[66/77] Use scalar_mode for constant integers
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 /* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26 #ifdef GENERATOR_FILE
27 #include "real.h"
28 #include "fixed-value.h"
29 #include "statistics.h"
30 #include "vec.h"
31 #include "hash-table.h"
32 #include "hash-set.h"
33 #include "input.h"
34 #include "is-a.h"
35 #endif /* GENERATOR_FILE */
36
37 #include "hard-reg-set.h"
38
39 /* Value used by some passes to "recognize" noop moves as valid
40 instructions. */
41 #define NOOP_MOVE_INSN_CODE INT_MAX
42
43 /* Register Transfer Language EXPRESSIONS CODES */
44
45 #define RTX_CODE enum rtx_code
46 enum rtx_code {
47
48 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
49 #include "rtl.def" /* rtl expressions are documented here */
50 #undef DEF_RTL_EXPR
51
52 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
53 NUM_RTX_CODE.
54 Assumes default enum value assignment. */
55
56 /* The cast here, saves many elsewhere. */
57 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
58
59 /* Similar, but since generator files get more entries... */
60 #ifdef GENERATOR_FILE
61 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
62 #endif
63
64 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
65
66 enum rtx_class {
67 /* We check bit 0-1 of some rtx class codes in the predicates below. */
68
69 /* Bit 0 = comparison if 0, arithmetic is 1
70 Bit 1 = 1 if commutative. */
71 RTX_COMPARE, /* 0 */
72 RTX_COMM_COMPARE,
73 RTX_BIN_ARITH,
74 RTX_COMM_ARITH,
75
76 /* Must follow the four preceding values. */
77 RTX_UNARY, /* 4 */
78
79 RTX_EXTRA,
80 RTX_MATCH,
81 RTX_INSN,
82
83 /* Bit 0 = 1 if constant. */
84 RTX_OBJ, /* 8 */
85 RTX_CONST_OBJ,
86
87 RTX_TERNARY,
88 RTX_BITFIELD_OPS,
89 RTX_AUTOINC
90 };
91
92 #define RTX_OBJ_MASK (~1)
93 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
94 #define RTX_COMPARE_MASK (~1)
95 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
96 #define RTX_ARITHMETIC_MASK (~1)
97 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
98 #define RTX_BINARY_MASK (~3)
99 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
100 #define RTX_COMMUTATIVE_MASK (~2)
101 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
102 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
103
104 extern const unsigned char rtx_length[NUM_RTX_CODE];
105 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
106
107 extern const char * const rtx_name[NUM_RTX_CODE];
108 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
109
110 extern const char * const rtx_format[NUM_RTX_CODE];
111 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
112
113 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
114 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
115
116 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
117 and NEXT_INSN fields). */
118 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
119
120 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
121 extern const unsigned char rtx_next[NUM_RTX_CODE];
122 \f
123 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
124 relative to which the offsets are calculated, as explained in rtl.def. */
125 struct addr_diff_vec_flags
126 {
127 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
128 unsigned min_align: 8;
129 /* Flags: */
130 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
131 unsigned min_after_vec: 1; /* minimum address target label is
132 after the ADDR_DIFF_VEC. */
133 unsigned max_after_vec: 1; /* maximum address target label is
134 after the ADDR_DIFF_VEC. */
135 unsigned min_after_base: 1; /* minimum address target label is
136 after BASE. */
137 unsigned max_after_base: 1; /* maximum address target label is
138 after BASE. */
139 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
140 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
141 unsigned : 2;
142 unsigned scale : 8;
143 };
144
145 /* Structure used to describe the attributes of a MEM. These are hashed
146 so MEMs that the same attributes share a data structure. This means
147 they cannot be modified in place. */
148 struct GTY(()) mem_attrs
149 {
150 /* The expression that the MEM accesses, or null if not known.
151 This expression might be larger than the memory reference itself.
152 (In other words, the MEM might access only part of the object.) */
153 tree expr;
154
155 /* The offset of the memory reference from the start of EXPR.
156 Only valid if OFFSET_KNOWN_P. */
157 HOST_WIDE_INT offset;
158
159 /* The size of the memory reference in bytes. Only valid if
160 SIZE_KNOWN_P. */
161 HOST_WIDE_INT size;
162
163 /* The alias set of the memory reference. */
164 alias_set_type alias;
165
166 /* The alignment of the reference in bits. Always a multiple of
167 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
168 than the memory reference itself. */
169 unsigned int align;
170
171 /* The address space that the memory reference uses. */
172 unsigned char addrspace;
173
174 /* True if OFFSET is known. */
175 bool offset_known_p;
176
177 /* True if SIZE is known. */
178 bool size_known_p;
179 };
180
181 /* Structure used to describe the attributes of a REG in similar way as
182 mem_attrs does for MEM above. Note that the OFFSET field is calculated
183 in the same way as for mem_attrs, rather than in the same way as a
184 SUBREG_BYTE. For example, if a big-endian target stores a byte
185 object in the low part of a 4-byte register, the OFFSET field
186 will be -3 rather than 0. */
187
188 struct GTY((for_user)) reg_attrs {
189 tree decl; /* decl corresponding to REG. */
190 HOST_WIDE_INT offset; /* Offset from start of DECL. */
191 };
192
193 /* Common union for an element of an rtx. */
194
195 union rtunion
196 {
197 int rt_int;
198 unsigned int rt_uint;
199 const char *rt_str;
200 rtx rt_rtx;
201 rtvec rt_rtvec;
202 machine_mode rt_type;
203 addr_diff_vec_flags rt_addr_diff_vec_flags;
204 struct cselib_val *rt_cselib;
205 tree rt_tree;
206 basic_block rt_bb;
207 mem_attrs *rt_mem;
208 struct constant_descriptor_rtx *rt_constant;
209 struct dw_cfi_node *rt_cfi;
210 };
211
212 /* Describes the properties of a REG. */
213 struct GTY(()) reg_info {
214 /* The value of REGNO. */
215 unsigned int regno;
216
217 /* The value of REG_NREGS. */
218 unsigned int nregs : 8;
219 unsigned int unused : 24;
220
221 /* The value of REG_ATTRS. */
222 reg_attrs *attrs;
223 };
224
225 /* This structure remembers the position of a SYMBOL_REF within an
226 object_block structure. A SYMBOL_REF only provides this information
227 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
228 struct GTY(()) block_symbol {
229 /* The usual SYMBOL_REF fields. */
230 rtunion GTY ((skip)) fld[2];
231
232 /* The block that contains this object. */
233 struct object_block *block;
234
235 /* The offset of this object from the start of its block. It is negative
236 if the symbol has not yet been assigned an offset. */
237 HOST_WIDE_INT offset;
238 };
239
240 /* Describes a group of objects that are to be placed together in such
241 a way that their relative positions are known. */
242 struct GTY((for_user)) object_block {
243 /* The section in which these objects should be placed. */
244 section *sect;
245
246 /* The alignment of the first object, measured in bits. */
247 unsigned int alignment;
248
249 /* The total size of the objects, measured in bytes. */
250 HOST_WIDE_INT size;
251
252 /* The SYMBOL_REFs for each object. The vector is sorted in
253 order of increasing offset and the following conditions will
254 hold for each element X:
255
256 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
257 !SYMBOL_REF_ANCHOR_P (X)
258 SYMBOL_REF_BLOCK (X) == [address of this structure]
259 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
260 vec<rtx, va_gc> *objects;
261
262 /* All the anchor SYMBOL_REFs used to address these objects, sorted
263 in order of increasing offset, and then increasing TLS model.
264 The following conditions will hold for each element X in this vector:
265
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *anchors;
271 };
272
273 struct GTY((variable_size)) hwivec_def {
274 HOST_WIDE_INT elem[1];
275 };
276
277 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
278 #define CWI_GET_NUM_ELEM(RTX) \
279 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
280 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
281 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
282
283 /* RTL expression ("rtx"). */
284
285 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
286 field for gengtype to recognize that inheritance is occurring,
287 so that all subclasses are redirected to the traversal hook for the
288 base class.
289 However, all of the fields are in the base class, and special-casing
290 is at work. Hence we use desc and tag of 0, generating a switch
291 statement of the form:
292 switch (0)
293 {
294 case 0: // all the work happens here
295 }
296 in order to work with the existing special-casing in gengtype. */
297
298 struct GTY((desc("0"), tag("0"),
299 chain_next ("RTX_NEXT (&%h)"),
300 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
301 /* The kind of expression this is. */
302 ENUM_BITFIELD(rtx_code) code: 16;
303
304 /* The kind of value the expression has. */
305 ENUM_BITFIELD(machine_mode) mode : 8;
306
307 /* 1 in a MEM if we should keep the alias set for this mem unchanged
308 when we access a component.
309 1 in a JUMP_INSN if it is a crossing jump.
310 1 in a CALL_INSN if it is a sibling call.
311 1 in a SET that is for a return.
312 In a CODE_LABEL, part of the two-bit alternate entry field.
313 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
314 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
315 1 in a SUBREG generated by LRA for reload insns.
316 1 in a REG if this is a static chain register.
317 1 in a CALL for calls instrumented by Pointer Bounds Checker.
318 Dumped as "/j" in RTL dumps. */
319 unsigned int jump : 1;
320 /* In a CODE_LABEL, part of the two-bit alternate entry field.
321 1 in a MEM if it cannot trap.
322 1 in a CALL_INSN logically equivalent to
323 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
324 Dumped as "/c" in RTL dumps. */
325 unsigned int call : 1;
326 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
327 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
328 1 in a SYMBOL_REF if it addresses something in the per-function
329 constants pool.
330 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
331 1 in a NOTE, or EXPR_LIST for a const call.
332 1 in a JUMP_INSN of an annulling branch.
333 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
334 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
335 1 in a clobber temporarily created for LRA.
336 Dumped as "/u" in RTL dumps. */
337 unsigned int unchanging : 1;
338 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
339 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
340 if it has been deleted.
341 1 in a REG expression if corresponds to a variable declared by the user,
342 0 for an internally generated temporary.
343 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
344 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
345 non-local label.
346 In a SYMBOL_REF, this flag is used for machine-specific purposes.
347 In a PREFETCH, this flag indicates that it should be considered a
348 scheduling barrier.
349 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c.
350 Dumped as "/v" in RTL dumps. */
351 unsigned int volatil : 1;
352 /* 1 in a REG if the register is used only in exit code a loop.
353 1 in a SUBREG expression if was generated from a variable with a
354 promoted mode.
355 1 in a CODE_LABEL if the label is used for nonlocal gotos
356 and must not be deleted even if its count is zero.
357 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
358 together with the preceding insn. Valid only within sched.
359 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
360 from the target of a branch. Valid from reorg until end of compilation;
361 cleared before used.
362
363 The name of the field is historical. It used to be used in MEMs
364 to record whether the MEM accessed part of a structure.
365 Dumped as "/s" in RTL dumps. */
366 unsigned int in_struct : 1;
367 /* At the end of RTL generation, 1 if this rtx is used. This is used for
368 copying shared structure. See `unshare_all_rtl'.
369 In a REG, this is not needed for that purpose, and used instead
370 in `leaf_renumber_regs_insn'.
371 1 in a SYMBOL_REF, means that emit_library_call
372 has used it as the function.
373 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
374 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
375 unsigned int used : 1;
376 /* 1 in an INSN or a SET if this rtx is related to the call frame,
377 either changing how we compute the frame address or saving and
378 restoring registers in the prologue and epilogue.
379 1 in a REG or MEM if it is a pointer.
380 1 in a SYMBOL_REF if it addresses something in the per-function
381 constant string pool.
382 1 in a VALUE is VALUE_CHANGED in var-tracking.c.
383 Dumped as "/f" in RTL dumps. */
384 unsigned frame_related : 1;
385 /* 1 in a REG or PARALLEL that is the current function's return value.
386 1 in a SYMBOL_REF for a weak symbol.
387 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
388 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
389 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c.
390 Dumped as "/i" in RTL dumps. */
391 unsigned return_val : 1;
392
393 union {
394 /* The final union field is aligned to 64 bits on LP64 hosts,
395 giving a 32-bit gap after the fields above. We optimize the
396 layout for that case and use the gap for extra code-specific
397 information. */
398
399 /* The ORIGINAL_REGNO of a REG. */
400 unsigned int original_regno;
401
402 /* The INSN_UID of an RTX_INSN-class code. */
403 int insn_uid;
404
405 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
406 unsigned int symbol_ref_flags;
407
408 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
409 enum var_init_status var_location_status;
410
411 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
412 HOST_WIDE_INTs in the hwivec_def. */
413 unsigned int num_elem;
414 } GTY ((skip)) u2;
415
416 /* The first element of the operands of this rtx.
417 The number of operands and their types are controlled
418 by the `code' field, according to rtl.def. */
419 union u {
420 rtunion fld[1];
421 HOST_WIDE_INT hwint[1];
422 struct reg_info reg;
423 struct block_symbol block_sym;
424 struct real_value rv;
425 struct fixed_value fv;
426 struct hwivec_def hwiv;
427 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
428 };
429
430 /* A node for constructing singly-linked lists of rtx. */
431
432 class GTY(()) rtx_expr_list : public rtx_def
433 {
434 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
435
436 public:
437 /* Get next in list. */
438 rtx_expr_list *next () const;
439
440 /* Get at the underlying rtx. */
441 rtx element () const;
442 };
443
444 template <>
445 template <>
446 inline bool
447 is_a_helper <rtx_expr_list *>::test (rtx rt)
448 {
449 return rt->code == EXPR_LIST;
450 }
451
452 class GTY(()) rtx_insn_list : public rtx_def
453 {
454 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
455
456 This is an instance of:
457
458 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
459
460 i.e. a node for constructing singly-linked lists of rtx_insn *, where
461 the list is "external" to the insn (as opposed to the doubly-linked
462 list embedded within rtx_insn itself). */
463
464 public:
465 /* Get next in list. */
466 rtx_insn_list *next () const;
467
468 /* Get at the underlying instruction. */
469 rtx_insn *insn () const;
470
471 };
472
473 template <>
474 template <>
475 inline bool
476 is_a_helper <rtx_insn_list *>::test (rtx rt)
477 {
478 return rt->code == INSN_LIST;
479 }
480
481 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
482 typically (but not always) of rtx_insn *, used in the late passes. */
483
484 class GTY(()) rtx_sequence : public rtx_def
485 {
486 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
487
488 public:
489 /* Get number of elements in sequence. */
490 int len () const;
491
492 /* Get i-th element of the sequence. */
493 rtx element (int index) const;
494
495 /* Get i-th element of the sequence, with a checked cast to
496 rtx_insn *. */
497 rtx_insn *insn (int index) const;
498 };
499
500 template <>
501 template <>
502 inline bool
503 is_a_helper <rtx_sequence *>::test (rtx rt)
504 {
505 return rt->code == SEQUENCE;
506 }
507
508 template <>
509 template <>
510 inline bool
511 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
512 {
513 return rt->code == SEQUENCE;
514 }
515
516 class GTY(()) rtx_insn : public rtx_def
517 {
518 public:
519 /* No extra fields, but adds the invariant:
520
521 (INSN_P (X)
522 || NOTE_P (X)
523 || JUMP_TABLE_DATA_P (X)
524 || BARRIER_P (X)
525 || LABEL_P (X))
526
527 i.e. that we must be able to use the following:
528 INSN_UID ()
529 NEXT_INSN ()
530 PREV_INSN ()
531 i.e. we have an rtx that has an INSN_UID field and can be part of
532 a linked list of insns.
533 */
534
535 /* Returns true if this insn has been deleted. */
536
537 bool deleted () const { return volatil; }
538
539 /* Mark this insn as deleted. */
540
541 void set_deleted () { volatil = true; }
542
543 /* Mark this insn as not deleted. */
544
545 void set_undeleted () { volatil = false; }
546 };
547
548 /* Subclasses of rtx_insn. */
549
550 class GTY(()) rtx_debug_insn : public rtx_insn
551 {
552 /* No extra fields, but adds the invariant:
553 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
554 i.e. an annotation for tracking variable assignments.
555
556 This is an instance of:
557 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
558 from rtl.def. */
559 };
560
561 class GTY(()) rtx_nonjump_insn : public rtx_insn
562 {
563 /* No extra fields, but adds the invariant:
564 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
565 i.e an instruction that cannot jump.
566
567 This is an instance of:
568 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
569 from rtl.def. */
570 };
571
572 class GTY(()) rtx_jump_insn : public rtx_insn
573 {
574 public:
575 /* No extra fields, but adds the invariant:
576 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
577 i.e. an instruction that can possibly jump.
578
579 This is an instance of:
580 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
581 from rtl.def. */
582
583 /* Returns jump target of this instruction. The returned value is not
584 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
585 expression. Also, when the code label is marked "deleted", it is
586 replaced by a NOTE. In some cases the value is NULL_RTX. */
587
588 inline rtx jump_label () const;
589
590 /* Returns jump target cast to rtx_code_label *. */
591
592 inline rtx_code_label *jump_target () const;
593
594 /* Set jump target. */
595
596 inline void set_jump_target (rtx_code_label *);
597 };
598
599 class GTY(()) rtx_call_insn : public rtx_insn
600 {
601 /* No extra fields, but adds the invariant:
602 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
603 i.e. an instruction that can possibly call a subroutine
604 but which will not change which instruction comes next
605 in the current function.
606
607 This is an instance of:
608 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
609 from rtl.def. */
610 };
611
612 class GTY(()) rtx_jump_table_data : public rtx_insn
613 {
614 /* No extra fields, but adds the invariant:
615 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
616 i.e. a data for a jump table, considered an instruction for
617 historical reasons.
618
619 This is an instance of:
620 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
621 from rtl.def. */
622
623 public:
624
625 /* This can be either:
626
627 (a) a table of absolute jumps, in which case PATTERN (this) is an
628 ADDR_VEC with arg 0 a vector of labels, or
629
630 (b) a table of relative jumps (e.g. for -fPIC), in which case
631 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
632 arg 1 the vector of labels.
633
634 This method gets the underlying vec. */
635
636 inline rtvec get_labels () const;
637 inline scalar_int_mode get_data_mode () const;
638 };
639
640 class GTY(()) rtx_barrier : public rtx_insn
641 {
642 /* No extra fields, but adds the invariant:
643 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
644 i.e. a marker that indicates that control will not flow through.
645
646 This is an instance of:
647 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
648 from rtl.def. */
649 };
650
651 class GTY(()) rtx_code_label : public rtx_insn
652 {
653 /* No extra fields, but adds the invariant:
654 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
655 i.e. a label in the assembler.
656
657 This is an instance of:
658 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
659 from rtl.def. */
660 };
661
662 class GTY(()) rtx_note : public rtx_insn
663 {
664 /* No extra fields, but adds the invariant:
665 NOTE_P(X) aka (GET_CODE (X) == NOTE)
666 i.e. a note about the corresponding source code.
667
668 This is an instance of:
669 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
670 from rtl.def. */
671 };
672
673 /* The size in bytes of an rtx header (code, mode and flags). */
674 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
675
676 /* The size in bytes of an rtx with code CODE. */
677 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
678
679 #define NULL_RTX (rtx) 0
680
681 /* The "next" and "previous" RTX, relative to this one. */
682
683 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
684 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
685
686 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
687 */
688 #define RTX_PREV(X) ((INSN_P (X) \
689 || NOTE_P (X) \
690 || JUMP_TABLE_DATA_P (X) \
691 || BARRIER_P (X) \
692 || LABEL_P (X)) \
693 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
694 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
695 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
696
697 /* Define macros to access the `code' field of the rtx. */
698
699 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
700 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
701
702 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
703 #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
704
705 /* RTL vector. These appear inside RTX's when there is a need
706 for a variable number of things. The principle use is inside
707 PARALLEL expressions. */
708
709 struct GTY(()) rtvec_def {
710 int num_elem; /* number of elements */
711 rtx GTY ((length ("%h.num_elem"))) elem[1];
712 };
713
714 #define NULL_RTVEC (rtvec) 0
715
716 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
717 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
718
719 /* Predicate yielding nonzero iff X is an rtx for a register. */
720 #define REG_P(X) (GET_CODE (X) == REG)
721
722 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
723 #define MEM_P(X) (GET_CODE (X) == MEM)
724
725 #if TARGET_SUPPORTS_WIDE_INT
726
727 /* Match CONST_*s that can represent compile-time constant integers. */
728 #define CASE_CONST_SCALAR_INT \
729 case CONST_INT: \
730 case CONST_WIDE_INT
731
732 /* Match CONST_*s for which pointer equality corresponds to value
733 equality. */
734 #define CASE_CONST_UNIQUE \
735 case CONST_INT: \
736 case CONST_WIDE_INT: \
737 case CONST_DOUBLE: \
738 case CONST_FIXED
739
740 /* Match all CONST_* rtxes. */
741 #define CASE_CONST_ANY \
742 case CONST_INT: \
743 case CONST_WIDE_INT: \
744 case CONST_DOUBLE: \
745 case CONST_FIXED: \
746 case CONST_VECTOR
747
748 #else
749
750 /* Match CONST_*s that can represent compile-time constant integers. */
751 #define CASE_CONST_SCALAR_INT \
752 case CONST_INT: \
753 case CONST_DOUBLE
754
755 /* Match CONST_*s for which pointer equality corresponds to value
756 equality. */
757 #define CASE_CONST_UNIQUE \
758 case CONST_INT: \
759 case CONST_DOUBLE: \
760 case CONST_FIXED
761
762 /* Match all CONST_* rtxes. */
763 #define CASE_CONST_ANY \
764 case CONST_INT: \
765 case CONST_DOUBLE: \
766 case CONST_FIXED: \
767 case CONST_VECTOR
768 #endif
769
770 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
771 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
772
773 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
774 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
775
776 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
777 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
778
779 /* Predicate yielding true iff X is an rtx for a double-int
780 or floating point constant. */
781 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
782
783 /* Predicate yielding true iff X is an rtx for a double-int. */
784 #define CONST_DOUBLE_AS_INT_P(X) \
785 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
786
787 /* Predicate yielding true iff X is an rtx for a integer const. */
788 #if TARGET_SUPPORTS_WIDE_INT
789 #define CONST_SCALAR_INT_P(X) \
790 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
791 #else
792 #define CONST_SCALAR_INT_P(X) \
793 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
794 #endif
795
796 /* Predicate yielding true iff X is an rtx for a double-int. */
797 #define CONST_DOUBLE_AS_FLOAT_P(X) \
798 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
799
800 /* Predicate yielding nonzero iff X is a label insn. */
801 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
802
803 /* Predicate yielding nonzero iff X is a jump insn. */
804 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
805
806 /* Predicate yielding nonzero iff X is a call insn. */
807 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
808
809 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
810 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
811
812 /* Predicate yielding nonzero iff X is a debug note/insn. */
813 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
814
815 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
816 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
817
818 /* Nonzero if DEBUG_INSN_P may possibly hold. */
819 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
820
821 /* Predicate yielding nonzero iff X is a real insn. */
822 #define INSN_P(X) \
823 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
824
825 /* Predicate yielding nonzero iff X is a note insn. */
826 #define NOTE_P(X) (GET_CODE (X) == NOTE)
827
828 /* Predicate yielding nonzero iff X is a barrier insn. */
829 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
830
831 /* Predicate yielding nonzero iff X is a data for a jump table. */
832 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
833
834 /* Predicate yielding nonzero iff RTX is a subreg. */
835 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
836
837 /* Predicate yielding true iff RTX is a symbol ref. */
838 #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
839
840 template <>
841 template <>
842 inline bool
843 is_a_helper <rtx_insn *>::test (rtx rt)
844 {
845 return (INSN_P (rt)
846 || NOTE_P (rt)
847 || JUMP_TABLE_DATA_P (rt)
848 || BARRIER_P (rt)
849 || LABEL_P (rt));
850 }
851
852 template <>
853 template <>
854 inline bool
855 is_a_helper <const rtx_insn *>::test (const_rtx rt)
856 {
857 return (INSN_P (rt)
858 || NOTE_P (rt)
859 || JUMP_TABLE_DATA_P (rt)
860 || BARRIER_P (rt)
861 || LABEL_P (rt));
862 }
863
864 template <>
865 template <>
866 inline bool
867 is_a_helper <rtx_debug_insn *>::test (rtx rt)
868 {
869 return DEBUG_INSN_P (rt);
870 }
871
872 template <>
873 template <>
874 inline bool
875 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
876 {
877 return NONJUMP_INSN_P (rt);
878 }
879
880 template <>
881 template <>
882 inline bool
883 is_a_helper <rtx_jump_insn *>::test (rtx rt)
884 {
885 return JUMP_P (rt);
886 }
887
888 template <>
889 template <>
890 inline bool
891 is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
892 {
893 return JUMP_P (insn);
894 }
895
896 template <>
897 template <>
898 inline bool
899 is_a_helper <rtx_call_insn *>::test (rtx rt)
900 {
901 return CALL_P (rt);
902 }
903
904 template <>
905 template <>
906 inline bool
907 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
908 {
909 return CALL_P (insn);
910 }
911
912 template <>
913 template <>
914 inline bool
915 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
916 {
917 return JUMP_TABLE_DATA_P (rt);
918 }
919
920 template <>
921 template <>
922 inline bool
923 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
924 {
925 return JUMP_TABLE_DATA_P (insn);
926 }
927
928 template <>
929 template <>
930 inline bool
931 is_a_helper <rtx_barrier *>::test (rtx rt)
932 {
933 return BARRIER_P (rt);
934 }
935
936 template <>
937 template <>
938 inline bool
939 is_a_helper <rtx_code_label *>::test (rtx rt)
940 {
941 return LABEL_P (rt);
942 }
943
944 template <>
945 template <>
946 inline bool
947 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
948 {
949 return LABEL_P (insn);
950 }
951
952 template <>
953 template <>
954 inline bool
955 is_a_helper <rtx_note *>::test (rtx rt)
956 {
957 return NOTE_P (rt);
958 }
959
960 template <>
961 template <>
962 inline bool
963 is_a_helper <rtx_note *>::test (rtx_insn *insn)
964 {
965 return NOTE_P (insn);
966 }
967
968 /* Predicate yielding nonzero iff X is a return or simple_return. */
969 #define ANY_RETURN_P(X) \
970 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
971
972 /* 1 if X is a unary operator. */
973
974 #define UNARY_P(X) \
975 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
976
977 /* 1 if X is a binary operator. */
978
979 #define BINARY_P(X) \
980 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
981
982 /* 1 if X is an arithmetic operator. */
983
984 #define ARITHMETIC_P(X) \
985 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
986 == RTX_ARITHMETIC_RESULT)
987
988 /* 1 if X is an arithmetic operator. */
989
990 #define COMMUTATIVE_ARITH_P(X) \
991 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
992
993 /* 1 if X is a commutative arithmetic operator or a comparison operator.
994 These two are sometimes selected together because it is possible to
995 swap the two operands. */
996
997 #define SWAPPABLE_OPERANDS_P(X) \
998 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
999 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1000 | (1 << RTX_COMPARE)))
1001
1002 /* 1 if X is a non-commutative operator. */
1003
1004 #define NON_COMMUTATIVE_P(X) \
1005 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1006 == RTX_NON_COMMUTATIVE_RESULT)
1007
1008 /* 1 if X is a commutative operator on integers. */
1009
1010 #define COMMUTATIVE_P(X) \
1011 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1012 == RTX_COMMUTATIVE_RESULT)
1013
1014 /* 1 if X is a relational operator. */
1015
1016 #define COMPARISON_P(X) \
1017 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1018
1019 /* 1 if X is a constant value that is an integer. */
1020
1021 #define CONSTANT_P(X) \
1022 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1023
1024 /* 1 if X can be used to represent an object. */
1025 #define OBJECT_P(X) \
1026 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1027
1028 /* General accessor macros for accessing the fields of an rtx. */
1029
1030 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1031 /* The bit with a star outside the statement expr and an & inside is
1032 so that N can be evaluated only once. */
1033 #define RTL_CHECK1(RTX, N, C1) __extension__ \
1034 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1035 const enum rtx_code _code = GET_CODE (_rtx); \
1036 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1037 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1038 __FUNCTION__); \
1039 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1040 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1041 __FUNCTION__); \
1042 &_rtx->u.fld[_n]; }))
1043
1044 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1045 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1046 const enum rtx_code _code = GET_CODE (_rtx); \
1047 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1048 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1049 __FUNCTION__); \
1050 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1051 && GET_RTX_FORMAT (_code)[_n] != C2) \
1052 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1053 __FUNCTION__); \
1054 &_rtx->u.fld[_n]; }))
1055
1056 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1057 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1058 if (GET_CODE (_rtx) != (C)) \
1059 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1060 __FUNCTION__); \
1061 &_rtx->u.fld[_n]; }))
1062
1063 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1064 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1065 const enum rtx_code _code = GET_CODE (_rtx); \
1066 if (_code != (C1) && _code != (C2)) \
1067 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1068 __FUNCTION__); \
1069 &_rtx->u.fld[_n]; }))
1070
1071 #define RTVEC_ELT(RTVEC, I) __extension__ \
1072 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1073 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1074 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1075 __FUNCTION__); \
1076 &_rtvec->elem[_i]; }))
1077
1078 #define XWINT(RTX, N) __extension__ \
1079 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1080 const enum rtx_code _code = GET_CODE (_rtx); \
1081 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1082 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1083 __FUNCTION__); \
1084 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1085 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1086 __FUNCTION__); \
1087 &_rtx->u.hwint[_n]; }))
1088
1089 #define CWI_ELT(RTX, I) __extension__ \
1090 (*({ __typeof (RTX) const _cwi = (RTX); \
1091 int _max = CWI_GET_NUM_ELEM (_cwi); \
1092 const int _i = (I); \
1093 if (_i < 0 || _i >= _max) \
1094 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1095 __FUNCTION__); \
1096 &_cwi->u.hwiv.elem[_i]; }))
1097
1098 #define XCWINT(RTX, N, C) __extension__ \
1099 (*({ __typeof (RTX) const _rtx = (RTX); \
1100 if (GET_CODE (_rtx) != (C)) \
1101 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1102 __FUNCTION__); \
1103 &_rtx->u.hwint[N]; }))
1104
1105 #define XCMWINT(RTX, N, C, M) __extension__ \
1106 (*({ __typeof (RTX) const _rtx = (RTX); \
1107 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1108 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1109 __LINE__, __FUNCTION__); \
1110 &_rtx->u.hwint[N]; }))
1111
1112 #define XCNMPRV(RTX, C, M) __extension__ \
1113 ({ __typeof (RTX) const _rtx = (RTX); \
1114 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1115 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1116 __LINE__, __FUNCTION__); \
1117 &_rtx->u.rv; })
1118
1119 #define XCNMPFV(RTX, C, M) __extension__ \
1120 ({ __typeof (RTX) const _rtx = (RTX); \
1121 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1122 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1123 __LINE__, __FUNCTION__); \
1124 &_rtx->u.fv; })
1125
1126 #define REG_CHECK(RTX) __extension__ \
1127 ({ __typeof (RTX) const _rtx = (RTX); \
1128 if (GET_CODE (_rtx) != REG) \
1129 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1130 __FUNCTION__); \
1131 &_rtx->u.reg; })
1132
1133 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1134 ({ __typeof (RTX) const _symbol = (RTX); \
1135 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1136 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1137 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1138 __FUNCTION__); \
1139 &_symbol->u.block_sym; })
1140
1141 #define HWIVEC_CHECK(RTX,C) __extension__ \
1142 ({ __typeof (RTX) const _symbol = (RTX); \
1143 RTL_CHECKC1 (_symbol, 0, C); \
1144 &_symbol->u.hwiv; })
1145
1146 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1147 const char *)
1148 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1149 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1150 const char *)
1151 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1152 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1153 int, const char *)
1154 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1155 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1156 int, const char *)
1157 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1158 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1159 const char *, int, const char *)
1160 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1161 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1162 bool, const char *, int, const char *)
1163 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1164 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1165 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1166 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1167 const char *)
1168 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1169 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1170 const char *)
1171 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1172
1173 #else /* not ENABLE_RTL_CHECKING */
1174
1175 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1176 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1177 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1178 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1179 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1180 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1181 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1182 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1183 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1184 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1185 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1186 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1187 #define REG_CHECK(RTX) (&(RTX)->u.reg)
1188 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1189 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1190
1191 #endif
1192
1193 /* General accessor macros for accessing the flags of an rtx. */
1194
1195 /* Access an individual rtx flag, with no checking of any kind. */
1196 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1197
1198 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1199 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1200 ({ __typeof (RTX) const _rtx = (RTX); \
1201 if (GET_CODE (_rtx) != C1) \
1202 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1203 __FUNCTION__); \
1204 _rtx; })
1205
1206 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1207 ({ __typeof (RTX) const _rtx = (RTX); \
1208 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1209 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1210 __FUNCTION__); \
1211 _rtx; })
1212
1213 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1214 ({ __typeof (RTX) const _rtx = (RTX); \
1215 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1216 && GET_CODE (_rtx) != C3) \
1217 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1218 __FUNCTION__); \
1219 _rtx; })
1220
1221 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1222 ({ __typeof (RTX) const _rtx = (RTX); \
1223 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1224 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1225 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1226 __FUNCTION__); \
1227 _rtx; })
1228
1229 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1230 ({ __typeof (RTX) const _rtx = (RTX); \
1231 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1232 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1233 && GET_CODE (_rtx) != C5) \
1234 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1235 __FUNCTION__); \
1236 _rtx; })
1237
1238 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1239 __extension__ \
1240 ({ __typeof (RTX) const _rtx = (RTX); \
1241 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1242 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1243 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1244 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1245 __FUNCTION__); \
1246 _rtx; })
1247
1248 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1249 __extension__ \
1250 ({ __typeof (RTX) const _rtx = (RTX); \
1251 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1252 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1253 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1254 && GET_CODE (_rtx) != C7) \
1255 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1256 __FUNCTION__); \
1257 _rtx; })
1258
1259 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1260 __extension__ \
1261 ({ __typeof (RTX) const _rtx = (RTX); \
1262 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1263 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1264 __FUNCTION__); \
1265 _rtx; })
1266
1267 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1268 int, const char *)
1269 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1270 ;
1271
1272 #else /* not ENABLE_RTL_FLAG_CHECKING */
1273
1274 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1275 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1276 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1277 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1278 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1279 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1280 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1281 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1282 #endif
1283
1284 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1285 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1286 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1287 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1288 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1289 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1290 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1291 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1292 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1293 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1294
1295 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1296 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1297
1298 /* These are like XINT, etc. except that they expect a '0' field instead
1299 of the normal type code. */
1300
1301 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1302 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1303 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1304 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1305 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1306 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1307 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1308 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1309 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1310 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1311 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1312 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1313
1314 /* Access a '0' field with any type. */
1315 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1316
1317 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1318 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1319 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1320 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1321 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1322 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1323 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1324 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1325 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1326 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1327
1328 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1329 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1330
1331 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1332 \f
1333
1334 /* Methods of rtx_expr_list. */
1335
1336 inline rtx_expr_list *rtx_expr_list::next () const
1337 {
1338 rtx tmp = XEXP (this, 1);
1339 return safe_as_a <rtx_expr_list *> (tmp);
1340 }
1341
1342 inline rtx rtx_expr_list::element () const
1343 {
1344 return XEXP (this, 0);
1345 }
1346
1347 /* Methods of rtx_insn_list. */
1348
1349 inline rtx_insn_list *rtx_insn_list::next () const
1350 {
1351 rtx tmp = XEXP (this, 1);
1352 return safe_as_a <rtx_insn_list *> (tmp);
1353 }
1354
1355 inline rtx_insn *rtx_insn_list::insn () const
1356 {
1357 rtx tmp = XEXP (this, 0);
1358 return safe_as_a <rtx_insn *> (tmp);
1359 }
1360
1361 /* Methods of rtx_sequence. */
1362
1363 inline int rtx_sequence::len () const
1364 {
1365 return XVECLEN (this, 0);
1366 }
1367
1368 inline rtx rtx_sequence::element (int index) const
1369 {
1370 return XVECEXP (this, 0, index);
1371 }
1372
1373 inline rtx_insn *rtx_sequence::insn (int index) const
1374 {
1375 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1376 }
1377
1378 /* ACCESS MACROS for particular fields of insns. */
1379
1380 /* Holds a unique number for each insn.
1381 These are not necessarily sequentially increasing. */
1382 inline int INSN_UID (const_rtx insn)
1383 {
1384 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1385 (insn))->u2.insn_uid;
1386 }
1387 inline int& INSN_UID (rtx insn)
1388 {
1389 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1390 (insn))->u2.insn_uid;
1391 }
1392
1393 /* Chain insns together in sequence. */
1394
1395 /* For now these are split in two: an rvalue form:
1396 PREV_INSN/NEXT_INSN
1397 and an lvalue form:
1398 SET_NEXT_INSN/SET_PREV_INSN. */
1399
1400 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1401 {
1402 rtx prev = XEXP (insn, 0);
1403 return safe_as_a <rtx_insn *> (prev);
1404 }
1405
1406 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1407 {
1408 return XEXP (insn, 0);
1409 }
1410
1411 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1412 {
1413 rtx next = XEXP (insn, 1);
1414 return safe_as_a <rtx_insn *> (next);
1415 }
1416
1417 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1418 {
1419 return XEXP (insn, 1);
1420 }
1421
1422 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1423 {
1424 return XBBDEF (insn, 2);
1425 }
1426
1427 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1428 {
1429 return XBBDEF (insn, 2);
1430 }
1431
1432 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1433 {
1434 BLOCK_FOR_INSN (insn) = bb;
1435 }
1436
1437 /* The body of an insn. */
1438 inline rtx PATTERN (const_rtx insn)
1439 {
1440 return XEXP (insn, 3);
1441 }
1442
1443 inline rtx& PATTERN (rtx insn)
1444 {
1445 return XEXP (insn, 3);
1446 }
1447
1448 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1449 {
1450 return XUINT (insn, 4);
1451 }
1452
1453 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1454 {
1455 return XUINT (insn, 4);
1456 }
1457
1458 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1459 {
1460 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1461 }
1462
1463 /* LOCATION of an RTX if relevant. */
1464 #define RTL_LOCATION(X) (INSN_P (X) ? \
1465 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1466 : UNKNOWN_LOCATION)
1467
1468 /* Code number of instruction, from when it was recognized.
1469 -1 means this instruction has not been recognized yet. */
1470 #define INSN_CODE(INSN) XINT (INSN, 5)
1471
1472 inline rtvec rtx_jump_table_data::get_labels () const
1473 {
1474 rtx pat = PATTERN (this);
1475 if (GET_CODE (pat) == ADDR_VEC)
1476 return XVEC (pat, 0);
1477 else
1478 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1479 }
1480
1481 /* Return the mode of the data in the table, which is always a scalar
1482 integer. */
1483
1484 inline scalar_int_mode
1485 rtx_jump_table_data::get_data_mode () const
1486 {
1487 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1488 }
1489
1490 /* If LABEL is followed by a jump table, return the table, otherwise
1491 return null. */
1492
1493 inline rtx_jump_table_data *
1494 jump_table_for_label (const rtx_code_label *label)
1495 {
1496 return safe_dyn_cast <rtx_jump_table_data *> (NEXT_INSN (label));
1497 }
1498
1499 #define RTX_FRAME_RELATED_P(RTX) \
1500 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1501 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1502
1503 /* 1 if JUMP RTX is a crossing jump. */
1504 #define CROSSING_JUMP_P(RTX) \
1505 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1506
1507 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1508 TREE_READONLY. */
1509 #define RTL_CONST_CALL_P(RTX) \
1510 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1511
1512 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1513 DECL_PURE_P. */
1514 #define RTL_PURE_CALL_P(RTX) \
1515 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1516
1517 /* 1 if RTX is a call to a const or pure function. */
1518 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1519 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1520
1521 /* 1 if RTX is a call to a looping const or pure function. Built from
1522 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1523 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1524 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1525
1526 /* 1 if RTX is a call_insn for a sibling call. */
1527 #define SIBLING_CALL_P(RTX) \
1528 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1529
1530 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1531 #define INSN_ANNULLED_BRANCH_P(RTX) \
1532 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1533
1534 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1535 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1536 executed if the branch is taken. For annulled branches with this bit
1537 clear, the insn should be executed only if the branch is not taken. */
1538 #define INSN_FROM_TARGET_P(RTX) \
1539 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1540 CALL_INSN)->in_struct)
1541
1542 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1543 See the comments for ADDR_DIFF_VEC in rtl.def. */
1544 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1545
1546 /* In a VALUE, the value cselib has assigned to RTX.
1547 This is a "struct cselib_val", see cselib.h. */
1548 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1549
1550 /* Holds a list of notes on what this insn does to various REGs.
1551 It is a chain of EXPR_LIST rtx's, where the second operand is the
1552 chain pointer and the first operand is the REG being described.
1553 The mode field of the EXPR_LIST contains not a real machine mode
1554 but a value from enum reg_note. */
1555 #define REG_NOTES(INSN) XEXP(INSN, 6)
1556
1557 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1558 question. */
1559 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1560
1561 enum reg_note
1562 {
1563 #define DEF_REG_NOTE(NAME) NAME,
1564 #include "reg-notes.def"
1565 #undef DEF_REG_NOTE
1566 REG_NOTE_MAX
1567 };
1568
1569 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1570 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1571 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1572 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1573
1574 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1575
1576 extern const char * const reg_note_name[];
1577 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1578
1579 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1580 USE and CLOBBER expressions.
1581 USE expressions list the registers filled with arguments that
1582 are passed to the function.
1583 CLOBBER expressions document the registers explicitly clobbered
1584 by this CALL_INSN.
1585 Pseudo registers can not be mentioned in this list. */
1586 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1587
1588 /* The label-number of a code-label. The assembler label
1589 is made from `L' and the label-number printed in decimal.
1590 Label numbers are unique in a compilation. */
1591 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1592
1593 /* In a NOTE that is a line number, this is a string for the file name that the
1594 line is in. We use the same field to record block numbers temporarily in
1595 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1596 between ints and pointers if we use a different macro for the block number.)
1597 */
1598
1599 /* Opaque data. */
1600 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1601 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1602 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1603 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1604 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1605 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1606 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1607 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1608 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1609
1610 /* In a NOTE that is a line number, this is the line number.
1611 Other kinds of NOTEs are identified by negative numbers here. */
1612 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1613
1614 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1615 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1616 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1617
1618 /* Variable declaration and the location of a variable. */
1619 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1620 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1621
1622 /* Initialization status of the variable in the location. Status
1623 can be unknown, uninitialized or initialized. See enumeration
1624 type below. */
1625 #define PAT_VAR_LOCATION_STATUS(PAT) \
1626 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1627 ->u2.var_location_status)
1628
1629 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1630 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1631 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1632 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1633 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1634 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1635 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1636
1637 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1638 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1639
1640 /* Accessors for a tree-expanded var location debug insn. */
1641 #define INSN_VAR_LOCATION_DECL(INSN) \
1642 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1643 #define INSN_VAR_LOCATION_LOC(INSN) \
1644 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1645 #define INSN_VAR_LOCATION_STATUS(INSN) \
1646 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1647
1648 /* Expand to the RTL that denotes an unknown variable location in a
1649 DEBUG_INSN. */
1650 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1651
1652 /* Determine whether X is such an unknown location. */
1653 #define VAR_LOC_UNKNOWN_P(X) \
1654 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1655
1656 /* 1 if RTX is emitted after a call, but it should take effect before
1657 the call returns. */
1658 #define NOTE_DURING_CALL_P(RTX) \
1659 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1660
1661 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1662 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1663
1664 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1665 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1666
1667 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1668 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1669
1670 /* Codes that appear in the NOTE_KIND field for kinds of notes
1671 that are not line numbers. These codes are all negative.
1672
1673 Notice that we do not try to use zero here for any of
1674 the special note codes because sometimes the source line
1675 actually can be zero! This happens (for example) when we
1676 are generating code for the per-translation-unit constructor
1677 and destructor routines for some C++ translation unit. */
1678
1679 enum insn_note
1680 {
1681 #define DEF_INSN_NOTE(NAME) NAME,
1682 #include "insn-notes.def"
1683 #undef DEF_INSN_NOTE
1684
1685 NOTE_INSN_MAX
1686 };
1687
1688 /* Names for NOTE insn's other than line numbers. */
1689
1690 extern const char * const note_insn_name[NOTE_INSN_MAX];
1691 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1692 (note_insn_name[(NOTE_CODE)])
1693
1694 /* The name of a label, in case it corresponds to an explicit label
1695 in the input source code. */
1696 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1697
1698 /* In jump.c, each label contains a count of the number
1699 of LABEL_REFs that point at it, so unused labels can be deleted. */
1700 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1701
1702 /* Labels carry a two-bit field composed of the ->jump and ->call
1703 bits. This field indicates whether the label is an alternate
1704 entry point, and if so, what kind. */
1705 enum label_kind
1706 {
1707 LABEL_NORMAL = 0, /* ordinary label */
1708 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1709 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1710 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1711 };
1712
1713 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1714
1715 /* Retrieve the kind of LABEL. */
1716 #define LABEL_KIND(LABEL) __extension__ \
1717 ({ __typeof (LABEL) const _label = (LABEL); \
1718 if (! LABEL_P (_label)) \
1719 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1720 __FUNCTION__); \
1721 (enum label_kind) ((_label->jump << 1) | _label->call); })
1722
1723 /* Set the kind of LABEL. */
1724 #define SET_LABEL_KIND(LABEL, KIND) do { \
1725 __typeof (LABEL) const _label = (LABEL); \
1726 const unsigned int _kind = (KIND); \
1727 if (! LABEL_P (_label)) \
1728 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1729 __FUNCTION__); \
1730 _label->jump = ((_kind >> 1) & 1); \
1731 _label->call = (_kind & 1); \
1732 } while (0)
1733
1734 #else
1735
1736 /* Retrieve the kind of LABEL. */
1737 #define LABEL_KIND(LABEL) \
1738 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1739
1740 /* Set the kind of LABEL. */
1741 #define SET_LABEL_KIND(LABEL, KIND) do { \
1742 rtx const _label = (LABEL); \
1743 const unsigned int _kind = (KIND); \
1744 _label->jump = ((_kind >> 1) & 1); \
1745 _label->call = (_kind & 1); \
1746 } while (0)
1747
1748 #endif /* rtl flag checking */
1749
1750 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1751
1752 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1753 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1754 be decremented and possibly the label can be deleted. */
1755 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1756
1757 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1758 {
1759 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1760 }
1761
1762 /* Methods of rtx_jump_insn. */
1763
1764 inline rtx rtx_jump_insn::jump_label () const
1765 {
1766 return JUMP_LABEL (this);
1767 }
1768
1769 inline rtx_code_label *rtx_jump_insn::jump_target () const
1770 {
1771 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1772 }
1773
1774 inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1775 {
1776 JUMP_LABEL (this) = target;
1777 }
1778
1779 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1780 goes through all the LABEL_REFs that jump to that label. The chain
1781 eventually winds up at the CODE_LABEL: it is circular. */
1782 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1783
1784 /* Get the label that a LABEL_REF references. */
1785 static inline rtx_insn *
1786 label_ref_label (const_rtx ref)
1787 {
1788 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1789 }
1790
1791 /* Set the label that LABEL_REF ref refers to. */
1792
1793 static inline void
1794 set_label_ref_label (rtx ref, rtx_insn *label)
1795 {
1796 XCEXP (ref, 0, LABEL_REF) = label;
1797 }
1798 \f
1799 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1800 be used on RHS. Use SET_REGNO to change the value. */
1801 #define REGNO(RTX) (rhs_regno(RTX))
1802 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1803
1804 /* Return the number of consecutive registers in a REG. This is always
1805 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1806 hard registers. */
1807 #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1808
1809 /* ORIGINAL_REGNO holds the number the register originally had; for a
1810 pseudo register turned into a hard reg this will hold the old pseudo
1811 register number. */
1812 #define ORIGINAL_REGNO(RTX) \
1813 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1814
1815 /* Force the REGNO macro to only be used on the lhs. */
1816 static inline unsigned int
1817 rhs_regno (const_rtx x)
1818 {
1819 return REG_CHECK (x)->regno;
1820 }
1821
1822 /* Return the final register in REG X plus one. */
1823 static inline unsigned int
1824 END_REGNO (const_rtx x)
1825 {
1826 return REGNO (x) + REG_NREGS (x);
1827 }
1828
1829 /* Change the REGNO and REG_NREGS of REG X to the specified values,
1830 bypassing the df machinery. */
1831 static inline void
1832 set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1833 {
1834 reg_info *reg = REG_CHECK (x);
1835 reg->regno = regno;
1836 reg->nregs = nregs;
1837 }
1838
1839 /* 1 if RTX is a reg or parallel that is the current function's return
1840 value. */
1841 #define REG_FUNCTION_VALUE_P(RTX) \
1842 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1843
1844 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1845 #define REG_USERVAR_P(RTX) \
1846 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1847
1848 /* 1 if RTX is a reg that holds a pointer value. */
1849 #define REG_POINTER(RTX) \
1850 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1851
1852 /* 1 if RTX is a mem that holds a pointer value. */
1853 #define MEM_POINTER(RTX) \
1854 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1855
1856 /* 1 if the given register REG corresponds to a hard register. */
1857 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1858
1859 /* 1 if the given register number REG_NO corresponds to a hard register. */
1860 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1861
1862 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1863 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1864 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1865
1866 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1867 elements actually needed to represent the constant.
1868 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1869 significant HOST_WIDE_INT. */
1870 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1871 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1872 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1873
1874 /* For a CONST_DOUBLE:
1875 #if TARGET_SUPPORTS_WIDE_INT == 0
1876 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1877 low-order word and ..._HIGH the high-order.
1878 #endif
1879 For a float, there is a REAL_VALUE_TYPE structure, and
1880 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1881 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1882 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1883 #define CONST_DOUBLE_REAL_VALUE(r) \
1884 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1885
1886 #define CONST_FIXED_VALUE(r) \
1887 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1888 #define CONST_FIXED_VALUE_HIGH(r) \
1889 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1890 #define CONST_FIXED_VALUE_LOW(r) \
1891 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1892
1893 /* For a CONST_VECTOR, return element #n. */
1894 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1895
1896 /* For a CONST_VECTOR, return the number of elements in a vector. */
1897 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1898
1899 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1900 SUBREG_BYTE extracts the byte-number. */
1901
1902 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1903 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1904
1905 /* in rtlanal.c */
1906 /* Return the right cost to give to an operation
1907 to make the cost of the corresponding register-to-register instruction
1908 N times that of a fast register-to-register instruction. */
1909 #define COSTS_N_INSNS(N) ((N) * 4)
1910
1911 /* Maximum cost of an rtl expression. This value has the special meaning
1912 not to use an rtx with this cost under any circumstances. */
1913 #define MAX_COST INT_MAX
1914
1915 /* Return true if CODE always has VOIDmode. */
1916
1917 static inline bool
1918 always_void_p (enum rtx_code code)
1919 {
1920 return code == SET;
1921 }
1922
1923 /* A structure to hold all available cost information about an rtl
1924 expression. */
1925 struct full_rtx_costs
1926 {
1927 int speed;
1928 int size;
1929 };
1930
1931 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1932 static inline void
1933 init_costs_to_max (struct full_rtx_costs *c)
1934 {
1935 c->speed = MAX_COST;
1936 c->size = MAX_COST;
1937 }
1938
1939 /* Initialize a full_rtx_costs structure C to zero cost. */
1940 static inline void
1941 init_costs_to_zero (struct full_rtx_costs *c)
1942 {
1943 c->speed = 0;
1944 c->size = 0;
1945 }
1946
1947 /* Compare two full_rtx_costs structures A and B, returning true
1948 if A < B when optimizing for speed. */
1949 static inline bool
1950 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1951 bool speed)
1952 {
1953 if (speed)
1954 return (a->speed < b->speed
1955 || (a->speed == b->speed && a->size < b->size));
1956 else
1957 return (a->size < b->size
1958 || (a->size == b->size && a->speed < b->speed));
1959 }
1960
1961 /* Increase both members of the full_rtx_costs structure C by the
1962 cost of N insns. */
1963 static inline void
1964 costs_add_n_insns (struct full_rtx_costs *c, int n)
1965 {
1966 c->speed += COSTS_N_INSNS (n);
1967 c->size += COSTS_N_INSNS (n);
1968 }
1969
1970 /* Describes the shape of a subreg:
1971
1972 inner_mode == the mode of the SUBREG_REG
1973 offset == the SUBREG_BYTE
1974 outer_mode == the mode of the SUBREG itself. */
1975 struct subreg_shape {
1976 subreg_shape (machine_mode, unsigned int, machine_mode);
1977 bool operator == (const subreg_shape &) const;
1978 bool operator != (const subreg_shape &) const;
1979 unsigned int unique_id () const;
1980
1981 machine_mode inner_mode;
1982 unsigned int offset;
1983 machine_mode outer_mode;
1984 };
1985
1986 inline
1987 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1988 unsigned int offset_in,
1989 machine_mode outer_mode_in)
1990 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1991 {}
1992
1993 inline bool
1994 subreg_shape::operator == (const subreg_shape &other) const
1995 {
1996 return (inner_mode == other.inner_mode
1997 && offset == other.offset
1998 && outer_mode == other.outer_mode);
1999 }
2000
2001 inline bool
2002 subreg_shape::operator != (const subreg_shape &other) const
2003 {
2004 return !operator == (other);
2005 }
2006
2007 /* Return an integer that uniquely identifies this shape. Structures
2008 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2009 current mode is anywhere near being 65536 bytes in size, so the
2010 id comfortably fits in an int. */
2011
2012 inline unsigned int
2013 subreg_shape::unique_id () const
2014 {
2015 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
2016 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
2017 }
2018
2019 /* Return the shape of a SUBREG rtx. */
2020
2021 static inline subreg_shape
2022 shape_of_subreg (const_rtx x)
2023 {
2024 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2025 SUBREG_BYTE (x), GET_MODE (x));
2026 }
2027
2028 /* Information about an address. This structure is supposed to be able
2029 to represent all supported target addresses. Please extend it if it
2030 is not yet general enough. */
2031 struct address_info {
2032 /* The mode of the value being addressed, or VOIDmode if this is
2033 a load-address operation with no known address mode. */
2034 machine_mode mode;
2035
2036 /* The address space. */
2037 addr_space_t as;
2038
2039 /* True if this is an RTX_AUTOINC address. */
2040 bool autoinc_p;
2041
2042 /* A pointer to the top-level address. */
2043 rtx *outer;
2044
2045 /* A pointer to the inner address, after all address mutations
2046 have been stripped from the top-level address. It can be one
2047 of the following:
2048
2049 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2050
2051 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2052 points to the step value, depending on whether the step is variable
2053 or constant respectively. SEGMENT is null.
2054
2055 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2056 with null fields evaluating to 0. */
2057 rtx *inner;
2058
2059 /* Components that make up *INNER. Each one may be null or nonnull.
2060 When nonnull, their meanings are as follows:
2061
2062 - *SEGMENT is the "segment" of memory to which the address refers.
2063 This value is entirely target-specific and is only called a "segment"
2064 because that's its most typical use. It contains exactly one UNSPEC,
2065 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2066 reloading.
2067
2068 - *BASE is a variable expression representing a base address.
2069 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
2070
2071 - *INDEX is a variable expression representing an index value.
2072 It may be a scaled expression, such as a MULT. It has exactly
2073 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
2074
2075 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2076 unmutated RTX_CONST_OBJ. */
2077 rtx *segment;
2078 rtx *base;
2079 rtx *index;
2080 rtx *disp;
2081
2082 rtx *segment_term;
2083 rtx *base_term;
2084 rtx *index_term;
2085 rtx *disp_term;
2086
2087 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2088 of BASE_TERM, otherwise it is null. */
2089 rtx *base_term2;
2090
2091 /* ADDRESS if this structure describes an address operand, MEM if
2092 it describes a MEM address. */
2093 enum rtx_code addr_outer_code;
2094
2095 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2096 enum rtx_code base_outer_code;
2097 };
2098
2099 /* This is used to bundle an rtx and a mode together so that the pair
2100 can be used with the wi:: routines. If we ever put modes into rtx
2101 integer constants, this should go away and then just pass an rtx in. */
2102 typedef std::pair <rtx, machine_mode> rtx_mode_t;
2103
2104 namespace wi
2105 {
2106 template <>
2107 struct int_traits <rtx_mode_t>
2108 {
2109 static const enum precision_type precision_type = VAR_PRECISION;
2110 static const bool host_dependent_precision = false;
2111 /* This ought to be true, except for the special case that BImode
2112 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2113 static const bool is_sign_extended = false;
2114 static unsigned int get_precision (const rtx_mode_t &);
2115 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2116 const rtx_mode_t &);
2117 };
2118 }
2119
2120 inline unsigned int
2121 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2122 {
2123 return GET_MODE_PRECISION (as_a <scalar_mode> (x.second));
2124 }
2125
2126 inline wi::storage_ref
2127 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2128 unsigned int precision,
2129 const rtx_mode_t &x)
2130 {
2131 gcc_checking_assert (precision == get_precision (x));
2132 switch (GET_CODE (x.first))
2133 {
2134 case CONST_INT:
2135 if (precision < HOST_BITS_PER_WIDE_INT)
2136 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2137 targets is 1 rather than -1. */
2138 gcc_checking_assert (INTVAL (x.first)
2139 == sext_hwi (INTVAL (x.first), precision)
2140 || (x.second == BImode && INTVAL (x.first) == 1));
2141
2142 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2143
2144 case CONST_WIDE_INT:
2145 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2146 CONST_WIDE_INT_NUNITS (x.first), precision);
2147
2148 #if TARGET_SUPPORTS_WIDE_INT == 0
2149 case CONST_DOUBLE:
2150 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2151 #endif
2152
2153 default:
2154 gcc_unreachable ();
2155 }
2156 }
2157
2158 namespace wi
2159 {
2160 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2161 wide_int min_value (machine_mode, signop);
2162 wide_int max_value (machine_mode, signop);
2163 }
2164
2165 inline wi::hwi_with_prec
2166 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2167 {
2168 return shwi (val, GET_MODE_PRECISION (as_a <scalar_mode> (mode)));
2169 }
2170
2171 /* Produce the smallest number that is represented in MODE. The precision
2172 is taken from MODE and the sign from SGN. */
2173 inline wide_int
2174 wi::min_value (machine_mode mode, signop sgn)
2175 {
2176 return min_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2177 }
2178
2179 /* Produce the largest number that is represented in MODE. The precision
2180 is taken from MODE and the sign from SGN. */
2181 inline wide_int
2182 wi::max_value (machine_mode mode, signop sgn)
2183 {
2184 return max_value (GET_MODE_PRECISION (as_a <scalar_mode> (mode)), sgn);
2185 }
2186
2187 extern void init_rtlanal (void);
2188 extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2189 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2190 extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2191 struct full_rtx_costs *);
2192 extern unsigned int subreg_lsb (const_rtx);
2193 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2194 unsigned int);
2195 extern unsigned int subreg_size_offset_from_lsb (unsigned int, unsigned int,
2196 unsigned int);
2197
2198 /* Return the subreg byte offset for a subreg whose outer mode is
2199 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2200 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2201 the inner value. This is the inverse of subreg_lsb_1 (which converts
2202 byte offsets to bit shifts). */
2203
2204 inline unsigned int
2205 subreg_offset_from_lsb (machine_mode outer_mode,
2206 machine_mode inner_mode,
2207 unsigned int lsb_shift)
2208 {
2209 return subreg_size_offset_from_lsb (GET_MODE_SIZE (outer_mode),
2210 GET_MODE_SIZE (inner_mode), lsb_shift);
2211 }
2212
2213 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2214 unsigned int, machine_mode);
2215 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2216 unsigned int, machine_mode);
2217 extern unsigned int subreg_regno (const_rtx);
2218 extern int simplify_subreg_regno (unsigned int, machine_mode,
2219 unsigned int, machine_mode);
2220 extern unsigned int subreg_nregs (const_rtx);
2221 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2222 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2223 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2224 extern bool constant_pool_constant_p (rtx);
2225 extern bool truncated_to_mode (machine_mode, const_rtx);
2226 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2227 extern void split_double (rtx, rtx *, rtx *);
2228 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2229 extern void decompose_address (struct address_info *, rtx *,
2230 machine_mode, addr_space_t, enum rtx_code);
2231 extern void decompose_lea_address (struct address_info *, rtx *);
2232 extern void decompose_mem_address (struct address_info *, rtx);
2233 extern void update_address (struct address_info *);
2234 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2235 extern enum rtx_code get_index_code (const struct address_info *);
2236
2237 /* 1 if RTX is a subreg containing a reg that is already known to be
2238 sign- or zero-extended from the mode of the subreg to the mode of
2239 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2240 extension.
2241
2242 When used as a LHS, is means that this extension must be done
2243 when assigning to SUBREG_REG. */
2244
2245 #define SUBREG_PROMOTED_VAR_P(RTX) \
2246 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2247
2248 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2249 this gives the necessary extensions:
2250 0 - signed (SPR_SIGNED)
2251 1 - normal unsigned (SPR_UNSIGNED)
2252 2 - value is both sign and unsign extended for mode
2253 (SPR_SIGNED_AND_UNSIGNED).
2254 -1 - pointer unsigned, which most often can be handled like unsigned
2255 extension, except for generating instructions where we need to
2256 emit special code (ptr_extend insns) on some architectures
2257 (SPR_POINTER). */
2258
2259 const int SRP_POINTER = -1;
2260 const int SRP_SIGNED = 0;
2261 const int SRP_UNSIGNED = 1;
2262 const int SRP_SIGNED_AND_UNSIGNED = 2;
2263
2264 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2265 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2266 do { \
2267 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2268 (RTX), SUBREG); \
2269 switch (VAL) \
2270 { \
2271 case SRP_POINTER: \
2272 _rtx->volatil = 0; \
2273 _rtx->unchanging = 0; \
2274 break; \
2275 case SRP_SIGNED: \
2276 _rtx->volatil = 0; \
2277 _rtx->unchanging = 1; \
2278 break; \
2279 case SRP_UNSIGNED: \
2280 _rtx->volatil = 1; \
2281 _rtx->unchanging = 0; \
2282 break; \
2283 case SRP_SIGNED_AND_UNSIGNED: \
2284 _rtx->volatil = 1; \
2285 _rtx->unchanging = 1; \
2286 break; \
2287 } \
2288 } while (0)
2289
2290 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2291 including SRP_SIGNED_AND_UNSIGNED if promoted for
2292 both signed and unsigned. */
2293 #define SUBREG_PROMOTED_GET(RTX) \
2294 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2295 + (RTX)->unchanging - 1)
2296
2297 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2298 #define SUBREG_PROMOTED_SIGN(RTX) \
2299 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2300 : (RTX)->unchanging - 1)
2301
2302 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2303 for SIGNED type. */
2304 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2305 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2306
2307 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2308 for UNSIGNED type. */
2309 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2310 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2311
2312 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2313 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2314 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2315 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2316 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2317
2318 /* True if the REG is the static chain register for some CALL_INSN. */
2319 #define STATIC_CHAIN_REG_P(RTX) \
2320 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2321
2322 /* True if the subreg was generated by LRA for reload insns. Such
2323 subregs are valid only during LRA. */
2324 #define LRA_SUBREG_P(RTX) \
2325 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2326
2327 /* True if call is instrumented by Pointer Bounds Checker. */
2328 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2329 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2330
2331 /* Access various components of an ASM_OPERANDS rtx. */
2332
2333 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2334 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2335 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2336 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2337 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2338 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2339 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2340 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2341 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2342 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2343 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2344 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2345 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2346 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2347 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2348 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2349 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2350 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2351
2352 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2353 #define MEM_READONLY_P(RTX) \
2354 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2355
2356 /* 1 if RTX is a mem and we should keep the alias set for this mem
2357 unchanged when we access a component. Set to 1, or example, when we
2358 are already in a non-addressable component of an aggregate. */
2359 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2360 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2361
2362 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2363 #define MEM_VOLATILE_P(RTX) \
2364 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2365 ASM_INPUT)->volatil)
2366
2367 /* 1 if RTX is a mem that cannot trap. */
2368 #define MEM_NOTRAP_P(RTX) \
2369 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2370
2371 /* The memory attribute block. We provide access macros for each value
2372 in the block and provide defaults if none specified. */
2373 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2374
2375 /* The register attribute block. We provide access macros for each value
2376 in the block and provide defaults if none specified. */
2377 #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2378
2379 #ifndef GENERATOR_FILE
2380 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2381 set, and may alias anything. Otherwise, the MEM can only alias
2382 MEMs in a conflicting alias set. This value is set in a
2383 language-dependent manner in the front-end, and should not be
2384 altered in the back-end. These set numbers are tested with
2385 alias_sets_conflict_p. */
2386 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2387
2388 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2389 refer to part of a DECL. It may also be a COMPONENT_REF. */
2390 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2391
2392 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2393 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2394
2395 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2396 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2397
2398 /* For a MEM rtx, the address space. */
2399 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2400
2401 /* For a MEM rtx, true if its MEM_SIZE is known. */
2402 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2403
2404 /* For a MEM rtx, the size in bytes of the MEM. */
2405 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2406
2407 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2408 mode as a default when STRICT_ALIGNMENT, but not if not. */
2409 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2410 #else
2411 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2412 #endif
2413
2414 /* For a REG rtx, the decl it is known to refer to, if it is known to
2415 refer to part of a DECL. */
2416 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2417
2418 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2419 HOST_WIDE_INT. */
2420 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2421
2422 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2423 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2424 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2425 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2426 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2427 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2428 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2429 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2430
2431 /* 1 if RTX is a label_ref for a nonlocal label. */
2432 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2433 REG_LABEL_TARGET note. */
2434 #define LABEL_REF_NONLOCAL_P(RTX) \
2435 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2436
2437 /* 1 if RTX is a code_label that should always be considered to be needed. */
2438 #define LABEL_PRESERVE_P(RTX) \
2439 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2440
2441 /* During sched, 1 if RTX is an insn that must be scheduled together
2442 with the preceding insn. */
2443 #define SCHED_GROUP_P(RTX) \
2444 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2445 JUMP_INSN, CALL_INSN)->in_struct)
2446
2447 /* For a SET rtx, SET_DEST is the place that is set
2448 and SET_SRC is the value it is set to. */
2449 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2450 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2451 #define SET_IS_RETURN_P(RTX) \
2452 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2453
2454 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2455 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2456 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2457
2458 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2459 conditionally executing the code on, COND_EXEC_CODE is the code
2460 to execute if the condition is true. */
2461 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2462 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2463
2464 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2465 constants pool. */
2466 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2467 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2468
2469 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2470 tree constant pool. This information is private to varasm.c. */
2471 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2472 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2473 (RTX), SYMBOL_REF)->frame_related)
2474
2475 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2476 #define SYMBOL_REF_FLAG(RTX) \
2477 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2478
2479 /* 1 if RTX is a symbol_ref that has been the library function in
2480 emit_library_call. */
2481 #define SYMBOL_REF_USED(RTX) \
2482 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2483
2484 /* 1 if RTX is a symbol_ref for a weak symbol. */
2485 #define SYMBOL_REF_WEAK(RTX) \
2486 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2487
2488 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2489 SYMBOL_REF_CONSTANT. */
2490 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2491
2492 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2493 pool symbol. */
2494 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2495 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2496
2497 /* The tree (decl or constant) associated with the symbol, or null. */
2498 #define SYMBOL_REF_DECL(RTX) \
2499 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2500
2501 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2502 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2503 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2504
2505 /* The rtx constant pool entry for a symbol, or null. */
2506 #define SYMBOL_REF_CONSTANT(RTX) \
2507 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2508
2509 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2510 information derivable from the tree decl associated with this symbol.
2511 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2512 decl. In some cases this is a bug. But beyond that, it's nice to cache
2513 this information to avoid recomputing it. Finally, this allows space for
2514 the target to store more than one bit of information, as with
2515 SYMBOL_REF_FLAG. */
2516 #define SYMBOL_REF_FLAGS(RTX) \
2517 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2518 ->u2.symbol_ref_flags)
2519
2520 /* These flags are common enough to be defined for all targets. They
2521 are computed by the default version of targetm.encode_section_info. */
2522
2523 /* Set if this symbol is a function. */
2524 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2525 #define SYMBOL_REF_FUNCTION_P(RTX) \
2526 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2527 /* Set if targetm.binds_local_p is true. */
2528 #define SYMBOL_FLAG_LOCAL (1 << 1)
2529 #define SYMBOL_REF_LOCAL_P(RTX) \
2530 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2531 /* Set if targetm.in_small_data_p is true. */
2532 #define SYMBOL_FLAG_SMALL (1 << 2)
2533 #define SYMBOL_REF_SMALL_P(RTX) \
2534 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2535 /* The three-bit field at [5:3] is true for TLS variables; use
2536 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2537 #define SYMBOL_FLAG_TLS_SHIFT 3
2538 #define SYMBOL_REF_TLS_MODEL(RTX) \
2539 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2540 /* Set if this symbol is not defined in this translation unit. */
2541 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2542 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2543 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2544 /* Set if this symbol has a block_symbol structure associated with it. */
2545 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2546 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2547 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2548 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2549 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2550 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2551 #define SYMBOL_REF_ANCHOR_P(RTX) \
2552 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2553
2554 /* Subsequent bits are available for the target to use. */
2555 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2556 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2557
2558 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2559 structure to which the symbol belongs, or NULL if it has not been
2560 assigned a block. */
2561 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2562
2563 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2564 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2565 RTX has not yet been assigned to a block, or it has not been given an
2566 offset within that block. */
2567 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2568
2569 /* True if RTX is flagged to be a scheduling barrier. */
2570 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2571 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2572
2573 /* Indicate whether the machine has any sort of auto increment addressing.
2574 If not, we can avoid checking for REG_INC notes. */
2575
2576 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2577 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2578 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2579 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2580 #define AUTO_INC_DEC 1
2581 #else
2582 #define AUTO_INC_DEC 0
2583 #endif
2584
2585 /* Define a macro to look for REG_INC notes,
2586 but save time on machines where they never exist. */
2587
2588 #if AUTO_INC_DEC
2589 #define FIND_REG_INC_NOTE(INSN, REG) \
2590 ((REG) != NULL_RTX && REG_P ((REG)) \
2591 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2592 : find_reg_note ((INSN), REG_INC, (REG)))
2593 #else
2594 #define FIND_REG_INC_NOTE(INSN, REG) 0
2595 #endif
2596
2597 #ifndef HAVE_PRE_INCREMENT
2598 #define HAVE_PRE_INCREMENT 0
2599 #endif
2600
2601 #ifndef HAVE_PRE_DECREMENT
2602 #define HAVE_PRE_DECREMENT 0
2603 #endif
2604
2605 #ifndef HAVE_POST_INCREMENT
2606 #define HAVE_POST_INCREMENT 0
2607 #endif
2608
2609 #ifndef HAVE_POST_DECREMENT
2610 #define HAVE_POST_DECREMENT 0
2611 #endif
2612
2613 #ifndef HAVE_POST_MODIFY_DISP
2614 #define HAVE_POST_MODIFY_DISP 0
2615 #endif
2616
2617 #ifndef HAVE_POST_MODIFY_REG
2618 #define HAVE_POST_MODIFY_REG 0
2619 #endif
2620
2621 #ifndef HAVE_PRE_MODIFY_DISP
2622 #define HAVE_PRE_MODIFY_DISP 0
2623 #endif
2624
2625 #ifndef HAVE_PRE_MODIFY_REG
2626 #define HAVE_PRE_MODIFY_REG 0
2627 #endif
2628
2629
2630 /* Some architectures do not have complete pre/post increment/decrement
2631 instruction sets, or only move some modes efficiently. These macros
2632 allow us to tune autoincrement generation. */
2633
2634 #ifndef USE_LOAD_POST_INCREMENT
2635 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2636 #endif
2637
2638 #ifndef USE_LOAD_POST_DECREMENT
2639 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2640 #endif
2641
2642 #ifndef USE_LOAD_PRE_INCREMENT
2643 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2644 #endif
2645
2646 #ifndef USE_LOAD_PRE_DECREMENT
2647 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2648 #endif
2649
2650 #ifndef USE_STORE_POST_INCREMENT
2651 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2652 #endif
2653
2654 #ifndef USE_STORE_POST_DECREMENT
2655 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2656 #endif
2657
2658 #ifndef USE_STORE_PRE_INCREMENT
2659 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2660 #endif
2661
2662 #ifndef USE_STORE_PRE_DECREMENT
2663 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2664 #endif
2665 \f
2666 /* Nonzero when we are generating CONCATs. */
2667 extern int generating_concat_p;
2668
2669 /* Nonzero when we are expanding trees to RTL. */
2670 extern int currently_expanding_to_rtl;
2671
2672 /* Generally useful functions. */
2673
2674 #ifndef GENERATOR_FILE
2675 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2676 rather than size. */
2677
2678 static inline int
2679 set_rtx_cost (rtx x, bool speed_p)
2680 {
2681 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2682 }
2683
2684 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2685
2686 static inline void
2687 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2688 {
2689 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2690 }
2691
2692 /* Return the cost of moving X into a register, relative to the cost
2693 of a register move. SPEED_P is true if optimizing for speed rather
2694 than size. */
2695
2696 static inline int
2697 set_src_cost (rtx x, machine_mode mode, bool speed_p)
2698 {
2699 return rtx_cost (x, mode, SET, 1, speed_p);
2700 }
2701
2702 /* Like set_src_cost, but return both the speed and size costs in C. */
2703
2704 static inline void
2705 get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2706 {
2707 get_full_rtx_cost (x, mode, SET, 1, c);
2708 }
2709 #endif
2710
2711 /* A convenience macro to validate the arguments of a zero_extract
2712 expression. It determines whether SIZE lies inclusively within
2713 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
2714 and the sum lies inclusively within [1, RANGE]. RANGE must be
2715 >= 1, but SIZE and POS may be negative. */
2716 #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
2717 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
2718 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
2719 - (unsigned HOST_WIDE_INT)(POS)))
2720
2721 /* In explow.c */
2722 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2723 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2724
2725 /* In rtl.c */
2726 extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
2727 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2728 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2729 #define const_wide_int_alloc(NWORDS) \
2730 rtx_alloc_v (CONST_WIDE_INT, \
2731 (sizeof (struct hwivec_def) \
2732 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2733
2734 extern rtvec rtvec_alloc (int);
2735 extern rtvec shallow_copy_rtvec (rtvec);
2736 extern bool shared_const_p (const_rtx);
2737 extern rtx copy_rtx (rtx);
2738 extern enum rtx_code classify_insn (rtx);
2739 extern void dump_rtx_statistics (void);
2740
2741 /* In emit-rtl.c */
2742 extern rtx copy_rtx_if_shared (rtx);
2743
2744 /* In rtl.c */
2745 extern unsigned int rtx_size (const_rtx);
2746 extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
2747 extern int rtx_equal_p (const_rtx, const_rtx);
2748 extern bool rtvec_all_equal_p (const_rtvec);
2749
2750 /* Return true if X is a vector constant with a duplicated element value. */
2751
2752 inline bool
2753 const_vec_duplicate_p (const_rtx x)
2754 {
2755 return GET_CODE (x) == CONST_VECTOR && rtvec_all_equal_p (XVEC (x, 0));
2756 }
2757
2758 /* Return true if X is a vector constant with a duplicated element value.
2759 Store the duplicated element in *ELT if so. */
2760
2761 template <typename T>
2762 inline bool
2763 const_vec_duplicate_p (T x, T *elt)
2764 {
2765 if (const_vec_duplicate_p (x))
2766 {
2767 *elt = CONST_VECTOR_ELT (x, 0);
2768 return true;
2769 }
2770 return false;
2771 }
2772
2773 /* If X is a vector constant with a duplicated element value, return that
2774 element value, otherwise return X. */
2775
2776 template <typename T>
2777 inline T
2778 unwrap_const_vec_duplicate (T x)
2779 {
2780 if (const_vec_duplicate_p (x))
2781 x = CONST_VECTOR_ELT (x, 0);
2782 return x;
2783 }
2784
2785 /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2786
2787 inline scalar_int_mode
2788 subreg_unpromoted_mode (rtx x)
2789 {
2790 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2791 return as_a <scalar_int_mode> (GET_MODE (x));
2792 }
2793
2794 /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
2795
2796 inline scalar_int_mode
2797 subreg_promoted_mode (rtx x)
2798 {
2799 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
2800 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
2801 }
2802
2803 /* In emit-rtl.c */
2804 extern rtvec gen_rtvec_v (int, rtx *);
2805 extern rtvec gen_rtvec_v (int, rtx_insn **);
2806 extern rtx gen_reg_rtx (machine_mode);
2807 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2808 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2809 extern rtx gen_reg_rtx_and_attrs (rtx);
2810 extern rtx_code_label *gen_label_rtx (void);
2811 extern rtx gen_lowpart_common (machine_mode, rtx);
2812
2813 /* In cse.c */
2814 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2815
2816 /* In emit-rtl.c */
2817 extern rtx gen_highpart (machine_mode, rtx);
2818 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2819 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2820
2821 /* In emit-rtl.c */
2822 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2823 extern int subreg_lowpart_p (const_rtx);
2824 extern unsigned int subreg_size_lowpart_offset (unsigned int, unsigned int);
2825
2826 /* Return true if a subreg with the given outer and inner modes is
2827 paradoxical. */
2828
2829 inline bool
2830 paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
2831 {
2832 return GET_MODE_PRECISION (outermode) > GET_MODE_PRECISION (innermode);
2833 }
2834
2835 /* Return true if X is a paradoxical subreg, false otherwise. */
2836
2837 inline bool
2838 paradoxical_subreg_p (const_rtx x)
2839 {
2840 if (GET_CODE (x) != SUBREG)
2841 return false;
2842 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
2843 }
2844
2845 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
2846
2847 inline unsigned int
2848 subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
2849 {
2850 return subreg_size_lowpart_offset (GET_MODE_SIZE (outermode),
2851 GET_MODE_SIZE (innermode));
2852 }
2853
2854 extern unsigned int subreg_size_highpart_offset (unsigned int, unsigned int);
2855
2856 /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
2857
2858 inline unsigned int
2859 subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
2860 {
2861 return subreg_size_highpart_offset (GET_MODE_SIZE (outermode),
2862 GET_MODE_SIZE (innermode));
2863 }
2864
2865 extern int byte_lowpart_offset (machine_mode, machine_mode);
2866 extern rtx make_safe_from (rtx, rtx);
2867 extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
2868 addr_space_t, bool, bool);
2869 extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
2870 addr_space_t);
2871 #define convert_memory_address(to_mode,x) \
2872 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2873 extern const char *get_insn_name (int);
2874 extern rtx_insn *get_last_insn_anywhere (void);
2875 extern rtx_insn *get_first_nonnote_insn (void);
2876 extern rtx_insn *get_last_nonnote_insn (void);
2877 extern void start_sequence (void);
2878 extern void push_to_sequence (rtx_insn *);
2879 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2880 extern void end_sequence (void);
2881 #if TARGET_SUPPORTS_WIDE_INT == 0
2882 extern double_int rtx_to_double_int (const_rtx);
2883 #endif
2884 extern void cwi_output_hex (FILE *, const_rtx);
2885 #ifndef GENERATOR_FILE
2886 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2887 #endif
2888 #if TARGET_SUPPORTS_WIDE_INT == 0
2889 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2890 machine_mode);
2891 #endif
2892
2893 /* In varasm.c */
2894 extern rtx force_const_mem (machine_mode, rtx);
2895
2896 /* In varasm.c */
2897
2898 struct function;
2899 extern rtx get_pool_constant (const_rtx);
2900 extern rtx get_pool_constant_mark (rtx, bool *);
2901 extern machine_mode get_pool_mode (const_rtx);
2902 extern rtx simplify_subtraction (rtx);
2903 extern void decide_function_section (tree);
2904
2905 /* In emit-rtl.c */
2906 extern rtx_insn *emit_insn_before (rtx, rtx);
2907 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2908 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2909 extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx);
2910 extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2911 extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2912 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2913 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2914 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2915 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2916 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2917 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2918 extern rtx_barrier *emit_barrier_before (rtx);
2919 extern rtx_code_label *emit_label_before (rtx, rtx_insn *);
2920 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2921 extern rtx_insn *emit_insn_after (rtx, rtx);
2922 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2923 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2924 extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx);
2925 extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx);
2926 extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2927 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2928 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2929 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2930 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2931 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2932 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2933 extern rtx_barrier *emit_barrier_after (rtx);
2934 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2935 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2936 extern rtx_insn *emit_insn (rtx);
2937 extern rtx_insn *emit_debug_insn (rtx);
2938 extern rtx_insn *emit_jump_insn (rtx);
2939 extern rtx_insn *emit_call_insn (rtx);
2940 extern rtx_code_label *emit_label (rtx);
2941 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2942 extern rtx_barrier *emit_barrier (void);
2943 extern rtx_note *emit_note (enum insn_note);
2944 extern rtx_note *emit_note_copy (rtx_note *);
2945 extern rtx_insn *gen_clobber (rtx);
2946 extern rtx_insn *emit_clobber (rtx);
2947 extern rtx_insn *gen_use (rtx);
2948 extern rtx_insn *emit_use (rtx);
2949 extern rtx_insn *make_insn_raw (rtx);
2950 extern void add_function_usage_to (rtx, rtx);
2951 extern rtx_call_insn *last_call_insn (void);
2952 extern rtx_insn *previous_insn (rtx_insn *);
2953 extern rtx_insn *next_insn (rtx_insn *);
2954 extern rtx_insn *prev_nonnote_insn (rtx_insn *);
2955 extern rtx_insn *prev_nonnote_insn_bb (rtx_insn *);
2956 extern rtx_insn *next_nonnote_insn (rtx_insn *);
2957 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2958 extern rtx_insn *prev_nondebug_insn (rtx_insn *);
2959 extern rtx_insn *next_nondebug_insn (rtx_insn *);
2960 extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
2961 extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
2962 extern rtx_insn *prev_real_insn (rtx_insn *);
2963 extern rtx_insn *next_real_insn (rtx);
2964 extern rtx_insn *prev_active_insn (rtx_insn *);
2965 extern rtx_insn *next_active_insn (rtx_insn *);
2966 extern int active_insn_p (const rtx_insn *);
2967 extern rtx_insn *next_cc0_user (rtx_insn *);
2968 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2969
2970 /* In emit-rtl.c */
2971 extern int insn_line (const rtx_insn *);
2972 extern const char * insn_file (const rtx_insn *);
2973 extern tree insn_scope (const rtx_insn *);
2974 extern expanded_location insn_location (const rtx_insn *);
2975 extern location_t prologue_location, epilogue_location;
2976
2977 /* In jump.c */
2978 extern enum rtx_code reverse_condition (enum rtx_code);
2979 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2980 extern enum rtx_code swap_condition (enum rtx_code);
2981 extern enum rtx_code unsigned_condition (enum rtx_code);
2982 extern enum rtx_code signed_condition (enum rtx_code);
2983 extern void mark_jump_label (rtx, rtx_insn *, int);
2984
2985 /* In jump.c */
2986 extern rtx_insn *delete_related_insns (rtx);
2987
2988 /* In recog.c */
2989 extern rtx *find_constant_term_loc (rtx *);
2990
2991 /* In emit-rtl.c */
2992 extern rtx_insn *try_split (rtx, rtx_insn *, int);
2993
2994 /* In insn-recog.c (generated by genrecog). */
2995 extern rtx_insn *split_insns (rtx, rtx_insn *);
2996
2997 /* In simplify-rtx.c */
2998 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2999 rtx, machine_mode);
3000 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
3001 machine_mode);
3002 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3003 rtx, rtx);
3004 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
3005 rtx);
3006 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
3007 machine_mode, rtx, rtx, rtx);
3008 extern rtx simplify_const_relational_operation (enum rtx_code,
3009 machine_mode, rtx, rtx);
3010 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
3011 machine_mode, rtx, rtx);
3012 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
3013 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
3014 machine_mode);
3015 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
3016 machine_mode, rtx, rtx, rtx);
3017 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
3018 machine_mode, rtx, rtx);
3019 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
3020 unsigned int);
3021 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
3022 unsigned int);
3023 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3024 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3025 rtx (*fn) (rtx, const_rtx, void *), void *);
3026 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3027 extern rtx simplify_rtx (const_rtx);
3028 extern rtx avoid_constant_pool_reference (rtx);
3029 extern rtx delegitimize_mem_from_attrs (rtx);
3030 extern bool mode_signbit_p (machine_mode, const_rtx);
3031 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3032 extern bool val_signbit_known_set_p (machine_mode,
3033 unsigned HOST_WIDE_INT);
3034 extern bool val_signbit_known_clear_p (machine_mode,
3035 unsigned HOST_WIDE_INT);
3036
3037 /* In reginfo.c */
3038 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3039 bool);
3040 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3041
3042 /* In emit-rtl.c */
3043 extern rtx set_for_reg_notes (rtx);
3044 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3045 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3046 extern void set_insn_deleted (rtx);
3047
3048 /* Functions in rtlanal.c */
3049
3050 extern rtx single_set_2 (const rtx_insn *, const_rtx);
3051 extern bool contains_symbol_ref_p (const_rtx);
3052 extern bool contains_symbolic_reference_p (const_rtx);
3053
3054 /* Handle the cheap and common cases inline for performance. */
3055
3056 inline rtx single_set (const rtx_insn *insn)
3057 {
3058 if (!INSN_P (insn))
3059 return NULL_RTX;
3060
3061 if (GET_CODE (PATTERN (insn)) == SET)
3062 return PATTERN (insn);
3063
3064 /* Defer to the more expensive case. */
3065 return single_set_2 (insn, PATTERN (insn));
3066 }
3067
3068 extern scalar_int_mode get_address_mode (rtx mem);
3069 extern int rtx_addr_can_trap_p (const_rtx);
3070 extern bool nonzero_address_p (const_rtx);
3071 extern int rtx_unstable_p (const_rtx);
3072 extern bool rtx_varies_p (const_rtx, bool);
3073 extern bool rtx_addr_varies_p (const_rtx, bool);
3074 extern rtx get_call_rtx_from (rtx);
3075 extern HOST_WIDE_INT get_integer_term (const_rtx);
3076 extern rtx get_related_value (const_rtx);
3077 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3078 extern void split_const (rtx, rtx *, rtx *);
3079 extern bool unsigned_reg_p (rtx);
3080 extern int reg_mentioned_p (const_rtx, const_rtx);
3081 extern int count_occurrences (const_rtx, const_rtx, int);
3082 extern int reg_referenced_p (const_rtx, const_rtx);
3083 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3084 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3085 extern int commutative_operand_precedence (rtx);
3086 extern bool swap_commutative_operands_p (rtx, rtx);
3087 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3088 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
3089 extern int modified_in_p (const_rtx, const_rtx);
3090 extern int reg_set_p (const_rtx, const_rtx);
3091 extern int multiple_sets (const_rtx);
3092 extern int set_noop_p (const_rtx);
3093 extern int noop_move_p (const rtx_insn *);
3094 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3095 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
3096 extern const_rtx set_of (const_rtx, const_rtx);
3097 extern void record_hard_reg_sets (rtx, const_rtx, void *);
3098 extern void record_hard_reg_uses (rtx *, void *);
3099 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3100 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3101 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
3102 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3103 extern int dead_or_set_p (const rtx_insn *, const_rtx);
3104 extern int dead_or_set_regno_p (const rtx_insn *, unsigned int);
3105 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3106 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3107 extern rtx find_reg_equal_equiv_note (const_rtx);
3108 extern rtx find_constant_src (const rtx_insn *);
3109 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3110 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3111 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3112 extern void add_reg_note (rtx, enum reg_note, rtx);
3113 extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3114 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3115 extern rtx duplicate_reg_note (rtx);
3116 extern void remove_note (rtx_insn *, const_rtx);
3117 extern bool remove_reg_equal_equiv_notes (rtx_insn *);
3118 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3119 extern int side_effects_p (const_rtx);
3120 extern int volatile_refs_p (const_rtx);
3121 extern int volatile_insn_p (const_rtx);
3122 extern int may_trap_p_1 (const_rtx, unsigned);
3123 extern int may_trap_p (const_rtx);
3124 extern int may_trap_or_fault_p (const_rtx);
3125 extern bool can_throw_internal (const_rtx);
3126 extern bool can_throw_external (const_rtx);
3127 extern bool insn_could_throw_p (const_rtx);
3128 extern bool insn_nothrow_p (const_rtx);
3129 extern bool can_nonlocal_goto (const rtx_insn *);
3130 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3131 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3132 extern int inequality_comparisons_p (const_rtx);
3133 extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3134 extern void replace_label (rtx *, rtx, rtx, bool);
3135 extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3136 extern bool rtx_referenced_p (const_rtx, const_rtx);
3137 extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3138 extern int computed_jump_p (const rtx_insn *);
3139 extern bool tls_referenced_p (const_rtx);
3140 extern bool contains_mem_rtx_p (rtx x);
3141
3142 /* Overload for refers_to_regno_p for checking a single register. */
3143 inline bool
3144 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3145 {
3146 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3147 }
3148
3149 /* Callback for for_each_inc_dec, to process the autoinc operation OP
3150 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3151 NULL. The callback is passed the same opaque ARG passed to
3152 for_each_inc_dec. Return zero to continue looking for other
3153 autoinc operations or any other value to interrupt the traversal and
3154 return that value to the caller of for_each_inc_dec. */
3155 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3156 rtx srcoff, void *arg);
3157 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3158
3159 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3160 rtx *, rtx *);
3161 extern int rtx_equal_p_cb (const_rtx, const_rtx,
3162 rtx_equal_p_callback_function);
3163
3164 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
3165 machine_mode *);
3166 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
3167 bool, hash_rtx_callback_function);
3168
3169 extern rtx regno_use_in (unsigned int, rtx);
3170 extern int auto_inc_p (const_rtx);
3171 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3172 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
3173 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3174 extern int loc_mentioned_in_p (rtx *, const_rtx);
3175 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3176 extern bool keep_with_call_p (const rtx_insn *);
3177 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3178 extern int insn_rtx_cost (rtx, bool);
3179 extern unsigned seq_cost (const rtx_insn *, bool);
3180
3181 /* Given an insn and condition, return a canonical description of
3182 the test being made. */
3183 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3184 int, int);
3185
3186 /* Given a JUMP_INSN, return a canonical description of the test
3187 being made. */
3188 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3189
3190 /* Information about a subreg of a hard register. */
3191 struct subreg_info
3192 {
3193 /* Offset of first hard register involved in the subreg. */
3194 int offset;
3195 /* Number of hard registers involved in the subreg. In the case of
3196 a paradoxical subreg, this is the number of registers that would
3197 be modified by writing to the subreg; some of them may be don't-care
3198 when reading from the subreg. */
3199 int nregs;
3200 /* Whether this subreg can be represented as a hard reg with the new
3201 mode (by adding OFFSET to the original hard register). */
3202 bool representable_p;
3203 };
3204
3205 extern void subreg_get_info (unsigned int, machine_mode,
3206 unsigned int, machine_mode,
3207 struct subreg_info *);
3208
3209 /* lists.c */
3210
3211 extern void free_EXPR_LIST_list (rtx_expr_list **);
3212 extern void free_INSN_LIST_list (rtx_insn_list **);
3213 extern void free_EXPR_LIST_node (rtx);
3214 extern void free_INSN_LIST_node (rtx);
3215 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3216 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3217 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3218 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3219 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3220 extern rtx remove_list_elem (rtx, rtx *);
3221 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3222 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3223
3224
3225 /* reginfo.c */
3226
3227 /* Resize reg info. */
3228 extern bool resize_reg_info (void);
3229 /* Free up register info memory. */
3230 extern void free_reg_info (void);
3231 extern void init_subregs_of_mode (void);
3232 extern void finish_subregs_of_mode (void);
3233
3234 /* recog.c */
3235 extern rtx extract_asm_operands (rtx);
3236 extern int asm_noperands (const_rtx);
3237 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3238 machine_mode *, location_t *);
3239 extern void get_referenced_operands (const char *, bool *, unsigned int);
3240
3241 extern enum reg_class reg_preferred_class (int);
3242 extern enum reg_class reg_alternate_class (int);
3243 extern enum reg_class reg_allocno_class (int);
3244 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3245 enum reg_class);
3246
3247 extern void split_all_insns (void);
3248 extern unsigned int split_all_insns_noflow (void);
3249
3250 #define MAX_SAVED_CONST_INT 64
3251 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3252
3253 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3254 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3255 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3256 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3257 extern GTY(()) rtx const_true_rtx;
3258
3259 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3260
3261 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3262 same as VOIDmode. */
3263
3264 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3265
3266 /* Likewise, for the constants 1 and 2 and -1. */
3267
3268 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3269 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3270 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3271
3272 extern GTY(()) rtx pc_rtx;
3273 extern GTY(()) rtx cc0_rtx;
3274 extern GTY(()) rtx ret_rtx;
3275 extern GTY(()) rtx simple_return_rtx;
3276 extern GTY(()) rtx_insn *invalid_insn_rtx;
3277
3278 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3279 is used to represent the frame pointer. This is because the
3280 hard frame pointer and the automatic variables are separated by an amount
3281 that cannot be determined until after register allocation. We can assume
3282 that in this case ELIMINABLE_REGS will be defined, one action of which
3283 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3284 #ifndef HARD_FRAME_POINTER_REGNUM
3285 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3286 #endif
3287
3288 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3289 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3290 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3291 #endif
3292
3293 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3294 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3295 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3296 #endif
3297
3298 /* Index labels for global_rtl. */
3299 enum global_rtl_index
3300 {
3301 GR_STACK_POINTER,
3302 GR_FRAME_POINTER,
3303 /* For register elimination to work properly these hard_frame_pointer_rtx,
3304 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3305 the same register. */
3306 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3307 GR_ARG_POINTER = GR_FRAME_POINTER,
3308 #endif
3309 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3310 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3311 #else
3312 GR_HARD_FRAME_POINTER,
3313 #endif
3314 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3315 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3316 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3317 #else
3318 GR_ARG_POINTER,
3319 #endif
3320 #endif
3321 GR_VIRTUAL_INCOMING_ARGS,
3322 GR_VIRTUAL_STACK_ARGS,
3323 GR_VIRTUAL_STACK_DYNAMIC,
3324 GR_VIRTUAL_OUTGOING_ARGS,
3325 GR_VIRTUAL_CFA,
3326 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3327
3328 GR_MAX
3329 };
3330
3331 /* Target-dependent globals. */
3332 struct GTY(()) target_rtl {
3333 /* All references to the hard registers in global_rtl_index go through
3334 these unique rtl objects. On machines where the frame-pointer and
3335 arg-pointer are the same register, they use the same unique object.
3336
3337 After register allocation, other rtl objects which used to be pseudo-regs
3338 may be clobbered to refer to the frame-pointer register.
3339 But references that were originally to the frame-pointer can be
3340 distinguished from the others because they contain frame_pointer_rtx.
3341
3342 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3343 tricky: until register elimination has taken place hard_frame_pointer_rtx
3344 should be used if it is being set, and frame_pointer_rtx otherwise. After
3345 register elimination hard_frame_pointer_rtx should always be used.
3346 On machines where the two registers are same (most) then these are the
3347 same. */
3348 rtx x_global_rtl[GR_MAX];
3349
3350 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3351 rtx x_pic_offset_table_rtx;
3352
3353 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3354 This is used to implement __builtin_return_address for some machines;
3355 see for instance the MIPS port. */
3356 rtx x_return_address_pointer_rtx;
3357
3358 /* Commonly used RTL for hard registers. These objects are not
3359 necessarily unique, so we allocate them separately from global_rtl.
3360 They are initialized once per compilation unit, then copied into
3361 regno_reg_rtx at the beginning of each function. */
3362 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3363
3364 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3365 rtx x_top_of_stack[MAX_MACHINE_MODE];
3366
3367 /* Static hunks of RTL used by the aliasing code; these are treated
3368 as persistent to avoid unnecessary RTL allocations. */
3369 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3370
3371 /* The default memory attributes for each mode. */
3372 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3373
3374 /* Track if RTL has been initialized. */
3375 bool target_specific_initialized;
3376 };
3377
3378 extern GTY(()) struct target_rtl default_target_rtl;
3379 #if SWITCHABLE_TARGET
3380 extern struct target_rtl *this_target_rtl;
3381 #else
3382 #define this_target_rtl (&default_target_rtl)
3383 #endif
3384
3385 #define global_rtl \
3386 (this_target_rtl->x_global_rtl)
3387 #define pic_offset_table_rtx \
3388 (this_target_rtl->x_pic_offset_table_rtx)
3389 #define return_address_pointer_rtx \
3390 (this_target_rtl->x_return_address_pointer_rtx)
3391 #define top_of_stack \
3392 (this_target_rtl->x_top_of_stack)
3393 #define mode_mem_attrs \
3394 (this_target_rtl->x_mode_mem_attrs)
3395
3396 /* All references to certain hard regs, except those created
3397 by allocating pseudo regs into them (when that's possible),
3398 go through these unique rtx objects. */
3399 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3400 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3401 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3402 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3403
3404 #ifndef GENERATOR_FILE
3405 /* Return the attributes of a MEM rtx. */
3406 static inline const struct mem_attrs *
3407 get_mem_attrs (const_rtx x)
3408 {
3409 struct mem_attrs *attrs;
3410
3411 attrs = MEM_ATTRS (x);
3412 if (!attrs)
3413 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3414 return attrs;
3415 }
3416 #endif
3417
3418 /* Include the RTL generation functions. */
3419
3420 #ifndef GENERATOR_FILE
3421 #include "genrtl.h"
3422 #undef gen_rtx_ASM_INPUT
3423 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3424 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3425 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3426 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3427 #endif
3428
3429 /* There are some RTL codes that require special attention; the
3430 generation functions included above do the raw handling. If you
3431 add to this list, modify special_rtx in gengenrtl.c as well. */
3432
3433 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3434 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3435 extern rtx_insn *
3436 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3437 basic_block bb, rtx pattern, int location, int code,
3438 rtx reg_notes);
3439 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3440 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3441 extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
3442 extern rtx gen_raw_REG (machine_mode, unsigned int);
3443 extern rtx gen_rtx_REG (machine_mode, unsigned int);
3444 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3445 extern rtx gen_rtx_MEM (machine_mode, rtx);
3446 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3447 enum var_init_status);
3448
3449 #ifdef GENERATOR_FILE
3450 #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
3451 #else
3452 static inline void
3453 PUT_MODE (rtx x, machine_mode mode)
3454 {
3455 if (REG_P (x))
3456 set_mode_and_regno (x, mode, REGNO (x));
3457 else
3458 PUT_MODE_RAW (x, mode);
3459 }
3460 #endif
3461
3462 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3463
3464 /* Virtual registers are used during RTL generation to refer to locations into
3465 the stack frame when the actual location isn't known until RTL generation
3466 is complete. The routine instantiate_virtual_regs replaces these with
3467 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3468 a constant. */
3469
3470 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3471
3472 /* This points to the first word of the incoming arguments passed on the stack,
3473 either by the caller or by the callee when pretending it was passed by the
3474 caller. */
3475
3476 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3477
3478 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3479
3480 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3481 variable on the stack. Otherwise, it points to the first variable on
3482 the stack. */
3483
3484 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3485
3486 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3487
3488 /* This points to the location of dynamically-allocated memory on the stack
3489 immediately after the stack pointer has been adjusted by the amount
3490 desired. */
3491
3492 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3493
3494 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3495
3496 /* This points to the location in the stack at which outgoing arguments should
3497 be written when the stack is pre-pushed (arguments pushed using push
3498 insns always use sp). */
3499
3500 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3501
3502 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3503
3504 /* This points to the Canonical Frame Address of the function. This
3505 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3506 but is calculated relative to the arg pointer for simplicity; the
3507 frame pointer nor stack pointer are necessarily fixed relative to
3508 the CFA until after reload. */
3509
3510 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3511
3512 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3513
3514 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3515
3516 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3517 when finalized. */
3518
3519 #define virtual_preferred_stack_boundary_rtx \
3520 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3521
3522 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3523 ((FIRST_VIRTUAL_REGISTER) + 5)
3524
3525 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3526
3527 /* Nonzero if REGNUM is a pointer into the stack frame. */
3528 #define REGNO_PTR_FRAME_P(REGNUM) \
3529 ((REGNUM) == STACK_POINTER_REGNUM \
3530 || (REGNUM) == FRAME_POINTER_REGNUM \
3531 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3532 || (REGNUM) == ARG_POINTER_REGNUM \
3533 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3534 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3535
3536 /* REGNUM never really appearing in the INSN stream. */
3537 #define INVALID_REGNUM (~(unsigned int) 0)
3538
3539 /* REGNUM for which no debug information can be generated. */
3540 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3541
3542 extern rtx output_constant_def (tree, int);
3543 extern rtx lookup_constant_def (tree);
3544
3545 /* Nonzero after end of reload pass.
3546 Set to 1 or 0 by reload1.c. */
3547
3548 extern int reload_completed;
3549
3550 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3551 extern int epilogue_completed;
3552
3553 /* Set to 1 while reload_as_needed is operating.
3554 Required by some machines to handle any generated moves differently. */
3555
3556 extern int reload_in_progress;
3557
3558 /* Set to 1 while in lra. */
3559 extern int lra_in_progress;
3560
3561 /* This macro indicates whether you may create a new
3562 pseudo-register. */
3563
3564 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3565
3566 #ifdef STACK_REGS
3567 /* Nonzero after end of regstack pass.
3568 Set to 1 or 0 by reg-stack.c. */
3569 extern int regstack_completed;
3570 #endif
3571
3572 /* If this is nonzero, we do not bother generating VOLATILE
3573 around volatile memory references, and we are willing to
3574 output indirect addresses. If cse is to follow, we reject
3575 indirect addresses so a useful potential cse is generated;
3576 if it is used only once, instruction combination will produce
3577 the same indirect address eventually. */
3578 extern int cse_not_expected;
3579
3580 /* Translates rtx code to tree code, for those codes needed by
3581 real_arithmetic. The function returns an int because the caller may not
3582 know what `enum tree_code' means. */
3583
3584 extern int rtx_to_tree_code (enum rtx_code);
3585
3586 /* In cse.c */
3587 extern int delete_trivially_dead_insns (rtx_insn *, int);
3588 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3589 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3590
3591 /* In dse.c */
3592 extern bool check_for_inc_dec (rtx_insn *insn);
3593
3594 /* In jump.c */
3595 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3596 extern bool jump_to_label_p (const rtx_insn *);
3597 extern int condjump_p (const rtx_insn *);
3598 extern int any_condjump_p (const rtx_insn *);
3599 extern int any_uncondjump_p (const rtx_insn *);
3600 extern rtx pc_set (const rtx_insn *);
3601 extern rtx condjump_label (const rtx_insn *);
3602 extern int simplejump_p (const rtx_insn *);
3603 extern int returnjump_p (const rtx_insn *);
3604 extern int eh_returnjump_p (rtx_insn *);
3605 extern int onlyjump_p (const rtx_insn *);
3606 extern int only_sets_cc0_p (const_rtx);
3607 extern int sets_cc0_p (const_rtx);
3608 extern int invert_jump_1 (rtx_jump_insn *, rtx);
3609 extern int invert_jump (rtx_jump_insn *, rtx, int);
3610 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3611 extern int true_regnum (const_rtx);
3612 extern unsigned int reg_or_subregno (const_rtx);
3613 extern int redirect_jump_1 (rtx_insn *, rtx);
3614 extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
3615 extern int redirect_jump (rtx_jump_insn *, rtx, int);
3616 extern void rebuild_jump_labels (rtx_insn *);
3617 extern void rebuild_jump_labels_chain (rtx_insn *);
3618 extern rtx reversed_comparison (const_rtx, machine_mode);
3619 extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
3620 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3621 const_rtx, const rtx_insn *);
3622 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3623 extern int condjump_in_parallel_p (const rtx_insn *);
3624
3625 /* In emit-rtl.c. */
3626 extern int max_reg_num (void);
3627 extern int max_label_num (void);
3628 extern int get_first_label_num (void);
3629 extern void maybe_set_first_label_num (rtx_code_label *);
3630 extern void delete_insns_since (rtx_insn *);
3631 extern void mark_reg_pointer (rtx, int);
3632 extern void mark_user_reg (rtx);
3633 extern void reset_used_flags (rtx);
3634 extern void set_used_flags (rtx);
3635 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3636 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3637 extern int get_max_insn_count (void);
3638 extern int in_sequence_p (void);
3639 extern void init_emit (void);
3640 extern void init_emit_regs (void);
3641 extern void init_derived_machine_modes (void);
3642 extern void init_emit_once (void);
3643 extern void push_topmost_sequence (void);
3644 extern void pop_topmost_sequence (void);
3645 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3646 extern unsigned int unshare_all_rtl (void);
3647 extern void unshare_all_rtl_again (rtx_insn *);
3648 extern void unshare_all_rtl_in_chain (rtx_insn *);
3649 extern void verify_rtl_sharing (void);
3650 extern void add_insn (rtx_insn *);
3651 extern void add_insn_before (rtx, rtx, basic_block);
3652 extern void add_insn_after (rtx, rtx, basic_block);
3653 extern void remove_insn (rtx);
3654 extern rtx_insn *emit (rtx, bool = true);
3655 extern void emit_insn_at_entry (rtx);
3656 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3657 extern rtx gen_const_mem (machine_mode, rtx);
3658 extern rtx gen_frame_mem (machine_mode, rtx);
3659 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3660 extern bool validate_subreg (machine_mode, machine_mode,
3661 const_rtx, unsigned int);
3662
3663 /* In combine.c */
3664 extern unsigned int extended_count (const_rtx, machine_mode, int);
3665 extern rtx remove_death (unsigned int, rtx_insn *);
3666 extern void dump_combine_stats (FILE *);
3667 extern void dump_combine_total_stats (FILE *);
3668 extern rtx make_compound_operation (rtx, enum rtx_code);
3669
3670 /* In sched-rgn.c. */
3671 extern void schedule_insns (void);
3672
3673 /* In sched-ebb.c. */
3674 extern void schedule_ebbs (void);
3675
3676 /* In sel-sched-dump.c. */
3677 extern void sel_sched_fix_param (const char *param, const char *val);
3678
3679 /* In print-rtl.c */
3680 extern const char *print_rtx_head;
3681 extern void debug (const rtx_def &ref);
3682 extern void debug (const rtx_def *ptr);
3683 extern void debug_rtx (const_rtx);
3684 extern void debug_rtx_list (const rtx_insn *, int);
3685 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3686 extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
3687 extern void print_mem_expr (FILE *, const_tree);
3688 extern void print_rtl (FILE *, const_rtx);
3689 extern void print_simple_rtl (FILE *, const_rtx);
3690 extern int print_rtl_single (FILE *, const_rtx);
3691 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3692 extern void print_inline_rtx (FILE *, const_rtx, int);
3693
3694 /* In stmt.c */
3695 extern void expand_null_return (void);
3696 extern void expand_naked_return (void);
3697 extern void emit_jump (rtx);
3698
3699 /* In expr.c */
3700 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3701 unsigned int, int);
3702 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3703 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3704
3705 /* In expmed.c */
3706 extern void init_expmed (void);
3707 extern void expand_inc (rtx, rtx);
3708 extern void expand_dec (rtx, rtx);
3709
3710 /* In lower-subreg.c */
3711 extern void init_lower_subreg (void);
3712
3713 /* In gcse.c */
3714 extern bool can_copy_p (machine_mode);
3715 extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
3716 extern rtx fis_get_condition (rtx_insn *);
3717
3718 /* In ira.c */
3719 extern HARD_REG_SET eliminable_regset;
3720 extern void mark_elimination (int, int);
3721
3722 /* In reginfo.c */
3723 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3724 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3725 extern void globalize_reg (tree, int);
3726 extern void init_reg_modes_target (void);
3727 extern void init_regs (void);
3728 extern void reinit_regs (void);
3729 extern void init_fake_stack_mems (void);
3730 extern void save_register_info (void);
3731 extern void init_reg_sets (void);
3732 extern void regclass (rtx, int);
3733 extern void reg_scan (rtx_insn *, unsigned int);
3734 extern void fix_register (const char *, int, int);
3735 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3736
3737 /* In reload1.c */
3738 extern int function_invariant_p (const_rtx);
3739
3740 /* In calls.c */
3741 enum libcall_type
3742 {
3743 LCT_NORMAL = 0,
3744 LCT_CONST = 1,
3745 LCT_PURE = 2,
3746 LCT_NORETURN = 3,
3747 LCT_THROW = 4,
3748 LCT_RETURNS_TWICE = 5
3749 };
3750
3751 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3752 ...);
3753 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3754 machine_mode, int, ...);
3755
3756 /* In varasm.c */
3757 extern void init_varasm_once (void);
3758
3759 extern rtx make_debug_expr_from_rtl (const_rtx);
3760
3761 /* In read-rtl.c */
3762 #ifdef GENERATOR_FILE
3763 extern bool read_rtx (const char *, vec<rtx> *);
3764 #endif
3765
3766 /* In alias.c */
3767 extern rtx canon_rtx (rtx);
3768 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3769 extern rtx get_addr (rtx);
3770 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3771 const_rtx, rtx);
3772 extern int read_dependence (const_rtx, const_rtx);
3773 extern int anti_dependence (const_rtx, const_rtx);
3774 extern int canon_anti_dependence (const_rtx, bool,
3775 const_rtx, machine_mode, rtx);
3776 extern int output_dependence (const_rtx, const_rtx);
3777 extern int canon_output_dependence (const_rtx, bool,
3778 const_rtx, machine_mode, rtx);
3779 extern int may_alias_p (const_rtx, const_rtx);
3780 extern void init_alias_target (void);
3781 extern void init_alias_analysis (void);
3782 extern void end_alias_analysis (void);
3783 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3784 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3785 extern bool may_be_sp_based_p (rtx);
3786 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3787 extern rtx get_reg_known_value (unsigned int);
3788 extern bool get_reg_known_equiv_p (unsigned int);
3789 extern rtx get_reg_base_value (unsigned int);
3790
3791 #ifdef STACK_REGS
3792 extern int stack_regs_mentioned (const_rtx insn);
3793 #endif
3794
3795 /* In toplev.c */
3796 extern GTY(()) rtx stack_limit_rtx;
3797
3798 /* In var-tracking.c */
3799 extern unsigned int variable_tracking_main (void);
3800
3801 /* In stor-layout.c. */
3802 extern void get_mode_bounds (scalar_int_mode, int,
3803 scalar_int_mode, rtx *, rtx *);
3804
3805 /* In loop-iv.c */
3806 extern rtx canon_condition (rtx);
3807 extern void simplify_using_condition (rtx, rtx *, bitmap);
3808
3809 /* In final.c */
3810 extern unsigned int compute_alignments (void);
3811 extern void update_alignments (vec<rtx> &);
3812 extern int asm_str_count (const char *templ);
3813 \f
3814 struct rtl_hooks
3815 {
3816 rtx (*gen_lowpart) (machine_mode, rtx);
3817 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3818 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
3819 unsigned HOST_WIDE_INT *);
3820 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
3821 unsigned int *);
3822 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3823
3824 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3825 };
3826
3827 /* Each pass can provide its own. */
3828 extern struct rtl_hooks rtl_hooks;
3829
3830 /* ... but then it has to restore these. */
3831 extern const struct rtl_hooks general_rtl_hooks;
3832
3833 /* Keep this for the nonce. */
3834 #define gen_lowpart rtl_hooks.gen_lowpart
3835
3836 extern void insn_locations_init (void);
3837 extern void insn_locations_finalize (void);
3838 extern void set_curr_insn_location (location_t);
3839 extern location_t curr_insn_location (void);
3840
3841 /* rtl-error.c */
3842 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3843 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
3844 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3845 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
3846
3847 #define fatal_insn(msgid, insn) \
3848 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3849 #define fatal_insn_not_found(insn) \
3850 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3851
3852 /* reginfo.c */
3853 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3854
3855 /* Information about the function that is propagated by the RTL backend.
3856 Available only for functions that has been already assembled. */
3857
3858 struct GTY(()) cgraph_rtl_info {
3859 unsigned int preferred_incoming_stack_boundary;
3860
3861 /* Call unsaved hard registers really used by the corresponding
3862 function (including ones used by functions called by the
3863 function). */
3864 HARD_REG_SET function_used_regs;
3865 /* Set if function_used_regs is valid. */
3866 unsigned function_used_regs_valid: 1;
3867 };
3868
3869 /* If loads from memories of mode MODE always sign or zero extend,
3870 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
3871 otherwise. */
3872
3873 inline rtx_code
3874 load_extend_op (machine_mode mode)
3875 {
3876 scalar_int_mode int_mode;
3877 if (is_a <scalar_int_mode> (mode, &int_mode)
3878 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
3879 return LOAD_EXTEND_OP (int_mode);
3880 return UNKNOWN;
3881 }
3882
3883 /* gtype-desc.c. */
3884 extern void gt_ggc_mx (rtx &);
3885 extern void gt_pch_nx (rtx &);
3886 extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
3887
3888 #endif /* ! GCC_RTL_H */