_rtx) != (C)) \
1019 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1020 __FUNCTION__); \
1021 &_rtx->u.fld[_n]; }))
1022
1023 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1024 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1025 const enum rtx_code _code = GET_CODE (_rtx); \
1026 if (_code != (C1) && _code != (C2)) \
1027 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1028 __FUNCTION__); \
1029 &_rtx->u.fld[_n]; }))
1030
1031 #define RTVEC_ELT(RTVEC, I) __extension__ \
1032 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1033 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1034 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1035 __FUNCTION__); \
1036 &_rtvec->elem[_i]; }))
1037
1038 #define XWINT(RTX, N) __extension__ \
1039 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1040 const enum rtx_code _code = GET_CODE (_rtx); \
1041 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1042 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1043 __FUNCTION__); \
1044 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1045 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1046 __FUNCTION__); \
1047 &_rtx->u.hwint[_n]; }))
1048
1049 #define CWI_ELT(RTX, I) __extension__ \
1050 (*({ __typeof (RTX) const _cwi = (RTX); \
1051 int _max = CWI_GET_NUM_ELEM (_cwi); \
1052 const int _i = (I); \
1053 if (_i < 0 || _i >= _max) \
1054 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1055 __FUNCTION__); \
1056 &_cwi->u.hwiv.elem[_i]; }))
1057
1058 #define XCWINT(RTX, N, C) __extension__ \
1059 (*({ __typeof (RTX) const _rtx = (RTX); \
1060 if (GET_CODE (_rtx) != (C)) \
1061 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1062 __FUNCTION__); \
1063 &_rtx->u.hwint[N]; }))
1064
1065 #define XCMWINT(RTX, N, C, M) __extension__ \
1066 (*({ __typeof (RTX) const _rtx = (RTX); \
1067 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1068 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1069 __LINE__, __FUNCTION__); \
1070 &_rtx->u.hwint[N]; }))
1071
1072 #define XCNMPRV(RTX, C, M) __extension__ \
1073 ({ __typeof (RTX) const _rtx = (RTX); \
1074 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1075 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1076 __LINE__, __FUNCTION__); \
1077 &_rtx->u.rv; })
1078
1079 #define XCNMPFV(RTX, C, M) __extension__ \
1080 ({ __typeof (RTX) const _rtx = (RTX); \
1081 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1082 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1083 __LINE__, __FUNCTION__); \
1084 &_rtx->u.fv; })
1085
1086 #define REG_CHECK(RTX) __extension__ \
1087 ({ __typeof (RTX) const _rtx = (RTX); \
1088 if (GET_CODE (_rtx) != REG) \
1089 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1090 __FUNCTION__); \
1091 &_rtx->u.reg; })
1092
1093 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1094 ({ __typeof (RTX) const _symbol = (RTX); \
1095 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1096 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1097 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1098 __FUNCTION__); \
1099 &_symbol->u.block_sym; })
1100
1101 #define HWIVEC_CHECK(RTX,C) __extension__ \
1102 ({ __typeof (RTX) const _symbol = (RTX); \
1103 RTL_CHECKC1 (_symbol, 0, C); \
1104 &_symbol->u.hwiv; })
1105
1106 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1107 const char *)
1108 ATTRIBUTE_NORETURN;
1109 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1110 const char *)
1111 ATTRIBUTE_NORETURN;
1112 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1113 int, const char *)
1114 ATTRIBUTE_NORETURN;
1115 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1116 int, const char *)
1117 ATTRIBUTE_NORETURN;
1118 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1119 const char *, int, const char *)
1120 ATTRIBUTE_NORETURN;
1121 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1122 bool, const char *, int, const char *)
1123 ATTRIBUTE_NORETURN;
1124 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1125 ATTRIBUTE_NORETURN;
1126 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1127 const char *)
1128 ATTRIBUTE_NORETURN;
1129 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1130 const char *)
1131 ATTRIBUTE_NORETURN;
1132
1133 #else /* not ENABLE_RTL_CHECKING */
1134
1135 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1136 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1137 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1138 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1139 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1140 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1141 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1142 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1143 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1144 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1145 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1146 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1147 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1148 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1149 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1150
1151 #endif
1152
1153 /* General accessor macros for accessing the flags of an rtx. */
1154
1155 /* Access an individual rtx flag, with no checking of any kind. */
1156 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1157
1158 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1159 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1160 ({ __typeof (RTX) const _rtx = (RTX); \
1161 if (GET_CODE (_rtx) != C1) \
1162 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1163 __FUNCTION__); \
1164 _rtx; })
1165
1166 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1167 ({ __typeof (RTX) const _rtx = (RTX); \
1168 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1169 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1170 __FUNCTION__); \
1171 _rtx; })
1172
1173 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1174 ({ __typeof (RTX) const _rtx = (RTX); \
1175 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1176 && GET_CODE (_rtx) != C3) \
1177 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1178 __FUNCTION__); \
1179 _rtx; })
1180
1181 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1182 ({ __typeof (RTX) const _rtx = (RTX); \
1183 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1184 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1185 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1186 __FUNCTION__); \
1187 _rtx; })
1188
1189 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1190 ({ __typeof (RTX) const _rtx = (RTX); \
1191 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1192 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1193 && GET_CODE (_rtx) != C5) \
1194 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1195 __FUNCTION__); \
1196 _rtx; })
1197
1198 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1199 __extension__ \
1200 ({ __typeof (RTX) const _rtx = (RTX); \
1201 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1202 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1203 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1204 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1205 __FUNCTION__); \
1206 _rtx; })
1207
1208 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1209 __extension__ \
1210 ({ __typeof (RTX) const _rtx = (RTX); \
1211 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1212 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1213 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1214 && GET_CODE (_rtx) != C7) \
1215 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1216 __FUNCTION__); \
1217 _rtx; })
1218
1219 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1220 __extension__ \
1221 ({ __typeof (RTX) const _rtx = (RTX); \
1222 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1223 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1224 __FUNCTION__); \
1225 _rtx; })
1226
1227 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1228 int, const char *)
1229 ATTRIBUTE_NORETURN
1230 ;
1231
1232 #else /* not ENABLE_RTL_FLAG_CHECKING */
1233
1234 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1235 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1236 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1237 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1238 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1239 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1240 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1241 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1242 #endif
1243
1244 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1245 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1246 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1247 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1248 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1249 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1250 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1251 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1252 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1253 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1254
1255 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1256 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1257
1258 /* These are like XINT, etc. except that they expect a '0' field instead
1259 of the normal type code. */
1260
1261 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1262 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1263 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1264 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1265 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1266 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1267 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1268 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1269 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1270 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1271 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1272 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1273
1274 /* Access a '0' field with any type. */
1275 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1276
1277 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1278 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1279 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1280 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1281 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1282 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1283 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1284 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1285 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1286 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1287
1288 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1289 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1290
1291 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1292 \f
1293
1294 /* Methods of rtx_expr_list. */
1295
1296 inline rtx_expr_list *rtx_expr_list::next () const
1297 {
1298 rtx tmp = XEXP (this, 1);
1299 return safe_as_a <rtx_expr_list *> (tmp);
1300 }
1301
1302 inline rtx rtx_expr_list::element () const
1303 {
1304 return XEXP (this, 0);
1305 }
1306
1307 /* Methods of rtx_insn_list. */
1308
1309 inline rtx_insn_list *rtx_insn_list::next () const
1310 {
1311 rtx tmp = XEXP (this, 1);
1312 return safe_as_a <rtx_insn_list *> (tmp);
1313 }
1314
1315 inline rtx_insn *rtx_insn_list::insn () const
1316 {
1317 rtx tmp = XEXP (this, 0);
1318 return safe_as_a <rtx_insn *> (tmp);
1319 }
1320
1321 /* Methods of rtx_sequence. */
1322
1323 inline int rtx_sequence::len () const
1324 {
1325 return XVECLEN (this, 0);
1326 }
1327
1328 inline rtx rtx_sequence::element (int index) const
1329 {
1330 return XVECEXP (this, 0, index);
1331 }
1332
1333 inline rtx_insn *rtx_sequence::insn (int index) const
1334 {
1335 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1336 }
1337
1338 /* ACCESS MACROS for particular fields of insns. */
1339
1340 /* Holds a unique number for each insn.
1341 These are not necessarily sequentially increasing. */
1342 inline int INSN_UID (const_rtx insn)
1343 {
1344 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1345 (insn))->u2.insn_uid;
1346 }
1347 inline int& INSN_UID (rtx insn)
1348 {
1349 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1350 (insn))->u2.insn_uid;
1351 }
1352
1353 /* Chain insns together in sequence. */
1354
1355 /* For now these are split in two: an rvalue form:
1356 PREV_INSN/NEXT_INSN
1357 and an lvalue form:
1358 SET_NEXT_INSN/SET_PREV_INSN. */
1359
1360 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1361 {
1362 rtx prev = XEXP (insn, 0);
1363 return safe_as_a <rtx_insn *> (prev);
1364 }
1365
1366 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1367 {
1368 return XEXP (insn, 0);
1369 }
1370
1371 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1372 {
1373 rtx next = XEXP (insn, 1);
1374 return safe_as_a <rtx_insn *> (next);
1375 }
1376
1377 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1378 {
1379 return XEXP (insn, 1);
1380 }
1381
1382 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1383 {
1384 return XBBDEF (insn, 2);
1385 }
1386
1387 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1388 {
1389 return XBBDEF (insn, 2);
1390 }
1391
1392 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1393 {
1394 BLOCK_FOR_INSN (insn) = bb;
1395 }
1396
1397 /* The body of an insn. */
1398 inline rtx PATTERN (const_rtx insn)
1399 {
1400 return XEXP (insn, 3);
1401 }
1402
1403 inline rtx& PATTERN (rtx insn)
1404 {
1405 return XEXP (insn, 3);
1406 }
1407
1408 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1409 {
1410 return XUINT (insn, 4);
1411 }
1412
1413 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1414 {
1415 return XUINT (insn, 4);
1416 }
1417
1418 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1419 {
1420 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1421 }
1422
1423 /* LOCATION of an RTX if relevant. */
1424 #define RTL_LOCATION(X) (INSN_P (X) ? \
1425 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1426 : UNKNOWN_LOCATION)
1427
1428 /* Code number of instruction, from when it was recognized.
1429 -1 means this instruction has not been recognized yet. */
1430 #define INSN_CODE(INSN) XINT (INSN, 5)
1431
1432 inline rtvec rtx_jump_table_data::get_labels () const
1433 {
1434 rtx pat = PATTERN (this);
1435 if (GET_CODE (pat) == ADDR_VEC)
1436 return XVEC (pat, 0);
1437 else
1438 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1439 }
1440
1441 #define RTX_FRAME_RELATED_P(RTX) \
1442 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1443 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1444
1445 /* 1 if JUMP RTX is a crossing jump. */
1446 #define CROSSING_JUMP_P(RTX) \
1447 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1448
1449 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1450 TREE_READONLY. */
1451 #define RTL_CONST_CALL_P(RTX) \
1452 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1453
1454 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1455 DECL_PURE_P. */
1456 #define RTL_PURE_CALL_P(RTX) \
1457 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1458
1459 /* 1 if RTX is a call to a const or pure function. */
1460 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1461 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1462
1463 /* 1 if RTX is a call to a looping const or pure function. Built from
1464 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1465 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1466 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1467
1468 /* 1 if RTX is a call_insn for a sibling call. */
1469 #define SIBLING_CALL_P(RTX) \
1470 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1471
1472 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1473 #define INSN_ANNULLED_BRANCH_P(RTX) \
1474 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1475
1476 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1477 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1478 executed if the branch is taken. For annulled branches with this bit
1479 clear, the insn should be executed only if the branch is not taken. */
1480 #define INSN_FROM_TARGET_P(RTX) \
1481 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1482 CALL_INSN)->in_struct)
1483
1484 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1485 See the comments for ADDR_DIFF_VEC in rtl.def. */
1486 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1487
1488 /* In a VALUE, the value cselib has assigned to RTX.
1489 This is a "struct cselib_val", see cselib.h. */
1490 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1491
1492 /* Holds a list of notes on what this insn does to various REGs.
1493 It is a chain of EXPR_LIST rtx's, where the second operand is the
1494 chain pointer and the first operand is the REG being described.
1495 The mode field of the EXPR_LIST contains not a real machine mode
1496 but a value from enum reg_note. */
1497 #define REG_NOTES(INSN) XEXP(INSN, 6)
1498
1499 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1500 question. */
1501 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1502
1503 enum reg_note
1504 {
1505 #define DEF_REG_NOTE(NAME) NAME,
1506 #include "reg-notes.def"
1507 #undef DEF_REG_NOTE
1508 REG_NOTE_MAX
1509 };
1510
1511 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1512 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1513 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1514 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1515
1516 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1517
1518 extern const char * const reg_note_name[];
1519 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1520
1521 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1522 USE and CLOBBER expressions.
1523 USE expressions list the registers filled with arguments that
1524 are passed to the function.
1525 CLOBBER expressions document the registers explicitly clobbered
1526 by this CALL_INSN.
1527 Pseudo registers can not be mentioned in this list. */
1528 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1529
1530 /* The label-number of a code-label. The assembler label
1531 is made from `L' and the label-number printed in decimal.
1532 Label numbers are unique in a compilation. */
1533 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1534
1535 /* In a NOTE that is a line number, this is a string for the file name that the
1536 line is in. We use the same field to record block numbers temporarily in
1537 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1538 between ints and pointers if we use a different macro for the block number.)
1539 */
1540
1541 /* Opaque data. */
1542 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1543 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1544 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1545 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1546 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1547 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1548 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1549 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1550 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1551
1552 /* In a NOTE that is a line number, this is the line number.
1553 Other kinds of NOTEs are identified by negative numbers here. */
1554 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1555
1556 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1557 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1558 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1559
1560 /* Variable declaration and the location of a variable. */
1561 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1562 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1563
1564 /* Initialization status of the variable in the location. Status
1565 can be unknown, uninitialized or initialized. See enumeration
1566 type below. */
1567 #define PAT_VAR_LOCATION_STATUS(PAT) \
1568 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1569 ->u2.var_location_status)
1570
1571 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1572 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1573 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1574 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1575 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1576 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1577 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1578
1579 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1580 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1581
1582 /* Accessors for a tree-expanded var location debug insn. */
1583 #define INSN_VAR_LOCATION_DECL(INSN) \
1584 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1585 #define INSN_VAR_LOCATION_LOC(INSN) \
1586 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1587 #define INSN_VAR_LOCATION_STATUS(INSN) \
1588 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1589
1590 /* Expand to the RTL that denotes an unknown variable location in a
1591 DEBUG_INSN. */
1592 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1593
1594 /* Determine whether X is such an unknown location. */
1595 #define VAR_LOC_UNKNOWN_P(X) \
1596 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1597
1598 /* 1 if RTX is emitted after a call, but it should take effect before
1599 the call returns. */
1600 #define NOTE_DURING_CALL_P(RTX) \
1601 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1602
1603 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1604 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1605
1606 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1607 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1608
1609 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1610 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1611
1612 /* Codes that appear in the NOTE_KIND field for kinds of notes
1613 that are not line numbers. These codes are all negative.
1614
1615 Notice that we do not try to use zero here for any of
1616 the special note codes because sometimes the source line
1617 actually can be zero! This happens (for example) when we
1618 are generating code for the per-translation-unit constructor
1619 and destructor routines for some C++ translation unit. */
1620
1621 enum insn_note
1622 {
1623 #define DEF_INSN_NOTE(NAME) NAME,
1624 #include "insn-notes.def"
1625 #undef DEF_INSN_NOTE
1626
1627 NOTE_INSN_MAX
1628 };
1629
1630 /* Names for NOTE insn's other than line numbers. */
1631
1632 extern const char * const note_insn_name[NOTE_INSN_MAX];
1633 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1634 (note_insn_name[(NOTE_CODE)])
1635
1636 /* The name of a label, in case it corresponds to an explicit label
1637 in the input source code. */
1638 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1639
1640 /* In jump.c, each label contains a count of the number
1641 of LABEL_REFs that point at it, so unused labels can be deleted. */
1642 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1643
1644 /* Labels carry a two-bit field composed of the ->jump and ->call
1645 bits. This field indicates whether the label is an alternate
1646 entry point, and if so, what kind. */
1647 enum label_kind
1648 {
1649 LABEL_NORMAL = 0, /* ordinary label */
1650 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1651 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1652 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1653 };
1654
1655 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1656
1657 /* Retrieve the kind of LABEL. */
1658 #define LABEL_KIND(LABEL) __extension__ \
1659 ({ __typeof (LABEL) const _label = (LABEL); \
1660 if (! LABEL_P (_label)) \
1661 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1662 __FUNCTION__); \
1663 (enum label_kind) ((_label->jump << 1) | _label->call); })
1664
1665 /* Set the kind of LABEL. */
1666 #define SET_LABEL_KIND(LABEL, KIND) do { \
1667 __typeof (LABEL) const _label = (LABEL); \
1668 const unsigned int _kind = (KIND); \
1669 if (! LABEL_P (_label)) \
1670 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1671 __FUNCTION__); \
1672 _label->jump = ((_kind >> 1) & 1); \
1673 _label->call = (_kind & 1); \
1674 } while (0)
1675
1676 #else
1677
1678 /* Retrieve the kind of LABEL. */
1679 #define LABEL_KIND(LABEL) \
1680 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1681
1682 /* Set the kind of LABEL. */
1683 #define SET_LABEL_KIND(LABEL, KIND) do { \
1684 rtx const _label = (LABEL); \
1685 const unsigned int _kind = (KIND); \
1686 _label->jump = ((_kind >> 1) & 1); \
1687 _label->call = (_kind & 1); \
1688 } while (0)
1689
1690 #endif /* rtl flag checking */
1691
1692 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1693
1694 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1695 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1696 be decremented and possibly the label can be deleted. */
1697 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1698
1699 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1700 {
1701 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1702 }
1703
1704 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1705 goes through all the LABEL_REFs that jump to that label. The chain
1706 eventually winds up at the CODE_LABEL: it is circular. */
1707 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1708
1709 /* Get the label that a LABEL_REF references. */
1710 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1711
1712 \f
1713 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1714 be used on RHS. Use SET_REGNO to change the value. */
1715 #define REGNO(RTX) (rhs_regno(RTX))
1716 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1717
1718 /* Return the number of consecutive registers in a REG. This is always
1719 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1720 hard registers. */
1721 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1722
1723 /* ORIGINAL_REGNO holds the number the register originally had; for a
1724 pseudo register turned into a hard reg this will hold the old pseudo
1725 register number. */
1726 #define ORIGINAL_REGNO(RTX) \
1727 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1728
1729 /* Force the REGNO macro to only be used on the lhs. */
1730 static inline unsigned int
1731 rhs_regno (const_rtx x)
1732 {
1733 return REG_CHECK (x)->regno;
1734 }
1735
1736 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1737 bypassing the df machinery. */
1738 static inline void
1739 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1740 {
1741 reg_info *reg = REG_CHECK (x);
1742 reg->regno = regno;
1743 reg->nregs = nregs;
1744 }
1745
1746 /* 1 if RTX is a reg or parallel that is the current function's return
1747 value. */
1748 #define REG_FUNCTION_VALUE_P(RTX) \
1749 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1750
1751 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1752 #define REG_USERVAR_P(RTX) \
1753 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1754
1755 /* 1 if RTX is a reg that holds a pointer value. */
1756 #define REG_POINTER(RTX) \
1757 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1758
1759 /* 1 if RTX is a mem that holds a pointer value. */
1760 #define MEM_POINTER(RTX) \
1761 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1762
1763 /* 1 if the given register REG corresponds to a hard register. */
1764 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1765
1766 /* 1 if the given register number REG_NO corresponds to a hard register. */
1767 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1768
1769 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1770 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1771 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1772
1773 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1774 elements actually needed to represent the constant.
1775 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1776 significant HOST_WIDE_INT. */
1777 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1778 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1779 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1780
1781 /* For a CONST_DOUBLE:
1782 #if TARGET_SUPPORTS_WIDE_INT == 0
1783 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1784 low-order word and ..._HIGH the high-order.
1785 #endif
1786 For a float, there is a REAL_VALUE_TYPE structure, and
1787 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1788 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1789 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1790 #define CONST_DOUBLE_REAL_VALUE(r) \
1791 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1792
1793 #define CONST_FIXED_VALUE(r) \
1794 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1795 #define CONST_FIXED_VALUE_HIGH(r) \
1796 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1797 #define CONST_FIXED_VALUE_LOW(r) \
1798 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1799
1800 /* For a CONST_VECTOR, return element #n. */
1801 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1802
1803 /* For a CONST_VECTOR, return the number of elements in a vector. */
1804 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1805
1806 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1807 SUBREG_BYTE extracts the byte-number. */
1808
1809 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1810 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1811
1812 /* in rtlanal.c */
1813 /* Return the right cost to give to an operation
1814 to make the cost of the corresponding register-to-register instruction
1815 N times that of a fast register-to-register instruction. */
1816 #define COSTS_N_INSNS(N) ((N) * 4)
1817
1818 /* Maximum cost of an rtl expression. This value has the special meaning
1819 not to use an rtx with this cost under any circumstances. */
1820 #define MAX_COST INT_MAX
1821
1822 /* Return true if CODE always has VOIDmode. */
1823
1824 static inline bool
1825 always_void_p (enum rtx_code code)
1826 {
1827 return code == SET;
1828 }
1829
1830 /* A structure to hold all available cost information about an rtl
1831 expression. */
1832 struct full_rtx_costs
1833 {
1834 int speed;
1835 int size;
1836 };
1837
1838 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1839 static inline void
1840 init_costs_to_max (struct full_rtx_costs *c)
1841 {
1842 c->speed = MAX_COST;
1843 c->size = MAX_COST;
1844 }
1845
1846 /* Initialize a full_rtx_costs structure C to zero cost. */
1847 static inline void
1848 init_costs_to_zero (struct full_rtx_costs *c)
1849 {
1850 c->speed = 0;
1851 c->size = 0;
1852 }
1853
1854 /* Compare two full_rtx_costs structures A and B, returning true
1855 if A < B when optimizing for speed. */
1856 static inline bool
1857 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1858 bool speed)
1859 {
1860 if (speed)
1861 return (a->speed < b->speed
1862 || (a->speed == b->speed && a->size < b->size));
1863 else
1864 return (a->size < b->size
1865 || (a->size == b->size && a->speed < b->speed));
1866 }
1867
1868 /* Increase both members of the full_rtx_costs structure C by the
1869 cost of N insns. */
1870 static inline void
1871 costs_add_n_insns (struct full_rtx_costs *c, int n)
1872 {
1873 c->speed += COSTS_N_INSNS (n);
1874 c->size += COSTS_N_INSNS (n);
1875 }
1876
1877 /* Describes the shape of a subreg:
1878
1879 inner_mode == the mode of the SUBREG_REG
1880 offset == the SUBREG_BYTE
1881 outer_mode == the mode of the SUBREG itself. */
1882 struct subreg_shape {
1883 subreg_shape (machine_mode, unsigned int, machine_mode);
1884 bool operator == (const subreg_shape &) const;
1885 bool operator != (const subreg_shape &) const;
1886 unsigned int unique_id () const;
1887
1888 machine_mode inner_mode;
1889 unsigned int offset;
1890 machine_mode outer_mode;
1891 };
1892
1893 inline
1894 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1895 unsigned int offset_in,
1896 machine_mode outer_mode_in)
1897 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1898 {}
1899
1900 inline bool
1901 subreg_shape::operator == (const subreg_shape &other) const
1902 {
1903 return (inner_mode == other.inner_mode
1904 && offset == other.offset
1905 && outer_mode == other.outer_mode);
1906 }
1907
1908 inline bool
1909 subreg_shape::operator != (const subreg_shape &other) const
1910 {
1911 return !operator == (other);
1912 }
1913
1914 /* Return an integer that uniquely identifies this shape. Structures
1915 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1916 current mode is anywhere near being 65536 bytes in size, so the
1917 id comfortably fits in an int. */
1918
1919 inline unsigned int
1920 subreg_shape::unique_id () const
1921 {
1922 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1923 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1924 }
1925
1926 /* Return the shape of a SUBREG rtx. */
1927
1928 static inline subreg_shape
1929 shape_of_subreg (const_rtx x)
1930 {
1931 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1932 SUBREG_BYTE (x), GET_MODE (x));
1933 }
1934
1935 /* Information about an address. This structure is supposed to be able
1936 to represent all supported target addresses. Please extend it if it
1937 is not yet general enough. */
1938 struct address_info {
1939 /* The mode of the value being addressed, or VOIDmode if this is
1940 a load-address operation with no known address mode. */
1941 machine_mode mode;
1942
1943 /* The address space. */
1944 addr_space_t as;
1945
1946 /* A pointer to the top-level address. */
1947 rtx *outer;
1948
1949 /* A pointer to the inner address, after all address mutations
1950 have been stripped from the top-level address. It can be one
1951 of the following:
1952
1953 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1954
1955 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1956 points to the step value, depending on whether the step is variable
1957 or constant respectively. SEGMENT is null.
1958
1959 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1960 with null fields evaluating to 0. */
1961 rtx *inner;
1962
1963 /* Components that make up *INNER. Each one may be null or nonnull.
1964 When nonnull, their meanings are as follows:
1965
1966 - *SEGMENT is the "segment" of memory to which the address refers.
1967 This value is entirely target-specific and is only called a "segment"
1968 because that's its most typical use. It contains exactly one UNSPEC,
1969 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1970 reloading.
1971
1972 - *BASE is a variable expression representing a base address.
1973 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1974
1975 - *INDEX is a variable expression representing an index value.
1976 It may be a scaled expression, such as a MULT. It has exactly
1977 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1978
1979 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1980 unmutated RTX_CONST_OBJ. */
1981 rtx *segment;
1982 rtx *base;
1983 rtx *index;
1984 rtx *disp;
1985
1986 rtx *segment_term;
1987 rtx *base_term;
1988 rtx *index_term;
1989 rtx *disp_term;
1990
1991 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1992 of BASE_TERM, otherwise it is null. */
1993 rtx *base_term2;
1994
1995 /* ADDRESS if this structure describes an address operand, MEM if
1996 it describes a MEM address. */
1997 enum rtx_code addr_outer_code;
1998
1999 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2000 enum rtx_code base_outer_code;
2001
2002 /* True if this is an RTX_AUTOINC address. */
2003 bool autoinc_p;
2004 };
2005
2006 /* This is used to bundle an rtx and a mode together so that the pair
2007 can be used with the wi:: routines. If we ever put modes into rtx
2008 integer constants, this should go away and then just pass an rtx in. */
2009 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2010
2011 namespace wi
2012 {
2013 template <>
2014 struct int_traits <rtx_mode_t>
2015 {
2016 static const enum precision_type precision_type = VAR_PRECISION;
2017 static const bool host_dependent_precision = false;
2018 /* This ought to be true, except for the special case that BImode
2019 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2020 static const bool is_sign_extended = false;
2021 static unsigned int get_precision (const rtx_mode_t &);
2022 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2023 const rtx_mode_t &);
2024 };
2025 }
2026
2027 inline unsigned int
2028 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2029 {
2030 return GET_MODE_PRECISION (x.second);
2031 }
2032
2033 inline wi::storage_ref
2034 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2035 unsigned int precision,
2036 const rtx_mode_t &x)
2037 {
2038 gcc_checking_assert (precision == get_precision (x));
2039 switch (GET_CODE (x.first))
2040 {
2041 case CONST_INT:
2042 if (precision < HOST_BITS_PER_WIDE_INT)
2043 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2044 targets is 1 rather than -1. */
2045 gcc_checking_assert (INTVAL (x.first)
2046 == sext_hwi (INTVAL (x.first), precision)
2047 || (x.second == BImode && INTVAL (x.first) == 1));
2048
2049 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2050
2051 case CONST_WIDE_INT:
2052 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2053 CONST_WIDE_INT_NUNITS (x.first), precision);
2054
2055 #if TARGET_SUPPORTS_WIDE_INT == 0
2056 case CONST_DOUBLE:
2057 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2058 #endif
2059
2060 default:
2061 gcc_unreachable ();
2062 }
2063 }
2064
2065 namespace wi
2066 {
2067 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2068 wide_int min_value (machine_mode, signop);
2069 wide_int max_value (machine_mode, signop);
2070 }
2071
2072 inline wi::hwi_with_prec
2073 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2074 {
2075 return shwi (val, GET_MODE_PRECISION (mode));
2076 }
2077
2078 /* Produce the smallest number that is represented in MODE. The precision
2079 is taken from MODE and the sign from SGN. */
2080 inline wide_int
2081 wi::min_value (machine_mode mode, signop sgn)
2082 {
2083 return min_value (GET_MODE_PRECISION (mode), sgn);
2084 }
2085
2086 /* Produce the largest number that is represented in MODE. The precision
2087 is taken from MODE and the sign from SGN. */
2088 inline wide_int
2089 wi::max_value (machine_mode mode, signop sgn)
2090 {
2091 return max_value (GET_MODE_PRECISION (mode), sgn);
2092 }
2093
2094 extern void init_rtlanal (void);
2095 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2096 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2097 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2098 struct full_rtx_costs *);
2099 extern unsigned int subreg_lsb (const_rtx);
2100 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2101 unsigned int);
2102 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2103 unsigned int, machine_mode);
2104 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2105 unsigned int, machine_mode);
2106 extern unsigned int subreg_regno (const_rtx);
2107 extern int simplify_subreg_regno (unsigned int, machine_mode,
2108 unsigned int, machine_mode);
2109 extern unsigned int subreg_nregs (const_rtx);
2110 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2111 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2112 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2113 extern bool constant_pool_constant_p (rtx);
2114 extern bool truncated_to_mode (machine_mode, const_rtx);
2115 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2116 extern void split_double (rtx, rtx *, rtx *);
2117 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2118 extern void decompose_address (struct address_info *, rtx *,
2119 machine_mode, addr_space_t, enum rtx_code);
2120 extern void decompose_lea_address (struct address_info *, rtx *);
2121 extern void decompose_mem_address (struct address_info *, rtx);
2122 extern void update_address (struct address_info *);
2123 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2124 extern enum rtx_code get_index_code (const struct address_info *);
2125
2126 #ifndef GENERATOR_FILE
2127 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2128 rather than size. */
2129
2130 static inline int
2131 set_rtx_cost (rtx x, bool speed_p)
2132 {
2133 return rtx_cost (x, INSN, 4, speed_p);
2134 }
2135
2136 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2137
2138 static inline void
2139 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2140 {
2141 get_full_rtx_cost (x, INSN, 4, c);
2142 }
2143
2144 /* Return the cost of moving X into a register, relative to the cost
2145 of a register move. SPEED_P is true if optimizing for speed rather
2146 than size. */
2147
2148 static inline int
2149 set_src_cost (rtx x, bool speed_p)
2150 {
2151 return rtx_cost (x, SET, 1, speed_p);
2152 }
2153
2154 /* Like set_src_cost, but return both the speed and size costs in C. */
2155
2156 static inline void
2157 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2158 {
2159 get_full_rtx_cost (x, SET, 1, c);
2160 }
2161 #endif
2162
2163 /* 1 if RTX is a subreg containing a reg that is already known to be
2164 sign- or zero-extended from the mode of the subreg to the mode of
2165 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2166 extension.
2167
2168 When used as a LHS, is means that this extension must be done
2169 when assigning to SUBREG_REG. */
2170
2171 #define SUBREG_PROMOTED_VAR_P(RTX) \
2172 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2173
2174 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2175 this gives the necessary extensions:
2176 0 - signed (SPR_SIGNED)
2177 1 - normal unsigned (SPR_UNSIGNED)
2178 2 - value is both sign and unsign extended for mode
2179 (SPR_SIGNED_AND_UNSIGNED).
2180 -1 - pointer unsigned, which most often can be handled like unsigned
2181 extension, except for generating instructions where we need to
2182 emit special code (ptr_extend insns) on some architectures
2183 (SPR_POINTER). */
2184
2185 const int SRP_POINTER = -1;
2186 const int SRP_SIGNED = 0;
2187 const int SRP_UNSIGNED = 1;
2188 const int SRP_SIGNED_AND_UNSIGNED = 2;
2189
2190 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2191 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2192 do { \
2193 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2194 (RTX), SUBREG); \
2195 switch (VAL) \
2196 { \
2197 case SRP_POINTER: \
2198 _rtx->volatil = 0; \
2199 _rtx->unchanging = 0; \
2200 break; \
2201 case SRP_SIGNED: \
2202 _rtx->volatil = 0; \
2203 _rtx->unchanging = 1; \
2204 break; \
2205 case SRP_UNSIGNED: \
2206 _rtx->volatil = 1; \
2207 _rtx->unchanging = 0; \
2208 break; \
2209 case SRP_SIGNED_AND_UNSIGNED: \
2210 _rtx->volatil = 1; \
2211 _rtx->unchanging = 1; \
2212 break; \
2213 } \
2214 } while (0)
2215
2216 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2217 including SRP_SIGNED_AND_UNSIGNED if promoted for
2218 both signed and unsigned. */
2219 #define SUBREG_PROMOTED_GET(RTX) \
2220 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2221 + (RTX)->unchanging - 1)
2222
2223 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2224 #define SUBREG_PROMOTED_SIGN(RTX) \
2225 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2226 : (RTX)->unchanging - 1)
2227
2228 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2229 for SIGNED type. */
2230 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2231 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2232
2233 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2234 for UNSIGNED type. */
2235 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2236 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2237
2238 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2239 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2240 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2241 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2242 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2243
2244 /* True if the subreg was generated by LRA for reload insns. Such
2245 subregs are valid only during LRA. */
2246 #define LRA_SUBREG_P(RTX) \
2247 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2248
2249 /* True if call is instrumented by Pointer Bounds Checker. */
2250 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2251 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2252
2253 /* Access various components of an ASM_OPERANDS rtx. */
2254
2255 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2256 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2257 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2258 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2259 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2260 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2261 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2262 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2263 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2264 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2265 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2266 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2267 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2268 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2269 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2270 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2271 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2272 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2273
2274 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2275 #define MEM_READONLY_P(RTX) \
2276 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2277
2278 /* 1 if RTX is a mem and we should keep the alias set for this mem
2279 unchanged when we access a component. Set to 1, or example, when we
2280 are already in a non-addressable component of an aggregate. */
2281 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2282 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2283
2284 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2285 #define MEM_VOLATILE_P(RTX) \
2286 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2287 ASM_INPUT)->volatil)
2288
2289 /* 1 if RTX is a mem that cannot trap. */
2290 #define MEM_NOTRAP_P(RTX) \
2291 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2292
2293 /* The memory attribute block. We provide access macros for each value
2294 in the block and provide defaults if none specified. */
2295 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2296
2297 /* The register attribute block. We provide access macros for each value
2298 in the block and provide defaults if none specified. */
2299 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2300
2301 #ifndef GENERATOR_FILE
2302 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2303 set, and may alias anything. Otherwise, the MEM can only alias
2304 MEMs in a conflicting alias set. This value is set in a
2305 language-dependent manner in the front-end, and should not be
2306 altered in the back-end. These set numbers are tested with
2307 alias_sets_conflict_p. */
2308 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2309
2310 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2311 refer to part of a DECL. It may also be a COMPONENT_REF. */
2312 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2313
2314 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2315 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2316
2317 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2318 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2319
2320 /* For a MEM rtx, the address space. */
2321 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2322
2323 /* For a MEM rtx, true if its MEM_SIZE is known. */
2324 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2325
2326 /* For a MEM rtx, the size in bytes of the MEM. */
2327 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2328
2329 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2330 mode as a default when STRICT_ALIGNMENT, but not if not. */
2331 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2332 #else
2333 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2334 #endif
2335
2336 /* For a REG rtx, the decl it is known to refer to, if it is known to
2337 refer to part of a DECL. */
2338 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2339
2340 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2341 HOST_WIDE_INT. */
2342 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2343
2344 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2345 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2346 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2347 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2348 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2349 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2350 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2351 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2352
2353 /* 1 if RTX is a label_ref for a nonlocal label. */
2354 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2355 REG_LABEL_TARGET note. */
2356 #define LABEL_REF_NONLOCAL_P(RTX) \
2357 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2358
2359 /* 1 if RTX is a code_label that should always be considered to be needed. */
2360 #define LABEL_PRESERVE_P(RTX) \
2361 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2362
2363 /* During sched, 1 if RTX is an insn that must be scheduled together
2364 with the preceding insn. */
2365 #define SCHED_GROUP_P(RTX) \
2366 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2367 JUMP_INSN, CALL_INSN)->in_struct)
2368
2369 /* For a SET rtx, SET_DEST is the place that is set
2370 and SET_SRC is the value it is set to. */
2371 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2372 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2373 #define SET_IS_RETURN_P(RTX) \
2374 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2375
2376 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2377 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2378 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2379
2380 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2381 conditionally executing the code on, COND_EXEC_CODE is the code
2382 to execute if the condition is true. */
2383 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2384 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2385
2386 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2387 constants pool. */
2388 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2389 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2390
2391 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2392 tree constant pool. This information is private to varasm.c. */
2393 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2394 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2395 (RTX), SYMBOL_REF)->frame_related)
2396
2397 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2398 #define SYMBOL_REF_FLAG(RTX) \
2399 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2400
2401 /* 1 if RTX is a symbol_ref that has been the library function in
2402 emit_library_call. */
2403 #define SYMBOL_REF_USED(RTX) \
2404 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2405
2406 /* 1 if RTX is a symbol_ref for a weak symbol. */
2407 #define SYMBOL_REF_WEAK(RTX) \
2408 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2409
2410 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2411 SYMBOL_REF_CONSTANT. */
2412 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2413
2414 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2415 pool symbol. */
2416 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2417 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2418
2419 /* The tree (decl or constant) associated with the symbol, or null. */
2420 #define SYMBOL_REF_DECL(RTX) \
2421 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2422
2423 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2424 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2425 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2426
2427 /* The rtx constant pool entry for a symbol, or null. */
2428 #define SYMBOL_REF_CONSTANT(RTX) \
2429 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2430
2431 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2432 information derivable from the tree decl associated with this symbol.
2433 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2434 decl. In some cases this is a bug. But beyond that, it's nice to cache
2435 this information to avoid recomputing it. Finally, this allows space for
2436 the target to store more than one bit of information, as with
2437 SYMBOL_REF_FLAG. */
2438 #define SYMBOL_REF_FLAGS(RTX) \
2439 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2440 ->u2.symbol_ref_flags)
2441
2442 /* These flags are common enough to be defined for all targets. They
2443 are computed by the default version of targetm.encode_section_info. */
2444
2445 /* Set if this symbol is a function. */
2446 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2447 #define SYMBOL_REF_FUNCTION_P(RTX) \
2448 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2449 /* Set if targetm.binds_local_p is true. */
2450 #define SYMBOL_FLAG_LOCAL (1 << 1)
2451 #define SYMBOL_REF_LOCAL_P(RTX) \
2452 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2453 /* Set if targetm.in_small_data_p is true. */
2454 #define SYMBOL_FLAG_SMALL (1 << 2)
2455 #define SYMBOL_REF_SMALL_P(RTX) \
2456 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2457 /* The three-bit field at [5:3] is true for TLS variables; use
2458 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2459 #define SYMBOL_FLAG_TLS_SHIFT 3
2460 #define SYMBOL_REF_TLS_MODEL(RTX) \
2461 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2462 /* Set if this symbol is not defined in this translation unit. */
2463 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2464 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2465 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2466 /* Set if this symbol has a block_symbol structure associated with it. */
2467 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2468 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2469 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2470 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2471 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2472 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2473 #define SYMBOL_REF_ANCHOR_P(RTX) \
2474 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2475
2476 /* Subsequent bits are available for the target to use. */
2477 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2478 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2479
2480 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2481 structure to which the symbol belongs, or NULL if it has not been
2482 assigned a block. */
2483 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2484
2485 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2486 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2487 RTX has not yet been assigned to a block, or it has not been given an
2488 offset within that block. */
2489 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2490
2491 /* True if RTX is flagged to be a scheduling barrier. */
2492 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2493 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2494
2495 /* Indicate whether the machine has any sort of auto increment addressing.
2496 If not, we can avoid checking for REG_INC notes. */
2497
2498 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2499 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2500 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2501 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2502 #define AUTO_INC_DEC
2503 #endif
2504
2505 /* Define a macro to look for REG_INC notes,
2506 but save time on machines where they never exist. */
2507
2508 #ifdef AUTO_INC_DEC
2509 #define FIND_REG_INC_NOTE(INSN, REG) \
2510 ((REG) != NULL_RTX && REG_P ((REG)) \
2511 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2512 : find_reg_note ((INSN), REG_INC, (REG)))
2513 #else
2514 #define FIND_REG_INC_NOTE(INSN, REG) 0
2515 #endif
2516
2517 #ifndef HAVE_PRE_INCREMENT
2518 #define HAVE_PRE_INCREMENT 0
2519 #endif
2520
2521 #ifndef HAVE_PRE_DECREMENT
2522 #define HAVE_PRE_DECREMENT 0
2523 #endif
2524
2525 #ifndef HAVE_POST_INCREMENT
2526 #define HAVE_POST_INCREMENT 0
2527 #endif
2528
2529 #ifndef HAVE_POST_DECREMENT
2530 #define HAVE_POST_DECREMENT 0
2531 #endif
2532
2533 #ifndef HAVE_POST_MODIFY_DISP
2534 #define HAVE_POST_MODIFY_DISP 0
2535 #endif
2536
2537 #ifndef HAVE_POST_MODIFY_REG
2538 #define HAVE_POST_MODIFY_REG 0
2539 #endif
2540
2541 #ifndef HAVE_PRE_MODIFY_DISP
2542 #define HAVE_PRE_MODIFY_DISP 0
2543 #endif
2544
2545 #ifndef HAVE_PRE_MODIFY_REG
2546 #define HAVE_PRE_MODIFY_REG 0
2547 #endif
2548
2549
2550 /* Some architectures do not have complete pre/post increment/decrement
2551 instruction sets, or only move some modes efficiently. These macros
2552 allow us to tune autoincrement generation. */
2553
2554 #ifndef USE_LOAD_POST_INCREMENT
2555 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2556 #endif
2557
2558 #ifndef USE_LOAD_POST_DECREMENT
2559 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2560 #endif
2561
2562 #ifndef USE_LOAD_PRE_INCREMENT
2563 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2564 #endif
2565
2566 #ifndef USE_LOAD_PRE_DECREMENT
2567 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2568 #endif
2569
2570 #ifndef USE_STORE_POST_INCREMENT
2571 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2572 #endif
2573
2574 #ifndef USE_STORE_POST_DECREMENT
2575 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2576 #endif
2577
2578 #ifndef USE_STORE_PRE_INCREMENT
2579 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2580 #endif
2581
2582 #ifndef USE_STORE_PRE_DECREMENT
2583 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2584 #endif
2585 \f
2586 /* Nonzero when we are generating CONCATs. */
2587 extern int generating_concat_p;
2588
2589 /* Nonzero when we are expanding trees to RTL. */
2590 extern int currently_expanding_to_rtl;
2591
2592 /* Generally useful functions. */
2593
2594 /* In explow.c */
2595 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2596 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2597
2598 /* In rtl.c */
2599 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2600 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2601 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2602 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2603 #define const_wide_int_alloc(NWORDS) \
2604 rtx_alloc_v (CONST_WIDE_INT, \
2605 (sizeof (struct hwivec_def) \
2606 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2607
2608 extern rtvec rtvec_alloc (int);
2609 extern rtvec shallow_copy_rtvec (rtvec);
2610 extern bool shared_const_p (const_rtx);
2611 extern rtx copy_rtx (rtx);
2612 extern void dump_rtx_statistics (void);
2613
2614 /* In emit-rtl.c */
2615 extern rtx copy_rtx_if_shared (rtx);
2616
2617 /* In rtl.c */
2618 extern unsigned int rtx_size (const_rtx);
2619 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2620 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2621 extern int rtx_equal_p (const_rtx, const_rtx);
2622
2623 /* In emit-rtl.c */
2624 extern rtvec gen_rtvec_v (int, rtx *);
2625 extern rtvec gen_rtvec_v (int, rtx_insn **);
2626 extern rtx gen_reg_rtx (machine_mode);
2627 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2628 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2629 extern rtx gen_reg_rtx_and_attrs (rtx);
2630 extern rtx_code_label *gen_label_rtx (void);
2631 extern rtx gen_lowpart_common (machine_mode, rtx);
2632
2633 /* In cse.c */
2634 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2635
2636 /* In emit-rtl.c */
2637 extern rtx gen_highpart (machine_mode, rtx);
2638 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2639 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2640
2641 /* In emit-rtl.c */
2642 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2643 extern bool paradoxical_subreg_p (const_rtx);
2644 extern int subreg_lowpart_p (const_rtx);
2645 extern unsigned int subreg_lowpart_offset (machine_mode,
2646 machine_mode);
2647 extern unsigned int subreg_highpart_offset (machine_mode,
2648 machine_mode);
2649 extern int byte_lowpart_offset (machine_mode, machine_mode);
2650 extern rtx make_safe_from (rtx, rtx);
2651 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2652 addr_space_t);
2653 #define convert_memory_address(to_mode,x) \
2654 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2655 extern const char *get_insn_name (int);
2656 extern rtx_insn *get_last_insn_anywhere (void);
2657 extern rtx_insn *get_first_nonnote_insn (void);
2658 extern rtx_insn *get_last_nonnote_insn (void);
2659 extern void start_sequence (void);
2660 extern void push_to_sequence (rtx_insn *);
2661 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2662 extern void end_sequence (void);
2663 #if TARGET_SUPPORTS_WIDE_INT == 0
2664 extern double_int rtx_to_double_int (const_rtx);
2665 #endif
2666 extern void cwi_output_hex (FILE *, const_rtx);
2667 #ifndef GENERATOR_FILE
2668 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2669 #endif
2670 #if TARGET_SUPPORTS_WIDE_INT == 0
2671 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2672 machine_mode);
2673 #endif
2674
2675 /* In loop-iv.c */
2676
2677 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2678
2679 /* In varasm.c */
2680 extern rtx force_const_mem (machine_mode, rtx);
2681
2682 /* In varasm.c */
2683
2684 struct function;
2685 extern rtx get_pool_constant (const_rtx);
2686 extern rtx get_pool_constant_mark (rtx, bool *);
2687 extern machine_mode get_pool_mode (const_rtx);
2688 extern rtx simplify_subtraction (rtx);
2689 extern void decide_function_section (tree);
2690
2691 /* In emit-rtl.c */
2692 extern rtx_insn *emit_insn_before (rtx, rtx);
2693 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2694 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2695 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2696 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2697 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2698 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2699 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2700 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2701 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2702 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2703 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2704 extern rtx_barrier *emit_barrier_before (rtx);
2705 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2706 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2707 extern rtx_insn *emit_insn_after (rtx, rtx);
2708 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2709 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2710 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2711 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2712 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2713 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2714 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2715 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2716 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2717 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2718 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2719 extern rtx_barrier *emit_barrier_after (rtx);
2720 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2721 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2722 extern rtx_insn *emit_insn (rtx);
2723 extern rtx_insn *emit_debug_insn (rtx);
2724 extern rtx_insn *emit_jump_insn (rtx);
2725 extern rtx_insn *emit_call_insn (rtx);
2726 extern rtx_insn *emit_label (rtx);
2727 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2728 extern rtx_barrier *emit_barrier (void);
2729 extern rtx_note *emit_note (enum insn_note);
2730 extern rtx_note *emit_note_copy (rtx_note *);
2731 extern rtx_insn *gen_clobber (rtx);
2732 extern rtx_insn *emit_clobber (rtx);
2733 extern rtx_insn *gen_use (rtx);
2734 extern rtx_insn *emit_use (rtx);
2735 extern rtx_insn *make_insn_raw (rtx);
2736 extern void add_function_usage_to (rtx, rtx);
2737 extern rtx_call_insn *last_call_insn (void);
2738 extern rtx_insn *previous_insn (rtx_insn *);
2739 extern rtx_insn *next_insn (rtx_insn *);
2740 extern rtx_insn *prev_nonnote_insn (rtx);
2741 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2742 extern rtx_insn *next_nonnote_insn (rtx);
2743 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2744 extern rtx_insn *prev_nondebug_insn (rtx);
2745 extern rtx_insn *next_nondebug_insn (rtx);
2746 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2747 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2748 extern rtx_insn *prev_real_insn (rtx);
2749 extern rtx_insn *next_real_insn (rtx);
2750 extern rtx_insn *prev_active_insn (rtx);
2751 extern rtx_insn *next_active_insn (rtx);
2752 extern int active_insn_p (const_rtx);
2753 extern rtx_insn *next_cc0_user (rtx);
2754 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2755
2756 /* In emit-rtl.c */
2757 extern int insn_line (const rtx_insn *);
2758 extern const char * insn_file (const rtx_insn *);
2759 extern tree insn_scope (const rtx_insn *);
2760 extern expanded_location insn_location (const rtx_insn *);
2761 extern location_t prologue_location, epilogue_location;
2762
2763 /* In jump.c */
2764 extern enum rtx_code reverse_condition (enum rtx_code);
2765 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2766 extern enum rtx_code swap_condition (enum rtx_code);
2767 extern enum rtx_code unsigned_condition (enum rtx_code);
2768 extern enum rtx_code signed_condition (enum rtx_code);
2769 extern void mark_jump_label (rtx, rtx_insn *, int);
2770
2771 /* In jump.c */
2772 extern rtx_insn *delete_related_insns (rtx);
2773
2774 /* In recog.c */
2775 extern rtx *find_constant_term_loc (rtx *);
2776
2777 /* In emit-rtl.c */
2778 extern rtx_insn *try_split (rtx, rtx, int);
2779 extern int split_branch_probability;
2780
2781 /* In unknown file */
2782 extern rtx split_insns (rtx, rtx);
2783
2784 /* In simplify-rtx.c */
2785 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2786 rtx, machine_mode);
2787 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2788 machine_mode);
2789 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2790 rtx, rtx);
2791 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2792 rtx);
2793 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2794 machine_mode, rtx, rtx, rtx);
2795 extern rtx simplify_const_relational_operation (enum rtx_code,
2796 machine_mode, rtx, rtx);
2797 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2798 machine_mode, rtx, rtx);
2799 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2800 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2801 machine_mode);
2802 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2803 machine_mode, rtx, rtx, rtx);
2804 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2805 machine_mode, rtx, rtx);
2806 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2807 unsigned int);
2808 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2809 unsigned int);
2810 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2811 rtx (*fn) (rtx, const_rtx, void *), void *);
2812 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2813 extern rtx simplify_rtx (const_rtx);
2814 extern rtx avoid_constant_pool_reference (rtx);
2815 extern rtx delegitimize_mem_from_attrs (rtx);
2816 extern bool mode_signbit_p (machine_mode, const_rtx);
2817 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2818 extern bool val_signbit_known_set_p (machine_mode,
2819 unsigned HOST_WIDE_INT);
2820 extern bool val_signbit_known_clear_p (machine_mode,
2821 unsigned HOST_WIDE_INT);
2822
2823 /* In reginfo.c */
2824 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2825 bool);
2826 #ifdef HARD_CONST
2827 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2828 #endif
2829
2830 /* In emit-rtl.c */
2831 extern rtx set_for_reg_notes (rtx);
2832 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2833 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2834 extern void set_insn_deleted (rtx);
2835
2836 /* Functions in rtlanal.c */
2837
2838 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2839
2840 /* Handle the cheap and common cases inline for performance. */
2841
2842 inline rtx single_set (const rtx_insn *insn)
2843 {
2844 if (!INSN_P (insn))
2845 return NULL_RTX;
2846
2847 if (GET_CODE (PATTERN (insn)) == SET)
2848 return PATTERN (insn);
2849
2850 /* Defer to the more expensive case. */
2851 return single_set_2 (insn, PATTERN (insn));
2852 }
2853
2854 extern machine_mode get_address_mode (rtx mem);
2855 extern int rtx_addr_can_trap_p (const_rtx);
2856 extern bool nonzero_address_p (const_rtx);
2857 extern int rtx_unstable_p (const_rtx);
2858 extern bool rtx_varies_p (const_rtx, bool);
2859 extern bool rtx_addr_varies_p (const_rtx, bool);
2860 extern rtx get_call_rtx_from (rtx);
2861 extern HOST_WIDE_INT get_integer_term (const_rtx);
2862 extern rtx get_related_value (const_rtx);
2863 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2864 extern void split_const (rtx, rtx *, rtx *);
2865 extern bool unsigned_reg_p (rtx);
2866 extern int reg_mentioned_p (const_rtx, const_rtx);
2867 extern int count_occurrences (const_rtx, const_rtx, int);
2868 extern int reg_referenced_p (const_rtx, const_rtx);
2869 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2870 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2871 extern int commutative_operand_precedence (rtx);
2872 extern bool swap_commutative_operands_p (rtx, rtx);
2873 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2874 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2875 extern int modified_in_p (const_rtx, const_rtx);
2876 extern int reg_set_p (const_rtx, const_rtx);
2877 extern int multiple_sets (const_rtx);
2878 extern int set_noop_p (const_rtx);
2879 extern int noop_move_p (const rtx_insn *);
2880 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2881 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2882 extern const_rtx set_of (const_rtx, const_rtx);
2883 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2884 extern void record_hard_reg_uses (rtx *, void *);
2885 #ifdef HARD_CONST
2886 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2887 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2888 #endif
2889 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2890 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2891 extern int dead_or_set_p (const_rtx, const_rtx);
2892 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2893 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2894 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2895 extern rtx find_reg_equal_equiv_note (const_rtx);
2896 extern rtx find_constant_src (const rtx_insn *);
2897 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2898 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2899 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2900 extern void add_reg_note (rtx, enum reg_note, rtx);
2901 extern void add_int_reg_note (rtx, enum reg_note, int);
2902 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2903 extern void remove_note (rtx, const_rtx);
2904 extern void remove_reg_equal_equiv_notes (rtx_insn *);
2905 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2906 extern int side_effects_p (const_rtx);
2907 extern int volatile_refs_p (const_rtx);
2908 extern int volatile_insn_p (const_rtx);
2909 extern int may_trap_p_1 (const_rtx, unsigned);
2910 extern int may_trap_p (const_rtx);
2911 extern int may_trap_or_fault_p (const_rtx);
2912 extern bool can_throw_internal (const_rtx);
2913 extern bool can_throw_external (const_rtx);
2914 extern bool insn_could_throw_p (const_rtx);
2915 extern bool insn_nothrow_p (const_rtx);
2916 extern bool can_nonlocal_goto (const rtx_insn *);
2917 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2918 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2919 extern int inequality_comparisons_p (const_rtx);
2920 extern rtx replace_rtx (rtx, rtx, rtx);
2921 extern void replace_label (rtx *, rtx, rtx, bool);
2922 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2923 extern bool rtx_referenced_p (const_rtx, const_rtx);
2924 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2925 extern int computed_jump_p (const rtx_insn *);
2926 extern bool tls_referenced_p (const_rtx);
2927
2928 /* Overload for refers_to_regno_p for checking a single register. */
2929 inline bool
2930 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2931 {
2932 return refers_to_regno_p (regnum, regnum + 1, x, loc);
2933 }
2934
2935 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2936 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2937 NULL. The callback is passed the same opaque ARG passed to
2938 for_each_inc_dec. Return zero to continue looking for other
2939 autoinc operations or any other value to interrupt the traversal and
2940 return that value to the caller of for_each_inc_dec. */
2941 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2942 rtx srcoff, void *arg);
2943 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2944
2945 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2946 rtx *, rtx *);
2947 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2948 rtx_equal_p_callback_function);
2949
2950 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
2951 machine_mode *);
2952 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
2953 bool, hash_rtx_callback_function);
2954
2955 extern rtx regno_use_in (unsigned int, rtx);
2956 extern int auto_inc_p (const_rtx);
2957 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
2958 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2959 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2960 extern int loc_mentioned_in_p (rtx *, const_rtx);
2961 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2962 extern bool keep_with_call_p (const rtx_insn *);
2963 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2964 extern int insn_rtx_cost (rtx, bool);
2965 extern unsigned seq_cost (const rtx_insn *, bool);
2966
2967 /* Given an insn and condition, return a canonical description of
2968 the test being made. */
2969 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2970 int, int);
2971
2972 /* Given a JUMP_INSN, return a canonical description of the test
2973 being made. */
2974 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2975
2976 /* Information about a subreg of a hard register. */
2977 struct subreg_info
2978 {
2979 /* Offset of first hard register involved in the subreg. */
2980 int offset;
2981 /* Number of hard registers involved in the subreg. In the case of
2982 a paradoxical subreg, this is the number of registers that would
2983 be modified by writing to the subreg; some of them may be don't-care
2984 when reading from the subreg. */
2985 int nregs;
2986 /* Whether this subreg can be represented as a hard reg with the new
2987 mode (by adding OFFSET to the original hard register). */
2988 bool representable_p;
2989 };
2990
2991 extern void subreg_get_info (unsigned int, machine_mode,
2992 unsigned int, machine_mode,
2993 struct subreg_info *);
2994
2995 /* lists.c */
2996
2997 extern void free_EXPR_LIST_list (rtx_expr_list **);
2998 extern void free_INSN_LIST_list (rtx_insn_list **);
2999 extern void free_EXPR_LIST_node (rtx);
3000 extern void free_INSN_LIST_node (rtx);
3001 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3002 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3003 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3004 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3005 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3006 extern rtx remove_list_elem (rtx, rtx *);
3007 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3008 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3009
3010
3011 /* reginfo.c */
3012
3013 /* Resize reg info. */
3014 extern bool resize_reg_info (void);
3015 /* Free up register info memory. */
3016 extern void free_reg_info (void);
3017 extern void init_subregs_of_mode (void);
3018 extern void finish_subregs_of_mode (void);
3019
3020 /* recog.c */
3021 extern rtx extract_asm_operands (rtx);
3022 extern int asm_noperands (const_rtx);
3023 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3024 machine_mode *, location_t *);
3025 extern void get_referenced_operands (const char *, bool *, unsigned int);
3026
3027 extern enum reg_class reg_preferred_class (int);
3028 extern enum reg_class reg_alternate_class (int);
3029 extern enum reg_class reg_allocno_class (int);
3030 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3031 enum reg_class);
3032
3033 extern void split_all_insns (void);
3034 extern unsigned int split_all_insns_noflow (void);
3035
3036 #define MAX_SAVED_CONST_INT 64
3037 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3038
3039 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3040 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3041 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3042 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3043 extern GTY(()) rtx const_true_rtx;
3044
3045 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3046
3047 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3048 same as VOIDmode. */
3049
3050 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3051
3052 /* Likewise, for the constants 1 and 2 and -1. */
3053
3054 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3055 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3056 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3057
3058 extern GTY(()) rtx pc_rtx;
3059 extern GTY(()) rtx cc0_rtx;
3060 extern GTY(()) rtx ret_rtx;
3061 extern GTY(()) rtx simple_return_rtx;
3062
3063 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3064 is used to represent the frame pointer. This is because the
3065 hard frame pointer and the automatic variables are separated by an amount
3066 that cannot be determined until after register allocation. We can assume
3067 that in this case ELIMINABLE_REGS will be defined, one action of which
3068 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3069 #ifndef HARD_FRAME_POINTER_REGNUM
3070 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3071 #endif
3072
3073 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3074 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3075 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3076 #endif
3077
3078 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3079 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3080 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3081 #endif
3082
3083 /* Index labels for global_rtl. */
3084 enum global_rtl_index
3085 {
3086 GR_STACK_POINTER,
3087 GR_FRAME_POINTER,
3088 /* For register elimination to work properly these hard_frame_pointer_rtx,
3089 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3090 the same register. */
3091 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3092 GR_ARG_POINTER = GR_FRAME_POINTER,
3093 #endif
3094 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3095 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3096 #else
3097 GR_HARD_FRAME_POINTER,
3098 #endif
3099 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3100 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3101 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3102 #else
3103 GR_ARG_POINTER,
3104 #endif
3105 #endif
3106 GR_VIRTUAL_INCOMING_ARGS,
3107 GR_VIRTUAL_STACK_ARGS,
3108 GR_VIRTUAL_STACK_DYNAMIC,
3109 GR_VIRTUAL_OUTGOING_ARGS,
3110 GR_VIRTUAL_CFA,
3111 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3112
3113 GR_MAX
3114 };
3115
3116 /* Target-dependent globals. */
3117 struct GTY(()) target_rtl {
3118 /* All references to the hard registers in global_rtl_index go through
3119 these unique rtl objects. On machines where the frame-pointer and
3120 arg-pointer are the same register, they use the same unique object.
3121
3122 After register allocation, other rtl objects which used to be pseudo-regs
3123 may be clobbered to refer to the frame-pointer register.
3124 But references that were originally to the frame-pointer can be
3125 distinguished from the others because they contain frame_pointer_rtx.
3126
3127 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3128 tricky: until register elimination has taken place hard_frame_pointer_rtx
3129 should be used if it is being set, and frame_pointer_rtx otherwise. After
3130 register elimination hard_frame_pointer_rtx should always be used.
3131 On machines where the two registers are same (most) then these are the
3132 same. */
3133 rtx x_global_rtl[GR_MAX];
3134
3135 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3136 rtx x_pic_offset_table_rtx;
3137
3138 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3139 This is used to implement __builtin_return_address for some machines;
3140 see for instance the MIPS port. */
3141 rtx x_return_address_pointer_rtx;
3142
3143 /* Commonly used RTL for hard registers. These objects are not
3144 necessarily unique, so we allocate them separately from global_rtl.
3145 They are initialized once per compilation unit, then copied into
3146 regno_reg_rtx at the beginning of each function. */
3147 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3148
3149 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3150 rtx x_top_of_stack[MAX_MACHINE_MODE];
3151
3152 /* Static hunks of RTL used by the aliasing code; these are treated
3153 as persistent to avoid unnecessary RTL allocations. */
3154 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3155
3156 /* The default memory attributes for each mode. */
3157 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3158
3159 /* Track if RTL has been initialized. */
3160 bool target_specific_initialized;
3161 };
3162
3163 extern GTY(()) struct target_rtl default_target_rtl;
3164 #if SWITCHABLE_TARGET
3165 extern struct target_rtl *this_target_rtl;
3166 #else
3167 #define this_target_rtl (&default_target_rtl)
3168 #endif
3169
3170 #define global_rtl \
3171 (this_target_rtl->x_global_rtl)
3172 #define pic_offset_table_rtx \
3173 (this_target_rtl->x_pic_offset_table_rtx)
3174 #define return_address_pointer_rtx \
3175 (this_target_rtl->x_return_address_pointer_rtx)
3176 #define top_of_stack \
3177 (this_target_rtl->x_top_of_stack)
3178 #define mode_mem_attrs \
3179 (this_target_rtl->x_mode_mem_attrs)
3180
3181 /* All references to certain hard regs, except those created
3182 by allocating pseudo regs into them (when that's possible),
3183 go through these unique rtx objects. */
3184 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3185 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3186 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3187 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3188
3189 #ifndef GENERATOR_FILE
3190 /* Return the attributes of a MEM rtx. */
3191 static inline struct mem_attrs *
3192 get_mem_attrs (const_rtx x)
3193 {
3194 struct mem_attrs *attrs;
3195
3196 attrs = MEM_ATTRS (x);
3197 if (!attrs)
3198 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3199 return attrs;
3200 }
3201 #endif
3202
3203 /* Include the RTL generation functions. */
3204
3205 #ifndef GENERATOR_FILE
3206 #include "genrtl.h"
3207 #undef gen_rtx_ASM_INPUT
3208 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3209 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3210 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3211 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3212 #endif
3213
3214 /* There are some RTL codes that require special attention; the
3215 generation functions included above do the raw handling. If you
3216 add to this list, modify special_rtx in gengenrtl.c as well. */
3217
3218 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3219 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3220 extern rtx_insn *
3221 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3222 basic_block bb, rtx pattern, int location, int code,
3223 rtx reg_notes);
3224 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3225 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3226 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3227 extern rtx gen_raw_REG (machine_mode, unsigned int);
3228 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3229 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3230 extern rtx gen_rtx_MEM (machine_mode, rtx);
3231 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3232 enum var_init_status);
3233
3234 #ifdef GENERATOR_FILE
3235 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3236 #else
3237 static inline void
3238 PUT_MODE (rtx x, machine_mode mode)
3239 {
3240 if (REG_P (x))
3241 set_mode_and_regno (x, mode, REGNO (x));
3242 else
3243 PUT_MODE_RAW (x, mode);
3244 }
3245 #endif
3246
3247 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3248
3249 /* Virtual registers are used during RTL generation to refer to locations into
3250 the stack frame when the actual location isn't known until RTL generation
3251 is complete. The routine instantiate_virtual_regs replaces these with
3252 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3253 a constant. */
3254
3255 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3256
3257 /* This points to the first word of the incoming arguments passed on the stack,
3258 either by the caller or by the callee when pretending it was passed by the
3259 caller. */
3260
3261 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3262
3263 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3264
3265 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3266 variable on the stack. Otherwise, it points to the first variable on
3267 the stack. */
3268
3269 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3270
3271 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3272
3273 /* This points to the location of dynamically-allocated memory on the stack
3274 immediately after the stack pointer has been adjusted by the amount
3275 desired. */
3276
3277 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3278
3279 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3280
3281 /* This points to the location in the stack at which outgoing arguments should
3282 be written when the stack is pre-pushed (arguments pushed using push
3283 insns always use sp). */
3284
3285 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3286
3287 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3288
3289 /* This points to the Canonical Frame Address of the function. This
3290 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3291 but is calculated relative to the arg pointer for simplicity; the
3292 frame pointer nor stack pointer are necessarily fixed relative to
3293 the CFA until after reload. */
3294
3295 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3296
3297 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3298
3299 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3300
3301 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3302 when finalized. */
3303
3304 #define virtual_preferred_stack_boundary_rtx \
3305 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3306
3307 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3308 ((FIRST_VIRTUAL_REGISTER) + 5)
3309
3310 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3311
3312 /* Nonzero if REGNUM is a pointer into the stack frame. */
3313 #define REGNO_PTR_FRAME_P(REGNUM) \
3314 ((REGNUM) == STACK_POINTER_REGNUM \
3315 || (REGNUM) == FRAME_POINTER_REGNUM \
3316 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3317 || (REGNUM) == ARG_POINTER_REGNUM \
3318 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3319 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3320
3321 /* REGNUM never really appearing in the INSN stream. */
3322 #define INVALID_REGNUM (~(unsigned int) 0)
3323
3324 /* REGNUM for which no debug information can be generated. */
3325 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3326
3327 extern rtx output_constant_def (tree, int);
3328 extern rtx lookup_constant_def (tree);
3329
3330 /* Nonzero after end of reload pass.
3331 Set to 1 or 0 by reload1.c. */
3332
3333 extern int reload_completed;
3334
3335 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3336 extern int epilogue_completed;
3337
3338 /* Set to 1 while reload_as_needed is operating.
3339 Required by some machines to handle any generated moves differently. */
3340
3341 extern int reload_in_progress;
3342
3343 /* Set to 1 while in lra. */
3344 extern int lra_in_progress;
3345
3346 /* This macro indicates whether you may create a new
3347 pseudo-register. */
3348
3349 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3350
3351 #ifdef STACK_REGS
3352 /* Nonzero after end of regstack pass.
3353 Set to 1 or 0 by reg-stack.c. */
3354 extern int regstack_completed;
3355 #endif
3356
3357 /* If this is nonzero, we do not bother generating VOLATILE
3358 around volatile memory references, and we are willing to
3359 output indirect addresses. If cse is to follow, we reject
3360 indirect addresses so a useful potential cse is generated;
3361 if it is used only once, instruction combination will produce
3362 the same indirect address eventually. */
3363 extern int cse_not_expected;
3364
3365 /* Translates rtx code to tree code, for those codes needed by
3366 REAL_ARITHMETIC. The function returns an int because the caller may not
3367 know what `enum tree_code' means. */
3368
3369 extern int rtx_to_tree_code (enum rtx_code);
3370
3371 /* In cse.c */
3372 extern int delete_trivially_dead_insns (rtx_insn *, int);
3373 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3374 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3375
3376 /* In dse.c */
3377 extern bool check_for_inc_dec (rtx_insn *insn);
3378
3379 /* In jump.c */
3380 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3381 extern bool jump_to_label_p (const rtx_insn *);
3382 extern int condjump_p (const rtx_insn *);
3383 extern int any_condjump_p (const rtx_insn *);
3384 extern int any_uncondjump_p (const rtx_insn *);
3385 extern rtx pc_set (const rtx_insn *);
3386 extern rtx condjump_label (const rtx_insn *);
3387 extern int simplejump_p (const rtx_insn *);
3388 extern int returnjump_p (const rtx_insn *);
3389 extern int eh_returnjump_p (rtx_insn *);
3390 extern int onlyjump_p (const rtx_insn *);
3391 extern int only_sets_cc0_p (const_rtx);
3392 extern int sets_cc0_p (const_rtx);
3393 extern int invert_jump_1 (rtx_insn *, rtx);
3394 extern int invert_jump (rtx_insn *, rtx, int);
3395 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3396 extern int true_regnum (const_rtx);
3397 extern unsigned int reg_or_subregno (const_rtx);
3398 extern int redirect_jump_1 (rtx_insn *, rtx);
3399 extern void redirect_jump_2 (rtx_insn *, rtx, rtx, int, int);
3400 extern int redirect_jump (rtx_insn *, rtx, int);
3401 extern void rebuild_jump_labels (rtx_insn *);
3402 extern void rebuild_jump_labels_chain (rtx_insn *);
3403 extern rtx reversed_comparison (const_rtx, machine_mode);
3404 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3405 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3406 const_rtx, const_rtx);
3407 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3408 extern int condjump_in_parallel_p (const rtx_insn *);
3409
3410 /* In emit-rtl.c. */
3411 extern int max_reg_num (void);
3412 extern int max_label_num (void);
3413 extern int get_first_label_num (void);
3414 extern void maybe_set_first_label_num (rtx);
3415 extern void delete_insns_since (rtx_insn *);
3416 extern void mark_reg_pointer (rtx, int);
3417 extern void mark_user_reg (rtx);
3418 extern void reset_used_flags (rtx);
3419 extern void set_used_flags (rtx);
3420 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3421 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3422 extern int get_max_insn_count (void);
3423 extern int in_sequence_p (void);
3424 extern void init_emit (void);
3425 extern void init_emit_regs (void);
3426 extern void init_derived_machine_modes (void);
3427 extern void init_emit_once (void);
3428 extern void push_topmost_sequence (void);
3429 extern void pop_topmost_sequence (void);
3430 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3431 extern unsigned int unshare_all_rtl (void);
3432 extern void unshare_all_rtl_again (rtx_insn *);
3433 extern void unshare_all_rtl_in_chain (rtx_insn *);
3434 extern void verify_rtl_sharing (void);
3435 extern void add_insn (rtx_insn *);
3436 extern void add_insn_before (rtx, rtx, basic_block);
3437 extern void add_insn_after (rtx, rtx, basic_block);
3438 extern void remove_insn (rtx);
3439 extern rtx_insn *emit (rtx);
3440 extern void emit_insn_at_entry (rtx);
3441 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3442 extern rtx gen_const_mem (machine_mode, rtx);
3443 extern rtx gen_frame_mem (machine_mode, rtx);
3444 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3445 extern bool validate_subreg (machine_mode, machine_mode,
3446 const_rtx, unsigned int);
3447
3448 /* In combine.c */
3449 extern unsigned int extended_count (const_rtx, machine_mode, int);
3450 extern rtx remove_death (unsigned int, rtx_insn *);
3451 extern void dump_combine_stats (FILE *);
3452 extern void dump_combine_total_stats (FILE *);
3453 extern rtx make_compound_operation (rtx, enum rtx_code);
3454
3455 /* In sched-rgn.c. */
3456 extern void schedule_insns (void);
3457
3458 /* In sched-ebb.c. */
3459 extern void schedule_ebbs (void);
3460
3461 /* In sel-sched-dump.c. */
3462 extern void sel_sched_fix_param (const char *param, const char *val);
3463
3464 /* In print-rtl.c */
3465 extern const char *print_rtx_head;
3466 extern void debug (const rtx_def &ref);
3467 extern void debug (const rtx_def *ptr);
3468 extern void debug_rtx (const_rtx);
3469 extern void debug_rtx_list (const rtx_insn *, int);
3470 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3471 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3472 extern void print_mem_expr (FILE *, const_tree);
3473 extern void print_rtl (FILE *, const_rtx);
3474 extern void print_simple_rtl (FILE *, const_rtx);
3475 extern int print_rtl_single (FILE *, const_rtx);
3476 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3477 extern void print_inline_rtx (FILE *, const_rtx, int);
3478
3479 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3480 not be in sched-vis.c but in rtl.c, because they are not only used
3481 by the scheduler anymore but for all "slim" RTL dumping. */
3482 extern void dump_value_slim (FILE *, const_rtx, int);
3483 extern void dump_insn_slim (FILE *, const_rtx);
3484 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3485 int, int);
3486 extern void print_value (pretty_printer *, const_rtx, int);
3487 extern void print_pattern (pretty_printer *, const_rtx, int);
3488 extern void print_insn (pretty_printer *, const_rtx, int);
3489 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3490 extern const char *str_pattern_slim (const_rtx);
3491
3492 /* In stmt.c */
3493 extern void expand_null_return (void);
3494 extern void expand_naked_return (void);
3495 extern void emit_jump (rtx);
3496
3497 /* In expr.c */
3498 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3499 unsigned int, int);
3500 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3501 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3502
3503 /* In expmed.c */
3504 extern void init_expmed (void);
3505 extern void expand_inc (rtx, rtx);
3506 extern void expand_dec (rtx, rtx);
3507
3508 /* In lower-subreg.c */
3509 extern void init_lower_subreg (void);
3510
3511 /* In gcse.c */
3512 extern bool can_copy_p (machine_mode);
3513 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3514 extern rtx fis_get_condition (rtx_insn *);
3515
3516 /* In ira.c */
3517 #ifdef HARD_CONST
3518 extern HARD_REG_SET eliminable_regset;
3519 #endif
3520 extern void mark_elimination (int, int);
3521
3522 /* In reginfo.c */
3523 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3524 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3525 extern void globalize_reg (tree, int);
3526 extern void init_reg_modes_target (void);
3527 extern void init_regs (void);
3528 extern void reinit_regs (void);
3529 extern void init_fake_stack_mems (void);
3530 extern void save_register_info (void);
3531 extern void init_reg_sets (void);
3532 extern void regclass (rtx, int);
3533 extern void reg_scan (rtx_insn *, unsigned int);
3534 extern void fix_register (const char *, int, int);
3535 #ifdef HARD_CONST
3536 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3537 #endif
3538
3539 /* In reload1.c */
3540 extern int function_invariant_p (const_rtx);
3541
3542 /* In calls.c */
3543 enum libcall_type
3544 {
3545 LCT_NORMAL = 0,
3546 LCT_CONST = 1,
3547 LCT_PURE = 2,
3548 LCT_NORETURN = 3,
3549 LCT_THROW = 4,
3550 LCT_RETURNS_TWICE = 5
3551 };
3552
3553 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3554 ...);
3555 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3556 machine_mode, int, ...);
3557
3558 /* In varasm.c */
3559 extern void init_varasm_once (void);
3560
3561 extern rtx make_debug_expr_from_rtl (const_rtx);
3562
3563 /* In read-rtl.c */
3564 extern bool read_rtx (const char *, rtx *);
3565
3566 /* In alias.c */
3567 extern rtx canon_rtx (rtx);
3568 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3569 extern rtx get_addr (rtx);
3570 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3571 const_rtx, rtx);
3572 extern int read_dependence (const_rtx, const_rtx);
3573 extern int anti_dependence (const_rtx, const_rtx);
3574 extern int canon_anti_dependence (const_rtx, bool,
3575 const_rtx, machine_mode, rtx);
3576 extern int output_dependence (const_rtx, const_rtx);
3577 extern int may_alias_p (const_rtx, const_rtx);
3578 extern void init_alias_target (void);
3579 extern void init_alias_analysis (void);
3580 extern void end_alias_analysis (void);
3581 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3582 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3583 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3584 extern bool may_be_sp_based_p (rtx);
3585 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3586 extern rtx get_reg_known_value (unsigned int);
3587 extern bool get_reg_known_equiv_p (unsigned int);
3588 extern rtx get_reg_base_value (unsigned int);
3589
3590 #ifdef STACK_REGS
3591 extern int stack_regs_mentioned (const_rtx insn);
3592 #endif
3593
3594 /* In toplev.c */
3595 extern GTY(()) rtx stack_limit_rtx;
3596
3597 /* In var-tracking.c */
3598 extern unsigned int variable_tracking_main (void);
3599
3600 /* In stor-layout.c. */
3601 extern void get_mode_bounds (machine_mode, int, machine_mode,
3602 rtx *, rtx *);
3603
3604 /* In loop-iv.c */
3605 extern rtx canon_condition (rtx);
3606 extern void simplify_using_condition (rtx, rtx *, bitmap);
3607
3608 /* In final.c */
3609 extern unsigned int compute_alignments (void);
3610 extern void update_alignments (vec<rtx> &);
3611 extern int asm_str_count (const char *templ);
3612 \f
3613 struct rtl_hooks
3614 {
3615 rtx (*gen_lowpart) (machine_mode, rtx);
3616 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3617 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3618 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3619 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3620 unsigned int, unsigned int *);
3621 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3622
3623 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3624 };
3625
3626 /* Each pass can provide its own. */
3627 extern struct rtl_hooks rtl_hooks;
3628
3629 /* ... but then it has to restore these. */
3630 extern const struct rtl_hooks general_rtl_hooks;
3631
3632 /* Keep this for the nonce. */
3633 #define gen_lowpart rtl_hooks.gen_lowpart
3634
3635 extern void insn_locations_init (void);
3636 extern void insn_locations_finalize (void);
3637 extern void set_curr_insn_location (location_t);
3638 extern location_t curr_insn_location (void);
3639
3640 /* rtl-error.c */
3641 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3642 ATTRIBUTE_NORETURN;
3643 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3644 ATTRIBUTE_NORETURN;
3645
3646 #define fatal_insn(msgid, insn) \
3647 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3648 #define fatal_insn_not_found(insn) \
3649 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3650
3651 /* reginfo.c */
3652 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3653
3654 #endif /* ! GCC_RTL_H */