Introduce rtx_insn_list subclass of rtx_def
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include <utility>
24 #include "statistics.h"
25 #include "machmode.h"
26 #include "input.h"
27 #include "real.h"
28 #include "vec.h"
29 #include "fixed-value.h"
30 #include "alias.h"
31 #include "hashtab.h"
32 #include "wide-int.h"
33 #include "flags.h"
34 #include "is-a.h"
35
36 /* Value used by some passes to "recognize" noop moves as valid
37 instructions. */
38 #define NOOP_MOVE_INSN_CODE INT_MAX
39
40 /* Register Transfer Language EXPRESSIONS CODES */
41
42 #define RTX_CODE enum rtx_code
43 enum rtx_code {
44
45 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
46 #include "rtl.def" /* rtl expressions are documented here */
47 #undef DEF_RTL_EXPR
48
49 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
50 NUM_RTX_CODE.
51 Assumes default enum value assignment. */
52
53 /* The cast here, saves many elsewhere. */
54 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
55
56 /* Similar, but since generator files get more entries... */
57 #ifdef GENERATOR_FILE
58 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
59 #endif
60
61 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
62
63 enum rtx_class {
64 /* We check bit 0-1 of some rtx class codes in the predicates below. */
65
66 /* Bit 0 = comparison if 0, arithmetic is 1
67 Bit 1 = 1 if commutative. */
68 RTX_COMPARE, /* 0 */
69 RTX_COMM_COMPARE,
70 RTX_BIN_ARITH,
71 RTX_COMM_ARITH,
72
73 /* Must follow the four preceding values. */
74 RTX_UNARY, /* 4 */
75
76 RTX_EXTRA,
77 RTX_MATCH,
78 RTX_INSN,
79
80 /* Bit 0 = 1 if constant. */
81 RTX_OBJ, /* 8 */
82 RTX_CONST_OBJ,
83
84 RTX_TERNARY,
85 RTX_BITFIELD_OPS,
86 RTX_AUTOINC
87 };
88
89 #define RTX_OBJ_MASK (~1)
90 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
91 #define RTX_COMPARE_MASK (~1)
92 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
93 #define RTX_ARITHMETIC_MASK (~1)
94 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
95 #define RTX_BINARY_MASK (~3)
96 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
97 #define RTX_COMMUTATIVE_MASK (~2)
98 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
99 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
100
101 extern const unsigned char rtx_length[NUM_RTX_CODE];
102 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
103
104 extern const char * const rtx_name[NUM_RTX_CODE];
105 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
106
107 extern const char * const rtx_format[NUM_RTX_CODE];
108 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
109
110 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
111 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
112
113 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
114 and NEXT_INSN fields). */
115 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
116
117 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
118 extern const unsigned char rtx_next[NUM_RTX_CODE];
119 \f
120 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
121 relative to which the offsets are calculated, as explained in rtl.def. */
122 struct addr_diff_vec_flags
123 {
124 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
125 unsigned min_align: 8;
126 /* Flags: */
127 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
128 unsigned min_after_vec: 1; /* minimum address target label is
129 after the ADDR_DIFF_VEC. */
130 unsigned max_after_vec: 1; /* maximum address target label is
131 after the ADDR_DIFF_VEC. */
132 unsigned min_after_base: 1; /* minimum address target label is
133 after BASE. */
134 unsigned max_after_base: 1; /* maximum address target label is
135 after BASE. */
136 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
137 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
138 unsigned : 2;
139 unsigned scale : 8;
140 };
141
142 /* Structure used to describe the attributes of a MEM. These are hashed
143 so MEMs that the same attributes share a data structure. This means
144 they cannot be modified in place. */
145 struct GTY(()) mem_attrs
146 {
147 /* The expression that the MEM accesses, or null if not known.
148 This expression might be larger than the memory reference itself.
149 (In other words, the MEM might access only part of the object.) */
150 tree expr;
151
152 /* The offset of the memory reference from the start of EXPR.
153 Only valid if OFFSET_KNOWN_P. */
154 HOST_WIDE_INT offset;
155
156 /* The size of the memory reference in bytes. Only valid if
157 SIZE_KNOWN_P. */
158 HOST_WIDE_INT size;
159
160 /* The alias set of the memory reference. */
161 alias_set_type alias;
162
163 /* The alignment of the reference in bits. Always a multiple of
164 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
165 than the memory reference itself. */
166 unsigned int align;
167
168 /* The address space that the memory reference uses. */
169 unsigned char addrspace;
170
171 /* True if OFFSET is known. */
172 bool offset_known_p;
173
174 /* True if SIZE is known. */
175 bool size_known_p;
176 };
177
178 /* Structure used to describe the attributes of a REG in similar way as
179 mem_attrs does for MEM above. Note that the OFFSET field is calculated
180 in the same way as for mem_attrs, rather than in the same way as a
181 SUBREG_BYTE. For example, if a big-endian target stores a byte
182 object in the low part of a 4-byte register, the OFFSET field
183 will be -3 rather than 0. */
184
185 struct GTY(()) reg_attrs {
186 tree decl; /* decl corresponding to REG. */
187 HOST_WIDE_INT offset; /* Offset from start of DECL. */
188 };
189
190 /* Common union for an element of an rtx. */
191
192 union rtunion
193 {
194 int rt_int;
195 unsigned int rt_uint;
196 const char *rt_str;
197 rtx rt_rtx;
198 rtvec rt_rtvec;
199 enum machine_mode rt_type;
200 addr_diff_vec_flags rt_addr_diff_vec_flags;
201 struct cselib_val *rt_cselib;
202 tree rt_tree;
203 basic_block rt_bb;
204 mem_attrs *rt_mem;
205 reg_attrs *rt_reg;
206 struct constant_descriptor_rtx *rt_constant;
207 struct dw_cfi_node *rt_cfi;
208 };
209
210 /* This structure remembers the position of a SYMBOL_REF within an
211 object_block structure. A SYMBOL_REF only provides this information
212 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
213 struct GTY(()) block_symbol {
214 /* The usual SYMBOL_REF fields. */
215 rtunion GTY ((skip)) fld[2];
216
217 /* The block that contains this object. */
218 struct object_block *block;
219
220 /* The offset of this object from the start of its block. It is negative
221 if the symbol has not yet been assigned an offset. */
222 HOST_WIDE_INT offset;
223 };
224
225 /* Describes a group of objects that are to be placed together in such
226 a way that their relative positions are known. */
227 struct GTY(()) object_block {
228 /* The section in which these objects should be placed. */
229 section *sect;
230
231 /* The alignment of the first object, measured in bits. */
232 unsigned int alignment;
233
234 /* The total size of the objects, measured in bytes. */
235 HOST_WIDE_INT size;
236
237 /* The SYMBOL_REFs for each object. The vector is sorted in
238 order of increasing offset and the following conditions will
239 hold for each element X:
240
241 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
242 !SYMBOL_REF_ANCHOR_P (X)
243 SYMBOL_REF_BLOCK (X) == [address of this structure]
244 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
245 vec<rtx, va_gc> *objects;
246
247 /* All the anchor SYMBOL_REFs used to address these objects, sorted
248 in order of increasing offset, and then increasing TLS model.
249 The following conditions will hold for each element X in this vector:
250
251 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
252 SYMBOL_REF_ANCHOR_P (X)
253 SYMBOL_REF_BLOCK (X) == [address of this structure]
254 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
255 vec<rtx, va_gc> *anchors;
256 };
257
258 struct GTY((variable_size)) hwivec_def {
259 HOST_WIDE_INT elem[1];
260 };
261
262 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
263 #define CWI_GET_NUM_ELEM(RTX) \
264 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
265 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
266 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
267
268 /* RTL expression ("rtx"). */
269
270 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
271 field for for gengtype to recognize that inheritance is occurring,
272 so that all subclasses are redirected to the traversal hook for the
273 base class.
274 However, all of the fields are in the base class, and special-casing
275 is at work. Hence we use desc and tag of 0, generating a switch
276 statement of the form:
277 switch (0)
278 {
279 case 0: // all the work happens here
280 }
281 in order to work with the existing special-casing in gengtype. */
282
283 struct GTY((desc("0"), tag("0"),
284 chain_next ("RTX_NEXT (&%h)"),
285 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
286 /* The kind of expression this is. */
287 ENUM_BITFIELD(rtx_code) code: 16;
288
289 /* The kind of value the expression has. */
290 ENUM_BITFIELD(machine_mode) mode : 8;
291
292 /* 1 in a MEM if we should keep the alias set for this mem unchanged
293 when we access a component.
294 1 in a JUMP_INSN if it is a crossing jump.
295 1 in a CALL_INSN if it is a sibling call.
296 1 in a SET that is for a return.
297 In a CODE_LABEL, part of the two-bit alternate entry field.
298 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
299 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
300 1 in a SUBREG generated by LRA for reload insns. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 class GTY(()) rtx_insn_list : public rtx_def
406 {
407 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
408
409 This is an instance of:
410
411 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
412
413 i.e. a node for constructing singly-linked lists of rtx_insn *, where
414 the list is "external" to the insn (as opposed to the doubly-linked
415 list embedded within rtx_insn itself). */
416
417 public:
418 /* Get next in list. */
419 rtx_insn_list *next () const;
420
421 /* Get at the underlying instruction. */
422 rtx_insn *insn () const;
423
424 };
425
426 template <>
427 template <>
428 inline bool
429 is_a_helper <rtx_insn_list *>::test (rtx rt)
430 {
431 return rt->code == INSN_LIST;
432 }
433
434 class GTY(()) rtx_insn : public rtx_def
435 {
436 /* No extra fields, but adds the invariant:
437
438 (INSN_P (X)
439 || NOTE_P (X)
440 || JUMP_TABLE_DATA_P (X)
441 || BARRIER_P (X)
442 || LABEL_P (X))
443
444 i.e. that we must be able to use the following:
445 INSN_UID ()
446 NEXT_INSN ()
447 PREV_INSN ()
448 i.e. we have an rtx that has an INSN_UID field and can be part of
449 a linked list of insns.
450 */
451 };
452
453 /* Subclasses of rtx_insn. */
454
455 class GTY(()) rtx_debug_insn : public rtx_insn
456 {
457 /* No extra fields, but adds the invariant:
458 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
459 i.e. an annotation for tracking variable assignments.
460
461 This is an instance of:
462 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
463 from rtl.def. */
464 };
465
466 class GTY(()) rtx_nonjump_insn : public rtx_insn
467 {
468 /* No extra fields, but adds the invariant:
469 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
470 i.e an instruction that cannot jump.
471
472 This is an instance of:
473 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
474 from rtl.def. */
475 };
476
477 class GTY(()) rtx_jump_insn : public rtx_insn
478 {
479 /* No extra fields, but adds the invariant:
480 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
481 i.e. an instruction that can possibly jump.
482
483 This is an instance of:
484 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
485 from rtl.def. */
486 };
487
488 class GTY(()) rtx_call_insn : public rtx_insn
489 {
490 /* No extra fields, but adds the invariant:
491 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
492 i.e. an instruction that can possibly call a subroutine
493 but which will not change which instruction comes next
494 in the current function.
495
496 This is an instance of:
497 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
498 from rtl.def. */
499 };
500
501 class GTY(()) rtx_jump_table_data : public rtx_insn
502 {
503 /* No extra fields, but adds the invariant:
504 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
505 i.e. a data for a jump table, considered an instruction for
506 historical reasons.
507
508 This is an instance of:
509 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
510 from rtl.def. */
511
512 public:
513
514 /* This can be either:
515
516 (a) a table of absolute jumps, in which case PATTERN (this) is an
517 ADDR_VEC with arg 0 a vector of labels, or
518
519 (b) a table of relative jumps (e.g. for -fPIC), in which case
520 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
521 arg 1 the vector of labels.
522
523 This method gets the underlying vec. */
524
525 inline rtvec get_labels () const;
526 };
527
528 class GTY(()) rtx_barrier : public rtx_insn
529 {
530 /* No extra fields, but adds the invariant:
531 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
532 i.e. a marker that indicates that control will not flow through.
533
534 This is an instance of:
535 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
536 from rtl.def. */
537 };
538
539 class GTY(()) rtx_code_label : public rtx_insn
540 {
541 /* No extra fields, but adds the invariant:
542 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
543 i.e. a label in the assembler.
544
545 This is an instance of:
546 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
547 from rtl.def. */
548 };
549
550 class GTY(()) rtx_note : public rtx_insn
551 {
552 /* No extra fields, but adds the invariant:
553 NOTE_P(X) aka (GET_CODE (X) == NOTE)
554 i.e. a note about the corresponding source code.
555
556 This is an instance of:
557 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
558 from rtl.def. */
559 };
560
561 /* The size in bytes of an rtx header (code, mode and flags). */
562 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
563
564 /* The size in bytes of an rtx with code CODE. */
565 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
566
567 #define NULL_RTX (rtx) 0
568
569 /* The "next" and "previous" RTX, relative to this one. */
570
571 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
572 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
573
574 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
575 */
576 #define RTX_PREV(X) ((INSN_P (X) \
577 || NOTE_P (X) \
578 || JUMP_TABLE_DATA_P (X) \
579 || BARRIER_P (X) \
580 || LABEL_P (X)) \
581 && PREV_INSN (X) != NULL \
582 && NEXT_INSN (PREV_INSN (X)) == X \
583 ? PREV_INSN (X) : NULL)
584
585 /* Define macros to access the `code' field of the rtx. */
586
587 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
588 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
589
590 #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode)
591 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
592
593 /* RTL vector. These appear inside RTX's when there is a need
594 for a variable number of things. The principle use is inside
595 PARALLEL expressions. */
596
597 struct GTY(()) rtvec_def {
598 int num_elem; /* number of elements */
599 rtx GTY ((length ("%h.num_elem"))) elem[1];
600 };
601
602 #define NULL_RTVEC (rtvec) 0
603
604 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
605 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
606
607 /* Predicate yielding nonzero iff X is an rtx for a register. */
608 #define REG_P(X) (GET_CODE (X) == REG)
609
610 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
611 #define MEM_P(X) (GET_CODE (X) == MEM)
612
613 #if TARGET_SUPPORTS_WIDE_INT
614
615 /* Match CONST_*s that can represent compile-time constant integers. */
616 #define CASE_CONST_SCALAR_INT \
617 case CONST_INT: \
618 case CONST_WIDE_INT
619
620 /* Match CONST_*s for which pointer equality corresponds to value
621 equality. */
622 #define CASE_CONST_UNIQUE \
623 case CONST_INT: \
624 case CONST_WIDE_INT: \
625 case CONST_DOUBLE: \
626 case CONST_FIXED
627
628 /* Match all CONST_* rtxes. */
629 #define CASE_CONST_ANY \
630 case CONST_INT: \
631 case CONST_WIDE_INT: \
632 case CONST_DOUBLE: \
633 case CONST_FIXED: \
634 case CONST_VECTOR
635
636 #else
637
638 /* Match CONST_*s that can represent compile-time constant integers. */
639 #define CASE_CONST_SCALAR_INT \
640 case CONST_INT: \
641 case CONST_DOUBLE
642
643 /* Match CONST_*s for which pointer equality corresponds to value
644 equality. */
645 #define CASE_CONST_UNIQUE \
646 case CONST_INT: \
647 case CONST_DOUBLE: \
648 case CONST_FIXED
649
650 /* Match all CONST_* rtxes. */
651 #define CASE_CONST_ANY \
652 case CONST_INT: \
653 case CONST_DOUBLE: \
654 case CONST_FIXED: \
655 case CONST_VECTOR
656 #endif
657
658 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
659 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
660
661 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
662 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
663
664 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
665 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
666
667 /* Predicate yielding true iff X is an rtx for a double-int
668 or floating point constant. */
669 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
670
671 /* Predicate yielding true iff X is an rtx for a double-int. */
672 #define CONST_DOUBLE_AS_INT_P(X) \
673 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
674
675 /* Predicate yielding true iff X is an rtx for a integer const. */
676 #if TARGET_SUPPORTS_WIDE_INT
677 #define CONST_SCALAR_INT_P(X) \
678 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
679 #else
680 #define CONST_SCALAR_INT_P(X) \
681 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
682 #endif
683
684 /* Predicate yielding true iff X is an rtx for a double-int. */
685 #define CONST_DOUBLE_AS_FLOAT_P(X) \
686 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
687
688 /* Predicate yielding nonzero iff X is a label insn. */
689 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
690
691 /* Predicate yielding nonzero iff X is a jump insn. */
692 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
693
694 /* Predicate yielding nonzero iff X is a call insn. */
695 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
696
697 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
698 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
699
700 /* Predicate yielding nonzero iff X is a debug note/insn. */
701 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
702
703 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
704 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
705
706 /* Nonzero if DEBUG_INSN_P may possibly hold. */
707 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
708
709 /* Predicate yielding nonzero iff X is a real insn. */
710 #define INSN_P(X) \
711 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
712
713 /* Predicate yielding nonzero iff X is a note insn. */
714 #define NOTE_P(X) (GET_CODE (X) == NOTE)
715
716 /* Predicate yielding nonzero iff X is a barrier insn. */
717 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
718
719 /* Predicate yielding nonzero iff X is a data for a jump table. */
720 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
721
722 template <>
723 template <>
724 inline bool
725 is_a_helper <rtx_insn *>::test (rtx rt)
726 {
727 return (INSN_P (rt)
728 || NOTE_P (rt)
729 || JUMP_TABLE_DATA_P (rt)
730 || BARRIER_P (rt)
731 || LABEL_P (rt));
732 }
733
734 template <>
735 template <>
736 inline bool
737 is_a_helper <const rtx_insn *>::test (const_rtx rt)
738 {
739 return (INSN_P (rt)
740 || NOTE_P (rt)
741 || JUMP_TABLE_DATA_P (rt)
742 || BARRIER_P (rt)
743 || LABEL_P (rt));
744 }
745
746 template <>
747 template <>
748 inline bool
749 is_a_helper <rtx_debug_insn *>::test (rtx rt)
750 {
751 return DEBUG_INSN_P (rt);
752 }
753
754 template <>
755 template <>
756 inline bool
757 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
758 {
759 return NONJUMP_INSN_P (rt);
760 }
761
762 template <>
763 template <>
764 inline bool
765 is_a_helper <rtx_jump_insn *>::test (rtx rt)
766 {
767 return JUMP_P (rt);
768 }
769
770 template <>
771 template <>
772 inline bool
773 is_a_helper <rtx_call_insn *>::test (rtx rt)
774 {
775 return CALL_P (rt);
776 }
777
778 template <>
779 template <>
780 inline bool
781 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
782 {
783 return CALL_P (insn);
784 }
785
786 template <>
787 template <>
788 inline bool
789 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
790 {
791 return JUMP_TABLE_DATA_P (rt);
792 }
793
794 template <>
795 template <>
796 inline bool
797 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
798 {
799 return JUMP_TABLE_DATA_P (insn);
800 }
801
802 template <>
803 template <>
804 inline bool
805 is_a_helper <rtx_barrier *>::test (rtx rt)
806 {
807 return BARRIER_P (rt);
808 }
809
810 template <>
811 template <>
812 inline bool
813 is_a_helper <rtx_code_label *>::test (rtx rt)
814 {
815 return LABEL_P (rt);
816 }
817
818 template <>
819 template <>
820 inline bool
821 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
822 {
823 return LABEL_P (insn);
824 }
825
826 template <>
827 template <>
828 inline bool
829 is_a_helper <rtx_note *>::test (rtx rt)
830 {
831 return NOTE_P (rt);
832 }
833
834 template <>
835 template <>
836 inline bool
837 is_a_helper <rtx_note *>::test (rtx_insn *insn)
838 {
839 return NOTE_P (insn);
840 }
841
842 /* Predicate yielding nonzero iff X is a return or simple_return. */
843 #define ANY_RETURN_P(X) \
844 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
845
846 /* 1 if X is a unary operator. */
847
848 #define UNARY_P(X) \
849 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
850
851 /* 1 if X is a binary operator. */
852
853 #define BINARY_P(X) \
854 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
855
856 /* 1 if X is an arithmetic operator. */
857
858 #define ARITHMETIC_P(X) \
859 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
860 == RTX_ARITHMETIC_RESULT)
861
862 /* 1 if X is an arithmetic operator. */
863
864 #define COMMUTATIVE_ARITH_P(X) \
865 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
866
867 /* 1 if X is a commutative arithmetic operator or a comparison operator.
868 These two are sometimes selected together because it is possible to
869 swap the two operands. */
870
871 #define SWAPPABLE_OPERANDS_P(X) \
872 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
873 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
874 | (1 << RTX_COMPARE)))
875
876 /* 1 if X is a non-commutative operator. */
877
878 #define NON_COMMUTATIVE_P(X) \
879 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
880 == RTX_NON_COMMUTATIVE_RESULT)
881
882 /* 1 if X is a commutative operator on integers. */
883
884 #define COMMUTATIVE_P(X) \
885 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
886 == RTX_COMMUTATIVE_RESULT)
887
888 /* 1 if X is a relational operator. */
889
890 #define COMPARISON_P(X) \
891 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
892
893 /* 1 if X is a constant value that is an integer. */
894
895 #define CONSTANT_P(X) \
896 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
897
898 /* 1 if X can be used to represent an object. */
899 #define OBJECT_P(X) \
900 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
901
902 /* General accessor macros for accessing the fields of an rtx. */
903
904 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
905 /* The bit with a star outside the statement expr and an & inside is
906 so that N can be evaluated only once. */
907 #define RTL_CHECK1(RTX, N, C1) __extension__ \
908 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
909 const enum rtx_code _code = GET_CODE (_rtx); \
910 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
911 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
912 __FUNCTION__); \
913 if (GET_RTX_FORMAT (_code)[_n] != C1) \
914 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
915 __FUNCTION__); \
916 &_rtx->u.fld[_n]; }))
917
918 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
919 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
920 const enum rtx_code _code = GET_CODE (_rtx); \
921 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
922 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
923 __FUNCTION__); \
924 if (GET_RTX_FORMAT (_code)[_n] != C1 \
925 && GET_RTX_FORMAT (_code)[_n] != C2) \
926 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
927 __FUNCTION__); \
928 &_rtx->u.fld[_n]; }))
929
930 #define RTL_CHECKC1(RTX, N, C) __extension__ \
931 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
932 if (GET_CODE (_rtx) != (C)) \
933 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
934 __FUNCTION__); \
935 &_rtx->u.fld[_n]; }))
936
937 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
938 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
939 const enum rtx_code _code = GET_CODE (_rtx); \
940 if (_code != (C1) && _code != (C2)) \
941 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
942 __FUNCTION__); \
943 &_rtx->u.fld[_n]; }))
944
945 #define RTVEC_ELT(RTVEC, I) __extension__ \
946 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
947 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
948 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
949 __FUNCTION__); \
950 &_rtvec->elem[_i]; }))
951
952 #define XWINT(RTX, N) __extension__ \
953 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
954 const enum rtx_code _code = GET_CODE (_rtx); \
955 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
956 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
957 __FUNCTION__); \
958 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
959 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
960 __FUNCTION__); \
961 &_rtx->u.hwint[_n]; }))
962
963 #define CWI_ELT(RTX, I) __extension__ \
964 (*({ __typeof (RTX) const _cwi = (RTX); \
965 int _max = CWI_GET_NUM_ELEM (_cwi); \
966 const int _i = (I); \
967 if (_i < 0 || _i >= _max) \
968 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
969 __FUNCTION__); \
970 &_cwi->u.hwiv.elem[_i]; }))
971
972 #define XCWINT(RTX, N, C) __extension__ \
973 (*({ __typeof (RTX) const _rtx = (RTX); \
974 if (GET_CODE (_rtx) != (C)) \
975 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
976 __FUNCTION__); \
977 &_rtx->u.hwint[N]; }))
978
979 #define XCMWINT(RTX, N, C, M) __extension__ \
980 (*({ __typeof (RTX) const _rtx = (RTX); \
981 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
982 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
983 __LINE__, __FUNCTION__); \
984 &_rtx->u.hwint[N]; }))
985
986 #define XCNMPRV(RTX, C, M) __extension__ \
987 ({ __typeof (RTX) const _rtx = (RTX); \
988 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
989 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
990 __LINE__, __FUNCTION__); \
991 &_rtx->u.rv; })
992
993 #define XCNMPFV(RTX, C, M) __extension__ \
994 ({ __typeof (RTX) const _rtx = (RTX); \
995 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
996 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
997 __LINE__, __FUNCTION__); \
998 &_rtx->u.fv; })
999
1000 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1001 ({ __typeof (RTX) const _symbol = (RTX); \
1002 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1003 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1004 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1005 __FUNCTION__); \
1006 &_symbol->u.block_sym; })
1007
1008 #define HWIVEC_CHECK(RTX,C) __extension__ \
1009 ({ __typeof (RTX) const _symbol = (RTX); \
1010 RTL_CHECKC1 (_symbol, 0, C); \
1011 &_symbol->u.hwiv; })
1012
1013 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1014 const char *)
1015 ATTRIBUTE_NORETURN;
1016 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1017 const char *)
1018 ATTRIBUTE_NORETURN;
1019 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1020 int, const char *)
1021 ATTRIBUTE_NORETURN;
1022 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1023 int, const char *)
1024 ATTRIBUTE_NORETURN;
1025 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1026 const char *, int, const char *)
1027 ATTRIBUTE_NORETURN;
1028 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, enum machine_mode,
1029 bool, const char *, int, const char *)
1030 ATTRIBUTE_NORETURN;
1031 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1032 ATTRIBUTE_NORETURN;
1033 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1034 const char *)
1035 ATTRIBUTE_NORETURN;
1036 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1037 const char *)
1038 ATTRIBUTE_NORETURN;
1039
1040 #else /* not ENABLE_RTL_CHECKING */
1041
1042 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1043 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1044 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1045 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1046 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1047 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1048 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1049 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1050 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1051 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1052 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1053 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1054 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1055 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1056
1057 #endif
1058
1059 /* General accessor macros for accessing the flags of an rtx. */
1060
1061 /* Access an individual rtx flag, with no checking of any kind. */
1062 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1063
1064 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1065 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1066 ({ __typeof (RTX) const _rtx = (RTX); \
1067 if (GET_CODE (_rtx) != C1) \
1068 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1069 __FUNCTION__); \
1070 _rtx; })
1071
1072 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1073 ({ __typeof (RTX) const _rtx = (RTX); \
1074 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1075 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1076 __FUNCTION__); \
1077 _rtx; })
1078
1079 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1080 ({ __typeof (RTX) const _rtx = (RTX); \
1081 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1082 && GET_CODE (_rtx) != C3) \
1083 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1084 __FUNCTION__); \
1085 _rtx; })
1086
1087 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1088 ({ __typeof (RTX) const _rtx = (RTX); \
1089 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1090 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1091 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1092 __FUNCTION__); \
1093 _rtx; })
1094
1095 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1096 ({ __typeof (RTX) const _rtx = (RTX); \
1097 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1098 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1099 && GET_CODE (_rtx) != C5) \
1100 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1101 __FUNCTION__); \
1102 _rtx; })
1103
1104 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1105 __extension__ \
1106 ({ __typeof (RTX) const _rtx = (RTX); \
1107 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1108 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1109 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1110 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1111 __FUNCTION__); \
1112 _rtx; })
1113
1114 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1115 __extension__ \
1116 ({ __typeof (RTX) const _rtx = (RTX); \
1117 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1118 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1119 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1120 && GET_CODE (_rtx) != C7) \
1121 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1122 __FUNCTION__); \
1123 _rtx; })
1124
1125 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1126 __extension__ \
1127 ({ __typeof (RTX) const _rtx = (RTX); \
1128 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1129 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1130 __FUNCTION__); \
1131 _rtx; })
1132
1133 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1134 int, const char *)
1135 ATTRIBUTE_NORETURN
1136 ;
1137
1138 #else /* not ENABLE_RTL_FLAG_CHECKING */
1139
1140 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1141 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1142 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1143 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1144 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1145 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1146 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1147 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1148 #endif
1149
1150 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1151 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1152 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1153 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1154 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1155 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1156 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1157 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1158 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1159 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1160
1161 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1162 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1163
1164 /* These are like XINT, etc. except that they expect a '0' field instead
1165 of the normal type code. */
1166
1167 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1168 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1169 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1170 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1171 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1172 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1173 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1174 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1175 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1176 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1177 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1178 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1179 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1180
1181 /* Access a '0' field with any type. */
1182 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1183
1184 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1185 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1186 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1187 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1188 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1189 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1190 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1191 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1192 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1193 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1194
1195 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1196 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1197
1198 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1199 \f
1200
1201 /* Methods of rtx_insn_list. */
1202
1203 inline rtx_insn_list *rtx_insn_list::next () const
1204 {
1205 rtx tmp = XEXP (this, 1);
1206 return safe_as_a <rtx_insn_list *> (tmp);
1207 }
1208
1209 inline rtx_insn *rtx_insn_list::insn () const
1210 {
1211 rtx tmp = XEXP (this, 0);
1212 return safe_as_a <rtx_insn *> (tmp);
1213 }
1214
1215 /* ACCESS MACROS for particular fields of insns. */
1216
1217 /* Holds a unique number for each insn.
1218 These are not necessarily sequentially increasing. */
1219 inline int INSN_UID (const_rtx insn)
1220 {
1221 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1222 (insn))->u2.insn_uid;
1223 }
1224 inline int& INSN_UID (rtx insn)
1225 {
1226 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1227 (insn))->u2.insn_uid;
1228 }
1229
1230 /* Chain insns together in sequence. */
1231
1232 /* For now these are split in two: an rvalue form:
1233 PREV_INSN/NEXT_INSN
1234 and an lvalue form:
1235 SET_NEXT_INSN/SET_PREV_INSN. */
1236
1237 inline rtx_insn *PREV_INSN (const_rtx insn)
1238 {
1239 rtx prev = XEXP (insn, 0);
1240 return safe_as_a <rtx_insn *> (prev);
1241 }
1242
1243 inline rtx& SET_PREV_INSN (rtx insn)
1244 {
1245 return XEXP (insn, 0);
1246 }
1247
1248 inline rtx_insn *NEXT_INSN (const_rtx insn)
1249 {
1250 rtx next = XEXP (insn, 1);
1251 return safe_as_a <rtx_insn *> (next);
1252 }
1253
1254 inline rtx& SET_NEXT_INSN (rtx insn)
1255 {
1256 return XEXP (insn, 1);
1257 }
1258
1259 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1260 {
1261 return XBBDEF (insn, 2);
1262 }
1263
1264 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1265 {
1266 return XBBDEF (insn, 2);
1267 }
1268
1269 /* The body of an insn. */
1270 inline rtx PATTERN (const_rtx insn)
1271 {
1272 return XEXP (insn, 3);
1273 }
1274
1275 inline rtx& PATTERN (rtx insn)
1276 {
1277 return XEXP (insn, 3);
1278 }
1279
1280 inline unsigned int INSN_LOCATION (const_rtx insn)
1281 {
1282 return XUINT (insn, 4);
1283 }
1284
1285 inline unsigned int& INSN_LOCATION (rtx insn)
1286 {
1287 return XUINT (insn, 4);
1288 }
1289
1290 inline bool INSN_HAS_LOCATION (const_rtx insn)
1291 {
1292 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1293 }
1294
1295 /* LOCATION of an RTX if relevant. */
1296 #define RTL_LOCATION(X) (INSN_P (X) ? \
1297 INSN_LOCATION (X) : UNKNOWN_LOCATION)
1298
1299 /* Code number of instruction, from when it was recognized.
1300 -1 means this instruction has not been recognized yet. */
1301 #define INSN_CODE(INSN) XINT (INSN, 5)
1302
1303 inline rtvec rtx_jump_table_data::get_labels () const
1304 {
1305 rtx pat = PATTERN (this);
1306 if (GET_CODE (pat) == ADDR_VEC)
1307 return XVEC (pat, 0);
1308 else
1309 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1310 }
1311
1312 #define RTX_FRAME_RELATED_P(RTX) \
1313 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1314 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1315
1316 /* 1 if RTX is an insn that has been deleted. */
1317 #define INSN_DELETED_P(RTX) \
1318 (RTL_INSN_CHAIN_FLAG_CHECK ("INSN_DELETED_P", (RTX))->volatil)
1319
1320 /* 1 if JUMP RTX is a crossing jump. */
1321 #define CROSSING_JUMP_P(RTX) \
1322 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1323
1324 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1325 TREE_READONLY. */
1326 #define RTL_CONST_CALL_P(RTX) \
1327 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1328
1329 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1330 DECL_PURE_P. */
1331 #define RTL_PURE_CALL_P(RTX) \
1332 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1333
1334 /* 1 if RTX is a call to a const or pure function. */
1335 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1336 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1337
1338 /* 1 if RTX is a call to a looping const or pure function. Built from
1339 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1340 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1341 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1342
1343 /* 1 if RTX is a call_insn for a sibling call. */
1344 #define SIBLING_CALL_P(RTX) \
1345 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1346
1347 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1348 #define INSN_ANNULLED_BRANCH_P(RTX) \
1349 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1350
1351 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1352 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1353 executed if the branch is taken. For annulled branches with this bit
1354 clear, the insn should be executed only if the branch is not taken. */
1355 #define INSN_FROM_TARGET_P(RTX) \
1356 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1357 CALL_INSN)->in_struct)
1358
1359 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1360 See the comments for ADDR_DIFF_VEC in rtl.def. */
1361 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1362
1363 /* In a VALUE, the value cselib has assigned to RTX.
1364 This is a "struct cselib_val", see cselib.h. */
1365 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1366
1367 /* Holds a list of notes on what this insn does to various REGs.
1368 It is a chain of EXPR_LIST rtx's, where the second operand is the
1369 chain pointer and the first operand is the REG being described.
1370 The mode field of the EXPR_LIST contains not a real machine mode
1371 but a value from enum reg_note. */
1372 #define REG_NOTES(INSN) XEXP(INSN, 6)
1373
1374 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1375 question. */
1376 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1377
1378 enum reg_note
1379 {
1380 #define DEF_REG_NOTE(NAME) NAME,
1381 #include "reg-notes.def"
1382 #undef DEF_REG_NOTE
1383 REG_NOTE_MAX
1384 };
1385
1386 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1387 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1388 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1389 PUT_MODE (LINK, (enum machine_mode) (KIND))
1390
1391 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1392
1393 extern const char * const reg_note_name[];
1394 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1395
1396 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1397 USE and CLOBBER expressions.
1398 USE expressions list the registers filled with arguments that
1399 are passed to the function.
1400 CLOBBER expressions document the registers explicitly clobbered
1401 by this CALL_INSN.
1402 Pseudo registers can not be mentioned in this list. */
1403 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1404
1405 /* The label-number of a code-label. The assembler label
1406 is made from `L' and the label-number printed in decimal.
1407 Label numbers are unique in a compilation. */
1408 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1409
1410 /* In a NOTE that is a line number, this is a string for the file name that the
1411 line is in. We use the same field to record block numbers temporarily in
1412 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1413 between ints and pointers if we use a different macro for the block number.)
1414 */
1415
1416 /* Opaque data. */
1417 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1418 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1419 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1420 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1421 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1422 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1423 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1424 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1425 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1426
1427 /* In a NOTE that is a line number, this is the line number.
1428 Other kinds of NOTEs are identified by negative numbers here. */
1429 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1430
1431 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1432 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1433 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1434
1435 /* Variable declaration and the location of a variable. */
1436 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1437 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1438
1439 /* Initialization status of the variable in the location. Status
1440 can be unknown, uninitialized or initialized. See enumeration
1441 type below. */
1442 #define PAT_VAR_LOCATION_STATUS(PAT) \
1443 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1444 ->u2.var_location_status)
1445
1446 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1447 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1448 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1449 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1450 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1451 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1452 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1453
1454 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1455 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1456
1457 /* Accessors for a tree-expanded var location debug insn. */
1458 #define INSN_VAR_LOCATION_DECL(INSN) \
1459 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1460 #define INSN_VAR_LOCATION_LOC(INSN) \
1461 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1462 #define INSN_VAR_LOCATION_STATUS(INSN) \
1463 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1464
1465 /* Expand to the RTL that denotes an unknown variable location in a
1466 DEBUG_INSN. */
1467 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1468
1469 /* Determine whether X is such an unknown location. */
1470 #define VAR_LOC_UNKNOWN_P(X) \
1471 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1472
1473 /* 1 if RTX is emitted after a call, but it should take effect before
1474 the call returns. */
1475 #define NOTE_DURING_CALL_P(RTX) \
1476 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1477
1478 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1479 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1480
1481 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1482 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1483
1484 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1485 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1486
1487 /* Codes that appear in the NOTE_KIND field for kinds of notes
1488 that are not line numbers. These codes are all negative.
1489
1490 Notice that we do not try to use zero here for any of
1491 the special note codes because sometimes the source line
1492 actually can be zero! This happens (for example) when we
1493 are generating code for the per-translation-unit constructor
1494 and destructor routines for some C++ translation unit. */
1495
1496 enum insn_note
1497 {
1498 #define DEF_INSN_NOTE(NAME) NAME,
1499 #include "insn-notes.def"
1500 #undef DEF_INSN_NOTE
1501
1502 NOTE_INSN_MAX
1503 };
1504
1505 /* Names for NOTE insn's other than line numbers. */
1506
1507 extern const char * const note_insn_name[NOTE_INSN_MAX];
1508 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1509 (note_insn_name[(NOTE_CODE)])
1510
1511 /* The name of a label, in case it corresponds to an explicit label
1512 in the input source code. */
1513 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1514
1515 /* In jump.c, each label contains a count of the number
1516 of LABEL_REFs that point at it, so unused labels can be deleted. */
1517 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1518
1519 /* Labels carry a two-bit field composed of the ->jump and ->call
1520 bits. This field indicates whether the label is an alternate
1521 entry point, and if so, what kind. */
1522 enum label_kind
1523 {
1524 LABEL_NORMAL = 0, /* ordinary label */
1525 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1526 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1527 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1528 };
1529
1530 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1531
1532 /* Retrieve the kind of LABEL. */
1533 #define LABEL_KIND(LABEL) __extension__ \
1534 ({ __typeof (LABEL) const _label = (LABEL); \
1535 if (! LABEL_P (_label)) \
1536 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1537 __FUNCTION__); \
1538 (enum label_kind) ((_label->jump << 1) | _label->call); })
1539
1540 /* Set the kind of LABEL. */
1541 #define SET_LABEL_KIND(LABEL, KIND) do { \
1542 __typeof (LABEL) const _label = (LABEL); \
1543 const unsigned int _kind = (KIND); \
1544 if (! LABEL_P (_label)) \
1545 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1546 __FUNCTION__); \
1547 _label->jump = ((_kind >> 1) & 1); \
1548 _label->call = (_kind & 1); \
1549 } while (0)
1550
1551 #else
1552
1553 /* Retrieve the kind of LABEL. */
1554 #define LABEL_KIND(LABEL) \
1555 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1556
1557 /* Set the kind of LABEL. */
1558 #define SET_LABEL_KIND(LABEL, KIND) do { \
1559 rtx const _label = (LABEL); \
1560 const unsigned int _kind = (KIND); \
1561 _label->jump = ((_kind >> 1) & 1); \
1562 _label->call = (_kind & 1); \
1563 } while (0)
1564
1565 #endif /* rtl flag checking */
1566
1567 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1568
1569 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1570 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1571 be decremented and possibly the label can be deleted. */
1572 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1573
1574 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1575 goes through all the LABEL_REFs that jump to that label. The chain
1576 eventually winds up at the CODE_LABEL: it is circular. */
1577 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1578 \f
1579 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1580 be used on RHS. Use SET_REGNO to change the value. */
1581 #define REGNO(RTX) (rhs_regno(RTX))
1582 #define SET_REGNO(RTX,N) \
1583 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1584 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1585
1586 /* ORIGINAL_REGNO holds the number the register originally had; for a
1587 pseudo register turned into a hard reg this will hold the old pseudo
1588 register number. */
1589 #define ORIGINAL_REGNO(RTX) \
1590 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1591
1592 /* Force the REGNO macro to only be used on the lhs. */
1593 static inline unsigned int
1594 rhs_regno (const_rtx x)
1595 {
1596 return XCUINT (x, 0, REG);
1597 }
1598
1599
1600 /* 1 if RTX is a reg or parallel that is the current function's return
1601 value. */
1602 #define REG_FUNCTION_VALUE_P(RTX) \
1603 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1604
1605 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1606 #define REG_USERVAR_P(RTX) \
1607 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1608
1609 /* 1 if RTX is a reg that holds a pointer value. */
1610 #define REG_POINTER(RTX) \
1611 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1612
1613 /* 1 if RTX is a mem that holds a pointer value. */
1614 #define MEM_POINTER(RTX) \
1615 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1616
1617 /* 1 if the given register REG corresponds to a hard register. */
1618 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1619
1620 /* 1 if the given register number REG_NO corresponds to a hard register. */
1621 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1622
1623 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1624 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1625 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1626
1627 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1628 elements actually needed to represent the constant.
1629 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1630 significant HOST_WIDE_INT. */
1631 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1632 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1633 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1634
1635 /* For a CONST_DOUBLE:
1636 #if TARGET_SUPPORTS_WIDE_INT == 0
1637 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1638 low-order word and ..._HIGH the high-order.
1639 #endif
1640 For a float, there is a REAL_VALUE_TYPE structure, and
1641 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1642 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1643 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1644 #define CONST_DOUBLE_REAL_VALUE(r) \
1645 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1646
1647 #define CONST_FIXED_VALUE(r) \
1648 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1649 #define CONST_FIXED_VALUE_HIGH(r) \
1650 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1651 #define CONST_FIXED_VALUE_LOW(r) \
1652 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1653
1654 /* For a CONST_VECTOR, return element #n. */
1655 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1656
1657 /* For a CONST_VECTOR, return the number of elements in a vector. */
1658 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1659
1660 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1661 SUBREG_BYTE extracts the byte-number. */
1662
1663 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1664 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1665
1666 /* in rtlanal.c */
1667 /* Return the right cost to give to an operation
1668 to make the cost of the corresponding register-to-register instruction
1669 N times that of a fast register-to-register instruction. */
1670 #define COSTS_N_INSNS(N) ((N) * 4)
1671
1672 /* Maximum cost of an rtl expression. This value has the special meaning
1673 not to use an rtx with this cost under any circumstances. */
1674 #define MAX_COST INT_MAX
1675
1676 /* A structure to hold all available cost information about an rtl
1677 expression. */
1678 struct full_rtx_costs
1679 {
1680 int speed;
1681 int size;
1682 };
1683
1684 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1685 static inline void
1686 init_costs_to_max (struct full_rtx_costs *c)
1687 {
1688 c->speed = MAX_COST;
1689 c->size = MAX_COST;
1690 }
1691
1692 /* Initialize a full_rtx_costs structure C to zero cost. */
1693 static inline void
1694 init_costs_to_zero (struct full_rtx_costs *c)
1695 {
1696 c->speed = 0;
1697 c->size = 0;
1698 }
1699
1700 /* Compare two full_rtx_costs structures A and B, returning true
1701 if A < B when optimizing for speed. */
1702 static inline bool
1703 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1704 bool speed)
1705 {
1706 if (speed)
1707 return (a->speed < b->speed
1708 || (a->speed == b->speed && a->size < b->size));
1709 else
1710 return (a->size < b->size
1711 || (a->size == b->size && a->speed < b->speed));
1712 }
1713
1714 /* Increase both members of the full_rtx_costs structure C by the
1715 cost of N insns. */
1716 static inline void
1717 costs_add_n_insns (struct full_rtx_costs *c, int n)
1718 {
1719 c->speed += COSTS_N_INSNS (n);
1720 c->size += COSTS_N_INSNS (n);
1721 }
1722
1723 /* Information about an address. This structure is supposed to be able
1724 to represent all supported target addresses. Please extend it if it
1725 is not yet general enough. */
1726 struct address_info {
1727 /* The mode of the value being addressed, or VOIDmode if this is
1728 a load-address operation with no known address mode. */
1729 enum machine_mode mode;
1730
1731 /* The address space. */
1732 addr_space_t as;
1733
1734 /* A pointer to the top-level address. */
1735 rtx *outer;
1736
1737 /* A pointer to the inner address, after all address mutations
1738 have been stripped from the top-level address. It can be one
1739 of the following:
1740
1741 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1742
1743 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1744 points to the step value, depending on whether the step is variable
1745 or constant respectively. SEGMENT is null.
1746
1747 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1748 with null fields evaluating to 0. */
1749 rtx *inner;
1750
1751 /* Components that make up *INNER. Each one may be null or nonnull.
1752 When nonnull, their meanings are as follows:
1753
1754 - *SEGMENT is the "segment" of memory to which the address refers.
1755 This value is entirely target-specific and is only called a "segment"
1756 because that's its most typical use. It contains exactly one UNSPEC,
1757 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1758 reloading.
1759
1760 - *BASE is a variable expression representing a base address.
1761 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1762
1763 - *INDEX is a variable expression representing an index value.
1764 It may be a scaled expression, such as a MULT. It has exactly
1765 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1766
1767 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1768 unmutated RTX_CONST_OBJ. */
1769 rtx *segment;
1770 rtx *base;
1771 rtx *index;
1772 rtx *disp;
1773
1774 rtx *segment_term;
1775 rtx *base_term;
1776 rtx *index_term;
1777 rtx *disp_term;
1778
1779 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1780 of BASE_TERM, otherwise it is null. */
1781 rtx *base_term2;
1782
1783 /* ADDRESS if this structure describes an address operand, MEM if
1784 it describes a MEM address. */
1785 enum rtx_code addr_outer_code;
1786
1787 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1788 enum rtx_code base_outer_code;
1789
1790 /* True if this is an RTX_AUTOINC address. */
1791 bool autoinc_p;
1792 };
1793
1794 /* This is used to bundle an rtx and a mode together so that the pair
1795 can be used with the wi:: routines. If we ever put modes into rtx
1796 integer constants, this should go away and then just pass an rtx in. */
1797 typedef std::pair <rtx, enum machine_mode> rtx_mode_t;
1798
1799 namespace wi
1800 {
1801 template <>
1802 struct int_traits <rtx_mode_t>
1803 {
1804 static const enum precision_type precision_type = VAR_PRECISION;
1805 static const bool host_dependent_precision = false;
1806 /* This ought to be true, except for the special case that BImode
1807 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1808 static const bool is_sign_extended = false;
1809 static unsigned int get_precision (const rtx_mode_t &);
1810 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1811 const rtx_mode_t &);
1812 };
1813 }
1814
1815 inline unsigned int
1816 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1817 {
1818 return GET_MODE_PRECISION (x.second);
1819 }
1820
1821 inline wi::storage_ref
1822 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1823 unsigned int precision,
1824 const rtx_mode_t &x)
1825 {
1826 gcc_checking_assert (precision == get_precision (x));
1827 switch (GET_CODE (x.first))
1828 {
1829 case CONST_INT:
1830 if (precision < HOST_BITS_PER_WIDE_INT)
1831 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
1832 targets is 1 rather than -1. */
1833 gcc_checking_assert (INTVAL (x.first)
1834 == sext_hwi (INTVAL (x.first), precision)
1835 || (x.second == BImode && INTVAL (x.first) == 1));
1836
1837 return wi::storage_ref (&INTVAL (x.first), 1, precision);
1838
1839 case CONST_WIDE_INT:
1840 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
1841 CONST_WIDE_INT_NUNITS (x.first), precision);
1842
1843 #if TARGET_SUPPORTS_WIDE_INT == 0
1844 case CONST_DOUBLE:
1845 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
1846 #endif
1847
1848 default:
1849 gcc_unreachable ();
1850 }
1851 }
1852
1853 namespace wi
1854 {
1855 hwi_with_prec shwi (HOST_WIDE_INT, enum machine_mode mode);
1856 wide_int min_value (enum machine_mode, signop);
1857 wide_int max_value (enum machine_mode, signop);
1858 }
1859
1860 inline wi::hwi_with_prec
1861 wi::shwi (HOST_WIDE_INT val, enum machine_mode mode)
1862 {
1863 return shwi (val, GET_MODE_PRECISION (mode));
1864 }
1865
1866 /* Produce the smallest number that is represented in MODE. The precision
1867 is taken from MODE and the sign from SGN. */
1868 inline wide_int
1869 wi::min_value (enum machine_mode mode, signop sgn)
1870 {
1871 return min_value (GET_MODE_PRECISION (mode), sgn);
1872 }
1873
1874 /* Produce the largest number that is represented in MODE. The precision
1875 is taken from MODE and the sign from SGN. */
1876 inline wide_int
1877 wi::max_value (enum machine_mode mode, signop sgn)
1878 {
1879 return max_value (GET_MODE_PRECISION (mode), sgn);
1880 }
1881
1882 extern void init_rtlanal (void);
1883 extern int rtx_cost (rtx, enum rtx_code, int, bool);
1884 extern int address_cost (rtx, enum machine_mode, addr_space_t, bool);
1885 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
1886 struct full_rtx_costs *);
1887 extern unsigned int subreg_lsb (const_rtx);
1888 extern unsigned int subreg_lsb_1 (enum machine_mode, enum machine_mode,
1889 unsigned int);
1890 extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode,
1891 unsigned int, enum machine_mode);
1892 extern bool subreg_offset_representable_p (unsigned int, enum machine_mode,
1893 unsigned int, enum machine_mode);
1894 extern unsigned int subreg_regno (const_rtx);
1895 extern int simplify_subreg_regno (unsigned int, enum machine_mode,
1896 unsigned int, enum machine_mode);
1897 extern unsigned int subreg_nregs (const_rtx);
1898 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
1899 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, enum machine_mode);
1900 extern unsigned int num_sign_bit_copies (const_rtx, enum machine_mode);
1901 extern bool constant_pool_constant_p (rtx);
1902 extern bool truncated_to_mode (enum machine_mode, const_rtx);
1903 extern int low_bitmask_len (enum machine_mode, unsigned HOST_WIDE_INT);
1904 extern void split_double (rtx, rtx *, rtx *);
1905 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
1906 extern void decompose_address (struct address_info *, rtx *,
1907 enum machine_mode, addr_space_t, enum rtx_code);
1908 extern void decompose_lea_address (struct address_info *, rtx *);
1909 extern void decompose_mem_address (struct address_info *, rtx);
1910 extern void update_address (struct address_info *);
1911 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
1912 extern enum rtx_code get_index_code (const struct address_info *);
1913
1914 #ifndef GENERATOR_FILE
1915 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
1916 rather than size. */
1917
1918 static inline int
1919 set_rtx_cost (rtx x, bool speed_p)
1920 {
1921 return rtx_cost (x, INSN, 4, speed_p);
1922 }
1923
1924 /* Like set_rtx_cost, but return both the speed and size costs in C. */
1925
1926 static inline void
1927 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
1928 {
1929 get_full_rtx_cost (x, INSN, 4, c);
1930 }
1931
1932 /* Return the cost of moving X into a register, relative to the cost
1933 of a register move. SPEED_P is true if optimizing for speed rather
1934 than size. */
1935
1936 static inline int
1937 set_src_cost (rtx x, bool speed_p)
1938 {
1939 return rtx_cost (x, SET, 1, speed_p);
1940 }
1941
1942 /* Like set_src_cost, but return both the speed and size costs in C. */
1943
1944 static inline void
1945 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
1946 {
1947 get_full_rtx_cost (x, SET, 1, c);
1948 }
1949 #endif
1950
1951 /* 1 if RTX is a subreg containing a reg that is already known to be
1952 sign- or zero-extended from the mode of the subreg to the mode of
1953 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
1954 extension.
1955
1956 When used as a LHS, is means that this extension must be done
1957 when assigning to SUBREG_REG. */
1958
1959 #define SUBREG_PROMOTED_VAR_P(RTX) \
1960 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
1961
1962 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
1963 this gives the necessary extensions:
1964 0 - signed (SPR_SIGNED)
1965 1 - normal unsigned (SPR_UNSIGNED)
1966 2 - value is both sign and unsign extended for mode
1967 (SPR_SIGNED_AND_UNSIGNED).
1968 -1 - pointer unsigned, which most often can be handled like unsigned
1969 extension, except for generating instructions where we need to
1970 emit special code (ptr_extend insns) on some architectures
1971 (SPR_POINTER). */
1972
1973 const int SRP_POINTER = -1;
1974 const int SRP_SIGNED = 0;
1975 const int SRP_UNSIGNED = 1;
1976 const int SRP_SIGNED_AND_UNSIGNED = 2;
1977
1978 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
1979 #define SUBREG_PROMOTED_SET(RTX, VAL) \
1980 do { \
1981 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
1982 (RTX), SUBREG); \
1983 switch (VAL) \
1984 { \
1985 case SRP_POINTER: \
1986 _rtx->volatil = 0; \
1987 _rtx->unchanging = 0; \
1988 break; \
1989 case SRP_SIGNED: \
1990 _rtx->volatil = 0; \
1991 _rtx->unchanging = 1; \
1992 break; \
1993 case SRP_UNSIGNED: \
1994 _rtx->volatil = 1; \
1995 _rtx->unchanging = 0; \
1996 break; \
1997 case SRP_SIGNED_AND_UNSIGNED: \
1998 _rtx->volatil = 1; \
1999 _rtx->unchanging = 1; \
2000 break; \
2001 } \
2002 } while (0)
2003
2004 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2005 including SRP_SIGNED_AND_UNSIGNED if promoted for
2006 both signed and unsigned. */
2007 #define SUBREG_PROMOTED_GET(RTX) \
2008 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2009 + (RTX)->unchanging - 1)
2010
2011 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2012 #define SUBREG_PROMOTED_SIGN(RTX) \
2013 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2014 : (RTX)->unchanging - 1)
2015
2016 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2017 for SIGNED type. */
2018 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2019 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2020
2021 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2022 for UNSIGNED type. */
2023 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2024 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2025
2026 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2027 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2028 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2029 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2030 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2031
2032 /* True if the subreg was generated by LRA for reload insns. Such
2033 subregs are valid only during LRA. */
2034 #define LRA_SUBREG_P(RTX) \
2035 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2036
2037 /* Access various components of an ASM_OPERANDS rtx. */
2038
2039 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2040 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2041 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2042 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2043 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2044 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2045 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2046 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2047 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2048 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2049 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2050 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2051 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2052 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2053 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2054 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2055 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2056 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2057
2058 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2059 #define MEM_READONLY_P(RTX) \
2060 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2061
2062 /* 1 if RTX is a mem and we should keep the alias set for this mem
2063 unchanged when we access a component. Set to 1, or example, when we
2064 are already in a non-addressable component of an aggregate. */
2065 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2066 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2067
2068 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2069 #define MEM_VOLATILE_P(RTX) \
2070 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2071 ASM_INPUT)->volatil)
2072
2073 /* 1 if RTX is a mem that cannot trap. */
2074 #define MEM_NOTRAP_P(RTX) \
2075 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2076
2077 /* The memory attribute block. We provide access macros for each value
2078 in the block and provide defaults if none specified. */
2079 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2080
2081 /* The register attribute block. We provide access macros for each value
2082 in the block and provide defaults if none specified. */
2083 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2084
2085 #ifndef GENERATOR_FILE
2086 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2087 set, and may alias anything. Otherwise, the MEM can only alias
2088 MEMs in a conflicting alias set. This value is set in a
2089 language-dependent manner in the front-end, and should not be
2090 altered in the back-end. These set numbers are tested with
2091 alias_sets_conflict_p. */
2092 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2093
2094 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2095 refer to part of a DECL. It may also be a COMPONENT_REF. */
2096 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2097
2098 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2099 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2100
2101 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2102 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2103
2104 /* For a MEM rtx, the address space. */
2105 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2106
2107 /* For a MEM rtx, true if its MEM_SIZE is known. */
2108 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2109
2110 /* For a MEM rtx, the size in bytes of the MEM. */
2111 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2112
2113 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2114 mode as a default when STRICT_ALIGNMENT, but not if not. */
2115 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2116 #else
2117 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2118 #endif
2119
2120 /* For a REG rtx, the decl it is known to refer to, if it is known to
2121 refer to part of a DECL. */
2122 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2123
2124 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2125 HOST_WIDE_INT. */
2126 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2127
2128 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2129 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2130 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2131 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2132 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2133 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2134 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2135 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2136
2137 /* 1 if RTX is a label_ref for a nonlocal label. */
2138 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2139 REG_LABEL_TARGET note. */
2140 #define LABEL_REF_NONLOCAL_P(RTX) \
2141 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2142
2143 /* 1 if RTX is a code_label that should always be considered to be needed. */
2144 #define LABEL_PRESERVE_P(RTX) \
2145 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2146
2147 /* During sched, 1 if RTX is an insn that must be scheduled together
2148 with the preceding insn. */
2149 #define SCHED_GROUP_P(RTX) \
2150 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2151 JUMP_INSN, CALL_INSN)->in_struct)
2152
2153 /* For a SET rtx, SET_DEST is the place that is set
2154 and SET_SRC is the value it is set to. */
2155 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2156 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2157 #define SET_IS_RETURN_P(RTX) \
2158 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2159
2160 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2161 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2162 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2163
2164 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2165 conditionally executing the code on, COND_EXEC_CODE is the code
2166 to execute if the condition is true. */
2167 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2168 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2169
2170 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2171 constants pool. */
2172 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2173 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2174
2175 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2176 tree constant pool. This information is private to varasm.c. */
2177 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2178 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2179 (RTX), SYMBOL_REF)->frame_related)
2180
2181 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2182 #define SYMBOL_REF_FLAG(RTX) \
2183 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2184
2185 /* 1 if RTX is a symbol_ref that has been the library function in
2186 emit_library_call. */
2187 #define SYMBOL_REF_USED(RTX) \
2188 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2189
2190 /* 1 if RTX is a symbol_ref for a weak symbol. */
2191 #define SYMBOL_REF_WEAK(RTX) \
2192 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2193
2194 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2195 SYMBOL_REF_CONSTANT. */
2196 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2197
2198 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2199 pool symbol. */
2200 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2201 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2202
2203 /* The tree (decl or constant) associated with the symbol, or null. */
2204 #define SYMBOL_REF_DECL(RTX) \
2205 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2206
2207 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2208 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2209 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2210
2211 /* The rtx constant pool entry for a symbol, or null. */
2212 #define SYMBOL_REF_CONSTANT(RTX) \
2213 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2214
2215 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2216 information derivable from the tree decl associated with this symbol.
2217 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2218 decl. In some cases this is a bug. But beyond that, it's nice to cache
2219 this information to avoid recomputing it. Finally, this allows space for
2220 the target to store more than one bit of information, as with
2221 SYMBOL_REF_FLAG. */
2222 #define SYMBOL_REF_FLAGS(RTX) \
2223 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2224 ->u2.symbol_ref_flags)
2225
2226 /* These flags are common enough to be defined for all targets. They
2227 are computed by the default version of targetm.encode_section_info. */
2228
2229 /* Set if this symbol is a function. */
2230 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2231 #define SYMBOL_REF_FUNCTION_P(RTX) \
2232 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2233 /* Set if targetm.binds_local_p is true. */
2234 #define SYMBOL_FLAG_LOCAL (1 << 1)
2235 #define SYMBOL_REF_LOCAL_P(RTX) \
2236 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2237 /* Set if targetm.in_small_data_p is true. */
2238 #define SYMBOL_FLAG_SMALL (1 << 2)
2239 #define SYMBOL_REF_SMALL_P(RTX) \
2240 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2241 /* The three-bit field at [5:3] is true for TLS variables; use
2242 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2243 #define SYMBOL_FLAG_TLS_SHIFT 3
2244 #define SYMBOL_REF_TLS_MODEL(RTX) \
2245 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2246 /* Set if this symbol is not defined in this translation unit. */
2247 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2248 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2249 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2250 /* Set if this symbol has a block_symbol structure associated with it. */
2251 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2252 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2253 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2254 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2255 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2256 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2257 #define SYMBOL_REF_ANCHOR_P(RTX) \
2258 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2259
2260 /* Subsequent bits are available for the target to use. */
2261 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2262 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2263
2264 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2265 structure to which the symbol belongs, or NULL if it has not been
2266 assigned a block. */
2267 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2268
2269 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2270 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2271 RTX has not yet been assigned to a block, or it has not been given an
2272 offset within that block. */
2273 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2274
2275 /* True if RTX is flagged to be a scheduling barrier. */
2276 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2277 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2278
2279 /* Indicate whether the machine has any sort of auto increment addressing.
2280 If not, we can avoid checking for REG_INC notes. */
2281
2282 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2283 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2284 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2285 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2286 #define AUTO_INC_DEC
2287 #endif
2288
2289 /* Define a macro to look for REG_INC notes,
2290 but save time on machines where they never exist. */
2291
2292 #ifdef AUTO_INC_DEC
2293 #define FIND_REG_INC_NOTE(INSN, REG) \
2294 ((REG) != NULL_RTX && REG_P ((REG)) \
2295 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2296 : find_reg_note ((INSN), REG_INC, (REG)))
2297 #else
2298 #define FIND_REG_INC_NOTE(INSN, REG) 0
2299 #endif
2300
2301 #ifndef HAVE_PRE_INCREMENT
2302 #define HAVE_PRE_INCREMENT 0
2303 #endif
2304
2305 #ifndef HAVE_PRE_DECREMENT
2306 #define HAVE_PRE_DECREMENT 0
2307 #endif
2308
2309 #ifndef HAVE_POST_INCREMENT
2310 #define HAVE_POST_INCREMENT 0
2311 #endif
2312
2313 #ifndef HAVE_POST_DECREMENT
2314 #define HAVE_POST_DECREMENT 0
2315 #endif
2316
2317 #ifndef HAVE_POST_MODIFY_DISP
2318 #define HAVE_POST_MODIFY_DISP 0
2319 #endif
2320
2321 #ifndef HAVE_POST_MODIFY_REG
2322 #define HAVE_POST_MODIFY_REG 0
2323 #endif
2324
2325 #ifndef HAVE_PRE_MODIFY_DISP
2326 #define HAVE_PRE_MODIFY_DISP 0
2327 #endif
2328
2329 #ifndef HAVE_PRE_MODIFY_REG
2330 #define HAVE_PRE_MODIFY_REG 0
2331 #endif
2332
2333
2334 /* Some architectures do not have complete pre/post increment/decrement
2335 instruction sets, or only move some modes efficiently. These macros
2336 allow us to tune autoincrement generation. */
2337
2338 #ifndef USE_LOAD_POST_INCREMENT
2339 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2340 #endif
2341
2342 #ifndef USE_LOAD_POST_DECREMENT
2343 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2344 #endif
2345
2346 #ifndef USE_LOAD_PRE_INCREMENT
2347 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2348 #endif
2349
2350 #ifndef USE_LOAD_PRE_DECREMENT
2351 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2352 #endif
2353
2354 #ifndef USE_STORE_POST_INCREMENT
2355 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2356 #endif
2357
2358 #ifndef USE_STORE_POST_DECREMENT
2359 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2360 #endif
2361
2362 #ifndef USE_STORE_PRE_INCREMENT
2363 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2364 #endif
2365
2366 #ifndef USE_STORE_PRE_DECREMENT
2367 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2368 #endif
2369 \f
2370 /* Nonzero when we are generating CONCATs. */
2371 extern int generating_concat_p;
2372
2373 /* Nonzero when we are expanding trees to RTL. */
2374 extern int currently_expanding_to_rtl;
2375
2376 /* Generally useful functions. */
2377
2378 /* In explow.c */
2379 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode);
2380 extern rtx plus_constant (enum machine_mode, rtx, HOST_WIDE_INT, bool = false);
2381
2382 /* In rtl.c */
2383 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2384 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2385 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2386 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2387 #define const_wide_int_alloc(NWORDS) \
2388 rtx_alloc_v (CONST_WIDE_INT, \
2389 (sizeof (struct hwivec_def) \
2390 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2391
2392 extern rtvec rtvec_alloc (int);
2393 extern rtvec shallow_copy_rtvec (rtvec);
2394 extern bool shared_const_p (const_rtx);
2395 extern rtx copy_rtx (rtx);
2396 extern void dump_rtx_statistics (void);
2397
2398 /* In emit-rtl.c */
2399 extern rtx copy_rtx_if_shared (rtx);
2400
2401 /* In rtl.c */
2402 extern unsigned int rtx_size (const_rtx);
2403 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2404 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2405 extern int rtx_equal_p (const_rtx, const_rtx);
2406
2407 /* In emit-rtl.c */
2408 extern rtvec gen_rtvec_v (int, rtx *);
2409 extern rtx gen_reg_rtx (enum machine_mode);
2410 extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int);
2411 extern rtx gen_reg_rtx_offset (rtx, enum machine_mode, int);
2412 extern rtx gen_reg_rtx_and_attrs (rtx);
2413 extern rtx_code_label *gen_label_rtx (void);
2414 extern rtx gen_lowpart_common (enum machine_mode, rtx);
2415
2416 /* In cse.c */
2417 extern rtx gen_lowpart_if_possible (enum machine_mode, rtx);
2418
2419 /* In emit-rtl.c */
2420 extern rtx gen_highpart (enum machine_mode, rtx);
2421 extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx);
2422 extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode);
2423
2424 /* In emit-rtl.c */
2425 extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode);
2426 extern bool paradoxical_subreg_p (const_rtx);
2427 extern int subreg_lowpart_p (const_rtx);
2428 extern unsigned int subreg_lowpart_offset (enum machine_mode,
2429 enum machine_mode);
2430 extern unsigned int subreg_highpart_offset (enum machine_mode,
2431 enum machine_mode);
2432 extern int byte_lowpart_offset (enum machine_mode, enum machine_mode);
2433 extern rtx make_safe_from (rtx, rtx);
2434 extern rtx convert_memory_address_addr_space (enum machine_mode, rtx,
2435 addr_space_t);
2436 #define convert_memory_address(to_mode,x) \
2437 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2438 extern const char *get_insn_name (int);
2439 extern rtx_insn *get_last_insn_anywhere (void);
2440 extern rtx get_first_nonnote_insn (void);
2441 extern rtx get_last_nonnote_insn (void);
2442 extern void start_sequence (void);
2443 extern void push_to_sequence (rtx_insn *);
2444 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2445 extern void end_sequence (void);
2446 #if TARGET_SUPPORTS_WIDE_INT == 0
2447 extern double_int rtx_to_double_int (const_rtx);
2448 #endif
2449 extern void cwi_output_hex (FILE *, const_rtx);
2450 #ifndef GENERATOR_FILE
2451 extern rtx immed_wide_int_const (const wide_int_ref &, enum machine_mode);
2452 #endif
2453 #if TARGET_SUPPORTS_WIDE_INT == 0
2454 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2455 enum machine_mode);
2456 #endif
2457
2458 /* In loop-iv.c */
2459
2460 extern rtx lowpart_subreg (enum machine_mode, rtx, enum machine_mode);
2461
2462 /* In varasm.c */
2463 extern rtx force_const_mem (enum machine_mode, rtx);
2464
2465 /* In varasm.c */
2466
2467 struct function;
2468 extern rtx get_pool_constant (rtx);
2469 extern rtx get_pool_constant_mark (rtx, bool *);
2470 extern enum machine_mode get_pool_mode (const_rtx);
2471 extern rtx simplify_subtraction (rtx);
2472 extern void decide_function_section (tree);
2473
2474 /* In function.c */
2475 extern rtx assign_stack_local (enum machine_mode, HOST_WIDE_INT, int);
2476 #define ASLK_REDUCE_ALIGN 1
2477 #define ASLK_RECORD_PAD 2
2478 extern rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, int);
2479 extern rtx assign_stack_temp (enum machine_mode, HOST_WIDE_INT);
2480 extern rtx assign_stack_temp_for_type (enum machine_mode, HOST_WIDE_INT, tree);
2481 extern rtx assign_temp (tree, int, int);
2482
2483 /* In emit-rtl.c */
2484 extern rtx_insn *emit_insn_before (rtx, rtx);
2485 extern rtx_insn *emit_insn_before_noloc (rtx, rtx, basic_block);
2486 extern rtx_insn *emit_insn_before_setloc (rtx, rtx, int);
2487 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2488 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx);
2489 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx, int);
2490 extern rtx_insn *emit_call_insn_before (rtx, rtx);
2491 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx);
2492 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx, int);
2493 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2494 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2495 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2496 extern rtx_barrier *emit_barrier_before (rtx);
2497 extern rtx_insn *emit_label_before (rtx, rtx);
2498 extern rtx_note *emit_note_before (enum insn_note, rtx);
2499 extern rtx_insn *emit_insn_after (rtx, rtx);
2500 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2501 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2502 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2503 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2504 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2505 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2506 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2507 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2508 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2509 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2510 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2511 extern rtx_barrier *emit_barrier_after (rtx);
2512 extern rtx_insn *emit_label_after (rtx, rtx);
2513 extern rtx_note *emit_note_after (enum insn_note, rtx);
2514 extern rtx_insn *emit_insn (rtx);
2515 extern rtx_insn *emit_debug_insn (rtx);
2516 extern rtx_insn *emit_jump_insn (rtx);
2517 extern rtx_insn *emit_call_insn (rtx);
2518 extern rtx_insn *emit_label (rtx);
2519 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2520 extern rtx_barrier *emit_barrier (void);
2521 extern rtx_note *emit_note (enum insn_note);
2522 extern rtx_note *emit_note_copy (rtx_note *);
2523 extern rtx_insn *gen_clobber (rtx);
2524 extern rtx_insn *emit_clobber (rtx);
2525 extern rtx_insn *gen_use (rtx);
2526 extern rtx_insn *emit_use (rtx);
2527 extern rtx_insn *make_insn_raw (rtx);
2528 extern void add_function_usage_to (rtx, rtx);
2529 extern rtx_call_insn *last_call_insn (void);
2530 extern rtx_insn *previous_insn (rtx);
2531 extern rtx_insn *next_insn (rtx);
2532 extern rtx_insn *prev_nonnote_insn (rtx);
2533 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2534 extern rtx_insn *next_nonnote_insn (rtx);
2535 extern rtx_insn *next_nonnote_insn_bb (rtx);
2536 extern rtx_insn *prev_nondebug_insn (rtx);
2537 extern rtx_insn *next_nondebug_insn (rtx);
2538 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2539 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2540 extern rtx_insn *prev_real_insn (rtx);
2541 extern rtx_insn *next_real_insn (rtx);
2542 extern rtx_insn *prev_active_insn (rtx);
2543 extern rtx_insn *next_active_insn (rtx);
2544 extern int active_insn_p (const_rtx);
2545 extern rtx_insn *next_cc0_user (rtx);
2546 extern rtx_insn *prev_cc0_setter (rtx);
2547
2548 /* In emit-rtl.c */
2549 extern int insn_line (const_rtx);
2550 extern const char * insn_file (const_rtx);
2551 extern tree insn_scope (const_rtx);
2552 extern expanded_location insn_location (const_rtx);
2553 extern location_t prologue_location, epilogue_location;
2554
2555 /* In jump.c */
2556 extern enum rtx_code reverse_condition (enum rtx_code);
2557 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2558 extern enum rtx_code swap_condition (enum rtx_code);
2559 extern enum rtx_code unsigned_condition (enum rtx_code);
2560 extern enum rtx_code signed_condition (enum rtx_code);
2561 extern void mark_jump_label (rtx, rtx, int);
2562
2563 /* In jump.c */
2564 extern rtx_insn *delete_related_insns (rtx);
2565
2566 /* In recog.c */
2567 extern rtx *find_constant_term_loc (rtx *);
2568
2569 /* In emit-rtl.c */
2570 extern rtx_insn *try_split (rtx, rtx, int);
2571 extern int split_branch_probability;
2572
2573 /* In unknown file */
2574 extern rtx split_insns (rtx, rtx);
2575
2576 /* In simplify-rtx.c */
2577 extern rtx simplify_const_unary_operation (enum rtx_code, enum machine_mode,
2578 rtx, enum machine_mode);
2579 extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx,
2580 enum machine_mode);
2581 extern rtx simplify_const_binary_operation (enum rtx_code, enum machine_mode,
2582 rtx, rtx);
2583 extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx,
2584 rtx);
2585 extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode,
2586 enum machine_mode, rtx, rtx, rtx);
2587 extern rtx simplify_const_relational_operation (enum rtx_code,
2588 enum machine_mode, rtx, rtx);
2589 extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode,
2590 enum machine_mode, rtx, rtx);
2591 extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
2592 extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx,
2593 enum machine_mode);
2594 extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode,
2595 enum machine_mode, rtx, rtx, rtx);
2596 extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode,
2597 enum machine_mode, rtx, rtx);
2598 extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode,
2599 unsigned int);
2600 extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode,
2601 unsigned int);
2602 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2603 rtx (*fn) (rtx, const_rtx, void *), void *);
2604 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2605 extern rtx simplify_rtx (const_rtx);
2606 extern rtx avoid_constant_pool_reference (rtx);
2607 extern rtx delegitimize_mem_from_attrs (rtx);
2608 extern bool mode_signbit_p (enum machine_mode, const_rtx);
2609 extern bool val_signbit_p (enum machine_mode, unsigned HOST_WIDE_INT);
2610 extern bool val_signbit_known_set_p (enum machine_mode,
2611 unsigned HOST_WIDE_INT);
2612 extern bool val_signbit_known_clear_p (enum machine_mode,
2613 unsigned HOST_WIDE_INT);
2614
2615 /* In reginfo.c */
2616 extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2617 bool);
2618
2619 /* In emit-rtl.c */
2620 extern rtx set_for_reg_notes (rtx);
2621 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2622 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2623 extern void set_insn_deleted (rtx);
2624
2625 /* Functions in rtlanal.c */
2626
2627 /* Single set is implemented as macro for performance reasons. */
2628 #define single_set(I) (INSN_P (I) \
2629 ? (GET_CODE (PATTERN (I)) == SET \
2630 ? PATTERN (I) : single_set_1 (I)) \
2631 : NULL_RTX)
2632 #define single_set_1(I) single_set_2 (I, PATTERN (I))
2633
2634 /* Structure used for passing data to REPLACE_LABEL. */
2635 struct replace_label_data
2636 {
2637 rtx r1;
2638 rtx r2;
2639 bool update_label_nuses;
2640 };
2641
2642 extern enum machine_mode get_address_mode (rtx mem);
2643 extern int rtx_addr_can_trap_p (const_rtx);
2644 extern bool nonzero_address_p (const_rtx);
2645 extern int rtx_unstable_p (const_rtx);
2646 extern bool rtx_varies_p (const_rtx, bool);
2647 extern bool rtx_addr_varies_p (const_rtx, bool);
2648 extern rtx get_call_rtx_from (rtx);
2649 extern HOST_WIDE_INT get_integer_term (const_rtx);
2650 extern rtx get_related_value (const_rtx);
2651 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2652 extern void split_const (rtx, rtx *, rtx *);
2653 extern bool unsigned_reg_p (rtx);
2654 extern int reg_mentioned_p (const_rtx, const_rtx);
2655 extern int count_occurrences (const_rtx, const_rtx, int);
2656 extern int reg_referenced_p (const_rtx, const_rtx);
2657 extern int reg_used_between_p (const_rtx, const_rtx, const_rtx);
2658 extern int reg_set_between_p (const_rtx, const_rtx, const_rtx);
2659 extern int commutative_operand_precedence (rtx);
2660 extern bool swap_commutative_operands_p (rtx, rtx);
2661 extern int modified_between_p (const_rtx, const_rtx, const_rtx);
2662 extern int no_labels_between_p (const_rtx, const_rtx);
2663 extern int modified_in_p (const_rtx, const_rtx);
2664 extern int reg_set_p (const_rtx, const_rtx);
2665 extern rtx single_set_2 (const_rtx, const_rtx);
2666 extern int multiple_sets (const_rtx);
2667 extern int set_noop_p (const_rtx);
2668 extern int noop_move_p (const_rtx);
2669 extern rtx find_last_value (rtx, rtx *, rtx, int);
2670 extern int refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2671 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2672 extern const_rtx set_of (const_rtx, const_rtx);
2673 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2674 extern void record_hard_reg_uses (rtx *, void *);
2675 #ifdef HARD_CONST
2676 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2677 #endif
2678 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2679 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2680 extern int dead_or_set_p (const_rtx, const_rtx);
2681 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2682 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2683 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2684 extern rtx find_reg_equal_equiv_note (const_rtx);
2685 extern rtx find_constant_src (const_rtx);
2686 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2687 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2688 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2689 extern void add_reg_note (rtx, enum reg_note, rtx);
2690 extern void add_int_reg_note (rtx, enum reg_note, int);
2691 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2692 extern void remove_note (rtx, const_rtx);
2693 extern void remove_reg_equal_equiv_notes (rtx);
2694 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2695 extern int side_effects_p (const_rtx);
2696 extern int volatile_refs_p (const_rtx);
2697 extern int volatile_insn_p (const_rtx);
2698 extern int may_trap_p_1 (const_rtx, unsigned);
2699 extern int may_trap_p (const_rtx);
2700 extern int may_trap_or_fault_p (const_rtx);
2701 extern bool can_throw_internal (const_rtx);
2702 extern bool can_throw_external (const_rtx);
2703 extern bool insn_could_throw_p (const_rtx);
2704 extern bool insn_nothrow_p (const_rtx);
2705 extern bool can_nonlocal_goto (const_rtx);
2706 extern void copy_reg_eh_region_note_forward (rtx, rtx, rtx);
2707 extern void copy_reg_eh_region_note_backward (rtx, rtx, rtx);
2708 extern int inequality_comparisons_p (const_rtx);
2709 extern rtx replace_rtx (rtx, rtx, rtx);
2710 extern int replace_label (rtx *, void *);
2711 extern int rtx_referenced_p (rtx, rtx);
2712 extern bool tablejump_p (const_rtx, rtx *, rtx_jump_table_data **);
2713 extern int computed_jump_p (const_rtx);
2714 extern bool tls_referenced_p (rtx);
2715
2716 typedef int (*rtx_function) (rtx *, void *);
2717 extern int for_each_rtx (rtx *, rtx_function, void *);
2718 extern int for_each_rtx_in_insn (rtx_insn **, rtx_function, void *);
2719
2720 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2721 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2722 NULL. The callback is passed the same opaque ARG passed to
2723 for_each_inc_dec. Return zero to continue looking for other
2724 autoinc operations, -1 to skip OP's operands, and any other value
2725 to interrupt the traversal and return that value to the caller of
2726 for_each_inc_dec. */
2727 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2728 rtx srcoff, void *arg);
2729 extern int for_each_inc_dec (rtx_insn **, for_each_inc_dec_fn, void *arg);
2730
2731 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2732 rtx *, rtx *);
2733 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2734 rtx_equal_p_callback_function);
2735
2736 typedef int (*hash_rtx_callback_function) (const_rtx, enum machine_mode, rtx *,
2737 enum machine_mode *);
2738 extern unsigned hash_rtx_cb (const_rtx, enum machine_mode, int *, int *,
2739 bool, hash_rtx_callback_function);
2740
2741 extern rtx regno_use_in (unsigned int, rtx);
2742 extern int auto_inc_p (const_rtx);
2743 extern int in_expr_list_p (const_rtx, const_rtx);
2744 extern void remove_node_from_expr_list (const_rtx, rtx *);
2745 extern int loc_mentioned_in_p (rtx *, const_rtx);
2746 extern rtx_insn *find_first_parameter_load (rtx, rtx);
2747 extern bool keep_with_call_p (const_rtx);
2748 extern bool label_is_jump_target_p (const_rtx, const_rtx);
2749 extern int insn_rtx_cost (rtx, bool);
2750
2751 /* Given an insn and condition, return a canonical description of
2752 the test being made. */
2753 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2754 int, int);
2755
2756 /* Given a JUMP_INSN, return a canonical description of the test
2757 being made. */
2758 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2759
2760 /* Information about a subreg of a hard register. */
2761 struct subreg_info
2762 {
2763 /* Offset of first hard register involved in the subreg. */
2764 int offset;
2765 /* Number of hard registers involved in the subreg. */
2766 int nregs;
2767 /* Whether this subreg can be represented as a hard reg with the new
2768 mode. */
2769 bool representable_p;
2770 };
2771
2772 extern void subreg_get_info (unsigned int, enum machine_mode,
2773 unsigned int, enum machine_mode,
2774 struct subreg_info *);
2775
2776 /* lists.c */
2777
2778 extern void free_EXPR_LIST_list (rtx *);
2779 extern void free_INSN_LIST_list (rtx *);
2780 extern void free_EXPR_LIST_node (rtx);
2781 extern void free_INSN_LIST_node (rtx);
2782 extern rtx alloc_INSN_LIST (rtx, rtx);
2783 extern rtx copy_INSN_LIST (rtx);
2784 extern rtx concat_INSN_LIST (rtx, rtx);
2785 extern rtx alloc_EXPR_LIST (int, rtx, rtx);
2786 extern void remove_free_INSN_LIST_elem (rtx, rtx *);
2787 extern rtx remove_list_elem (rtx, rtx *);
2788 extern rtx remove_free_INSN_LIST_node (rtx *);
2789 extern rtx remove_free_EXPR_LIST_node (rtx *);
2790
2791
2792 /* reginfo.c */
2793
2794 /* Resize reg info. */
2795 extern bool resize_reg_info (void);
2796 /* Free up register info memory. */
2797 extern void free_reg_info (void);
2798 extern void init_subregs_of_mode (void);
2799 extern void finish_subregs_of_mode (void);
2800
2801 /* recog.c */
2802 extern rtx extract_asm_operands (rtx);
2803 extern int asm_noperands (const_rtx);
2804 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2805 enum machine_mode *, location_t *);
2806 extern void get_referenced_operands (const char *, bool *, unsigned int);
2807
2808 extern enum reg_class reg_preferred_class (int);
2809 extern enum reg_class reg_alternate_class (int);
2810 extern enum reg_class reg_allocno_class (int);
2811 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2812 enum reg_class);
2813
2814 extern void split_all_insns (void);
2815 extern unsigned int split_all_insns_noflow (void);
2816
2817 #define MAX_SAVED_CONST_INT 64
2818 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2819
2820 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
2821 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
2822 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
2823 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
2824 extern GTY(()) rtx const_true_rtx;
2825
2826 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
2827
2828 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
2829 same as VOIDmode. */
2830
2831 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
2832
2833 /* Likewise, for the constants 1 and 2 and -1. */
2834
2835 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
2836 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
2837 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
2838
2839 extern GTY(()) rtx pc_rtx;
2840 extern GTY(()) rtx cc0_rtx;
2841 extern GTY(()) rtx ret_rtx;
2842 extern GTY(()) rtx simple_return_rtx;
2843
2844 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
2845 is used to represent the frame pointer. This is because the
2846 hard frame pointer and the automatic variables are separated by an amount
2847 that cannot be determined until after register allocation. We can assume
2848 that in this case ELIMINABLE_REGS will be defined, one action of which
2849 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
2850 #ifndef HARD_FRAME_POINTER_REGNUM
2851 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
2852 #endif
2853
2854 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
2855 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
2856 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
2857 #endif
2858
2859 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
2860 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
2861 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
2862 #endif
2863
2864 /* Index labels for global_rtl. */
2865 enum global_rtl_index
2866 {
2867 GR_STACK_POINTER,
2868 GR_FRAME_POINTER,
2869 /* For register elimination to work properly these hard_frame_pointer_rtx,
2870 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
2871 the same register. */
2872 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2873 GR_ARG_POINTER = GR_FRAME_POINTER,
2874 #endif
2875 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
2876 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
2877 #else
2878 GR_HARD_FRAME_POINTER,
2879 #endif
2880 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2881 #if HARD_FRAME_POINTER_IS_ARG_POINTER
2882 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
2883 #else
2884 GR_ARG_POINTER,
2885 #endif
2886 #endif
2887 GR_VIRTUAL_INCOMING_ARGS,
2888 GR_VIRTUAL_STACK_ARGS,
2889 GR_VIRTUAL_STACK_DYNAMIC,
2890 GR_VIRTUAL_OUTGOING_ARGS,
2891 GR_VIRTUAL_CFA,
2892 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
2893
2894 GR_MAX
2895 };
2896
2897 /* Target-dependent globals. */
2898 struct GTY(()) target_rtl {
2899 /* All references to the hard registers in global_rtl_index go through
2900 these unique rtl objects. On machines where the frame-pointer and
2901 arg-pointer are the same register, they use the same unique object.
2902
2903 After register allocation, other rtl objects which used to be pseudo-regs
2904 may be clobbered to refer to the frame-pointer register.
2905 But references that were originally to the frame-pointer can be
2906 distinguished from the others because they contain frame_pointer_rtx.
2907
2908 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
2909 tricky: until register elimination has taken place hard_frame_pointer_rtx
2910 should be used if it is being set, and frame_pointer_rtx otherwise. After
2911 register elimination hard_frame_pointer_rtx should always be used.
2912 On machines where the two registers are same (most) then these are the
2913 same. */
2914 rtx x_global_rtl[GR_MAX];
2915
2916 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
2917 rtx x_pic_offset_table_rtx;
2918
2919 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
2920 This is used to implement __builtin_return_address for some machines;
2921 see for instance the MIPS port. */
2922 rtx x_return_address_pointer_rtx;
2923
2924 /* Commonly used RTL for hard registers. These objects are not
2925 necessarily unique, so we allocate them separately from global_rtl.
2926 They are initialized once per compilation unit, then copied into
2927 regno_reg_rtx at the beginning of each function. */
2928 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
2929
2930 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
2931 rtx x_top_of_stack[MAX_MACHINE_MODE];
2932
2933 /* Static hunks of RTL used by the aliasing code; these are treated
2934 as persistent to avoid unnecessary RTL allocations. */
2935 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
2936
2937 /* The default memory attributes for each mode. */
2938 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
2939
2940 /* Track if RTL has been initialized. */
2941 bool target_specific_initialized;
2942 };
2943
2944 extern GTY(()) struct target_rtl default_target_rtl;
2945 #if SWITCHABLE_TARGET
2946 extern struct target_rtl *this_target_rtl;
2947 #else
2948 #define this_target_rtl (&default_target_rtl)
2949 #endif
2950
2951 #define global_rtl \
2952 (this_target_rtl->x_global_rtl)
2953 #define pic_offset_table_rtx \
2954 (this_target_rtl->x_pic_offset_table_rtx)
2955 #define return_address_pointer_rtx \
2956 (this_target_rtl->x_return_address_pointer_rtx)
2957 #define top_of_stack \
2958 (this_target_rtl->x_top_of_stack)
2959 #define mode_mem_attrs \
2960 (this_target_rtl->x_mode_mem_attrs)
2961
2962 /* All references to certain hard regs, except those created
2963 by allocating pseudo regs into them (when that's possible),
2964 go through these unique rtx objects. */
2965 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
2966 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
2967 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
2968 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
2969
2970 #ifndef GENERATOR_FILE
2971 /* Return the attributes of a MEM rtx. */
2972 static inline struct mem_attrs *
2973 get_mem_attrs (const_rtx x)
2974 {
2975 struct mem_attrs *attrs;
2976
2977 attrs = MEM_ATTRS (x);
2978 if (!attrs)
2979 attrs = mode_mem_attrs[(int) GET_MODE (x)];
2980 return attrs;
2981 }
2982 #endif
2983
2984 /* Include the RTL generation functions. */
2985
2986 #ifndef GENERATOR_FILE
2987 #include "genrtl.h"
2988 #undef gen_rtx_ASM_INPUT
2989 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
2990 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
2991 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
2992 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
2993 #endif
2994
2995 /* There are some RTL codes that require special attention; the
2996 generation functions included above do the raw handling. If you
2997 add to this list, modify special_rtx in gengenrtl.c as well. */
2998
2999 extern rtx_insn_list *gen_rtx_INSN_LIST (enum machine_mode, rtx, rtx);
3000 extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT);
3001 extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec);
3002 extern rtx gen_raw_REG (enum machine_mode, int);
3003 extern rtx gen_rtx_REG (enum machine_mode, unsigned);
3004 extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int);
3005 extern rtx gen_rtx_MEM (enum machine_mode, rtx);
3006 extern rtx gen_rtx_VAR_LOCATION (enum machine_mode, tree, rtx,
3007 enum var_init_status);
3008
3009 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3010
3011 /* Virtual registers are used during RTL generation to refer to locations into
3012 the stack frame when the actual location isn't known until RTL generation
3013 is complete. The routine instantiate_virtual_regs replaces these with
3014 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3015 a constant. */
3016
3017 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3018
3019 /* This points to the first word of the incoming arguments passed on the stack,
3020 either by the caller or by the callee when pretending it was passed by the
3021 caller. */
3022
3023 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3024
3025 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3026
3027 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3028 variable on the stack. Otherwise, it points to the first variable on
3029 the stack. */
3030
3031 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3032
3033 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3034
3035 /* This points to the location of dynamically-allocated memory on the stack
3036 immediately after the stack pointer has been adjusted by the amount
3037 desired. */
3038
3039 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3040
3041 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3042
3043 /* This points to the location in the stack at which outgoing arguments should
3044 be written when the stack is pre-pushed (arguments pushed using push
3045 insns always use sp). */
3046
3047 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3048
3049 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3050
3051 /* This points to the Canonical Frame Address of the function. This
3052 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3053 but is calculated relative to the arg pointer for simplicity; the
3054 frame pointer nor stack pointer are necessarily fixed relative to
3055 the CFA until after reload. */
3056
3057 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3058
3059 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3060
3061 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3062
3063 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3064 when finalized. */
3065
3066 #define virtual_preferred_stack_boundary_rtx \
3067 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3068
3069 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3070 ((FIRST_VIRTUAL_REGISTER) + 5)
3071
3072 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3073
3074 /* Nonzero if REGNUM is a pointer into the stack frame. */
3075 #define REGNO_PTR_FRAME_P(REGNUM) \
3076 ((REGNUM) == STACK_POINTER_REGNUM \
3077 || (REGNUM) == FRAME_POINTER_REGNUM \
3078 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3079 || (REGNUM) == ARG_POINTER_REGNUM \
3080 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3081 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3082
3083 /* REGNUM never really appearing in the INSN stream. */
3084 #define INVALID_REGNUM (~(unsigned int) 0)
3085
3086 /* REGNUM for which no debug information can be generated. */
3087 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3088
3089 extern rtx output_constant_def (tree, int);
3090 extern rtx lookup_constant_def (tree);
3091
3092 /* Nonzero after end of reload pass.
3093 Set to 1 or 0 by reload1.c. */
3094
3095 extern int reload_completed;
3096
3097 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3098 extern int epilogue_completed;
3099
3100 /* Set to 1 while reload_as_needed is operating.
3101 Required by some machines to handle any generated moves differently. */
3102
3103 extern int reload_in_progress;
3104
3105 /* Set to 1 while in lra. */
3106 extern int lra_in_progress;
3107
3108 /* This macro indicates whether you may create a new
3109 pseudo-register. */
3110
3111 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3112
3113 #ifdef STACK_REGS
3114 /* Nonzero after end of regstack pass.
3115 Set to 1 or 0 by reg-stack.c. */
3116 extern int regstack_completed;
3117 #endif
3118
3119 /* If this is nonzero, we do not bother generating VOLATILE
3120 around volatile memory references, and we are willing to
3121 output indirect addresses. If cse is to follow, we reject
3122 indirect addresses so a useful potential cse is generated;
3123 if it is used only once, instruction combination will produce
3124 the same indirect address eventually. */
3125 extern int cse_not_expected;
3126
3127 /* Translates rtx code to tree code, for those codes needed by
3128 REAL_ARITHMETIC. The function returns an int because the caller may not
3129 know what `enum tree_code' means. */
3130
3131 extern int rtx_to_tree_code (enum rtx_code);
3132
3133 /* In cse.c */
3134 extern int delete_trivially_dead_insns (rtx_insn *, int);
3135 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3136 extern unsigned hash_rtx (const_rtx x, enum machine_mode, int *, int *, bool);
3137
3138 /* In dse.c */
3139 extern bool check_for_inc_dec (rtx_insn *insn);
3140
3141 /* In jump.c */
3142 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3143 extern bool jump_to_label_p (rtx);
3144 extern int condjump_p (const_rtx);
3145 extern int any_condjump_p (const_rtx);
3146 extern int any_uncondjump_p (const_rtx);
3147 extern rtx pc_set (const_rtx);
3148 extern rtx condjump_label (const_rtx);
3149 extern int simplejump_p (const_rtx);
3150 extern int returnjump_p (rtx);
3151 extern int eh_returnjump_p (rtx);
3152 extern int onlyjump_p (const_rtx);
3153 extern int only_sets_cc0_p (const_rtx);
3154 extern int sets_cc0_p (const_rtx);
3155 extern int invert_jump_1 (rtx, rtx);
3156 extern int invert_jump (rtx, rtx, int);
3157 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3158 extern int true_regnum (const_rtx);
3159 extern unsigned int reg_or_subregno (const_rtx);
3160 extern int redirect_jump_1 (rtx, rtx);
3161 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3162 extern int redirect_jump (rtx, rtx, int);
3163 extern void rebuild_jump_labels (rtx_insn *);
3164 extern void rebuild_jump_labels_chain (rtx_insn *);
3165 extern rtx reversed_comparison (const_rtx, enum machine_mode);
3166 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3167 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3168 const_rtx, const_rtx);
3169 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3170 extern int condjump_in_parallel_p (const_rtx);
3171
3172 /* In emit-rtl.c. */
3173 extern int max_reg_num (void);
3174 extern int max_label_num (void);
3175 extern int get_first_label_num (void);
3176 extern void maybe_set_first_label_num (rtx);
3177 extern void delete_insns_since (rtx_insn *);
3178 extern void mark_reg_pointer (rtx, int);
3179 extern void mark_user_reg (rtx);
3180 extern void reset_used_flags (rtx);
3181 extern void set_used_flags (rtx);
3182 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3183 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3184 extern int get_max_insn_count (void);
3185 extern int in_sequence_p (void);
3186 extern void init_emit (void);
3187 extern void init_emit_regs (void);
3188 extern void init_derived_machine_modes (void);
3189 extern void init_emit_once (void);
3190 extern void push_topmost_sequence (void);
3191 extern void pop_topmost_sequence (void);
3192 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3193 extern unsigned int unshare_all_rtl (void);
3194 extern void unshare_all_rtl_again (rtx_insn *);
3195 extern void unshare_all_rtl_in_chain (rtx);
3196 extern void verify_rtl_sharing (void);
3197 extern void add_insn (rtx_insn *);
3198 extern void add_insn_before (rtx, rtx, basic_block);
3199 extern void add_insn_after (rtx, rtx, basic_block);
3200 extern void remove_insn (rtx);
3201 extern rtx_insn *emit (rtx);
3202 extern void delete_insn (rtx);
3203 extern rtx_insn *entry_of_function (void);
3204 extern void emit_insn_at_entry (rtx);
3205 extern void delete_insn_chain (rtx, rtx, bool);
3206 extern rtx_insn *unlink_insn_chain (rtx_insn *, rtx_insn *);
3207 extern void delete_insn_and_edges (rtx_insn *);
3208 extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx);
3209 extern rtx gen_const_mem (enum machine_mode, rtx);
3210 extern rtx gen_frame_mem (enum machine_mode, rtx);
3211 extern rtx gen_tmp_stack_mem (enum machine_mode, rtx);
3212 extern bool validate_subreg (enum machine_mode, enum machine_mode,
3213 const_rtx, unsigned int);
3214
3215 /* In combine.c */
3216 extern unsigned int extended_count (const_rtx, enum machine_mode, int);
3217 extern rtx remove_death (unsigned int, rtx_insn *);
3218 extern void dump_combine_stats (FILE *);
3219 extern void dump_combine_total_stats (FILE *);
3220 extern rtx make_compound_operation (rtx, enum rtx_code);
3221
3222 /* In cfgcleanup.c */
3223 extern void delete_dead_jumptables (void);
3224
3225 /* In sched-rgn.c. */
3226 extern void schedule_insns (void);
3227
3228 /* In sched-ebb.c. */
3229 extern void schedule_ebbs (void);
3230
3231 /* In sel-sched-dump.c. */
3232 extern void sel_sched_fix_param (const char *param, const char *val);
3233
3234 /* In print-rtl.c */
3235 extern const char *print_rtx_head;
3236 extern void debug (const rtx_def &ref);
3237 extern void debug (const rtx_def *ptr);
3238 extern void debug_rtx (const_rtx);
3239 extern void debug_rtx_list (const rtx_insn *, int);
3240 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3241 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3242 extern void print_mem_expr (FILE *, const_tree);
3243 extern void print_rtl (FILE *, const_rtx);
3244 extern void print_simple_rtl (FILE *, const_rtx);
3245 extern int print_rtl_single (FILE *, const_rtx);
3246 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3247 extern void print_inline_rtx (FILE *, const_rtx, int);
3248
3249 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3250 not be in sched-vis.c but in rtl.c, because they are not only used
3251 by the scheduler anymore but for all "slim" RTL dumping. */
3252 extern void dump_value_slim (FILE *, const_rtx, int);
3253 extern void dump_insn_slim (FILE *, const_rtx);
3254 extern void dump_rtl_slim (FILE *, const_rtx, const_rtx, int, int);
3255 extern void print_value (pretty_printer *, const_rtx, int);
3256 extern void print_pattern (pretty_printer *, const_rtx, int);
3257 extern void print_insn (pretty_printer *, const_rtx, int);
3258 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3259 extern const char *str_pattern_slim (const_rtx);
3260
3261 /* In function.c */
3262 extern void reposition_prologue_and_epilogue_notes (void);
3263 extern int prologue_epilogue_contains (const_rtx);
3264 extern int sibcall_epilogue_contains (const_rtx);
3265 extern void update_temp_slot_address (rtx, rtx);
3266 extern void maybe_copy_prologue_epilogue_insn (rtx, rtx);
3267 extern void set_return_jump_label (rtx);
3268
3269 /* In stmt.c */
3270 extern void expand_null_return (void);
3271 extern void expand_naked_return (void);
3272 extern void emit_jump (rtx);
3273
3274 /* In expr.c */
3275 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3276 unsigned int, int);
3277 extern HOST_WIDE_INT find_args_size_adjust (rtx);
3278 extern int fixup_args_size_notes (rtx, rtx, int);
3279
3280 /* In cfgrtl.c */
3281 extern void print_rtl_with_bb (FILE *, const rtx_insn *, int);
3282 extern rtx_insn *duplicate_insn_chain (rtx_insn *, rtx_insn *);
3283
3284 /* In expmed.c */
3285 extern void init_expmed (void);
3286 extern void expand_inc (rtx, rtx);
3287 extern void expand_dec (rtx, rtx);
3288
3289 /* In lower-subreg.c */
3290 extern void init_lower_subreg (void);
3291
3292 /* In gcse.c */
3293 extern bool can_copy_p (enum machine_mode);
3294 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3295 extern rtx fis_get_condition (rtx_insn *);
3296
3297 /* In ira.c */
3298 #ifdef HARD_CONST
3299 extern HARD_REG_SET eliminable_regset;
3300 #endif
3301 extern void mark_elimination (int, int);
3302
3303 /* In reginfo.c */
3304 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3305 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3306 extern void globalize_reg (tree, int);
3307 extern void init_reg_modes_target (void);
3308 extern void init_regs (void);
3309 extern void reinit_regs (void);
3310 extern void init_fake_stack_mems (void);
3311 extern void save_register_info (void);
3312 extern void init_reg_sets (void);
3313 extern void regclass (rtx, int);
3314 extern void reg_scan (rtx_insn *, unsigned int);
3315 extern void fix_register (const char *, int, int);
3316 extern bool invalid_mode_change_p (unsigned int, enum reg_class);
3317
3318 /* In reload1.c */
3319 extern int function_invariant_p (const_rtx);
3320
3321 /* In calls.c */
3322 enum libcall_type
3323 {
3324 LCT_NORMAL = 0,
3325 LCT_CONST = 1,
3326 LCT_PURE = 2,
3327 LCT_NORETURN = 3,
3328 LCT_THROW = 4,
3329 LCT_RETURNS_TWICE = 5
3330 };
3331
3332 extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int,
3333 ...);
3334 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3335 enum machine_mode, int, ...);
3336
3337 /* In varasm.c */
3338 extern void init_varasm_once (void);
3339
3340 extern rtx make_debug_expr_from_rtl (const_rtx);
3341
3342 /* In read-rtl.c */
3343 extern bool read_rtx (const char *, rtx *);
3344
3345 /* In alias.c */
3346 extern rtx canon_rtx (rtx);
3347 extern int true_dependence (const_rtx, enum machine_mode, const_rtx);
3348 extern rtx get_addr (rtx);
3349 extern int canon_true_dependence (const_rtx, enum machine_mode, rtx,
3350 const_rtx, rtx);
3351 extern int read_dependence (const_rtx, const_rtx);
3352 extern int anti_dependence (const_rtx, const_rtx);
3353 extern int canon_anti_dependence (const_rtx, bool,
3354 const_rtx, enum machine_mode, rtx);
3355 extern int output_dependence (const_rtx, const_rtx);
3356 extern int may_alias_p (const_rtx, const_rtx);
3357 extern void init_alias_target (void);
3358 extern void init_alias_analysis (void);
3359 extern void end_alias_analysis (void);
3360 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3361 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3362 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3363 extern bool may_be_sp_based_p (rtx);
3364 extern rtx gen_hard_reg_clobber (enum machine_mode, unsigned int);
3365 extern rtx get_reg_known_value (unsigned int);
3366 extern bool get_reg_known_equiv_p (unsigned int);
3367 extern rtx get_reg_base_value (unsigned int);
3368
3369 #ifdef STACK_REGS
3370 extern int stack_regs_mentioned (const_rtx insn);
3371 #endif
3372
3373 /* In toplev.c */
3374 extern GTY(()) rtx stack_limit_rtx;
3375
3376 /* In predict.c */
3377 extern void invert_br_probabilities (rtx);
3378 extern bool expensive_function_p (int);
3379
3380 /* In var-tracking.c */
3381 extern unsigned int variable_tracking_main (void);
3382
3383 /* In stor-layout.c. */
3384 extern void get_mode_bounds (enum machine_mode, int, enum machine_mode,
3385 rtx *, rtx *);
3386
3387 /* In loop-iv.c */
3388 extern rtx canon_condition (rtx);
3389 extern void simplify_using_condition (rtx, rtx *, bitmap);
3390
3391 /* In final.c */
3392 extern unsigned int compute_alignments (void);
3393 extern void update_alignments (vec<rtx> &);
3394 extern int asm_str_count (const char *templ);
3395 \f
3396 struct rtl_hooks
3397 {
3398 rtx (*gen_lowpart) (enum machine_mode, rtx);
3399 rtx (*gen_lowpart_no_emit) (enum machine_mode, rtx);
3400 rtx (*reg_nonzero_bits) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3401 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3402 rtx (*reg_num_sign_bit_copies) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3403 unsigned int, unsigned int *);
3404 bool (*reg_truncated_to_mode) (enum machine_mode, const_rtx);
3405
3406 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3407 };
3408
3409 /* Each pass can provide its own. */
3410 extern struct rtl_hooks rtl_hooks;
3411
3412 /* ... but then it has to restore these. */
3413 extern const struct rtl_hooks general_rtl_hooks;
3414
3415 /* Keep this for the nonce. */
3416 #define gen_lowpart rtl_hooks.gen_lowpart
3417
3418 extern void insn_locations_init (void);
3419 extern void insn_locations_finalize (void);
3420 extern void set_curr_insn_location (location_t);
3421 extern location_t curr_insn_location (void);
3422 extern bool optimize_insn_for_size_p (void);
3423 extern bool optimize_insn_for_speed_p (void);
3424
3425 /* rtl-error.c */
3426 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3427 ATTRIBUTE_NORETURN;
3428 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3429 ATTRIBUTE_NORETURN;
3430
3431 #define fatal_insn(msgid, insn) \
3432 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3433 #define fatal_insn_not_found(insn) \
3434 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3435
3436 /* reginfo.c */
3437 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3438
3439
3440 #endif /* ! GCC_RTL_H */