Promote types of rtl expressions to rtx_insn in gen_split and gen_peephole2
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "machmode.h"
28 #include "signop.h"
29 #include "wide-int.h"
30 #include "double-int.h"
31 #include "real.h"
32 #include "fixed-value.h"
33 #endif /* GENERATOR_FILE */
34
35 #include "statistics.h"
36 #include "input.h"
37 #include "vec.h"
38 #include "alias.h"
39 #include "hashtab.h"
40 #include "flags.h"
41 #include "is-a.h"
42
43 /* Value used by some passes to "recognize" noop moves as valid
44 instructions. */
45 #define NOOP_MOVE_INSN_CODE INT_MAX
46
47 /* Register Transfer Language EXPRESSIONS CODES */
48
49 #define RTX_CODE enum rtx_code
50 enum rtx_code {
51
52 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
53 #include "rtl.def" /* rtl expressions are documented here */
54 #undef DEF_RTL_EXPR
55
56 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
57 NUM_RTX_CODE.
58 Assumes default enum value assignment. */
59
60 /* The cast here, saves many elsewhere. */
61 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
62
63 /* Similar, but since generator files get more entries... */
64 #ifdef GENERATOR_FILE
65 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
66 #endif
67
68 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
69
70 enum rtx_class {
71 /* We check bit 0-1 of some rtx class codes in the predicates below. */
72
73 /* Bit 0 = comparison if 0, arithmetic is 1
74 Bit 1 = 1 if commutative. */
75 RTX_COMPARE, /* 0 */
76 RTX_COMM_COMPARE,
77 RTX_BIN_ARITH,
78 RTX_COMM_ARITH,
79
80 /* Must follow the four preceding values. */
81 RTX_UNARY, /* 4 */
82
83 RTX_EXTRA,
84 RTX_MATCH,
85 RTX_INSN,
86
87 /* Bit 0 = 1 if constant. */
88 RTX_OBJ, /* 8 */
89 RTX_CONST_OBJ,
90
91 RTX_TERNARY,
92 RTX_BITFIELD_OPS,
93 RTX_AUTOINC
94 };
95
96 #define RTX_OBJ_MASK (~1)
97 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98 #define RTX_COMPARE_MASK (~1)
99 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100 #define RTX_ARITHMETIC_MASK (~1)
101 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102 #define RTX_BINARY_MASK (~3)
103 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104 #define RTX_COMMUTATIVE_MASK (~2)
105 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
107
108 extern const unsigned char rtx_length[NUM_RTX_CODE];
109 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
110
111 extern const char * const rtx_name[NUM_RTX_CODE];
112 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
113
114 extern const char * const rtx_format[NUM_RTX_CODE];
115 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
116
117 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
119
120 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121 and NEXT_INSN fields). */
122 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
123
124 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125 extern const unsigned char rtx_next[NUM_RTX_CODE];
126 \f
127 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
128 relative to which the offsets are calculated, as explained in rtl.def. */
129 struct addr_diff_vec_flags
130 {
131 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132 unsigned min_align: 8;
133 /* Flags: */
134 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
135 unsigned min_after_vec: 1; /* minimum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned max_after_vec: 1; /* maximum address target label is
138 after the ADDR_DIFF_VEC. */
139 unsigned min_after_base: 1; /* minimum address target label is
140 after BASE. */
141 unsigned max_after_base: 1; /* maximum address target label is
142 after BASE. */
143 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
145 unsigned : 2;
146 unsigned scale : 8;
147 };
148
149 /* Structure used to describe the attributes of a MEM. These are hashed
150 so MEMs that the same attributes share a data structure. This means
151 they cannot be modified in place. */
152 struct GTY(()) mem_attrs
153 {
154 /* The expression that the MEM accesses, or null if not known.
155 This expression might be larger than the memory reference itself.
156 (In other words, the MEM might access only part of the object.) */
157 tree expr;
158
159 /* The offset of the memory reference from the start of EXPR.
160 Only valid if OFFSET_KNOWN_P. */
161 HOST_WIDE_INT offset;
162
163 /* The size of the memory reference in bytes. Only valid if
164 SIZE_KNOWN_P. */
165 HOST_WIDE_INT size;
166
167 /* The alias set of the memory reference. */
168 alias_set_type alias;
169
170 /* The alignment of the reference in bits. Always a multiple of
171 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
172 than the memory reference itself. */
173 unsigned int align;
174
175 /* The address space that the memory reference uses. */
176 unsigned char addrspace;
177
178 /* True if OFFSET is known. */
179 bool offset_known_p;
180
181 /* True if SIZE is known. */
182 bool size_known_p;
183 };
184
185 /* Structure used to describe the attributes of a REG in similar way as
186 mem_attrs does for MEM above. Note that the OFFSET field is calculated
187 in the same way as for mem_attrs, rather than in the same way as a
188 SUBREG_BYTE. For example, if a big-endian target stores a byte
189 object in the low part of a 4-byte register, the OFFSET field
190 will be -3 rather than 0. */
191
192 struct GTY((for_user)) reg_attrs {
193 tree decl; /* decl corresponding to REG. */
194 HOST_WIDE_INT offset; /* Offset from start of DECL. */
195 };
196
197 /* Common union for an element of an rtx. */
198
199 union rtunion
200 {
201 int rt_int;
202 unsigned int rt_uint;
203 const char *rt_str;
204 rtx rt_rtx;
205 rtvec rt_rtvec;
206 machine_mode rt_type;
207 addr_diff_vec_flags rt_addr_diff_vec_flags;
208 struct cselib_val *rt_cselib;
209 tree rt_tree;
210 basic_block rt_bb;
211 mem_attrs *rt_mem;
212 struct constant_descriptor_rtx *rt_constant;
213 struct dw_cfi_node *rt_cfi;
214 };
215
216 /* Describes the properties of a REG. */
217 struct GTY(()) reg_info {
218 /* The value of REGNO. */
219 unsigned int regno;
220
221 /* The value of REG_NREGS. */
222 unsigned int nregs : 8;
223 unsigned int unused : 24;
224
225 /* The value of REG_ATTRS. */
226 reg_attrs *attrs;
227 };
228
229 /* This structure remembers the position of a SYMBOL_REF within an
230 object_block structure. A SYMBOL_REF only provides this information
231 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
232 struct GTY(()) block_symbol {
233 /* The usual SYMBOL_REF fields. */
234 rtunion GTY ((skip)) fld[2];
235
236 /* The block that contains this object. */
237 struct object_block *block;
238
239 /* The offset of this object from the start of its block. It is negative
240 if the symbol has not yet been assigned an offset. */
241 HOST_WIDE_INT offset;
242 };
243
244 /* Describes a group of objects that are to be placed together in such
245 a way that their relative positions are known. */
246 struct GTY((for_user)) object_block {
247 /* The section in which these objects should be placed. */
248 section *sect;
249
250 /* The alignment of the first object, measured in bits. */
251 unsigned int alignment;
252
253 /* The total size of the objects, measured in bytes. */
254 HOST_WIDE_INT size;
255
256 /* The SYMBOL_REFs for each object. The vector is sorted in
257 order of increasing offset and the following conditions will
258 hold for each element X:
259
260 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
261 !SYMBOL_REF_ANCHOR_P (X)
262 SYMBOL_REF_BLOCK (X) == [address of this structure]
263 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
264 vec<rtx, va_gc> *objects;
265
266 /* All the anchor SYMBOL_REFs used to address these objects, sorted
267 in order of increasing offset, and then increasing TLS model.
268 The following conditions will hold for each element X in this vector:
269
270 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
271 SYMBOL_REF_ANCHOR_P (X)
272 SYMBOL_REF_BLOCK (X) == [address of this structure]
273 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
274 vec<rtx, va_gc> *anchors;
275 };
276
277 struct GTY((variable_size)) hwivec_def {
278 HOST_WIDE_INT elem[1];
279 };
280
281 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
282 #define CWI_GET_NUM_ELEM(RTX) \
283 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
284 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
285 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
286
287 /* RTL expression ("rtx"). */
288
289 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
290 field for for gengtype to recognize that inheritance is occurring,
291 so that all subclasses are redirected to the traversal hook for the
292 base class.
293 However, all of the fields are in the base class, and special-casing
294 is at work. Hence we use desc and tag of 0, generating a switch
295 statement of the form:
296 switch (0)
297 {
298 case 0: // all the work happens here
299 }
300 in order to work with the existing special-casing in gengtype. */
301
302 struct GTY((desc("0"), tag("0"),
303 chain_next ("RTX_NEXT (&%h)"),
304 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
305 /* The kind of expression this is. */
306 ENUM_BITFIELD(rtx_code) code: 16;
307
308 /* The kind of value the expression has. */
309 ENUM_BITFIELD(machine_mode) mode : 8;
310
311 /* 1 in a MEM if we should keep the alias set for this mem unchanged
312 when we access a component.
313 1 in a JUMP_INSN if it is a crossing jump.
314 1 in a CALL_INSN if it is a sibling call.
315 1 in a SET that is for a return.
316 In a CODE_LABEL, part of the two-bit alternate entry field.
317 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
318 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
319 1 in a SUBREG generated by LRA for reload insns.
320 1 in a CALL for calls instrumented by Pointer Bounds Checker. */
321 unsigned int jump : 1;
322 /* In a CODE_LABEL, part of the two-bit alternate entry field.
323 1 in a MEM if it cannot trap.
324 1 in a CALL_INSN logically equivalent to
325 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
326 unsigned int call : 1;
327 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
328 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
329 1 in a SYMBOL_REF if it addresses something in the per-function
330 constants pool.
331 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
332 1 in a NOTE, or EXPR_LIST for a const call.
333 1 in a JUMP_INSN of an annulling branch.
334 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
335 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
336 1 in a clobber temporarily created for LRA. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a scheduling
348 barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
350 unsigned int volatil : 1;
351 /* 1 in a REG if the register is used only in exit code a loop.
352 1 in a SUBREG expression if was generated from a variable with a
353 promoted mode.
354 1 in a CODE_LABEL if the label is used for nonlocal gotos
355 and must not be deleted even if its count is zero.
356 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
357 together with the preceding insn. Valid only within sched.
358 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
359 from the target of a branch. Valid from reorg until end of compilation;
360 cleared before used.
361
362 The name of the field is historical. It used to be used in MEMs
363 to record whether the MEM accessed part of a structure. */
364 unsigned int in_struct : 1;
365 /* At the end of RTL generation, 1 if this rtx is used. This is used for
366 copying shared structure. See `unshare_all_rtl'.
367 In a REG, this is not needed for that purpose, and used instead
368 in `leaf_renumber_regs_insn'.
369 1 in a SYMBOL_REF, means that emit_library_call
370 has used it as the function.
371 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
372 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
373 unsigned int used : 1;
374 /* 1 in an INSN or a SET if this rtx is related to the call frame,
375 either changing how we compute the frame address or saving and
376 restoring registers in the prologue and epilogue.
377 1 in a REG or MEM if it is a pointer.
378 1 in a SYMBOL_REF if it addresses something in the per-function
379 constant string pool.
380 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
381 unsigned frame_related : 1;
382 /* 1 in a REG or PARALLEL that is the current function's return value.
383 1 in a SYMBOL_REF for a weak symbol.
384 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
385 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
386 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
387 unsigned return_val : 1;
388
389 union {
390 /* The final union field is aligned to 64 bits on LP64 hosts,
391 giving a 32-bit gap after the fields above. We optimize the
392 layout for that case and use the gap for extra code-specific
393 information. */
394
395 /* The ORIGINAL_REGNO of a REG. */
396 unsigned int original_regno;
397
398 /* The INSN_UID of an RTX_INSN-class code. */
399 int insn_uid;
400
401 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
402 unsigned int symbol_ref_flags;
403
404 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
405 enum var_init_status var_location_status;
406
407 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
408 HOST_WIDE_INTs in the hwivec_def. */
409 unsigned int num_elem;
410 } GTY ((skip)) u2;
411
412 /* The first element of the operands of this rtx.
413 The number of operands and their types are controlled
414 by the `code' field, according to rtl.def. */
415 union u {
416 rtunion fld[1];
417 HOST_WIDE_INT hwint[1];
418 struct reg_info reg;
419 struct block_symbol block_sym;
420 struct real_value rv;
421 struct fixed_value fv;
422 struct hwivec_def hwiv;
423 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
424 };
425
426 /* A node for constructing singly-linked lists of rtx. */
427
428 class GTY(()) rtx_expr_list : public rtx_def
429 {
430 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
431
432 public:
433 /* Get next in list. */
434 rtx_expr_list *next () const;
435
436 /* Get at the underlying rtx. */
437 rtx element () const;
438 };
439
440 template <>
441 template <>
442 inline bool
443 is_a_helper <rtx_expr_list *>::test (rtx rt)
444 {
445 return rt->code == EXPR_LIST;
446 }
447
448 class GTY(()) rtx_insn_list : public rtx_def
449 {
450 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
451
452 This is an instance of:
453
454 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
455
456 i.e. a node for constructing singly-linked lists of rtx_insn *, where
457 the list is "external" to the insn (as opposed to the doubly-linked
458 list embedded within rtx_insn itself). */
459
460 public:
461 /* Get next in list. */
462 rtx_insn_list *next () const;
463
464 /* Get at the underlying instruction. */
465 rtx_insn *insn () const;
466
467 };
468
469 template <>
470 template <>
471 inline bool
472 is_a_helper <rtx_insn_list *>::test (rtx rt)
473 {
474 return rt->code == INSN_LIST;
475 }
476
477 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
478 typically (but not always) of rtx_insn *, used in the late passes. */
479
480 class GTY(()) rtx_sequence : public rtx_def
481 {
482 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
483
484 public:
485 /* Get number of elements in sequence. */
486 int len () const;
487
488 /* Get i-th element of the sequence. */
489 rtx element (int index) const;
490
491 /* Get i-th element of the sequence, with a checked cast to
492 rtx_insn *. */
493 rtx_insn *insn (int index) const;
494 };
495
496 template <>
497 template <>
498 inline bool
499 is_a_helper <rtx_sequence *>::test (rtx rt)
500 {
501 return rt->code == SEQUENCE;
502 }
503
504 template <>
505 template <>
506 inline bool
507 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
508 {
509 return rt->code == SEQUENCE;
510 }
511
512 class GTY(()) rtx_insn : public rtx_def
513 {
514 public:
515 /* No extra fields, but adds the invariant:
516
517 (INSN_P (X)
518 || NOTE_P (X)
519 || JUMP_TABLE_DATA_P (X)
520 || BARRIER_P (X)
521 || LABEL_P (X))
522
523 i.e. that we must be able to use the following:
524 INSN_UID ()
525 NEXT_INSN ()
526 PREV_INSN ()
527 i.e. we have an rtx that has an INSN_UID field and can be part of
528 a linked list of insns.
529 */
530
531 /* Returns true if this insn has been deleted. */
532
533 bool deleted () const { return volatil; }
534
535 /* Mark this insn as deleted. */
536
537 void set_deleted () { volatil = true; }
538
539 /* Mark this insn as not deleted. */
540
541 void set_undeleted () { volatil = false; }
542 };
543
544 /* Subclasses of rtx_insn. */
545
546 class GTY(()) rtx_debug_insn : public rtx_insn
547 {
548 /* No extra fields, but adds the invariant:
549 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
550 i.e. an annotation for tracking variable assignments.
551
552 This is an instance of:
553 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
554 from rtl.def. */
555 };
556
557 class GTY(()) rtx_nonjump_insn : public rtx_insn
558 {
559 /* No extra fields, but adds the invariant:
560 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
561 i.e an instruction that cannot jump.
562
563 This is an instance of:
564 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
565 from rtl.def. */
566 };
567
568 class GTY(()) rtx_jump_insn : public rtx_insn
569 {
570 public:
571 /* No extra fields, but adds the invariant:
572 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
573 i.e. an instruction that can possibly jump.
574
575 This is an instance of:
576 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
577 from rtl.def. */
578
579 /* Returns jump target of this instruction. The returned value is not
580 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
581 expression. Also, when the code label is marked "deleted", it is
582 replaced by a NOTE. In some cases the value is NULL_RTX. */
583
584 inline rtx jump_label () const;
585
586 /* Returns jump target cast to rtx_code_label *. */
587
588 inline rtx_code_label *jump_target () const;
589
590 /* Set jump target. */
591
592 inline void set_jump_target (rtx_code_label *);
593 };
594
595 class GTY(()) rtx_call_insn : public rtx_insn
596 {
597 /* No extra fields, but adds the invariant:
598 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
599 i.e. an instruction that can possibly call a subroutine
600 but which will not change which instruction comes next
601 in the current function.
602
603 This is an instance of:
604 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
605 from rtl.def. */
606 };
607
608 class GTY(()) rtx_jump_table_data : public rtx_insn
609 {
610 /* No extra fields, but adds the invariant:
611 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
612 i.e. a data for a jump table, considered an instruction for
613 historical reasons.
614
615 This is an instance of:
616 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
617 from rtl.def. */
618
619 public:
620
621 /* This can be either:
622
623 (a) a table of absolute jumps, in which case PATTERN (this) is an
624 ADDR_VEC with arg 0 a vector of labels, or
625
626 (b) a table of relative jumps (e.g. for -fPIC), in which case
627 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
628 arg 1 the vector of labels.
629
630 This method gets the underlying vec. */
631
632 inline rtvec get_labels () const;
633 };
634
635 class GTY(()) rtx_barrier : public rtx_insn
636 {
637 /* No extra fields, but adds the invariant:
638 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
639 i.e. a marker that indicates that control will not flow through.
640
641 This is an instance of:
642 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
643 from rtl.def. */
644 };
645
646 class GTY(()) rtx_code_label : public rtx_insn
647 {
648 /* No extra fields, but adds the invariant:
649 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
650 i.e. a label in the assembler.
651
652 This is an instance of:
653 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
654 from rtl.def. */
655 };
656
657 class GTY(()) rtx_note : public rtx_insn
658 {
659 /* No extra fields, but adds the invariant:
660 NOTE_P(X) aka (GET_CODE (X) == NOTE)
661 i.e. a note about the corresponding source code.
662
663 This is an instance of:
664 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
665 from rtl.def. */
666 };
667
668 /* The size in bytes of an rtx header (code, mode and flags). */
669 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
670
671 /* The size in bytes of an rtx with code CODE. */
672 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
673
674 #define NULL_RTX (rtx) 0
675
676 /* The "next" and "previous" RTX, relative to this one. */
677
678 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
679 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
680
681 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
682 */
683 #define RTX_PREV(X) ((INSN_P (X) \
684 || NOTE_P (X) \
685 || JUMP_TABLE_DATA_P (X) \
686 || BARRIER_P (X) \
687 || LABEL_P (X)) \
688 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
689 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
690 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
691
692 /* Define macros to access the `code' field of the rtx. */
693
694 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
695 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
696
697 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
698 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
699
700 /* RTL vector. These appear inside RTX's when there is a need
701 for a variable number of things. The principle use is inside
702 PARALLEL expressions. */
703
704 struct GTY(()) rtvec_def {
705 int num_elem; /* number of elements */
706 rtx GTY ((length ("%h.num_elem"))) elem[1];
707 };
708
709 #define NULL_RTVEC (rtvec) 0
710
711 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
712 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
713
714 /* Predicate yielding nonzero iff X is an rtx for a register. */
715 #define REG_P(X) (GET_CODE (X) == REG)
716
717 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
718 #define MEM_P(X) (GET_CODE (X) == MEM)
719
720 #if TARGET_SUPPORTS_WIDE_INT
721
722 /* Match CONST_*s that can represent compile-time constant integers. */
723 #define CASE_CONST_SCALAR_INT \
724 case CONST_INT: \
725 case CONST_WIDE_INT
726
727 /* Match CONST_*s for which pointer equality corresponds to value
728 equality. */
729 #define CASE_CONST_UNIQUE \
730 case CONST_INT: \
731 case CONST_WIDE_INT: \
732 case CONST_DOUBLE: \
733 case CONST_FIXED
734
735 /* Match all CONST_* rtxes. */
736 #define CASE_CONST_ANY \
737 case CONST_INT: \
738 case CONST_WIDE_INT: \
739 case CONST_DOUBLE: \
740 case CONST_FIXED: \
741 case CONST_VECTOR
742
743 #else
744
745 /* Match CONST_*s that can represent compile-time constant integers. */
746 #define CASE_CONST_SCALAR_INT \
747 case CONST_INT: \
748 case CONST_DOUBLE
749
750 /* Match CONST_*s for which pointer equality corresponds to value
751 equality. */
752 #define CASE_CONST_UNIQUE \
753 case CONST_INT: \
754 case CONST_DOUBLE: \
755 case CONST_FIXED
756
757 /* Match all CONST_* rtxes. */
758 #define CASE_CONST_ANY \
759 case CONST_INT: \
760 case CONST_DOUBLE: \
761 case CONST_FIXED: \
762 case CONST_VECTOR
763 #endif
764
765 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
766 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
767
768 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
769 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
770
771 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
772 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
773
774 /* Predicate yielding true iff X is an rtx for a double-int
775 or floating point constant. */
776 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
777
778 /* Predicate yielding true iff X is an rtx for a double-int. */
779 #define CONST_DOUBLE_AS_INT_P(X) \
780 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
781
782 /* Predicate yielding true iff X is an rtx for a integer const. */
783 #if TARGET_SUPPORTS_WIDE_INT
784 #define CONST_SCALAR_INT_P(X) \
785 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
786 #else
787 #define CONST_SCALAR_INT_P(X) \
788 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
789 #endif
790
791 /* Predicate yielding true iff X is an rtx for a double-int. */
792 #define CONST_DOUBLE_AS_FLOAT_P(X) \
793 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
794
795 /* Predicate yielding nonzero iff X is a label insn. */
796 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
797
798 /* Predicate yielding nonzero iff X is a jump insn. */
799 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
800
801 /* Predicate yielding nonzero iff X is a call insn. */
802 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
803
804 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
805 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
806
807 /* Predicate yielding nonzero iff X is a debug note/insn. */
808 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
809
810 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
811 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
812
813 /* Nonzero if DEBUG_INSN_P may possibly hold. */
814 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
815
816 /* Predicate yielding nonzero iff X is a real insn. */
817 #define INSN_P(X) \
818 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
819
820 /* Predicate yielding nonzero iff X is a note insn. */
821 #define NOTE_P(X) (GET_CODE (X) == NOTE)
822
823 /* Predicate yielding nonzero iff X is a barrier insn. */
824 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
825
826 /* Predicate yielding nonzero iff X is a data for a jump table. */
827 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
828
829 /* Predicate yielding nonzero iff RTX is a subreg. */
830 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
831
832 template <>
833 template <>
834 inline bool
835 is_a_helper <rtx_insn *>::test (rtx rt)
836 {
837 return (INSN_P (rt)
838 || NOTE_P (rt)
839 || JUMP_TABLE_DATA_P (rt)
840 || BARRIER_P (rt)
841 || LABEL_P (rt));
842 }
843
844 template <>
845 template <>
846 inline bool
847 is_a_helper <const rtx_insn *>::test (const_rtx rt)
848 {
849 return (INSN_P (rt)
850 || NOTE_P (rt)
851 || JUMP_TABLE_DATA_P (rt)
852 || BARRIER_P (rt)
853 || LABEL_P (rt));
854 }
855
856 template <>
857 template <>
858 inline bool
859 is_a_helper <rtx_debug_insn *>::test (rtx rt)
860 {
861 return DEBUG_INSN_P (rt);
862 }
863
864 template <>
865 template <>
866 inline bool
867 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
868 {
869 return NONJUMP_INSN_P (rt);
870 }
871
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_jump_insn *>::test (rtx rt)
876 {
877 return JUMP_P (rt);
878 }
879
880 template <>
881 template <>
882 inline bool
883 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
884 {
885 return JUMP_P (insn);
886 }
887
888 template <>
889 template <>
890 inline bool
891 is_a_helper <rtx_call_insn *>::test (rtx rt)
892 {
893 return CALL_P (rt);
894 }
895
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
900 {
901 return CALL_P (insn);
902 }
903
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
908 {
909 return JUMP_TABLE_DATA_P (rt);
910 }
911
912 template <>
913 template <>
914 inline bool
915 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
916 {
917 return JUMP_TABLE_DATA_P (insn);
918 }
919
920 template <>
921 template <>
922 inline bool
923 is_a_helper <rtx_barrier *>::test (rtx rt)
924 {
925 return BARRIER_P (rt);
926 }
927
928 template <>
929 template <>
930 inline bool
931 is_a_helper <rtx_code_label *>::test (rtx rt)
932 {
933 return LABEL_P (rt);
934 }
935
936 template <>
937 template <>
938 inline bool
939 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
940 {
941 return LABEL_P (insn);
942 }
943
944 template <>
945 template <>
946 inline bool
947 is_a_helper <rtx_note *>::test (rtx rt)
948 {
949 return NOTE_P (rt);
950 }
951
952 template <>
953 template <>
954 inline bool
955 is_a_helper <rtx_note *>::test (rtx_insn *insn)
956 {
957 return NOTE_P (insn);
958 }
959
960 /* Predicate yielding nonzero iff X is a return or simple_return. */
961 #define ANY_RETURN_P(X) \
962 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
963
964 /* 1 if X is a unary operator. */
965
966 #define UNARY_P(X) \
967 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
968
969 /* 1 if X is a binary operator. */
970
971 #define BINARY_P(X) \
972 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
973
974 /* 1 if X is an arithmetic operator. */
975
976 #define ARITHMETIC_P(X) \
977 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
978 == RTX_ARITHMETIC_RESULT)
979
980 /* 1 if X is an arithmetic operator. */
981
982 #define COMMUTATIVE_ARITH_P(X) \
983 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
984
985 /* 1 if X is a commutative arithmetic operator or a comparison operator.
986 These two are sometimes selected together because it is possible to
987 swap the two operands. */
988
989 #define SWAPPABLE_OPERANDS_P(X) \
990 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
991 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
992 | (1 << RTX_COMPARE)))
993
994 /* 1 if X is a non-commutative operator. */
995
996 #define NON_COMMUTATIVE_P(X) \
997 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
998 == RTX_NON_COMMUTATIVE_RESULT)
999
1000 /* 1 if X is a commutative operator on integers. */
1001
1002 #define COMMUTATIVE_P(X) \
1003 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1004 == RTX_COMMUTATIVE_RESULT)
1005
1006 /* 1 if X is a relational operator. */
1007
1008 #define COMPARISON_P(X) \
1009 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1010
1011 /* 1 if X is a constant value that is an integer. */
1012
1013 #define CONSTANT_P(X) \
1014 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1015
1016 /* 1 if X can be used to represent an object. */
1017 #define OBJECT_P(X) \
1018 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1019
1020 /* General accessor macros for accessing the fields of an rtx. */
1021
1022 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1023 /* The bit with a star outside the statement expr and an & inside is
1024 so that N can be evaluated only once. */
1025 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1026 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1027 const enum rtx_code _code = GET_CODE (_rtx); \
1028 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1029 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1030 __FUNCTION__); \
1031 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1032 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtx->u.fld[_n]; }))
1035
1036 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1037 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1038 const enum rtx_code _code = GET_CODE (_rtx); \
1039 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1040 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1041 __FUNCTION__); \
1042 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1043 && GET_RTX_FORMAT (_code)[_n] != C2) \
1044 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1045 __FUNCTION__); \
1046 &_rtx->u.fld[_n]; }))
1047
1048 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1049 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1050 if (GET_CODE (_rtx) != (C)) \
1051 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1052 __FUNCTION__); \
1053 &_rtx->u.fld[_n]; }))
1054
1055 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1056 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1057 const enum rtx_code _code = GET_CODE (_rtx); \
1058 if (_code != (C1) && _code != (C2)) \
1059 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1060 __FUNCTION__); \
1061 &_rtx->u.fld[_n]; }))
1062
1063 #define RTVEC_ELT(RTVEC, I) __extension__ \
1064 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1065 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1066 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1067 __FUNCTION__); \
1068 &_rtvec->elem[_i]; }))
1069
1070 #define XWINT(RTX, N) __extension__ \
1071 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1072 const enum rtx_code _code = GET_CODE (_rtx); \
1073 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1074 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1075 __FUNCTION__); \
1076 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1077 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1078 __FUNCTION__); \
1079 &_rtx->u.hwint[_n]; }))
1080
1081 #define CWI_ELT(RTX, I) __extension__ \
1082 (*({ __typeof (RTX) const _cwi = (RTX); \
1083 int _max = CWI_GET_NUM_ELEM (_cwi); \
1084 const int _i = (I); \
1085 if (_i < 0 || _i >= _max) \
1086 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1087 __FUNCTION__); \
1088 &_cwi->u.hwiv.elem[_i]; }))
1089
1090 #define XCWINT(RTX, N, C) __extension__ \
1091 (*({ __typeof (RTX) const _rtx = (RTX); \
1092 if (GET_CODE (_rtx) != (C)) \
1093 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1094 __FUNCTION__); \
1095 &_rtx->u.hwint[N]; }))
1096
1097 #define XCMWINT(RTX, N, C, M) __extension__ \
1098 (*({ __typeof (RTX) const _rtx = (RTX); \
1099 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1100 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1101 __LINE__, __FUNCTION__); \
1102 &_rtx->u.hwint[N]; }))
1103
1104 #define XCNMPRV(RTX, C, M) __extension__ \
1105 ({ __typeof (RTX) const _rtx = (RTX); \
1106 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1107 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1108 __LINE__, __FUNCTION__); \
1109 &_rtx->u.rv; })
1110
1111 #define XCNMPFV(RTX, C, M) __extension__ \
1112 ({ __typeof (RTX) const _rtx = (RTX); \
1113 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1114 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1115 __LINE__, __FUNCTION__); \
1116 &_rtx->u.fv; })
1117
1118 #define REG_CHECK(RTX) __extension__ \
1119 ({ __typeof (RTX) const _rtx = (RTX); \
1120 if (GET_CODE (_rtx) != REG) \
1121 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1122 __FUNCTION__); \
1123 &_rtx->u.reg; })
1124
1125 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1126 ({ __typeof (RTX) const _symbol = (RTX); \
1127 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1128 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1129 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1130 __FUNCTION__); \
1131 &_symbol->u.block_sym; })
1132
1133 #define HWIVEC_CHECK(RTX,C) __extension__ \
1134 ({ __typeof (RTX) const _symbol = (RTX); \
1135 RTL_CHECKC1 (_symbol, 0, C); \
1136 &_symbol->u.hwiv; })
1137
1138 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1139 const char *)
1140 ATTRIBUTE_NORETURN;
1141 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1142 const char *)
1143 ATTRIBUTE_NORETURN;
1144 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1145 int, const char *)
1146 ATTRIBUTE_NORETURN;
1147 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1148 int, const char *)
1149 ATTRIBUTE_NORETURN;
1150 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1151 const char *, int, const char *)
1152 ATTRIBUTE_NORETURN;
1153 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1154 bool, const char *, int, const char *)
1155 ATTRIBUTE_NORETURN;
1156 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1157 ATTRIBUTE_NORETURN;
1158 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1159 const char *)
1160 ATTRIBUTE_NORETURN;
1161 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1162 const char *)
1163 ATTRIBUTE_NORETURN;
1164
1165 #else /* not ENABLE_RTL_CHECKING */
1166
1167 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1168 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1169 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1170 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1171 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1172 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1173 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1174 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1175 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1176 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1177 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1178 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1179 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1180 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1181 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1182
1183 #endif
1184
1185 /* General accessor macros for accessing the flags of an rtx. */
1186
1187 /* Access an individual rtx flag, with no checking of any kind. */
1188 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1189
1190 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1191 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1192 ({ __typeof (RTX) const _rtx = (RTX); \
1193 if (GET_CODE (_rtx) != C1) \
1194 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1195 __FUNCTION__); \
1196 _rtx; })
1197
1198 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1199 ({ __typeof (RTX) const _rtx = (RTX); \
1200 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1201 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1202 __FUNCTION__); \
1203 _rtx; })
1204
1205 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1206 ({ __typeof (RTX) const _rtx = (RTX); \
1207 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1208 && GET_CODE (_rtx) != C3) \
1209 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1210 __FUNCTION__); \
1211 _rtx; })
1212
1213 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1214 ({ __typeof (RTX) const _rtx = (RTX); \
1215 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1216 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1217 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1218 __FUNCTION__); \
1219 _rtx; })
1220
1221 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1222 ({ __typeof (RTX) const _rtx = (RTX); \
1223 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1224 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1225 && GET_CODE (_rtx) != C5) \
1226 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1227 __FUNCTION__); \
1228 _rtx; })
1229
1230 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1231 __extension__ \
1232 ({ __typeof (RTX) const _rtx = (RTX); \
1233 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1234 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1235 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1236 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1237 __FUNCTION__); \
1238 _rtx; })
1239
1240 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1241 __extension__ \
1242 ({ __typeof (RTX) const _rtx = (RTX); \
1243 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1244 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1245 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1246 && GET_CODE (_rtx) != C7) \
1247 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1248 __FUNCTION__); \
1249 _rtx; })
1250
1251 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1252 __extension__ \
1253 ({ __typeof (RTX) const _rtx = (RTX); \
1254 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1255 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1256 __FUNCTION__); \
1257 _rtx; })
1258
1259 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1260 int, const char *)
1261 ATTRIBUTE_NORETURN
1262 ;
1263
1264 #else /* not ENABLE_RTL_FLAG_CHECKING */
1265
1266 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1267 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1268 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1269 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1270 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1271 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1272 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1273 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1274 #endif
1275
1276 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1277 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1278 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1279 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1280 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1281 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1282 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1283 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1284 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1285 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1286
1287 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1288 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1289
1290 /* These are like XINT, etc. except that they expect a '0' field instead
1291 of the normal type code. */
1292
1293 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1294 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1295 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1296 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1297 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1298 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1299 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1300 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1301 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1302 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1303 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1304 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1305
1306 /* Access a '0' field with any type. */
1307 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1308
1309 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1310 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1311 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1312 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1313 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1314 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1315 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1316 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1317 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1318 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1319
1320 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1321 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1322
1323 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1324 \f
1325
1326 /* Methods of rtx_expr_list. */
1327
1328 inline rtx_expr_list *rtx_expr_list::next () const
1329 {
1330 rtx tmp = XEXP (this, 1);
1331 return safe_as_a <rtx_expr_list *> (tmp);
1332 }
1333
1334 inline rtx rtx_expr_list::element () const
1335 {
1336 return XEXP (this, 0);
1337 }
1338
1339 /* Methods of rtx_insn_list. */
1340
1341 inline rtx_insn_list *rtx_insn_list::next () const
1342 {
1343 rtx tmp = XEXP (this, 1);
1344 return safe_as_a <rtx_insn_list *> (tmp);
1345 }
1346
1347 inline rtx_insn *rtx_insn_list::insn () const
1348 {
1349 rtx tmp = XEXP (this, 0);
1350 return safe_as_a <rtx_insn *> (tmp);
1351 }
1352
1353 /* Methods of rtx_sequence. */
1354
1355 inline int rtx_sequence::len () const
1356 {
1357 return XVECLEN (this, 0);
1358 }
1359
1360 inline rtx rtx_sequence::element (int index) const
1361 {
1362 return XVECEXP (this, 0, index);
1363 }
1364
1365 inline rtx_insn *rtx_sequence::insn (int index) const
1366 {
1367 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1368 }
1369
1370 /* ACCESS MACROS for particular fields of insns. */
1371
1372 /* Holds a unique number for each insn.
1373 These are not necessarily sequentially increasing. */
1374 inline int INSN_UID (const_rtx insn)
1375 {
1376 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1377 (insn))->u2.insn_uid;
1378 }
1379 inline int& INSN_UID (rtx insn)
1380 {
1381 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1382 (insn))->u2.insn_uid;
1383 }
1384
1385 /* Chain insns together in sequence. */
1386
1387 /* For now these are split in two: an rvalue form:
1388 PREV_INSN/NEXT_INSN
1389 and an lvalue form:
1390 SET_NEXT_INSN/SET_PREV_INSN. */
1391
1392 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1393 {
1394 rtx prev = XEXP (insn, 0);
1395 return safe_as_a <rtx_insn *> (prev);
1396 }
1397
1398 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1399 {
1400 return XEXP (insn, 0);
1401 }
1402
1403 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1404 {
1405 rtx next = XEXP (insn, 1);
1406 return safe_as_a <rtx_insn *> (next);
1407 }
1408
1409 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1410 {
1411 return XEXP (insn, 1);
1412 }
1413
1414 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1415 {
1416 return XBBDEF (insn, 2);
1417 }
1418
1419 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1420 {
1421 return XBBDEF (insn, 2);
1422 }
1423
1424 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1425 {
1426 BLOCK_FOR_INSN (insn) = bb;
1427 }
1428
1429 /* The body of an insn. */
1430 inline rtx PATTERN (const_rtx insn)
1431 {
1432 return XEXP (insn, 3);
1433 }
1434
1435 inline rtx& PATTERN (rtx insn)
1436 {
1437 return XEXP (insn, 3);
1438 }
1439
1440 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1441 {
1442 return XUINT (insn, 4);
1443 }
1444
1445 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1446 {
1447 return XUINT (insn, 4);
1448 }
1449
1450 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1451 {
1452 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1453 }
1454
1455 /* LOCATION of an RTX if relevant. */
1456 #define RTL_LOCATION(X) (INSN_P (X) ? \
1457 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1458 : UNKNOWN_LOCATION)
1459
1460 /* Code number of instruction, from when it was recognized.
1461 -1 means this instruction has not been recognized yet. */
1462 #define INSN_CODE(INSN) XINT (INSN, 5)
1463
1464 inline rtvec rtx_jump_table_data::get_labels () const
1465 {
1466 rtx pat = PATTERN (this);
1467 if (GET_CODE (pat) == ADDR_VEC)
1468 return XVEC (pat, 0);
1469 else
1470 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1471 }
1472
1473 #define RTX_FRAME_RELATED_P(RTX) \
1474 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1475 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1476
1477 /* 1 if JUMP RTX is a crossing jump. */
1478 #define CROSSING_JUMP_P(RTX) \
1479 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1480
1481 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1482 TREE_READONLY. */
1483 #define RTL_CONST_CALL_P(RTX) \
1484 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1485
1486 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1487 DECL_PURE_P. */
1488 #define RTL_PURE_CALL_P(RTX) \
1489 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1490
1491 /* 1 if RTX is a call to a const or pure function. */
1492 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1493 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1494
1495 /* 1 if RTX is a call to a looping const or pure function. Built from
1496 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1497 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1498 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1499
1500 /* 1 if RTX is a call_insn for a sibling call. */
1501 #define SIBLING_CALL_P(RTX) \
1502 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1503
1504 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1505 #define INSN_ANNULLED_BRANCH_P(RTX) \
1506 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1507
1508 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1509 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1510 executed if the branch is taken. For annulled branches with this bit
1511 clear, the insn should be executed only if the branch is not taken. */
1512 #define INSN_FROM_TARGET_P(RTX) \
1513 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1514 CALL_INSN)->in_struct)
1515
1516 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1517 See the comments for ADDR_DIFF_VEC in rtl.def. */
1518 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1519
1520 /* In a VALUE, the value cselib has assigned to RTX.
1521 This is a "struct cselib_val", see cselib.h. */
1522 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1523
1524 /* Holds a list of notes on what this insn does to various REGs.
1525 It is a chain of EXPR_LIST rtx's, where the second operand is the
1526 chain pointer and the first operand is the REG being described.
1527 The mode field of the EXPR_LIST contains not a real machine mode
1528 but a value from enum reg_note. */
1529 #define REG_NOTES(INSN) XEXP(INSN, 6)
1530
1531 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1532 question. */
1533 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1534
1535 enum reg_note
1536 {
1537 #define DEF_REG_NOTE(NAME) NAME,
1538 #include "reg-notes.def"
1539 #undef DEF_REG_NOTE
1540 REG_NOTE_MAX
1541 };
1542
1543 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1544 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1545 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1546 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1547
1548 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1549
1550 extern const char * const reg_note_name[];
1551 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1552
1553 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1554 USE and CLOBBER expressions.
1555 USE expressions list the registers filled with arguments that
1556 are passed to the function.
1557 CLOBBER expressions document the registers explicitly clobbered
1558 by this CALL_INSN.
1559 Pseudo registers can not be mentioned in this list. */
1560 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1561
1562 /* The label-number of a code-label. The assembler label
1563 is made from `L' and the label-number printed in decimal.
1564 Label numbers are unique in a compilation. */
1565 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1566
1567 /* In a NOTE that is a line number, this is a string for the file name that the
1568 line is in. We use the same field to record block numbers temporarily in
1569 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1570 between ints and pointers if we use a different macro for the block number.)
1571 */
1572
1573 /* Opaque data. */
1574 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1575 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1576 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1577 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1578 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1579 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1580 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1581 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1582 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1583
1584 /* In a NOTE that is a line number, this is the line number.
1585 Other kinds of NOTEs are identified by negative numbers here. */
1586 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1587
1588 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1589 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1590 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1591
1592 /* Variable declaration and the location of a variable. */
1593 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1594 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1595
1596 /* Initialization status of the variable in the location. Status
1597 can be unknown, uninitialized or initialized. See enumeration
1598 type below. */
1599 #define PAT_VAR_LOCATION_STATUS(PAT) \
1600 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1601 ->u2.var_location_status)
1602
1603 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1604 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1605 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1606 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1607 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1608 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1609 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1610
1611 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1612 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1613
1614 /* Accessors for a tree-expanded var location debug insn. */
1615 #define INSN_VAR_LOCATION_DECL(INSN) \
1616 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1617 #define INSN_VAR_LOCATION_LOC(INSN) \
1618 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1619 #define INSN_VAR_LOCATION_STATUS(INSN) \
1620 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1621
1622 /* Expand to the RTL that denotes an unknown variable location in a
1623 DEBUG_INSN. */
1624 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1625
1626 /* Determine whether X is such an unknown location. */
1627 #define VAR_LOC_UNKNOWN_P(X) \
1628 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1629
1630 /* 1 if RTX is emitted after a call, but it should take effect before
1631 the call returns. */
1632 #define NOTE_DURING_CALL_P(RTX) \
1633 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1634
1635 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1636 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1637
1638 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1639 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1640
1641 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1642 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1643
1644 /* Codes that appear in the NOTE_KIND field for kinds of notes
1645 that are not line numbers. These codes are all negative.
1646
1647 Notice that we do not try to use zero here for any of
1648 the special note codes because sometimes the source line
1649 actually can be zero! This happens (for example) when we
1650 are generating code for the per-translation-unit constructor
1651 and destructor routines for some C++ translation unit. */
1652
1653 enum insn_note
1654 {
1655 #define DEF_INSN_NOTE(NAME) NAME,
1656 #include "insn-notes.def"
1657 #undef DEF_INSN_NOTE
1658
1659 NOTE_INSN_MAX
1660 };
1661
1662 /* Names for NOTE insn's other than line numbers. */
1663
1664 extern const char * const note_insn_name[NOTE_INSN_MAX];
1665 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1666 (note_insn_name[(NOTE_CODE)])
1667
1668 /* The name of a label, in case it corresponds to an explicit label
1669 in the input source code. */
1670 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1671
1672 /* In jump.c, each label contains a count of the number
1673 of LABEL_REFs that point at it, so unused labels can be deleted. */
1674 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1675
1676 /* Labels carry a two-bit field composed of the ->jump and ->call
1677 bits. This field indicates whether the label is an alternate
1678 entry point, and if so, what kind. */
1679 enum label_kind
1680 {
1681 LABEL_NORMAL = 0, /* ordinary label */
1682 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1683 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1684 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1685 };
1686
1687 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1688
1689 /* Retrieve the kind of LABEL. */
1690 #define LABEL_KIND(LABEL) __extension__ \
1691 ({ __typeof (LABEL) const _label = (LABEL); \
1692 if (! LABEL_P (_label)) \
1693 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1694 __FUNCTION__); \
1695 (enum label_kind) ((_label->jump << 1) | _label->call); })
1696
1697 /* Set the kind of LABEL. */
1698 #define SET_LABEL_KIND(LABEL, KIND) do { \
1699 __typeof (LABEL) const _label = (LABEL); \
1700 const unsigned int _kind = (KIND); \
1701 if (! LABEL_P (_label)) \
1702 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1703 __FUNCTION__); \
1704 _label->jump = ((_kind >> 1) & 1); \
1705 _label->call = (_kind & 1); \
1706 } while (0)
1707
1708 #else
1709
1710 /* Retrieve the kind of LABEL. */
1711 #define LABEL_KIND(LABEL) \
1712 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1713
1714 /* Set the kind of LABEL. */
1715 #define SET_LABEL_KIND(LABEL, KIND) do { \
1716 rtx const _label = (LABEL); \
1717 const unsigned int _kind = (KIND); \
1718 _label->jump = ((_kind >> 1) & 1); \
1719 _label->call = (_kind & 1); \
1720 } while (0)
1721
1722 #endif /* rtl flag checking */
1723
1724 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1725
1726 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1727 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1728 be decremented and possibly the label can be deleted. */
1729 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1730
1731 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1732 {
1733 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1734 }
1735
1736 /* Methods of rtx_jump_insn. */
1737
1738 inline rtx rtx_jump_insn::jump_label () const
1739 {
1740 return JUMP_LABEL (this);
1741 }
1742
1743 inline rtx_code_label *rtx_jump_insn::jump_target () const
1744 {
1745 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1746 }
1747
1748 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1749 {
1750 JUMP_LABEL (this) = target;
1751 }
1752
1753 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1754 goes through all the LABEL_REFs that jump to that label. The chain
1755 eventually winds up at the CODE_LABEL: it is circular. */
1756 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1757
1758 /* Get the label that a LABEL_REF references. */
1759 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1760
1761 \f
1762 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1763 be used on RHS. Use SET_REGNO to change the value. */
1764 #define REGNO(RTX) (rhs_regno(RTX))
1765 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1766
1767 /* Return the number of consecutive registers in a REG. This is always
1768 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1769 hard registers. */
1770 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1771
1772 /* ORIGINAL_REGNO holds the number the register originally had; for a
1773 pseudo register turned into a hard reg this will hold the old pseudo
1774 register number. */
1775 #define ORIGINAL_REGNO(RTX) \
1776 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1777
1778 /* Force the REGNO macro to only be used on the lhs. */
1779 static inline unsigned int
1780 rhs_regno (const_rtx x)
1781 {
1782 return REG_CHECK (x)->regno;
1783 }
1784
1785 /* Return the final register in REG X plus one. */
1786 static inline unsigned int
1787 END_REGNO (const_rtx x)
1788 {
1789 return REGNO (x) + REG_NREGS (x);
1790 }
1791
1792 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1793 bypassing the df machinery. */
1794 static inline void
1795 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1796 {
1797 reg_info *reg = REG_CHECK (x);
1798 reg->regno = regno;
1799 reg->nregs = nregs;
1800 }
1801
1802 /* 1 if RTX is a reg or parallel that is the current function's return
1803 value. */
1804 #define REG_FUNCTION_VALUE_P(RTX) \
1805 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1806
1807 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1808 #define REG_USERVAR_P(RTX) \
1809 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1810
1811 /* 1 if RTX is a reg that holds a pointer value. */
1812 #define REG_POINTER(RTX) \
1813 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1814
1815 /* 1 if RTX is a mem that holds a pointer value. */
1816 #define MEM_POINTER(RTX) \
1817 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1818
1819 /* 1 if the given register REG corresponds to a hard register. */
1820 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1821
1822 /* 1 if the given register number REG_NO corresponds to a hard register. */
1823 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1824
1825 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1826 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1827 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1828
1829 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1830 elements actually needed to represent the constant.
1831 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1832 significant HOST_WIDE_INT. */
1833 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1834 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1835 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1836
1837 /* For a CONST_DOUBLE:
1838 #if TARGET_SUPPORTS_WIDE_INT == 0
1839 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1840 low-order word and ..._HIGH the high-order.
1841 #endif
1842 For a float, there is a REAL_VALUE_TYPE structure, and
1843 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1844 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1845 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1846 #define CONST_DOUBLE_REAL_VALUE(r) \
1847 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1848
1849 #define CONST_FIXED_VALUE(r) \
1850 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1851 #define CONST_FIXED_VALUE_HIGH(r) \
1852 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1853 #define CONST_FIXED_VALUE_LOW(r) \
1854 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1855
1856 /* For a CONST_VECTOR, return element #n. */
1857 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1858
1859 /* For a CONST_VECTOR, return the number of elements in a vector. */
1860 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1861
1862 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1863 SUBREG_BYTE extracts the byte-number. */
1864
1865 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1866 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1867
1868 /* in rtlanal.c */
1869 /* Return the right cost to give to an operation
1870 to make the cost of the corresponding register-to-register instruction
1871 N times that of a fast register-to-register instruction. */
1872 #define COSTS_N_INSNS(N) ((N) * 4)
1873
1874 /* Maximum cost of an rtl expression. This value has the special meaning
1875 not to use an rtx with this cost under any circumstances. */
1876 #define MAX_COST INT_MAX
1877
1878 /* Return true if CODE always has VOIDmode. */
1879
1880 static inline bool
1881 always_void_p (enum rtx_code code)
1882 {
1883 return code == SET;
1884 }
1885
1886 /* A structure to hold all available cost information about an rtl
1887 expression. */
1888 struct full_rtx_costs
1889 {
1890 int speed;
1891 int size;
1892 };
1893
1894 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1895 static inline void
1896 init_costs_to_max (struct full_rtx_costs *c)
1897 {
1898 c->speed = MAX_COST;
1899 c->size = MAX_COST;
1900 }
1901
1902 /* Initialize a full_rtx_costs structure C to zero cost. */
1903 static inline void
1904 init_costs_to_zero (struct full_rtx_costs *c)
1905 {
1906 c->speed = 0;
1907 c->size = 0;
1908 }
1909
1910 /* Compare two full_rtx_costs structures A and B, returning true
1911 if A < B when optimizing for speed. */
1912 static inline bool
1913 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1914 bool speed)
1915 {
1916 if (speed)
1917 return (a->speed < b->speed
1918 || (a->speed == b->speed && a->size < b->size));
1919 else
1920 return (a->size < b->size
1921 || (a->size == b->size && a->speed < b->speed));
1922 }
1923
1924 /* Increase both members of the full_rtx_costs structure C by the
1925 cost of N insns. */
1926 static inline void
1927 costs_add_n_insns (struct full_rtx_costs *c, int n)
1928 {
1929 c->speed += COSTS_N_INSNS (n);
1930 c->size += COSTS_N_INSNS (n);
1931 }
1932
1933 /* Describes the shape of a subreg:
1934
1935 inner_mode == the mode of the SUBREG_REG
1936 offset == the SUBREG_BYTE
1937 outer_mode == the mode of the SUBREG itself. */
1938 struct subreg_shape {
1939 subreg_shape (machine_mode, unsigned int, machine_mode);
1940 bool operator == (const subreg_shape &) const;
1941 bool operator != (const subreg_shape &) const;
1942 unsigned int unique_id () const;
1943
1944 machine_mode inner_mode;
1945 unsigned int offset;
1946 machine_mode outer_mode;
1947 };
1948
1949 inline
1950 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1951 unsigned int offset_in,
1952 machine_mode outer_mode_in)
1953 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1954 {}
1955
1956 inline bool
1957 subreg_shape::operator == (const subreg_shape &other) const
1958 {
1959 return (inner_mode == other.inner_mode
1960 && offset == other.offset
1961 && outer_mode == other.outer_mode);
1962 }
1963
1964 inline bool
1965 subreg_shape::operator != (const subreg_shape &other) const
1966 {
1967 return !operator == (other);
1968 }
1969
1970 /* Return an integer that uniquely identifies this shape. Structures
1971 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1972 current mode is anywhere near being 65536 bytes in size, so the
1973 id comfortably fits in an int. */
1974
1975 inline unsigned int
1976 subreg_shape::unique_id () const
1977 {
1978 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1979 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1980 }
1981
1982 /* Return the shape of a SUBREG rtx. */
1983
1984 static inline subreg_shape
1985 shape_of_subreg (const_rtx x)
1986 {
1987 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1988 SUBREG_BYTE (x), GET_MODE (x));
1989 }
1990
1991 /* Information about an address. This structure is supposed to be able
1992 to represent all supported target addresses. Please extend it if it
1993 is not yet general enough. */
1994 struct address_info {
1995 /* The mode of the value being addressed, or VOIDmode if this is
1996 a load-address operation with no known address mode. */
1997 machine_mode mode;
1998
1999 /* The address space. */
2000 addr_space_t as;
2001
2002 /* A pointer to the top-level address. */
2003 rtx *outer;
2004
2005 /* A pointer to the inner address, after all address mutations
2006 have been stripped from the top-level address. It can be one
2007 of the following:
2008
2009 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2010
2011 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2012 points to the step value, depending on whether the step is variable
2013 or constant respectively. SEGMENT is null.
2014
2015 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2016 with null fields evaluating to 0. */
2017 rtx *inner;
2018
2019 /* Components that make up *INNER. Each one may be null or nonnull.
2020 When nonnull, their meanings are as follows:
2021
2022 - *SEGMENT is the "segment" of memory to which the address refers.
2023 This value is entirely target-specific and is only called a "segment"
2024 because that's its most typical use. It contains exactly one UNSPEC,
2025 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2026 reloading.
2027
2028 - *BASE is a variable expression representing a base address.
2029 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2030
2031 - *INDEX is a variable expression representing an index value.
2032 It may be a scaled expression, such as a MULT. It has exactly
2033 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2034
2035 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2036 unmutated RTX_CONST_OBJ. */
2037 rtx *segment;
2038 rtx *base;
2039 rtx *index;
2040 rtx *disp;
2041
2042 rtx *segment_term;
2043 rtx *base_term;
2044 rtx *index_term;
2045 rtx *disp_term;
2046
2047 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2048 of BASE_TERM, otherwise it is null. */
2049 rtx *base_term2;
2050
2051 /* ADDRESS if this structure describes an address operand, MEM if
2052 it describes a MEM address. */
2053 enum rtx_code addr_outer_code;
2054
2055 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2056 enum rtx_code base_outer_code;
2057
2058 /* True if this is an RTX_AUTOINC address. */
2059 bool autoinc_p;
2060 };
2061
2062 /* This is used to bundle an rtx and a mode together so that the pair
2063 can be used with the wi:: routines. If we ever put modes into rtx
2064 integer constants, this should go away and then just pass an rtx in. */
2065 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2066
2067 namespace wi
2068 {
2069 template <>
2070 struct int_traits <rtx_mode_t>
2071 {
2072 static const enum precision_type precision_type = VAR_PRECISION;
2073 static const bool host_dependent_precision = false;
2074 /* This ought to be true, except for the special case that BImode
2075 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2076 static const bool is_sign_extended = false;
2077 static unsigned int get_precision (const rtx_mode_t &);
2078 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2079 const rtx_mode_t &);
2080 };
2081 }
2082
2083 inline unsigned int
2084 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2085 {
2086 return GET_MODE_PRECISION (x.second);
2087 }
2088
2089 inline wi::storage_ref
2090 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2091 unsigned int precision,
2092 const rtx_mode_t &x)
2093 {
2094 gcc_checking_assert (precision == get_precision (x));
2095 switch (GET_CODE (x.first))
2096 {
2097 case CONST_INT:
2098 if (precision < HOST_BITS_PER_WIDE_INT)
2099 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2100 targets is 1 rather than -1. */
2101 gcc_checking_assert (INTVAL (x.first)
2102 == sext_hwi (INTVAL (x.first), precision)
2103 || (x.second == BImode && INTVAL (x.first) == 1));
2104
2105 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2106
2107 case CONST_WIDE_INT:
2108 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2109 CONST_WIDE_INT_NUNITS (x.first), precision);
2110
2111 #if TARGET_SUPPORTS_WIDE_INT == 0
2112 case CONST_DOUBLE:
2113 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2114 #endif
2115
2116 default:
2117 gcc_unreachable ();
2118 }
2119 }
2120
2121 namespace wi
2122 {
2123 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2124 wide_int min_value (machine_mode, signop);
2125 wide_int max_value (machine_mode, signop);
2126 }
2127
2128 inline wi::hwi_with_prec
2129 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2130 {
2131 return shwi (val, GET_MODE_PRECISION (mode));
2132 }
2133
2134 /* Produce the smallest number that is represented in MODE. The precision
2135 is taken from MODE and the sign from SGN. */
2136 inline wide_int
2137 wi::min_value (machine_mode mode, signop sgn)
2138 {
2139 return min_value (GET_MODE_PRECISION (mode), sgn);
2140 }
2141
2142 /* Produce the largest number that is represented in MODE. The precision
2143 is taken from MODE and the sign from SGN. */
2144 inline wide_int
2145 wi::max_value (machine_mode mode, signop sgn)
2146 {
2147 return max_value (GET_MODE_PRECISION (mode), sgn);
2148 }
2149
2150 extern void init_rtlanal (void);
2151 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2152 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2153 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2154 struct full_rtx_costs *);
2155 extern unsigned int subreg_lsb (const_rtx);
2156 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2157 unsigned int);
2158 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2159 unsigned int, machine_mode);
2160 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2161 unsigned int, machine_mode);
2162 extern unsigned int subreg_regno (const_rtx);
2163 extern int simplify_subreg_regno (unsigned int, machine_mode,
2164 unsigned int, machine_mode);
2165 extern unsigned int subreg_nregs (const_rtx);
2166 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2167 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2168 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2169 extern bool constant_pool_constant_p (rtx);
2170 extern bool truncated_to_mode (machine_mode, const_rtx);
2171 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2172 extern void split_double (rtx, rtx *, rtx *);
2173 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2174 extern void decompose_address (struct address_info *, rtx *,
2175 machine_mode, addr_space_t, enum rtx_code);
2176 extern void decompose_lea_address (struct address_info *, rtx *);
2177 extern void decompose_mem_address (struct address_info *, rtx);
2178 extern void update_address (struct address_info *);
2179 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2180 extern enum rtx_code get_index_code (const struct address_info *);
2181
2182 #ifndef GENERATOR_FILE
2183 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2184 rather than size. */
2185
2186 static inline int
2187 set_rtx_cost (rtx x, bool speed_p)
2188 {
2189 return rtx_cost (x, INSN, 4, speed_p);
2190 }
2191
2192 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2193
2194 static inline void
2195 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2196 {
2197 get_full_rtx_cost (x, INSN, 4, c);
2198 }
2199
2200 /* Return the cost of moving X into a register, relative to the cost
2201 of a register move. SPEED_P is true if optimizing for speed rather
2202 than size. */
2203
2204 static inline int
2205 set_src_cost (rtx x, bool speed_p)
2206 {
2207 return rtx_cost (x, SET, 1, speed_p);
2208 }
2209
2210 /* Like set_src_cost, but return both the speed and size costs in C. */
2211
2212 static inline void
2213 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2214 {
2215 get_full_rtx_cost (x, SET, 1, c);
2216 }
2217 #endif
2218
2219 /* 1 if RTX is a subreg containing a reg that is already known to be
2220 sign- or zero-extended from the mode of the subreg to the mode of
2221 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2222 extension.
2223
2224 When used as a LHS, is means that this extension must be done
2225 when assigning to SUBREG_REG. */
2226
2227 #define SUBREG_PROMOTED_VAR_P(RTX) \
2228 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2229
2230 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2231 this gives the necessary extensions:
2232 0 - signed (SPR_SIGNED)
2233 1 - normal unsigned (SPR_UNSIGNED)
2234 2 - value is both sign and unsign extended for mode
2235 (SPR_SIGNED_AND_UNSIGNED).
2236 -1 - pointer unsigned, which most often can be handled like unsigned
2237 extension, except for generating instructions where we need to
2238 emit special code (ptr_extend insns) on some architectures
2239 (SPR_POINTER). */
2240
2241 const int SRP_POINTER = -1;
2242 const int SRP_SIGNED = 0;
2243 const int SRP_UNSIGNED = 1;
2244 const int SRP_SIGNED_AND_UNSIGNED = 2;
2245
2246 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2247 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2248 do { \
2249 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2250 (RTX), SUBREG); \
2251 switch (VAL) \
2252 { \
2253 case SRP_POINTER: \
2254 _rtx->volatil = 0; \
2255 _rtx->unchanging = 0; \
2256 break; \
2257 case SRP_SIGNED: \
2258 _rtx->volatil = 0; \
2259 _rtx->unchanging = 1; \
2260 break; \
2261 case SRP_UNSIGNED: \
2262 _rtx->volatil = 1; \
2263 _rtx->unchanging = 0; \
2264 break; \
2265 case SRP_SIGNED_AND_UNSIGNED: \
2266 _rtx->volatil = 1; \
2267 _rtx->unchanging = 1; \
2268 break; \
2269 } \
2270 } while (0)
2271
2272 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2273 including SRP_SIGNED_AND_UNSIGNED if promoted for
2274 both signed and unsigned. */
2275 #define SUBREG_PROMOTED_GET(RTX) \
2276 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2277 + (RTX)->unchanging - 1)
2278
2279 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2280 #define SUBREG_PROMOTED_SIGN(RTX) \
2281 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2282 : (RTX)->unchanging - 1)
2283
2284 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2285 for SIGNED type. */
2286 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2287 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2288
2289 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2290 for UNSIGNED type. */
2291 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2292 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2293
2294 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2295 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2296 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2297 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2298 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2299
2300 /* True if the subreg was generated by LRA for reload insns. Such
2301 subregs are valid only during LRA. */
2302 #define LRA_SUBREG_P(RTX) \
2303 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2304
2305 /* True if call is instrumented by Pointer Bounds Checker. */
2306 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2307 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2308
2309 /* Access various components of an ASM_OPERANDS rtx. */
2310
2311 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2312 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2313 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2314 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2315 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2316 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2317 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2318 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2319 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2320 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2321 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2322 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2323 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2324 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2325 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2326 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2327 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2328 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2329
2330 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2331 #define MEM_READONLY_P(RTX) \
2332 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2333
2334 /* 1 if RTX is a mem and we should keep the alias set for this mem
2335 unchanged when we access a component. Set to 1, or example, when we
2336 are already in a non-addressable component of an aggregate. */
2337 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2338 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2339
2340 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2341 #define MEM_VOLATILE_P(RTX) \
2342 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2343 ASM_INPUT)->volatil)
2344
2345 /* 1 if RTX is a mem that cannot trap. */
2346 #define MEM_NOTRAP_P(RTX) \
2347 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2348
2349 /* The memory attribute block. We provide access macros for each value
2350 in the block and provide defaults if none specified. */
2351 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2352
2353 /* The register attribute block. We provide access macros for each value
2354 in the block and provide defaults if none specified. */
2355 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2356
2357 #ifndef GENERATOR_FILE
2358 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2359 set, and may alias anything. Otherwise, the MEM can only alias
2360 MEMs in a conflicting alias set. This value is set in a
2361 language-dependent manner in the front-end, and should not be
2362 altered in the back-end. These set numbers are tested with
2363 alias_sets_conflict_p. */
2364 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2365
2366 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2367 refer to part of a DECL. It may also be a COMPONENT_REF. */
2368 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2369
2370 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2371 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2372
2373 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2374 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2375
2376 /* For a MEM rtx, the address space. */
2377 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2378
2379 /* For a MEM rtx, true if its MEM_SIZE is known. */
2380 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2381
2382 /* For a MEM rtx, the size in bytes of the MEM. */
2383 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2384
2385 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2386 mode as a default when STRICT_ALIGNMENT, but not if not. */
2387 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2388 #else
2389 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2390 #endif
2391
2392 /* For a REG rtx, the decl it is known to refer to, if it is known to
2393 refer to part of a DECL. */
2394 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2395
2396 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2397 HOST_WIDE_INT. */
2398 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2399
2400 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2401 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2402 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2403 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2404 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2405 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2406 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2407 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2408
2409 /* 1 if RTX is a label_ref for a nonlocal label. */
2410 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2411 REG_LABEL_TARGET note. */
2412 #define LABEL_REF_NONLOCAL_P(RTX) \
2413 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2414
2415 /* 1 if RTX is a code_label that should always be considered to be needed. */
2416 #define LABEL_PRESERVE_P(RTX) \
2417 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2418
2419 /* During sched, 1 if RTX is an insn that must be scheduled together
2420 with the preceding insn. */
2421 #define SCHED_GROUP_P(RTX) \
2422 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2423 JUMP_INSN, CALL_INSN)->in_struct)
2424
2425 /* For a SET rtx, SET_DEST is the place that is set
2426 and SET_SRC is the value it is set to. */
2427 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2428 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2429 #define SET_IS_RETURN_P(RTX) \
2430 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2431
2432 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2433 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2434 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2435
2436 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2437 conditionally executing the code on, COND_EXEC_CODE is the code
2438 to execute if the condition is true. */
2439 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2440 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2441
2442 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2443 constants pool. */
2444 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2445 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2446
2447 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2448 tree constant pool. This information is private to varasm.c. */
2449 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2450 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2451 (RTX), SYMBOL_REF)->frame_related)
2452
2453 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2454 #define SYMBOL_REF_FLAG(RTX) \
2455 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2456
2457 /* 1 if RTX is a symbol_ref that has been the library function in
2458 emit_library_call. */
2459 #define SYMBOL_REF_USED(RTX) \
2460 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2461
2462 /* 1 if RTX is a symbol_ref for a weak symbol. */
2463 #define SYMBOL_REF_WEAK(RTX) \
2464 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2465
2466 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2467 SYMBOL_REF_CONSTANT. */
2468 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2469
2470 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2471 pool symbol. */
2472 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2473 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2474
2475 /* The tree (decl or constant) associated with the symbol, or null. */
2476 #define SYMBOL_REF_DECL(RTX) \
2477 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2478
2479 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2480 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2481 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2482
2483 /* The rtx constant pool entry for a symbol, or null. */
2484 #define SYMBOL_REF_CONSTANT(RTX) \
2485 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2486
2487 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2488 information derivable from the tree decl associated with this symbol.
2489 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2490 decl. In some cases this is a bug. But beyond that, it's nice to cache
2491 this information to avoid recomputing it. Finally, this allows space for
2492 the target to store more than one bit of information, as with
2493 SYMBOL_REF_FLAG. */
2494 #define SYMBOL_REF_FLAGS(RTX) \
2495 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2496 ->u2.symbol_ref_flags)
2497
2498 /* These flags are common enough to be defined for all targets. They
2499 are computed by the default version of targetm.encode_section_info. */
2500
2501 /* Set if this symbol is a function. */
2502 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2503 #define SYMBOL_REF_FUNCTION_P(RTX) \
2504 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2505 /* Set if targetm.binds_local_p is true. */
2506 #define SYMBOL_FLAG_LOCAL (1 << 1)
2507 #define SYMBOL_REF_LOCAL_P(RTX) \
2508 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2509 /* Set if targetm.in_small_data_p is true. */
2510 #define SYMBOL_FLAG_SMALL (1 << 2)
2511 #define SYMBOL_REF_SMALL_P(RTX) \
2512 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2513 /* The three-bit field at [5:3] is true for TLS variables; use
2514 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2515 #define SYMBOL_FLAG_TLS_SHIFT 3
2516 #define SYMBOL_REF_TLS_MODEL(RTX) \
2517 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2518 /* Set if this symbol is not defined in this translation unit. */
2519 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2520 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2521 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2522 /* Set if this symbol has a block_symbol structure associated with it. */
2523 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2524 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2525 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2526 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2527 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2528 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2529 #define SYMBOL_REF_ANCHOR_P(RTX) \
2530 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2531
2532 /* Subsequent bits are available for the target to use. */
2533 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2534 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2535
2536 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2537 structure to which the symbol belongs, or NULL if it has not been
2538 assigned a block. */
2539 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2540
2541 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2542 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2543 RTX has not yet been assigned to a block, or it has not been given an
2544 offset within that block. */
2545 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2546
2547 /* True if RTX is flagged to be a scheduling barrier. */
2548 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2549 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2550
2551 /* Indicate whether the machine has any sort of auto increment addressing.
2552 If not, we can avoid checking for REG_INC notes. */
2553
2554 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2555 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2556 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2557 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2558 #define AUTO_INC_DEC
2559 #endif
2560
2561 /* Define a macro to look for REG_INC notes,
2562 but save time on machines where they never exist. */
2563
2564 #ifdef AUTO_INC_DEC
2565 #define FIND_REG_INC_NOTE(INSN, REG) \
2566 ((REG) != NULL_RTX && REG_P ((REG)) \
2567 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2568 : find_reg_note ((INSN), REG_INC, (REG)))
2569 #else
2570 #define FIND_REG_INC_NOTE(INSN, REG) 0
2571 #endif
2572
2573 #ifndef HAVE_PRE_INCREMENT
2574 #define HAVE_PRE_INCREMENT 0
2575 #endif
2576
2577 #ifndef HAVE_PRE_DECREMENT
2578 #define HAVE_PRE_DECREMENT 0
2579 #endif
2580
2581 #ifndef HAVE_POST_INCREMENT
2582 #define HAVE_POST_INCREMENT 0
2583 #endif
2584
2585 #ifndef HAVE_POST_DECREMENT
2586 #define HAVE_POST_DECREMENT 0
2587 #endif
2588
2589 #ifndef HAVE_POST_MODIFY_DISP
2590 #define HAVE_POST_MODIFY_DISP 0
2591 #endif
2592
2593 #ifndef HAVE_POST_MODIFY_REG
2594 #define HAVE_POST_MODIFY_REG 0
2595 #endif
2596
2597 #ifndef HAVE_PRE_MODIFY_DISP
2598 #define HAVE_PRE_MODIFY_DISP 0
2599 #endif
2600
2601 #ifndef HAVE_PRE_MODIFY_REG
2602 #define HAVE_PRE_MODIFY_REG 0
2603 #endif
2604
2605
2606 /* Some architectures do not have complete pre/post increment/decrement
2607 instruction sets, or only move some modes efficiently. These macros
2608 allow us to tune autoincrement generation. */
2609
2610 #ifndef USE_LOAD_POST_INCREMENT
2611 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2612 #endif
2613
2614 #ifndef USE_LOAD_POST_DECREMENT
2615 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2616 #endif
2617
2618 #ifndef USE_LOAD_PRE_INCREMENT
2619 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2620 #endif
2621
2622 #ifndef USE_LOAD_PRE_DECREMENT
2623 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2624 #endif
2625
2626 #ifndef USE_STORE_POST_INCREMENT
2627 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2628 #endif
2629
2630 #ifndef USE_STORE_POST_DECREMENT
2631 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2632 #endif
2633
2634 #ifndef USE_STORE_PRE_INCREMENT
2635 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2636 #endif
2637
2638 #ifndef USE_STORE_PRE_DECREMENT
2639 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2640 #endif
2641 \f
2642 /* Nonzero when we are generating CONCATs. */
2643 extern int generating_concat_p;
2644
2645 /* Nonzero when we are expanding trees to RTL. */
2646 extern int currently_expanding_to_rtl;
2647
2648 /* Generally useful functions. */
2649
2650 /* In explow.c */
2651 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2652 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2653
2654 /* In rtl.c */
2655 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2656 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2657 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2658 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2659 #define const_wide_int_alloc(NWORDS) \
2660 rtx_alloc_v (CONST_WIDE_INT, \
2661 (sizeof (struct hwivec_def) \
2662 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2663
2664 extern rtvec rtvec_alloc (int);
2665 extern rtvec shallow_copy_rtvec (rtvec);
2666 extern bool shared_const_p (const_rtx);
2667 extern rtx copy_rtx (rtx);
2668 extern void dump_rtx_statistics (void);
2669
2670 /* In emit-rtl.c */
2671 extern rtx copy_rtx_if_shared (rtx);
2672
2673 /* In rtl.c */
2674 extern unsigned int rtx_size (const_rtx);
2675 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2676 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2677 extern int rtx_equal_p (const_rtx, const_rtx);
2678
2679 /* In emit-rtl.c */
2680 extern rtvec gen_rtvec_v (int, rtx *);
2681 extern rtvec gen_rtvec_v (int, rtx_insn **);
2682 extern rtx gen_reg_rtx (machine_mode);
2683 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2684 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2685 extern rtx gen_reg_rtx_and_attrs (rtx);
2686 extern rtx_code_label *gen_label_rtx (void);
2687 extern rtx gen_lowpart_common (machine_mode, rtx);
2688
2689 /* In cse.c */
2690 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2691
2692 /* In emit-rtl.c */
2693 extern rtx gen_highpart (machine_mode, rtx);
2694 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2695 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2696
2697 /* In emit-rtl.c */
2698 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2699 extern bool paradoxical_subreg_p (const_rtx);
2700 extern int subreg_lowpart_p (const_rtx);
2701 extern unsigned int subreg_lowpart_offset (machine_mode,
2702 machine_mode);
2703 extern unsigned int subreg_highpart_offset (machine_mode,
2704 machine_mode);
2705 extern int byte_lowpart_offset (machine_mode, machine_mode);
2706 extern rtx make_safe_from (rtx, rtx);
2707 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2708 addr_space_t);
2709 #define convert_memory_address(to_mode,x) \
2710 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2711 extern const char *get_insn_name (int);
2712 extern rtx_insn *get_last_insn_anywhere (void);
2713 extern rtx_insn *get_first_nonnote_insn (void);
2714 extern rtx_insn *get_last_nonnote_insn (void);
2715 extern void start_sequence (void);
2716 extern void push_to_sequence (rtx_insn *);
2717 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2718 extern void end_sequence (void);
2719 #if TARGET_SUPPORTS_WIDE_INT == 0
2720 extern double_int rtx_to_double_int (const_rtx);
2721 #endif
2722 extern void cwi_output_hex (FILE *, const_rtx);
2723 #ifndef GENERATOR_FILE
2724 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2725 #endif
2726 #if TARGET_SUPPORTS_WIDE_INT == 0
2727 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2728 machine_mode);
2729 #endif
2730
2731 /* In loop-iv.c */
2732
2733 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2734
2735 /* In varasm.c */
2736 extern rtx force_const_mem (machine_mode, rtx);
2737
2738 /* In varasm.c */
2739
2740 struct function;
2741 extern rtx get_pool_constant (const_rtx);
2742 extern rtx get_pool_constant_mark (rtx, bool *);
2743 extern machine_mode get_pool_mode (const_rtx);
2744 extern rtx simplify_subtraction (rtx);
2745 extern void decide_function_section (tree);
2746
2747 /* In emit-rtl.c */
2748 extern rtx_insn *emit_insn_before (rtx, rtx);
2749 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2750 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2751 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2752 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2753 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2754 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2755 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2756 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2757 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2758 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2759 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2760 extern rtx_barrier *emit_barrier_before (rtx);
2761 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2762 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2763 extern rtx_insn *emit_insn_after (rtx, rtx);
2764 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2765 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2766 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2767 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2768 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2769 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2770 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2771 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2772 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2773 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2774 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2775 extern rtx_barrier *emit_barrier_after (rtx);
2776 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2777 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2778 extern rtx_insn *emit_insn (rtx);
2779 extern rtx_insn *emit_debug_insn (rtx);
2780 extern rtx_insn *emit_jump_insn (rtx);
2781 extern rtx_insn *emit_call_insn (rtx);
2782 extern rtx_code_label *emit_label (rtx);
2783 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2784 extern rtx_barrier *emit_barrier (void);
2785 extern rtx_note *emit_note (enum insn_note);
2786 extern rtx_note *emit_note_copy (rtx_note *);
2787 extern rtx_insn *gen_clobber (rtx);
2788 extern rtx_insn *emit_clobber (rtx);
2789 extern rtx_insn *gen_use (rtx);
2790 extern rtx_insn *emit_use (rtx);
2791 extern rtx_insn *make_insn_raw (rtx);
2792 extern void add_function_usage_to (rtx, rtx);
2793 extern rtx_call_insn *last_call_insn (void);
2794 extern rtx_insn *previous_insn (rtx_insn *);
2795 extern rtx_insn *next_insn (rtx_insn *);
2796 extern rtx_insn *prev_nonnote_insn (rtx);
2797 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2798 extern rtx_insn *next_nonnote_insn (rtx);
2799 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2800 extern rtx_insn *prev_nondebug_insn (rtx);
2801 extern rtx_insn *next_nondebug_insn (rtx);
2802 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2803 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2804 extern rtx_insn *prev_real_insn (rtx);
2805 extern rtx_insn *next_real_insn (rtx);
2806 extern rtx_insn *prev_active_insn (rtx);
2807 extern rtx_insn *next_active_insn (rtx);
2808 extern int active_insn_p (const_rtx);
2809 extern rtx_insn *next_cc0_user (rtx);
2810 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2811
2812 /* In emit-rtl.c */
2813 extern int insn_line (const rtx_insn *);
2814 extern const char * insn_file (const rtx_insn *);
2815 extern tree insn_scope (const rtx_insn *);
2816 extern expanded_location insn_location (const rtx_insn *);
2817 extern location_t prologue_location, epilogue_location;
2818
2819 /* In jump.c */
2820 extern enum rtx_code reverse_condition (enum rtx_code);
2821 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2822 extern enum rtx_code swap_condition (enum rtx_code);
2823 extern enum rtx_code unsigned_condition (enum rtx_code);
2824 extern enum rtx_code signed_condition (enum rtx_code);
2825 extern void mark_jump_label (rtx, rtx_insn *, int);
2826
2827 /* In jump.c */
2828 extern rtx_insn *delete_related_insns (rtx);
2829
2830 /* In recog.c */
2831 extern rtx *find_constant_term_loc (rtx *);
2832
2833 /* In emit-rtl.c */
2834 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2835 extern int split_branch_probability;
2836
2837 /* In insn-recog.c (generated by genrecog). */
2838 extern rtx_insn *split_insns (rtx, rtx_insn *);
2839
2840 /* In simplify-rtx.c */
2841 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2842 rtx, machine_mode);
2843 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2844 machine_mode);
2845 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2846 rtx, rtx);
2847 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2848 rtx);
2849 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2850 machine_mode, rtx, rtx, rtx);
2851 extern rtx simplify_const_relational_operation (enum rtx_code,
2852 machine_mode, rtx, rtx);
2853 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2854 machine_mode, rtx, rtx);
2855 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2856 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2857 machine_mode);
2858 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2859 machine_mode, rtx, rtx, rtx);
2860 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2861 machine_mode, rtx, rtx);
2862 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2863 unsigned int);
2864 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2865 unsigned int);
2866 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2867 rtx (*fn) (rtx, const_rtx, void *), void *);
2868 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2869 extern rtx simplify_rtx (const_rtx);
2870 extern rtx avoid_constant_pool_reference (rtx);
2871 extern rtx delegitimize_mem_from_attrs (rtx);
2872 extern bool mode_signbit_p (machine_mode, const_rtx);
2873 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2874 extern bool val_signbit_known_set_p (machine_mode,
2875 unsigned HOST_WIDE_INT);
2876 extern bool val_signbit_known_clear_p (machine_mode,
2877 unsigned HOST_WIDE_INT);
2878
2879 /* In reginfo.c */
2880 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2881 bool);
2882 #ifdef HARD_CONST
2883 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2884 #endif
2885
2886 /* In emit-rtl.c */
2887 extern rtx set_for_reg_notes (rtx);
2888 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2889 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2890 extern void set_insn_deleted (rtx);
2891
2892 /* Functions in rtlanal.c */
2893
2894 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2895
2896 /* Handle the cheap and common cases inline for performance. */
2897
2898 inline rtx single_set (const rtx_insn *insn)
2899 {
2900 if (!INSN_P (insn))
2901 return NULL_RTX;
2902
2903 if (GET_CODE (PATTERN (insn)) == SET)
2904 return PATTERN (insn);
2905
2906 /* Defer to the more expensive case. */
2907 return single_set_2 (insn, PATTERN (insn));
2908 }
2909
2910 extern machine_mode get_address_mode (rtx mem);
2911 extern int rtx_addr_can_trap_p (const_rtx);
2912 extern bool nonzero_address_p (const_rtx);
2913 extern int rtx_unstable_p (const_rtx);
2914 extern bool rtx_varies_p (const_rtx, bool);
2915 extern bool rtx_addr_varies_p (const_rtx, bool);
2916 extern rtx get_call_rtx_from (rtx);
2917 extern HOST_WIDE_INT get_integer_term (const_rtx);
2918 extern rtx get_related_value (const_rtx);
2919 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2920 extern void split_const (rtx, rtx *, rtx *);
2921 extern bool unsigned_reg_p (rtx);
2922 extern int reg_mentioned_p (const_rtx, const_rtx);
2923 extern int count_occurrences (const_rtx, const_rtx, int);
2924 extern int reg_referenced_p (const_rtx, const_rtx);
2925 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2926 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2927 extern int commutative_operand_precedence (rtx);
2928 extern bool swap_commutative_operands_p (rtx, rtx);
2929 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2930 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2931 extern int modified_in_p (const_rtx, const_rtx);
2932 extern int reg_set_p (const_rtx, const_rtx);
2933 extern int multiple_sets (const_rtx);
2934 extern int set_noop_p (const_rtx);
2935 extern int noop_move_p (const rtx_insn *);
2936 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2937 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2938 extern const_rtx set_of (const_rtx, const_rtx);
2939 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2940 extern void record_hard_reg_uses (rtx *, void *);
2941 #ifdef HARD_CONST
2942 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2943 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2944 #endif
2945 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2946 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2947 extern int dead_or_set_p (const_rtx, const_rtx);
2948 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2949 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2950 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2951 extern rtx find_reg_equal_equiv_note (const_rtx);
2952 extern rtx find_constant_src (const rtx_insn *);
2953 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2954 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2955 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2956 extern void add_reg_note (rtx, enum reg_note, rtx);
2957 extern void add_int_reg_note (rtx, enum reg_note, int);
2958 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2959 extern void remove_note (rtx, const_rtx);
2960 extern void remove_reg_equal_equiv_notes (rtx_insn *);
2961 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2962 extern int side_effects_p (const_rtx);
2963 extern int volatile_refs_p (const_rtx);
2964 extern int volatile_insn_p (const_rtx);
2965 extern int may_trap_p_1 (const_rtx, unsigned);
2966 extern int may_trap_p (const_rtx);
2967 extern int may_trap_or_fault_p (const_rtx);
2968 extern bool can_throw_internal (const_rtx);
2969 extern bool can_throw_external (const_rtx);
2970 extern bool insn_could_throw_p (const_rtx);
2971 extern bool insn_nothrow_p (const_rtx);
2972 extern bool can_nonlocal_goto (const rtx_insn *);
2973 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2974 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2975 extern int inequality_comparisons_p (const_rtx);
2976 extern rtx replace_rtx (rtx, rtx, rtx);
2977 extern void replace_label (rtx *, rtx, rtx, bool);
2978 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2979 extern bool rtx_referenced_p (const_rtx, const_rtx);
2980 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2981 extern int computed_jump_p (const rtx_insn *);
2982 extern bool tls_referenced_p (const_rtx);
2983
2984 /* Overload for refers_to_regno_p for checking a single register. */
2985 inline bool
2986 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2987 {
2988 return refers_to_regno_p (regnum, regnum + 1, x, loc);
2989 }
2990
2991 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2992 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2993 NULL. The callback is passed the same opaque ARG passed to
2994 for_each_inc_dec. Return zero to continue looking for other
2995 autoinc operations or any other value to interrupt the traversal and
2996 return that value to the caller of for_each_inc_dec. */
2997 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2998 rtx srcoff, void *arg);
2999 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3000
3001 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3002 rtx *, rtx *);
3003 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3004 rtx_equal_p_callback_function);
3005
3006 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3007 machine_mode *);
3008 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3009 bool, hash_rtx_callback_function);
3010
3011 extern rtx regno_use_in (unsigned int, rtx);
3012 extern int auto_inc_p (const_rtx);
3013 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3014 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3015 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3016 extern int loc_mentioned_in_p (rtx *, const_rtx);
3017 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3018 extern bool keep_with_call_p (const rtx_insn *);
3019 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3020 extern int insn_rtx_cost (rtx, bool);
3021 extern unsigned seq_cost (const rtx_insn *, bool);
3022
3023 /* Given an insn and condition, return a canonical description of
3024 the test being made. */
3025 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3026 int, int);
3027
3028 /* Given a JUMP_INSN, return a canonical description of the test
3029 being made. */
3030 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3031
3032 /* Information about a subreg of a hard register. */
3033 struct subreg_info
3034 {
3035 /* Offset of first hard register involved in the subreg. */
3036 int offset;
3037 /* Number of hard registers involved in the subreg. In the case of
3038 a paradoxical subreg, this is the number of registers that would
3039 be modified by writing to the subreg; some of them may be don't-care
3040 when reading from the subreg. */
3041 int nregs;
3042 /* Whether this subreg can be represented as a hard reg with the new
3043 mode (by adding OFFSET to the original hard register). */
3044 bool representable_p;
3045 };
3046
3047 extern void subreg_get_info (unsigned int, machine_mode,
3048 unsigned int, machine_mode,
3049 struct subreg_info *);
3050
3051 /* lists.c */
3052
3053 extern void free_EXPR_LIST_list (rtx_expr_list **);
3054 extern void free_INSN_LIST_list (rtx_insn_list **);
3055 extern void free_EXPR_LIST_node (rtx);
3056 extern void free_INSN_LIST_node (rtx);
3057 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3058 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3059 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3060 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3061 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3062 extern rtx remove_list_elem (rtx, rtx *);
3063 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3064 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3065
3066
3067 /* reginfo.c */
3068
3069 /* Resize reg info. */
3070 extern bool resize_reg_info (void);
3071 /* Free up register info memory. */
3072 extern void free_reg_info (void);
3073 extern void init_subregs_of_mode (void);
3074 extern void finish_subregs_of_mode (void);
3075
3076 /* recog.c */
3077 extern rtx extract_asm_operands (rtx);
3078 extern int asm_noperands (const_rtx);
3079 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3080 machine_mode *, location_t *);
3081 extern void get_referenced_operands (const char *, bool *, unsigned int);
3082
3083 extern enum reg_class reg_preferred_class (int);
3084 extern enum reg_class reg_alternate_class (int);
3085 extern enum reg_class reg_allocno_class (int);
3086 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3087 enum reg_class);
3088
3089 extern void split_all_insns (void);
3090 extern unsigned int split_all_insns_noflow (void);
3091
3092 #define MAX_SAVED_CONST_INT 64
3093 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3094
3095 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3096 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3097 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3098 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3099 extern GTY(()) rtx const_true_rtx;
3100
3101 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3102
3103 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3104 same as VOIDmode. */
3105
3106 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3107
3108 /* Likewise, for the constants 1 and 2 and -1. */
3109
3110 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3111 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3112 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3113
3114 extern GTY(()) rtx pc_rtx;
3115 extern GTY(()) rtx cc0_rtx;
3116 extern GTY(()) rtx ret_rtx;
3117 extern GTY(()) rtx simple_return_rtx;
3118 extern GTY(()) rtx_insn *invalid_insn_rtx;
3119
3120 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3121 is used to represent the frame pointer. This is because the
3122 hard frame pointer and the automatic variables are separated by an amount
3123 that cannot be determined until after register allocation. We can assume
3124 that in this case ELIMINABLE_REGS will be defined, one action of which
3125 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3126 #ifndef HARD_FRAME_POINTER_REGNUM
3127 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3128 #endif
3129
3130 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3131 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3132 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3133 #endif
3134
3135 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3136 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3137 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3138 #endif
3139
3140 /* Index labels for global_rtl. */
3141 enum global_rtl_index
3142 {
3143 GR_STACK_POINTER,
3144 GR_FRAME_POINTER,
3145 /* For register elimination to work properly these hard_frame_pointer_rtx,
3146 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3147 the same register. */
3148 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3149 GR_ARG_POINTER = GR_FRAME_POINTER,
3150 #endif
3151 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3152 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3153 #else
3154 GR_HARD_FRAME_POINTER,
3155 #endif
3156 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3157 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3158 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3159 #else
3160 GR_ARG_POINTER,
3161 #endif
3162 #endif
3163 GR_VIRTUAL_INCOMING_ARGS,
3164 GR_VIRTUAL_STACK_ARGS,
3165 GR_VIRTUAL_STACK_DYNAMIC,
3166 GR_VIRTUAL_OUTGOING_ARGS,
3167 GR_VIRTUAL_CFA,
3168 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3169
3170 GR_MAX
3171 };
3172
3173 /* Target-dependent globals. */
3174 struct GTY(()) target_rtl {
3175 /* All references to the hard registers in global_rtl_index go through
3176 these unique rtl objects. On machines where the frame-pointer and
3177 arg-pointer are the same register, they use the same unique object.
3178
3179 After register allocation, other rtl objects which used to be pseudo-regs
3180 may be clobbered to refer to the frame-pointer register.
3181 But references that were originally to the frame-pointer can be
3182 distinguished from the others because they contain frame_pointer_rtx.
3183
3184 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3185 tricky: until register elimination has taken place hard_frame_pointer_rtx
3186 should be used if it is being set, and frame_pointer_rtx otherwise. After
3187 register elimination hard_frame_pointer_rtx should always be used.
3188 On machines where the two registers are same (most) then these are the
3189 same. */
3190 rtx x_global_rtl[GR_MAX];
3191
3192 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3193 rtx x_pic_offset_table_rtx;
3194
3195 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3196 This is used to implement __builtin_return_address for some machines;
3197 see for instance the MIPS port. */
3198 rtx x_return_address_pointer_rtx;
3199
3200 /* Commonly used RTL for hard registers. These objects are not
3201 necessarily unique, so we allocate them separately from global_rtl.
3202 They are initialized once per compilation unit, then copied into
3203 regno_reg_rtx at the beginning of each function. */
3204 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3205
3206 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3207 rtx x_top_of_stack[MAX_MACHINE_MODE];
3208
3209 /* Static hunks of RTL used by the aliasing code; these are treated
3210 as persistent to avoid unnecessary RTL allocations. */
3211 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3212
3213 /* The default memory attributes for each mode. */
3214 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3215
3216 /* Track if RTL has been initialized. */
3217 bool target_specific_initialized;
3218 };
3219
3220 extern GTY(()) struct target_rtl default_target_rtl;
3221 #if SWITCHABLE_TARGET
3222 extern struct target_rtl *this_target_rtl;
3223 #else
3224 #define this_target_rtl (&default_target_rtl)
3225 #endif
3226
3227 #define global_rtl \
3228 (this_target_rtl->x_global_rtl)
3229 #define pic_offset_table_rtx \
3230 (this_target_rtl->x_pic_offset_table_rtx)
3231 #define return_address_pointer_rtx \
3232 (this_target_rtl->x_return_address_pointer_rtx)
3233 #define top_of_stack \
3234 (this_target_rtl->x_top_of_stack)
3235 #define mode_mem_attrs \
3236 (this_target_rtl->x_mode_mem_attrs)
3237
3238 /* All references to certain hard regs, except those created
3239 by allocating pseudo regs into them (when that's possible),
3240 go through these unique rtx objects. */
3241 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3242 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3243 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3244 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3245
3246 #ifndef GENERATOR_FILE
3247 /* Return the attributes of a MEM rtx. */
3248 static inline struct mem_attrs *
3249 get_mem_attrs (const_rtx x)
3250 {
3251 struct mem_attrs *attrs;
3252
3253 attrs = MEM_ATTRS (x);
3254 if (!attrs)
3255 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3256 return attrs;
3257 }
3258 #endif
3259
3260 /* Include the RTL generation functions. */
3261
3262 #ifndef GENERATOR_FILE
3263 #include "genrtl.h"
3264 #undef gen_rtx_ASM_INPUT
3265 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3266 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3267 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3268 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3269 #endif
3270
3271 /* There are some RTL codes that require special attention; the
3272 generation functions included above do the raw handling. If you
3273 add to this list, modify special_rtx in gengenrtl.c as well. */
3274
3275 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3276 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3277 extern rtx_insn *
3278 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3279 basic_block bb, rtx pattern, int location, int code,
3280 rtx reg_notes);
3281 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3282 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3283 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3284 extern rtx gen_raw_REG (machine_mode, unsigned int);
3285 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3286 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3287 extern rtx gen_rtx_MEM (machine_mode, rtx);
3288 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3289 enum var_init_status);
3290
3291 #ifdef GENERATOR_FILE
3292 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3293 #else
3294 static inline void
3295 PUT_MODE (rtx x, machine_mode mode)
3296 {
3297 if (REG_P (x))
3298 set_mode_and_regno (x, mode, REGNO (x));
3299 else
3300 PUT_MODE_RAW (x, mode);
3301 }
3302 #endif
3303
3304 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3305
3306 /* Virtual registers are used during RTL generation to refer to locations into
3307 the stack frame when the actual location isn't known until RTL generation
3308 is complete. The routine instantiate_virtual_regs replaces these with
3309 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3310 a constant. */
3311
3312 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3313
3314 /* This points to the first word of the incoming arguments passed on the stack,
3315 either by the caller or by the callee when pretending it was passed by the
3316 caller. */
3317
3318 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3319
3320 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3321
3322 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3323 variable on the stack. Otherwise, it points to the first variable on
3324 the stack. */
3325
3326 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3327
3328 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3329
3330 /* This points to the location of dynamically-allocated memory on the stack
3331 immediately after the stack pointer has been adjusted by the amount
3332 desired. */
3333
3334 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3335
3336 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3337
3338 /* This points to the location in the stack at which outgoing arguments should
3339 be written when the stack is pre-pushed (arguments pushed using push
3340 insns always use sp). */
3341
3342 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3343
3344 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3345
3346 /* This points to the Canonical Frame Address of the function. This
3347 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3348 but is calculated relative to the arg pointer for simplicity; the
3349 frame pointer nor stack pointer are necessarily fixed relative to
3350 the CFA until after reload. */
3351
3352 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3353
3354 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3355
3356 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3357
3358 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3359 when finalized. */
3360
3361 #define virtual_preferred_stack_boundary_rtx \
3362 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3363
3364 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3365 ((FIRST_VIRTUAL_REGISTER) + 5)
3366
3367 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3368
3369 /* Nonzero if REGNUM is a pointer into the stack frame. */
3370 #define REGNO_PTR_FRAME_P(REGNUM) \
3371 ((REGNUM) == STACK_POINTER_REGNUM \
3372 || (REGNUM) == FRAME_POINTER_REGNUM \
3373 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3374 || (REGNUM) == ARG_POINTER_REGNUM \
3375 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3376 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3377
3378 /* REGNUM never really appearing in the INSN stream. */
3379 #define INVALID_REGNUM (~(unsigned int) 0)
3380
3381 /* REGNUM for which no debug information can be generated. */
3382 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3383
3384 extern rtx output_constant_def (tree, int);
3385 extern rtx lookup_constant_def (tree);
3386
3387 /* Nonzero after end of reload pass.
3388 Set to 1 or 0 by reload1.c. */
3389
3390 extern int reload_completed;
3391
3392 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3393 extern int epilogue_completed;
3394
3395 /* Set to 1 while reload_as_needed is operating.
3396 Required by some machines to handle any generated moves differently. */
3397
3398 extern int reload_in_progress;
3399
3400 /* Set to 1 while in lra. */
3401 extern int lra_in_progress;
3402
3403 /* This macro indicates whether you may create a new
3404 pseudo-register. */
3405
3406 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3407
3408 #ifdef STACK_REGS
3409 /* Nonzero after end of regstack pass.
3410 Set to 1 or 0 by reg-stack.c. */
3411 extern int regstack_completed;
3412 #endif
3413
3414 /* If this is nonzero, we do not bother generating VOLATILE
3415 around volatile memory references, and we are willing to
3416 output indirect addresses. If cse is to follow, we reject
3417 indirect addresses so a useful potential cse is generated;
3418 if it is used only once, instruction combination will produce
3419 the same indirect address eventually. */
3420 extern int cse_not_expected;
3421
3422 /* Translates rtx code to tree code, for those codes needed by
3423 REAL_ARITHMETIC. The function returns an int because the caller may not
3424 know what `enum tree_code' means. */
3425
3426 extern int rtx_to_tree_code (enum rtx_code);
3427
3428 /* In cse.c */
3429 extern int delete_trivially_dead_insns (rtx_insn *, int);
3430 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3431 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3432
3433 /* In dse.c */
3434 extern bool check_for_inc_dec (rtx_insn *insn);
3435
3436 /* In jump.c */
3437 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3438 extern bool jump_to_label_p (const rtx_insn *);
3439 extern int condjump_p (const rtx_insn *);
3440 extern int any_condjump_p (const rtx_insn *);
3441 extern int any_uncondjump_p (const rtx_insn *);
3442 extern rtx pc_set (const rtx_insn *);
3443 extern rtx condjump_label (const rtx_insn *);
3444 extern int simplejump_p (const rtx_insn *);
3445 extern int returnjump_p (const rtx_insn *);
3446 extern int eh_returnjump_p (rtx_insn *);
3447 extern int onlyjump_p (const rtx_insn *);
3448 extern int only_sets_cc0_p (const_rtx);
3449 extern int sets_cc0_p (const_rtx);
3450 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3451 extern int invert_jump (rtx_jump_insn *, rtx, int);
3452 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3453 extern int true_regnum (const_rtx);
3454 extern unsigned int reg_or_subregno (const_rtx);
3455 extern int redirect_jump_1 (rtx_insn *, rtx);
3456 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3457 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3458 extern void rebuild_jump_labels (rtx_insn *);
3459 extern void rebuild_jump_labels_chain (rtx_insn *);
3460 extern rtx reversed_comparison (const_rtx, machine_mode);
3461 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3462 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3463 const_rtx, const_rtx);
3464 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3465 extern int condjump_in_parallel_p (const rtx_insn *);
3466
3467 /* In emit-rtl.c. */
3468 extern int max_reg_num (void);
3469 extern int max_label_num (void);
3470 extern int get_first_label_num (void);
3471 extern void maybe_set_first_label_num (rtx);
3472 extern void delete_insns_since (rtx_insn *);
3473 extern void mark_reg_pointer (rtx, int);
3474 extern void mark_user_reg (rtx);
3475 extern void reset_used_flags (rtx);
3476 extern void set_used_flags (rtx);
3477 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3478 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3479 extern int get_max_insn_count (void);
3480 extern int in_sequence_p (void);
3481 extern void init_emit (void);
3482 extern void init_emit_regs (void);
3483 extern void init_derived_machine_modes (void);
3484 extern void init_emit_once (void);
3485 extern void push_topmost_sequence (void);
3486 extern void pop_topmost_sequence (void);
3487 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3488 extern unsigned int unshare_all_rtl (void);
3489 extern void unshare_all_rtl_again (rtx_insn *);
3490 extern void unshare_all_rtl_in_chain (rtx_insn *);
3491 extern void verify_rtl_sharing (void);
3492 extern void add_insn (rtx_insn *);
3493 extern void add_insn_before (rtx, rtx, basic_block);
3494 extern void add_insn_after (rtx, rtx, basic_block);
3495 extern void remove_insn (rtx);
3496 extern rtx_insn *emit (rtx);
3497 extern void emit_insn_at_entry (rtx);
3498 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3499 extern rtx gen_const_mem (machine_mode, rtx);
3500 extern rtx gen_frame_mem (machine_mode, rtx);
3501 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3502 extern bool validate_subreg (machine_mode, machine_mode,
3503 const_rtx, unsigned int);
3504
3505 /* In combine.c */
3506 extern unsigned int extended_count (const_rtx, machine_mode, int);
3507 extern rtx remove_death (unsigned int, rtx_insn *);
3508 extern void dump_combine_stats (FILE *);
3509 extern void dump_combine_total_stats (FILE *);
3510 extern rtx make_compound_operation (rtx, enum rtx_code);
3511
3512 /* In sched-rgn.c. */
3513 extern void schedule_insns (void);
3514
3515 /* In sched-ebb.c. */
3516 extern void schedule_ebbs (void);
3517
3518 /* In sel-sched-dump.c. */
3519 extern void sel_sched_fix_param (const char *param, const char *val);
3520
3521 /* In print-rtl.c */
3522 extern const char *print_rtx_head;
3523 extern void debug (const rtx_def &ref);
3524 extern void debug (const rtx_def *ptr);
3525 extern void debug_rtx (const_rtx);
3526 extern void debug_rtx_list (const rtx_insn *, int);
3527 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3528 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3529 extern void print_mem_expr (FILE *, const_tree);
3530 extern void print_rtl (FILE *, const_rtx);
3531 extern void print_simple_rtl (FILE *, const_rtx);
3532 extern int print_rtl_single (FILE *, const_rtx);
3533 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3534 extern void print_inline_rtx (FILE *, const_rtx, int);
3535
3536 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3537 not be in sched-vis.c but in rtl.c, because they are not only used
3538 by the scheduler anymore but for all "slim" RTL dumping. */
3539 extern void dump_value_slim (FILE *, const_rtx, int);
3540 extern void dump_insn_slim (FILE *, const rtx_insn *);
3541 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3542 int, int);
3543 extern void print_value (pretty_printer *, const_rtx, int);
3544 extern void print_pattern (pretty_printer *, const_rtx, int);
3545 extern void print_insn (pretty_printer *, const_rtx, int);
3546 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3547 extern const char *str_pattern_slim (const_rtx);
3548
3549 /* In stmt.c */
3550 extern void expand_null_return (void);
3551 extern void expand_naked_return (void);
3552 extern void emit_jump (rtx);
3553
3554 /* In expr.c */
3555 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3556 unsigned int, int);
3557 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3558 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3559
3560 /* In expmed.c */
3561 extern void init_expmed (void);
3562 extern void expand_inc (rtx, rtx);
3563 extern void expand_dec (rtx, rtx);
3564
3565 /* In lower-subreg.c */
3566 extern void init_lower_subreg (void);
3567
3568 /* In gcse.c */
3569 extern bool can_copy_p (machine_mode);
3570 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3571 extern rtx fis_get_condition (rtx_insn *);
3572
3573 /* In ira.c */
3574 #ifdef HARD_CONST
3575 extern HARD_REG_SET eliminable_regset;
3576 #endif
3577 extern void mark_elimination (int, int);
3578
3579 /* In reginfo.c */
3580 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3581 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3582 extern void globalize_reg (tree, int);
3583 extern void init_reg_modes_target (void);
3584 extern void init_regs (void);
3585 extern void reinit_regs (void);
3586 extern void init_fake_stack_mems (void);
3587 extern void save_register_info (void);
3588 extern void init_reg_sets (void);
3589 extern void regclass (rtx, int);
3590 extern void reg_scan (rtx_insn *, unsigned int);
3591 extern void fix_register (const char *, int, int);
3592 #ifdef HARD_CONST
3593 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3594 #endif
3595
3596 /* In reload1.c */
3597 extern int function_invariant_p (const_rtx);
3598
3599 /* In calls.c */
3600 enum libcall_type
3601 {
3602 LCT_NORMAL = 0,
3603 LCT_CONST = 1,
3604 LCT_PURE = 2,
3605 LCT_NORETURN = 3,
3606 LCT_THROW = 4,
3607 LCT_RETURNS_TWICE = 5
3608 };
3609
3610 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3611 ...);
3612 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3613 machine_mode, int, ...);
3614
3615 /* In varasm.c */
3616 extern void init_varasm_once (void);
3617
3618 extern rtx make_debug_expr_from_rtl (const_rtx);
3619
3620 /* In read-rtl.c */
3621 extern bool read_rtx (const char *, rtx *);
3622
3623 /* In alias.c */
3624 extern rtx canon_rtx (rtx);
3625 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3626 extern rtx get_addr (rtx);
3627 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3628 const_rtx, rtx);
3629 extern int read_dependence (const_rtx, const_rtx);
3630 extern int anti_dependence (const_rtx, const_rtx);
3631 extern int canon_anti_dependence (const_rtx, bool,
3632 const_rtx, machine_mode, rtx);
3633 extern int output_dependence (const_rtx, const_rtx);
3634 extern int may_alias_p (const_rtx, const_rtx);
3635 extern void init_alias_target (void);
3636 extern void init_alias_analysis (void);
3637 extern void end_alias_analysis (void);
3638 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3639 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3640 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3641 extern bool may_be_sp_based_p (rtx);
3642 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3643 extern rtx get_reg_known_value (unsigned int);
3644 extern bool get_reg_known_equiv_p (unsigned int);
3645 extern rtx get_reg_base_value (unsigned int);
3646
3647 #ifdef STACK_REGS
3648 extern int stack_regs_mentioned (const_rtx insn);
3649 #endif
3650
3651 /* In toplev.c */
3652 extern GTY(()) rtx stack_limit_rtx;
3653
3654 /* In var-tracking.c */
3655 extern unsigned int variable_tracking_main (void);
3656
3657 /* In stor-layout.c. */
3658 extern void get_mode_bounds (machine_mode, int, machine_mode,
3659 rtx *, rtx *);
3660
3661 /* In loop-iv.c */
3662 extern rtx canon_condition (rtx);
3663 extern void simplify_using_condition (rtx, rtx *, bitmap);
3664
3665 /* In final.c */
3666 extern unsigned int compute_alignments (void);
3667 extern void update_alignments (vec<rtx> &);
3668 extern int asm_str_count (const char *templ);
3669 \f
3670 struct rtl_hooks
3671 {
3672 rtx (*gen_lowpart) (machine_mode, rtx);
3673 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3674 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3675 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3676 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3677 unsigned int, unsigned int *);
3678 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3679
3680 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3681 };
3682
3683 /* Each pass can provide its own. */
3684 extern struct rtl_hooks rtl_hooks;
3685
3686 /* ... but then it has to restore these. */
3687 extern const struct rtl_hooks general_rtl_hooks;
3688
3689 /* Keep this for the nonce. */
3690 #define gen_lowpart rtl_hooks.gen_lowpart
3691
3692 extern void insn_locations_init (void);
3693 extern void insn_locations_finalize (void);
3694 extern void set_curr_insn_location (location_t);
3695 extern location_t curr_insn_location (void);
3696
3697 /* rtl-error.c */
3698 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3699 ATTRIBUTE_NORETURN;
3700 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3701 ATTRIBUTE_NORETURN;
3702
3703 #define fatal_insn(msgid, insn) \
3704 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3705 #define fatal_insn_not_found(insn) \
3706 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3707
3708 /* reginfo.c */
3709 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3710
3711 #endif /* ! GCC_RTL_H */