rtl.h (REG_NREGS): New macro
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include "statistics.h"
24 #include "machmode.h"
25 #include "input.h"
26 #include "real.h"
27 #include "vec.h"
28 #include "fixed-value.h"
29 #include "alias.h"
30 #include "hashtab.h"
31 #include "wide-int.h"
32 #include "flags.h"
33 #include "is-a.h"
34
35 /* Value used by some passes to "recognize" noop moves as valid
36 instructions. */
37 #define NOOP_MOVE_INSN_CODE INT_MAX
38
39 /* Register Transfer Language EXPRESSIONS CODES */
40
41 #define RTX_CODE enum rtx_code
42 enum rtx_code {
43
44 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
45 #include "rtl.def" /* rtl expressions are documented here */
46 #undef DEF_RTL_EXPR
47
48 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
49 NUM_RTX_CODE.
50 Assumes default enum value assignment. */
51
52 /* The cast here, saves many elsewhere. */
53 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
54
55 /* Similar, but since generator files get more entries... */
56 #ifdef GENERATOR_FILE
57 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
58 #endif
59
60 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
61
62 enum rtx_class {
63 /* We check bit 0-1 of some rtx class codes in the predicates below. */
64
65 /* Bit 0 = comparison if 0, arithmetic is 1
66 Bit 1 = 1 if commutative. */
67 RTX_COMPARE, /* 0 */
68 RTX_COMM_COMPARE,
69 RTX_BIN_ARITH,
70 RTX_COMM_ARITH,
71
72 /* Must follow the four preceding values. */
73 RTX_UNARY, /* 4 */
74
75 RTX_EXTRA,
76 RTX_MATCH,
77 RTX_INSN,
78
79 /* Bit 0 = 1 if constant. */
80 RTX_OBJ, /* 8 */
81 RTX_CONST_OBJ,
82
83 RTX_TERNARY,
84 RTX_BITFIELD_OPS,
85 RTX_AUTOINC
86 };
87
88 #define RTX_OBJ_MASK (~1)
89 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
90 #define RTX_COMPARE_MASK (~1)
91 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
92 #define RTX_ARITHMETIC_MASK (~1)
93 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
94 #define RTX_BINARY_MASK (~3)
95 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
96 #define RTX_COMMUTATIVE_MASK (~2)
97 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
98 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
99
100 extern const unsigned char rtx_length[NUM_RTX_CODE];
101 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
102
103 extern const char * const rtx_name[NUM_RTX_CODE];
104 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
105
106 extern const char * const rtx_format[NUM_RTX_CODE];
107 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
108
109 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
110 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
111
112 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
113 and NEXT_INSN fields). */
114 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
115
116 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
117 extern const unsigned char rtx_next[NUM_RTX_CODE];
118 \f
119 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
120 relative to which the offsets are calculated, as explained in rtl.def. */
121 struct addr_diff_vec_flags
122 {
123 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
124 unsigned min_align: 8;
125 /* Flags: */
126 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
127 unsigned min_after_vec: 1; /* minimum address target label is
128 after the ADDR_DIFF_VEC. */
129 unsigned max_after_vec: 1; /* maximum address target label is
130 after the ADDR_DIFF_VEC. */
131 unsigned min_after_base: 1; /* minimum address target label is
132 after BASE. */
133 unsigned max_after_base: 1; /* maximum address target label is
134 after BASE. */
135 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
136 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
137 unsigned : 2;
138 unsigned scale : 8;
139 };
140
141 /* Structure used to describe the attributes of a MEM. These are hashed
142 so MEMs that the same attributes share a data structure. This means
143 they cannot be modified in place. */
144 struct GTY(()) mem_attrs
145 {
146 /* The expression that the MEM accesses, or null if not known.
147 This expression might be larger than the memory reference itself.
148 (In other words, the MEM might access only part of the object.) */
149 tree expr;
150
151 /* The offset of the memory reference from the start of EXPR.
152 Only valid if OFFSET_KNOWN_P. */
153 HOST_WIDE_INT offset;
154
155 /* The size of the memory reference in bytes. Only valid if
156 SIZE_KNOWN_P. */
157 HOST_WIDE_INT size;
158
159 /* The alias set of the memory reference. */
160 alias_set_type alias;
161
162 /* The alignment of the reference in bits. Always a multiple of
163 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
164 than the memory reference itself. */
165 unsigned int align;
166
167 /* The address space that the memory reference uses. */
168 unsigned char addrspace;
169
170 /* True if OFFSET is known. */
171 bool offset_known_p;
172
173 /* True if SIZE is known. */
174 bool size_known_p;
175 };
176
177 /* Structure used to describe the attributes of a REG in similar way as
178 mem_attrs does for MEM above. Note that the OFFSET field is calculated
179 in the same way as for mem_attrs, rather than in the same way as a
180 SUBREG_BYTE. For example, if a big-endian target stores a byte
181 object in the low part of a 4-byte register, the OFFSET field
182 will be -3 rather than 0. */
183
184 struct GTY((for_user)) reg_attrs {
185 tree decl; /* decl corresponding to REG. */
186 HOST_WIDE_INT offset; /* Offset from start of DECL. */
187 };
188
189 /* Common union for an element of an rtx. */
190
191 union rtunion
192 {
193 int rt_int;
194 unsigned int rt_uint;
195 const char *rt_str;
196 rtx rt_rtx;
197 rtvec rt_rtvec;
198 machine_mode rt_type;
199 addr_diff_vec_flags rt_addr_diff_vec_flags;
200 struct cselib_val *rt_cselib;
201 tree rt_tree;
202 basic_block rt_bb;
203 mem_attrs *rt_mem;
204 reg_attrs *rt_reg;
205 struct constant_descriptor_rtx *rt_constant;
206 struct dw_cfi_node *rt_cfi;
207 };
208
209 /* This structure remembers the position of a SYMBOL_REF within an
210 object_block structure. A SYMBOL_REF only provides this information
211 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
212 struct GTY(()) block_symbol {
213 /* The usual SYMBOL_REF fields. */
214 rtunion GTY ((skip)) fld[2];
215
216 /* The block that contains this object. */
217 struct object_block *block;
218
219 /* The offset of this object from the start of its block. It is negative
220 if the symbol has not yet been assigned an offset. */
221 HOST_WIDE_INT offset;
222 };
223
224 /* Describes a group of objects that are to be placed together in such
225 a way that their relative positions are known. */
226 struct GTY((for_user)) object_block {
227 /* The section in which these objects should be placed. */
228 section *sect;
229
230 /* The alignment of the first object, measured in bits. */
231 unsigned int alignment;
232
233 /* The total size of the objects, measured in bytes. */
234 HOST_WIDE_INT size;
235
236 /* The SYMBOL_REFs for each object. The vector is sorted in
237 order of increasing offset and the following conditions will
238 hold for each element X:
239
240 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
241 !SYMBOL_REF_ANCHOR_P (X)
242 SYMBOL_REF_BLOCK (X) == [address of this structure]
243 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
244 vec<rtx, va_gc> *objects;
245
246 /* All the anchor SYMBOL_REFs used to address these objects, sorted
247 in order of increasing offset, and then increasing TLS model.
248 The following conditions will hold for each element X in this vector:
249
250 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
251 SYMBOL_REF_ANCHOR_P (X)
252 SYMBOL_REF_BLOCK (X) == [address of this structure]
253 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
254 vec<rtx, va_gc> *anchors;
255 };
256
257 struct GTY((variable_size)) hwivec_def {
258 HOST_WIDE_INT elem[1];
259 };
260
261 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
262 #define CWI_GET_NUM_ELEM(RTX) \
263 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
264 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
265 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
266
267 /* RTL expression ("rtx"). */
268
269 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
270 field for for gengtype to recognize that inheritance is occurring,
271 so that all subclasses are redirected to the traversal hook for the
272 base class.
273 However, all of the fields are in the base class, and special-casing
274 is at work. Hence we use desc and tag of 0, generating a switch
275 statement of the form:
276 switch (0)
277 {
278 case 0: // all the work happens here
279 }
280 in order to work with the existing special-casing in gengtype. */
281
282 struct GTY((desc("0"), tag("0"),
283 chain_next ("RTX_NEXT (&%h)"),
284 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
285 /* The kind of expression this is. */
286 ENUM_BITFIELD(rtx_code) code: 16;
287
288 /* The kind of value the expression has. */
289 ENUM_BITFIELD(machine_mode) mode : 8;
290
291 /* 1 in a MEM if we should keep the alias set for this mem unchanged
292 when we access a component.
293 1 in a JUMP_INSN if it is a crossing jump.
294 1 in a CALL_INSN if it is a sibling call.
295 1 in a SET that is for a return.
296 In a CODE_LABEL, part of the two-bit alternate entry field.
297 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
298 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
299 1 in a SUBREG generated by LRA for reload insns.
300 1 in a CALL for calls instrumented by Pointer Bounds Checker. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 public:
494 /* No extra fields, but adds the invariant:
495
496 (INSN_P (X)
497 || NOTE_P (X)
498 || JUMP_TABLE_DATA_P (X)
499 || BARRIER_P (X)
500 || LABEL_P (X))
501
502 i.e. that we must be able to use the following:
503 INSN_UID ()
504 NEXT_INSN ()
505 PREV_INSN ()
506 i.e. we have an rtx that has an INSN_UID field and can be part of
507 a linked list of insns.
508 */
509
510 /* Returns true if this insn has been deleted. */
511
512 bool deleted () const { return volatil; }
513
514 /* Mark this insn as deleted. */
515
516 void set_deleted () { volatil = true; }
517
518 /* Mark this insn as not deleted. */
519
520 void set_undeleted () { volatil = false; }
521 };
522
523 /* Subclasses of rtx_insn. */
524
525 class GTY(()) rtx_debug_insn : public rtx_insn
526 {
527 /* No extra fields, but adds the invariant:
528 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
529 i.e. an annotation for tracking variable assignments.
530
531 This is an instance of:
532 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
533 from rtl.def. */
534 };
535
536 class GTY(()) rtx_nonjump_insn : public rtx_insn
537 {
538 /* No extra fields, but adds the invariant:
539 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
540 i.e an instruction that cannot jump.
541
542 This is an instance of:
543 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
544 from rtl.def. */
545 };
546
547 class GTY(()) rtx_jump_insn : public rtx_insn
548 {
549 /* No extra fields, but adds the invariant:
550 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
551 i.e. an instruction that can possibly jump.
552
553 This is an instance of:
554 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_call_insn : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
562 i.e. an instruction that can possibly call a subroutine
563 but which will not change which instruction comes next
564 in the current function.
565
566 This is an instance of:
567 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
568 from rtl.def. */
569 };
570
571 class GTY(()) rtx_jump_table_data : public rtx_insn
572 {
573 /* No extra fields, but adds the invariant:
574 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
575 i.e. a data for a jump table, considered an instruction for
576 historical reasons.
577
578 This is an instance of:
579 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
580 from rtl.def. */
581
582 public:
583
584 /* This can be either:
585
586 (a) a table of absolute jumps, in which case PATTERN (this) is an
587 ADDR_VEC with arg 0 a vector of labels, or
588
589 (b) a table of relative jumps (e.g. for -fPIC), in which case
590 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
591 arg 1 the vector of labels.
592
593 This method gets the underlying vec. */
594
595 inline rtvec get_labels () const;
596 };
597
598 class GTY(()) rtx_barrier : public rtx_insn
599 {
600 /* No extra fields, but adds the invariant:
601 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
602 i.e. a marker that indicates that control will not flow through.
603
604 This is an instance of:
605 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
606 from rtl.def. */
607 };
608
609 class GTY(()) rtx_code_label : public rtx_insn
610 {
611 /* No extra fields, but adds the invariant:
612 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
613 i.e. a label in the assembler.
614
615 This is an instance of:
616 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
617 from rtl.def. */
618 };
619
620 class GTY(()) rtx_note : public rtx_insn
621 {
622 /* No extra fields, but adds the invariant:
623 NOTE_P(X) aka (GET_CODE (X) == NOTE)
624 i.e. a note about the corresponding source code.
625
626 This is an instance of:
627 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
628 from rtl.def. */
629 };
630
631 /* The size in bytes of an rtx header (code, mode and flags). */
632 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
633
634 /* The size in bytes of an rtx with code CODE. */
635 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
636
637 #define NULL_RTX (rtx) 0
638
639 /* The "next" and "previous" RTX, relative to this one. */
640
641 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
642 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
643
644 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
645 */
646 #define RTX_PREV(X) ((INSN_P (X) \
647 || NOTE_P (X) \
648 || JUMP_TABLE_DATA_P (X) \
649 || BARRIER_P (X) \
650 || LABEL_P (X)) \
651 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
652 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
653 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
654
655 /* Define macros to access the `code' field of the rtx. */
656
657 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
658 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
659
660 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
661 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
662
663 /* RTL vector. These appear inside RTX's when there is a need
664 for a variable number of things. The principle use is inside
665 PARALLEL expressions. */
666
667 struct GTY(()) rtvec_def {
668 int num_elem; /* number of elements */
669 rtx GTY ((length ("%h.num_elem"))) elem[1];
670 };
671
672 #define NULL_RTVEC (rtvec) 0
673
674 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
675 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
676
677 /* Predicate yielding nonzero iff X is an rtx for a register. */
678 #define REG_P(X) (GET_CODE (X) == REG)
679
680 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
681 #define MEM_P(X) (GET_CODE (X) == MEM)
682
683 #if TARGET_SUPPORTS_WIDE_INT
684
685 /* Match CONST_*s that can represent compile-time constant integers. */
686 #define CASE_CONST_SCALAR_INT \
687 case CONST_INT: \
688 case CONST_WIDE_INT
689
690 /* Match CONST_*s for which pointer equality corresponds to value
691 equality. */
692 #define CASE_CONST_UNIQUE \
693 case CONST_INT: \
694 case CONST_WIDE_INT: \
695 case CONST_DOUBLE: \
696 case CONST_FIXED
697
698 /* Match all CONST_* rtxes. */
699 #define CASE_CONST_ANY \
700 case CONST_INT: \
701 case CONST_WIDE_INT: \
702 case CONST_DOUBLE: \
703 case CONST_FIXED: \
704 case CONST_VECTOR
705
706 #else
707
708 /* Match CONST_*s that can represent compile-time constant integers. */
709 #define CASE_CONST_SCALAR_INT \
710 case CONST_INT: \
711 case CONST_DOUBLE
712
713 /* Match CONST_*s for which pointer equality corresponds to value
714 equality. */
715 #define CASE_CONST_UNIQUE \
716 case CONST_INT: \
717 case CONST_DOUBLE: \
718 case CONST_FIXED
719
720 /* Match all CONST_* rtxes. */
721 #define CASE_CONST_ANY \
722 case CONST_INT: \
723 case CONST_DOUBLE: \
724 case CONST_FIXED: \
725 case CONST_VECTOR
726 #endif
727
728 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
729 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
730
731 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
732 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
733
734 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
735 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
736
737 /* Predicate yielding true iff X is an rtx for a double-int
738 or floating point constant. */
739 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_INT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
744
745 /* Predicate yielding true iff X is an rtx for a integer const. */
746 #if TARGET_SUPPORTS_WIDE_INT
747 #define CONST_SCALAR_INT_P(X) \
748 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
749 #else
750 #define CONST_SCALAR_INT_P(X) \
751 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
752 #endif
753
754 /* Predicate yielding true iff X is an rtx for a double-int. */
755 #define CONST_DOUBLE_AS_FLOAT_P(X) \
756 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
757
758 /* Predicate yielding nonzero iff X is a label insn. */
759 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
760
761 /* Predicate yielding nonzero iff X is a jump insn. */
762 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
763
764 /* Predicate yielding nonzero iff X is a call insn. */
765 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
766
767 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
768 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
769
770 /* Predicate yielding nonzero iff X is a debug note/insn. */
771 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
772
773 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
774 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
775
776 /* Nonzero if DEBUG_INSN_P may possibly hold. */
777 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
778
779 /* Predicate yielding nonzero iff X is a real insn. */
780 #define INSN_P(X) \
781 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
782
783 /* Predicate yielding nonzero iff X is a note insn. */
784 #define NOTE_P(X) (GET_CODE (X) == NOTE)
785
786 /* Predicate yielding nonzero iff X is a barrier insn. */
787 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
788
789 /* Predicate yielding nonzero iff X is a data for a jump table. */
790 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
791
792 /* Predicate yielding nonzero iff RTX is a subreg. */
793 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
794
795 template <>
796 template <>
797 inline bool
798 is_a_helper <rtx_insn *>::test (rtx rt)
799 {
800 return (INSN_P (rt)
801 || NOTE_P (rt)
802 || JUMP_TABLE_DATA_P (rt)
803 || BARRIER_P (rt)
804 || LABEL_P (rt));
805 }
806
807 template <>
808 template <>
809 inline bool
810 is_a_helper <const rtx_insn *>::test (const_rtx rt)
811 {
812 return (INSN_P (rt)
813 || NOTE_P (rt)
814 || JUMP_TABLE_DATA_P (rt)
815 || BARRIER_P (rt)
816 || LABEL_P (rt));
817 }
818
819 template <>
820 template <>
821 inline bool
822 is_a_helper <rtx_debug_insn *>::test (rtx rt)
823 {
824 return DEBUG_INSN_P (rt);
825 }
826
827 template <>
828 template <>
829 inline bool
830 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
831 {
832 return NONJUMP_INSN_P (rt);
833 }
834
835 template <>
836 template <>
837 inline bool
838 is_a_helper <rtx_jump_insn *>::test (rtx rt)
839 {
840 return JUMP_P (rt);
841 }
842
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_call_insn *>::test (rtx rt)
847 {
848 return CALL_P (rt);
849 }
850
851 template <>
852 template <>
853 inline bool
854 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
855 {
856 return CALL_P (insn);
857 }
858
859 template <>
860 template <>
861 inline bool
862 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
863 {
864 return JUMP_TABLE_DATA_P (rt);
865 }
866
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
871 {
872 return JUMP_TABLE_DATA_P (insn);
873 }
874
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_barrier *>::test (rtx rt)
879 {
880 return BARRIER_P (rt);
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_code_label *>::test (rtx rt)
887 {
888 return LABEL_P (rt);
889 }
890
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
895 {
896 return LABEL_P (insn);
897 }
898
899 template <>
900 template <>
901 inline bool
902 is_a_helper <rtx_note *>::test (rtx rt)
903 {
904 return NOTE_P (rt);
905 }
906
907 template <>
908 template <>
909 inline bool
910 is_a_helper <rtx_note *>::test (rtx_insn *insn)
911 {
912 return NOTE_P (insn);
913 }
914
915 /* Predicate yielding nonzero iff X is a return or simple_return. */
916 #define ANY_RETURN_P(X) \
917 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
918
919 /* 1 if X is a unary operator. */
920
921 #define UNARY_P(X) \
922 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
923
924 /* 1 if X is a binary operator. */
925
926 #define BINARY_P(X) \
927 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
928
929 /* 1 if X is an arithmetic operator. */
930
931 #define ARITHMETIC_P(X) \
932 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
933 == RTX_ARITHMETIC_RESULT)
934
935 /* 1 if X is an arithmetic operator. */
936
937 #define COMMUTATIVE_ARITH_P(X) \
938 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
939
940 /* 1 if X is a commutative arithmetic operator or a comparison operator.
941 These two are sometimes selected together because it is possible to
942 swap the two operands. */
943
944 #define SWAPPABLE_OPERANDS_P(X) \
945 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
946 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
947 | (1 << RTX_COMPARE)))
948
949 /* 1 if X is a non-commutative operator. */
950
951 #define NON_COMMUTATIVE_P(X) \
952 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
953 == RTX_NON_COMMUTATIVE_RESULT)
954
955 /* 1 if X is a commutative operator on integers. */
956
957 #define COMMUTATIVE_P(X) \
958 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
959 == RTX_COMMUTATIVE_RESULT)
960
961 /* 1 if X is a relational operator. */
962
963 #define COMPARISON_P(X) \
964 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
965
966 /* 1 if X is a constant value that is an integer. */
967
968 #define CONSTANT_P(X) \
969 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
970
971 /* 1 if X can be used to represent an object. */
972 #define OBJECT_P(X) \
973 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
974
975 /* General accessor macros for accessing the fields of an rtx. */
976
977 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
978 /* The bit with a star outside the statement expr and an & inside is
979 so that N can be evaluated only once. */
980 #define RTL_CHECK1(RTX, N, C1) __extension__ \
981 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
982 const enum rtx_code _code = GET_CODE (_rtx); \
983 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
984 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
985 __FUNCTION__); \
986 if (GET_RTX_FORMAT (_code)[_n] != C1) \
987 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
988 __FUNCTION__); \
989 &_rtx->u.fld[_n]; }))
990
991 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
992 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
993 const enum rtx_code _code = GET_CODE (_rtx); \
994 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
995 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
996 __FUNCTION__); \
997 if (GET_RTX_FORMAT (_code)[_n] != C1 \
998 && GET_RTX_FORMAT (_code)[_n] != C2) \
999 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1000 __FUNCTION__); \
1001 &_rtx->u.fld[_n]; }))
1002
1003 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1004 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1005 if (GET_CODE (_rtx) != (C)) \
1006 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1007 __FUNCTION__); \
1008 &_rtx->u.fld[_n]; }))
1009
1010 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1011 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1012 const enum rtx_code _code = GET_CODE (_rtx); \
1013 if (_code != (C1) && _code != (C2)) \
1014 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1015 __FUNCTION__); \
1016 &_rtx->u.fld[_n]; }))
1017
1018 #define RTVEC_ELT(RTVEC, I) __extension__ \
1019 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1020 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1021 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1022 __FUNCTION__); \
1023 &_rtvec->elem[_i]; }))
1024
1025 #define XWINT(RTX, N) __extension__ \
1026 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1027 const enum rtx_code _code = GET_CODE (_rtx); \
1028 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1029 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1030 __FUNCTION__); \
1031 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1032 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtx->u.hwint[_n]; }))
1035
1036 #define CWI_ELT(RTX, I) __extension__ \
1037 (*({ __typeof (RTX) const _cwi = (RTX); \
1038 int _max = CWI_GET_NUM_ELEM (_cwi); \
1039 const int _i = (I); \
1040 if (_i < 0 || _i >= _max) \
1041 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1042 __FUNCTION__); \
1043 &_cwi->u.hwiv.elem[_i]; }))
1044
1045 #define XCWINT(RTX, N, C) __extension__ \
1046 (*({ __typeof (RTX) const _rtx = (RTX); \
1047 if (GET_CODE (_rtx) != (C)) \
1048 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1049 __FUNCTION__); \
1050 &_rtx->u.hwint[N]; }))
1051
1052 #define XCMWINT(RTX, N, C, M) __extension__ \
1053 (*({ __typeof (RTX) const _rtx = (RTX); \
1054 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1055 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1056 __LINE__, __FUNCTION__); \
1057 &_rtx->u.hwint[N]; }))
1058
1059 #define XCNMPRV(RTX, C, M) __extension__ \
1060 ({ __typeof (RTX) const _rtx = (RTX); \
1061 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1062 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1063 __LINE__, __FUNCTION__); \
1064 &_rtx->u.rv; })
1065
1066 #define XCNMPFV(RTX, C, M) __extension__ \
1067 ({ __typeof (RTX) const _rtx = (RTX); \
1068 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1069 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1070 __LINE__, __FUNCTION__); \
1071 &_rtx->u.fv; })
1072
1073 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1074 ({ __typeof (RTX) const _symbol = (RTX); \
1075 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1076 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1077 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1078 __FUNCTION__); \
1079 &_symbol->u.block_sym; })
1080
1081 #define HWIVEC_CHECK(RTX,C) __extension__ \
1082 ({ __typeof (RTX) const _symbol = (RTX); \
1083 RTL_CHECKC1 (_symbol, 0, C); \
1084 &_symbol->u.hwiv; })
1085
1086 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1087 const char *)
1088 ATTRIBUTE_NORETURN;
1089 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1090 const char *)
1091 ATTRIBUTE_NORETURN;
1092 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1093 int, const char *)
1094 ATTRIBUTE_NORETURN;
1095 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1096 int, const char *)
1097 ATTRIBUTE_NORETURN;
1098 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1099 const char *, int, const char *)
1100 ATTRIBUTE_NORETURN;
1101 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1102 bool, const char *, int, const char *)
1103 ATTRIBUTE_NORETURN;
1104 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1105 ATTRIBUTE_NORETURN;
1106 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1107 const char *)
1108 ATTRIBUTE_NORETURN;
1109 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1110 const char *)
1111 ATTRIBUTE_NORETURN;
1112
1113 #else /* not ENABLE_RTL_CHECKING */
1114
1115 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1116 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1117 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1118 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1119 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1120 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1121 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1122 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1123 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1124 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1125 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1126 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1127 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1128 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1129
1130 #endif
1131
1132 /* General accessor macros for accessing the flags of an rtx. */
1133
1134 /* Access an individual rtx flag, with no checking of any kind. */
1135 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1136
1137 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1138 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1139 ({ __typeof (RTX) const _rtx = (RTX); \
1140 if (GET_CODE (_rtx) != C1) \
1141 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1142 __FUNCTION__); \
1143 _rtx; })
1144
1145 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1146 ({ __typeof (RTX) const _rtx = (RTX); \
1147 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1148 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1149 __FUNCTION__); \
1150 _rtx; })
1151
1152 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1155 && GET_CODE (_rtx) != C3) \
1156 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1157 __FUNCTION__); \
1158 _rtx; })
1159
1160 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1161 ({ __typeof (RTX) const _rtx = (RTX); \
1162 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1163 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1164 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1165 __FUNCTION__); \
1166 _rtx; })
1167
1168 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1169 ({ __typeof (RTX) const _rtx = (RTX); \
1170 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1171 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1172 && GET_CODE (_rtx) != C5) \
1173 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1174 __FUNCTION__); \
1175 _rtx; })
1176
1177 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1178 __extension__ \
1179 ({ __typeof (RTX) const _rtx = (RTX); \
1180 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1181 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1182 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1183 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1184 __FUNCTION__); \
1185 _rtx; })
1186
1187 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1188 __extension__ \
1189 ({ __typeof (RTX) const _rtx = (RTX); \
1190 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1191 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1192 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1193 && GET_CODE (_rtx) != C7) \
1194 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1195 __FUNCTION__); \
1196 _rtx; })
1197
1198 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1199 __extension__ \
1200 ({ __typeof (RTX) const _rtx = (RTX); \
1201 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1202 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1203 __FUNCTION__); \
1204 _rtx; })
1205
1206 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1207 int, const char *)
1208 ATTRIBUTE_NORETURN
1209 ;
1210
1211 #else /* not ENABLE_RTL_FLAG_CHECKING */
1212
1213 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1214 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1215 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1216 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1217 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1218 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1219 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1220 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1221 #endif
1222
1223 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1224 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1225 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1226 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1227 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1228 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1229 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1230 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1231 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1232 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1233
1234 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1235 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1236
1237 /* These are like XINT, etc. except that they expect a '0' field instead
1238 of the normal type code. */
1239
1240 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1241 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1242 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1243 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1244 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1245 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1246 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1247 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1248 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1249 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1250 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1251 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1252 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1253
1254 /* Access a '0' field with any type. */
1255 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1256
1257 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1258 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1259 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1260 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1261 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1262 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1263 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1264 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1265 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1266 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1267
1268 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1269 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1270
1271 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1272 \f
1273
1274 /* Methods of rtx_expr_list. */
1275
1276 inline rtx_expr_list *rtx_expr_list::next () const
1277 {
1278 rtx tmp = XEXP (this, 1);
1279 return safe_as_a <rtx_expr_list *> (tmp);
1280 }
1281
1282 inline rtx rtx_expr_list::element () const
1283 {
1284 return XEXP (this, 0);
1285 }
1286
1287 /* Methods of rtx_insn_list. */
1288
1289 inline rtx_insn_list *rtx_insn_list::next () const
1290 {
1291 rtx tmp = XEXP (this, 1);
1292 return safe_as_a <rtx_insn_list *> (tmp);
1293 }
1294
1295 inline rtx_insn *rtx_insn_list::insn () const
1296 {
1297 rtx tmp = XEXP (this, 0);
1298 return safe_as_a <rtx_insn *> (tmp);
1299 }
1300
1301 /* Methods of rtx_sequence. */
1302
1303 inline int rtx_sequence::len () const
1304 {
1305 return XVECLEN (this, 0);
1306 }
1307
1308 inline rtx rtx_sequence::element (int index) const
1309 {
1310 return XVECEXP (this, 0, index);
1311 }
1312
1313 inline rtx_insn *rtx_sequence::insn (int index) const
1314 {
1315 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1316 }
1317
1318 /* ACCESS MACROS for particular fields of insns. */
1319
1320 /* Holds a unique number for each insn.
1321 These are not necessarily sequentially increasing. */
1322 inline int INSN_UID (const_rtx insn)
1323 {
1324 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1325 (insn))->u2.insn_uid;
1326 }
1327 inline int& INSN_UID (rtx insn)
1328 {
1329 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1330 (insn))->u2.insn_uid;
1331 }
1332
1333 /* Chain insns together in sequence. */
1334
1335 /* For now these are split in two: an rvalue form:
1336 PREV_INSN/NEXT_INSN
1337 and an lvalue form:
1338 SET_NEXT_INSN/SET_PREV_INSN. */
1339
1340 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1341 {
1342 rtx prev = XEXP (insn, 0);
1343 return safe_as_a <rtx_insn *> (prev);
1344 }
1345
1346 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1347 {
1348 return XEXP (insn, 0);
1349 }
1350
1351 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1352 {
1353 rtx next = XEXP (insn, 1);
1354 return safe_as_a <rtx_insn *> (next);
1355 }
1356
1357 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1358 {
1359 return XEXP (insn, 1);
1360 }
1361
1362 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1363 {
1364 return XBBDEF (insn, 2);
1365 }
1366
1367 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1368 {
1369 return XBBDEF (insn, 2);
1370 }
1371
1372 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1373 {
1374 BLOCK_FOR_INSN (insn) = bb;
1375 }
1376
1377 /* The body of an insn. */
1378 inline rtx PATTERN (const_rtx insn)
1379 {
1380 return XEXP (insn, 3);
1381 }
1382
1383 inline rtx& PATTERN (rtx insn)
1384 {
1385 return XEXP (insn, 3);
1386 }
1387
1388 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1389 {
1390 return XUINT (insn, 4);
1391 }
1392
1393 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1394 {
1395 return XUINT (insn, 4);
1396 }
1397
1398 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1399 {
1400 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1401 }
1402
1403 /* LOCATION of an RTX if relevant. */
1404 #define RTL_LOCATION(X) (INSN_P (X) ? \
1405 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1406 : UNKNOWN_LOCATION)
1407
1408 /* Code number of instruction, from when it was recognized.
1409 -1 means this instruction has not been recognized yet. */
1410 #define INSN_CODE(INSN) XINT (INSN, 5)
1411
1412 inline rtvec rtx_jump_table_data::get_labels () const
1413 {
1414 rtx pat = PATTERN (this);
1415 if (GET_CODE (pat) == ADDR_VEC)
1416 return XVEC (pat, 0);
1417 else
1418 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1419 }
1420
1421 #define RTX_FRAME_RELATED_P(RTX) \
1422 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1423 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1424
1425 /* 1 if JUMP RTX is a crossing jump. */
1426 #define CROSSING_JUMP_P(RTX) \
1427 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1428
1429 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1430 TREE_READONLY. */
1431 #define RTL_CONST_CALL_P(RTX) \
1432 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1433
1434 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1435 DECL_PURE_P. */
1436 #define RTL_PURE_CALL_P(RTX) \
1437 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1438
1439 /* 1 if RTX is a call to a const or pure function. */
1440 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1441 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1442
1443 /* 1 if RTX is a call to a looping const or pure function. Built from
1444 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1445 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1446 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1447
1448 /* 1 if RTX is a call_insn for a sibling call. */
1449 #define SIBLING_CALL_P(RTX) \
1450 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1451
1452 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1453 #define INSN_ANNULLED_BRANCH_P(RTX) \
1454 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1455
1456 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1457 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1458 executed if the branch is taken. For annulled branches with this bit
1459 clear, the insn should be executed only if the branch is not taken. */
1460 #define INSN_FROM_TARGET_P(RTX) \
1461 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1462 CALL_INSN)->in_struct)
1463
1464 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1465 See the comments for ADDR_DIFF_VEC in rtl.def. */
1466 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1467
1468 /* In a VALUE, the value cselib has assigned to RTX.
1469 This is a "struct cselib_val", see cselib.h. */
1470 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1471
1472 /* Holds a list of notes on what this insn does to various REGs.
1473 It is a chain of EXPR_LIST rtx's, where the second operand is the
1474 chain pointer and the first operand is the REG being described.
1475 The mode field of the EXPR_LIST contains not a real machine mode
1476 but a value from enum reg_note. */
1477 #define REG_NOTES(INSN) XEXP(INSN, 6)
1478
1479 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1480 question. */
1481 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1482
1483 enum reg_note
1484 {
1485 #define DEF_REG_NOTE(NAME) NAME,
1486 #include "reg-notes.def"
1487 #undef DEF_REG_NOTE
1488 REG_NOTE_MAX
1489 };
1490
1491 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1492 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1493 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1494 PUT_MODE (LINK, (machine_mode) (KIND))
1495
1496 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1497
1498 extern const char * const reg_note_name[];
1499 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1500
1501 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1502 USE and CLOBBER expressions.
1503 USE expressions list the registers filled with arguments that
1504 are passed to the function.
1505 CLOBBER expressions document the registers explicitly clobbered
1506 by this CALL_INSN.
1507 Pseudo registers can not be mentioned in this list. */
1508 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1509
1510 /* The label-number of a code-label. The assembler label
1511 is made from `L' and the label-number printed in decimal.
1512 Label numbers are unique in a compilation. */
1513 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1514
1515 /* In a NOTE that is a line number, this is a string for the file name that the
1516 line is in. We use the same field to record block numbers temporarily in
1517 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1518 between ints and pointers if we use a different macro for the block number.)
1519 */
1520
1521 /* Opaque data. */
1522 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1523 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1524 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1525 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1526 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1527 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1528 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1529 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1530 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1531
1532 /* In a NOTE that is a line number, this is the line number.
1533 Other kinds of NOTEs are identified by negative numbers here. */
1534 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1535
1536 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1537 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1538 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1539
1540 /* Variable declaration and the location of a variable. */
1541 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1542 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1543
1544 /* Initialization status of the variable in the location. Status
1545 can be unknown, uninitialized or initialized. See enumeration
1546 type below. */
1547 #define PAT_VAR_LOCATION_STATUS(PAT) \
1548 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1549 ->u2.var_location_status)
1550
1551 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1552 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1553 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1554 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1555 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1556 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1557 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1558
1559 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1560 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1561
1562 /* Accessors for a tree-expanded var location debug insn. */
1563 #define INSN_VAR_LOCATION_DECL(INSN) \
1564 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1565 #define INSN_VAR_LOCATION_LOC(INSN) \
1566 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1567 #define INSN_VAR_LOCATION_STATUS(INSN) \
1568 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1569
1570 /* Expand to the RTL that denotes an unknown variable location in a
1571 DEBUG_INSN. */
1572 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1573
1574 /* Determine whether X is such an unknown location. */
1575 #define VAR_LOC_UNKNOWN_P(X) \
1576 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1577
1578 /* 1 if RTX is emitted after a call, but it should take effect before
1579 the call returns. */
1580 #define NOTE_DURING_CALL_P(RTX) \
1581 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1582
1583 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1584 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1585
1586 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1587 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1588
1589 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1590 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1591
1592 /* Codes that appear in the NOTE_KIND field for kinds of notes
1593 that are not line numbers. These codes are all negative.
1594
1595 Notice that we do not try to use zero here for any of
1596 the special note codes because sometimes the source line
1597 actually can be zero! This happens (for example) when we
1598 are generating code for the per-translation-unit constructor
1599 and destructor routines for some C++ translation unit. */
1600
1601 enum insn_note
1602 {
1603 #define DEF_INSN_NOTE(NAME) NAME,
1604 #include "insn-notes.def"
1605 #undef DEF_INSN_NOTE
1606
1607 NOTE_INSN_MAX
1608 };
1609
1610 /* Names for NOTE insn's other than line numbers. */
1611
1612 extern const char * const note_insn_name[NOTE_INSN_MAX];
1613 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1614 (note_insn_name[(NOTE_CODE)])
1615
1616 /* The name of a label, in case it corresponds to an explicit label
1617 in the input source code. */
1618 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1619
1620 /* In jump.c, each label contains a count of the number
1621 of LABEL_REFs that point at it, so unused labels can be deleted. */
1622 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1623
1624 /* Labels carry a two-bit field composed of the ->jump and ->call
1625 bits. This field indicates whether the label is an alternate
1626 entry point, and if so, what kind. */
1627 enum label_kind
1628 {
1629 LABEL_NORMAL = 0, /* ordinary label */
1630 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1631 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1632 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1633 };
1634
1635 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1636
1637 /* Retrieve the kind of LABEL. */
1638 #define LABEL_KIND(LABEL) __extension__ \
1639 ({ __typeof (LABEL) const _label = (LABEL); \
1640 if (! LABEL_P (_label)) \
1641 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1642 __FUNCTION__); \
1643 (enum label_kind) ((_label->jump << 1) | _label->call); })
1644
1645 /* Set the kind of LABEL. */
1646 #define SET_LABEL_KIND(LABEL, KIND) do { \
1647 __typeof (LABEL) const _label = (LABEL); \
1648 const unsigned int _kind = (KIND); \
1649 if (! LABEL_P (_label)) \
1650 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1651 __FUNCTION__); \
1652 _label->jump = ((_kind >> 1) & 1); \
1653 _label->call = (_kind & 1); \
1654 } while (0)
1655
1656 #else
1657
1658 /* Retrieve the kind of LABEL. */
1659 #define LABEL_KIND(LABEL) \
1660 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1661
1662 /* Set the kind of LABEL. */
1663 #define SET_LABEL_KIND(LABEL, KIND) do { \
1664 rtx const _label = (LABEL); \
1665 const unsigned int _kind = (KIND); \
1666 _label->jump = ((_kind >> 1) & 1); \
1667 _label->call = (_kind & 1); \
1668 } while (0)
1669
1670 #endif /* rtl flag checking */
1671
1672 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1673
1674 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1675 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1676 be decremented and possibly the label can be deleted. */
1677 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1678
1679 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1680 {
1681 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1682 }
1683
1684 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1685 goes through all the LABEL_REFs that jump to that label. The chain
1686 eventually winds up at the CODE_LABEL: it is circular. */
1687 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1688
1689 /* Get the label that a LABEL_REF references. */
1690 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1691
1692 \f
1693 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1694 be used on RHS. Use SET_REGNO to change the value. */
1695 #define REGNO(RTX) (rhs_regno(RTX))
1696 #define SET_REGNO(RTX,N) \
1697 (df_ref_change_reg_with_loc (REGNO (RTX), N, RTX), XCUINT (RTX, 0, REG) = N)
1698 #define SET_REGNO_RAW(RTX,N) (XCUINT (RTX, 0, REG) = N)
1699
1700 /* Return the number of consecutive registers in a REG. This is always
1701 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1702 hard registers. */
1703 #define REG_NREGS(RTX) \
1704 (REGNO (RTX) < FIRST_PSEUDO_REGISTER \
1705 ? (unsigned int) hard_regno_nregs[REGNO (RTX)][GET_MODE (RTX)] \
1706 : 1)
1707
1708 /* ORIGINAL_REGNO holds the number the register originally had; for a
1709 pseudo register turned into a hard reg this will hold the old pseudo
1710 register number. */
1711 #define ORIGINAL_REGNO(RTX) \
1712 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1713
1714 /* Force the REGNO macro to only be used on the lhs. */
1715 static inline unsigned int
1716 rhs_regno (const_rtx x)
1717 {
1718 return XCUINT (x, 0, REG);
1719 }
1720
1721
1722 /* 1 if RTX is a reg or parallel that is the current function's return
1723 value. */
1724 #define REG_FUNCTION_VALUE_P(RTX) \
1725 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1726
1727 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1728 #define REG_USERVAR_P(RTX) \
1729 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1730
1731 /* 1 if RTX is a reg that holds a pointer value. */
1732 #define REG_POINTER(RTX) \
1733 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1734
1735 /* 1 if RTX is a mem that holds a pointer value. */
1736 #define MEM_POINTER(RTX) \
1737 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1738
1739 /* 1 if the given register REG corresponds to a hard register. */
1740 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1741
1742 /* 1 if the given register number REG_NO corresponds to a hard register. */
1743 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1744
1745 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1746 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1747 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1748
1749 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1750 elements actually needed to represent the constant.
1751 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1752 significant HOST_WIDE_INT. */
1753 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1754 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1755 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1756
1757 /* For a CONST_DOUBLE:
1758 #if TARGET_SUPPORTS_WIDE_INT == 0
1759 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1760 low-order word and ..._HIGH the high-order.
1761 #endif
1762 For a float, there is a REAL_VALUE_TYPE structure, and
1763 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1764 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1765 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1766 #define CONST_DOUBLE_REAL_VALUE(r) \
1767 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1768
1769 #define CONST_FIXED_VALUE(r) \
1770 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1771 #define CONST_FIXED_VALUE_HIGH(r) \
1772 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1773 #define CONST_FIXED_VALUE_LOW(r) \
1774 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1775
1776 /* For a CONST_VECTOR, return element #n. */
1777 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1778
1779 /* For a CONST_VECTOR, return the number of elements in a vector. */
1780 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1781
1782 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1783 SUBREG_BYTE extracts the byte-number. */
1784
1785 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1786 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1787
1788 /* in rtlanal.c */
1789 /* Return the right cost to give to an operation
1790 to make the cost of the corresponding register-to-register instruction
1791 N times that of a fast register-to-register instruction. */
1792 #define COSTS_N_INSNS(N) ((N) * 4)
1793
1794 /* Maximum cost of an rtl expression. This value has the special meaning
1795 not to use an rtx with this cost under any circumstances. */
1796 #define MAX_COST INT_MAX
1797
1798 /* Return true if CODE always has VOIDmode. */
1799
1800 static inline bool
1801 always_void_p (enum rtx_code code)
1802 {
1803 return code == SET;
1804 }
1805
1806 /* A structure to hold all available cost information about an rtl
1807 expression. */
1808 struct full_rtx_costs
1809 {
1810 int speed;
1811 int size;
1812 };
1813
1814 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1815 static inline void
1816 init_costs_to_max (struct full_rtx_costs *c)
1817 {
1818 c->speed = MAX_COST;
1819 c->size = MAX_COST;
1820 }
1821
1822 /* Initialize a full_rtx_costs structure C to zero cost. */
1823 static inline void
1824 init_costs_to_zero (struct full_rtx_costs *c)
1825 {
1826 c->speed = 0;
1827 c->size = 0;
1828 }
1829
1830 /* Compare two full_rtx_costs structures A and B, returning true
1831 if A < B when optimizing for speed. */
1832 static inline bool
1833 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1834 bool speed)
1835 {
1836 if (speed)
1837 return (a->speed < b->speed
1838 || (a->speed == b->speed && a->size < b->size));
1839 else
1840 return (a->size < b->size
1841 || (a->size == b->size && a->speed < b->speed));
1842 }
1843
1844 /* Increase both members of the full_rtx_costs structure C by the
1845 cost of N insns. */
1846 static inline void
1847 costs_add_n_insns (struct full_rtx_costs *c, int n)
1848 {
1849 c->speed += COSTS_N_INSNS (n);
1850 c->size += COSTS_N_INSNS (n);
1851 }
1852
1853 /* Describes the shape of a subreg:
1854
1855 inner_mode == the mode of the SUBREG_REG
1856 offset == the SUBREG_BYTE
1857 outer_mode == the mode of the SUBREG itself. */
1858 struct subreg_shape {
1859 subreg_shape (machine_mode, unsigned int, machine_mode);
1860 bool operator == (const subreg_shape &) const;
1861 bool operator != (const subreg_shape &) const;
1862 unsigned int unique_id () const;
1863
1864 machine_mode inner_mode;
1865 unsigned int offset;
1866 machine_mode outer_mode;
1867 };
1868
1869 inline
1870 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1871 unsigned int offset_in,
1872 machine_mode outer_mode_in)
1873 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1874 {}
1875
1876 inline bool
1877 subreg_shape::operator == (const subreg_shape &other) const
1878 {
1879 return (inner_mode == other.inner_mode
1880 && offset == other.offset
1881 && outer_mode == other.outer_mode);
1882 }
1883
1884 inline bool
1885 subreg_shape::operator != (const subreg_shape &other) const
1886 {
1887 return !operator == (other);
1888 }
1889
1890 /* Return an integer that uniquely identifies this shape. Structures
1891 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1892 current mode is anywhere near being 65536 bytes in size, so the
1893 id comfortably fits in an int. */
1894
1895 inline unsigned int
1896 subreg_shape::unique_id () const
1897 {
1898 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1899 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1900 }
1901
1902 /* Return the shape of a SUBREG rtx. */
1903
1904 static inline subreg_shape
1905 shape_of_subreg (const_rtx x)
1906 {
1907 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1908 SUBREG_BYTE (x), GET_MODE (x));
1909 }
1910
1911 /* Information about an address. This structure is supposed to be able
1912 to represent all supported target addresses. Please extend it if it
1913 is not yet general enough. */
1914 struct address_info {
1915 /* The mode of the value being addressed, or VOIDmode if this is
1916 a load-address operation with no known address mode. */
1917 machine_mode mode;
1918
1919 /* The address space. */
1920 addr_space_t as;
1921
1922 /* A pointer to the top-level address. */
1923 rtx *outer;
1924
1925 /* A pointer to the inner address, after all address mutations
1926 have been stripped from the top-level address. It can be one
1927 of the following:
1928
1929 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1930
1931 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1932 points to the step value, depending on whether the step is variable
1933 or constant respectively. SEGMENT is null.
1934
1935 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1936 with null fields evaluating to 0. */
1937 rtx *inner;
1938
1939 /* Components that make up *INNER. Each one may be null or nonnull.
1940 When nonnull, their meanings are as follows:
1941
1942 - *SEGMENT is the "segment" of memory to which the address refers.
1943 This value is entirely target-specific and is only called a "segment"
1944 because that's its most typical use. It contains exactly one UNSPEC,
1945 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1946 reloading.
1947
1948 - *BASE is a variable expression representing a base address.
1949 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1950
1951 - *INDEX is a variable expression representing an index value.
1952 It may be a scaled expression, such as a MULT. It has exactly
1953 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1954
1955 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1956 unmutated RTX_CONST_OBJ. */
1957 rtx *segment;
1958 rtx *base;
1959 rtx *index;
1960 rtx *disp;
1961
1962 rtx *segment_term;
1963 rtx *base_term;
1964 rtx *index_term;
1965 rtx *disp_term;
1966
1967 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1968 of BASE_TERM, otherwise it is null. */
1969 rtx *base_term2;
1970
1971 /* ADDRESS if this structure describes an address operand, MEM if
1972 it describes a MEM address. */
1973 enum rtx_code addr_outer_code;
1974
1975 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1976 enum rtx_code base_outer_code;
1977
1978 /* True if this is an RTX_AUTOINC address. */
1979 bool autoinc_p;
1980 };
1981
1982 /* This is used to bundle an rtx and a mode together so that the pair
1983 can be used with the wi:: routines. If we ever put modes into rtx
1984 integer constants, this should go away and then just pass an rtx in. */
1985 typedef std::pair <rtx, machine_mode> rtx_mode_t;
1986
1987 namespace wi
1988 {
1989 template <>
1990 struct int_traits <rtx_mode_t>
1991 {
1992 static const enum precision_type precision_type = VAR_PRECISION;
1993 static const bool host_dependent_precision = false;
1994 /* This ought to be true, except for the special case that BImode
1995 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1996 static const bool is_sign_extended = false;
1997 static unsigned int get_precision (const rtx_mode_t &);
1998 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1999 const rtx_mode_t &);
2000 };
2001 }
2002
2003 inline unsigned int
2004 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2005 {
2006 return GET_MODE_PRECISION (x.second);
2007 }
2008
2009 inline wi::storage_ref
2010 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2011 unsigned int precision,
2012 const rtx_mode_t &x)
2013 {
2014 gcc_checking_assert (precision == get_precision (x));
2015 switch (GET_CODE (x.first))
2016 {
2017 case CONST_INT:
2018 if (precision < HOST_BITS_PER_WIDE_INT)
2019 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2020 targets is 1 rather than -1. */
2021 gcc_checking_assert (INTVAL (x.first)
2022 == sext_hwi (INTVAL (x.first), precision)
2023 || (x.second == BImode && INTVAL (x.first) == 1));
2024
2025 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2026
2027 case CONST_WIDE_INT:
2028 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2029 CONST_WIDE_INT_NUNITS (x.first), precision);
2030
2031 #if TARGET_SUPPORTS_WIDE_INT == 0
2032 case CONST_DOUBLE:
2033 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2034 #endif
2035
2036 default:
2037 gcc_unreachable ();
2038 }
2039 }
2040
2041 namespace wi
2042 {
2043 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2044 wide_int min_value (machine_mode, signop);
2045 wide_int max_value (machine_mode, signop);
2046 }
2047
2048 inline wi::hwi_with_prec
2049 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2050 {
2051 return shwi (val, GET_MODE_PRECISION (mode));
2052 }
2053
2054 /* Produce the smallest number that is represented in MODE. The precision
2055 is taken from MODE and the sign from SGN. */
2056 inline wide_int
2057 wi::min_value (machine_mode mode, signop sgn)
2058 {
2059 return min_value (GET_MODE_PRECISION (mode), sgn);
2060 }
2061
2062 /* Produce the largest number that is represented in MODE. The precision
2063 is taken from MODE and the sign from SGN. */
2064 inline wide_int
2065 wi::max_value (machine_mode mode, signop sgn)
2066 {
2067 return max_value (GET_MODE_PRECISION (mode), sgn);
2068 }
2069
2070 extern void init_rtlanal (void);
2071 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2072 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2073 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2074 struct full_rtx_costs *);
2075 extern unsigned int subreg_lsb (const_rtx);
2076 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2077 unsigned int);
2078 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2079 unsigned int, machine_mode);
2080 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2081 unsigned int, machine_mode);
2082 extern unsigned int subreg_regno (const_rtx);
2083 extern int simplify_subreg_regno (unsigned int, machine_mode,
2084 unsigned int, machine_mode);
2085 extern unsigned int subreg_nregs (const_rtx);
2086 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2087 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2088 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2089 extern bool constant_pool_constant_p (rtx);
2090 extern bool truncated_to_mode (machine_mode, const_rtx);
2091 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2092 extern void split_double (rtx, rtx *, rtx *);
2093 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2094 extern void decompose_address (struct address_info *, rtx *,
2095 machine_mode, addr_space_t, enum rtx_code);
2096 extern void decompose_lea_address (struct address_info *, rtx *);
2097 extern void decompose_mem_address (struct address_info *, rtx);
2098 extern void update_address (struct address_info *);
2099 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2100 extern enum rtx_code get_index_code (const struct address_info *);
2101
2102 #ifndef GENERATOR_FILE
2103 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2104 rather than size. */
2105
2106 static inline int
2107 set_rtx_cost (rtx x, bool speed_p)
2108 {
2109 return rtx_cost (x, INSN, 4, speed_p);
2110 }
2111
2112 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2113
2114 static inline void
2115 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2116 {
2117 get_full_rtx_cost (x, INSN, 4, c);
2118 }
2119
2120 /* Return the cost of moving X into a register, relative to the cost
2121 of a register move. SPEED_P is true if optimizing for speed rather
2122 than size. */
2123
2124 static inline int
2125 set_src_cost (rtx x, bool speed_p)
2126 {
2127 return rtx_cost (x, SET, 1, speed_p);
2128 }
2129
2130 /* Like set_src_cost, but return both the speed and size costs in C. */
2131
2132 static inline void
2133 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2134 {
2135 get_full_rtx_cost (x, SET, 1, c);
2136 }
2137 #endif
2138
2139 /* 1 if RTX is a subreg containing a reg that is already known to be
2140 sign- or zero-extended from the mode of the subreg to the mode of
2141 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2142 extension.
2143
2144 When used as a LHS, is means that this extension must be done
2145 when assigning to SUBREG_REG. */
2146
2147 #define SUBREG_PROMOTED_VAR_P(RTX) \
2148 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2149
2150 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2151 this gives the necessary extensions:
2152 0 - signed (SPR_SIGNED)
2153 1 - normal unsigned (SPR_UNSIGNED)
2154 2 - value is both sign and unsign extended for mode
2155 (SPR_SIGNED_AND_UNSIGNED).
2156 -1 - pointer unsigned, which most often can be handled like unsigned
2157 extension, except for generating instructions where we need to
2158 emit special code (ptr_extend insns) on some architectures
2159 (SPR_POINTER). */
2160
2161 const int SRP_POINTER = -1;
2162 const int SRP_SIGNED = 0;
2163 const int SRP_UNSIGNED = 1;
2164 const int SRP_SIGNED_AND_UNSIGNED = 2;
2165
2166 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2167 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2168 do { \
2169 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2170 (RTX), SUBREG); \
2171 switch (VAL) \
2172 { \
2173 case SRP_POINTER: \
2174 _rtx->volatil = 0; \
2175 _rtx->unchanging = 0; \
2176 break; \
2177 case SRP_SIGNED: \
2178 _rtx->volatil = 0; \
2179 _rtx->unchanging = 1; \
2180 break; \
2181 case SRP_UNSIGNED: \
2182 _rtx->volatil = 1; \
2183 _rtx->unchanging = 0; \
2184 break; \
2185 case SRP_SIGNED_AND_UNSIGNED: \
2186 _rtx->volatil = 1; \
2187 _rtx->unchanging = 1; \
2188 break; \
2189 } \
2190 } while (0)
2191
2192 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2193 including SRP_SIGNED_AND_UNSIGNED if promoted for
2194 both signed and unsigned. */
2195 #define SUBREG_PROMOTED_GET(RTX) \
2196 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2197 + (RTX)->unchanging - 1)
2198
2199 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2200 #define SUBREG_PROMOTED_SIGN(RTX) \
2201 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2202 : (RTX)->unchanging - 1)
2203
2204 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2205 for SIGNED type. */
2206 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2207 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2208
2209 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2210 for UNSIGNED type. */
2211 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2212 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2213
2214 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2215 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2216 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2217 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2218 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2219
2220 /* True if the subreg was generated by LRA for reload insns. Such
2221 subregs are valid only during LRA. */
2222 #define LRA_SUBREG_P(RTX) \
2223 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2224
2225 /* True if call is instrumented by Pointer Bounds Checker. */
2226 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2227 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2228
2229 /* Access various components of an ASM_OPERANDS rtx. */
2230
2231 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2232 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2233 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2234 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2235 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2236 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2237 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2238 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2239 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2240 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2241 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2242 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2243 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2244 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2245 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2246 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2247 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2248 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2249
2250 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2251 #define MEM_READONLY_P(RTX) \
2252 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2253
2254 /* 1 if RTX is a mem and we should keep the alias set for this mem
2255 unchanged when we access a component. Set to 1, or example, when we
2256 are already in a non-addressable component of an aggregate. */
2257 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2258 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2259
2260 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2261 #define MEM_VOLATILE_P(RTX) \
2262 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2263 ASM_INPUT)->volatil)
2264
2265 /* 1 if RTX is a mem that cannot trap. */
2266 #define MEM_NOTRAP_P(RTX) \
2267 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2268
2269 /* The memory attribute block. We provide access macros for each value
2270 in the block and provide defaults if none specified. */
2271 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2272
2273 /* The register attribute block. We provide access macros for each value
2274 in the block and provide defaults if none specified. */
2275 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2276
2277 #ifndef GENERATOR_FILE
2278 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2279 set, and may alias anything. Otherwise, the MEM can only alias
2280 MEMs in a conflicting alias set. This value is set in a
2281 language-dependent manner in the front-end, and should not be
2282 altered in the back-end. These set numbers are tested with
2283 alias_sets_conflict_p. */
2284 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2285
2286 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2287 refer to part of a DECL. It may also be a COMPONENT_REF. */
2288 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2289
2290 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2291 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2292
2293 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2294 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2295
2296 /* For a MEM rtx, the address space. */
2297 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2298
2299 /* For a MEM rtx, true if its MEM_SIZE is known. */
2300 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2301
2302 /* For a MEM rtx, the size in bytes of the MEM. */
2303 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2304
2305 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2306 mode as a default when STRICT_ALIGNMENT, but not if not. */
2307 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2308 #else
2309 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2310 #endif
2311
2312 /* For a REG rtx, the decl it is known to refer to, if it is known to
2313 refer to part of a DECL. */
2314 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2315
2316 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2317 HOST_WIDE_INT. */
2318 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2319
2320 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2321 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2322 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2323 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2324 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2325 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2326 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2327 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2328
2329 /* 1 if RTX is a label_ref for a nonlocal label. */
2330 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2331 REG_LABEL_TARGET note. */
2332 #define LABEL_REF_NONLOCAL_P(RTX) \
2333 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2334
2335 /* 1 if RTX is a code_label that should always be considered to be needed. */
2336 #define LABEL_PRESERVE_P(RTX) \
2337 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2338
2339 /* During sched, 1 if RTX is an insn that must be scheduled together
2340 with the preceding insn. */
2341 #define SCHED_GROUP_P(RTX) \
2342 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2343 JUMP_INSN, CALL_INSN)->in_struct)
2344
2345 /* For a SET rtx, SET_DEST is the place that is set
2346 and SET_SRC is the value it is set to. */
2347 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2348 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2349 #define SET_IS_RETURN_P(RTX) \
2350 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2351
2352 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2353 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2354 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2355
2356 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2357 conditionally executing the code on, COND_EXEC_CODE is the code
2358 to execute if the condition is true. */
2359 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2360 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2361
2362 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2363 constants pool. */
2364 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2365 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2366
2367 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2368 tree constant pool. This information is private to varasm.c. */
2369 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2370 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2371 (RTX), SYMBOL_REF)->frame_related)
2372
2373 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2374 #define SYMBOL_REF_FLAG(RTX) \
2375 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2376
2377 /* 1 if RTX is a symbol_ref that has been the library function in
2378 emit_library_call. */
2379 #define SYMBOL_REF_USED(RTX) \
2380 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2381
2382 /* 1 if RTX is a symbol_ref for a weak symbol. */
2383 #define SYMBOL_REF_WEAK(RTX) \
2384 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2385
2386 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2387 SYMBOL_REF_CONSTANT. */
2388 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2389
2390 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2391 pool symbol. */
2392 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2393 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2394
2395 /* The tree (decl or constant) associated with the symbol, or null. */
2396 #define SYMBOL_REF_DECL(RTX) \
2397 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2398
2399 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2400 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2401 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2402
2403 /* The rtx constant pool entry for a symbol, or null. */
2404 #define SYMBOL_REF_CONSTANT(RTX) \
2405 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2406
2407 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2408 information derivable from the tree decl associated with this symbol.
2409 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2410 decl. In some cases this is a bug. But beyond that, it's nice to cache
2411 this information to avoid recomputing it. Finally, this allows space for
2412 the target to store more than one bit of information, as with
2413 SYMBOL_REF_FLAG. */
2414 #define SYMBOL_REF_FLAGS(RTX) \
2415 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2416 ->u2.symbol_ref_flags)
2417
2418 /* These flags are common enough to be defined for all targets. They
2419 are computed by the default version of targetm.encode_section_info. */
2420
2421 /* Set if this symbol is a function. */
2422 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2423 #define SYMBOL_REF_FUNCTION_P(RTX) \
2424 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2425 /* Set if targetm.binds_local_p is true. */
2426 #define SYMBOL_FLAG_LOCAL (1 << 1)
2427 #define SYMBOL_REF_LOCAL_P(RTX) \
2428 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2429 /* Set if targetm.in_small_data_p is true. */
2430 #define SYMBOL_FLAG_SMALL (1 << 2)
2431 #define SYMBOL_REF_SMALL_P(RTX) \
2432 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2433 /* The three-bit field at [5:3] is true for TLS variables; use
2434 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2435 #define SYMBOL_FLAG_TLS_SHIFT 3
2436 #define SYMBOL_REF_TLS_MODEL(RTX) \
2437 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2438 /* Set if this symbol is not defined in this translation unit. */
2439 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2440 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2441 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2442 /* Set if this symbol has a block_symbol structure associated with it. */
2443 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2444 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2445 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2446 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2447 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2448 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2449 #define SYMBOL_REF_ANCHOR_P(RTX) \
2450 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2451
2452 /* Subsequent bits are available for the target to use. */
2453 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2454 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2455
2456 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2457 structure to which the symbol belongs, or NULL if it has not been
2458 assigned a block. */
2459 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2460
2461 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2462 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2463 RTX has not yet been assigned to a block, or it has not been given an
2464 offset within that block. */
2465 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2466
2467 /* True if RTX is flagged to be a scheduling barrier. */
2468 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2469 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2470
2471 /* Indicate whether the machine has any sort of auto increment addressing.
2472 If not, we can avoid checking for REG_INC notes. */
2473
2474 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2475 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2476 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2477 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2478 #define AUTO_INC_DEC
2479 #endif
2480
2481 /* Define a macro to look for REG_INC notes,
2482 but save time on machines where they never exist. */
2483
2484 #ifdef AUTO_INC_DEC
2485 #define FIND_REG_INC_NOTE(INSN, REG) \
2486 ((REG) != NULL_RTX && REG_P ((REG)) \
2487 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2488 : find_reg_note ((INSN), REG_INC, (REG)))
2489 #else
2490 #define FIND_REG_INC_NOTE(INSN, REG) 0
2491 #endif
2492
2493 #ifndef HAVE_PRE_INCREMENT
2494 #define HAVE_PRE_INCREMENT 0
2495 #endif
2496
2497 #ifndef HAVE_PRE_DECREMENT
2498 #define HAVE_PRE_DECREMENT 0
2499 #endif
2500
2501 #ifndef HAVE_POST_INCREMENT
2502 #define HAVE_POST_INCREMENT 0
2503 #endif
2504
2505 #ifndef HAVE_POST_DECREMENT
2506 #define HAVE_POST_DECREMENT 0
2507 #endif
2508
2509 #ifndef HAVE_POST_MODIFY_DISP
2510 #define HAVE_POST_MODIFY_DISP 0
2511 #endif
2512
2513 #ifndef HAVE_POST_MODIFY_REG
2514 #define HAVE_POST_MODIFY_REG 0
2515 #endif
2516
2517 #ifndef HAVE_PRE_MODIFY_DISP
2518 #define HAVE_PRE_MODIFY_DISP 0
2519 #endif
2520
2521 #ifndef HAVE_PRE_MODIFY_REG
2522 #define HAVE_PRE_MODIFY_REG 0
2523 #endif
2524
2525
2526 /* Some architectures do not have complete pre/post increment/decrement
2527 instruction sets, or only move some modes efficiently. These macros
2528 allow us to tune autoincrement generation. */
2529
2530 #ifndef USE_LOAD_POST_INCREMENT
2531 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2532 #endif
2533
2534 #ifndef USE_LOAD_POST_DECREMENT
2535 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2536 #endif
2537
2538 #ifndef USE_LOAD_PRE_INCREMENT
2539 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2540 #endif
2541
2542 #ifndef USE_LOAD_PRE_DECREMENT
2543 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2544 #endif
2545
2546 #ifndef USE_STORE_POST_INCREMENT
2547 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2548 #endif
2549
2550 #ifndef USE_STORE_POST_DECREMENT
2551 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2552 #endif
2553
2554 #ifndef USE_STORE_PRE_INCREMENT
2555 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2556 #endif
2557
2558 #ifndef USE_STORE_PRE_DECREMENT
2559 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2560 #endif
2561 \f
2562 /* Nonzero when we are generating CONCATs. */
2563 extern int generating_concat_p;
2564
2565 /* Nonzero when we are expanding trees to RTL. */
2566 extern int currently_expanding_to_rtl;
2567
2568 /* Generally useful functions. */
2569
2570 /* In explow.c */
2571 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2572 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2573
2574 /* In rtl.c */
2575 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2576 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2577 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2578 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2579 #define const_wide_int_alloc(NWORDS) \
2580 rtx_alloc_v (CONST_WIDE_INT, \
2581 (sizeof (struct hwivec_def) \
2582 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2583
2584 extern rtvec rtvec_alloc (int);
2585 extern rtvec shallow_copy_rtvec (rtvec);
2586 extern bool shared_const_p (const_rtx);
2587 extern rtx copy_rtx (rtx);
2588 extern void dump_rtx_statistics (void);
2589
2590 /* In emit-rtl.c */
2591 extern rtx copy_rtx_if_shared (rtx);
2592
2593 /* In rtl.c */
2594 extern unsigned int rtx_size (const_rtx);
2595 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2596 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2597 extern int rtx_equal_p (const_rtx, const_rtx);
2598
2599 /* In emit-rtl.c */
2600 extern rtvec gen_rtvec_v (int, rtx *);
2601 extern rtvec gen_rtvec_v (int, rtx_insn **);
2602 extern rtx gen_reg_rtx (machine_mode);
2603 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2604 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2605 extern rtx gen_reg_rtx_and_attrs (rtx);
2606 extern rtx_code_label *gen_label_rtx (void);
2607 extern rtx gen_lowpart_common (machine_mode, rtx);
2608
2609 /* In cse.c */
2610 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2611
2612 /* In emit-rtl.c */
2613 extern rtx gen_highpart (machine_mode, rtx);
2614 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2615 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2616
2617 /* In emit-rtl.c */
2618 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2619 extern bool paradoxical_subreg_p (const_rtx);
2620 extern int subreg_lowpart_p (const_rtx);
2621 extern unsigned int subreg_lowpart_offset (machine_mode,
2622 machine_mode);
2623 extern unsigned int subreg_highpart_offset (machine_mode,
2624 machine_mode);
2625 extern int byte_lowpart_offset (machine_mode, machine_mode);
2626 extern rtx make_safe_from (rtx, rtx);
2627 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2628 addr_space_t);
2629 #define convert_memory_address(to_mode,x) \
2630 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2631 extern const char *get_insn_name (int);
2632 extern rtx_insn *get_last_insn_anywhere (void);
2633 extern rtx_insn *get_first_nonnote_insn (void);
2634 extern rtx_insn *get_last_nonnote_insn (void);
2635 extern void start_sequence (void);
2636 extern void push_to_sequence (rtx_insn *);
2637 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2638 extern void end_sequence (void);
2639 #if TARGET_SUPPORTS_WIDE_INT == 0
2640 extern double_int rtx_to_double_int (const_rtx);
2641 #endif
2642 extern void cwi_output_hex (FILE *, const_rtx);
2643 #ifndef GENERATOR_FILE
2644 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2645 #endif
2646 #if TARGET_SUPPORTS_WIDE_INT == 0
2647 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2648 machine_mode);
2649 #endif
2650
2651 /* In loop-iv.c */
2652
2653 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2654
2655 /* In varasm.c */
2656 extern rtx force_const_mem (machine_mode, rtx);
2657
2658 /* In varasm.c */
2659
2660 struct function;
2661 extern rtx get_pool_constant (const_rtx);
2662 extern rtx get_pool_constant_mark (rtx, bool *);
2663 extern machine_mode get_pool_mode (const_rtx);
2664 extern rtx simplify_subtraction (rtx);
2665 extern void decide_function_section (tree);
2666
2667 /* In emit-rtl.c */
2668 extern rtx_insn *emit_insn_before (rtx, rtx);
2669 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2670 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2671 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2672 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2673 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2674 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2675 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2676 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2677 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2678 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2679 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2680 extern rtx_barrier *emit_barrier_before (rtx);
2681 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2682 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2683 extern rtx_insn *emit_insn_after (rtx, rtx);
2684 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2685 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2686 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2687 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2688 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2689 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2690 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2691 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2692 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2693 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2694 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2695 extern rtx_barrier *emit_barrier_after (rtx);
2696 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2697 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2698 extern rtx_insn *emit_insn (rtx);
2699 extern rtx_insn *emit_debug_insn (rtx);
2700 extern rtx_insn *emit_jump_insn (rtx);
2701 extern rtx_insn *emit_call_insn (rtx);
2702 extern rtx_insn *emit_label (rtx);
2703 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2704 extern rtx_barrier *emit_barrier (void);
2705 extern rtx_note *emit_note (enum insn_note);
2706 extern rtx_note *emit_note_copy (rtx_note *);
2707 extern rtx_insn *gen_clobber (rtx);
2708 extern rtx_insn *emit_clobber (rtx);
2709 extern rtx_insn *gen_use (rtx);
2710 extern rtx_insn *emit_use (rtx);
2711 extern rtx_insn *make_insn_raw (rtx);
2712 extern void add_function_usage_to (rtx, rtx);
2713 extern rtx_call_insn *last_call_insn (void);
2714 extern rtx_insn *previous_insn (rtx_insn *);
2715 extern rtx_insn *next_insn (rtx_insn *);
2716 extern rtx_insn *prev_nonnote_insn (rtx);
2717 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2718 extern rtx_insn *next_nonnote_insn (rtx);
2719 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2720 extern rtx_insn *prev_nondebug_insn (rtx);
2721 extern rtx_insn *next_nondebug_insn (rtx);
2722 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2723 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2724 extern rtx_insn *prev_real_insn (rtx);
2725 extern rtx_insn *next_real_insn (rtx);
2726 extern rtx_insn *prev_active_insn (rtx);
2727 extern rtx_insn *next_active_insn (rtx);
2728 extern int active_insn_p (const_rtx);
2729 extern rtx_insn *next_cc0_user (rtx);
2730 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2731
2732 /* In emit-rtl.c */
2733 extern int insn_line (const rtx_insn *);
2734 extern const char * insn_file (const rtx_insn *);
2735 extern tree insn_scope (const rtx_insn *);
2736 extern expanded_location insn_location (const rtx_insn *);
2737 extern location_t prologue_location, epilogue_location;
2738
2739 /* In jump.c */
2740 extern enum rtx_code reverse_condition (enum rtx_code);
2741 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2742 extern enum rtx_code swap_condition (enum rtx_code);
2743 extern enum rtx_code unsigned_condition (enum rtx_code);
2744 extern enum rtx_code signed_condition (enum rtx_code);
2745 extern void mark_jump_label (rtx, rtx_insn *, int);
2746
2747 /* In jump.c */
2748 extern rtx_insn *delete_related_insns (rtx);
2749
2750 /* In recog.c */
2751 extern rtx *find_constant_term_loc (rtx *);
2752
2753 /* In emit-rtl.c */
2754 extern rtx_insn *try_split (rtx, rtx, int);
2755 extern int split_branch_probability;
2756
2757 /* In unknown file */
2758 extern rtx split_insns (rtx, rtx);
2759
2760 /* In simplify-rtx.c */
2761 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2762 rtx, machine_mode);
2763 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2764 machine_mode);
2765 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2766 rtx, rtx);
2767 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2768 rtx);
2769 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2770 machine_mode, rtx, rtx, rtx);
2771 extern rtx simplify_const_relational_operation (enum rtx_code,
2772 machine_mode, rtx, rtx);
2773 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2774 machine_mode, rtx, rtx);
2775 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2776 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2777 machine_mode);
2778 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2779 machine_mode, rtx, rtx, rtx);
2780 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2781 machine_mode, rtx, rtx);
2782 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2783 unsigned int);
2784 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2785 unsigned int);
2786 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2787 rtx (*fn) (rtx, const_rtx, void *), void *);
2788 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2789 extern rtx simplify_rtx (const_rtx);
2790 extern rtx avoid_constant_pool_reference (rtx);
2791 extern rtx delegitimize_mem_from_attrs (rtx);
2792 extern bool mode_signbit_p (machine_mode, const_rtx);
2793 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2794 extern bool val_signbit_known_set_p (machine_mode,
2795 unsigned HOST_WIDE_INT);
2796 extern bool val_signbit_known_clear_p (machine_mode,
2797 unsigned HOST_WIDE_INT);
2798
2799 /* In reginfo.c */
2800 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2801 bool);
2802 #ifdef HARD_CONST
2803 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2804 #endif
2805
2806 /* In emit-rtl.c */
2807 extern rtx set_for_reg_notes (rtx);
2808 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2809 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2810 extern void set_insn_deleted (rtx);
2811
2812 /* Functions in rtlanal.c */
2813
2814 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2815
2816 /* Handle the cheap and common cases inline for performance. */
2817
2818 inline rtx single_set (const rtx_insn *insn)
2819 {
2820 if (!INSN_P (insn))
2821 return NULL_RTX;
2822
2823 if (GET_CODE (PATTERN (insn)) == SET)
2824 return PATTERN (insn);
2825
2826 /* Defer to the more expensive case. */
2827 return single_set_2 (insn, PATTERN (insn));
2828 }
2829
2830 extern machine_mode get_address_mode (rtx mem);
2831 extern int rtx_addr_can_trap_p (const_rtx);
2832 extern bool nonzero_address_p (const_rtx);
2833 extern int rtx_unstable_p (const_rtx);
2834 extern bool rtx_varies_p (const_rtx, bool);
2835 extern bool rtx_addr_varies_p (const_rtx, bool);
2836 extern rtx get_call_rtx_from (rtx);
2837 extern HOST_WIDE_INT get_integer_term (const_rtx);
2838 extern rtx get_related_value (const_rtx);
2839 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2840 extern void split_const (rtx, rtx *, rtx *);
2841 extern bool unsigned_reg_p (rtx);
2842 extern int reg_mentioned_p (const_rtx, const_rtx);
2843 extern int count_occurrences (const_rtx, const_rtx, int);
2844 extern int reg_referenced_p (const_rtx, const_rtx);
2845 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2846 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2847 extern int commutative_operand_precedence (rtx);
2848 extern bool swap_commutative_operands_p (rtx, rtx);
2849 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2850 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2851 extern int modified_in_p (const_rtx, const_rtx);
2852 extern int reg_set_p (const_rtx, const_rtx);
2853 extern int multiple_sets (const_rtx);
2854 extern int set_noop_p (const_rtx);
2855 extern int noop_move_p (const rtx_insn *);
2856 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2857 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2858 extern const_rtx set_of (const_rtx, const_rtx);
2859 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2860 extern void record_hard_reg_uses (rtx *, void *);
2861 #ifdef HARD_CONST
2862 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2863 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2864 #endif
2865 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2866 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2867 extern int dead_or_set_p (const_rtx, const_rtx);
2868 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2869 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2870 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2871 extern rtx find_reg_equal_equiv_note (const_rtx);
2872 extern rtx find_constant_src (const rtx_insn *);
2873 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2874 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2875 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2876 extern void add_reg_note (rtx, enum reg_note, rtx);
2877 extern void add_int_reg_note (rtx, enum reg_note, int);
2878 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2879 extern void remove_note (rtx, const_rtx);
2880 extern void remove_reg_equal_equiv_notes (rtx_insn *);
2881 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2882 extern int side_effects_p (const_rtx);
2883 extern int volatile_refs_p (const_rtx);
2884 extern int volatile_insn_p (const_rtx);
2885 extern int may_trap_p_1 (const_rtx, unsigned);
2886 extern int may_trap_p (const_rtx);
2887 extern int may_trap_or_fault_p (const_rtx);
2888 extern bool can_throw_internal (const_rtx);
2889 extern bool can_throw_external (const_rtx);
2890 extern bool insn_could_throw_p (const_rtx);
2891 extern bool insn_nothrow_p (const_rtx);
2892 extern bool can_nonlocal_goto (const rtx_insn *);
2893 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2894 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2895 extern int inequality_comparisons_p (const_rtx);
2896 extern rtx replace_rtx (rtx, rtx, rtx);
2897 extern void replace_label (rtx *, rtx, rtx, bool);
2898 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2899 extern bool rtx_referenced_p (const_rtx, const_rtx);
2900 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2901 extern int computed_jump_p (const rtx_insn *);
2902 extern bool tls_referenced_p (const_rtx);
2903
2904 /* Overload for refers_to_regno_p for checking a single register. */
2905 inline bool
2906 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2907 {
2908 return refers_to_regno_p (regnum, regnum + 1, x, loc);
2909 }
2910
2911 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2912 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2913 NULL. The callback is passed the same opaque ARG passed to
2914 for_each_inc_dec. Return zero to continue looking for other
2915 autoinc operations or any other value to interrupt the traversal and
2916 return that value to the caller of for_each_inc_dec. */
2917 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2918 rtx srcoff, void *arg);
2919 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2920
2921 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2922 rtx *, rtx *);
2923 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2924 rtx_equal_p_callback_function);
2925
2926 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
2927 machine_mode *);
2928 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
2929 bool, hash_rtx_callback_function);
2930
2931 extern rtx regno_use_in (unsigned int, rtx);
2932 extern int auto_inc_p (const_rtx);
2933 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
2934 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2935 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2936 extern int loc_mentioned_in_p (rtx *, const_rtx);
2937 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2938 extern bool keep_with_call_p (const rtx_insn *);
2939 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2940 extern int insn_rtx_cost (rtx, bool);
2941 extern unsigned seq_cost (const rtx_insn *, bool);
2942
2943 /* Given an insn and condition, return a canonical description of
2944 the test being made. */
2945 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2946 int, int);
2947
2948 /* Given a JUMP_INSN, return a canonical description of the test
2949 being made. */
2950 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2951
2952 /* Information about a subreg of a hard register. */
2953 struct subreg_info
2954 {
2955 /* Offset of first hard register involved in the subreg. */
2956 int offset;
2957 /* Number of hard registers involved in the subreg. In the case of
2958 a paradoxical subreg, this is the number of registers that would
2959 be modified by writing to the subreg; some of them may be don't-care
2960 when reading from the subreg. */
2961 int nregs;
2962 /* Whether this subreg can be represented as a hard reg with the new
2963 mode (by adding OFFSET to the original hard register). */
2964 bool representable_p;
2965 };
2966
2967 extern void subreg_get_info (unsigned int, machine_mode,
2968 unsigned int, machine_mode,
2969 struct subreg_info *);
2970
2971 /* lists.c */
2972
2973 extern void free_EXPR_LIST_list (rtx_expr_list **);
2974 extern void free_INSN_LIST_list (rtx_insn_list **);
2975 extern void free_EXPR_LIST_node (rtx);
2976 extern void free_INSN_LIST_node (rtx);
2977 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2978 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2979 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2980 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2981 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2982 extern rtx remove_list_elem (rtx, rtx *);
2983 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2984 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2985
2986
2987 /* reginfo.c */
2988
2989 /* Resize reg info. */
2990 extern bool resize_reg_info (void);
2991 /* Free up register info memory. */
2992 extern void free_reg_info (void);
2993 extern void init_subregs_of_mode (void);
2994 extern void finish_subregs_of_mode (void);
2995
2996 /* recog.c */
2997 extern rtx extract_asm_operands (rtx);
2998 extern int asm_noperands (const_rtx);
2999 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3000 machine_mode *, location_t *);
3001 extern void get_referenced_operands (const char *, bool *, unsigned int);
3002
3003 extern enum reg_class reg_preferred_class (int);
3004 extern enum reg_class reg_alternate_class (int);
3005 extern enum reg_class reg_allocno_class (int);
3006 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3007 enum reg_class);
3008
3009 extern void split_all_insns (void);
3010 extern unsigned int split_all_insns_noflow (void);
3011
3012 #define MAX_SAVED_CONST_INT 64
3013 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3014
3015 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3016 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3017 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3018 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3019 extern GTY(()) rtx const_true_rtx;
3020
3021 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3022
3023 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3024 same as VOIDmode. */
3025
3026 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3027
3028 /* Likewise, for the constants 1 and 2 and -1. */
3029
3030 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3031 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3032 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3033
3034 extern GTY(()) rtx pc_rtx;
3035 extern GTY(()) rtx cc0_rtx;
3036 extern GTY(()) rtx ret_rtx;
3037 extern GTY(()) rtx simple_return_rtx;
3038
3039 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3040 is used to represent the frame pointer. This is because the
3041 hard frame pointer and the automatic variables are separated by an amount
3042 that cannot be determined until after register allocation. We can assume
3043 that in this case ELIMINABLE_REGS will be defined, one action of which
3044 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3045 #ifndef HARD_FRAME_POINTER_REGNUM
3046 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3047 #endif
3048
3049 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3050 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3051 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3052 #endif
3053
3054 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3055 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3056 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3057 #endif
3058
3059 /* Index labels for global_rtl. */
3060 enum global_rtl_index
3061 {
3062 GR_STACK_POINTER,
3063 GR_FRAME_POINTER,
3064 /* For register elimination to work properly these hard_frame_pointer_rtx,
3065 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3066 the same register. */
3067 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3068 GR_ARG_POINTER = GR_FRAME_POINTER,
3069 #endif
3070 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3071 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3072 #else
3073 GR_HARD_FRAME_POINTER,
3074 #endif
3075 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3076 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3077 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3078 #else
3079 GR_ARG_POINTER,
3080 #endif
3081 #endif
3082 GR_VIRTUAL_INCOMING_ARGS,
3083 GR_VIRTUAL_STACK_ARGS,
3084 GR_VIRTUAL_STACK_DYNAMIC,
3085 GR_VIRTUAL_OUTGOING_ARGS,
3086 GR_VIRTUAL_CFA,
3087 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3088
3089 GR_MAX
3090 };
3091
3092 /* Target-dependent globals. */
3093 struct GTY(()) target_rtl {
3094 /* All references to the hard registers in global_rtl_index go through
3095 these unique rtl objects. On machines where the frame-pointer and
3096 arg-pointer are the same register, they use the same unique object.
3097
3098 After register allocation, other rtl objects which used to be pseudo-regs
3099 may be clobbered to refer to the frame-pointer register.
3100 But references that were originally to the frame-pointer can be
3101 distinguished from the others because they contain frame_pointer_rtx.
3102
3103 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3104 tricky: until register elimination has taken place hard_frame_pointer_rtx
3105 should be used if it is being set, and frame_pointer_rtx otherwise. After
3106 register elimination hard_frame_pointer_rtx should always be used.
3107 On machines where the two registers are same (most) then these are the
3108 same. */
3109 rtx x_global_rtl[GR_MAX];
3110
3111 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3112 rtx x_pic_offset_table_rtx;
3113
3114 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3115 This is used to implement __builtin_return_address for some machines;
3116 see for instance the MIPS port. */
3117 rtx x_return_address_pointer_rtx;
3118
3119 /* Commonly used RTL for hard registers. These objects are not
3120 necessarily unique, so we allocate them separately from global_rtl.
3121 They are initialized once per compilation unit, then copied into
3122 regno_reg_rtx at the beginning of each function. */
3123 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3124
3125 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3126 rtx x_top_of_stack[MAX_MACHINE_MODE];
3127
3128 /* Static hunks of RTL used by the aliasing code; these are treated
3129 as persistent to avoid unnecessary RTL allocations. */
3130 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3131
3132 /* The default memory attributes for each mode. */
3133 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3134
3135 /* Track if RTL has been initialized. */
3136 bool target_specific_initialized;
3137 };
3138
3139 extern GTY(()) struct target_rtl default_target_rtl;
3140 #if SWITCHABLE_TARGET
3141 extern struct target_rtl *this_target_rtl;
3142 #else
3143 #define this_target_rtl (&default_target_rtl)
3144 #endif
3145
3146 #define global_rtl \
3147 (this_target_rtl->x_global_rtl)
3148 #define pic_offset_table_rtx \
3149 (this_target_rtl->x_pic_offset_table_rtx)
3150 #define return_address_pointer_rtx \
3151 (this_target_rtl->x_return_address_pointer_rtx)
3152 #define top_of_stack \
3153 (this_target_rtl->x_top_of_stack)
3154 #define mode_mem_attrs \
3155 (this_target_rtl->x_mode_mem_attrs)
3156
3157 /* All references to certain hard regs, except those created
3158 by allocating pseudo regs into them (when that's possible),
3159 go through these unique rtx objects. */
3160 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3161 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3162 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3163 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3164
3165 #ifndef GENERATOR_FILE
3166 /* Return the attributes of a MEM rtx. */
3167 static inline struct mem_attrs *
3168 get_mem_attrs (const_rtx x)
3169 {
3170 struct mem_attrs *attrs;
3171
3172 attrs = MEM_ATTRS (x);
3173 if (!attrs)
3174 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3175 return attrs;
3176 }
3177 #endif
3178
3179 /* Include the RTL generation functions. */
3180
3181 #ifndef GENERATOR_FILE
3182 #include "genrtl.h"
3183 #undef gen_rtx_ASM_INPUT
3184 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3185 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3186 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3187 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3188 #endif
3189
3190 /* There are some RTL codes that require special attention; the
3191 generation functions included above do the raw handling. If you
3192 add to this list, modify special_rtx in gengenrtl.c as well. */
3193
3194 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3195 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3196 extern rtx_insn *
3197 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3198 basic_block bb, rtx pattern, int location, int code,
3199 rtx reg_notes);
3200 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3201 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3202 extern rtx gen_raw_REG (machine_mode, int);
3203 extern rtx gen_rtx_REG (machine_mode, unsigned);
3204 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3205 extern rtx gen_rtx_MEM (machine_mode, rtx);
3206 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3207 enum var_init_status);
3208
3209 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3210
3211 /* Virtual registers are used during RTL generation to refer to locations into
3212 the stack frame when the actual location isn't known until RTL generation
3213 is complete. The routine instantiate_virtual_regs replaces these with
3214 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3215 a constant. */
3216
3217 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3218
3219 /* This points to the first word of the incoming arguments passed on the stack,
3220 either by the caller or by the callee when pretending it was passed by the
3221 caller. */
3222
3223 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3224
3225 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3226
3227 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3228 variable on the stack. Otherwise, it points to the first variable on
3229 the stack. */
3230
3231 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3232
3233 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3234
3235 /* This points to the location of dynamically-allocated memory on the stack
3236 immediately after the stack pointer has been adjusted by the amount
3237 desired. */
3238
3239 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3240
3241 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3242
3243 /* This points to the location in the stack at which outgoing arguments should
3244 be written when the stack is pre-pushed (arguments pushed using push
3245 insns always use sp). */
3246
3247 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3248
3249 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3250
3251 /* This points to the Canonical Frame Address of the function. This
3252 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3253 but is calculated relative to the arg pointer for simplicity; the
3254 frame pointer nor stack pointer are necessarily fixed relative to
3255 the CFA until after reload. */
3256
3257 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3258
3259 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3260
3261 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3262
3263 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3264 when finalized. */
3265
3266 #define virtual_preferred_stack_boundary_rtx \
3267 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3268
3269 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3270 ((FIRST_VIRTUAL_REGISTER) + 5)
3271
3272 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3273
3274 /* Nonzero if REGNUM is a pointer into the stack frame. */
3275 #define REGNO_PTR_FRAME_P(REGNUM) \
3276 ((REGNUM) == STACK_POINTER_REGNUM \
3277 || (REGNUM) == FRAME_POINTER_REGNUM \
3278 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3279 || (REGNUM) == ARG_POINTER_REGNUM \
3280 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3281 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3282
3283 /* REGNUM never really appearing in the INSN stream. */
3284 #define INVALID_REGNUM (~(unsigned int) 0)
3285
3286 /* REGNUM for which no debug information can be generated. */
3287 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3288
3289 extern rtx output_constant_def (tree, int);
3290 extern rtx lookup_constant_def (tree);
3291
3292 /* Nonzero after end of reload pass.
3293 Set to 1 or 0 by reload1.c. */
3294
3295 extern int reload_completed;
3296
3297 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3298 extern int epilogue_completed;
3299
3300 /* Set to 1 while reload_as_needed is operating.
3301 Required by some machines to handle any generated moves differently. */
3302
3303 extern int reload_in_progress;
3304
3305 /* Set to 1 while in lra. */
3306 extern int lra_in_progress;
3307
3308 /* This macro indicates whether you may create a new
3309 pseudo-register. */
3310
3311 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3312
3313 #ifdef STACK_REGS
3314 /* Nonzero after end of regstack pass.
3315 Set to 1 or 0 by reg-stack.c. */
3316 extern int regstack_completed;
3317 #endif
3318
3319 /* If this is nonzero, we do not bother generating VOLATILE
3320 around volatile memory references, and we are willing to
3321 output indirect addresses. If cse is to follow, we reject
3322 indirect addresses so a useful potential cse is generated;
3323 if it is used only once, instruction combination will produce
3324 the same indirect address eventually. */
3325 extern int cse_not_expected;
3326
3327 /* Translates rtx code to tree code, for those codes needed by
3328 REAL_ARITHMETIC. The function returns an int because the caller may not
3329 know what `enum tree_code' means. */
3330
3331 extern int rtx_to_tree_code (enum rtx_code);
3332
3333 /* In cse.c */
3334 extern int delete_trivially_dead_insns (rtx_insn *, int);
3335 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3336 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3337
3338 /* In dse.c */
3339 extern bool check_for_inc_dec (rtx_insn *insn);
3340
3341 /* In jump.c */
3342 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3343 extern bool jump_to_label_p (const rtx_insn *);
3344 extern int condjump_p (const rtx_insn *);
3345 extern int any_condjump_p (const rtx_insn *);
3346 extern int any_uncondjump_p (const rtx_insn *);
3347 extern rtx pc_set (const rtx_insn *);
3348 extern rtx condjump_label (const rtx_insn *);
3349 extern int simplejump_p (const rtx_insn *);
3350 extern int returnjump_p (const rtx_insn *);
3351 extern int eh_returnjump_p (rtx_insn *);
3352 extern int onlyjump_p (const rtx_insn *);
3353 extern int only_sets_cc0_p (const_rtx);
3354 extern int sets_cc0_p (const_rtx);
3355 extern int invert_jump_1 (rtx_insn *, rtx);
3356 extern int invert_jump (rtx_insn *, rtx, int);
3357 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3358 extern int true_regnum (const_rtx);
3359 extern unsigned int reg_or_subregno (const_rtx);
3360 extern int redirect_jump_1 (rtx_insn *, rtx);
3361 extern void redirect_jump_2 (rtx_insn *, rtx, rtx, int, int);
3362 extern int redirect_jump (rtx_insn *, rtx, int);
3363 extern void rebuild_jump_labels (rtx_insn *);
3364 extern void rebuild_jump_labels_chain (rtx_insn *);
3365 extern rtx reversed_comparison (const_rtx, machine_mode);
3366 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3367 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3368 const_rtx, const_rtx);
3369 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3370 extern int condjump_in_parallel_p (const rtx_insn *);
3371
3372 /* In emit-rtl.c. */
3373 extern int max_reg_num (void);
3374 extern int max_label_num (void);
3375 extern int get_first_label_num (void);
3376 extern void maybe_set_first_label_num (rtx);
3377 extern void delete_insns_since (rtx_insn *);
3378 extern void mark_reg_pointer (rtx, int);
3379 extern void mark_user_reg (rtx);
3380 extern void reset_used_flags (rtx);
3381 extern void set_used_flags (rtx);
3382 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3383 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3384 extern int get_max_insn_count (void);
3385 extern int in_sequence_p (void);
3386 extern void init_emit (void);
3387 extern void init_emit_regs (void);
3388 extern void init_derived_machine_modes (void);
3389 extern void init_emit_once (void);
3390 extern void push_topmost_sequence (void);
3391 extern void pop_topmost_sequence (void);
3392 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3393 extern unsigned int unshare_all_rtl (void);
3394 extern void unshare_all_rtl_again (rtx_insn *);
3395 extern void unshare_all_rtl_in_chain (rtx_insn *);
3396 extern void verify_rtl_sharing (void);
3397 extern void add_insn (rtx_insn *);
3398 extern void add_insn_before (rtx, rtx, basic_block);
3399 extern void add_insn_after (rtx, rtx, basic_block);
3400 extern void remove_insn (rtx);
3401 extern rtx_insn *emit (rtx);
3402 extern void emit_insn_at_entry (rtx);
3403 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3404 extern rtx gen_const_mem (machine_mode, rtx);
3405 extern rtx gen_frame_mem (machine_mode, rtx);
3406 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3407 extern bool validate_subreg (machine_mode, machine_mode,
3408 const_rtx, unsigned int);
3409
3410 /* In combine.c */
3411 extern unsigned int extended_count (const_rtx, machine_mode, int);
3412 extern rtx remove_death (unsigned int, rtx_insn *);
3413 extern void dump_combine_stats (FILE *);
3414 extern void dump_combine_total_stats (FILE *);
3415 extern rtx make_compound_operation (rtx, enum rtx_code);
3416
3417 /* In sched-rgn.c. */
3418 extern void schedule_insns (void);
3419
3420 /* In sched-ebb.c. */
3421 extern void schedule_ebbs (void);
3422
3423 /* In sel-sched-dump.c. */
3424 extern void sel_sched_fix_param (const char *param, const char *val);
3425
3426 /* In print-rtl.c */
3427 extern const char *print_rtx_head;
3428 extern void debug (const rtx_def &ref);
3429 extern void debug (const rtx_def *ptr);
3430 extern void debug_rtx (const_rtx);
3431 extern void debug_rtx_list (const rtx_insn *, int);
3432 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3433 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3434 extern void print_mem_expr (FILE *, const_tree);
3435 extern void print_rtl (FILE *, const_rtx);
3436 extern void print_simple_rtl (FILE *, const_rtx);
3437 extern int print_rtl_single (FILE *, const_rtx);
3438 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3439 extern void print_inline_rtx (FILE *, const_rtx, int);
3440
3441 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3442 not be in sched-vis.c but in rtl.c, because they are not only used
3443 by the scheduler anymore but for all "slim" RTL dumping. */
3444 extern void dump_value_slim (FILE *, const_rtx, int);
3445 extern void dump_insn_slim (FILE *, const_rtx);
3446 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3447 int, int);
3448 extern void print_value (pretty_printer *, const_rtx, int);
3449 extern void print_pattern (pretty_printer *, const_rtx, int);
3450 extern void print_insn (pretty_printer *, const_rtx, int);
3451 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3452 extern const char *str_pattern_slim (const_rtx);
3453
3454 /* In stmt.c */
3455 extern void expand_null_return (void);
3456 extern void expand_naked_return (void);
3457 extern void emit_jump (rtx);
3458
3459 /* In expr.c */
3460 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3461 unsigned int, int);
3462 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3463 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3464
3465 /* In expmed.c */
3466 extern void init_expmed (void);
3467 extern void expand_inc (rtx, rtx);
3468 extern void expand_dec (rtx, rtx);
3469
3470 /* In lower-subreg.c */
3471 extern void init_lower_subreg (void);
3472
3473 /* In gcse.c */
3474 extern bool can_copy_p (machine_mode);
3475 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3476 extern rtx fis_get_condition (rtx_insn *);
3477
3478 /* In ira.c */
3479 #ifdef HARD_CONST
3480 extern HARD_REG_SET eliminable_regset;
3481 #endif
3482 extern void mark_elimination (int, int);
3483
3484 /* In reginfo.c */
3485 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3486 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3487 extern void globalize_reg (tree, int);
3488 extern void init_reg_modes_target (void);
3489 extern void init_regs (void);
3490 extern void reinit_regs (void);
3491 extern void init_fake_stack_mems (void);
3492 extern void save_register_info (void);
3493 extern void init_reg_sets (void);
3494 extern void regclass (rtx, int);
3495 extern void reg_scan (rtx_insn *, unsigned int);
3496 extern void fix_register (const char *, int, int);
3497 #ifdef HARD_CONST
3498 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3499 #endif
3500
3501 /* In reload1.c */
3502 extern int function_invariant_p (const_rtx);
3503
3504 /* In calls.c */
3505 enum libcall_type
3506 {
3507 LCT_NORMAL = 0,
3508 LCT_CONST = 1,
3509 LCT_PURE = 2,
3510 LCT_NORETURN = 3,
3511 LCT_THROW = 4,
3512 LCT_RETURNS_TWICE = 5
3513 };
3514
3515 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3516 ...);
3517 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3518 machine_mode, int, ...);
3519
3520 /* In varasm.c */
3521 extern void init_varasm_once (void);
3522
3523 extern rtx make_debug_expr_from_rtl (const_rtx);
3524
3525 /* In read-rtl.c */
3526 extern bool read_rtx (const char *, rtx *);
3527
3528 /* In alias.c */
3529 extern rtx canon_rtx (rtx);
3530 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3531 extern rtx get_addr (rtx);
3532 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3533 const_rtx, rtx);
3534 extern int read_dependence (const_rtx, const_rtx);
3535 extern int anti_dependence (const_rtx, const_rtx);
3536 extern int canon_anti_dependence (const_rtx, bool,
3537 const_rtx, machine_mode, rtx);
3538 extern int output_dependence (const_rtx, const_rtx);
3539 extern int may_alias_p (const_rtx, const_rtx);
3540 extern void init_alias_target (void);
3541 extern void init_alias_analysis (void);
3542 extern void end_alias_analysis (void);
3543 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3544 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3545 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3546 extern bool may_be_sp_based_p (rtx);
3547 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3548 extern rtx get_reg_known_value (unsigned int);
3549 extern bool get_reg_known_equiv_p (unsigned int);
3550 extern rtx get_reg_base_value (unsigned int);
3551
3552 #ifdef STACK_REGS
3553 extern int stack_regs_mentioned (const_rtx insn);
3554 #endif
3555
3556 /* In toplev.c */
3557 extern GTY(()) rtx stack_limit_rtx;
3558
3559 /* In var-tracking.c */
3560 extern unsigned int variable_tracking_main (void);
3561
3562 /* In stor-layout.c. */
3563 extern void get_mode_bounds (machine_mode, int, machine_mode,
3564 rtx *, rtx *);
3565
3566 /* In loop-iv.c */
3567 extern rtx canon_condition (rtx);
3568 extern void simplify_using_condition (rtx, rtx *, bitmap);
3569
3570 /* In final.c */
3571 extern unsigned int compute_alignments (void);
3572 extern void update_alignments (vec<rtx> &);
3573 extern int asm_str_count (const char *templ);
3574 \f
3575 struct rtl_hooks
3576 {
3577 rtx (*gen_lowpart) (machine_mode, rtx);
3578 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3579 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3580 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3581 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3582 unsigned int, unsigned int *);
3583 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3584
3585 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3586 };
3587
3588 /* Each pass can provide its own. */
3589 extern struct rtl_hooks rtl_hooks;
3590
3591 /* ... but then it has to restore these. */
3592 extern const struct rtl_hooks general_rtl_hooks;
3593
3594 /* Keep this for the nonce. */
3595 #define gen_lowpart rtl_hooks.gen_lowpart
3596
3597 extern void insn_locations_init (void);
3598 extern void insn_locations_finalize (void);
3599 extern void set_curr_insn_location (location_t);
3600 extern location_t curr_insn_location (void);
3601
3602 /* rtl-error.c */
3603 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3604 ATTRIBUTE_NORETURN;
3605 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3606 ATTRIBUTE_NORETURN;
3607
3608 #define fatal_insn(msgid, insn) \
3609 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3610 #define fatal_insn_not_found(insn) \
3611 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3612
3613 /* reginfo.c */
3614 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3615
3616 #endif /* ! GCC_RTL_H */