Introduce LABEL_REF_LABEL
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include <utility>
24 #include "statistics.h"
25 #include "machmode.h"
26 #include "input.h"
27 #include "real.h"
28 #include "vec.h"
29 #include "fixed-value.h"
30 #include "alias.h"
31 #include "hashtab.h"
32 #include "wide-int.h"
33 #include "flags.h"
34 #include "is-a.h"
35
36 /* Value used by some passes to "recognize" noop moves as valid
37 instructions. */
38 #define NOOP_MOVE_INSN_CODE INT_MAX
39
40 /* Register Transfer Language EXPRESSIONS CODES */
41
42 #define RTX_CODE enum rtx_code
43 enum rtx_code {
44
45 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
46 #include "rtl.def" /* rtl expressions are documented here */
47 #undef DEF_RTL_EXPR
48
49 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
50 NUM_RTX_CODE.
51 Assumes default enum value assignment. */
52
53 /* The cast here, saves many elsewhere. */
54 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
55
56 /* Similar, but since generator files get more entries... */
57 #ifdef GENERATOR_FILE
58 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
59 #endif
60
61 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
62
63 enum rtx_class {
64 /* We check bit 0-1 of some rtx class codes in the predicates below. */
65
66 /* Bit 0 = comparison if 0, arithmetic is 1
67 Bit 1 = 1 if commutative. */
68 RTX_COMPARE, /* 0 */
69 RTX_COMM_COMPARE,
70 RTX_BIN_ARITH,
71 RTX_COMM_ARITH,
72
73 /* Must follow the four preceding values. */
74 RTX_UNARY, /* 4 */
75
76 RTX_EXTRA,
77 RTX_MATCH,
78 RTX_INSN,
79
80 /* Bit 0 = 1 if constant. */
81 RTX_OBJ, /* 8 */
82 RTX_CONST_OBJ,
83
84 RTX_TERNARY,
85 RTX_BITFIELD_OPS,
86 RTX_AUTOINC
87 };
88
89 #define RTX_OBJ_MASK (~1)
90 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
91 #define RTX_COMPARE_MASK (~1)
92 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
93 #define RTX_ARITHMETIC_MASK (~1)
94 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
95 #define RTX_BINARY_MASK (~3)
96 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
97 #define RTX_COMMUTATIVE_MASK (~2)
98 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
99 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
100
101 extern const unsigned char rtx_length[NUM_RTX_CODE];
102 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
103
104 extern const char * const rtx_name[NUM_RTX_CODE];
105 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
106
107 extern const char * const rtx_format[NUM_RTX_CODE];
108 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
109
110 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
111 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
112
113 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
114 and NEXT_INSN fields). */
115 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
116
117 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
118 extern const unsigned char rtx_next[NUM_RTX_CODE];
119 \f
120 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
121 relative to which the offsets are calculated, as explained in rtl.def. */
122 struct addr_diff_vec_flags
123 {
124 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
125 unsigned min_align: 8;
126 /* Flags: */
127 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
128 unsigned min_after_vec: 1; /* minimum address target label is
129 after the ADDR_DIFF_VEC. */
130 unsigned max_after_vec: 1; /* maximum address target label is
131 after the ADDR_DIFF_VEC. */
132 unsigned min_after_base: 1; /* minimum address target label is
133 after BASE. */
134 unsigned max_after_base: 1; /* maximum address target label is
135 after BASE. */
136 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
137 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
138 unsigned : 2;
139 unsigned scale : 8;
140 };
141
142 /* Structure used to describe the attributes of a MEM. These are hashed
143 so MEMs that the same attributes share a data structure. This means
144 they cannot be modified in place. */
145 struct GTY(()) mem_attrs
146 {
147 /* The expression that the MEM accesses, or null if not known.
148 This expression might be larger than the memory reference itself.
149 (In other words, the MEM might access only part of the object.) */
150 tree expr;
151
152 /* The offset of the memory reference from the start of EXPR.
153 Only valid if OFFSET_KNOWN_P. */
154 HOST_WIDE_INT offset;
155
156 /* The size of the memory reference in bytes. Only valid if
157 SIZE_KNOWN_P. */
158 HOST_WIDE_INT size;
159
160 /* The alias set of the memory reference. */
161 alias_set_type alias;
162
163 /* The alignment of the reference in bits. Always a multiple of
164 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
165 than the memory reference itself. */
166 unsigned int align;
167
168 /* The address space that the memory reference uses. */
169 unsigned char addrspace;
170
171 /* True if OFFSET is known. */
172 bool offset_known_p;
173
174 /* True if SIZE is known. */
175 bool size_known_p;
176 };
177
178 /* Structure used to describe the attributes of a REG in similar way as
179 mem_attrs does for MEM above. Note that the OFFSET field is calculated
180 in the same way as for mem_attrs, rather than in the same way as a
181 SUBREG_BYTE. For example, if a big-endian target stores a byte
182 object in the low part of a 4-byte register, the OFFSET field
183 will be -3 rather than 0. */
184
185 struct GTY(()) reg_attrs {
186 tree decl; /* decl corresponding to REG. */
187 HOST_WIDE_INT offset; /* Offset from start of DECL. */
188 };
189
190 /* Common union for an element of an rtx. */
191
192 union rtunion
193 {
194 int rt_int;
195 unsigned int rt_uint;
196 const char *rt_str;
197 rtx rt_rtx;
198 rtvec rt_rtvec;
199 enum machine_mode rt_type;
200 addr_diff_vec_flags rt_addr_diff_vec_flags;
201 struct cselib_val *rt_cselib;
202 tree rt_tree;
203 basic_block rt_bb;
204 mem_attrs *rt_mem;
205 reg_attrs *rt_reg;
206 struct constant_descriptor_rtx *rt_constant;
207 struct dw_cfi_node *rt_cfi;
208 };
209
210 /* This structure remembers the position of a SYMBOL_REF within an
211 object_block structure. A SYMBOL_REF only provides this information
212 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
213 struct GTY(()) block_symbol {
214 /* The usual SYMBOL_REF fields. */
215 rtunion GTY ((skip)) fld[2];
216
217 /* The block that contains this object. */
218 struct object_block *block;
219
220 /* The offset of this object from the start of its block. It is negative
221 if the symbol has not yet been assigned an offset. */
222 HOST_WIDE_INT offset;
223 };
224
225 /* Describes a group of objects that are to be placed together in such
226 a way that their relative positions are known. */
227 struct GTY(()) object_block {
228 /* The section in which these objects should be placed. */
229 section *sect;
230
231 /* The alignment of the first object, measured in bits. */
232 unsigned int alignment;
233
234 /* The total size of the objects, measured in bytes. */
235 HOST_WIDE_INT size;
236
237 /* The SYMBOL_REFs for each object. The vector is sorted in
238 order of increasing offset and the following conditions will
239 hold for each element X:
240
241 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
242 !SYMBOL_REF_ANCHOR_P (X)
243 SYMBOL_REF_BLOCK (X) == [address of this structure]
244 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
245 vec<rtx, va_gc> *objects;
246
247 /* All the anchor SYMBOL_REFs used to address these objects, sorted
248 in order of increasing offset, and then increasing TLS model.
249 The following conditions will hold for each element X in this vector:
250
251 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
252 SYMBOL_REF_ANCHOR_P (X)
253 SYMBOL_REF_BLOCK (X) == [address of this structure]
254 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
255 vec<rtx, va_gc> *anchors;
256 };
257
258 struct GTY((variable_size)) hwivec_def {
259 HOST_WIDE_INT elem[1];
260 };
261
262 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
263 #define CWI_GET_NUM_ELEM(RTX) \
264 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
265 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
266 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
267
268 /* RTL expression ("rtx"). */
269
270 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
271 field for for gengtype to recognize that inheritance is occurring,
272 so that all subclasses are redirected to the traversal hook for the
273 base class.
274 However, all of the fields are in the base class, and special-casing
275 is at work. Hence we use desc and tag of 0, generating a switch
276 statement of the form:
277 switch (0)
278 {
279 case 0: // all the work happens here
280 }
281 in order to work with the existing special-casing in gengtype. */
282
283 struct GTY((desc("0"), tag("0"),
284 chain_next ("RTX_NEXT (&%h)"),
285 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
286 /* The kind of expression this is. */
287 ENUM_BITFIELD(rtx_code) code: 16;
288
289 /* The kind of value the expression has. */
290 ENUM_BITFIELD(machine_mode) mode : 8;
291
292 /* 1 in a MEM if we should keep the alias set for this mem unchanged
293 when we access a component.
294 1 in a JUMP_INSN if it is a crossing jump.
295 1 in a CALL_INSN if it is a sibling call.
296 1 in a SET that is for a return.
297 In a CODE_LABEL, part of the two-bit alternate entry field.
298 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
299 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
300 1 in a SUBREG generated by LRA for reload insns. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 /* No extra fields, but adds the invariant:
494
495 (INSN_P (X)
496 || NOTE_P (X)
497 || JUMP_TABLE_DATA_P (X)
498 || BARRIER_P (X)
499 || LABEL_P (X))
500
501 i.e. that we must be able to use the following:
502 INSN_UID ()
503 NEXT_INSN ()
504 PREV_INSN ()
505 i.e. we have an rtx that has an INSN_UID field and can be part of
506 a linked list of insns.
507 */
508 };
509
510 /* Subclasses of rtx_insn. */
511
512 class GTY(()) rtx_debug_insn : public rtx_insn
513 {
514 /* No extra fields, but adds the invariant:
515 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
516 i.e. an annotation for tracking variable assignments.
517
518 This is an instance of:
519 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
520 from rtl.def. */
521 };
522
523 class GTY(()) rtx_nonjump_insn : public rtx_insn
524 {
525 /* No extra fields, but adds the invariant:
526 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
527 i.e an instruction that cannot jump.
528
529 This is an instance of:
530 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
531 from rtl.def. */
532 };
533
534 class GTY(()) rtx_jump_insn : public rtx_insn
535 {
536 /* No extra fields, but adds the invariant:
537 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
538 i.e. an instruction that can possibly jump.
539
540 This is an instance of:
541 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
542 from rtl.def. */
543 };
544
545 class GTY(()) rtx_call_insn : public rtx_insn
546 {
547 /* No extra fields, but adds the invariant:
548 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
549 i.e. an instruction that can possibly call a subroutine
550 but which will not change which instruction comes next
551 in the current function.
552
553 This is an instance of:
554 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_jump_table_data : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
562 i.e. a data for a jump table, considered an instruction for
563 historical reasons.
564
565 This is an instance of:
566 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
567 from rtl.def. */
568
569 public:
570
571 /* This can be either:
572
573 (a) a table of absolute jumps, in which case PATTERN (this) is an
574 ADDR_VEC with arg 0 a vector of labels, or
575
576 (b) a table of relative jumps (e.g. for -fPIC), in which case
577 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
578 arg 1 the vector of labels.
579
580 This method gets the underlying vec. */
581
582 inline rtvec get_labels () const;
583 };
584
585 class GTY(()) rtx_barrier : public rtx_insn
586 {
587 /* No extra fields, but adds the invariant:
588 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
589 i.e. a marker that indicates that control will not flow through.
590
591 This is an instance of:
592 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
593 from rtl.def. */
594 };
595
596 class GTY(()) rtx_code_label : public rtx_insn
597 {
598 /* No extra fields, but adds the invariant:
599 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
600 i.e. a label in the assembler.
601
602 This is an instance of:
603 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
604 from rtl.def. */
605 };
606
607 class GTY(()) rtx_note : public rtx_insn
608 {
609 /* No extra fields, but adds the invariant:
610 NOTE_P(X) aka (GET_CODE (X) == NOTE)
611 i.e. a note about the corresponding source code.
612
613 This is an instance of:
614 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
615 from rtl.def. */
616 };
617
618 /* The size in bytes of an rtx header (code, mode and flags). */
619 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
620
621 /* The size in bytes of an rtx with code CODE. */
622 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
623
624 #define NULL_RTX (rtx) 0
625
626 /* The "next" and "previous" RTX, relative to this one. */
627
628 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
629 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
630
631 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
632 */
633 #define RTX_PREV(X) ((INSN_P (X) \
634 || NOTE_P (X) \
635 || JUMP_TABLE_DATA_P (X) \
636 || BARRIER_P (X) \
637 || LABEL_P (X)) \
638 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
639 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
640 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
641
642 /* Define macros to access the `code' field of the rtx. */
643
644 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
645 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
646
647 #define GET_MODE(RTX) ((enum machine_mode) (RTX)->mode)
648 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
649
650 /* RTL vector. These appear inside RTX's when there is a need
651 for a variable number of things. The principle use is inside
652 PARALLEL expressions. */
653
654 struct GTY(()) rtvec_def {
655 int num_elem; /* number of elements */
656 rtx GTY ((length ("%h.num_elem"))) elem[1];
657 };
658
659 #define NULL_RTVEC (rtvec) 0
660
661 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
662 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
663
664 /* Predicate yielding nonzero iff X is an rtx for a register. */
665 #define REG_P(X) (GET_CODE (X) == REG)
666
667 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
668 #define MEM_P(X) (GET_CODE (X) == MEM)
669
670 #if TARGET_SUPPORTS_WIDE_INT
671
672 /* Match CONST_*s that can represent compile-time constant integers. */
673 #define CASE_CONST_SCALAR_INT \
674 case CONST_INT: \
675 case CONST_WIDE_INT
676
677 /* Match CONST_*s for which pointer equality corresponds to value
678 equality. */
679 #define CASE_CONST_UNIQUE \
680 case CONST_INT: \
681 case CONST_WIDE_INT: \
682 case CONST_DOUBLE: \
683 case CONST_FIXED
684
685 /* Match all CONST_* rtxes. */
686 #define CASE_CONST_ANY \
687 case CONST_INT: \
688 case CONST_WIDE_INT: \
689 case CONST_DOUBLE: \
690 case CONST_FIXED: \
691 case CONST_VECTOR
692
693 #else
694
695 /* Match CONST_*s that can represent compile-time constant integers. */
696 #define CASE_CONST_SCALAR_INT \
697 case CONST_INT: \
698 case CONST_DOUBLE
699
700 /* Match CONST_*s for which pointer equality corresponds to value
701 equality. */
702 #define CASE_CONST_UNIQUE \
703 case CONST_INT: \
704 case CONST_DOUBLE: \
705 case CONST_FIXED
706
707 /* Match all CONST_* rtxes. */
708 #define CASE_CONST_ANY \
709 case CONST_INT: \
710 case CONST_DOUBLE: \
711 case CONST_FIXED: \
712 case CONST_VECTOR
713 #endif
714
715 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
716 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
717
718 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
719 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
720
721 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
722 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
723
724 /* Predicate yielding true iff X is an rtx for a double-int
725 or floating point constant. */
726 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
727
728 /* Predicate yielding true iff X is an rtx for a double-int. */
729 #define CONST_DOUBLE_AS_INT_P(X) \
730 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
731
732 /* Predicate yielding true iff X is an rtx for a integer const. */
733 #if TARGET_SUPPORTS_WIDE_INT
734 #define CONST_SCALAR_INT_P(X) \
735 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
736 #else
737 #define CONST_SCALAR_INT_P(X) \
738 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
739 #endif
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_FLOAT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
744
745 /* Predicate yielding nonzero iff X is a label insn. */
746 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
747
748 /* Predicate yielding nonzero iff X is a jump insn. */
749 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
750
751 /* Predicate yielding nonzero iff X is a call insn. */
752 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
753
754 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
755 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
756
757 /* Predicate yielding nonzero iff X is a debug note/insn. */
758 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
759
760 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
761 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
762
763 /* Nonzero if DEBUG_INSN_P may possibly hold. */
764 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
765
766 /* Predicate yielding nonzero iff X is a real insn. */
767 #define INSN_P(X) \
768 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
769
770 /* Predicate yielding nonzero iff X is a note insn. */
771 #define NOTE_P(X) (GET_CODE (X) == NOTE)
772
773 /* Predicate yielding nonzero iff X is a barrier insn. */
774 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
775
776 /* Predicate yielding nonzero iff X is a data for a jump table. */
777 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
778
779 template <>
780 template <>
781 inline bool
782 is_a_helper <rtx_insn *>::test (rtx rt)
783 {
784 return (INSN_P (rt)
785 || NOTE_P (rt)
786 || JUMP_TABLE_DATA_P (rt)
787 || BARRIER_P (rt)
788 || LABEL_P (rt));
789 }
790
791 template <>
792 template <>
793 inline bool
794 is_a_helper <const rtx_insn *>::test (const_rtx rt)
795 {
796 return (INSN_P (rt)
797 || NOTE_P (rt)
798 || JUMP_TABLE_DATA_P (rt)
799 || BARRIER_P (rt)
800 || LABEL_P (rt));
801 }
802
803 template <>
804 template <>
805 inline bool
806 is_a_helper <rtx_debug_insn *>::test (rtx rt)
807 {
808 return DEBUG_INSN_P (rt);
809 }
810
811 template <>
812 template <>
813 inline bool
814 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
815 {
816 return NONJUMP_INSN_P (rt);
817 }
818
819 template <>
820 template <>
821 inline bool
822 is_a_helper <rtx_jump_insn *>::test (rtx rt)
823 {
824 return JUMP_P (rt);
825 }
826
827 template <>
828 template <>
829 inline bool
830 is_a_helper <rtx_call_insn *>::test (rtx rt)
831 {
832 return CALL_P (rt);
833 }
834
835 template <>
836 template <>
837 inline bool
838 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
839 {
840 return CALL_P (insn);
841 }
842
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
847 {
848 return JUMP_TABLE_DATA_P (rt);
849 }
850
851 template <>
852 template <>
853 inline bool
854 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
855 {
856 return JUMP_TABLE_DATA_P (insn);
857 }
858
859 template <>
860 template <>
861 inline bool
862 is_a_helper <rtx_barrier *>::test (rtx rt)
863 {
864 return BARRIER_P (rt);
865 }
866
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_code_label *>::test (rtx rt)
871 {
872 return LABEL_P (rt);
873 }
874
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
879 {
880 return LABEL_P (insn);
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_note *>::test (rtx rt)
887 {
888 return NOTE_P (rt);
889 }
890
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_note *>::test (rtx_insn *insn)
895 {
896 return NOTE_P (insn);
897 }
898
899 /* Predicate yielding nonzero iff X is a return or simple_return. */
900 #define ANY_RETURN_P(X) \
901 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
902
903 /* 1 if X is a unary operator. */
904
905 #define UNARY_P(X) \
906 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
907
908 /* 1 if X is a binary operator. */
909
910 #define BINARY_P(X) \
911 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
912
913 /* 1 if X is an arithmetic operator. */
914
915 #define ARITHMETIC_P(X) \
916 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
917 == RTX_ARITHMETIC_RESULT)
918
919 /* 1 if X is an arithmetic operator. */
920
921 #define COMMUTATIVE_ARITH_P(X) \
922 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
923
924 /* 1 if X is a commutative arithmetic operator or a comparison operator.
925 These two are sometimes selected together because it is possible to
926 swap the two operands. */
927
928 #define SWAPPABLE_OPERANDS_P(X) \
929 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
930 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
931 | (1 << RTX_COMPARE)))
932
933 /* 1 if X is a non-commutative operator. */
934
935 #define NON_COMMUTATIVE_P(X) \
936 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
937 == RTX_NON_COMMUTATIVE_RESULT)
938
939 /* 1 if X is a commutative operator on integers. */
940
941 #define COMMUTATIVE_P(X) \
942 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
943 == RTX_COMMUTATIVE_RESULT)
944
945 /* 1 if X is a relational operator. */
946
947 #define COMPARISON_P(X) \
948 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
949
950 /* 1 if X is a constant value that is an integer. */
951
952 #define CONSTANT_P(X) \
953 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
954
955 /* 1 if X can be used to represent an object. */
956 #define OBJECT_P(X) \
957 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
958
959 /* General accessor macros for accessing the fields of an rtx. */
960
961 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
962 /* The bit with a star outside the statement expr and an & inside is
963 so that N can be evaluated only once. */
964 #define RTL_CHECK1(RTX, N, C1) __extension__ \
965 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
966 const enum rtx_code _code = GET_CODE (_rtx); \
967 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
968 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
969 __FUNCTION__); \
970 if (GET_RTX_FORMAT (_code)[_n] != C1) \
971 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
972 __FUNCTION__); \
973 &_rtx->u.fld[_n]; }))
974
975 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
976 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
977 const enum rtx_code _code = GET_CODE (_rtx); \
978 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
979 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
980 __FUNCTION__); \
981 if (GET_RTX_FORMAT (_code)[_n] != C1 \
982 && GET_RTX_FORMAT (_code)[_n] != C2) \
983 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
984 __FUNCTION__); \
985 &_rtx->u.fld[_n]; }))
986
987 #define RTL_CHECKC1(RTX, N, C) __extension__ \
988 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
989 if (GET_CODE (_rtx) != (C)) \
990 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
991 __FUNCTION__); \
992 &_rtx->u.fld[_n]; }))
993
994 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
995 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
996 const enum rtx_code _code = GET_CODE (_rtx); \
997 if (_code != (C1) && _code != (C2)) \
998 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
999 __FUNCTION__); \
1000 &_rtx->u.fld[_n]; }))
1001
1002 #define RTVEC_ELT(RTVEC, I) __extension__ \
1003 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1004 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1005 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1006 __FUNCTION__); \
1007 &_rtvec->elem[_i]; }))
1008
1009 #define XWINT(RTX, N) __extension__ \
1010 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1011 const enum rtx_code _code = GET_CODE (_rtx); \
1012 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1013 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1014 __FUNCTION__); \
1015 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1016 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1017 __FUNCTION__); \
1018 &_rtx->u.hwint[_n]; }))
1019
1020 #define CWI_ELT(RTX, I) __extension__ \
1021 (*({ __typeof (RTX) const _cwi = (RTX); \
1022 int _max = CWI_GET_NUM_ELEM (_cwi); \
1023 const int _i = (I); \
1024 if (_i < 0 || _i >= _max) \
1025 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1026 __FUNCTION__); \
1027 &_cwi->u.hwiv.elem[_i]; }))
1028
1029 #define XCWINT(RTX, N, C) __extension__ \
1030 (*({ __typeof (RTX) const _rtx = (RTX); \
1031 if (GET_CODE (_rtx) != (C)) \
1032 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtx->u.hwint[N]; }))
1035
1036 #define XCMWINT(RTX, N, C, M) __extension__ \
1037 (*({ __typeof (RTX) const _rtx = (RTX); \
1038 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1039 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1040 __LINE__, __FUNCTION__); \
1041 &_rtx->u.hwint[N]; }))
1042
1043 #define XCNMPRV(RTX, C, M) __extension__ \
1044 ({ __typeof (RTX) const _rtx = (RTX); \
1045 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1046 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1047 __LINE__, __FUNCTION__); \
1048 &_rtx->u.rv; })
1049
1050 #define XCNMPFV(RTX, C, M) __extension__ \
1051 ({ __typeof (RTX) const _rtx = (RTX); \
1052 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1053 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1054 __LINE__, __FUNCTION__); \
1055 &_rtx->u.fv; })
1056
1057 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1058 ({ __typeof (RTX) const _symbol = (RTX); \
1059 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1060 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1061 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1062 __FUNCTION__); \
1063 &_symbol->u.block_sym; })
1064
1065 #define HWIVEC_CHECK(RTX,C) __extension__ \
1066 ({ __typeof (RTX) const _symbol = (RTX); \
1067 RTL_CHECKC1 (_symbol, 0, C); \
1068 &_symbol->u.hwiv; })
1069
1070 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1071 const char *)
1072 ATTRIBUTE_NORETURN;
1073 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1074 const char *)
1075 ATTRIBUTE_NORETURN;
1076 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1077 int, const char *)
1078 ATTRIBUTE_NORETURN;
1079 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1080 int, const char *)
1081 ATTRIBUTE_NORETURN;
1082 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1083 const char *, int, const char *)
1084 ATTRIBUTE_NORETURN;
1085 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, enum machine_mode,
1086 bool, const char *, int, const char *)
1087 ATTRIBUTE_NORETURN;
1088 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1089 ATTRIBUTE_NORETURN;
1090 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1091 const char *)
1092 ATTRIBUTE_NORETURN;
1093 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1094 const char *)
1095 ATTRIBUTE_NORETURN;
1096
1097 #else /* not ENABLE_RTL_CHECKING */
1098
1099 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1100 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1101 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1102 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1103 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1104 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1105 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1106 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1107 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1108 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1109 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1110 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1111 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1112 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1113
1114 #endif
1115
1116 /* General accessor macros for accessing the flags of an rtx. */
1117
1118 /* Access an individual rtx flag, with no checking of any kind. */
1119 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1120
1121 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1122 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1123 ({ __typeof (RTX) const _rtx = (RTX); \
1124 if (GET_CODE (_rtx) != C1) \
1125 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1126 __FUNCTION__); \
1127 _rtx; })
1128
1129 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1130 ({ __typeof (RTX) const _rtx = (RTX); \
1131 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1132 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1133 __FUNCTION__); \
1134 _rtx; })
1135
1136 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1137 ({ __typeof (RTX) const _rtx = (RTX); \
1138 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1139 && GET_CODE (_rtx) != C3) \
1140 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1141 __FUNCTION__); \
1142 _rtx; })
1143
1144 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1145 ({ __typeof (RTX) const _rtx = (RTX); \
1146 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1147 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1148 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1149 __FUNCTION__); \
1150 _rtx; })
1151
1152 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1155 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1156 && GET_CODE (_rtx) != C5) \
1157 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1158 __FUNCTION__); \
1159 _rtx; })
1160
1161 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1162 __extension__ \
1163 ({ __typeof (RTX) const _rtx = (RTX); \
1164 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1165 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1166 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1167 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1168 __FUNCTION__); \
1169 _rtx; })
1170
1171 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1172 __extension__ \
1173 ({ __typeof (RTX) const _rtx = (RTX); \
1174 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1175 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1176 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1177 && GET_CODE (_rtx) != C7) \
1178 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1179 __FUNCTION__); \
1180 _rtx; })
1181
1182 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1183 __extension__ \
1184 ({ __typeof (RTX) const _rtx = (RTX); \
1185 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1186 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1187 __FUNCTION__); \
1188 _rtx; })
1189
1190 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1191 int, const char *)
1192 ATTRIBUTE_NORETURN
1193 ;
1194
1195 #else /* not ENABLE_RTL_FLAG_CHECKING */
1196
1197 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1198 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1199 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1200 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1201 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1202 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1203 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1204 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1205 #endif
1206
1207 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1208 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1209 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1210 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1211 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1212 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1213 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1214 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1215 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1216 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1217
1218 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1219 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1220
1221 /* These are like XINT, etc. except that they expect a '0' field instead
1222 of the normal type code. */
1223
1224 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1225 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1226 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1227 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1228 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1229 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1230 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1231 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1232 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1233 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1234 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1235 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1236 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1237
1238 /* Access a '0' field with any type. */
1239 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1240
1241 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1242 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1243 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1244 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1245 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1246 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1247 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1248 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1249 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1250 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1251
1252 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1253 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1254
1255 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1256 \f
1257
1258 /* Methods of rtx_expr_list. */
1259
1260 inline rtx_expr_list *rtx_expr_list::next () const
1261 {
1262 rtx tmp = XEXP (this, 1);
1263 return safe_as_a <rtx_expr_list *> (tmp);
1264 }
1265
1266 inline rtx rtx_expr_list::element () const
1267 {
1268 return XEXP (this, 0);
1269 }
1270
1271 /* Methods of rtx_insn_list. */
1272
1273 inline rtx_insn_list *rtx_insn_list::next () const
1274 {
1275 rtx tmp = XEXP (this, 1);
1276 return safe_as_a <rtx_insn_list *> (tmp);
1277 }
1278
1279 inline rtx_insn *rtx_insn_list::insn () const
1280 {
1281 rtx tmp = XEXP (this, 0);
1282 return safe_as_a <rtx_insn *> (tmp);
1283 }
1284
1285 /* Methods of rtx_sequence. */
1286
1287 inline int rtx_sequence::len () const
1288 {
1289 return XVECLEN (this, 0);
1290 }
1291
1292 inline rtx rtx_sequence::element (int index) const
1293 {
1294 return XVECEXP (this, 0, index);
1295 }
1296
1297 inline rtx_insn *rtx_sequence::insn (int index) const
1298 {
1299 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1300 }
1301
1302 /* ACCESS MACROS for particular fields of insns. */
1303
1304 /* Holds a unique number for each insn.
1305 These are not necessarily sequentially increasing. */
1306 inline int INSN_UID (const_rtx insn)
1307 {
1308 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1309 (insn))->u2.insn_uid;
1310 }
1311 inline int& INSN_UID (rtx insn)
1312 {
1313 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1314 (insn))->u2.insn_uid;
1315 }
1316
1317 /* Chain insns together in sequence. */
1318
1319 /* For now these are split in two: an rvalue form:
1320 PREV_INSN/NEXT_INSN
1321 and an lvalue form:
1322 SET_NEXT_INSN/SET_PREV_INSN. */
1323
1324 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1325 {
1326 rtx prev = XEXP (insn, 0);
1327 return safe_as_a <rtx_insn *> (prev);
1328 }
1329
1330 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1331 {
1332 return XEXP (insn, 0);
1333 }
1334
1335 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1336 {
1337 rtx next = XEXP (insn, 1);
1338 return safe_as_a <rtx_insn *> (next);
1339 }
1340
1341 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1342 {
1343 return XEXP (insn, 1);
1344 }
1345
1346 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1347 {
1348 return XBBDEF (insn, 2);
1349 }
1350
1351 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1352 {
1353 return XBBDEF (insn, 2);
1354 }
1355
1356 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1357 {
1358 BLOCK_FOR_INSN (insn) = bb;
1359 }
1360
1361 /* The body of an insn. */
1362 inline rtx PATTERN (const_rtx insn)
1363 {
1364 return XEXP (insn, 3);
1365 }
1366
1367 inline rtx& PATTERN (rtx insn)
1368 {
1369 return XEXP (insn, 3);
1370 }
1371
1372 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1373 {
1374 return XUINT (insn, 4);
1375 }
1376
1377 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1378 {
1379 return XUINT (insn, 4);
1380 }
1381
1382 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1383 {
1384 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1385 }
1386
1387 /* LOCATION of an RTX if relevant. */
1388 #define RTL_LOCATION(X) (INSN_P (X) ? \
1389 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1390 : UNKNOWN_LOCATION)
1391
1392 /* Code number of instruction, from when it was recognized.
1393 -1 means this instruction has not been recognized yet. */
1394 #define INSN_CODE(INSN) XINT (INSN, 5)
1395
1396 inline rtvec rtx_jump_table_data::get_labels () const
1397 {
1398 rtx pat = PATTERN (this);
1399 if (GET_CODE (pat) == ADDR_VEC)
1400 return XVEC (pat, 0);
1401 else
1402 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1403 }
1404
1405 #define RTX_FRAME_RELATED_P(RTX) \
1406 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1407 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1408
1409 /* 1 if RTX is an insn that has been deleted. */
1410 #define INSN_DELETED_P(RTX) \
1411 (RTL_INSN_CHAIN_FLAG_CHECK ("INSN_DELETED_P", (RTX))->volatil)
1412
1413 /* 1 if JUMP RTX is a crossing jump. */
1414 #define CROSSING_JUMP_P(RTX) \
1415 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1416
1417 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1418 TREE_READONLY. */
1419 #define RTL_CONST_CALL_P(RTX) \
1420 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1421
1422 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1423 DECL_PURE_P. */
1424 #define RTL_PURE_CALL_P(RTX) \
1425 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1426
1427 /* 1 if RTX is a call to a const or pure function. */
1428 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1429 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1430
1431 /* 1 if RTX is a call to a looping const or pure function. Built from
1432 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1433 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1434 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1435
1436 /* 1 if RTX is a call_insn for a sibling call. */
1437 #define SIBLING_CALL_P(RTX) \
1438 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1439
1440 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1441 #define INSN_ANNULLED_BRANCH_P(RTX) \
1442 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1443
1444 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1445 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1446 executed if the branch is taken. For annulled branches with this bit
1447 clear, the insn should be executed only if the branch is not taken. */
1448 #define INSN_FROM_TARGET_P(RTX) \
1449 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1450 CALL_INSN)->in_struct)
1451
1452 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1453 See the comments for ADDR_DIFF_VEC in rtl.def. */
1454 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1455
1456 /* In a VALUE, the value cselib has assigned to RTX.
1457 This is a "struct cselib_val", see cselib.h. */
1458 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1459
1460 /* Holds a list of notes on what this insn does to various REGs.
1461 It is a chain of EXPR_LIST rtx's, where the second operand is the
1462 chain pointer and the first operand is the REG being described.
1463 The mode field of the EXPR_LIST contains not a real machine mode
1464 but a value from enum reg_note. */
1465 #define REG_NOTES(INSN) XEXP(INSN, 6)
1466
1467 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1468 question. */
1469 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1470
1471 enum reg_note
1472 {
1473 #define DEF_REG_NOTE(NAME) NAME,
1474 #include "reg-notes.def"
1475 #undef DEF_REG_NOTE
1476 REG_NOTE_MAX
1477 };
1478
1479 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1480 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1481 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1482 PUT_MODE (LINK, (enum machine_mode) (KIND))
1483
1484 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1485
1486 extern const char * const reg_note_name[];
1487 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1488
1489 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1490 USE and CLOBBER expressions.
1491 USE expressions list the registers filled with arguments that
1492 are passed to the function.
1493 CLOBBER expressions document the registers explicitly clobbered
1494 by this CALL_INSN.
1495 Pseudo registers can not be mentioned in this list. */
1496 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1497
1498 /* The label-number of a code-label. The assembler label
1499 is made from `L' and the label-number printed in decimal.
1500 Label numbers are unique in a compilation. */
1501 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1502
1503 /* In a NOTE that is a line number, this is a string for the file name that the
1504 line is in. We use the same field to record block numbers temporarily in
1505 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1506 between ints and pointers if we use a different macro for the block number.)
1507 */
1508
1509 /* Opaque data. */
1510 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1511 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1512 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1513 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1514 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1515 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1516 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1517 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1518 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1519
1520 /* In a NOTE that is a line number, this is the line number.
1521 Other kinds of NOTEs are identified by negative numbers here. */
1522 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1523
1524 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1525 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1526 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1527
1528 /* Variable declaration and the location of a variable. */
1529 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1530 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1531
1532 /* Initialization status of the variable in the location. Status
1533 can be unknown, uninitialized or initialized. See enumeration
1534 type below. */
1535 #define PAT_VAR_LOCATION_STATUS(PAT) \
1536 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1537 ->u2.var_location_status)
1538
1539 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1540 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1541 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1542 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1543 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1544 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1545 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1546
1547 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1548 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1549
1550 /* Accessors for a tree-expanded var location debug insn. */
1551 #define INSN_VAR_LOCATION_DECL(INSN) \
1552 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1553 #define INSN_VAR_LOCATION_LOC(INSN) \
1554 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1555 #define INSN_VAR_LOCATION_STATUS(INSN) \
1556 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1557
1558 /* Expand to the RTL that denotes an unknown variable location in a
1559 DEBUG_INSN. */
1560 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1561
1562 /* Determine whether X is such an unknown location. */
1563 #define VAR_LOC_UNKNOWN_P(X) \
1564 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1565
1566 /* 1 if RTX is emitted after a call, but it should take effect before
1567 the call returns. */
1568 #define NOTE_DURING_CALL_P(RTX) \
1569 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1570
1571 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1572 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1573
1574 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1575 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1576
1577 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1578 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1579
1580 /* Codes that appear in the NOTE_KIND field for kinds of notes
1581 that are not line numbers. These codes are all negative.
1582
1583 Notice that we do not try to use zero here for any of
1584 the special note codes because sometimes the source line
1585 actually can be zero! This happens (for example) when we
1586 are generating code for the per-translation-unit constructor
1587 and destructor routines for some C++ translation unit. */
1588
1589 enum insn_note
1590 {
1591 #define DEF_INSN_NOTE(NAME) NAME,
1592 #include "insn-notes.def"
1593 #undef DEF_INSN_NOTE
1594
1595 NOTE_INSN_MAX
1596 };
1597
1598 /* Names for NOTE insn's other than line numbers. */
1599
1600 extern const char * const note_insn_name[NOTE_INSN_MAX];
1601 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1602 (note_insn_name[(NOTE_CODE)])
1603
1604 /* The name of a label, in case it corresponds to an explicit label
1605 in the input source code. */
1606 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1607
1608 /* In jump.c, each label contains a count of the number
1609 of LABEL_REFs that point at it, so unused labels can be deleted. */
1610 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1611
1612 /* Labels carry a two-bit field composed of the ->jump and ->call
1613 bits. This field indicates whether the label is an alternate
1614 entry point, and if so, what kind. */
1615 enum label_kind
1616 {
1617 LABEL_NORMAL = 0, /* ordinary label */
1618 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1619 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1620 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1621 };
1622
1623 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1624
1625 /* Retrieve the kind of LABEL. */
1626 #define LABEL_KIND(LABEL) __extension__ \
1627 ({ __typeof (LABEL) const _label = (LABEL); \
1628 if (! LABEL_P (_label)) \
1629 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1630 __FUNCTION__); \
1631 (enum label_kind) ((_label->jump << 1) | _label->call); })
1632
1633 /* Set the kind of LABEL. */
1634 #define SET_LABEL_KIND(LABEL, KIND) do { \
1635 __typeof (LABEL) const _label = (LABEL); \
1636 const unsigned int _kind = (KIND); \
1637 if (! LABEL_P (_label)) \
1638 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1639 __FUNCTION__); \
1640 _label->jump = ((_kind >> 1) & 1); \
1641 _label->call = (_kind & 1); \
1642 } while (0)
1643
1644 #else
1645
1646 /* Retrieve the kind of LABEL. */
1647 #define LABEL_KIND(LABEL) \
1648 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1649
1650 /* Set the kind of LABEL. */
1651 #define SET_LABEL_KIND(LABEL, KIND) do { \
1652 rtx const _label = (LABEL); \
1653 const unsigned int _kind = (KIND); \
1654 _label->jump = ((_kind >> 1) & 1); \
1655 _label->call = (_kind & 1); \
1656 } while (0)
1657
1658 #endif /* rtl flag checking */
1659
1660 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1661
1662 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1663 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1664 be decremented and possibly the label can be deleted. */
1665 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1666
1667 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1668 {
1669 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1670 }
1671
1672 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1673 goes through all the LABEL_REFs that jump to that label. The chain
1674 eventually winds up at the CODE_LABEL: it is circular. */
1675 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1676
1677 /* Get the label that a LABEL_REF references. */
1678 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1679
1680 \f
1681 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1682 be used on RHS. Use SET_REGNO to change the value. */
1683 #define REGNO(RTX) (rhs_regno(RTX))
1684 #define SET_REGNO(RTX,N) \
1685 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1686 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1687
1688 /* ORIGINAL_REGNO holds the number the register originally had; for a
1689 pseudo register turned into a hard reg this will hold the old pseudo
1690 register number. */
1691 #define ORIGINAL_REGNO(RTX) \
1692 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1693
1694 /* Force the REGNO macro to only be used on the lhs. */
1695 static inline unsigned int
1696 rhs_regno (const_rtx x)
1697 {
1698 return XCUINT (x, 0, REG);
1699 }
1700
1701
1702 /* 1 if RTX is a reg or parallel that is the current function's return
1703 value. */
1704 #define REG_FUNCTION_VALUE_P(RTX) \
1705 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1706
1707 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1708 #define REG_USERVAR_P(RTX) \
1709 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1710
1711 /* 1 if RTX is a reg that holds a pointer value. */
1712 #define REG_POINTER(RTX) \
1713 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1714
1715 /* 1 if RTX is a mem that holds a pointer value. */
1716 #define MEM_POINTER(RTX) \
1717 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1718
1719 /* 1 if the given register REG corresponds to a hard register. */
1720 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1721
1722 /* 1 if the given register number REG_NO corresponds to a hard register. */
1723 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1724
1725 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1726 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1727 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1728
1729 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1730 elements actually needed to represent the constant.
1731 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1732 significant HOST_WIDE_INT. */
1733 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1734 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1735 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1736
1737 /* For a CONST_DOUBLE:
1738 #if TARGET_SUPPORTS_WIDE_INT == 0
1739 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1740 low-order word and ..._HIGH the high-order.
1741 #endif
1742 For a float, there is a REAL_VALUE_TYPE structure, and
1743 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1744 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1745 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1746 #define CONST_DOUBLE_REAL_VALUE(r) \
1747 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1748
1749 #define CONST_FIXED_VALUE(r) \
1750 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1751 #define CONST_FIXED_VALUE_HIGH(r) \
1752 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1753 #define CONST_FIXED_VALUE_LOW(r) \
1754 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1755
1756 /* For a CONST_VECTOR, return element #n. */
1757 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1758
1759 /* For a CONST_VECTOR, return the number of elements in a vector. */
1760 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1761
1762 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1763 SUBREG_BYTE extracts the byte-number. */
1764
1765 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1766 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1767
1768 /* in rtlanal.c */
1769 /* Return the right cost to give to an operation
1770 to make the cost of the corresponding register-to-register instruction
1771 N times that of a fast register-to-register instruction. */
1772 #define COSTS_N_INSNS(N) ((N) * 4)
1773
1774 /* Maximum cost of an rtl expression. This value has the special meaning
1775 not to use an rtx with this cost under any circumstances. */
1776 #define MAX_COST INT_MAX
1777
1778 /* A structure to hold all available cost information about an rtl
1779 expression. */
1780 struct full_rtx_costs
1781 {
1782 int speed;
1783 int size;
1784 };
1785
1786 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1787 static inline void
1788 init_costs_to_max (struct full_rtx_costs *c)
1789 {
1790 c->speed = MAX_COST;
1791 c->size = MAX_COST;
1792 }
1793
1794 /* Initialize a full_rtx_costs structure C to zero cost. */
1795 static inline void
1796 init_costs_to_zero (struct full_rtx_costs *c)
1797 {
1798 c->speed = 0;
1799 c->size = 0;
1800 }
1801
1802 /* Compare two full_rtx_costs structures A and B, returning true
1803 if A < B when optimizing for speed. */
1804 static inline bool
1805 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1806 bool speed)
1807 {
1808 if (speed)
1809 return (a->speed < b->speed
1810 || (a->speed == b->speed && a->size < b->size));
1811 else
1812 return (a->size < b->size
1813 || (a->size == b->size && a->speed < b->speed));
1814 }
1815
1816 /* Increase both members of the full_rtx_costs structure C by the
1817 cost of N insns. */
1818 static inline void
1819 costs_add_n_insns (struct full_rtx_costs *c, int n)
1820 {
1821 c->speed += COSTS_N_INSNS (n);
1822 c->size += COSTS_N_INSNS (n);
1823 }
1824
1825 /* Information about an address. This structure is supposed to be able
1826 to represent all supported target addresses. Please extend it if it
1827 is not yet general enough. */
1828 struct address_info {
1829 /* The mode of the value being addressed, or VOIDmode if this is
1830 a load-address operation with no known address mode. */
1831 enum machine_mode mode;
1832
1833 /* The address space. */
1834 addr_space_t as;
1835
1836 /* A pointer to the top-level address. */
1837 rtx *outer;
1838
1839 /* A pointer to the inner address, after all address mutations
1840 have been stripped from the top-level address. It can be one
1841 of the following:
1842
1843 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1844
1845 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1846 points to the step value, depending on whether the step is variable
1847 or constant respectively. SEGMENT is null.
1848
1849 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1850 with null fields evaluating to 0. */
1851 rtx *inner;
1852
1853 /* Components that make up *INNER. Each one may be null or nonnull.
1854 When nonnull, their meanings are as follows:
1855
1856 - *SEGMENT is the "segment" of memory to which the address refers.
1857 This value is entirely target-specific and is only called a "segment"
1858 because that's its most typical use. It contains exactly one UNSPEC,
1859 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1860 reloading.
1861
1862 - *BASE is a variable expression representing a base address.
1863 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1864
1865 - *INDEX is a variable expression representing an index value.
1866 It may be a scaled expression, such as a MULT. It has exactly
1867 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1868
1869 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1870 unmutated RTX_CONST_OBJ. */
1871 rtx *segment;
1872 rtx *base;
1873 rtx *index;
1874 rtx *disp;
1875
1876 rtx *segment_term;
1877 rtx *base_term;
1878 rtx *index_term;
1879 rtx *disp_term;
1880
1881 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1882 of BASE_TERM, otherwise it is null. */
1883 rtx *base_term2;
1884
1885 /* ADDRESS if this structure describes an address operand, MEM if
1886 it describes a MEM address. */
1887 enum rtx_code addr_outer_code;
1888
1889 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1890 enum rtx_code base_outer_code;
1891
1892 /* True if this is an RTX_AUTOINC address. */
1893 bool autoinc_p;
1894 };
1895
1896 /* This is used to bundle an rtx and a mode together so that the pair
1897 can be used with the wi:: routines. If we ever put modes into rtx
1898 integer constants, this should go away and then just pass an rtx in. */
1899 typedef std::pair <rtx, enum machine_mode> rtx_mode_t;
1900
1901 namespace wi
1902 {
1903 template <>
1904 struct int_traits <rtx_mode_t>
1905 {
1906 static const enum precision_type precision_type = VAR_PRECISION;
1907 static const bool host_dependent_precision = false;
1908 /* This ought to be true, except for the special case that BImode
1909 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1910 static const bool is_sign_extended = false;
1911 static unsigned int get_precision (const rtx_mode_t &);
1912 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1913 const rtx_mode_t &);
1914 };
1915 }
1916
1917 inline unsigned int
1918 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
1919 {
1920 return GET_MODE_PRECISION (x.second);
1921 }
1922
1923 inline wi::storage_ref
1924 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
1925 unsigned int precision,
1926 const rtx_mode_t &x)
1927 {
1928 gcc_checking_assert (precision == get_precision (x));
1929 switch (GET_CODE (x.first))
1930 {
1931 case CONST_INT:
1932 if (precision < HOST_BITS_PER_WIDE_INT)
1933 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
1934 targets is 1 rather than -1. */
1935 gcc_checking_assert (INTVAL (x.first)
1936 == sext_hwi (INTVAL (x.first), precision)
1937 || (x.second == BImode && INTVAL (x.first) == 1));
1938
1939 return wi::storage_ref (&INTVAL (x.first), 1, precision);
1940
1941 case CONST_WIDE_INT:
1942 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
1943 CONST_WIDE_INT_NUNITS (x.first), precision);
1944
1945 #if TARGET_SUPPORTS_WIDE_INT == 0
1946 case CONST_DOUBLE:
1947 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
1948 #endif
1949
1950 default:
1951 gcc_unreachable ();
1952 }
1953 }
1954
1955 namespace wi
1956 {
1957 hwi_with_prec shwi (HOST_WIDE_INT, enum machine_mode mode);
1958 wide_int min_value (enum machine_mode, signop);
1959 wide_int max_value (enum machine_mode, signop);
1960 }
1961
1962 inline wi::hwi_with_prec
1963 wi::shwi (HOST_WIDE_INT val, enum machine_mode mode)
1964 {
1965 return shwi (val, GET_MODE_PRECISION (mode));
1966 }
1967
1968 /* Produce the smallest number that is represented in MODE. The precision
1969 is taken from MODE and the sign from SGN. */
1970 inline wide_int
1971 wi::min_value (enum machine_mode mode, signop sgn)
1972 {
1973 return min_value (GET_MODE_PRECISION (mode), sgn);
1974 }
1975
1976 /* Produce the largest number that is represented in MODE. The precision
1977 is taken from MODE and the sign from SGN. */
1978 inline wide_int
1979 wi::max_value (enum machine_mode mode, signop sgn)
1980 {
1981 return max_value (GET_MODE_PRECISION (mode), sgn);
1982 }
1983
1984 extern void init_rtlanal (void);
1985 extern int rtx_cost (rtx, enum rtx_code, int, bool);
1986 extern int address_cost (rtx, enum machine_mode, addr_space_t, bool);
1987 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
1988 struct full_rtx_costs *);
1989 extern unsigned int subreg_lsb (const_rtx);
1990 extern unsigned int subreg_lsb_1 (enum machine_mode, enum machine_mode,
1991 unsigned int);
1992 extern unsigned int subreg_regno_offset (unsigned int, enum machine_mode,
1993 unsigned int, enum machine_mode);
1994 extern bool subreg_offset_representable_p (unsigned int, enum machine_mode,
1995 unsigned int, enum machine_mode);
1996 extern unsigned int subreg_regno (const_rtx);
1997 extern int simplify_subreg_regno (unsigned int, enum machine_mode,
1998 unsigned int, enum machine_mode);
1999 extern unsigned int subreg_nregs (const_rtx);
2000 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2001 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, enum machine_mode);
2002 extern unsigned int num_sign_bit_copies (const_rtx, enum machine_mode);
2003 extern bool constant_pool_constant_p (rtx);
2004 extern bool truncated_to_mode (enum machine_mode, const_rtx);
2005 extern int low_bitmask_len (enum machine_mode, unsigned HOST_WIDE_INT);
2006 extern void split_double (rtx, rtx *, rtx *);
2007 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2008 extern void decompose_address (struct address_info *, rtx *,
2009 enum machine_mode, addr_space_t, enum rtx_code);
2010 extern void decompose_lea_address (struct address_info *, rtx *);
2011 extern void decompose_mem_address (struct address_info *, rtx);
2012 extern void update_address (struct address_info *);
2013 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2014 extern enum rtx_code get_index_code (const struct address_info *);
2015
2016 #ifndef GENERATOR_FILE
2017 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2018 rather than size. */
2019
2020 static inline int
2021 set_rtx_cost (rtx x, bool speed_p)
2022 {
2023 return rtx_cost (x, INSN, 4, speed_p);
2024 }
2025
2026 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2027
2028 static inline void
2029 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2030 {
2031 get_full_rtx_cost (x, INSN, 4, c);
2032 }
2033
2034 /* Return the cost of moving X into a register, relative to the cost
2035 of a register move. SPEED_P is true if optimizing for speed rather
2036 than size. */
2037
2038 static inline int
2039 set_src_cost (rtx x, bool speed_p)
2040 {
2041 return rtx_cost (x, SET, 1, speed_p);
2042 }
2043
2044 /* Like set_src_cost, but return both the speed and size costs in C. */
2045
2046 static inline void
2047 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2048 {
2049 get_full_rtx_cost (x, SET, 1, c);
2050 }
2051 #endif
2052
2053 /* 1 if RTX is a subreg containing a reg that is already known to be
2054 sign- or zero-extended from the mode of the subreg to the mode of
2055 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2056 extension.
2057
2058 When used as a LHS, is means that this extension must be done
2059 when assigning to SUBREG_REG. */
2060
2061 #define SUBREG_PROMOTED_VAR_P(RTX) \
2062 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2063
2064 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2065 this gives the necessary extensions:
2066 0 - signed (SPR_SIGNED)
2067 1 - normal unsigned (SPR_UNSIGNED)
2068 2 - value is both sign and unsign extended for mode
2069 (SPR_SIGNED_AND_UNSIGNED).
2070 -1 - pointer unsigned, which most often can be handled like unsigned
2071 extension, except for generating instructions where we need to
2072 emit special code (ptr_extend insns) on some architectures
2073 (SPR_POINTER). */
2074
2075 const int SRP_POINTER = -1;
2076 const int SRP_SIGNED = 0;
2077 const int SRP_UNSIGNED = 1;
2078 const int SRP_SIGNED_AND_UNSIGNED = 2;
2079
2080 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2081 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2082 do { \
2083 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2084 (RTX), SUBREG); \
2085 switch (VAL) \
2086 { \
2087 case SRP_POINTER: \
2088 _rtx->volatil = 0; \
2089 _rtx->unchanging = 0; \
2090 break; \
2091 case SRP_SIGNED: \
2092 _rtx->volatil = 0; \
2093 _rtx->unchanging = 1; \
2094 break; \
2095 case SRP_UNSIGNED: \
2096 _rtx->volatil = 1; \
2097 _rtx->unchanging = 0; \
2098 break; \
2099 case SRP_SIGNED_AND_UNSIGNED: \
2100 _rtx->volatil = 1; \
2101 _rtx->unchanging = 1; \
2102 break; \
2103 } \
2104 } while (0)
2105
2106 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2107 including SRP_SIGNED_AND_UNSIGNED if promoted for
2108 both signed and unsigned. */
2109 #define SUBREG_PROMOTED_GET(RTX) \
2110 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2111 + (RTX)->unchanging - 1)
2112
2113 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2114 #define SUBREG_PROMOTED_SIGN(RTX) \
2115 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2116 : (RTX)->unchanging - 1)
2117
2118 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2119 for SIGNED type. */
2120 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2121 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2122
2123 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2124 for UNSIGNED type. */
2125 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2126 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2127
2128 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2129 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2130 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2131 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2132 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2133
2134 /* True if the subreg was generated by LRA for reload insns. Such
2135 subregs are valid only during LRA. */
2136 #define LRA_SUBREG_P(RTX) \
2137 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2138
2139 /* Access various components of an ASM_OPERANDS rtx. */
2140
2141 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2142 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2143 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2144 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2145 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2146 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2147 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2148 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2149 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2150 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2151 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2152 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2153 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2154 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2155 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2156 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2157 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2158 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2159
2160 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2161 #define MEM_READONLY_P(RTX) \
2162 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2163
2164 /* 1 if RTX is a mem and we should keep the alias set for this mem
2165 unchanged when we access a component. Set to 1, or example, when we
2166 are already in a non-addressable component of an aggregate. */
2167 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2168 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2169
2170 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2171 #define MEM_VOLATILE_P(RTX) \
2172 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2173 ASM_INPUT)->volatil)
2174
2175 /* 1 if RTX is a mem that cannot trap. */
2176 #define MEM_NOTRAP_P(RTX) \
2177 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2178
2179 /* The memory attribute block. We provide access macros for each value
2180 in the block and provide defaults if none specified. */
2181 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2182
2183 /* The register attribute block. We provide access macros for each value
2184 in the block and provide defaults if none specified. */
2185 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2186
2187 #ifndef GENERATOR_FILE
2188 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2189 set, and may alias anything. Otherwise, the MEM can only alias
2190 MEMs in a conflicting alias set. This value is set in a
2191 language-dependent manner in the front-end, and should not be
2192 altered in the back-end. These set numbers are tested with
2193 alias_sets_conflict_p. */
2194 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2195
2196 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2197 refer to part of a DECL. It may also be a COMPONENT_REF. */
2198 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2199
2200 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2201 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2202
2203 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2204 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2205
2206 /* For a MEM rtx, the address space. */
2207 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2208
2209 /* For a MEM rtx, true if its MEM_SIZE is known. */
2210 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2211
2212 /* For a MEM rtx, the size in bytes of the MEM. */
2213 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2214
2215 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2216 mode as a default when STRICT_ALIGNMENT, but not if not. */
2217 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2218 #else
2219 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2220 #endif
2221
2222 /* For a REG rtx, the decl it is known to refer to, if it is known to
2223 refer to part of a DECL. */
2224 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2225
2226 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2227 HOST_WIDE_INT. */
2228 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2229
2230 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2231 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2232 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2233 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2234 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2235 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2236 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2237 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2238
2239 /* 1 if RTX is a label_ref for a nonlocal label. */
2240 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2241 REG_LABEL_TARGET note. */
2242 #define LABEL_REF_NONLOCAL_P(RTX) \
2243 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2244
2245 /* 1 if RTX is a code_label that should always be considered to be needed. */
2246 #define LABEL_PRESERVE_P(RTX) \
2247 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2248
2249 /* During sched, 1 if RTX is an insn that must be scheduled together
2250 with the preceding insn. */
2251 #define SCHED_GROUP_P(RTX) \
2252 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2253 JUMP_INSN, CALL_INSN)->in_struct)
2254
2255 /* For a SET rtx, SET_DEST is the place that is set
2256 and SET_SRC is the value it is set to. */
2257 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2258 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2259 #define SET_IS_RETURN_P(RTX) \
2260 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2261
2262 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2263 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2264 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2265
2266 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2267 conditionally executing the code on, COND_EXEC_CODE is the code
2268 to execute if the condition is true. */
2269 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2270 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2271
2272 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2273 constants pool. */
2274 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2275 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2276
2277 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2278 tree constant pool. This information is private to varasm.c. */
2279 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2280 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2281 (RTX), SYMBOL_REF)->frame_related)
2282
2283 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2284 #define SYMBOL_REF_FLAG(RTX) \
2285 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2286
2287 /* 1 if RTX is a symbol_ref that has been the library function in
2288 emit_library_call. */
2289 #define SYMBOL_REF_USED(RTX) \
2290 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2291
2292 /* 1 if RTX is a symbol_ref for a weak symbol. */
2293 #define SYMBOL_REF_WEAK(RTX) \
2294 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2295
2296 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2297 SYMBOL_REF_CONSTANT. */
2298 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2299
2300 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2301 pool symbol. */
2302 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2303 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2304
2305 /* The tree (decl or constant) associated with the symbol, or null. */
2306 #define SYMBOL_REF_DECL(RTX) \
2307 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2308
2309 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2310 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2311 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2312
2313 /* The rtx constant pool entry for a symbol, or null. */
2314 #define SYMBOL_REF_CONSTANT(RTX) \
2315 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2316
2317 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2318 information derivable from the tree decl associated with this symbol.
2319 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2320 decl. In some cases this is a bug. But beyond that, it's nice to cache
2321 this information to avoid recomputing it. Finally, this allows space for
2322 the target to store more than one bit of information, as with
2323 SYMBOL_REF_FLAG. */
2324 #define SYMBOL_REF_FLAGS(RTX) \
2325 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2326 ->u2.symbol_ref_flags)
2327
2328 /* These flags are common enough to be defined for all targets. They
2329 are computed by the default version of targetm.encode_section_info. */
2330
2331 /* Set if this symbol is a function. */
2332 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2333 #define SYMBOL_REF_FUNCTION_P(RTX) \
2334 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2335 /* Set if targetm.binds_local_p is true. */
2336 #define SYMBOL_FLAG_LOCAL (1 << 1)
2337 #define SYMBOL_REF_LOCAL_P(RTX) \
2338 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2339 /* Set if targetm.in_small_data_p is true. */
2340 #define SYMBOL_FLAG_SMALL (1 << 2)
2341 #define SYMBOL_REF_SMALL_P(RTX) \
2342 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2343 /* The three-bit field at [5:3] is true for TLS variables; use
2344 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2345 #define SYMBOL_FLAG_TLS_SHIFT 3
2346 #define SYMBOL_REF_TLS_MODEL(RTX) \
2347 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2348 /* Set if this symbol is not defined in this translation unit. */
2349 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2350 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2351 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2352 /* Set if this symbol has a block_symbol structure associated with it. */
2353 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2354 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2355 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2356 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2357 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2358 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2359 #define SYMBOL_REF_ANCHOR_P(RTX) \
2360 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2361
2362 /* Subsequent bits are available for the target to use. */
2363 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2364 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2365
2366 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2367 structure to which the symbol belongs, or NULL if it has not been
2368 assigned a block. */
2369 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2370
2371 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2372 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2373 RTX has not yet been assigned to a block, or it has not been given an
2374 offset within that block. */
2375 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2376
2377 /* True if RTX is flagged to be a scheduling barrier. */
2378 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2379 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2380
2381 /* Indicate whether the machine has any sort of auto increment addressing.
2382 If not, we can avoid checking for REG_INC notes. */
2383
2384 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2385 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2386 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2387 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2388 #define AUTO_INC_DEC
2389 #endif
2390
2391 /* Define a macro to look for REG_INC notes,
2392 but save time on machines where they never exist. */
2393
2394 #ifdef AUTO_INC_DEC
2395 #define FIND_REG_INC_NOTE(INSN, REG) \
2396 ((REG) != NULL_RTX && REG_P ((REG)) \
2397 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2398 : find_reg_note ((INSN), REG_INC, (REG)))
2399 #else
2400 #define FIND_REG_INC_NOTE(INSN, REG) 0
2401 #endif
2402
2403 #ifndef HAVE_PRE_INCREMENT
2404 #define HAVE_PRE_INCREMENT 0
2405 #endif
2406
2407 #ifndef HAVE_PRE_DECREMENT
2408 #define HAVE_PRE_DECREMENT 0
2409 #endif
2410
2411 #ifndef HAVE_POST_INCREMENT
2412 #define HAVE_POST_INCREMENT 0
2413 #endif
2414
2415 #ifndef HAVE_POST_DECREMENT
2416 #define HAVE_POST_DECREMENT 0
2417 #endif
2418
2419 #ifndef HAVE_POST_MODIFY_DISP
2420 #define HAVE_POST_MODIFY_DISP 0
2421 #endif
2422
2423 #ifndef HAVE_POST_MODIFY_REG
2424 #define HAVE_POST_MODIFY_REG 0
2425 #endif
2426
2427 #ifndef HAVE_PRE_MODIFY_DISP
2428 #define HAVE_PRE_MODIFY_DISP 0
2429 #endif
2430
2431 #ifndef HAVE_PRE_MODIFY_REG
2432 #define HAVE_PRE_MODIFY_REG 0
2433 #endif
2434
2435
2436 /* Some architectures do not have complete pre/post increment/decrement
2437 instruction sets, or only move some modes efficiently. These macros
2438 allow us to tune autoincrement generation. */
2439
2440 #ifndef USE_LOAD_POST_INCREMENT
2441 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2442 #endif
2443
2444 #ifndef USE_LOAD_POST_DECREMENT
2445 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2446 #endif
2447
2448 #ifndef USE_LOAD_PRE_INCREMENT
2449 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2450 #endif
2451
2452 #ifndef USE_LOAD_PRE_DECREMENT
2453 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2454 #endif
2455
2456 #ifndef USE_STORE_POST_INCREMENT
2457 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2458 #endif
2459
2460 #ifndef USE_STORE_POST_DECREMENT
2461 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2462 #endif
2463
2464 #ifndef USE_STORE_PRE_INCREMENT
2465 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2466 #endif
2467
2468 #ifndef USE_STORE_PRE_DECREMENT
2469 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2470 #endif
2471 \f
2472 /* Nonzero when we are generating CONCATs. */
2473 extern int generating_concat_p;
2474
2475 /* Nonzero when we are expanding trees to RTL. */
2476 extern int currently_expanding_to_rtl;
2477
2478 /* Generally useful functions. */
2479
2480 /* In explow.c */
2481 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, enum machine_mode);
2482 extern rtx plus_constant (enum machine_mode, rtx, HOST_WIDE_INT, bool = false);
2483
2484 /* In rtl.c */
2485 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2486 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2487 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2488 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2489 #define const_wide_int_alloc(NWORDS) \
2490 rtx_alloc_v (CONST_WIDE_INT, \
2491 (sizeof (struct hwivec_def) \
2492 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2493
2494 extern rtvec rtvec_alloc (int);
2495 extern rtvec shallow_copy_rtvec (rtvec);
2496 extern bool shared_const_p (const_rtx);
2497 extern rtx copy_rtx (rtx);
2498 extern void dump_rtx_statistics (void);
2499
2500 /* In emit-rtl.c */
2501 extern rtx copy_rtx_if_shared (rtx);
2502
2503 /* In rtl.c */
2504 extern unsigned int rtx_size (const_rtx);
2505 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2506 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2507 extern int rtx_equal_p (const_rtx, const_rtx);
2508
2509 /* In emit-rtl.c */
2510 extern rtvec gen_rtvec_v (int, rtx *);
2511 extern rtvec gen_rtvec_v (int, rtx_insn **);
2512 extern rtx gen_reg_rtx (enum machine_mode);
2513 extern rtx gen_rtx_REG_offset (rtx, enum machine_mode, unsigned int, int);
2514 extern rtx gen_reg_rtx_offset (rtx, enum machine_mode, int);
2515 extern rtx gen_reg_rtx_and_attrs (rtx);
2516 extern rtx_code_label *gen_label_rtx (void);
2517 extern rtx gen_lowpart_common (enum machine_mode, rtx);
2518
2519 /* In cse.c */
2520 extern rtx gen_lowpart_if_possible (enum machine_mode, rtx);
2521
2522 /* In emit-rtl.c */
2523 extern rtx gen_highpart (enum machine_mode, rtx);
2524 extern rtx gen_highpart_mode (enum machine_mode, enum machine_mode, rtx);
2525 extern rtx operand_subword (rtx, unsigned int, int, enum machine_mode);
2526
2527 /* In emit-rtl.c */
2528 extern rtx operand_subword_force (rtx, unsigned int, enum machine_mode);
2529 extern bool paradoxical_subreg_p (const_rtx);
2530 extern int subreg_lowpart_p (const_rtx);
2531 extern unsigned int subreg_lowpart_offset (enum machine_mode,
2532 enum machine_mode);
2533 extern unsigned int subreg_highpart_offset (enum machine_mode,
2534 enum machine_mode);
2535 extern int byte_lowpart_offset (enum machine_mode, enum machine_mode);
2536 extern rtx make_safe_from (rtx, rtx);
2537 extern rtx convert_memory_address_addr_space (enum machine_mode, rtx,
2538 addr_space_t);
2539 #define convert_memory_address(to_mode,x) \
2540 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2541 extern const char *get_insn_name (int);
2542 extern rtx_insn *get_last_insn_anywhere (void);
2543 extern rtx_insn *get_first_nonnote_insn (void);
2544 extern rtx_insn *get_last_nonnote_insn (void);
2545 extern void start_sequence (void);
2546 extern void push_to_sequence (rtx_insn *);
2547 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2548 extern void end_sequence (void);
2549 #if TARGET_SUPPORTS_WIDE_INT == 0
2550 extern double_int rtx_to_double_int (const_rtx);
2551 #endif
2552 extern void cwi_output_hex (FILE *, const_rtx);
2553 #ifndef GENERATOR_FILE
2554 extern rtx immed_wide_int_const (const wide_int_ref &, enum machine_mode);
2555 #endif
2556 #if TARGET_SUPPORTS_WIDE_INT == 0
2557 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2558 enum machine_mode);
2559 #endif
2560
2561 /* In loop-iv.c */
2562
2563 extern rtx lowpart_subreg (enum machine_mode, rtx, enum machine_mode);
2564
2565 /* In varasm.c */
2566 extern rtx force_const_mem (enum machine_mode, rtx);
2567
2568 /* In varasm.c */
2569
2570 struct function;
2571 extern rtx get_pool_constant (const_rtx);
2572 extern rtx get_pool_constant_mark (rtx, bool *);
2573 extern enum machine_mode get_pool_mode (const_rtx);
2574 extern rtx simplify_subtraction (rtx);
2575 extern void decide_function_section (tree);
2576
2577 /* In function.c */
2578 extern rtx assign_stack_local (enum machine_mode, HOST_WIDE_INT, int);
2579 #define ASLK_REDUCE_ALIGN 1
2580 #define ASLK_RECORD_PAD 2
2581 extern rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int, int);
2582 extern rtx assign_stack_temp (enum machine_mode, HOST_WIDE_INT);
2583 extern rtx assign_stack_temp_for_type (enum machine_mode, HOST_WIDE_INT, tree);
2584 extern rtx assign_temp (tree, int, int);
2585
2586 /* In emit-rtl.c */
2587 extern rtx_insn *emit_insn_before (rtx, rtx);
2588 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2589 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2590 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2591 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2592 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2593 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2594 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2595 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2596 extern rtx_insn *emit_debug_insn_before (rtx, rtx);
2597 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2598 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2599 extern rtx_barrier *emit_barrier_before (rtx);
2600 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2601 extern rtx_note *emit_note_before (enum insn_note, rtx);
2602 extern rtx_insn *emit_insn_after (rtx, rtx);
2603 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2604 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2605 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2606 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2607 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2608 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2609 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2610 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2611 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2612 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2613 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2614 extern rtx_barrier *emit_barrier_after (rtx);
2615 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2616 extern rtx_note *emit_note_after (enum insn_note, rtx);
2617 extern rtx_insn *emit_insn (rtx);
2618 extern rtx_insn *emit_debug_insn (rtx);
2619 extern rtx_insn *emit_jump_insn (rtx);
2620 extern rtx_insn *emit_call_insn (rtx);
2621 extern rtx_insn *emit_label (rtx);
2622 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2623 extern rtx_barrier *emit_barrier (void);
2624 extern rtx_note *emit_note (enum insn_note);
2625 extern rtx_note *emit_note_copy (rtx_note *);
2626 extern rtx_insn *gen_clobber (rtx);
2627 extern rtx_insn *emit_clobber (rtx);
2628 extern rtx_insn *gen_use (rtx);
2629 extern rtx_insn *emit_use (rtx);
2630 extern rtx_insn *make_insn_raw (rtx);
2631 extern void add_function_usage_to (rtx, rtx);
2632 extern rtx_call_insn *last_call_insn (void);
2633 extern rtx_insn *previous_insn (rtx_insn *);
2634 extern rtx_insn *next_insn (rtx_insn *);
2635 extern rtx_insn *prev_nonnote_insn (rtx);
2636 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2637 extern rtx_insn *next_nonnote_insn (rtx);
2638 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2639 extern rtx_insn *prev_nondebug_insn (rtx);
2640 extern rtx_insn *next_nondebug_insn (rtx);
2641 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2642 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2643 extern rtx_insn *prev_real_insn (rtx);
2644 extern rtx_insn *next_real_insn (rtx);
2645 extern rtx_insn *prev_active_insn (rtx);
2646 extern rtx_insn *next_active_insn (rtx);
2647 extern int active_insn_p (const_rtx);
2648 extern rtx_insn *next_cc0_user (rtx);
2649 extern rtx_insn *prev_cc0_setter (rtx);
2650
2651 /* In emit-rtl.c */
2652 extern int insn_line (const rtx_insn *);
2653 extern const char * insn_file (const rtx_insn *);
2654 extern tree insn_scope (const rtx_insn *);
2655 extern expanded_location insn_location (const rtx_insn *);
2656 extern location_t prologue_location, epilogue_location;
2657
2658 /* In jump.c */
2659 extern enum rtx_code reverse_condition (enum rtx_code);
2660 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2661 extern enum rtx_code swap_condition (enum rtx_code);
2662 extern enum rtx_code unsigned_condition (enum rtx_code);
2663 extern enum rtx_code signed_condition (enum rtx_code);
2664 extern void mark_jump_label (rtx, rtx, int);
2665
2666 /* In jump.c */
2667 extern rtx_insn *delete_related_insns (rtx);
2668
2669 /* In recog.c */
2670 extern rtx *find_constant_term_loc (rtx *);
2671
2672 /* In emit-rtl.c */
2673 extern rtx_insn *try_split (rtx, rtx, int);
2674 extern int split_branch_probability;
2675
2676 /* In unknown file */
2677 extern rtx split_insns (rtx, rtx);
2678
2679 /* In simplify-rtx.c */
2680 extern rtx simplify_const_unary_operation (enum rtx_code, enum machine_mode,
2681 rtx, enum machine_mode);
2682 extern rtx simplify_unary_operation (enum rtx_code, enum machine_mode, rtx,
2683 enum machine_mode);
2684 extern rtx simplify_const_binary_operation (enum rtx_code, enum machine_mode,
2685 rtx, rtx);
2686 extern rtx simplify_binary_operation (enum rtx_code, enum machine_mode, rtx,
2687 rtx);
2688 extern rtx simplify_ternary_operation (enum rtx_code, enum machine_mode,
2689 enum machine_mode, rtx, rtx, rtx);
2690 extern rtx simplify_const_relational_operation (enum rtx_code,
2691 enum machine_mode, rtx, rtx);
2692 extern rtx simplify_relational_operation (enum rtx_code, enum machine_mode,
2693 enum machine_mode, rtx, rtx);
2694 extern rtx simplify_gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
2695 extern rtx simplify_gen_unary (enum rtx_code, enum machine_mode, rtx,
2696 enum machine_mode);
2697 extern rtx simplify_gen_ternary (enum rtx_code, enum machine_mode,
2698 enum machine_mode, rtx, rtx, rtx);
2699 extern rtx simplify_gen_relational (enum rtx_code, enum machine_mode,
2700 enum machine_mode, rtx, rtx);
2701 extern rtx simplify_subreg (enum machine_mode, rtx, enum machine_mode,
2702 unsigned int);
2703 extern rtx simplify_gen_subreg (enum machine_mode, rtx, enum machine_mode,
2704 unsigned int);
2705 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2706 rtx (*fn) (rtx, const_rtx, void *), void *);
2707 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2708 extern rtx simplify_rtx (const_rtx);
2709 extern rtx avoid_constant_pool_reference (rtx);
2710 extern rtx delegitimize_mem_from_attrs (rtx);
2711 extern bool mode_signbit_p (enum machine_mode, const_rtx);
2712 extern bool val_signbit_p (enum machine_mode, unsigned HOST_WIDE_INT);
2713 extern bool val_signbit_known_set_p (enum machine_mode,
2714 unsigned HOST_WIDE_INT);
2715 extern bool val_signbit_known_clear_p (enum machine_mode,
2716 unsigned HOST_WIDE_INT);
2717
2718 /* In reginfo.c */
2719 extern enum machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2720 bool);
2721
2722 /* In emit-rtl.c */
2723 extern rtx set_for_reg_notes (rtx);
2724 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2725 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2726 extern void set_insn_deleted (rtx);
2727
2728 /* Functions in rtlanal.c */
2729
2730 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2731
2732 /* Handle the cheap and common cases inline for performance. */
2733
2734 inline rtx single_set (const rtx_insn *insn)
2735 {
2736 if (!INSN_P (insn))
2737 return NULL_RTX;
2738
2739 if (GET_CODE (PATTERN (insn)) == SET)
2740 return PATTERN (insn);
2741
2742 /* Defer to the more expensive case. */
2743 return single_set_2 (insn, PATTERN (insn));
2744 }
2745
2746 extern enum machine_mode get_address_mode (rtx mem);
2747 extern int rtx_addr_can_trap_p (const_rtx);
2748 extern bool nonzero_address_p (const_rtx);
2749 extern int rtx_unstable_p (const_rtx);
2750 extern bool rtx_varies_p (const_rtx, bool);
2751 extern bool rtx_addr_varies_p (const_rtx, bool);
2752 extern rtx get_call_rtx_from (rtx);
2753 extern HOST_WIDE_INT get_integer_term (const_rtx);
2754 extern rtx get_related_value (const_rtx);
2755 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2756 extern void split_const (rtx, rtx *, rtx *);
2757 extern bool unsigned_reg_p (rtx);
2758 extern int reg_mentioned_p (const_rtx, const_rtx);
2759 extern int count_occurrences (const_rtx, const_rtx, int);
2760 extern int reg_referenced_p (const_rtx, const_rtx);
2761 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2762 extern int reg_set_between_p (const_rtx, const_rtx, const_rtx);
2763 extern int commutative_operand_precedence (rtx);
2764 extern bool swap_commutative_operands_p (rtx, rtx);
2765 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2766 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2767 extern int modified_in_p (const_rtx, const_rtx);
2768 extern int reg_set_p (const_rtx, const_rtx);
2769 extern int multiple_sets (const_rtx);
2770 extern int set_noop_p (const_rtx);
2771 extern int noop_move_p (const_rtx);
2772 extern int refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2773 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2774 extern const_rtx set_of (const_rtx, const_rtx);
2775 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2776 extern void record_hard_reg_uses (rtx *, void *);
2777 #ifdef HARD_CONST
2778 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2779 extern void find_all_hard_reg_sets (const_rtx, HARD_REG_SET *, bool);
2780 #endif
2781 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2782 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2783 extern int dead_or_set_p (const_rtx, const_rtx);
2784 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2785 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2786 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2787 extern rtx find_reg_equal_equiv_note (const_rtx);
2788 extern rtx find_constant_src (const rtx_insn *);
2789 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2790 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2791 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2792 extern void add_reg_note (rtx, enum reg_note, rtx);
2793 extern void add_int_reg_note (rtx, enum reg_note, int);
2794 extern void add_shallow_copy_of_reg_note (rtx, rtx);
2795 extern void remove_note (rtx, const_rtx);
2796 extern void remove_reg_equal_equiv_notes (rtx);
2797 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2798 extern int side_effects_p (const_rtx);
2799 extern int volatile_refs_p (const_rtx);
2800 extern int volatile_insn_p (const_rtx);
2801 extern int may_trap_p_1 (const_rtx, unsigned);
2802 extern int may_trap_p (const_rtx);
2803 extern int may_trap_or_fault_p (const_rtx);
2804 extern bool can_throw_internal (const_rtx);
2805 extern bool can_throw_external (const_rtx);
2806 extern bool insn_could_throw_p (const_rtx);
2807 extern bool insn_nothrow_p (const_rtx);
2808 extern bool can_nonlocal_goto (const_rtx);
2809 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2810 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2811 extern int inequality_comparisons_p (const_rtx);
2812 extern rtx replace_rtx (rtx, rtx, rtx);
2813 extern void replace_label (rtx *, rtx, rtx, bool);
2814 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2815 extern bool rtx_referenced_p (const_rtx, const_rtx);
2816 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2817 extern int computed_jump_p (const_rtx);
2818 extern bool tls_referenced_p (const_rtx);
2819
2820 typedef int (*rtx_function) (rtx *, void *);
2821 extern int for_each_rtx (rtx *, rtx_function, void *);
2822 extern int for_each_rtx_in_insn (rtx_insn **, rtx_function, void *);
2823
2824 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2825 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2826 NULL. The callback is passed the same opaque ARG passed to
2827 for_each_inc_dec. Return zero to continue looking for other
2828 autoinc operations or any other value to interrupt the traversal and
2829 return that value to the caller of for_each_inc_dec. */
2830 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2831 rtx srcoff, void *arg);
2832 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2833
2834 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2835 rtx *, rtx *);
2836 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2837 rtx_equal_p_callback_function);
2838
2839 typedef int (*hash_rtx_callback_function) (const_rtx, enum machine_mode, rtx *,
2840 enum machine_mode *);
2841 extern unsigned hash_rtx_cb (const_rtx, enum machine_mode, int *, int *,
2842 bool, hash_rtx_callback_function);
2843
2844 extern rtx regno_use_in (unsigned int, rtx);
2845 extern int auto_inc_p (const_rtx);
2846 extern int in_expr_list_p (const_rtx, const_rtx);
2847 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2848 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2849 extern int loc_mentioned_in_p (rtx *, const_rtx);
2850 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2851 extern bool keep_with_call_p (const rtx_insn *);
2852 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2853 extern int insn_rtx_cost (rtx, bool);
2854
2855 /* Given an insn and condition, return a canonical description of
2856 the test being made. */
2857 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2858 int, int);
2859
2860 /* Given a JUMP_INSN, return a canonical description of the test
2861 being made. */
2862 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2863
2864 /* Information about a subreg of a hard register. */
2865 struct subreg_info
2866 {
2867 /* Offset of first hard register involved in the subreg. */
2868 int offset;
2869 /* Number of hard registers involved in the subreg. */
2870 int nregs;
2871 /* Whether this subreg can be represented as a hard reg with the new
2872 mode. */
2873 bool representable_p;
2874 };
2875
2876 extern void subreg_get_info (unsigned int, enum machine_mode,
2877 unsigned int, enum machine_mode,
2878 struct subreg_info *);
2879
2880 /* lists.c */
2881
2882 extern void free_EXPR_LIST_list (rtx_expr_list **);
2883 extern void free_INSN_LIST_list (rtx_insn_list **);
2884 extern void free_EXPR_LIST_node (rtx);
2885 extern void free_INSN_LIST_node (rtx);
2886 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2887 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2888 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2889 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2890 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2891 extern rtx remove_list_elem (rtx, rtx *);
2892 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2893 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2894
2895
2896 /* reginfo.c */
2897
2898 /* Resize reg info. */
2899 extern bool resize_reg_info (void);
2900 /* Free up register info memory. */
2901 extern void free_reg_info (void);
2902 extern void init_subregs_of_mode (void);
2903 extern void finish_subregs_of_mode (void);
2904
2905 /* recog.c */
2906 extern rtx extract_asm_operands (rtx);
2907 extern int asm_noperands (const_rtx);
2908 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2909 enum machine_mode *, location_t *);
2910 extern void get_referenced_operands (const char *, bool *, unsigned int);
2911
2912 extern enum reg_class reg_preferred_class (int);
2913 extern enum reg_class reg_alternate_class (int);
2914 extern enum reg_class reg_allocno_class (int);
2915 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
2916 enum reg_class);
2917
2918 extern void split_all_insns (void);
2919 extern unsigned int split_all_insns_noflow (void);
2920
2921 #define MAX_SAVED_CONST_INT 64
2922 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
2923
2924 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
2925 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
2926 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
2927 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
2928 extern GTY(()) rtx const_true_rtx;
2929
2930 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
2931
2932 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
2933 same as VOIDmode. */
2934
2935 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
2936
2937 /* Likewise, for the constants 1 and 2 and -1. */
2938
2939 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
2940 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
2941 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
2942
2943 extern GTY(()) rtx pc_rtx;
2944 extern GTY(()) rtx cc0_rtx;
2945 extern GTY(()) rtx ret_rtx;
2946 extern GTY(()) rtx simple_return_rtx;
2947
2948 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
2949 is used to represent the frame pointer. This is because the
2950 hard frame pointer and the automatic variables are separated by an amount
2951 that cannot be determined until after register allocation. We can assume
2952 that in this case ELIMINABLE_REGS will be defined, one action of which
2953 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
2954 #ifndef HARD_FRAME_POINTER_REGNUM
2955 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
2956 #endif
2957
2958 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
2959 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
2960 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
2961 #endif
2962
2963 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
2964 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
2965 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
2966 #endif
2967
2968 /* Index labels for global_rtl. */
2969 enum global_rtl_index
2970 {
2971 GR_STACK_POINTER,
2972 GR_FRAME_POINTER,
2973 /* For register elimination to work properly these hard_frame_pointer_rtx,
2974 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
2975 the same register. */
2976 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2977 GR_ARG_POINTER = GR_FRAME_POINTER,
2978 #endif
2979 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
2980 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
2981 #else
2982 GR_HARD_FRAME_POINTER,
2983 #endif
2984 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2985 #if HARD_FRAME_POINTER_IS_ARG_POINTER
2986 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
2987 #else
2988 GR_ARG_POINTER,
2989 #endif
2990 #endif
2991 GR_VIRTUAL_INCOMING_ARGS,
2992 GR_VIRTUAL_STACK_ARGS,
2993 GR_VIRTUAL_STACK_DYNAMIC,
2994 GR_VIRTUAL_OUTGOING_ARGS,
2995 GR_VIRTUAL_CFA,
2996 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
2997
2998 GR_MAX
2999 };
3000
3001 /* Target-dependent globals. */
3002 struct GTY(()) target_rtl {
3003 /* All references to the hard registers in global_rtl_index go through
3004 these unique rtl objects. On machines where the frame-pointer and
3005 arg-pointer are the same register, they use the same unique object.
3006
3007 After register allocation, other rtl objects which used to be pseudo-regs
3008 may be clobbered to refer to the frame-pointer register.
3009 But references that were originally to the frame-pointer can be
3010 distinguished from the others because they contain frame_pointer_rtx.
3011
3012 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3013 tricky: until register elimination has taken place hard_frame_pointer_rtx
3014 should be used if it is being set, and frame_pointer_rtx otherwise. After
3015 register elimination hard_frame_pointer_rtx should always be used.
3016 On machines where the two registers are same (most) then these are the
3017 same. */
3018 rtx x_global_rtl[GR_MAX];
3019
3020 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3021 rtx x_pic_offset_table_rtx;
3022
3023 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3024 This is used to implement __builtin_return_address for some machines;
3025 see for instance the MIPS port. */
3026 rtx x_return_address_pointer_rtx;
3027
3028 /* Commonly used RTL for hard registers. These objects are not
3029 necessarily unique, so we allocate them separately from global_rtl.
3030 They are initialized once per compilation unit, then copied into
3031 regno_reg_rtx at the beginning of each function. */
3032 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3033
3034 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3035 rtx x_top_of_stack[MAX_MACHINE_MODE];
3036
3037 /* Static hunks of RTL used by the aliasing code; these are treated
3038 as persistent to avoid unnecessary RTL allocations. */
3039 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3040
3041 /* The default memory attributes for each mode. */
3042 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3043
3044 /* Track if RTL has been initialized. */
3045 bool target_specific_initialized;
3046 };
3047
3048 extern GTY(()) struct target_rtl default_target_rtl;
3049 #if SWITCHABLE_TARGET
3050 extern struct target_rtl *this_target_rtl;
3051 #else
3052 #define this_target_rtl (&default_target_rtl)
3053 #endif
3054
3055 #define global_rtl \
3056 (this_target_rtl->x_global_rtl)
3057 #define pic_offset_table_rtx \
3058 (this_target_rtl->x_pic_offset_table_rtx)
3059 #define return_address_pointer_rtx \
3060 (this_target_rtl->x_return_address_pointer_rtx)
3061 #define top_of_stack \
3062 (this_target_rtl->x_top_of_stack)
3063 #define mode_mem_attrs \
3064 (this_target_rtl->x_mode_mem_attrs)
3065
3066 /* All references to certain hard regs, except those created
3067 by allocating pseudo regs into them (when that's possible),
3068 go through these unique rtx objects. */
3069 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3070 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3071 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3072 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3073
3074 #ifndef GENERATOR_FILE
3075 /* Return the attributes of a MEM rtx. */
3076 static inline struct mem_attrs *
3077 get_mem_attrs (const_rtx x)
3078 {
3079 struct mem_attrs *attrs;
3080
3081 attrs = MEM_ATTRS (x);
3082 if (!attrs)
3083 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3084 return attrs;
3085 }
3086 #endif
3087
3088 /* Include the RTL generation functions. */
3089
3090 #ifndef GENERATOR_FILE
3091 #include "genrtl.h"
3092 #undef gen_rtx_ASM_INPUT
3093 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3094 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3095 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3096 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3097 #endif
3098
3099 /* There are some RTL codes that require special attention; the
3100 generation functions included above do the raw handling. If you
3101 add to this list, modify special_rtx in gengenrtl.c as well. */
3102
3103 extern rtx_expr_list *gen_rtx_EXPR_LIST (enum machine_mode, rtx, rtx);
3104 extern rtx_insn_list *gen_rtx_INSN_LIST (enum machine_mode, rtx, rtx);
3105 extern rtx_insn *
3106 gen_rtx_INSN (enum machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3107 basic_block bb, rtx pattern, int location, int code,
3108 rtx reg_notes);
3109 extern rtx gen_rtx_CONST_INT (enum machine_mode, HOST_WIDE_INT);
3110 extern rtx gen_rtx_CONST_VECTOR (enum machine_mode, rtvec);
3111 extern rtx gen_raw_REG (enum machine_mode, int);
3112 extern rtx gen_rtx_REG (enum machine_mode, unsigned);
3113 extern rtx gen_rtx_SUBREG (enum machine_mode, rtx, int);
3114 extern rtx gen_rtx_MEM (enum machine_mode, rtx);
3115 extern rtx gen_rtx_VAR_LOCATION (enum machine_mode, tree, rtx,
3116 enum var_init_status);
3117
3118 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3119
3120 /* Virtual registers are used during RTL generation to refer to locations into
3121 the stack frame when the actual location isn't known until RTL generation
3122 is complete. The routine instantiate_virtual_regs replaces these with
3123 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3124 a constant. */
3125
3126 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3127
3128 /* This points to the first word of the incoming arguments passed on the stack,
3129 either by the caller or by the callee when pretending it was passed by the
3130 caller. */
3131
3132 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3133
3134 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3135
3136 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3137 variable on the stack. Otherwise, it points to the first variable on
3138 the stack. */
3139
3140 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3141
3142 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3143
3144 /* This points to the location of dynamically-allocated memory on the stack
3145 immediately after the stack pointer has been adjusted by the amount
3146 desired. */
3147
3148 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3149
3150 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3151
3152 /* This points to the location in the stack at which outgoing arguments should
3153 be written when the stack is pre-pushed (arguments pushed using push
3154 insns always use sp). */
3155
3156 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3157
3158 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3159
3160 /* This points to the Canonical Frame Address of the function. This
3161 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3162 but is calculated relative to the arg pointer for simplicity; the
3163 frame pointer nor stack pointer are necessarily fixed relative to
3164 the CFA until after reload. */
3165
3166 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3167
3168 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3169
3170 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3171
3172 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3173 when finalized. */
3174
3175 #define virtual_preferred_stack_boundary_rtx \
3176 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3177
3178 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3179 ((FIRST_VIRTUAL_REGISTER) + 5)
3180
3181 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3182
3183 /* Nonzero if REGNUM is a pointer into the stack frame. */
3184 #define REGNO_PTR_FRAME_P(REGNUM) \
3185 ((REGNUM) == STACK_POINTER_REGNUM \
3186 || (REGNUM) == FRAME_POINTER_REGNUM \
3187 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3188 || (REGNUM) == ARG_POINTER_REGNUM \
3189 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3190 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3191
3192 /* REGNUM never really appearing in the INSN stream. */
3193 #define INVALID_REGNUM (~(unsigned int) 0)
3194
3195 /* REGNUM for which no debug information can be generated. */
3196 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3197
3198 extern rtx output_constant_def (tree, int);
3199 extern rtx lookup_constant_def (tree);
3200
3201 /* Nonzero after end of reload pass.
3202 Set to 1 or 0 by reload1.c. */
3203
3204 extern int reload_completed;
3205
3206 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3207 extern int epilogue_completed;
3208
3209 /* Set to 1 while reload_as_needed is operating.
3210 Required by some machines to handle any generated moves differently. */
3211
3212 extern int reload_in_progress;
3213
3214 /* Set to 1 while in lra. */
3215 extern int lra_in_progress;
3216
3217 /* This macro indicates whether you may create a new
3218 pseudo-register. */
3219
3220 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3221
3222 #ifdef STACK_REGS
3223 /* Nonzero after end of regstack pass.
3224 Set to 1 or 0 by reg-stack.c. */
3225 extern int regstack_completed;
3226 #endif
3227
3228 /* If this is nonzero, we do not bother generating VOLATILE
3229 around volatile memory references, and we are willing to
3230 output indirect addresses. If cse is to follow, we reject
3231 indirect addresses so a useful potential cse is generated;
3232 if it is used only once, instruction combination will produce
3233 the same indirect address eventually. */
3234 extern int cse_not_expected;
3235
3236 /* Translates rtx code to tree code, for those codes needed by
3237 REAL_ARITHMETIC. The function returns an int because the caller may not
3238 know what `enum tree_code' means. */
3239
3240 extern int rtx_to_tree_code (enum rtx_code);
3241
3242 /* In cse.c */
3243 extern int delete_trivially_dead_insns (rtx_insn *, int);
3244 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3245 extern unsigned hash_rtx (const_rtx x, enum machine_mode, int *, int *, bool);
3246
3247 /* In dse.c */
3248 extern bool check_for_inc_dec (rtx_insn *insn);
3249
3250 /* In jump.c */
3251 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3252 extern bool jump_to_label_p (const rtx_insn *);
3253 extern int condjump_p (const rtx_insn *);
3254 extern int any_condjump_p (const rtx_insn *);
3255 extern int any_uncondjump_p (const rtx_insn *);
3256 extern rtx pc_set (const rtx_insn *);
3257 extern rtx condjump_label (const rtx_insn *);
3258 extern int simplejump_p (const rtx_insn *);
3259 extern int returnjump_p (const rtx_insn *);
3260 extern int eh_returnjump_p (rtx_insn *);
3261 extern int onlyjump_p (const rtx_insn *);
3262 extern int only_sets_cc0_p (const_rtx);
3263 extern int sets_cc0_p (const_rtx);
3264 extern int invert_jump_1 (rtx_insn *, rtx);
3265 extern int invert_jump (rtx_insn *, rtx, int);
3266 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3267 extern int true_regnum (const_rtx);
3268 extern unsigned int reg_or_subregno (const_rtx);
3269 extern int redirect_jump_1 (rtx, rtx);
3270 extern void redirect_jump_2 (rtx, rtx, rtx, int, int);
3271 extern int redirect_jump (rtx, rtx, int);
3272 extern void rebuild_jump_labels (rtx_insn *);
3273 extern void rebuild_jump_labels_chain (rtx_insn *);
3274 extern rtx reversed_comparison (const_rtx, enum machine_mode);
3275 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3276 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3277 const_rtx, const_rtx);
3278 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3279 extern int condjump_in_parallel_p (const rtx_insn *);
3280
3281 /* In emit-rtl.c. */
3282 extern int max_reg_num (void);
3283 extern int max_label_num (void);
3284 extern int get_first_label_num (void);
3285 extern void maybe_set_first_label_num (rtx);
3286 extern void delete_insns_since (rtx_insn *);
3287 extern void mark_reg_pointer (rtx, int);
3288 extern void mark_user_reg (rtx);
3289 extern void reset_used_flags (rtx);
3290 extern void set_used_flags (rtx);
3291 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3292 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3293 extern int get_max_insn_count (void);
3294 extern int in_sequence_p (void);
3295 extern void init_emit (void);
3296 extern void init_emit_regs (void);
3297 extern void init_derived_machine_modes (void);
3298 extern void init_emit_once (void);
3299 extern void push_topmost_sequence (void);
3300 extern void pop_topmost_sequence (void);
3301 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3302 extern unsigned int unshare_all_rtl (void);
3303 extern void unshare_all_rtl_again (rtx_insn *);
3304 extern void unshare_all_rtl_in_chain (rtx_insn *);
3305 extern void verify_rtl_sharing (void);
3306 extern void add_insn (rtx_insn *);
3307 extern void add_insn_before (rtx, rtx, basic_block);
3308 extern void add_insn_after (rtx, rtx, basic_block);
3309 extern void remove_insn (rtx);
3310 extern rtx_insn *emit (rtx);
3311 extern void delete_insn (rtx);
3312 extern rtx_insn *entry_of_function (void);
3313 extern void emit_insn_at_entry (rtx);
3314 extern void delete_insn_chain (rtx, rtx, bool);
3315 extern rtx_insn *unlink_insn_chain (rtx_insn *, rtx_insn *);
3316 extern void delete_insn_and_edges (rtx_insn *);
3317 extern rtx gen_lowpart_SUBREG (enum machine_mode, rtx);
3318 extern rtx gen_const_mem (enum machine_mode, rtx);
3319 extern rtx gen_frame_mem (enum machine_mode, rtx);
3320 extern rtx gen_tmp_stack_mem (enum machine_mode, rtx);
3321 extern bool validate_subreg (enum machine_mode, enum machine_mode,
3322 const_rtx, unsigned int);
3323
3324 /* In combine.c */
3325 extern unsigned int extended_count (const_rtx, enum machine_mode, int);
3326 extern rtx remove_death (unsigned int, rtx_insn *);
3327 extern void dump_combine_stats (FILE *);
3328 extern void dump_combine_total_stats (FILE *);
3329 extern rtx make_compound_operation (rtx, enum rtx_code);
3330
3331 /* In cfgcleanup.c */
3332 extern void delete_dead_jumptables (void);
3333
3334 /* In sched-rgn.c. */
3335 extern void schedule_insns (void);
3336
3337 /* In sched-ebb.c. */
3338 extern void schedule_ebbs (void);
3339
3340 /* In sel-sched-dump.c. */
3341 extern void sel_sched_fix_param (const char *param, const char *val);
3342
3343 /* In print-rtl.c */
3344 extern const char *print_rtx_head;
3345 extern void debug (const rtx_def &ref);
3346 extern void debug (const rtx_def *ptr);
3347 extern void debug_rtx (const_rtx);
3348 extern void debug_rtx_list (const rtx_insn *, int);
3349 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3350 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3351 extern void print_mem_expr (FILE *, const_tree);
3352 extern void print_rtl (FILE *, const_rtx);
3353 extern void print_simple_rtl (FILE *, const_rtx);
3354 extern int print_rtl_single (FILE *, const_rtx);
3355 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3356 extern void print_inline_rtx (FILE *, const_rtx, int);
3357
3358 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3359 not be in sched-vis.c but in rtl.c, because they are not only used
3360 by the scheduler anymore but for all "slim" RTL dumping. */
3361 extern void dump_value_slim (FILE *, const_rtx, int);
3362 extern void dump_insn_slim (FILE *, const_rtx);
3363 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3364 int, int);
3365 extern void print_value (pretty_printer *, const_rtx, int);
3366 extern void print_pattern (pretty_printer *, const_rtx, int);
3367 extern void print_insn (pretty_printer *, const_rtx, int);
3368 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3369 extern const char *str_pattern_slim (const_rtx);
3370
3371 /* In function.c */
3372 extern void reposition_prologue_and_epilogue_notes (void);
3373 extern int prologue_epilogue_contains (const_rtx);
3374 extern int sibcall_epilogue_contains (const_rtx);
3375 extern void update_temp_slot_address (rtx, rtx);
3376 extern void maybe_copy_prologue_epilogue_insn (rtx, rtx);
3377 extern void set_return_jump_label (rtx);
3378
3379 /* In stmt.c */
3380 extern void expand_null_return (void);
3381 extern void expand_naked_return (void);
3382 extern void emit_jump (rtx);
3383
3384 /* In expr.c */
3385 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3386 unsigned int, int);
3387 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3388 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3389
3390 /* In cfgrtl.c */
3391 extern void print_rtl_with_bb (FILE *, const rtx_insn *, int);
3392 extern rtx_insn *duplicate_insn_chain (rtx_insn *, rtx_insn *);
3393
3394 /* In expmed.c */
3395 extern void init_expmed (void);
3396 extern void expand_inc (rtx, rtx);
3397 extern void expand_dec (rtx, rtx);
3398
3399 /* In lower-subreg.c */
3400 extern void init_lower_subreg (void);
3401
3402 /* In gcse.c */
3403 extern bool can_copy_p (enum machine_mode);
3404 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3405 extern rtx fis_get_condition (rtx_insn *);
3406
3407 /* In ira.c */
3408 #ifdef HARD_CONST
3409 extern HARD_REG_SET eliminable_regset;
3410 #endif
3411 extern void mark_elimination (int, int);
3412
3413 /* In reginfo.c */
3414 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3415 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3416 extern void globalize_reg (tree, int);
3417 extern void init_reg_modes_target (void);
3418 extern void init_regs (void);
3419 extern void reinit_regs (void);
3420 extern void init_fake_stack_mems (void);
3421 extern void save_register_info (void);
3422 extern void init_reg_sets (void);
3423 extern void regclass (rtx, int);
3424 extern void reg_scan (rtx_insn *, unsigned int);
3425 extern void fix_register (const char *, int, int);
3426 extern bool invalid_mode_change_p (unsigned int, enum reg_class);
3427
3428 /* In reload1.c */
3429 extern int function_invariant_p (const_rtx);
3430
3431 /* In calls.c */
3432 enum libcall_type
3433 {
3434 LCT_NORMAL = 0,
3435 LCT_CONST = 1,
3436 LCT_PURE = 2,
3437 LCT_NORETURN = 3,
3438 LCT_THROW = 4,
3439 LCT_RETURNS_TWICE = 5
3440 };
3441
3442 extern void emit_library_call (rtx, enum libcall_type, enum machine_mode, int,
3443 ...);
3444 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3445 enum machine_mode, int, ...);
3446
3447 /* In varasm.c */
3448 extern void init_varasm_once (void);
3449
3450 extern rtx make_debug_expr_from_rtl (const_rtx);
3451
3452 /* In read-rtl.c */
3453 extern bool read_rtx (const char *, rtx *);
3454
3455 /* In alias.c */
3456 extern rtx canon_rtx (rtx);
3457 extern int true_dependence (const_rtx, enum machine_mode, const_rtx);
3458 extern rtx get_addr (rtx);
3459 extern int canon_true_dependence (const_rtx, enum machine_mode, rtx,
3460 const_rtx, rtx);
3461 extern int read_dependence (const_rtx, const_rtx);
3462 extern int anti_dependence (const_rtx, const_rtx);
3463 extern int canon_anti_dependence (const_rtx, bool,
3464 const_rtx, enum machine_mode, rtx);
3465 extern int output_dependence (const_rtx, const_rtx);
3466 extern int may_alias_p (const_rtx, const_rtx);
3467 extern void init_alias_target (void);
3468 extern void init_alias_analysis (void);
3469 extern void end_alias_analysis (void);
3470 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3471 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3472 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3473 extern bool may_be_sp_based_p (rtx);
3474 extern rtx gen_hard_reg_clobber (enum machine_mode, unsigned int);
3475 extern rtx get_reg_known_value (unsigned int);
3476 extern bool get_reg_known_equiv_p (unsigned int);
3477 extern rtx get_reg_base_value (unsigned int);
3478
3479 #ifdef STACK_REGS
3480 extern int stack_regs_mentioned (const_rtx insn);
3481 #endif
3482
3483 /* In toplev.c */
3484 extern GTY(()) rtx stack_limit_rtx;
3485
3486 /* In predict.c */
3487 extern void invert_br_probabilities (rtx);
3488 extern bool expensive_function_p (int);
3489
3490 /* In var-tracking.c */
3491 extern unsigned int variable_tracking_main (void);
3492
3493 /* In stor-layout.c. */
3494 extern void get_mode_bounds (enum machine_mode, int, enum machine_mode,
3495 rtx *, rtx *);
3496
3497 /* In loop-iv.c */
3498 extern rtx canon_condition (rtx);
3499 extern void simplify_using_condition (rtx, rtx *, bitmap);
3500
3501 /* In final.c */
3502 extern unsigned int compute_alignments (void);
3503 extern void update_alignments (vec<rtx> &);
3504 extern int asm_str_count (const char *templ);
3505 \f
3506 struct rtl_hooks
3507 {
3508 rtx (*gen_lowpart) (enum machine_mode, rtx);
3509 rtx (*gen_lowpart_no_emit) (enum machine_mode, rtx);
3510 rtx (*reg_nonzero_bits) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3511 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3512 rtx (*reg_num_sign_bit_copies) (const_rtx, enum machine_mode, const_rtx, enum machine_mode,
3513 unsigned int, unsigned int *);
3514 bool (*reg_truncated_to_mode) (enum machine_mode, const_rtx);
3515
3516 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3517 };
3518
3519 /* Each pass can provide its own. */
3520 extern struct rtl_hooks rtl_hooks;
3521
3522 /* ... but then it has to restore these. */
3523 extern const struct rtl_hooks general_rtl_hooks;
3524
3525 /* Keep this for the nonce. */
3526 #define gen_lowpart rtl_hooks.gen_lowpart
3527
3528 extern void insn_locations_init (void);
3529 extern void insn_locations_finalize (void);
3530 extern void set_curr_insn_location (location_t);
3531 extern location_t curr_insn_location (void);
3532 extern bool optimize_insn_for_size_p (void);
3533 extern bool optimize_insn_for_speed_p (void);
3534
3535 /* rtl-error.c */
3536 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3537 ATTRIBUTE_NORETURN;
3538 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3539 ATTRIBUTE_NORETURN;
3540
3541 #define fatal_insn(msgid, insn) \
3542 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3543 #define fatal_insn_not_found(insn) \
3544 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3545
3546 /* reginfo.c */
3547 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3548
3549
3550 #endif /* ! GCC_RTL_H */