coretypes.h: Include input.h and as-a.h.
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "machmode.h"
28 #include "signop.h"
29 #include "wide-int.h"
30 #include "double-int.h"
31 #include "real.h"
32 #include "fixed-value.h"
33 #include "statistics.h"
34 #include "vec.h"
35 #include "hash-table.h"
36 #include "hash-set.h"
37 #include "input.h"
38 #include "is-a.h"
39 #endif /* GENERATOR_FILE */
40
41 #include "alias.h"
42 #include "flags.h"
43
44 /* Value used by some passes to "recognize" noop moves as valid
45 instructions. */
46 #define NOOP_MOVE_INSN_CODE INT_MAX
47
48 /* Register Transfer Language EXPRESSIONS CODES */
49
50 #define RTX_CODE enum rtx_code
51 enum rtx_code {
52
53 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
54 #include "rtl.def" /* rtl expressions are documented here */
55 #undef DEF_RTL_EXPR
56
57 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
58 NUM_RTX_CODE.
59 Assumes default enum value assignment. */
60
61 /* The cast here, saves many elsewhere. */
62 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
63
64 /* Similar, but since generator files get more entries... */
65 #ifdef GENERATOR_FILE
66 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
67 #endif
68
69 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
70
71 enum rtx_class {
72 /* We check bit 0-1 of some rtx class codes in the predicates below. */
73
74 /* Bit 0 = comparison if 0, arithmetic is 1
75 Bit 1 = 1 if commutative. */
76 RTX_COMPARE, /* 0 */
77 RTX_COMM_COMPARE,
78 RTX_BIN_ARITH,
79 RTX_COMM_ARITH,
80
81 /* Must follow the four preceding values. */
82 RTX_UNARY, /* 4 */
83
84 RTX_EXTRA,
85 RTX_MATCH,
86 RTX_INSN,
87
88 /* Bit 0 = 1 if constant. */
89 RTX_OBJ, /* 8 */
90 RTX_CONST_OBJ,
91
92 RTX_TERNARY,
93 RTX_BITFIELD_OPS,
94 RTX_AUTOINC
95 };
96
97 #define RTX_OBJ_MASK (~1)
98 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
99 #define RTX_COMPARE_MASK (~1)
100 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
101 #define RTX_ARITHMETIC_MASK (~1)
102 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
103 #define RTX_BINARY_MASK (~3)
104 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
105 #define RTX_COMMUTATIVE_MASK (~2)
106 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
107 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
108
109 extern const unsigned char rtx_length[NUM_RTX_CODE];
110 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
111
112 extern const char * const rtx_name[NUM_RTX_CODE];
113 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
114
115 extern const char * const rtx_format[NUM_RTX_CODE];
116 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
117
118 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
119 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
120
121 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
122 and NEXT_INSN fields). */
123 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
124
125 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
126 extern const unsigned char rtx_next[NUM_RTX_CODE];
127 \f
128 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
129 relative to which the offsets are calculated, as explained in rtl.def. */
130 struct addr_diff_vec_flags
131 {
132 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
133 unsigned min_align: 8;
134 /* Flags: */
135 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
136 unsigned min_after_vec: 1; /* minimum address target label is
137 after the ADDR_DIFF_VEC. */
138 unsigned max_after_vec: 1; /* maximum address target label is
139 after the ADDR_DIFF_VEC. */
140 unsigned min_after_base: 1; /* minimum address target label is
141 after BASE. */
142 unsigned max_after_base: 1; /* maximum address target label is
143 after BASE. */
144 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
145 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
146 unsigned : 2;
147 unsigned scale : 8;
148 };
149
150 /* Structure used to describe the attributes of a MEM. These are hashed
151 so MEMs that the same attributes share a data structure. This means
152 they cannot be modified in place. */
153 struct GTY(()) mem_attrs
154 {
155 /* The expression that the MEM accesses, or null if not known.
156 This expression might be larger than the memory reference itself.
157 (In other words, the MEM might access only part of the object.) */
158 tree expr;
159
160 /* The offset of the memory reference from the start of EXPR.
161 Only valid if OFFSET_KNOWN_P. */
162 HOST_WIDE_INT offset;
163
164 /* The size of the memory reference in bytes. Only valid if
165 SIZE_KNOWN_P. */
166 HOST_WIDE_INT size;
167
168 /* The alias set of the memory reference. */
169 alias_set_type alias;
170
171 /* The alignment of the reference in bits. Always a multiple of
172 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
173 than the memory reference itself. */
174 unsigned int align;
175
176 /* The address space that the memory reference uses. */
177 unsigned char addrspace;
178
179 /* True if OFFSET is known. */
180 bool offset_known_p;
181
182 /* True if SIZE is known. */
183 bool size_known_p;
184 };
185
186 /* Structure used to describe the attributes of a REG in similar way as
187 mem_attrs does for MEM above. Note that the OFFSET field is calculated
188 in the same way as for mem_attrs, rather than in the same way as a
189 SUBREG_BYTE. For example, if a big-endian target stores a byte
190 object in the low part of a 4-byte register, the OFFSET field
191 will be -3 rather than 0. */
192
193 struct GTY((for_user)) reg_attrs {
194 tree decl; /* decl corresponding to REG. */
195 HOST_WIDE_INT offset; /* Offset from start of DECL. */
196 };
197
198 /* Common union for an element of an rtx. */
199
200 union rtunion
201 {
202 int rt_int;
203 unsigned int rt_uint;
204 const char *rt_str;
205 rtx rt_rtx;
206 rtvec rt_rtvec;
207 machine_mode rt_type;
208 addr_diff_vec_flags rt_addr_diff_vec_flags;
209 struct cselib_val *rt_cselib;
210 tree rt_tree;
211 basic_block rt_bb;
212 mem_attrs *rt_mem;
213 struct constant_descriptor_rtx *rt_constant;
214 struct dw_cfi_node *rt_cfi;
215 };
216
217 /* Describes the properties of a REG. */
218 struct GTY(()) reg_info {
219 /* The value of REGNO. */
220 unsigned int regno;
221
222 /* The value of REG_NREGS. */
223 unsigned int nregs : 8;
224 unsigned int unused : 24;
225
226 /* The value of REG_ATTRS. */
227 reg_attrs *attrs;
228 };
229
230 /* This structure remembers the position of a SYMBOL_REF within an
231 object_block structure. A SYMBOL_REF only provides this information
232 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
233 struct GTY(()) block_symbol {
234 /* The usual SYMBOL_REF fields. */
235 rtunion GTY ((skip)) fld[2];
236
237 /* The block that contains this object. */
238 struct object_block *block;
239
240 /* The offset of this object from the start of its block. It is negative
241 if the symbol has not yet been assigned an offset. */
242 HOST_WIDE_INT offset;
243 };
244
245 /* Describes a group of objects that are to be placed together in such
246 a way that their relative positions are known. */
247 struct GTY((for_user)) object_block {
248 /* The section in which these objects should be placed. */
249 section *sect;
250
251 /* The alignment of the first object, measured in bits. */
252 unsigned int alignment;
253
254 /* The total size of the objects, measured in bytes. */
255 HOST_WIDE_INT size;
256
257 /* The SYMBOL_REFs for each object. The vector is sorted in
258 order of increasing offset and the following conditions will
259 hold for each element X:
260
261 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
262 !SYMBOL_REF_ANCHOR_P (X)
263 SYMBOL_REF_BLOCK (X) == [address of this structure]
264 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
265 vec<rtx, va_gc> *objects;
266
267 /* All the anchor SYMBOL_REFs used to address these objects, sorted
268 in order of increasing offset, and then increasing TLS model.
269 The following conditions will hold for each element X in this vector:
270
271 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
272 SYMBOL_REF_ANCHOR_P (X)
273 SYMBOL_REF_BLOCK (X) == [address of this structure]
274 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
275 vec<rtx, va_gc> *anchors;
276 };
277
278 struct GTY((variable_size)) hwivec_def {
279 HOST_WIDE_INT elem[1];
280 };
281
282 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
283 #define CWI_GET_NUM_ELEM(RTX) \
284 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
285 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
286 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
287
288 /* RTL expression ("rtx"). */
289
290 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
291 field for for gengtype to recognize that inheritance is occurring,
292 so that all subclasses are redirected to the traversal hook for the
293 base class.
294 However, all of the fields are in the base class, and special-casing
295 is at work. Hence we use desc and tag of 0, generating a switch
296 statement of the form:
297 switch (0)
298 {
299 case 0: // all the work happens here
300 }
301 in order to work with the existing special-casing in gengtype. */
302
303 struct GTY((desc("0"), tag("0"),
304 chain_next ("RTX_NEXT (&%h)"),
305 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
306 /* The kind of expression this is. */
307 ENUM_BITFIELD(rtx_code) code: 16;
308
309 /* The kind of value the expression has. */
310 ENUM_BITFIELD(machine_mode) mode : 8;
311
312 /* 1 in a MEM if we should keep the alias set for this mem unchanged
313 when we access a component.
314 1 in a JUMP_INSN if it is a crossing jump.
315 1 in a CALL_INSN if it is a sibling call.
316 1 in a SET that is for a return.
317 In a CODE_LABEL, part of the two-bit alternate entry field.
318 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
319 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
320 1 in a SUBREG generated by LRA for reload insns.
321 1 in a CALL for calls instrumented by Pointer Bounds Checker. */
322 unsigned int jump : 1;
323 /* In a CODE_LABEL, part of the two-bit alternate entry field.
324 1 in a MEM if it cannot trap.
325 1 in a CALL_INSN logically equivalent to
326 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
327 unsigned int call : 1;
328 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
329 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
330 1 in a SYMBOL_REF if it addresses something in the per-function
331 constants pool.
332 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
333 1 in a NOTE, or EXPR_LIST for a const call.
334 1 in a JUMP_INSN of an annulling branch.
335 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
336 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
337 1 in a clobber temporarily created for LRA. */
338 unsigned int unchanging : 1;
339 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
340 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
341 if it has been deleted.
342 1 in a REG expression if corresponds to a variable declared by the user,
343 0 for an internally generated temporary.
344 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
345 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
346 non-local label.
347 In a SYMBOL_REF, this flag is used for machine-specific purposes.
348 In a PREFETCH, this flag indicates that it should be considered a scheduling
349 barrier.
350 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
362
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure. */
365 unsigned int in_struct : 1;
366 /* At the end of RTL generation, 1 if this rtx is used. This is used for
367 copying shared structure. See `unshare_all_rtl'.
368 In a REG, this is not needed for that purpose, and used instead
369 in `leaf_renumber_regs_insn'.
370 1 in a SYMBOL_REF, means that emit_library_call
371 has used it as the function.
372 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
373 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
374 unsigned int used : 1;
375 /* 1 in an INSN or a SET if this rtx is related to the call frame,
376 either changing how we compute the frame address or saving and
377 restoring registers in the prologue and epilogue.
378 1 in a REG or MEM if it is a pointer.
379 1 in a SYMBOL_REF if it addresses something in the per-function
380 constant string pool.
381 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
382 unsigned frame_related : 1;
383 /* 1 in a REG or PARALLEL that is the current function's return value.
384 1 in a SYMBOL_REF for a weak symbol.
385 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
386 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
387 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
388 unsigned return_val : 1;
389
390 union {
391 /* The final union field is aligned to 64 bits on LP64 hosts,
392 giving a 32-bit gap after the fields above. We optimize the
393 layout for that case and use the gap for extra code-specific
394 information. */
395
396 /* The ORIGINAL_REGNO of a REG. */
397 unsigned int original_regno;
398
399 /* The INSN_UID of an RTX_INSN-class code. */
400 int insn_uid;
401
402 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
403 unsigned int symbol_ref_flags;
404
405 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
406 enum var_init_status var_location_status;
407
408 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
409 HOST_WIDE_INTs in the hwivec_def. */
410 unsigned int num_elem;
411 } GTY ((skip)) u2;
412
413 /* The first element of the operands of this rtx.
414 The number of operands and their types are controlled
415 by the `code' field, according to rtl.def. */
416 union u {
417 rtunion fld[1];
418 HOST_WIDE_INT hwint[1];
419 struct reg_info reg;
420 struct block_symbol block_sym;
421 struct real_value rv;
422 struct fixed_value fv;
423 struct hwivec_def hwiv;
424 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
425 };
426
427 /* A node for constructing singly-linked lists of rtx. */
428
429 class GTY(()) rtx_expr_list : public rtx_def
430 {
431 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
432
433 public:
434 /* Get next in list. */
435 rtx_expr_list *next () const;
436
437 /* Get at the underlying rtx. */
438 rtx element () const;
439 };
440
441 template <>
442 template <>
443 inline bool
444 is_a_helper <rtx_expr_list *>::test (rtx rt)
445 {
446 return rt->code == EXPR_LIST;
447 }
448
449 class GTY(()) rtx_insn_list : public rtx_def
450 {
451 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
452
453 This is an instance of:
454
455 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
456
457 i.e. a node for constructing singly-linked lists of rtx_insn *, where
458 the list is "external" to the insn (as opposed to the doubly-linked
459 list embedded within rtx_insn itself). */
460
461 public:
462 /* Get next in list. */
463 rtx_insn_list *next () const;
464
465 /* Get at the underlying instruction. */
466 rtx_insn *insn () const;
467
468 };
469
470 template <>
471 template <>
472 inline bool
473 is_a_helper <rtx_insn_list *>::test (rtx rt)
474 {
475 return rt->code == INSN_LIST;
476 }
477
478 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
479 typically (but not always) of rtx_insn *, used in the late passes. */
480
481 class GTY(()) rtx_sequence : public rtx_def
482 {
483 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
484
485 public:
486 /* Get number of elements in sequence. */
487 int len () const;
488
489 /* Get i-th element of the sequence. */
490 rtx element (int index) const;
491
492 /* Get i-th element of the sequence, with a checked cast to
493 rtx_insn *. */
494 rtx_insn *insn (int index) const;
495 };
496
497 template <>
498 template <>
499 inline bool
500 is_a_helper <rtx_sequence *>::test (rtx rt)
501 {
502 return rt->code == SEQUENCE;
503 }
504
505 template <>
506 template <>
507 inline bool
508 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
509 {
510 return rt->code == SEQUENCE;
511 }
512
513 class GTY(()) rtx_insn : public rtx_def
514 {
515 public:
516 /* No extra fields, but adds the invariant:
517
518 (INSN_P (X)
519 || NOTE_P (X)
520 || JUMP_TABLE_DATA_P (X)
521 || BARRIER_P (X)
522 || LABEL_P (X))
523
524 i.e. that we must be able to use the following:
525 INSN_UID ()
526 NEXT_INSN ()
527 PREV_INSN ()
528 i.e. we have an rtx that has an INSN_UID field and can be part of
529 a linked list of insns.
530 */
531
532 /* Returns true if this insn has been deleted. */
533
534 bool deleted () const { return volatil; }
535
536 /* Mark this insn as deleted. */
537
538 void set_deleted () { volatil = true; }
539
540 /* Mark this insn as not deleted. */
541
542 void set_undeleted () { volatil = false; }
543 };
544
545 /* Subclasses of rtx_insn. */
546
547 class GTY(()) rtx_debug_insn : public rtx_insn
548 {
549 /* No extra fields, but adds the invariant:
550 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
551 i.e. an annotation for tracking variable assignments.
552
553 This is an instance of:
554 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_nonjump_insn : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
562 i.e an instruction that cannot jump.
563
564 This is an instance of:
565 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
566 from rtl.def. */
567 };
568
569 class GTY(()) rtx_jump_insn : public rtx_insn
570 {
571 public:
572 /* No extra fields, but adds the invariant:
573 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
574 i.e. an instruction that can possibly jump.
575
576 This is an instance of:
577 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
578 from rtl.def. */
579
580 /* Returns jump target of this instruction. The returned value is not
581 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
582 expression. Also, when the code label is marked "deleted", it is
583 replaced by a NOTE. In some cases the value is NULL_RTX. */
584
585 inline rtx jump_label () const;
586
587 /* Returns jump target cast to rtx_code_label *. */
588
589 inline rtx_code_label *jump_target () const;
590
591 /* Set jump target. */
592
593 inline void set_jump_target (rtx_code_label *);
594 };
595
596 class GTY(()) rtx_call_insn : public rtx_insn
597 {
598 /* No extra fields, but adds the invariant:
599 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
600 i.e. an instruction that can possibly call a subroutine
601 but which will not change which instruction comes next
602 in the current function.
603
604 This is an instance of:
605 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
606 from rtl.def. */
607 };
608
609 class GTY(()) rtx_jump_table_data : public rtx_insn
610 {
611 /* No extra fields, but adds the invariant:
612 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
613 i.e. a data for a jump table, considered an instruction for
614 historical reasons.
615
616 This is an instance of:
617 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
618 from rtl.def. */
619
620 public:
621
622 /* This can be either:
623
624 (a) a table of absolute jumps, in which case PATTERN (this) is an
625 ADDR_VEC with arg 0 a vector of labels, or
626
627 (b) a table of relative jumps (e.g. for -fPIC), in which case
628 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
629 arg 1 the vector of labels.
630
631 This method gets the underlying vec. */
632
633 inline rtvec get_labels () const;
634 };
635
636 class GTY(()) rtx_barrier : public rtx_insn
637 {
638 /* No extra fields, but adds the invariant:
639 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
640 i.e. a marker that indicates that control will not flow through.
641
642 This is an instance of:
643 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
644 from rtl.def. */
645 };
646
647 class GTY(()) rtx_code_label : public rtx_insn
648 {
649 /* No extra fields, but adds the invariant:
650 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
651 i.e. a label in the assembler.
652
653 This is an instance of:
654 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
655 from rtl.def. */
656 };
657
658 class GTY(()) rtx_note : public rtx_insn
659 {
660 /* No extra fields, but adds the invariant:
661 NOTE_P(X) aka (GET_CODE (X) == NOTE)
662 i.e. a note about the corresponding source code.
663
664 This is an instance of:
665 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
666 from rtl.def. */
667 };
668
669 /* The size in bytes of an rtx header (code, mode and flags). */
670 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
671
672 /* The size in bytes of an rtx with code CODE. */
673 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
674
675 #define NULL_RTX (rtx) 0
676
677 /* The "next" and "previous" RTX, relative to this one. */
678
679 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
680 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
681
682 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
683 */
684 #define RTX_PREV(X) ((INSN_P (X) \
685 || NOTE_P (X) \
686 || JUMP_TABLE_DATA_P (X) \
687 || BARRIER_P (X) \
688 || LABEL_P (X)) \
689 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
690 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
691 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
692
693 /* Define macros to access the `code' field of the rtx. */
694
695 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
696 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
697
698 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
699 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
700
701 /* RTL vector. These appear inside RTX's when there is a need
702 for a variable number of things. The principle use is inside
703 PARALLEL expressions. */
704
705 struct GTY(()) rtvec_def {
706 int num_elem; /* number of elements */
707 rtx GTY ((length ("%h.num_elem"))) elem[1];
708 };
709
710 #define NULL_RTVEC (rtvec) 0
711
712 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
713 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
714
715 /* Predicate yielding nonzero iff X is an rtx for a register. */
716 #define REG_P(X) (GET_CODE (X) == REG)
717
718 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
719 #define MEM_P(X) (GET_CODE (X) == MEM)
720
721 #if TARGET_SUPPORTS_WIDE_INT
722
723 /* Match CONST_*s that can represent compile-time constant integers. */
724 #define CASE_CONST_SCALAR_INT \
725 case CONST_INT: \
726 case CONST_WIDE_INT
727
728 /* Match CONST_*s for which pointer equality corresponds to value
729 equality. */
730 #define CASE_CONST_UNIQUE \
731 case CONST_INT: \
732 case CONST_WIDE_INT: \
733 case CONST_DOUBLE: \
734 case CONST_FIXED
735
736 /* Match all CONST_* rtxes. */
737 #define CASE_CONST_ANY \
738 case CONST_INT: \
739 case CONST_WIDE_INT: \
740 case CONST_DOUBLE: \
741 case CONST_FIXED: \
742 case CONST_VECTOR
743
744 #else
745
746 /* Match CONST_*s that can represent compile-time constant integers. */
747 #define CASE_CONST_SCALAR_INT \
748 case CONST_INT: \
749 case CONST_DOUBLE
750
751 /* Match CONST_*s for which pointer equality corresponds to value
752 equality. */
753 #define CASE_CONST_UNIQUE \
754 case CONST_INT: \
755 case CONST_DOUBLE: \
756 case CONST_FIXED
757
758 /* Match all CONST_* rtxes. */
759 #define CASE_CONST_ANY \
760 case CONST_INT: \
761 case CONST_DOUBLE: \
762 case CONST_FIXED: \
763 case CONST_VECTOR
764 #endif
765
766 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
767 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
768
769 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
770 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
771
772 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
773 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
774
775 /* Predicate yielding true iff X is an rtx for a double-int
776 or floating point constant. */
777 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
778
779 /* Predicate yielding true iff X is an rtx for a double-int. */
780 #define CONST_DOUBLE_AS_INT_P(X) \
781 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
782
783 /* Predicate yielding true iff X is an rtx for a integer const. */
784 #if TARGET_SUPPORTS_WIDE_INT
785 #define CONST_SCALAR_INT_P(X) \
786 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
787 #else
788 #define CONST_SCALAR_INT_P(X) \
789 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
790 #endif
791
792 /* Predicate yielding true iff X is an rtx for a double-int. */
793 #define CONST_DOUBLE_AS_FLOAT_P(X) \
794 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
795
796 /* Predicate yielding nonzero iff X is a label insn. */
797 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
798
799 /* Predicate yielding nonzero iff X is a jump insn. */
800 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
801
802 /* Predicate yielding nonzero iff X is a call insn. */
803 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
804
805 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
806 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
807
808 /* Predicate yielding nonzero iff X is a debug note/insn. */
809 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
810
811 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
812 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
813
814 /* Nonzero if DEBUG_INSN_P may possibly hold. */
815 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
816
817 /* Predicate yielding nonzero iff X is a real insn. */
818 #define INSN_P(X) \
819 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
820
821 /* Predicate yielding nonzero iff X is a note insn. */
822 #define NOTE_P(X) (GET_CODE (X) == NOTE)
823
824 /* Predicate yielding nonzero iff X is a barrier insn. */
825 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
826
827 /* Predicate yielding nonzero iff X is a data for a jump table. */
828 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
829
830 /* Predicate yielding nonzero iff RTX is a subreg. */
831 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
832
833 template <>
834 template <>
835 inline bool
836 is_a_helper <rtx_insn *>::test (rtx rt)
837 {
838 return (INSN_P (rt)
839 || NOTE_P (rt)
840 || JUMP_TABLE_DATA_P (rt)
841 || BARRIER_P (rt)
842 || LABEL_P (rt));
843 }
844
845 template <>
846 template <>
847 inline bool
848 is_a_helper <const rtx_insn *>::test (const_rtx rt)
849 {
850 return (INSN_P (rt)
851 || NOTE_P (rt)
852 || JUMP_TABLE_DATA_P (rt)
853 || BARRIER_P (rt)
854 || LABEL_P (rt));
855 }
856
857 template <>
858 template <>
859 inline bool
860 is_a_helper <rtx_debug_insn *>::test (rtx rt)
861 {
862 return DEBUG_INSN_P (rt);
863 }
864
865 template <>
866 template <>
867 inline bool
868 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
869 {
870 return NONJUMP_INSN_P (rt);
871 }
872
873 template <>
874 template <>
875 inline bool
876 is_a_helper <rtx_jump_insn *>::test (rtx rt)
877 {
878 return JUMP_P (rt);
879 }
880
881 template <>
882 template <>
883 inline bool
884 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
885 {
886 return JUMP_P (insn);
887 }
888
889 template <>
890 template <>
891 inline bool
892 is_a_helper <rtx_call_insn *>::test (rtx rt)
893 {
894 return CALL_P (rt);
895 }
896
897 template <>
898 template <>
899 inline bool
900 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
901 {
902 return CALL_P (insn);
903 }
904
905 template <>
906 template <>
907 inline bool
908 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
909 {
910 return JUMP_TABLE_DATA_P (rt);
911 }
912
913 template <>
914 template <>
915 inline bool
916 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
917 {
918 return JUMP_TABLE_DATA_P (insn);
919 }
920
921 template <>
922 template <>
923 inline bool
924 is_a_helper <rtx_barrier *>::test (rtx rt)
925 {
926 return BARRIER_P (rt);
927 }
928
929 template <>
930 template <>
931 inline bool
932 is_a_helper <rtx_code_label *>::test (rtx rt)
933 {
934 return LABEL_P (rt);
935 }
936
937 template <>
938 template <>
939 inline bool
940 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
941 {
942 return LABEL_P (insn);
943 }
944
945 template <>
946 template <>
947 inline bool
948 is_a_helper <rtx_note *>::test (rtx rt)
949 {
950 return NOTE_P (rt);
951 }
952
953 template <>
954 template <>
955 inline bool
956 is_a_helper <rtx_note *>::test (rtx_insn *insn)
957 {
958 return NOTE_P (insn);
959 }
960
961 /* Predicate yielding nonzero iff X is a return or simple_return. */
962 #define ANY_RETURN_P(X) \
963 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
964
965 /* 1 if X is a unary operator. */
966
967 #define UNARY_P(X) \
968 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
969
970 /* 1 if X is a binary operator. */
971
972 #define BINARY_P(X) \
973 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
974
975 /* 1 if X is an arithmetic operator. */
976
977 #define ARITHMETIC_P(X) \
978 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
979 == RTX_ARITHMETIC_RESULT)
980
981 /* 1 if X is an arithmetic operator. */
982
983 #define COMMUTATIVE_ARITH_P(X) \
984 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
985
986 /* 1 if X is a commutative arithmetic operator or a comparison operator.
987 These two are sometimes selected together because it is possible to
988 swap the two operands. */
989
990 #define SWAPPABLE_OPERANDS_P(X) \
991 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
992 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
993 | (1 << RTX_COMPARE)))
994
995 /* 1 if X is a non-commutative operator. */
996
997 #define NON_COMMUTATIVE_P(X) \
998 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
999 == RTX_NON_COMMUTATIVE_RESULT)
1000
1001 /* 1 if X is a commutative operator on integers. */
1002
1003 #define COMMUTATIVE_P(X) \
1004 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1005 == RTX_COMMUTATIVE_RESULT)
1006
1007 /* 1 if X is a relational operator. */
1008
1009 #define COMPARISON_P(X) \
1010 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1011
1012 /* 1 if X is a constant value that is an integer. */
1013
1014 #define CONSTANT_P(X) \
1015 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1016
1017 /* 1 if X can be used to represent an object. */
1018 #define OBJECT_P(X) \
1019 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1020
1021 /* General accessor macros for accessing the fields of an rtx. */
1022
1023 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1024 /* The bit with a star outside the statement expr and an & inside is
1025 so that N can be evaluated only once. */
1026 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1027 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1028 const enum rtx_code _code = GET_CODE (_rtx); \
1029 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1030 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1031 __FUNCTION__); \
1032 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1033 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1034 __FUNCTION__); \
1035 &_rtx->u.fld[_n]; }))
1036
1037 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1038 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1039 const enum rtx_code _code = GET_CODE (_rtx); \
1040 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1041 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1042 __FUNCTION__); \
1043 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1044 && GET_RTX_FORMAT (_code)[_n] != C2) \
1045 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1046 __FUNCTION__); \
1047 &_rtx->u.fld[_n]; }))
1048
1049 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1050 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1051 if (GET_CODE (_rtx) != (C)) \
1052 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1053 __FUNCTION__); \
1054 &_rtx->u.fld[_n]; }))
1055
1056 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1057 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1058 const enum rtx_code _code = GET_CODE (_rtx); \
1059 if (_code != (C1) && _code != (C2)) \
1060 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1061 __FUNCTION__); \
1062 &_rtx->u.fld[_n]; }))
1063
1064 #define RTVEC_ELT(RTVEC, I) __extension__ \
1065 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1066 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1067 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1068 __FUNCTION__); \
1069 &_rtvec->elem[_i]; }))
1070
1071 #define XWINT(RTX, N) __extension__ \
1072 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1073 const enum rtx_code _code = GET_CODE (_rtx); \
1074 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1075 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1076 __FUNCTION__); \
1077 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1078 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1079 __FUNCTION__); \
1080 &_rtx->u.hwint[_n]; }))
1081
1082 #define CWI_ELT(RTX, I) __extension__ \
1083 (*({ __typeof (RTX) const _cwi = (RTX); \
1084 int _max = CWI_GET_NUM_ELEM (_cwi); \
1085 const int _i = (I); \
1086 if (_i < 0 || _i >= _max) \
1087 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1088 __FUNCTION__); \
1089 &_cwi->u.hwiv.elem[_i]; }))
1090
1091 #define XCWINT(RTX, N, C) __extension__ \
1092 (*({ __typeof (RTX) const _rtx = (RTX); \
1093 if (GET_CODE (_rtx) != (C)) \
1094 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1095 __FUNCTION__); \
1096 &_rtx->u.hwint[N]; }))
1097
1098 #define XCMWINT(RTX, N, C, M) __extension__ \
1099 (*({ __typeof (RTX) const _rtx = (RTX); \
1100 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1101 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1102 __LINE__, __FUNCTION__); \
1103 &_rtx->u.hwint[N]; }))
1104
1105 #define XCNMPRV(RTX, C, M) __extension__ \
1106 ({ __typeof (RTX) const _rtx = (RTX); \
1107 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1108 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1109 __LINE__, __FUNCTION__); \
1110 &_rtx->u.rv; })
1111
1112 #define XCNMPFV(RTX, C, M) __extension__ \
1113 ({ __typeof (RTX) const _rtx = (RTX); \
1114 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1115 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1116 __LINE__, __FUNCTION__); \
1117 &_rtx->u.fv; })
1118
1119 #define REG_CHECK(RTX) __extension__ \
1120 ({ __typeof (RTX) const _rtx = (RTX); \
1121 if (GET_CODE (_rtx) != REG) \
1122 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1123 __FUNCTION__); \
1124 &_rtx->u.reg; })
1125
1126 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1127 ({ __typeof (RTX) const _symbol = (RTX); \
1128 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1129 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1130 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1131 __FUNCTION__); \
1132 &_symbol->u.block_sym; })
1133
1134 #define HWIVEC_CHECK(RTX,C) __extension__ \
1135 ({ __typeof (RTX) const _symbol = (RTX); \
1136 RTL_CHECKC1 (_symbol, 0, C); \
1137 &_symbol->u.hwiv; })
1138
1139 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1140 const char *)
1141 ATTRIBUTE_NORETURN;
1142 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1143 const char *)
1144 ATTRIBUTE_NORETURN;
1145 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1146 int, const char *)
1147 ATTRIBUTE_NORETURN;
1148 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1149 int, const char *)
1150 ATTRIBUTE_NORETURN;
1151 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1152 const char *, int, const char *)
1153 ATTRIBUTE_NORETURN;
1154 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1155 bool, const char *, int, const char *)
1156 ATTRIBUTE_NORETURN;
1157 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1158 ATTRIBUTE_NORETURN;
1159 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1160 const char *)
1161 ATTRIBUTE_NORETURN;
1162 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1163 const char *)
1164 ATTRIBUTE_NORETURN;
1165
1166 #else /* not ENABLE_RTL_CHECKING */
1167
1168 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1169 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1170 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1171 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1172 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1173 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1174 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1175 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1176 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1177 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1178 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1179 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1180 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1181 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1182 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1183
1184 #endif
1185
1186 /* General accessor macros for accessing the flags of an rtx. */
1187
1188 /* Access an individual rtx flag, with no checking of any kind. */
1189 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1190
1191 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1192 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1193 ({ __typeof (RTX) const _rtx = (RTX); \
1194 if (GET_CODE (_rtx) != C1) \
1195 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1196 __FUNCTION__); \
1197 _rtx; })
1198
1199 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1200 ({ __typeof (RTX) const _rtx = (RTX); \
1201 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1202 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1203 __FUNCTION__); \
1204 _rtx; })
1205
1206 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1207 ({ __typeof (RTX) const _rtx = (RTX); \
1208 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1209 && GET_CODE (_rtx) != C3) \
1210 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1211 __FUNCTION__); \
1212 _rtx; })
1213
1214 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1215 ({ __typeof (RTX) const _rtx = (RTX); \
1216 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1217 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1218 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1219 __FUNCTION__); \
1220 _rtx; })
1221
1222 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1223 ({ __typeof (RTX) const _rtx = (RTX); \
1224 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1225 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1226 && GET_CODE (_rtx) != C5) \
1227 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1228 __FUNCTION__); \
1229 _rtx; })
1230
1231 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1232 __extension__ \
1233 ({ __typeof (RTX) const _rtx = (RTX); \
1234 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1235 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1236 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1237 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1238 __FUNCTION__); \
1239 _rtx; })
1240
1241 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1242 __extension__ \
1243 ({ __typeof (RTX) const _rtx = (RTX); \
1244 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1245 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1246 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1247 && GET_CODE (_rtx) != C7) \
1248 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1249 __FUNCTION__); \
1250 _rtx; })
1251
1252 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1253 __extension__ \
1254 ({ __typeof (RTX) const _rtx = (RTX); \
1255 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1256 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1257 __FUNCTION__); \
1258 _rtx; })
1259
1260 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1261 int, const char *)
1262 ATTRIBUTE_NORETURN
1263 ;
1264
1265 #else /* not ENABLE_RTL_FLAG_CHECKING */
1266
1267 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1268 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1269 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1270 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1271 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1272 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1273 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1274 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1275 #endif
1276
1277 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1278 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1279 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1280 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1281 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1282 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1283 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1284 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1285 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1286 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1287
1288 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1289 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1290
1291 /* These are like XINT, etc. except that they expect a '0' field instead
1292 of the normal type code. */
1293
1294 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1295 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1296 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1297 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1298 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1299 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1300 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1301 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1302 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1303 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1304 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1305 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1306
1307 /* Access a '0' field with any type. */
1308 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1309
1310 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1311 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1312 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1313 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1314 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1315 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1316 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1317 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1318 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1319 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1320
1321 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1322 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1323
1324 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1325 \f
1326
1327 /* Methods of rtx_expr_list. */
1328
1329 inline rtx_expr_list *rtx_expr_list::next () const
1330 {
1331 rtx tmp = XEXP (this, 1);
1332 return safe_as_a <rtx_expr_list *> (tmp);
1333 }
1334
1335 inline rtx rtx_expr_list::element () const
1336 {
1337 return XEXP (this, 0);
1338 }
1339
1340 /* Methods of rtx_insn_list. */
1341
1342 inline rtx_insn_list *rtx_insn_list::next () const
1343 {
1344 rtx tmp = XEXP (this, 1);
1345 return safe_as_a <rtx_insn_list *> (tmp);
1346 }
1347
1348 inline rtx_insn *rtx_insn_list::insn () const
1349 {
1350 rtx tmp = XEXP (this, 0);
1351 return safe_as_a <rtx_insn *> (tmp);
1352 }
1353
1354 /* Methods of rtx_sequence. */
1355
1356 inline int rtx_sequence::len () const
1357 {
1358 return XVECLEN (this, 0);
1359 }
1360
1361 inline rtx rtx_sequence::element (int index) const
1362 {
1363 return XVECEXP (this, 0, index);
1364 }
1365
1366 inline rtx_insn *rtx_sequence::insn (int index) const
1367 {
1368 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1369 }
1370
1371 /* ACCESS MACROS for particular fields of insns. */
1372
1373 /* Holds a unique number for each insn.
1374 These are not necessarily sequentially increasing. */
1375 inline int INSN_UID (const_rtx insn)
1376 {
1377 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1378 (insn))->u2.insn_uid;
1379 }
1380 inline int& INSN_UID (rtx insn)
1381 {
1382 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1383 (insn))->u2.insn_uid;
1384 }
1385
1386 /* Chain insns together in sequence. */
1387
1388 /* For now these are split in two: an rvalue form:
1389 PREV_INSN/NEXT_INSN
1390 and an lvalue form:
1391 SET_NEXT_INSN/SET_PREV_INSN. */
1392
1393 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1394 {
1395 rtx prev = XEXP (insn, 0);
1396 return safe_as_a <rtx_insn *> (prev);
1397 }
1398
1399 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1400 {
1401 return XEXP (insn, 0);
1402 }
1403
1404 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1405 {
1406 rtx next = XEXP (insn, 1);
1407 return safe_as_a <rtx_insn *> (next);
1408 }
1409
1410 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1411 {
1412 return XEXP (insn, 1);
1413 }
1414
1415 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1416 {
1417 return XBBDEF (insn, 2);
1418 }
1419
1420 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1421 {
1422 return XBBDEF (insn, 2);
1423 }
1424
1425 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1426 {
1427 BLOCK_FOR_INSN (insn) = bb;
1428 }
1429
1430 /* The body of an insn. */
1431 inline rtx PATTERN (const_rtx insn)
1432 {
1433 return XEXP (insn, 3);
1434 }
1435
1436 inline rtx& PATTERN (rtx insn)
1437 {
1438 return XEXP (insn, 3);
1439 }
1440
1441 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1442 {
1443 return XUINT (insn, 4);
1444 }
1445
1446 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1447 {
1448 return XUINT (insn, 4);
1449 }
1450
1451 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1452 {
1453 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1454 }
1455
1456 /* LOCATION of an RTX if relevant. */
1457 #define RTL_LOCATION(X) (INSN_P (X) ? \
1458 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1459 : UNKNOWN_LOCATION)
1460
1461 /* Code number of instruction, from when it was recognized.
1462 -1 means this instruction has not been recognized yet. */
1463 #define INSN_CODE(INSN) XINT (INSN, 5)
1464
1465 inline rtvec rtx_jump_table_data::get_labels () const
1466 {
1467 rtx pat = PATTERN (this);
1468 if (GET_CODE (pat) == ADDR_VEC)
1469 return XVEC (pat, 0);
1470 else
1471 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1472 }
1473
1474 #define RTX_FRAME_RELATED_P(RTX) \
1475 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1476 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1477
1478 /* 1 if JUMP RTX is a crossing jump. */
1479 #define CROSSING_JUMP_P(RTX) \
1480 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1481
1482 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1483 TREE_READONLY. */
1484 #define RTL_CONST_CALL_P(RTX) \
1485 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1486
1487 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1488 DECL_PURE_P. */
1489 #define RTL_PURE_CALL_P(RTX) \
1490 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1491
1492 /* 1 if RTX is a call to a const or pure function. */
1493 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1494 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1495
1496 /* 1 if RTX is a call to a looping const or pure function. Built from
1497 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1498 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1499 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1500
1501 /* 1 if RTX is a call_insn for a sibling call. */
1502 #define SIBLING_CALL_P(RTX) \
1503 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1504
1505 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1506 #define INSN_ANNULLED_BRANCH_P(RTX) \
1507 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1508
1509 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1510 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1511 executed if the branch is taken. For annulled branches with this bit
1512 clear, the insn should be executed only if the branch is not taken. */
1513 #define INSN_FROM_TARGET_P(RTX) \
1514 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1515 CALL_INSN)->in_struct)
1516
1517 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1518 See the comments for ADDR_DIFF_VEC in rtl.def. */
1519 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1520
1521 /* In a VALUE, the value cselib has assigned to RTX.
1522 This is a "struct cselib_val", see cselib.h. */
1523 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1524
1525 /* Holds a list of notes on what this insn does to various REGs.
1526 It is a chain of EXPR_LIST rtx's, where the second operand is the
1527 chain pointer and the first operand is the REG being described.
1528 The mode field of the EXPR_LIST contains not a real machine mode
1529 but a value from enum reg_note. */
1530 #define REG_NOTES(INSN) XEXP(INSN, 6)
1531
1532 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1533 question. */
1534 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1535
1536 enum reg_note
1537 {
1538 #define DEF_REG_NOTE(NAME) NAME,
1539 #include "reg-notes.def"
1540 #undef DEF_REG_NOTE
1541 REG_NOTE_MAX
1542 };
1543
1544 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1545 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1546 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1547 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1548
1549 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1550
1551 extern const char * const reg_note_name[];
1552 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1553
1554 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1555 USE and CLOBBER expressions.
1556 USE expressions list the registers filled with arguments that
1557 are passed to the function.
1558 CLOBBER expressions document the registers explicitly clobbered
1559 by this CALL_INSN.
1560 Pseudo registers can not be mentioned in this list. */
1561 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1562
1563 /* The label-number of a code-label. The assembler label
1564 is made from `L' and the label-number printed in decimal.
1565 Label numbers are unique in a compilation. */
1566 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1567
1568 /* In a NOTE that is a line number, this is a string for the file name that the
1569 line is in. We use the same field to record block numbers temporarily in
1570 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1571 between ints and pointers if we use a different macro for the block number.)
1572 */
1573
1574 /* Opaque data. */
1575 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1576 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1577 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1578 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1579 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1580 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1581 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1582 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1583 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1584
1585 /* In a NOTE that is a line number, this is the line number.
1586 Other kinds of NOTEs are identified by negative numbers here. */
1587 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1588
1589 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1590 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1591 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1592
1593 /* Variable declaration and the location of a variable. */
1594 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1595 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1596
1597 /* Initialization status of the variable in the location. Status
1598 can be unknown, uninitialized or initialized. See enumeration
1599 type below. */
1600 #define PAT_VAR_LOCATION_STATUS(PAT) \
1601 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1602 ->u2.var_location_status)
1603
1604 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1605 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1606 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1607 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1608 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1609 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1610 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1611
1612 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1613 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1614
1615 /* Accessors for a tree-expanded var location debug insn. */
1616 #define INSN_VAR_LOCATION_DECL(INSN) \
1617 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1618 #define INSN_VAR_LOCATION_LOC(INSN) \
1619 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1620 #define INSN_VAR_LOCATION_STATUS(INSN) \
1621 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1622
1623 /* Expand to the RTL that denotes an unknown variable location in a
1624 DEBUG_INSN. */
1625 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1626
1627 /* Determine whether X is such an unknown location. */
1628 #define VAR_LOC_UNKNOWN_P(X) \
1629 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1630
1631 /* 1 if RTX is emitted after a call, but it should take effect before
1632 the call returns. */
1633 #define NOTE_DURING_CALL_P(RTX) \
1634 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1635
1636 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1637 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1638
1639 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1640 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1641
1642 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1643 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1644
1645 /* Codes that appear in the NOTE_KIND field for kinds of notes
1646 that are not line numbers. These codes are all negative.
1647
1648 Notice that we do not try to use zero here for any of
1649 the special note codes because sometimes the source line
1650 actually can be zero! This happens (for example) when we
1651 are generating code for the per-translation-unit constructor
1652 and destructor routines for some C++ translation unit. */
1653
1654 enum insn_note
1655 {
1656 #define DEF_INSN_NOTE(NAME) NAME,
1657 #include "insn-notes.def"
1658 #undef DEF_INSN_NOTE
1659
1660 NOTE_INSN_MAX
1661 };
1662
1663 /* Names for NOTE insn's other than line numbers. */
1664
1665 extern const char * const note_insn_name[NOTE_INSN_MAX];
1666 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1667 (note_insn_name[(NOTE_CODE)])
1668
1669 /* The name of a label, in case it corresponds to an explicit label
1670 in the input source code. */
1671 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1672
1673 /* In jump.c, each label contains a count of the number
1674 of LABEL_REFs that point at it, so unused labels can be deleted. */
1675 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1676
1677 /* Labels carry a two-bit field composed of the ->jump and ->call
1678 bits. This field indicates whether the label is an alternate
1679 entry point, and if so, what kind. */
1680 enum label_kind
1681 {
1682 LABEL_NORMAL = 0, /* ordinary label */
1683 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1684 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1685 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1686 };
1687
1688 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1689
1690 /* Retrieve the kind of LABEL. */
1691 #define LABEL_KIND(LABEL) __extension__ \
1692 ({ __typeof (LABEL) const _label = (LABEL); \
1693 if (! LABEL_P (_label)) \
1694 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1695 __FUNCTION__); \
1696 (enum label_kind) ((_label->jump << 1) | _label->call); })
1697
1698 /* Set the kind of LABEL. */
1699 #define SET_LABEL_KIND(LABEL, KIND) do { \
1700 __typeof (LABEL) const _label = (LABEL); \
1701 const unsigned int _kind = (KIND); \
1702 if (! LABEL_P (_label)) \
1703 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1704 __FUNCTION__); \
1705 _label->jump = ((_kind >> 1) & 1); \
1706 _label->call = (_kind & 1); \
1707 } while (0)
1708
1709 #else
1710
1711 /* Retrieve the kind of LABEL. */
1712 #define LABEL_KIND(LABEL) \
1713 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1714
1715 /* Set the kind of LABEL. */
1716 #define SET_LABEL_KIND(LABEL, KIND) do { \
1717 rtx const _label = (LABEL); \
1718 const unsigned int _kind = (KIND); \
1719 _label->jump = ((_kind >> 1) & 1); \
1720 _label->call = (_kind & 1); \
1721 } while (0)
1722
1723 #endif /* rtl flag checking */
1724
1725 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1726
1727 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1728 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1729 be decremented and possibly the label can be deleted. */
1730 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1731
1732 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1733 {
1734 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1735 }
1736
1737 /* Methods of rtx_jump_insn. */
1738
1739 inline rtx rtx_jump_insn::jump_label () const
1740 {
1741 return JUMP_LABEL (this);
1742 }
1743
1744 inline rtx_code_label *rtx_jump_insn::jump_target () const
1745 {
1746 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1747 }
1748
1749 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1750 {
1751 JUMP_LABEL (this) = target;
1752 }
1753
1754 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1755 goes through all the LABEL_REFs that jump to that label. The chain
1756 eventually winds up at the CODE_LABEL: it is circular. */
1757 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1758
1759 /* Get the label that a LABEL_REF references. */
1760 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1761
1762 \f
1763 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1764 be used on RHS. Use SET_REGNO to change the value. */
1765 #define REGNO(RTX) (rhs_regno(RTX))
1766 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1767
1768 /* Return the number of consecutive registers in a REG. This is always
1769 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1770 hard registers. */
1771 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1772
1773 /* ORIGINAL_REGNO holds the number the register originally had; for a
1774 pseudo register turned into a hard reg this will hold the old pseudo
1775 register number. */
1776 #define ORIGINAL_REGNO(RTX) \
1777 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1778
1779 /* Force the REGNO macro to only be used on the lhs. */
1780 static inline unsigned int
1781 rhs_regno (const_rtx x)
1782 {
1783 return REG_CHECK (x)->regno;
1784 }
1785
1786 /* Return the final register in REG X plus one. */
1787 static inline unsigned int
1788 END_REGNO (const_rtx x)
1789 {
1790 return REGNO (x) + REG_NREGS (x);
1791 }
1792
1793 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1794 bypassing the df machinery. */
1795 static inline void
1796 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1797 {
1798 reg_info *reg = REG_CHECK (x);
1799 reg->regno = regno;
1800 reg->nregs = nregs;
1801 }
1802
1803 /* 1 if RTX is a reg or parallel that is the current function's return
1804 value. */
1805 #define REG_FUNCTION_VALUE_P(RTX) \
1806 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1807
1808 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1809 #define REG_USERVAR_P(RTX) \
1810 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1811
1812 /* 1 if RTX is a reg that holds a pointer value. */
1813 #define REG_POINTER(RTX) \
1814 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1815
1816 /* 1 if RTX is a mem that holds a pointer value. */
1817 #define MEM_POINTER(RTX) \
1818 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1819
1820 /* 1 if the given register REG corresponds to a hard register. */
1821 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1822
1823 /* 1 if the given register number REG_NO corresponds to a hard register. */
1824 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1825
1826 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1827 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1828 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1829
1830 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1831 elements actually needed to represent the constant.
1832 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1833 significant HOST_WIDE_INT. */
1834 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1835 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1836 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1837
1838 /* For a CONST_DOUBLE:
1839 #if TARGET_SUPPORTS_WIDE_INT == 0
1840 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1841 low-order word and ..._HIGH the high-order.
1842 #endif
1843 For a float, there is a REAL_VALUE_TYPE structure, and
1844 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1845 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1846 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1847 #define CONST_DOUBLE_REAL_VALUE(r) \
1848 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1849
1850 #define CONST_FIXED_VALUE(r) \
1851 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1852 #define CONST_FIXED_VALUE_HIGH(r) \
1853 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1854 #define CONST_FIXED_VALUE_LOW(r) \
1855 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1856
1857 /* For a CONST_VECTOR, return element #n. */
1858 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1859
1860 /* For a CONST_VECTOR, return the number of elements in a vector. */
1861 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1862
1863 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1864 SUBREG_BYTE extracts the byte-number. */
1865
1866 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1867 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1868
1869 /* in rtlanal.c */
1870 /* Return the right cost to give to an operation
1871 to make the cost of the corresponding register-to-register instruction
1872 N times that of a fast register-to-register instruction. */
1873 #define COSTS_N_INSNS(N) ((N) * 4)
1874
1875 /* Maximum cost of an rtl expression. This value has the special meaning
1876 not to use an rtx with this cost under any circumstances. */
1877 #define MAX_COST INT_MAX
1878
1879 /* Return true if CODE always has VOIDmode. */
1880
1881 static inline bool
1882 always_void_p (enum rtx_code code)
1883 {
1884 return code == SET;
1885 }
1886
1887 /* A structure to hold all available cost information about an rtl
1888 expression. */
1889 struct full_rtx_costs
1890 {
1891 int speed;
1892 int size;
1893 };
1894
1895 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1896 static inline void
1897 init_costs_to_max (struct full_rtx_costs *c)
1898 {
1899 c->speed = MAX_COST;
1900 c->size = MAX_COST;
1901 }
1902
1903 /* Initialize a full_rtx_costs structure C to zero cost. */
1904 static inline void
1905 init_costs_to_zero (struct full_rtx_costs *c)
1906 {
1907 c->speed = 0;
1908 c->size = 0;
1909 }
1910
1911 /* Compare two full_rtx_costs structures A and B, returning true
1912 if A < B when optimizing for speed. */
1913 static inline bool
1914 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1915 bool speed)
1916 {
1917 if (speed)
1918 return (a->speed < b->speed
1919 || (a->speed == b->speed && a->size < b->size));
1920 else
1921 return (a->size < b->size
1922 || (a->size == b->size && a->speed < b->speed));
1923 }
1924
1925 /* Increase both members of the full_rtx_costs structure C by the
1926 cost of N insns. */
1927 static inline void
1928 costs_add_n_insns (struct full_rtx_costs *c, int n)
1929 {
1930 c->speed += COSTS_N_INSNS (n);
1931 c->size += COSTS_N_INSNS (n);
1932 }
1933
1934 /* Describes the shape of a subreg:
1935
1936 inner_mode == the mode of the SUBREG_REG
1937 offset == the SUBREG_BYTE
1938 outer_mode == the mode of the SUBREG itself. */
1939 struct subreg_shape {
1940 subreg_shape (machine_mode, unsigned int, machine_mode);
1941 bool operator == (const subreg_shape &) const;
1942 bool operator != (const subreg_shape &) const;
1943 unsigned int unique_id () const;
1944
1945 machine_mode inner_mode;
1946 unsigned int offset;
1947 machine_mode outer_mode;
1948 };
1949
1950 inline
1951 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1952 unsigned int offset_in,
1953 machine_mode outer_mode_in)
1954 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1955 {}
1956
1957 inline bool
1958 subreg_shape::operator == (const subreg_shape &other) const
1959 {
1960 return (inner_mode == other.inner_mode
1961 && offset == other.offset
1962 && outer_mode == other.outer_mode);
1963 }
1964
1965 inline bool
1966 subreg_shape::operator != (const subreg_shape &other) const
1967 {
1968 return !operator == (other);
1969 }
1970
1971 /* Return an integer that uniquely identifies this shape. Structures
1972 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1973 current mode is anywhere near being 65536 bytes in size, so the
1974 id comfortably fits in an int. */
1975
1976 inline unsigned int
1977 subreg_shape::unique_id () const
1978 {
1979 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1980 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1981 }
1982
1983 /* Return the shape of a SUBREG rtx. */
1984
1985 static inline subreg_shape
1986 shape_of_subreg (const_rtx x)
1987 {
1988 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1989 SUBREG_BYTE (x), GET_MODE (x));
1990 }
1991
1992 /* Information about an address. This structure is supposed to be able
1993 to represent all supported target addresses. Please extend it if it
1994 is not yet general enough. */
1995 struct address_info {
1996 /* The mode of the value being addressed, or VOIDmode if this is
1997 a load-address operation with no known address mode. */
1998 machine_mode mode;
1999
2000 /* The address space. */
2001 addr_space_t as;
2002
2003 /* A pointer to the top-level address. */
2004 rtx *outer;
2005
2006 /* A pointer to the inner address, after all address mutations
2007 have been stripped from the top-level address. It can be one
2008 of the following:
2009
2010 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2011
2012 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2013 points to the step value, depending on whether the step is variable
2014 or constant respectively. SEGMENT is null.
2015
2016 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2017 with null fields evaluating to 0. */
2018 rtx *inner;
2019
2020 /* Components that make up *INNER. Each one may be null or nonnull.
2021 When nonnull, their meanings are as follows:
2022
2023 - *SEGMENT is the "segment" of memory to which the address refers.
2024 This value is entirely target-specific and is only called a "segment"
2025 because that's its most typical use. It contains exactly one UNSPEC,
2026 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2027 reloading.
2028
2029 - *BASE is a variable expression representing a base address.
2030 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2031
2032 - *INDEX is a variable expression representing an index value.
2033 It may be a scaled expression, such as a MULT. It has exactly
2034 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2035
2036 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2037 unmutated RTX_CONST_OBJ. */
2038 rtx *segment;
2039 rtx *base;
2040 rtx *index;
2041 rtx *disp;
2042
2043 rtx *segment_term;
2044 rtx *base_term;
2045 rtx *index_term;
2046 rtx *disp_term;
2047
2048 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2049 of BASE_TERM, otherwise it is null. */
2050 rtx *base_term2;
2051
2052 /* ADDRESS if this structure describes an address operand, MEM if
2053 it describes a MEM address. */
2054 enum rtx_code addr_outer_code;
2055
2056 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2057 enum rtx_code base_outer_code;
2058
2059 /* True if this is an RTX_AUTOINC address. */
2060 bool autoinc_p;
2061 };
2062
2063 /* This is used to bundle an rtx and a mode together so that the pair
2064 can be used with the wi:: routines. If we ever put modes into rtx
2065 integer constants, this should go away and then just pass an rtx in. */
2066 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2067
2068 namespace wi
2069 {
2070 template <>
2071 struct int_traits <rtx_mode_t>
2072 {
2073 static const enum precision_type precision_type = VAR_PRECISION;
2074 static const bool host_dependent_precision = false;
2075 /* This ought to be true, except for the special case that BImode
2076 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2077 static const bool is_sign_extended = false;
2078 static unsigned int get_precision (const rtx_mode_t &);
2079 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2080 const rtx_mode_t &);
2081 };
2082 }
2083
2084 inline unsigned int
2085 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2086 {
2087 return GET_MODE_PRECISION (x.second);
2088 }
2089
2090 inline wi::storage_ref
2091 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2092 unsigned int precision,
2093 const rtx_mode_t &x)
2094 {
2095 gcc_checking_assert (precision == get_precision (x));
2096 switch (GET_CODE (x.first))
2097 {
2098 case CONST_INT:
2099 if (precision < HOST_BITS_PER_WIDE_INT)
2100 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2101 targets is 1 rather than -1. */
2102 gcc_checking_assert (INTVAL (x.first)
2103 == sext_hwi (INTVAL (x.first), precision)
2104 || (x.second == BImode && INTVAL (x.first) == 1));
2105
2106 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2107
2108 case CONST_WIDE_INT:
2109 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2110 CONST_WIDE_INT_NUNITS (x.first), precision);
2111
2112 #if TARGET_SUPPORTS_WIDE_INT == 0
2113 case CONST_DOUBLE:
2114 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2115 #endif
2116
2117 default:
2118 gcc_unreachable ();
2119 }
2120 }
2121
2122 namespace wi
2123 {
2124 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2125 wide_int min_value (machine_mode, signop);
2126 wide_int max_value (machine_mode, signop);
2127 }
2128
2129 inline wi::hwi_with_prec
2130 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2131 {
2132 return shwi (val, GET_MODE_PRECISION (mode));
2133 }
2134
2135 /* Produce the smallest number that is represented in MODE. The precision
2136 is taken from MODE and the sign from SGN. */
2137 inline wide_int
2138 wi::min_value (machine_mode mode, signop sgn)
2139 {
2140 return min_value (GET_MODE_PRECISION (mode), sgn);
2141 }
2142
2143 /* Produce the largest number that is represented in MODE. The precision
2144 is taken from MODE and the sign from SGN. */
2145 inline wide_int
2146 wi::max_value (machine_mode mode, signop sgn)
2147 {
2148 return max_value (GET_MODE_PRECISION (mode), sgn);
2149 }
2150
2151 extern void init_rtlanal (void);
2152 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2153 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2154 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2155 struct full_rtx_costs *);
2156 extern unsigned int subreg_lsb (const_rtx);
2157 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2158 unsigned int);
2159 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2160 unsigned int, machine_mode);
2161 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2162 unsigned int, machine_mode);
2163 extern unsigned int subreg_regno (const_rtx);
2164 extern int simplify_subreg_regno (unsigned int, machine_mode,
2165 unsigned int, machine_mode);
2166 extern unsigned int subreg_nregs (const_rtx);
2167 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2168 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2169 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2170 extern bool constant_pool_constant_p (rtx);
2171 extern bool truncated_to_mode (machine_mode, const_rtx);
2172 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2173 extern void split_double (rtx, rtx *, rtx *);
2174 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2175 extern void decompose_address (struct address_info *, rtx *,
2176 machine_mode, addr_space_t, enum rtx_code);
2177 extern void decompose_lea_address (struct address_info *, rtx *);
2178 extern void decompose_mem_address (struct address_info *, rtx);
2179 extern void update_address (struct address_info *);
2180 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2181 extern enum rtx_code get_index_code (const struct address_info *);
2182
2183 #ifndef GENERATOR_FILE
2184 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2185 rather than size. */
2186
2187 static inline int
2188 set_rtx_cost (rtx x, bool speed_p)
2189 {
2190 return rtx_cost (x, INSN, 4, speed_p);
2191 }
2192
2193 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2194
2195 static inline void
2196 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2197 {
2198 get_full_rtx_cost (x, INSN, 4, c);
2199 }
2200
2201 /* Return the cost of moving X into a register, relative to the cost
2202 of a register move. SPEED_P is true if optimizing for speed rather
2203 than size. */
2204
2205 static inline int
2206 set_src_cost (rtx x, bool speed_p)
2207 {
2208 return rtx_cost (x, SET, 1, speed_p);
2209 }
2210
2211 /* Like set_src_cost, but return both the speed and size costs in C. */
2212
2213 static inline void
2214 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2215 {
2216 get_full_rtx_cost (x, SET, 1, c);
2217 }
2218 #endif
2219
2220 /* 1 if RTX is a subreg containing a reg that is already known to be
2221 sign- or zero-extended from the mode of the subreg to the mode of
2222 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2223 extension.
2224
2225 When used as a LHS, is means that this extension must be done
2226 when assigning to SUBREG_REG. */
2227
2228 #define SUBREG_PROMOTED_VAR_P(RTX) \
2229 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2230
2231 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2232 this gives the necessary extensions:
2233 0 - signed (SPR_SIGNED)
2234 1 - normal unsigned (SPR_UNSIGNED)
2235 2 - value is both sign and unsign extended for mode
2236 (SPR_SIGNED_AND_UNSIGNED).
2237 -1 - pointer unsigned, which most often can be handled like unsigned
2238 extension, except for generating instructions where we need to
2239 emit special code (ptr_extend insns) on some architectures
2240 (SPR_POINTER). */
2241
2242 const int SRP_POINTER = -1;
2243 const int SRP_SIGNED = 0;
2244 const int SRP_UNSIGNED = 1;
2245 const int SRP_SIGNED_AND_UNSIGNED = 2;
2246
2247 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2248 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2249 do { \
2250 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2251 (RTX), SUBREG); \
2252 switch (VAL) \
2253 { \
2254 case SRP_POINTER: \
2255 _rtx->volatil = 0; \
2256 _rtx->unchanging = 0; \
2257 break; \
2258 case SRP_SIGNED: \
2259 _rtx->volatil = 0; \
2260 _rtx->unchanging = 1; \
2261 break; \
2262 case SRP_UNSIGNED: \
2263 _rtx->volatil = 1; \
2264 _rtx->unchanging = 0; \
2265 break; \
2266 case SRP_SIGNED_AND_UNSIGNED: \
2267 _rtx->volatil = 1; \
2268 _rtx->unchanging = 1; \
2269 break; \
2270 } \
2271 } while (0)
2272
2273 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2274 including SRP_SIGNED_AND_UNSIGNED if promoted for
2275 both signed and unsigned. */
2276 #define SUBREG_PROMOTED_GET(RTX) \
2277 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2278 + (RTX)->unchanging - 1)
2279
2280 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2281 #define SUBREG_PROMOTED_SIGN(RTX) \
2282 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2283 : (RTX)->unchanging - 1)
2284
2285 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2286 for SIGNED type. */
2287 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2288 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2289
2290 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2291 for UNSIGNED type. */
2292 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2293 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2294
2295 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2296 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2297 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2298 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2299 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2300
2301 /* True if the subreg was generated by LRA for reload insns. Such
2302 subregs are valid only during LRA. */
2303 #define LRA_SUBREG_P(RTX) \
2304 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2305
2306 /* True if call is instrumented by Pointer Bounds Checker. */
2307 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2308 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2309
2310 /* Access various components of an ASM_OPERANDS rtx. */
2311
2312 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2313 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2314 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2315 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2316 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2317 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2318 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2319 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2320 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2321 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2322 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2323 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2324 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2325 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2326 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2327 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2328 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2329 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2330
2331 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2332 #define MEM_READONLY_P(RTX) \
2333 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2334
2335 /* 1 if RTX is a mem and we should keep the alias set for this mem
2336 unchanged when we access a component. Set to 1, or example, when we
2337 are already in a non-addressable component of an aggregate. */
2338 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2339 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2340
2341 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2342 #define MEM_VOLATILE_P(RTX) \
2343 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2344 ASM_INPUT)->volatil)
2345
2346 /* 1 if RTX is a mem that cannot trap. */
2347 #define MEM_NOTRAP_P(RTX) \
2348 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2349
2350 /* The memory attribute block. We provide access macros for each value
2351 in the block and provide defaults if none specified. */
2352 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2353
2354 /* The register attribute block. We provide access macros for each value
2355 in the block and provide defaults if none specified. */
2356 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2357
2358 #ifndef GENERATOR_FILE
2359 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2360 set, and may alias anything. Otherwise, the MEM can only alias
2361 MEMs in a conflicting alias set. This value is set in a
2362 language-dependent manner in the front-end, and should not be
2363 altered in the back-end. These set numbers are tested with
2364 alias_sets_conflict_p. */
2365 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2366
2367 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2368 refer to part of a DECL. It may also be a COMPONENT_REF. */
2369 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2370
2371 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2372 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2373
2374 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2375 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2376
2377 /* For a MEM rtx, the address space. */
2378 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2379
2380 /* For a MEM rtx, true if its MEM_SIZE is known. */
2381 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2382
2383 /* For a MEM rtx, the size in bytes of the MEM. */
2384 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2385
2386 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2387 mode as a default when STRICT_ALIGNMENT, but not if not. */
2388 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2389 #else
2390 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2391 #endif
2392
2393 /* For a REG rtx, the decl it is known to refer to, if it is known to
2394 refer to part of a DECL. */
2395 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2396
2397 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2398 HOST_WIDE_INT. */
2399 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2400
2401 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2402 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2403 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2404 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2405 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2406 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2407 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2408 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2409
2410 /* 1 if RTX is a label_ref for a nonlocal label. */
2411 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2412 REG_LABEL_TARGET note. */
2413 #define LABEL_REF_NONLOCAL_P(RTX) \
2414 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2415
2416 /* 1 if RTX is a code_label that should always be considered to be needed. */
2417 #define LABEL_PRESERVE_P(RTX) \
2418 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2419
2420 /* During sched, 1 if RTX is an insn that must be scheduled together
2421 with the preceding insn. */
2422 #define SCHED_GROUP_P(RTX) \
2423 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2424 JUMP_INSN, CALL_INSN)->in_struct)
2425
2426 /* For a SET rtx, SET_DEST is the place that is set
2427 and SET_SRC is the value it is set to. */
2428 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2429 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2430 #define SET_IS_RETURN_P(RTX) \
2431 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2432
2433 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2434 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2435 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2436
2437 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2438 conditionally executing the code on, COND_EXEC_CODE is the code
2439 to execute if the condition is true. */
2440 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2441 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2442
2443 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2444 constants pool. */
2445 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2446 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2447
2448 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2449 tree constant pool. This information is private to varasm.c. */
2450 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2451 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2452 (RTX), SYMBOL_REF)->frame_related)
2453
2454 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2455 #define SYMBOL_REF_FLAG(RTX) \
2456 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2457
2458 /* 1 if RTX is a symbol_ref that has been the library function in
2459 emit_library_call. */
2460 #define SYMBOL_REF_USED(RTX) \
2461 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2462
2463 /* 1 if RTX is a symbol_ref for a weak symbol. */
2464 #define SYMBOL_REF_WEAK(RTX) \
2465 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2466
2467 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2468 SYMBOL_REF_CONSTANT. */
2469 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2470
2471 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2472 pool symbol. */
2473 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2474 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2475
2476 /* The tree (decl or constant) associated with the symbol, or null. */
2477 #define SYMBOL_REF_DECL(RTX) \
2478 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2479
2480 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2481 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2482 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2483
2484 /* The rtx constant pool entry for a symbol, or null. */
2485 #define SYMBOL_REF_CONSTANT(RTX) \
2486 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2487
2488 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2489 information derivable from the tree decl associated with this symbol.
2490 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2491 decl. In some cases this is a bug. But beyond that, it's nice to cache
2492 this information to avoid recomputing it. Finally, this allows space for
2493 the target to store more than one bit of information, as with
2494 SYMBOL_REF_FLAG. */
2495 #define SYMBOL_REF_FLAGS(RTX) \
2496 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2497 ->u2.symbol_ref_flags)
2498
2499 /* These flags are common enough to be defined for all targets. They
2500 are computed by the default version of targetm.encode_section_info. */
2501
2502 /* Set if this symbol is a function. */
2503 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2504 #define SYMBOL_REF_FUNCTION_P(RTX) \
2505 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2506 /* Set if targetm.binds_local_p is true. */
2507 #define SYMBOL_FLAG_LOCAL (1 << 1)
2508 #define SYMBOL_REF_LOCAL_P(RTX) \
2509 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2510 /* Set if targetm.in_small_data_p is true. */
2511 #define SYMBOL_FLAG_SMALL (1 << 2)
2512 #define SYMBOL_REF_SMALL_P(RTX) \
2513 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2514 /* The three-bit field at [5:3] is true for TLS variables; use
2515 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2516 #define SYMBOL_FLAG_TLS_SHIFT 3
2517 #define SYMBOL_REF_TLS_MODEL(RTX) \
2518 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2519 /* Set if this symbol is not defined in this translation unit. */
2520 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2521 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2522 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2523 /* Set if this symbol has a block_symbol structure associated with it. */
2524 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2525 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2526 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2527 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2528 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2529 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2530 #define SYMBOL_REF_ANCHOR_P(RTX) \
2531 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2532
2533 /* Subsequent bits are available for the target to use. */
2534 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2535 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2536
2537 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2538 structure to which the symbol belongs, or NULL if it has not been
2539 assigned a block. */
2540 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2541
2542 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2543 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2544 RTX has not yet been assigned to a block, or it has not been given an
2545 offset within that block. */
2546 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2547
2548 /* True if RTX is flagged to be a scheduling barrier. */
2549 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2550 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2551
2552 /* Indicate whether the machine has any sort of auto increment addressing.
2553 If not, we can avoid checking for REG_INC notes. */
2554
2555 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2556 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2557 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2558 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2559 #define AUTO_INC_DEC
2560 #endif
2561
2562 /* Define a macro to look for REG_INC notes,
2563 but save time on machines where they never exist. */
2564
2565 #ifdef AUTO_INC_DEC
2566 #define FIND_REG_INC_NOTE(INSN, REG) \
2567 ((REG) != NULL_RTX && REG_P ((REG)) \
2568 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2569 : find_reg_note ((INSN), REG_INC, (REG)))
2570 #else
2571 #define FIND_REG_INC_NOTE(INSN, REG) 0
2572 #endif
2573
2574 #ifndef HAVE_PRE_INCREMENT
2575 #define HAVE_PRE_INCREMENT 0
2576 #endif
2577
2578 #ifndef HAVE_PRE_DECREMENT
2579 #define HAVE_PRE_DECREMENT 0
2580 #endif
2581
2582 #ifndef HAVE_POST_INCREMENT
2583 #define HAVE_POST_INCREMENT 0
2584 #endif
2585
2586 #ifndef HAVE_POST_DECREMENT
2587 #define HAVE_POST_DECREMENT 0
2588 #endif
2589
2590 #ifndef HAVE_POST_MODIFY_DISP
2591 #define HAVE_POST_MODIFY_DISP 0
2592 #endif
2593
2594 #ifndef HAVE_POST_MODIFY_REG
2595 #define HAVE_POST_MODIFY_REG 0
2596 #endif
2597
2598 #ifndef HAVE_PRE_MODIFY_DISP
2599 #define HAVE_PRE_MODIFY_DISP 0
2600 #endif
2601
2602 #ifndef HAVE_PRE_MODIFY_REG
2603 #define HAVE_PRE_MODIFY_REG 0
2604 #endif
2605
2606
2607 /* Some architectures do not have complete pre/post increment/decrement
2608 instruction sets, or only move some modes efficiently. These macros
2609 allow us to tune autoincrement generation. */
2610
2611 #ifndef USE_LOAD_POST_INCREMENT
2612 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2613 #endif
2614
2615 #ifndef USE_LOAD_POST_DECREMENT
2616 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2617 #endif
2618
2619 #ifndef USE_LOAD_PRE_INCREMENT
2620 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2621 #endif
2622
2623 #ifndef USE_LOAD_PRE_DECREMENT
2624 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2625 #endif
2626
2627 #ifndef USE_STORE_POST_INCREMENT
2628 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2629 #endif
2630
2631 #ifndef USE_STORE_POST_DECREMENT
2632 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2633 #endif
2634
2635 #ifndef USE_STORE_PRE_INCREMENT
2636 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2637 #endif
2638
2639 #ifndef USE_STORE_PRE_DECREMENT
2640 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2641 #endif
2642 \f
2643 /* Nonzero when we are generating CONCATs. */
2644 extern int generating_concat_p;
2645
2646 /* Nonzero when we are expanding trees to RTL. */
2647 extern int currently_expanding_to_rtl;
2648
2649 /* Generally useful functions. */
2650
2651 /* In explow.c */
2652 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2653 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2654
2655 /* In rtl.c */
2656 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2657 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2658 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2659 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2660 #define const_wide_int_alloc(NWORDS) \
2661 rtx_alloc_v (CONST_WIDE_INT, \
2662 (sizeof (struct hwivec_def) \
2663 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2664
2665 extern rtvec rtvec_alloc (int);
2666 extern rtvec shallow_copy_rtvec (rtvec);
2667 extern bool shared_const_p (const_rtx);
2668 extern rtx copy_rtx (rtx);
2669 extern enum rtx_code classify_insn (rtx);
2670 extern void dump_rtx_statistics (void);
2671
2672 /* In emit-rtl.c */
2673 extern rtx copy_rtx_if_shared (rtx);
2674
2675 /* In rtl.c */
2676 extern unsigned int rtx_size (const_rtx);
2677 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2678 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2679 extern int rtx_equal_p (const_rtx, const_rtx);
2680
2681 /* In emit-rtl.c */
2682 extern rtvec gen_rtvec_v (int, rtx *);
2683 extern rtvec gen_rtvec_v (int, rtx_insn **);
2684 extern rtx gen_reg_rtx (machine_mode);
2685 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2686 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2687 extern rtx gen_reg_rtx_and_attrs (rtx);
2688 extern rtx_code_label *gen_label_rtx (void);
2689 extern rtx gen_lowpart_common (machine_mode, rtx);
2690
2691 /* In cse.c */
2692 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2693
2694 /* In emit-rtl.c */
2695 extern rtx gen_highpart (machine_mode, rtx);
2696 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2697 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2698
2699 /* In emit-rtl.c */
2700 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2701 extern bool paradoxical_subreg_p (const_rtx);
2702 extern int subreg_lowpart_p (const_rtx);
2703 extern unsigned int subreg_lowpart_offset (machine_mode,
2704 machine_mode);
2705 extern unsigned int subreg_highpart_offset (machine_mode,
2706 machine_mode);
2707 extern int byte_lowpart_offset (machine_mode, machine_mode);
2708 extern rtx make_safe_from (rtx, rtx);
2709 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2710 addr_space_t);
2711 #define convert_memory_address(to_mode,x) \
2712 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2713 extern const char *get_insn_name (int);
2714 extern rtx_insn *get_last_insn_anywhere (void);
2715 extern rtx_insn *get_first_nonnote_insn (void);
2716 extern rtx_insn *get_last_nonnote_insn (void);
2717 extern void start_sequence (void);
2718 extern void push_to_sequence (rtx_insn *);
2719 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2720 extern void end_sequence (void);
2721 #if TARGET_SUPPORTS_WIDE_INT == 0
2722 extern double_int rtx_to_double_int (const_rtx);
2723 #endif
2724 extern void cwi_output_hex (FILE *, const_rtx);
2725 #ifndef GENERATOR_FILE
2726 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2727 #endif
2728 #if TARGET_SUPPORTS_WIDE_INT == 0
2729 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2730 machine_mode);
2731 #endif
2732
2733 /* In loop-iv.c */
2734
2735 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2736
2737 /* In varasm.c */
2738 extern rtx force_const_mem (machine_mode, rtx);
2739
2740 /* In varasm.c */
2741
2742 struct function;
2743 extern rtx get_pool_constant (const_rtx);
2744 extern rtx get_pool_constant_mark (rtx, bool *);
2745 extern machine_mode get_pool_mode (const_rtx);
2746 extern rtx simplify_subtraction (rtx);
2747 extern void decide_function_section (tree);
2748
2749 /* In emit-rtl.c */
2750 extern rtx_insn *emit_insn_before (rtx, rtx);
2751 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2752 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2753 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2754 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2755 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2756 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2757 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2758 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2759 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2760 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2761 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2762 extern rtx_barrier *emit_barrier_before (rtx);
2763 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2764 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2765 extern rtx_insn *emit_insn_after (rtx, rtx);
2766 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2767 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2768 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2769 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2770 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2771 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2772 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2773 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2774 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2775 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2776 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2777 extern rtx_barrier *emit_barrier_after (rtx);
2778 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2779 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2780 extern rtx_insn *emit_insn (rtx);
2781 extern rtx_insn *emit_debug_insn (rtx);
2782 extern rtx_insn *emit_jump_insn (rtx);
2783 extern rtx_insn *emit_call_insn (rtx);
2784 extern rtx_code_label *emit_label (rtx);
2785 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2786 extern rtx_barrier *emit_barrier (void);
2787 extern rtx_note *emit_note (enum insn_note);
2788 extern rtx_note *emit_note_copy (rtx_note *);
2789 extern rtx_insn *gen_clobber (rtx);
2790 extern rtx_insn *emit_clobber (rtx);
2791 extern rtx_insn *gen_use (rtx);
2792 extern rtx_insn *emit_use (rtx);
2793 extern rtx_insn *make_insn_raw (rtx);
2794 extern void add_function_usage_to (rtx, rtx);
2795 extern rtx_call_insn *last_call_insn (void);
2796 extern rtx_insn *previous_insn (rtx_insn *);
2797 extern rtx_insn *next_insn (rtx_insn *);
2798 extern rtx_insn *prev_nonnote_insn (rtx);
2799 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2800 extern rtx_insn *next_nonnote_insn (rtx);
2801 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2802 extern rtx_insn *prev_nondebug_insn (rtx);
2803 extern rtx_insn *next_nondebug_insn (rtx);
2804 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2805 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2806 extern rtx_insn *prev_real_insn (rtx);
2807 extern rtx_insn *next_real_insn (rtx);
2808 extern rtx_insn *prev_active_insn (rtx);
2809 extern rtx_insn *next_active_insn (rtx);
2810 extern int active_insn_p (const_rtx);
2811 extern rtx_insn *next_cc0_user (rtx);
2812 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2813
2814 /* In emit-rtl.c */
2815 extern int insn_line (const rtx_insn *);
2816 extern const char * insn_file (const rtx_insn *);
2817 extern tree insn_scope (const rtx_insn *);
2818 extern expanded_location insn_location (const rtx_insn *);
2819 extern location_t prologue_location, epilogue_location;
2820
2821 /* In jump.c */
2822 extern enum rtx_code reverse_condition (enum rtx_code);
2823 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2824 extern enum rtx_code swap_condition (enum rtx_code);
2825 extern enum rtx_code unsigned_condition (enum rtx_code);
2826 extern enum rtx_code signed_condition (enum rtx_code);
2827 extern void mark_jump_label (rtx, rtx_insn *, int);
2828
2829 /* In jump.c */
2830 extern rtx_insn *delete_related_insns (rtx);
2831
2832 /* In recog.c */
2833 extern rtx *find_constant_term_loc (rtx *);
2834
2835 /* In emit-rtl.c */
2836 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2837 extern int split_branch_probability;
2838
2839 /* In insn-recog.c (generated by genrecog). */
2840 extern rtx_insn *split_insns (rtx, rtx_insn *);
2841
2842 /* In simplify-rtx.c */
2843 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2844 rtx, machine_mode);
2845 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2846 machine_mode);
2847 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2848 rtx, rtx);
2849 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2850 rtx);
2851 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2852 machine_mode, rtx, rtx, rtx);
2853 extern rtx simplify_const_relational_operation (enum rtx_code,
2854 machine_mode, rtx, rtx);
2855 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2856 machine_mode, rtx, rtx);
2857 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2858 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2859 machine_mode);
2860 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2861 machine_mode, rtx, rtx, rtx);
2862 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2863 machine_mode, rtx, rtx);
2864 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2865 unsigned int);
2866 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2867 unsigned int);
2868 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2869 rtx (*fn) (rtx, const_rtx, void *), void *);
2870 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2871 extern rtx simplify_rtx (const_rtx);
2872 extern rtx avoid_constant_pool_reference (rtx);
2873 extern rtx delegitimize_mem_from_attrs (rtx);
2874 extern bool mode_signbit_p (machine_mode, const_rtx);
2875 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2876 extern bool val_signbit_known_set_p (machine_mode,
2877 unsigned HOST_WIDE_INT);
2878 extern bool val_signbit_known_clear_p (machine_mode,
2879 unsigned HOST_WIDE_INT);
2880
2881 /* In reginfo.c */
2882 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2883 bool);
2884 #ifdef HARD_CONST
2885 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2886 #endif
2887
2888 /* In emit-rtl.c */
2889 extern rtx set_for_reg_notes (rtx);
2890 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2891 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2892 extern void set_insn_deleted (rtx);
2893
2894 /* Functions in rtlanal.c */
2895
2896 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2897
2898 /* Handle the cheap and common cases inline for performance. */
2899
2900 inline rtx single_set (const rtx_insn *insn)
2901 {
2902 if (!INSN_P (insn))
2903 return NULL_RTX;
2904
2905 if (GET_CODE (PATTERN (insn)) == SET)
2906 return PATTERN (insn);
2907
2908 /* Defer to the more expensive case. */
2909 return single_set_2 (insn, PATTERN (insn));
2910 }
2911
2912 extern machine_mode get_address_mode (rtx mem);
2913 extern int rtx_addr_can_trap_p (const_rtx);
2914 extern bool nonzero_address_p (const_rtx);
2915 extern int rtx_unstable_p (const_rtx);
2916 extern bool rtx_varies_p (const_rtx, bool);
2917 extern bool rtx_addr_varies_p (const_rtx, bool);
2918 extern rtx get_call_rtx_from (rtx);
2919 extern HOST_WIDE_INT get_integer_term (const_rtx);
2920 extern rtx get_related_value (const_rtx);
2921 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2922 extern void split_const (rtx, rtx *, rtx *);
2923 extern bool unsigned_reg_p (rtx);
2924 extern int reg_mentioned_p (const_rtx, const_rtx);
2925 extern int count_occurrences (const_rtx, const_rtx, int);
2926 extern int reg_referenced_p (const_rtx, const_rtx);
2927 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2928 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2929 extern int commutative_operand_precedence (rtx);
2930 extern bool swap_commutative_operands_p (rtx, rtx);
2931 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2932 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2933 extern int modified_in_p (const_rtx, const_rtx);
2934 extern int reg_set_p (const_rtx, const_rtx);
2935 extern int multiple_sets (const_rtx);
2936 extern int set_noop_p (const_rtx);
2937 extern int noop_move_p (const rtx_insn *);
2938 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2939 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2940 extern const_rtx set_of (const_rtx, const_rtx);
2941 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2942 extern void record_hard_reg_uses (rtx *, void *);
2943 #ifdef HARD_CONST
2944 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2945 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2946 #endif
2947 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2948 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2949 extern int dead_or_set_p (const_rtx, const_rtx);
2950 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2951 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2952 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2953 extern rtx find_reg_equal_equiv_note (const_rtx);
2954 extern rtx find_constant_src (const rtx_insn *);
2955 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2956 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2957 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2958 extern void add_reg_note (rtx, enum reg_note, rtx);
2959 extern void add_int_reg_note (rtx, enum reg_note, int);
2960 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2961 extern void remove_note (rtx, const_rtx);
2962 extern void remove_reg_equal_equiv_notes (rtx_insn *);
2963 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2964 extern int side_effects_p (const_rtx);
2965 extern int volatile_refs_p (const_rtx);
2966 extern int volatile_insn_p (const_rtx);
2967 extern int may_trap_p_1 (const_rtx, unsigned);
2968 extern int may_trap_p (const_rtx);
2969 extern int may_trap_or_fault_p (const_rtx);
2970 extern bool can_throw_internal (const_rtx);
2971 extern bool can_throw_external (const_rtx);
2972 extern bool insn_could_throw_p (const_rtx);
2973 extern bool insn_nothrow_p (const_rtx);
2974 extern bool can_nonlocal_goto (const rtx_insn *);
2975 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2976 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2977 extern int inequality_comparisons_p (const_rtx);
2978 extern rtx replace_rtx (rtx, rtx, rtx);
2979 extern void replace_label (rtx *, rtx, rtx, bool);
2980 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2981 extern bool rtx_referenced_p (const_rtx, const_rtx);
2982 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2983 extern int computed_jump_p (const rtx_insn *);
2984 extern bool tls_referenced_p (const_rtx);
2985
2986 /* Overload for refers_to_regno_p for checking a single register. */
2987 inline bool
2988 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2989 {
2990 return refers_to_regno_p (regnum, regnum + 1, x, loc);
2991 }
2992
2993 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2994 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2995 NULL. The callback is passed the same opaque ARG passed to
2996 for_each_inc_dec. Return zero to continue looking for other
2997 autoinc operations or any other value to interrupt the traversal and
2998 return that value to the caller of for_each_inc_dec. */
2999 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3000 rtx srcoff, void *arg);
3001 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3002
3003 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3004 rtx *, rtx *);
3005 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3006 rtx_equal_p_callback_function);
3007
3008 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3009 machine_mode *);
3010 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3011 bool, hash_rtx_callback_function);
3012
3013 extern rtx regno_use_in (unsigned int, rtx);
3014 extern int auto_inc_p (const_rtx);
3015 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3016 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3017 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3018 extern int loc_mentioned_in_p (rtx *, const_rtx);
3019 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3020 extern bool keep_with_call_p (const rtx_insn *);
3021 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3022 extern int insn_rtx_cost (rtx, bool);
3023 extern unsigned seq_cost (const rtx_insn *, bool);
3024
3025 /* Given an insn and condition, return a canonical description of
3026 the test being made. */
3027 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3028 int, int);
3029
3030 /* Given a JUMP_INSN, return a canonical description of the test
3031 being made. */
3032 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3033
3034 /* Information about a subreg of a hard register. */
3035 struct subreg_info
3036 {
3037 /* Offset of first hard register involved in the subreg. */
3038 int offset;
3039 /* Number of hard registers involved in the subreg. In the case of
3040 a paradoxical subreg, this is the number of registers that would
3041 be modified by writing to the subreg; some of them may be don't-care
3042 when reading from the subreg. */
3043 int nregs;
3044 /* Whether this subreg can be represented as a hard reg with the new
3045 mode (by adding OFFSET to the original hard register). */
3046 bool representable_p;
3047 };
3048
3049 extern void subreg_get_info (unsigned int, machine_mode,
3050 unsigned int, machine_mode,
3051 struct subreg_info *);
3052
3053 /* lists.c */
3054
3055 extern void free_EXPR_LIST_list (rtx_expr_list **);
3056 extern void free_INSN_LIST_list (rtx_insn_list **);
3057 extern void free_EXPR_LIST_node (rtx);
3058 extern void free_INSN_LIST_node (rtx);
3059 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3060 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3061 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3062 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3063 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3064 extern rtx remove_list_elem (rtx, rtx *);
3065 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3066 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3067
3068
3069 /* reginfo.c */
3070
3071 /* Resize reg info. */
3072 extern bool resize_reg_info (void);
3073 /* Free up register info memory. */
3074 extern void free_reg_info (void);
3075 extern void init_subregs_of_mode (void);
3076 extern void finish_subregs_of_mode (void);
3077
3078 /* recog.c */
3079 extern rtx extract_asm_operands (rtx);
3080 extern int asm_noperands (const_rtx);
3081 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3082 machine_mode *, location_t *);
3083 extern void get_referenced_operands (const char *, bool *, unsigned int);
3084
3085 extern enum reg_class reg_preferred_class (int);
3086 extern enum reg_class reg_alternate_class (int);
3087 extern enum reg_class reg_allocno_class (int);
3088 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3089 enum reg_class);
3090
3091 extern void split_all_insns (void);
3092 extern unsigned int split_all_insns_noflow (void);
3093
3094 #define MAX_SAVED_CONST_INT 64
3095 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3096
3097 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3098 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3099 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3100 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3101 extern GTY(()) rtx const_true_rtx;
3102
3103 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3104
3105 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3106 same as VOIDmode. */
3107
3108 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3109
3110 /* Likewise, for the constants 1 and 2 and -1. */
3111
3112 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3113 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3114 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3115
3116 extern GTY(()) rtx pc_rtx;
3117 extern GTY(()) rtx cc0_rtx;
3118 extern GTY(()) rtx ret_rtx;
3119 extern GTY(()) rtx simple_return_rtx;
3120 extern GTY(()) rtx_insn *invalid_insn_rtx;
3121
3122 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3123 is used to represent the frame pointer. This is because the
3124 hard frame pointer and the automatic variables are separated by an amount
3125 that cannot be determined until after register allocation. We can assume
3126 that in this case ELIMINABLE_REGS will be defined, one action of which
3127 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3128 #ifndef HARD_FRAME_POINTER_REGNUM
3129 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3130 #endif
3131
3132 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3133 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3134 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3135 #endif
3136
3137 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3138 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3139 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3140 #endif
3141
3142 /* Index labels for global_rtl. */
3143 enum global_rtl_index
3144 {
3145 GR_STACK_POINTER,
3146 GR_FRAME_POINTER,
3147 /* For register elimination to work properly these hard_frame_pointer_rtx,
3148 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3149 the same register. */
3150 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3151 GR_ARG_POINTER = GR_FRAME_POINTER,
3152 #endif
3153 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3154 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3155 #else
3156 GR_HARD_FRAME_POINTER,
3157 #endif
3158 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3159 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3160 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3161 #else
3162 GR_ARG_POINTER,
3163 #endif
3164 #endif
3165 GR_VIRTUAL_INCOMING_ARGS,
3166 GR_VIRTUAL_STACK_ARGS,
3167 GR_VIRTUAL_STACK_DYNAMIC,
3168 GR_VIRTUAL_OUTGOING_ARGS,
3169 GR_VIRTUAL_CFA,
3170 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3171
3172 GR_MAX
3173 };
3174
3175 /* Target-dependent globals. */
3176 struct GTY(()) target_rtl {
3177 /* All references to the hard registers in global_rtl_index go through
3178 these unique rtl objects. On machines where the frame-pointer and
3179 arg-pointer are the same register, they use the same unique object.
3180
3181 After register allocation, other rtl objects which used to be pseudo-regs
3182 may be clobbered to refer to the frame-pointer register.
3183 But references that were originally to the frame-pointer can be
3184 distinguished from the others because they contain frame_pointer_rtx.
3185
3186 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3187 tricky: until register elimination has taken place hard_frame_pointer_rtx
3188 should be used if it is being set, and frame_pointer_rtx otherwise. After
3189 register elimination hard_frame_pointer_rtx should always be used.
3190 On machines where the two registers are same (most) then these are the
3191 same. */
3192 rtx x_global_rtl[GR_MAX];
3193
3194 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3195 rtx x_pic_offset_table_rtx;
3196
3197 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3198 This is used to implement __builtin_return_address for some machines;
3199 see for instance the MIPS port. */
3200 rtx x_return_address_pointer_rtx;
3201
3202 /* Commonly used RTL for hard registers. These objects are not
3203 necessarily unique, so we allocate them separately from global_rtl.
3204 They are initialized once per compilation unit, then copied into
3205 regno_reg_rtx at the beginning of each function. */
3206 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3207
3208 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3209 rtx x_top_of_stack[MAX_MACHINE_MODE];
3210
3211 /* Static hunks of RTL used by the aliasing code; these are treated
3212 as persistent to avoid unnecessary RTL allocations. */
3213 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3214
3215 /* The default memory attributes for each mode. */
3216 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3217
3218 /* Track if RTL has been initialized. */
3219 bool target_specific_initialized;
3220 };
3221
3222 extern GTY(()) struct target_rtl default_target_rtl;
3223 #if SWITCHABLE_TARGET
3224 extern struct target_rtl *this_target_rtl;
3225 #else
3226 #define this_target_rtl (&default_target_rtl)
3227 #endif
3228
3229 #define global_rtl \
3230 (this_target_rtl->x_global_rtl)
3231 #define pic_offset_table_rtx \
3232 (this_target_rtl->x_pic_offset_table_rtx)
3233 #define return_address_pointer_rtx \
3234 (this_target_rtl->x_return_address_pointer_rtx)
3235 #define top_of_stack \
3236 (this_target_rtl->x_top_of_stack)
3237 #define mode_mem_attrs \
3238 (this_target_rtl->x_mode_mem_attrs)
3239
3240 /* All references to certain hard regs, except those created
3241 by allocating pseudo regs into them (when that's possible),
3242 go through these unique rtx objects. */
3243 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3244 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3245 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3246 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3247
3248 #ifndef GENERATOR_FILE
3249 /* Return the attributes of a MEM rtx. */
3250 static inline struct mem_attrs *
3251 get_mem_attrs (const_rtx x)
3252 {
3253 struct mem_attrs *attrs;
3254
3255 attrs = MEM_ATTRS (x);
3256 if (!attrs)
3257 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3258 return attrs;
3259 }
3260 #endif
3261
3262 /* Include the RTL generation functions. */
3263
3264 #ifndef GENERATOR_FILE
3265 #include "genrtl.h"
3266 #undef gen_rtx_ASM_INPUT
3267 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3268 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3269 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3270 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3271 #endif
3272
3273 /* There are some RTL codes that require special attention; the
3274 generation functions included above do the raw handling. If you
3275 add to this list, modify special_rtx in gengenrtl.c as well. */
3276
3277 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3278 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3279 extern rtx_insn *
3280 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3281 basic_block bb, rtx pattern, int location, int code,
3282 rtx reg_notes);
3283 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3284 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3285 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3286 extern rtx gen_raw_REG (machine_mode, unsigned int);
3287 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3288 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3289 extern rtx gen_rtx_MEM (machine_mode, rtx);
3290 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3291 enum var_init_status);
3292
3293 #ifdef GENERATOR_FILE
3294 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3295 #else
3296 static inline void
3297 PUT_MODE (rtx x, machine_mode mode)
3298 {
3299 if (REG_P (x))
3300 set_mode_and_regno (x, mode, REGNO (x));
3301 else
3302 PUT_MODE_RAW (x, mode);
3303 }
3304 #endif
3305
3306 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3307
3308 /* Virtual registers are used during RTL generation to refer to locations into
3309 the stack frame when the actual location isn't known until RTL generation
3310 is complete. The routine instantiate_virtual_regs replaces these with
3311 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3312 a constant. */
3313
3314 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3315
3316 /* This points to the first word of the incoming arguments passed on the stack,
3317 either by the caller or by the callee when pretending it was passed by the
3318 caller. */
3319
3320 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3321
3322 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3323
3324 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3325 variable on the stack. Otherwise, it points to the first variable on
3326 the stack. */
3327
3328 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3329
3330 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3331
3332 /* This points to the location of dynamically-allocated memory on the stack
3333 immediately after the stack pointer has been adjusted by the amount
3334 desired. */
3335
3336 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3337
3338 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3339
3340 /* This points to the location in the stack at which outgoing arguments should
3341 be written when the stack is pre-pushed (arguments pushed using push
3342 insns always use sp). */
3343
3344 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3345
3346 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3347
3348 /* This points to the Canonical Frame Address of the function. This
3349 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3350 but is calculated relative to the arg pointer for simplicity; the
3351 frame pointer nor stack pointer are necessarily fixed relative to
3352 the CFA until after reload. */
3353
3354 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3355
3356 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3357
3358 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3359
3360 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3361 when finalized. */
3362
3363 #define virtual_preferred_stack_boundary_rtx \
3364 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3365
3366 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3367 ((FIRST_VIRTUAL_REGISTER) + 5)
3368
3369 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3370
3371 /* Nonzero if REGNUM is a pointer into the stack frame. */
3372 #define REGNO_PTR_FRAME_P(REGNUM) \
3373 ((REGNUM) == STACK_POINTER_REGNUM \
3374 || (REGNUM) == FRAME_POINTER_REGNUM \
3375 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3376 || (REGNUM) == ARG_POINTER_REGNUM \
3377 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3378 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3379
3380 /* REGNUM never really appearing in the INSN stream. */
3381 #define INVALID_REGNUM (~(unsigned int) 0)
3382
3383 /* REGNUM for which no debug information can be generated. */
3384 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3385
3386 extern rtx output_constant_def (tree, int);
3387 extern rtx lookup_constant_def (tree);
3388
3389 /* Nonzero after end of reload pass.
3390 Set to 1 or 0 by reload1.c. */
3391
3392 extern int reload_completed;
3393
3394 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3395 extern int epilogue_completed;
3396
3397 /* Set to 1 while reload_as_needed is operating.
3398 Required by some machines to handle any generated moves differently. */
3399
3400 extern int reload_in_progress;
3401
3402 /* Set to 1 while in lra. */
3403 extern int lra_in_progress;
3404
3405 /* This macro indicates whether you may create a new
3406 pseudo-register. */
3407
3408 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3409
3410 #ifdef STACK_REGS
3411 /* Nonzero after end of regstack pass.
3412 Set to 1 or 0 by reg-stack.c. */
3413 extern int regstack_completed;
3414 #endif
3415
3416 /* If this is nonzero, we do not bother generating VOLATILE
3417 around volatile memory references, and we are willing to
3418 output indirect addresses. If cse is to follow, we reject
3419 indirect addresses so a useful potential cse is generated;
3420 if it is used only once, instruction combination will produce
3421 the same indirect address eventually. */
3422 extern int cse_not_expected;
3423
3424 /* Translates rtx code to tree code, for those codes needed by
3425 REAL_ARITHMETIC. The function returns an int because the caller may not
3426 know what `enum tree_code' means. */
3427
3428 extern int rtx_to_tree_code (enum rtx_code);
3429
3430 /* In cse.c */
3431 extern int delete_trivially_dead_insns (rtx_insn *, int);
3432 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3433 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3434
3435 /* In dse.c */
3436 extern bool check_for_inc_dec (rtx_insn *insn);
3437
3438 /* In jump.c */
3439 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3440 extern bool jump_to_label_p (const rtx_insn *);
3441 extern int condjump_p (const rtx_insn *);
3442 extern int any_condjump_p (const rtx_insn *);
3443 extern int any_uncondjump_p (const rtx_insn *);
3444 extern rtx pc_set (const rtx_insn *);
3445 extern rtx condjump_label (const rtx_insn *);
3446 extern int simplejump_p (const rtx_insn *);
3447 extern int returnjump_p (const rtx_insn *);
3448 extern int eh_returnjump_p (rtx_insn *);
3449 extern int onlyjump_p (const rtx_insn *);
3450 extern int only_sets_cc0_p (const_rtx);
3451 extern int sets_cc0_p (const_rtx);
3452 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3453 extern int invert_jump (rtx_jump_insn *, rtx, int);
3454 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3455 extern int true_regnum (const_rtx);
3456 extern unsigned int reg_or_subregno (const_rtx);
3457 extern int redirect_jump_1 (rtx_insn *, rtx);
3458 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3459 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3460 extern void rebuild_jump_labels (rtx_insn *);
3461 extern void rebuild_jump_labels_chain (rtx_insn *);
3462 extern rtx reversed_comparison (const_rtx, machine_mode);
3463 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3464 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3465 const_rtx, const_rtx);
3466 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3467 extern int condjump_in_parallel_p (const rtx_insn *);
3468
3469 /* In emit-rtl.c. */
3470 extern int max_reg_num (void);
3471 extern int max_label_num (void);
3472 extern int get_first_label_num (void);
3473 extern void maybe_set_first_label_num (rtx);
3474 extern void delete_insns_since (rtx_insn *);
3475 extern void mark_reg_pointer (rtx, int);
3476 extern void mark_user_reg (rtx);
3477 extern void reset_used_flags (rtx);
3478 extern void set_used_flags (rtx);
3479 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3480 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3481 extern int get_max_insn_count (void);
3482 extern int in_sequence_p (void);
3483 extern void init_emit (void);
3484 extern void init_emit_regs (void);
3485 extern void init_derived_machine_modes (void);
3486 extern void init_emit_once (void);
3487 extern void push_topmost_sequence (void);
3488 extern void pop_topmost_sequence (void);
3489 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3490 extern unsigned int unshare_all_rtl (void);
3491 extern void unshare_all_rtl_again (rtx_insn *);
3492 extern void unshare_all_rtl_in_chain (rtx_insn *);
3493 extern void verify_rtl_sharing (void);
3494 extern void add_insn (rtx_insn *);
3495 extern void add_insn_before (rtx, rtx, basic_block);
3496 extern void add_insn_after (rtx, rtx, basic_block);
3497 extern void remove_insn (rtx);
3498 extern rtx_insn *emit (rtx);
3499 extern void emit_insn_at_entry (rtx);
3500 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3501 extern rtx gen_const_mem (machine_mode, rtx);
3502 extern rtx gen_frame_mem (machine_mode, rtx);
3503 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3504 extern bool validate_subreg (machine_mode, machine_mode,
3505 const_rtx, unsigned int);
3506
3507 /* In combine.c */
3508 extern unsigned int extended_count (const_rtx, machine_mode, int);
3509 extern rtx remove_death (unsigned int, rtx_insn *);
3510 extern void dump_combine_stats (FILE *);
3511 extern void dump_combine_total_stats (FILE *);
3512 extern rtx make_compound_operation (rtx, enum rtx_code);
3513
3514 /* In sched-rgn.c. */
3515 extern void schedule_insns (void);
3516
3517 /* In sched-ebb.c. */
3518 extern void schedule_ebbs (void);
3519
3520 /* In sel-sched-dump.c. */
3521 extern void sel_sched_fix_param (const char *param, const char *val);
3522
3523 /* In print-rtl.c */
3524 extern const char *print_rtx_head;
3525 extern void debug (const rtx_def &ref);
3526 extern void debug (const rtx_def *ptr);
3527 extern void debug_rtx (const_rtx);
3528 extern void debug_rtx_list (const rtx_insn *, int);
3529 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3530 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3531 extern void print_mem_expr (FILE *, const_tree);
3532 extern void print_rtl (FILE *, const_rtx);
3533 extern void print_simple_rtl (FILE *, const_rtx);
3534 extern int print_rtl_single (FILE *, const_rtx);
3535 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3536 extern void print_inline_rtx (FILE *, const_rtx, int);
3537
3538 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3539 not be in sched-vis.c but in rtl.c, because they are not only used
3540 by the scheduler anymore but for all "slim" RTL dumping. */
3541 extern void dump_value_slim (FILE *, const_rtx, int);
3542 extern void dump_insn_slim (FILE *, const rtx_insn *);
3543 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3544 int, int);
3545 extern void print_value (pretty_printer *, const_rtx, int);
3546 extern void print_pattern (pretty_printer *, const_rtx, int);
3547 extern void print_insn (pretty_printer *, const_rtx, int);
3548 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3549 extern const char *str_pattern_slim (const_rtx);
3550
3551 /* In stmt.c */
3552 extern void expand_null_return (void);
3553 extern void expand_naked_return (void);
3554 extern void emit_jump (rtx);
3555
3556 /* In expr.c */
3557 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3558 unsigned int, int);
3559 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3560 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3561
3562 /* In expmed.c */
3563 extern void init_expmed (void);
3564 extern void expand_inc (rtx, rtx);
3565 extern void expand_dec (rtx, rtx);
3566
3567 /* In lower-subreg.c */
3568 extern void init_lower_subreg (void);
3569
3570 /* In gcse.c */
3571 extern bool can_copy_p (machine_mode);
3572 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3573 extern rtx fis_get_condition (rtx_insn *);
3574
3575 /* In ira.c */
3576 #ifdef HARD_CONST
3577 extern HARD_REG_SET eliminable_regset;
3578 #endif
3579 extern void mark_elimination (int, int);
3580
3581 /* In reginfo.c */
3582 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3583 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3584 extern void globalize_reg (tree, int);
3585 extern void init_reg_modes_target (void);
3586 extern void init_regs (void);
3587 extern void reinit_regs (void);
3588 extern void init_fake_stack_mems (void);
3589 extern void save_register_info (void);
3590 extern void init_reg_sets (void);
3591 extern void regclass (rtx, int);
3592 extern void reg_scan (rtx_insn *, unsigned int);
3593 extern void fix_register (const char *, int, int);
3594 #ifdef HARD_CONST
3595 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3596 #endif
3597
3598 /* In reload1.c */
3599 extern int function_invariant_p (const_rtx);
3600
3601 /* In calls.c */
3602 enum libcall_type
3603 {
3604 LCT_NORMAL = 0,
3605 LCT_CONST = 1,
3606 LCT_PURE = 2,
3607 LCT_NORETURN = 3,
3608 LCT_THROW = 4,
3609 LCT_RETURNS_TWICE = 5
3610 };
3611
3612 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3613 ...);
3614 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3615 machine_mode, int, ...);
3616
3617 /* In varasm.c */
3618 extern void init_varasm_once (void);
3619
3620 extern rtx make_debug_expr_from_rtl (const_rtx);
3621
3622 /* In read-rtl.c */
3623 extern bool read_rtx (const char *, rtx *);
3624
3625 /* In alias.c */
3626 extern rtx canon_rtx (rtx);
3627 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3628 extern rtx get_addr (rtx);
3629 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3630 const_rtx, rtx);
3631 extern int read_dependence (const_rtx, const_rtx);
3632 extern int anti_dependence (const_rtx, const_rtx);
3633 extern int canon_anti_dependence (const_rtx, bool,
3634 const_rtx, machine_mode, rtx);
3635 extern int output_dependence (const_rtx, const_rtx);
3636 extern int may_alias_p (const_rtx, const_rtx);
3637 extern void init_alias_target (void);
3638 extern void init_alias_analysis (void);
3639 extern void end_alias_analysis (void);
3640 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3641 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3642 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3643 extern bool may_be_sp_based_p (rtx);
3644 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3645 extern rtx get_reg_known_value (unsigned int);
3646 extern bool get_reg_known_equiv_p (unsigned int);
3647 extern rtx get_reg_base_value (unsigned int);
3648
3649 #ifdef STACK_REGS
3650 extern int stack_regs_mentioned (const_rtx insn);
3651 #endif
3652
3653 /* In toplev.c */
3654 extern GTY(()) rtx stack_limit_rtx;
3655
3656 /* In var-tracking.c */
3657 extern unsigned int variable_tracking_main (void);
3658
3659 /* In stor-layout.c. */
3660 extern void get_mode_bounds (machine_mode, int, machine_mode,
3661 rtx *, rtx *);
3662
3663 /* In loop-iv.c */
3664 extern rtx canon_condition (rtx);
3665 extern void simplify_using_condition (rtx, rtx *, bitmap);
3666
3667 /* In final.c */
3668 extern unsigned int compute_alignments (void);
3669 extern void update_alignments (vec<rtx> &);
3670 extern int asm_str_count (const char *templ);
3671 \f
3672 struct rtl_hooks
3673 {
3674 rtx (*gen_lowpart) (machine_mode, rtx);
3675 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3676 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3677 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3678 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3679 unsigned int, unsigned int *);
3680 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3681
3682 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3683 };
3684
3685 /* Each pass can provide its own. */
3686 extern struct rtl_hooks rtl_hooks;
3687
3688 /* ... but then it has to restore these. */
3689 extern const struct rtl_hooks general_rtl_hooks;
3690
3691 /* Keep this for the nonce. */
3692 #define gen_lowpart rtl_hooks.gen_lowpart
3693
3694 extern void insn_locations_init (void);
3695 extern void insn_locations_finalize (void);
3696 extern void set_curr_insn_location (location_t);
3697 extern location_t curr_insn_location (void);
3698
3699 /* rtl-error.c */
3700 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3701 ATTRIBUTE_NORETURN;
3702 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3703 ATTRIBUTE_NORETURN;
3704
3705 #define fatal_insn(msgid, insn) \
3706 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3707 #define fatal_insn_not_found(insn) \
3708 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3709
3710 /* reginfo.c */
3711 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3712
3713 #endif /* ! GCC_RTL_H */