df.h (df_ref_change_reg_with_loc): Remove old_regno parameter.
[gcc.git] / gcc / rtl.h
1 /* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #ifndef GCC_RTL_H
21 #define GCC_RTL_H
22
23 #include "statistics.h"
24 #include "machmode.h"
25 #include "input.h"
26 #include "real.h"
27 #include "vec.h"
28 #include "fixed-value.h"
29 #include "alias.h"
30 #include "hashtab.h"
31 #include "wide-int.h"
32 #include "flags.h"
33 #include "is-a.h"
34
35 /* Value used by some passes to "recognize" noop moves as valid
36 instructions. */
37 #define NOOP_MOVE_INSN_CODE INT_MAX
38
39 /* Register Transfer Language EXPRESSIONS CODES */
40
41 #define RTX_CODE enum rtx_code
42 enum rtx_code {
43
44 #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
45 #include "rtl.def" /* rtl expressions are documented here */
46 #undef DEF_RTL_EXPR
47
48 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
49 NUM_RTX_CODE.
50 Assumes default enum value assignment. */
51
52 /* The cast here, saves many elsewhere. */
53 #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
54
55 /* Similar, but since generator files get more entries... */
56 #ifdef GENERATOR_FILE
57 # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
58 #endif
59
60 /* Register Transfer Language EXPRESSIONS CODE CLASSES */
61
62 enum rtx_class {
63 /* We check bit 0-1 of some rtx class codes in the predicates below. */
64
65 /* Bit 0 = comparison if 0, arithmetic is 1
66 Bit 1 = 1 if commutative. */
67 RTX_COMPARE, /* 0 */
68 RTX_COMM_COMPARE,
69 RTX_BIN_ARITH,
70 RTX_COMM_ARITH,
71
72 /* Must follow the four preceding values. */
73 RTX_UNARY, /* 4 */
74
75 RTX_EXTRA,
76 RTX_MATCH,
77 RTX_INSN,
78
79 /* Bit 0 = 1 if constant. */
80 RTX_OBJ, /* 8 */
81 RTX_CONST_OBJ,
82
83 RTX_TERNARY,
84 RTX_BITFIELD_OPS,
85 RTX_AUTOINC
86 };
87
88 #define RTX_OBJ_MASK (~1)
89 #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
90 #define RTX_COMPARE_MASK (~1)
91 #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
92 #define RTX_ARITHMETIC_MASK (~1)
93 #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
94 #define RTX_BINARY_MASK (~3)
95 #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
96 #define RTX_COMMUTATIVE_MASK (~2)
97 #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
98 #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
99
100 extern const unsigned char rtx_length[NUM_RTX_CODE];
101 #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
102
103 extern const char * const rtx_name[NUM_RTX_CODE];
104 #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
105
106 extern const char * const rtx_format[NUM_RTX_CODE];
107 #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
108
109 extern const enum rtx_class rtx_class[NUM_RTX_CODE];
110 #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
111
112 /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
113 and NEXT_INSN fields). */
114 #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
115
116 extern const unsigned char rtx_code_size[NUM_RTX_CODE];
117 extern const unsigned char rtx_next[NUM_RTX_CODE];
118 \f
119 /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
120 relative to which the offsets are calculated, as explained in rtl.def. */
121 struct addr_diff_vec_flags
122 {
123 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
124 unsigned min_align: 8;
125 /* Flags: */
126 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
127 unsigned min_after_vec: 1; /* minimum address target label is
128 after the ADDR_DIFF_VEC. */
129 unsigned max_after_vec: 1; /* maximum address target label is
130 after the ADDR_DIFF_VEC. */
131 unsigned min_after_base: 1; /* minimum address target label is
132 after BASE. */
133 unsigned max_after_base: 1; /* maximum address target label is
134 after BASE. */
135 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
136 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
137 unsigned : 2;
138 unsigned scale : 8;
139 };
140
141 /* Structure used to describe the attributes of a MEM. These are hashed
142 so MEMs that the same attributes share a data structure. This means
143 they cannot be modified in place. */
144 struct GTY(()) mem_attrs
145 {
146 /* The expression that the MEM accesses, or null if not known.
147 This expression might be larger than the memory reference itself.
148 (In other words, the MEM might access only part of the object.) */
149 tree expr;
150
151 /* The offset of the memory reference from the start of EXPR.
152 Only valid if OFFSET_KNOWN_P. */
153 HOST_WIDE_INT offset;
154
155 /* The size of the memory reference in bytes. Only valid if
156 SIZE_KNOWN_P. */
157 HOST_WIDE_INT size;
158
159 /* The alias set of the memory reference. */
160 alias_set_type alias;
161
162 /* The alignment of the reference in bits. Always a multiple of
163 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
164 than the memory reference itself. */
165 unsigned int align;
166
167 /* The address space that the memory reference uses. */
168 unsigned char addrspace;
169
170 /* True if OFFSET is known. */
171 bool offset_known_p;
172
173 /* True if SIZE is known. */
174 bool size_known_p;
175 };
176
177 /* Structure used to describe the attributes of a REG in similar way as
178 mem_attrs does for MEM above. Note that the OFFSET field is calculated
179 in the same way as for mem_attrs, rather than in the same way as a
180 SUBREG_BYTE. For example, if a big-endian target stores a byte
181 object in the low part of a 4-byte register, the OFFSET field
182 will be -3 rather than 0. */
183
184 struct GTY((for_user)) reg_attrs {
185 tree decl; /* decl corresponding to REG. */
186 HOST_WIDE_INT offset; /* Offset from start of DECL. */
187 };
188
189 /* Common union for an element of an rtx. */
190
191 union rtunion
192 {
193 int rt_int;
194 unsigned int rt_uint;
195 const char *rt_str;
196 rtx rt_rtx;
197 rtvec rt_rtvec;
198 machine_mode rt_type;
199 addr_diff_vec_flags rt_addr_diff_vec_flags;
200 struct cselib_val *rt_cselib;
201 tree rt_tree;
202 basic_block rt_bb;
203 mem_attrs *rt_mem;
204 reg_attrs *rt_reg;
205 struct constant_descriptor_rtx *rt_constant;
206 struct dw_cfi_node *rt_cfi;
207 };
208
209 /* This structure remembers the position of a SYMBOL_REF within an
210 object_block structure. A SYMBOL_REF only provides this information
211 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
212 struct GTY(()) block_symbol {
213 /* The usual SYMBOL_REF fields. */
214 rtunion GTY ((skip)) fld[2];
215
216 /* The block that contains this object. */
217 struct object_block *block;
218
219 /* The offset of this object from the start of its block. It is negative
220 if the symbol has not yet been assigned an offset. */
221 HOST_WIDE_INT offset;
222 };
223
224 /* Describes a group of objects that are to be placed together in such
225 a way that their relative positions are known. */
226 struct GTY((for_user)) object_block {
227 /* The section in which these objects should be placed. */
228 section *sect;
229
230 /* The alignment of the first object, measured in bits. */
231 unsigned int alignment;
232
233 /* The total size of the objects, measured in bytes. */
234 HOST_WIDE_INT size;
235
236 /* The SYMBOL_REFs for each object. The vector is sorted in
237 order of increasing offset and the following conditions will
238 hold for each element X:
239
240 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
241 !SYMBOL_REF_ANCHOR_P (X)
242 SYMBOL_REF_BLOCK (X) == [address of this structure]
243 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
244 vec<rtx, va_gc> *objects;
245
246 /* All the anchor SYMBOL_REFs used to address these objects, sorted
247 in order of increasing offset, and then increasing TLS model.
248 The following conditions will hold for each element X in this vector:
249
250 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
251 SYMBOL_REF_ANCHOR_P (X)
252 SYMBOL_REF_BLOCK (X) == [address of this structure]
253 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
254 vec<rtx, va_gc> *anchors;
255 };
256
257 struct GTY((variable_size)) hwivec_def {
258 HOST_WIDE_INT elem[1];
259 };
260
261 /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
262 #define CWI_GET_NUM_ELEM(RTX) \
263 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
264 #define CWI_PUT_NUM_ELEM(RTX, NUM) \
265 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
266
267 /* RTL expression ("rtx"). */
268
269 /* The GTY "desc" and "tag" options below are a kludge: we need a desc
270 field for for gengtype to recognize that inheritance is occurring,
271 so that all subclasses are redirected to the traversal hook for the
272 base class.
273 However, all of the fields are in the base class, and special-casing
274 is at work. Hence we use desc and tag of 0, generating a switch
275 statement of the form:
276 switch (0)
277 {
278 case 0: // all the work happens here
279 }
280 in order to work with the existing special-casing in gengtype. */
281
282 struct GTY((desc("0"), tag("0"),
283 chain_next ("RTX_NEXT (&%h)"),
284 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
285 /* The kind of expression this is. */
286 ENUM_BITFIELD(rtx_code) code: 16;
287
288 /* The kind of value the expression has. */
289 ENUM_BITFIELD(machine_mode) mode : 8;
290
291 /* 1 in a MEM if we should keep the alias set for this mem unchanged
292 when we access a component.
293 1 in a JUMP_INSN if it is a crossing jump.
294 1 in a CALL_INSN if it is a sibling call.
295 1 in a SET that is for a return.
296 In a CODE_LABEL, part of the two-bit alternate entry field.
297 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.c.
298 1 in a VALUE is SP_BASED_VALUE_P in cselib.c.
299 1 in a SUBREG generated by LRA for reload insns.
300 1 in a CALL for calls instrumented by Pointer Bounds Checker. */
301 unsigned int jump : 1;
302 /* In a CODE_LABEL, part of the two-bit alternate entry field.
303 1 in a MEM if it cannot trap.
304 1 in a CALL_INSN logically equivalent to
305 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
306 unsigned int call : 1;
307 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
308 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
309 1 in a SYMBOL_REF if it addresses something in the per-function
310 constants pool.
311 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
312 1 in a NOTE, or EXPR_LIST for a const call.
313 1 in a JUMP_INSN of an annulling branch.
314 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.c.
315 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.c.
316 1 in a clobber temporarily created for LRA. */
317 unsigned int unchanging : 1;
318 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
319 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
320 if it has been deleted.
321 1 in a REG expression if corresponds to a variable declared by the user,
322 0 for an internally generated temporary.
323 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
324 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
325 non-local label.
326 In a SYMBOL_REF, this flag is used for machine-specific purposes.
327 In a PREFETCH, this flag indicates that it should be considered a scheduling
328 barrier.
329 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.c. */
330 unsigned int volatil : 1;
331 /* 1 in a REG if the register is used only in exit code a loop.
332 1 in a SUBREG expression if was generated from a variable with a
333 promoted mode.
334 1 in a CODE_LABEL if the label is used for nonlocal gotos
335 and must not be deleted even if its count is zero.
336 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
337 together with the preceding insn. Valid only within sched.
338 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
339 from the target of a branch. Valid from reorg until end of compilation;
340 cleared before used.
341
342 The name of the field is historical. It used to be used in MEMs
343 to record whether the MEM accessed part of a structure. */
344 unsigned int in_struct : 1;
345 /* At the end of RTL generation, 1 if this rtx is used. This is used for
346 copying shared structure. See `unshare_all_rtl'.
347 In a REG, this is not needed for that purpose, and used instead
348 in `leaf_renumber_regs_insn'.
349 1 in a SYMBOL_REF, means that emit_library_call
350 has used it as the function.
351 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.c.
352 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.c. */
353 unsigned int used : 1;
354 /* 1 in an INSN or a SET if this rtx is related to the call frame,
355 either changing how we compute the frame address or saving and
356 restoring registers in the prologue and epilogue.
357 1 in a REG or MEM if it is a pointer.
358 1 in a SYMBOL_REF if it addresses something in the per-function
359 constant string pool.
360 1 in a VALUE is VALUE_CHANGED in var-tracking.c. */
361 unsigned frame_related : 1;
362 /* 1 in a REG or PARALLEL that is the current function's return value.
363 1 in a SYMBOL_REF for a weak symbol.
364 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
365 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.c.
366 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.c. */
367 unsigned return_val : 1;
368
369 union {
370 /* The final union field is aligned to 64 bits on LP64 hosts,
371 giving a 32-bit gap after the fields above. We optimize the
372 layout for that case and use the gap for extra code-specific
373 information. */
374
375 /* The ORIGINAL_REGNO of a REG. */
376 unsigned int original_regno;
377
378 /* The INSN_UID of an RTX_INSN-class code. */
379 int insn_uid;
380
381 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
382 unsigned int symbol_ref_flags;
383
384 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
385 enum var_init_status var_location_status;
386
387 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
388 HOST_WIDE_INTs in the hwivec_def. */
389 unsigned int num_elem;
390 } GTY ((skip)) u2;
391
392 /* The first element of the operands of this rtx.
393 The number of operands and their types are controlled
394 by the `code' field, according to rtl.def. */
395 union u {
396 rtunion fld[1];
397 HOST_WIDE_INT hwint[1];
398 struct block_symbol block_sym;
399 struct real_value rv;
400 struct fixed_value fv;
401 struct hwivec_def hwiv;
402 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
403 };
404
405 /* A node for constructing singly-linked lists of rtx. */
406
407 class GTY(()) rtx_expr_list : public rtx_def
408 {
409 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
410
411 public:
412 /* Get next in list. */
413 rtx_expr_list *next () const;
414
415 /* Get at the underlying rtx. */
416 rtx element () const;
417 };
418
419 template <>
420 template <>
421 inline bool
422 is_a_helper <rtx_expr_list *>::test (rtx rt)
423 {
424 return rt->code == EXPR_LIST;
425 }
426
427 class GTY(()) rtx_insn_list : public rtx_def
428 {
429 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
430
431 This is an instance of:
432
433 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
434
435 i.e. a node for constructing singly-linked lists of rtx_insn *, where
436 the list is "external" to the insn (as opposed to the doubly-linked
437 list embedded within rtx_insn itself). */
438
439 public:
440 /* Get next in list. */
441 rtx_insn_list *next () const;
442
443 /* Get at the underlying instruction. */
444 rtx_insn *insn () const;
445
446 };
447
448 template <>
449 template <>
450 inline bool
451 is_a_helper <rtx_insn_list *>::test (rtx rt)
452 {
453 return rt->code == INSN_LIST;
454 }
455
456 /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
457 typically (but not always) of rtx_insn *, used in the late passes. */
458
459 class GTY(()) rtx_sequence : public rtx_def
460 {
461 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
462
463 public:
464 /* Get number of elements in sequence. */
465 int len () const;
466
467 /* Get i-th element of the sequence. */
468 rtx element (int index) const;
469
470 /* Get i-th element of the sequence, with a checked cast to
471 rtx_insn *. */
472 rtx_insn *insn (int index) const;
473 };
474
475 template <>
476 template <>
477 inline bool
478 is_a_helper <rtx_sequence *>::test (rtx rt)
479 {
480 return rt->code == SEQUENCE;
481 }
482
483 template <>
484 template <>
485 inline bool
486 is_a_helper <const rtx_sequence *>::test (const_rtx rt)
487 {
488 return rt->code == SEQUENCE;
489 }
490
491 class GTY(()) rtx_insn : public rtx_def
492 {
493 public:
494 /* No extra fields, but adds the invariant:
495
496 (INSN_P (X)
497 || NOTE_P (X)
498 || JUMP_TABLE_DATA_P (X)
499 || BARRIER_P (X)
500 || LABEL_P (X))
501
502 i.e. that we must be able to use the following:
503 INSN_UID ()
504 NEXT_INSN ()
505 PREV_INSN ()
506 i.e. we have an rtx that has an INSN_UID field and can be part of
507 a linked list of insns.
508 */
509
510 /* Returns true if this insn has been deleted. */
511
512 bool deleted () const { return volatil; }
513
514 /* Mark this insn as deleted. */
515
516 void set_deleted () { volatil = true; }
517
518 /* Mark this insn as not deleted. */
519
520 void set_undeleted () { volatil = false; }
521 };
522
523 /* Subclasses of rtx_insn. */
524
525 class GTY(()) rtx_debug_insn : public rtx_insn
526 {
527 /* No extra fields, but adds the invariant:
528 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
529 i.e. an annotation for tracking variable assignments.
530
531 This is an instance of:
532 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN)
533 from rtl.def. */
534 };
535
536 class GTY(()) rtx_nonjump_insn : public rtx_insn
537 {
538 /* No extra fields, but adds the invariant:
539 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
540 i.e an instruction that cannot jump.
541
542 This is an instance of:
543 DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN)
544 from rtl.def. */
545 };
546
547 class GTY(()) rtx_jump_insn : public rtx_insn
548 {
549 /* No extra fields, but adds the invariant:
550 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
551 i.e. an instruction that can possibly jump.
552
553 This is an instance of:
554 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN)
555 from rtl.def. */
556 };
557
558 class GTY(()) rtx_call_insn : public rtx_insn
559 {
560 /* No extra fields, but adds the invariant:
561 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
562 i.e. an instruction that can possibly call a subroutine
563 but which will not change which instruction comes next
564 in the current function.
565
566 This is an instance of:
567 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN)
568 from rtl.def. */
569 };
570
571 class GTY(()) rtx_jump_table_data : public rtx_insn
572 {
573 /* No extra fields, but adds the invariant:
574 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
575 i.e. a data for a jump table, considered an instruction for
576 historical reasons.
577
578 This is an instance of:
579 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
580 from rtl.def. */
581
582 public:
583
584 /* This can be either:
585
586 (a) a table of absolute jumps, in which case PATTERN (this) is an
587 ADDR_VEC with arg 0 a vector of labels, or
588
589 (b) a table of relative jumps (e.g. for -fPIC), in which case
590 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
591 arg 1 the vector of labels.
592
593 This method gets the underlying vec. */
594
595 inline rtvec get_labels () const;
596 };
597
598 class GTY(()) rtx_barrier : public rtx_insn
599 {
600 /* No extra fields, but adds the invariant:
601 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
602 i.e. a marker that indicates that control will not flow through.
603
604 This is an instance of:
605 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
606 from rtl.def. */
607 };
608
609 class GTY(()) rtx_code_label : public rtx_insn
610 {
611 /* No extra fields, but adds the invariant:
612 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
613 i.e. a label in the assembler.
614
615 This is an instance of:
616 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
617 from rtl.def. */
618 };
619
620 class GTY(()) rtx_note : public rtx_insn
621 {
622 /* No extra fields, but adds the invariant:
623 NOTE_P(X) aka (GET_CODE (X) == NOTE)
624 i.e. a note about the corresponding source code.
625
626 This is an instance of:
627 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
628 from rtl.def. */
629 };
630
631 /* The size in bytes of an rtx header (code, mode and flags). */
632 #define RTX_HDR_SIZE offsetof (struct rtx_def, u)
633
634 /* The size in bytes of an rtx with code CODE. */
635 #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
636
637 #define NULL_RTX (rtx) 0
638
639 /* The "next" and "previous" RTX, relative to this one. */
640
641 #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
642 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
643
644 /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
645 */
646 #define RTX_PREV(X) ((INSN_P (X) \
647 || NOTE_P (X) \
648 || JUMP_TABLE_DATA_P (X) \
649 || BARRIER_P (X) \
650 || LABEL_P (X)) \
651 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
652 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
653 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
654
655 /* Define macros to access the `code' field of the rtx. */
656
657 #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
658 #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
659
660 #define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
661 #define PUT_MODE(RTX, MODE) ((RTX)->mode = (MODE))
662
663 /* RTL vector. These appear inside RTX's when there is a need
664 for a variable number of things. The principle use is inside
665 PARALLEL expressions. */
666
667 struct GTY(()) rtvec_def {
668 int num_elem; /* number of elements */
669 rtx GTY ((length ("%h.num_elem"))) elem[1];
670 };
671
672 #define NULL_RTVEC (rtvec) 0
673
674 #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
675 #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
676
677 /* Predicate yielding nonzero iff X is an rtx for a register. */
678 #define REG_P(X) (GET_CODE (X) == REG)
679
680 /* Predicate yielding nonzero iff X is an rtx for a memory location. */
681 #define MEM_P(X) (GET_CODE (X) == MEM)
682
683 #if TARGET_SUPPORTS_WIDE_INT
684
685 /* Match CONST_*s that can represent compile-time constant integers. */
686 #define CASE_CONST_SCALAR_INT \
687 case CONST_INT: \
688 case CONST_WIDE_INT
689
690 /* Match CONST_*s for which pointer equality corresponds to value
691 equality. */
692 #define CASE_CONST_UNIQUE \
693 case CONST_INT: \
694 case CONST_WIDE_INT: \
695 case CONST_DOUBLE: \
696 case CONST_FIXED
697
698 /* Match all CONST_* rtxes. */
699 #define CASE_CONST_ANY \
700 case CONST_INT: \
701 case CONST_WIDE_INT: \
702 case CONST_DOUBLE: \
703 case CONST_FIXED: \
704 case CONST_VECTOR
705
706 #else
707
708 /* Match CONST_*s that can represent compile-time constant integers. */
709 #define CASE_CONST_SCALAR_INT \
710 case CONST_INT: \
711 case CONST_DOUBLE
712
713 /* Match CONST_*s for which pointer equality corresponds to value
714 equality. */
715 #define CASE_CONST_UNIQUE \
716 case CONST_INT: \
717 case CONST_DOUBLE: \
718 case CONST_FIXED
719
720 /* Match all CONST_* rtxes. */
721 #define CASE_CONST_ANY \
722 case CONST_INT: \
723 case CONST_DOUBLE: \
724 case CONST_FIXED: \
725 case CONST_VECTOR
726 #endif
727
728 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
729 #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
730
731 /* Predicate yielding nonzero iff X is an rtx for a constant integer. */
732 #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
733
734 /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
735 #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
736
737 /* Predicate yielding true iff X is an rtx for a double-int
738 or floating point constant. */
739 #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
740
741 /* Predicate yielding true iff X is an rtx for a double-int. */
742 #define CONST_DOUBLE_AS_INT_P(X) \
743 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
744
745 /* Predicate yielding true iff X is an rtx for a integer const. */
746 #if TARGET_SUPPORTS_WIDE_INT
747 #define CONST_SCALAR_INT_P(X) \
748 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
749 #else
750 #define CONST_SCALAR_INT_P(X) \
751 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
752 #endif
753
754 /* Predicate yielding true iff X is an rtx for a double-int. */
755 #define CONST_DOUBLE_AS_FLOAT_P(X) \
756 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
757
758 /* Predicate yielding nonzero iff X is a label insn. */
759 #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
760
761 /* Predicate yielding nonzero iff X is a jump insn. */
762 #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
763
764 /* Predicate yielding nonzero iff X is a call insn. */
765 #define CALL_P(X) (GET_CODE (X) == CALL_INSN)
766
767 /* Predicate yielding nonzero iff X is an insn that cannot jump. */
768 #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
769
770 /* Predicate yielding nonzero iff X is a debug note/insn. */
771 #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
772
773 /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
774 #define NONDEBUG_INSN_P(X) (INSN_P (X) && !DEBUG_INSN_P (X))
775
776 /* Nonzero if DEBUG_INSN_P may possibly hold. */
777 #define MAY_HAVE_DEBUG_INSNS (flag_var_tracking_assignments)
778
779 /* Predicate yielding nonzero iff X is a real insn. */
780 #define INSN_P(X) \
781 (NONJUMP_INSN_P (X) || DEBUG_INSN_P (X) || JUMP_P (X) || CALL_P (X))
782
783 /* Predicate yielding nonzero iff X is a note insn. */
784 #define NOTE_P(X) (GET_CODE (X) == NOTE)
785
786 /* Predicate yielding nonzero iff X is a barrier insn. */
787 #define BARRIER_P(X) (GET_CODE (X) == BARRIER)
788
789 /* Predicate yielding nonzero iff X is a data for a jump table. */
790 #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
791
792 /* Predicate yielding nonzero iff RTX is a subreg. */
793 #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
794
795 template <>
796 template <>
797 inline bool
798 is_a_helper <rtx_insn *>::test (rtx rt)
799 {
800 return (INSN_P (rt)
801 || NOTE_P (rt)
802 || JUMP_TABLE_DATA_P (rt)
803 || BARRIER_P (rt)
804 || LABEL_P (rt));
805 }
806
807 template <>
808 template <>
809 inline bool
810 is_a_helper <const rtx_insn *>::test (const_rtx rt)
811 {
812 return (INSN_P (rt)
813 || NOTE_P (rt)
814 || JUMP_TABLE_DATA_P (rt)
815 || BARRIER_P (rt)
816 || LABEL_P (rt));
817 }
818
819 template <>
820 template <>
821 inline bool
822 is_a_helper <rtx_debug_insn *>::test (rtx rt)
823 {
824 return DEBUG_INSN_P (rt);
825 }
826
827 template <>
828 template <>
829 inline bool
830 is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
831 {
832 return NONJUMP_INSN_P (rt);
833 }
834
835 template <>
836 template <>
837 inline bool
838 is_a_helper <rtx_jump_insn *>::test (rtx rt)
839 {
840 return JUMP_P (rt);
841 }
842
843 template <>
844 template <>
845 inline bool
846 is_a_helper <rtx_call_insn *>::test (rtx rt)
847 {
848 return CALL_P (rt);
849 }
850
851 template <>
852 template <>
853 inline bool
854 is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
855 {
856 return CALL_P (insn);
857 }
858
859 template <>
860 template <>
861 inline bool
862 is_a_helper <rtx_jump_table_data *>::test (rtx rt)
863 {
864 return JUMP_TABLE_DATA_P (rt);
865 }
866
867 template <>
868 template <>
869 inline bool
870 is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
871 {
872 return JUMP_TABLE_DATA_P (insn);
873 }
874
875 template <>
876 template <>
877 inline bool
878 is_a_helper <rtx_barrier *>::test (rtx rt)
879 {
880 return BARRIER_P (rt);
881 }
882
883 template <>
884 template <>
885 inline bool
886 is_a_helper <rtx_code_label *>::test (rtx rt)
887 {
888 return LABEL_P (rt);
889 }
890
891 template <>
892 template <>
893 inline bool
894 is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
895 {
896 return LABEL_P (insn);
897 }
898
899 template <>
900 template <>
901 inline bool
902 is_a_helper <rtx_note *>::test (rtx rt)
903 {
904 return NOTE_P (rt);
905 }
906
907 template <>
908 template <>
909 inline bool
910 is_a_helper <rtx_note *>::test (rtx_insn *insn)
911 {
912 return NOTE_P (insn);
913 }
914
915 /* Predicate yielding nonzero iff X is a return or simple_return. */
916 #define ANY_RETURN_P(X) \
917 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
918
919 /* 1 if X is a unary operator. */
920
921 #define UNARY_P(X) \
922 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
923
924 /* 1 if X is a binary operator. */
925
926 #define BINARY_P(X) \
927 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
928
929 /* 1 if X is an arithmetic operator. */
930
931 #define ARITHMETIC_P(X) \
932 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
933 == RTX_ARITHMETIC_RESULT)
934
935 /* 1 if X is an arithmetic operator. */
936
937 #define COMMUTATIVE_ARITH_P(X) \
938 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
939
940 /* 1 if X is a commutative arithmetic operator or a comparison operator.
941 These two are sometimes selected together because it is possible to
942 swap the two operands. */
943
944 #define SWAPPABLE_OPERANDS_P(X) \
945 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
946 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
947 | (1 << RTX_COMPARE)))
948
949 /* 1 if X is a non-commutative operator. */
950
951 #define NON_COMMUTATIVE_P(X) \
952 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
953 == RTX_NON_COMMUTATIVE_RESULT)
954
955 /* 1 if X is a commutative operator on integers. */
956
957 #define COMMUTATIVE_P(X) \
958 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
959 == RTX_COMMUTATIVE_RESULT)
960
961 /* 1 if X is a relational operator. */
962
963 #define COMPARISON_P(X) \
964 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
965
966 /* 1 if X is a constant value that is an integer. */
967
968 #define CONSTANT_P(X) \
969 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
970
971 /* 1 if X can be used to represent an object. */
972 #define OBJECT_P(X) \
973 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
974
975 /* General accessor macros for accessing the fields of an rtx. */
976
977 #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
978 /* The bit with a star outside the statement expr and an & inside is
979 so that N can be evaluated only once. */
980 #define RTL_CHECK1(RTX, N, C1) __extension__ \
981 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
982 const enum rtx_code _code = GET_CODE (_rtx); \
983 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
984 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
985 __FUNCTION__); \
986 if (GET_RTX_FORMAT (_code)[_n] != C1) \
987 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
988 __FUNCTION__); \
989 &_rtx->u.fld[_n]; }))
990
991 #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
992 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
993 const enum rtx_code _code = GET_CODE (_rtx); \
994 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
995 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
996 __FUNCTION__); \
997 if (GET_RTX_FORMAT (_code)[_n] != C1 \
998 && GET_RTX_FORMAT (_code)[_n] != C2) \
999 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1000 __FUNCTION__); \
1001 &_rtx->u.fld[_n]; }))
1002
1003 #define RTL_CHECKC1(RTX, N, C) __extension__ \
1004 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1005 if (GET_CODE (_rtx) != (C)) \
1006 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1007 __FUNCTION__); \
1008 &_rtx->u.fld[_n]; }))
1009
1010 #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1011 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1012 const enum rtx_code _code = GET_CODE (_rtx); \
1013 if (_code != (C1) && _code != (C2)) \
1014 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1015 __FUNCTION__); \
1016 &_rtx->u.fld[_n]; }))
1017
1018 #define RTVEC_ELT(RTVEC, I) __extension__ \
1019 (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1020 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1021 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1022 __FUNCTION__); \
1023 &_rtvec->elem[_i]; }))
1024
1025 #define XWINT(RTX, N) __extension__ \
1026 (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1027 const enum rtx_code _code = GET_CODE (_rtx); \
1028 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1029 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1030 __FUNCTION__); \
1031 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1032 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1033 __FUNCTION__); \
1034 &_rtx->u.hwint[_n]; }))
1035
1036 #define CWI_ELT(RTX, I) __extension__ \
1037 (*({ __typeof (RTX) const _cwi = (RTX); \
1038 int _max = CWI_GET_NUM_ELEM (_cwi); \
1039 const int _i = (I); \
1040 if (_i < 0 || _i >= _max) \
1041 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1042 __FUNCTION__); \
1043 &_cwi->u.hwiv.elem[_i]; }))
1044
1045 #define XCWINT(RTX, N, C) __extension__ \
1046 (*({ __typeof (RTX) const _rtx = (RTX); \
1047 if (GET_CODE (_rtx) != (C)) \
1048 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1049 __FUNCTION__); \
1050 &_rtx->u.hwint[N]; }))
1051
1052 #define XCMWINT(RTX, N, C, M) __extension__ \
1053 (*({ __typeof (RTX) const _rtx = (RTX); \
1054 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1055 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1056 __LINE__, __FUNCTION__); \
1057 &_rtx->u.hwint[N]; }))
1058
1059 #define XCNMPRV(RTX, C, M) __extension__ \
1060 ({ __typeof (RTX) const _rtx = (RTX); \
1061 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1062 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1063 __LINE__, __FUNCTION__); \
1064 &_rtx->u.rv; })
1065
1066 #define XCNMPFV(RTX, C, M) __extension__ \
1067 ({ __typeof (RTX) const _rtx = (RTX); \
1068 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1069 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1070 __LINE__, __FUNCTION__); \
1071 &_rtx->u.fv; })
1072
1073 #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1074 ({ __typeof (RTX) const _symbol = (RTX); \
1075 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1076 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1077 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1078 __FUNCTION__); \
1079 &_symbol->u.block_sym; })
1080
1081 #define HWIVEC_CHECK(RTX,C) __extension__ \
1082 ({ __typeof (RTX) const _symbol = (RTX); \
1083 RTL_CHECKC1 (_symbol, 0, C); \
1084 &_symbol->u.hwiv; })
1085
1086 extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1087 const char *)
1088 ATTRIBUTE_NORETURN;
1089 extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1090 const char *)
1091 ATTRIBUTE_NORETURN;
1092 extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1093 int, const char *)
1094 ATTRIBUTE_NORETURN;
1095 extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1096 int, const char *)
1097 ATTRIBUTE_NORETURN;
1098 extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1099 const char *, int, const char *)
1100 ATTRIBUTE_NORETURN;
1101 extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1102 bool, const char *, int, const char *)
1103 ATTRIBUTE_NORETURN;
1104 extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1105 ATTRIBUTE_NORETURN;
1106 extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1107 const char *)
1108 ATTRIBUTE_NORETURN;
1109 extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1110 const char *)
1111 ATTRIBUTE_NORETURN;
1112
1113 #else /* not ENABLE_RTL_CHECKING */
1114
1115 #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1116 #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1117 #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1118 #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1119 #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1120 #define XWINT(RTX, N) ((RTX)->u.hwint[N])
1121 #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1122 #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1123 #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1124 #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1125 #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1126 #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1127 #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1128 #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1129
1130 #endif
1131
1132 /* General accessor macros for accessing the flags of an rtx. */
1133
1134 /* Access an individual rtx flag, with no checking of any kind. */
1135 #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1136
1137 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1138 #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1139 ({ __typeof (RTX) const _rtx = (RTX); \
1140 if (GET_CODE (_rtx) != C1) \
1141 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1142 __FUNCTION__); \
1143 _rtx; })
1144
1145 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1146 ({ __typeof (RTX) const _rtx = (RTX); \
1147 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1148 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1149 __FUNCTION__); \
1150 _rtx; })
1151
1152 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1153 ({ __typeof (RTX) const _rtx = (RTX); \
1154 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1155 && GET_CODE (_rtx) != C3) \
1156 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1157 __FUNCTION__); \
1158 _rtx; })
1159
1160 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1161 ({ __typeof (RTX) const _rtx = (RTX); \
1162 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1163 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1164 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1165 __FUNCTION__); \
1166 _rtx; })
1167
1168 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1169 ({ __typeof (RTX) const _rtx = (RTX); \
1170 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1171 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1172 && GET_CODE (_rtx) != C5) \
1173 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1174 __FUNCTION__); \
1175 _rtx; })
1176
1177 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1178 __extension__ \
1179 ({ __typeof (RTX) const _rtx = (RTX); \
1180 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1181 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1182 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1183 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1184 __FUNCTION__); \
1185 _rtx; })
1186
1187 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1188 __extension__ \
1189 ({ __typeof (RTX) const _rtx = (RTX); \
1190 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1191 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1192 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1193 && GET_CODE (_rtx) != C7) \
1194 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1195 __FUNCTION__); \
1196 _rtx; })
1197
1198 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1199 __extension__ \
1200 ({ __typeof (RTX) const _rtx = (RTX); \
1201 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1202 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1203 __FUNCTION__); \
1204 _rtx; })
1205
1206 extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1207 int, const char *)
1208 ATTRIBUTE_NORETURN
1209 ;
1210
1211 #else /* not ENABLE_RTL_FLAG_CHECKING */
1212
1213 #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1214 #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1215 #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1216 #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1217 #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1218 #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1219 #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1220 #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1221 #endif
1222
1223 #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1224 #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1225 #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1226 #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1227 #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1228 #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1229 #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1230 #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1231 #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1232 #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1233
1234 #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1235 #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1236
1237 /* These are like XINT, etc. except that they expect a '0' field instead
1238 of the normal type code. */
1239
1240 #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1241 #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1242 #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1243 #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1244 #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1245 #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1246 #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1247 #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1248 #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1249 #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1250 #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1251 #define X0REGATTR(RTX, N) (RTL_CHECKC1 (RTX, N, REG).rt_reg)
1252 #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1253
1254 /* Access a '0' field with any type. */
1255 #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1256
1257 #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1258 #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1259 #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1260 #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1261 #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1262 #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1263 #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1264 #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1265 #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1266 #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1267
1268 #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1269 #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1270
1271 #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1272 \f
1273
1274 /* Methods of rtx_expr_list. */
1275
1276 inline rtx_expr_list *rtx_expr_list::next () const
1277 {
1278 rtx tmp = XEXP (this, 1);
1279 return safe_as_a <rtx_expr_list *> (tmp);
1280 }
1281
1282 inline rtx rtx_expr_list::element () const
1283 {
1284 return XEXP (this, 0);
1285 }
1286
1287 /* Methods of rtx_insn_list. */
1288
1289 inline rtx_insn_list *rtx_insn_list::next () const
1290 {
1291 rtx tmp = XEXP (this, 1);
1292 return safe_as_a <rtx_insn_list *> (tmp);
1293 }
1294
1295 inline rtx_insn *rtx_insn_list::insn () const
1296 {
1297 rtx tmp = XEXP (this, 0);
1298 return safe_as_a <rtx_insn *> (tmp);
1299 }
1300
1301 /* Methods of rtx_sequence. */
1302
1303 inline int rtx_sequence::len () const
1304 {
1305 return XVECLEN (this, 0);
1306 }
1307
1308 inline rtx rtx_sequence::element (int index) const
1309 {
1310 return XVECEXP (this, 0, index);
1311 }
1312
1313 inline rtx_insn *rtx_sequence::insn (int index) const
1314 {
1315 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1316 }
1317
1318 /* ACCESS MACROS for particular fields of insns. */
1319
1320 /* Holds a unique number for each insn.
1321 These are not necessarily sequentially increasing. */
1322 inline int INSN_UID (const_rtx insn)
1323 {
1324 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1325 (insn))->u2.insn_uid;
1326 }
1327 inline int& INSN_UID (rtx insn)
1328 {
1329 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1330 (insn))->u2.insn_uid;
1331 }
1332
1333 /* Chain insns together in sequence. */
1334
1335 /* For now these are split in two: an rvalue form:
1336 PREV_INSN/NEXT_INSN
1337 and an lvalue form:
1338 SET_NEXT_INSN/SET_PREV_INSN. */
1339
1340 inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1341 {
1342 rtx prev = XEXP (insn, 0);
1343 return safe_as_a <rtx_insn *> (prev);
1344 }
1345
1346 inline rtx& SET_PREV_INSN (rtx_insn *insn)
1347 {
1348 return XEXP (insn, 0);
1349 }
1350
1351 inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1352 {
1353 rtx next = XEXP (insn, 1);
1354 return safe_as_a <rtx_insn *> (next);
1355 }
1356
1357 inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1358 {
1359 return XEXP (insn, 1);
1360 }
1361
1362 inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1363 {
1364 return XBBDEF (insn, 2);
1365 }
1366
1367 inline basic_block& BLOCK_FOR_INSN (rtx insn)
1368 {
1369 return XBBDEF (insn, 2);
1370 }
1371
1372 inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1373 {
1374 BLOCK_FOR_INSN (insn) = bb;
1375 }
1376
1377 /* The body of an insn. */
1378 inline rtx PATTERN (const_rtx insn)
1379 {
1380 return XEXP (insn, 3);
1381 }
1382
1383 inline rtx& PATTERN (rtx insn)
1384 {
1385 return XEXP (insn, 3);
1386 }
1387
1388 inline unsigned int INSN_LOCATION (const rtx_insn *insn)
1389 {
1390 return XUINT (insn, 4);
1391 }
1392
1393 inline unsigned int& INSN_LOCATION (rtx_insn *insn)
1394 {
1395 return XUINT (insn, 4);
1396 }
1397
1398 inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1399 {
1400 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1401 }
1402
1403 /* LOCATION of an RTX if relevant. */
1404 #define RTL_LOCATION(X) (INSN_P (X) ? \
1405 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1406 : UNKNOWN_LOCATION)
1407
1408 /* Code number of instruction, from when it was recognized.
1409 -1 means this instruction has not been recognized yet. */
1410 #define INSN_CODE(INSN) XINT (INSN, 5)
1411
1412 inline rtvec rtx_jump_table_data::get_labels () const
1413 {
1414 rtx pat = PATTERN (this);
1415 if (GET_CODE (pat) == ADDR_VEC)
1416 return XVEC (pat, 0);
1417 else
1418 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1419 }
1420
1421 #define RTX_FRAME_RELATED_P(RTX) \
1422 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1423 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1424
1425 /* 1 if JUMP RTX is a crossing jump. */
1426 #define CROSSING_JUMP_P(RTX) \
1427 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1428
1429 /* 1 if RTX is a call to a const function. Built from ECF_CONST and
1430 TREE_READONLY. */
1431 #define RTL_CONST_CALL_P(RTX) \
1432 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1433
1434 /* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1435 DECL_PURE_P. */
1436 #define RTL_PURE_CALL_P(RTX) \
1437 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1438
1439 /* 1 if RTX is a call to a const or pure function. */
1440 #define RTL_CONST_OR_PURE_CALL_P(RTX) \
1441 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1442
1443 /* 1 if RTX is a call to a looping const or pure function. Built from
1444 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1445 #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1446 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1447
1448 /* 1 if RTX is a call_insn for a sibling call. */
1449 #define SIBLING_CALL_P(RTX) \
1450 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1451
1452 /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1453 #define INSN_ANNULLED_BRANCH_P(RTX) \
1454 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1455
1456 /* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1457 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1458 executed if the branch is taken. For annulled branches with this bit
1459 clear, the insn should be executed only if the branch is not taken. */
1460 #define INSN_FROM_TARGET_P(RTX) \
1461 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1462 CALL_INSN)->in_struct)
1463
1464 /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1465 See the comments for ADDR_DIFF_VEC in rtl.def. */
1466 #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1467
1468 /* In a VALUE, the value cselib has assigned to RTX.
1469 This is a "struct cselib_val", see cselib.h. */
1470 #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1471
1472 /* Holds a list of notes on what this insn does to various REGs.
1473 It is a chain of EXPR_LIST rtx's, where the second operand is the
1474 chain pointer and the first operand is the REG being described.
1475 The mode field of the EXPR_LIST contains not a real machine mode
1476 but a value from enum reg_note. */
1477 #define REG_NOTES(INSN) XEXP(INSN, 6)
1478
1479 /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1480 question. */
1481 #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1482
1483 enum reg_note
1484 {
1485 #define DEF_REG_NOTE(NAME) NAME,
1486 #include "reg-notes.def"
1487 #undef DEF_REG_NOTE
1488 REG_NOTE_MAX
1489 };
1490
1491 /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1492 #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1493 #define PUT_REG_NOTE_KIND(LINK, KIND) \
1494 PUT_MODE (LINK, (machine_mode) (KIND))
1495
1496 /* Names for REG_NOTE's in EXPR_LIST insn's. */
1497
1498 extern const char * const reg_note_name[];
1499 #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1500
1501 /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1502 USE and CLOBBER expressions.
1503 USE expressions list the registers filled with arguments that
1504 are passed to the function.
1505 CLOBBER expressions document the registers explicitly clobbered
1506 by this CALL_INSN.
1507 Pseudo registers can not be mentioned in this list. */
1508 #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1509
1510 /* The label-number of a code-label. The assembler label
1511 is made from `L' and the label-number printed in decimal.
1512 Label numbers are unique in a compilation. */
1513 #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1514
1515 /* In a NOTE that is a line number, this is a string for the file name that the
1516 line is in. We use the same field to record block numbers temporarily in
1517 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1518 between ints and pointers if we use a different macro for the block number.)
1519 */
1520
1521 /* Opaque data. */
1522 #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1523 #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1524 #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1525 #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1526 #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1527 #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1528 #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1529 #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1530 #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1531
1532 /* In a NOTE that is a line number, this is the line number.
1533 Other kinds of NOTEs are identified by negative numbers here. */
1534 #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1535
1536 /* Nonzero if INSN is a note marking the beginning of a basic block. */
1537 #define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1538 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1539
1540 /* Variable declaration and the location of a variable. */
1541 #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1542 #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1543
1544 /* Initialization status of the variable in the location. Status
1545 can be unknown, uninitialized or initialized. See enumeration
1546 type below. */
1547 #define PAT_VAR_LOCATION_STATUS(PAT) \
1548 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1549 ->u2.var_location_status)
1550
1551 /* Accessors for a NOTE_INSN_VAR_LOCATION. */
1552 #define NOTE_VAR_LOCATION_DECL(NOTE) \
1553 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1554 #define NOTE_VAR_LOCATION_LOC(NOTE) \
1555 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1556 #define NOTE_VAR_LOCATION_STATUS(NOTE) \
1557 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1558
1559 /* The VAR_LOCATION rtx in a DEBUG_INSN. */
1560 #define INSN_VAR_LOCATION(INSN) PATTERN (INSN)
1561
1562 /* Accessors for a tree-expanded var location debug insn. */
1563 #define INSN_VAR_LOCATION_DECL(INSN) \
1564 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1565 #define INSN_VAR_LOCATION_LOC(INSN) \
1566 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1567 #define INSN_VAR_LOCATION_STATUS(INSN) \
1568 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1569
1570 /* Expand to the RTL that denotes an unknown variable location in a
1571 DEBUG_INSN. */
1572 #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1573
1574 /* Determine whether X is such an unknown location. */
1575 #define VAR_LOC_UNKNOWN_P(X) \
1576 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1577
1578 /* 1 if RTX is emitted after a call, but it should take effect before
1579 the call returns. */
1580 #define NOTE_DURING_CALL_P(RTX) \
1581 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1582
1583 /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1584 #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1585
1586 /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1587 #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1588
1589 /* PARM_DECL DEBUG_PARAMETER_REF references. */
1590 #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1591
1592 /* Codes that appear in the NOTE_KIND field for kinds of notes
1593 that are not line numbers. These codes are all negative.
1594
1595 Notice that we do not try to use zero here for any of
1596 the special note codes because sometimes the source line
1597 actually can be zero! This happens (for example) when we
1598 are generating code for the per-translation-unit constructor
1599 and destructor routines for some C++ translation unit. */
1600
1601 enum insn_note
1602 {
1603 #define DEF_INSN_NOTE(NAME) NAME,
1604 #include "insn-notes.def"
1605 #undef DEF_INSN_NOTE
1606
1607 NOTE_INSN_MAX
1608 };
1609
1610 /* Names for NOTE insn's other than line numbers. */
1611
1612 extern const char * const note_insn_name[NOTE_INSN_MAX];
1613 #define GET_NOTE_INSN_NAME(NOTE_CODE) \
1614 (note_insn_name[(NOTE_CODE)])
1615
1616 /* The name of a label, in case it corresponds to an explicit label
1617 in the input source code. */
1618 #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1619
1620 /* In jump.c, each label contains a count of the number
1621 of LABEL_REFs that point at it, so unused labels can be deleted. */
1622 #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1623
1624 /* Labels carry a two-bit field composed of the ->jump and ->call
1625 bits. This field indicates whether the label is an alternate
1626 entry point, and if so, what kind. */
1627 enum label_kind
1628 {
1629 LABEL_NORMAL = 0, /* ordinary label */
1630 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1631 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1632 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1633 };
1634
1635 #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1636
1637 /* Retrieve the kind of LABEL. */
1638 #define LABEL_KIND(LABEL) __extension__ \
1639 ({ __typeof (LABEL) const _label = (LABEL); \
1640 if (! LABEL_P (_label)) \
1641 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1642 __FUNCTION__); \
1643 (enum label_kind) ((_label->jump << 1) | _label->call); })
1644
1645 /* Set the kind of LABEL. */
1646 #define SET_LABEL_KIND(LABEL, KIND) do { \
1647 __typeof (LABEL) const _label = (LABEL); \
1648 const unsigned int _kind = (KIND); \
1649 if (! LABEL_P (_label)) \
1650 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1651 __FUNCTION__); \
1652 _label->jump = ((_kind >> 1) & 1); \
1653 _label->call = (_kind & 1); \
1654 } while (0)
1655
1656 #else
1657
1658 /* Retrieve the kind of LABEL. */
1659 #define LABEL_KIND(LABEL) \
1660 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1661
1662 /* Set the kind of LABEL. */
1663 #define SET_LABEL_KIND(LABEL, KIND) do { \
1664 rtx const _label = (LABEL); \
1665 const unsigned int _kind = (KIND); \
1666 _label->jump = ((_kind >> 1) & 1); \
1667 _label->call = (_kind & 1); \
1668 } while (0)
1669
1670 #endif /* rtl flag checking */
1671
1672 #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1673
1674 /* In jump.c, each JUMP_INSN can point to a label that it can jump to,
1675 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1676 be decremented and possibly the label can be deleted. */
1677 #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1678
1679 inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1680 {
1681 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1682 }
1683
1684 /* Once basic blocks are found, each CODE_LABEL starts a chain that
1685 goes through all the LABEL_REFs that jump to that label. The chain
1686 eventually winds up at the CODE_LABEL: it is circular. */
1687 #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1688
1689 /* Get the label that a LABEL_REF references. */
1690 #define LABEL_REF_LABEL(LABREF) XCEXP (LABREF, 0, LABEL_REF)
1691
1692 \f
1693 /* For a REG rtx, REGNO extracts the register number. REGNO can only
1694 be used on RHS. Use SET_REGNO to change the value. */
1695 #define REGNO(RTX) (rhs_regno(RTX))
1696 #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1697 #define SET_REGNO_RAW(RTX, N) (XCUINT (RTX, 0, REG) = N)
1698
1699 /* Return the number of consecutive registers in a REG. This is always
1700 1 for pseudo registers and is determined by HARD_REGNO_NREGS for
1701 hard registers. */
1702 #define REG_NREGS(RTX) \
1703 (REGNO (RTX) < FIRST_PSEUDO_REGISTER \
1704 ? (unsigned int) hard_regno_nregs[REGNO (RTX)][GET_MODE (RTX)] \
1705 : 1)
1706
1707 /* ORIGINAL_REGNO holds the number the register originally had; for a
1708 pseudo register turned into a hard reg this will hold the old pseudo
1709 register number. */
1710 #define ORIGINAL_REGNO(RTX) \
1711 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1712
1713 /* Force the REGNO macro to only be used on the lhs. */
1714 static inline unsigned int
1715 rhs_regno (const_rtx x)
1716 {
1717 return XCUINT (x, 0, REG);
1718 }
1719
1720
1721 /* 1 if RTX is a reg or parallel that is the current function's return
1722 value. */
1723 #define REG_FUNCTION_VALUE_P(RTX) \
1724 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1725
1726 /* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1727 #define REG_USERVAR_P(RTX) \
1728 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1729
1730 /* 1 if RTX is a reg that holds a pointer value. */
1731 #define REG_POINTER(RTX) \
1732 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1733
1734 /* 1 if RTX is a mem that holds a pointer value. */
1735 #define MEM_POINTER(RTX) \
1736 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1737
1738 /* 1 if the given register REG corresponds to a hard register. */
1739 #define HARD_REGISTER_P(REG) (HARD_REGISTER_NUM_P (REGNO (REG)))
1740
1741 /* 1 if the given register number REG_NO corresponds to a hard register. */
1742 #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1743
1744 /* For a CONST_INT rtx, INTVAL extracts the integer. */
1745 #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1746 #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1747
1748 /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
1749 elements actually needed to represent the constant.
1750 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
1751 significant HOST_WIDE_INT. */
1752 #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
1753 #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
1754 #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
1755
1756 /* For a CONST_DOUBLE:
1757 #if TARGET_SUPPORTS_WIDE_INT == 0
1758 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
1759 low-order word and ..._HIGH the high-order.
1760 #endif
1761 For a float, there is a REAL_VALUE_TYPE structure, and
1762 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
1763 #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
1764 #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
1765 #define CONST_DOUBLE_REAL_VALUE(r) \
1766 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
1767
1768 #define CONST_FIXED_VALUE(r) \
1769 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
1770 #define CONST_FIXED_VALUE_HIGH(r) \
1771 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
1772 #define CONST_FIXED_VALUE_LOW(r) \
1773 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
1774
1775 /* For a CONST_VECTOR, return element #n. */
1776 #define CONST_VECTOR_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
1777
1778 /* For a CONST_VECTOR, return the number of elements in a vector. */
1779 #define CONST_VECTOR_NUNITS(RTX) XCVECLEN (RTX, 0, CONST_VECTOR)
1780
1781 /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
1782 SUBREG_BYTE extracts the byte-number. */
1783
1784 #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
1785 #define SUBREG_BYTE(RTX) XCUINT (RTX, 1, SUBREG)
1786
1787 /* in rtlanal.c */
1788 /* Return the right cost to give to an operation
1789 to make the cost of the corresponding register-to-register instruction
1790 N times that of a fast register-to-register instruction. */
1791 #define COSTS_N_INSNS(N) ((N) * 4)
1792
1793 /* Maximum cost of an rtl expression. This value has the special meaning
1794 not to use an rtx with this cost under any circumstances. */
1795 #define MAX_COST INT_MAX
1796
1797 /* Return true if CODE always has VOIDmode. */
1798
1799 static inline bool
1800 always_void_p (enum rtx_code code)
1801 {
1802 return code == SET;
1803 }
1804
1805 /* A structure to hold all available cost information about an rtl
1806 expression. */
1807 struct full_rtx_costs
1808 {
1809 int speed;
1810 int size;
1811 };
1812
1813 /* Initialize a full_rtx_costs structure C to the maximum cost. */
1814 static inline void
1815 init_costs_to_max (struct full_rtx_costs *c)
1816 {
1817 c->speed = MAX_COST;
1818 c->size = MAX_COST;
1819 }
1820
1821 /* Initialize a full_rtx_costs structure C to zero cost. */
1822 static inline void
1823 init_costs_to_zero (struct full_rtx_costs *c)
1824 {
1825 c->speed = 0;
1826 c->size = 0;
1827 }
1828
1829 /* Compare two full_rtx_costs structures A and B, returning true
1830 if A < B when optimizing for speed. */
1831 static inline bool
1832 costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
1833 bool speed)
1834 {
1835 if (speed)
1836 return (a->speed < b->speed
1837 || (a->speed == b->speed && a->size < b->size));
1838 else
1839 return (a->size < b->size
1840 || (a->size == b->size && a->speed < b->speed));
1841 }
1842
1843 /* Increase both members of the full_rtx_costs structure C by the
1844 cost of N insns. */
1845 static inline void
1846 costs_add_n_insns (struct full_rtx_costs *c, int n)
1847 {
1848 c->speed += COSTS_N_INSNS (n);
1849 c->size += COSTS_N_INSNS (n);
1850 }
1851
1852 /* Describes the shape of a subreg:
1853
1854 inner_mode == the mode of the SUBREG_REG
1855 offset == the SUBREG_BYTE
1856 outer_mode == the mode of the SUBREG itself. */
1857 struct subreg_shape {
1858 subreg_shape (machine_mode, unsigned int, machine_mode);
1859 bool operator == (const subreg_shape &) const;
1860 bool operator != (const subreg_shape &) const;
1861 unsigned int unique_id () const;
1862
1863 machine_mode inner_mode;
1864 unsigned int offset;
1865 machine_mode outer_mode;
1866 };
1867
1868 inline
1869 subreg_shape::subreg_shape (machine_mode inner_mode_in,
1870 unsigned int offset_in,
1871 machine_mode outer_mode_in)
1872 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
1873 {}
1874
1875 inline bool
1876 subreg_shape::operator == (const subreg_shape &other) const
1877 {
1878 return (inner_mode == other.inner_mode
1879 && offset == other.offset
1880 && outer_mode == other.outer_mode);
1881 }
1882
1883 inline bool
1884 subreg_shape::operator != (const subreg_shape &other) const
1885 {
1886 return !operator == (other);
1887 }
1888
1889 /* Return an integer that uniquely identifies this shape. Structures
1890 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
1891 current mode is anywhere near being 65536 bytes in size, so the
1892 id comfortably fits in an int. */
1893
1894 inline unsigned int
1895 subreg_shape::unique_id () const
1896 {
1897 STATIC_ASSERT (MAX_MACHINE_MODE <= 256);
1898 return (int) inner_mode + ((int) outer_mode << 8) + (offset << 16);
1899 }
1900
1901 /* Return the shape of a SUBREG rtx. */
1902
1903 static inline subreg_shape
1904 shape_of_subreg (const_rtx x)
1905 {
1906 return subreg_shape (GET_MODE (SUBREG_REG (x)),
1907 SUBREG_BYTE (x), GET_MODE (x));
1908 }
1909
1910 /* Information about an address. This structure is supposed to be able
1911 to represent all supported target addresses. Please extend it if it
1912 is not yet general enough. */
1913 struct address_info {
1914 /* The mode of the value being addressed, or VOIDmode if this is
1915 a load-address operation with no known address mode. */
1916 machine_mode mode;
1917
1918 /* The address space. */
1919 addr_space_t as;
1920
1921 /* A pointer to the top-level address. */
1922 rtx *outer;
1923
1924 /* A pointer to the inner address, after all address mutations
1925 have been stripped from the top-level address. It can be one
1926 of the following:
1927
1928 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
1929
1930 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
1931 points to the step value, depending on whether the step is variable
1932 or constant respectively. SEGMENT is null.
1933
1934 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
1935 with null fields evaluating to 0. */
1936 rtx *inner;
1937
1938 /* Components that make up *INNER. Each one may be null or nonnull.
1939 When nonnull, their meanings are as follows:
1940
1941 - *SEGMENT is the "segment" of memory to which the address refers.
1942 This value is entirely target-specific and is only called a "segment"
1943 because that's its most typical use. It contains exactly one UNSPEC,
1944 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
1945 reloading.
1946
1947 - *BASE is a variable expression representing a base address.
1948 It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM.
1949
1950 - *INDEX is a variable expression representing an index value.
1951 It may be a scaled expression, such as a MULT. It has exactly
1952 one REG, SUBREG or MEM, pointed to by INDEX_TERM.
1953
1954 - *DISP is a constant, possibly mutated. DISP_TERM points to the
1955 unmutated RTX_CONST_OBJ. */
1956 rtx *segment;
1957 rtx *base;
1958 rtx *index;
1959 rtx *disp;
1960
1961 rtx *segment_term;
1962 rtx *base_term;
1963 rtx *index_term;
1964 rtx *disp_term;
1965
1966 /* In a {PRE,POST}_MODIFY address, this points to a second copy
1967 of BASE_TERM, otherwise it is null. */
1968 rtx *base_term2;
1969
1970 /* ADDRESS if this structure describes an address operand, MEM if
1971 it describes a MEM address. */
1972 enum rtx_code addr_outer_code;
1973
1974 /* If BASE is nonnull, this is the code of the rtx that contains it. */
1975 enum rtx_code base_outer_code;
1976
1977 /* True if this is an RTX_AUTOINC address. */
1978 bool autoinc_p;
1979 };
1980
1981 /* This is used to bundle an rtx and a mode together so that the pair
1982 can be used with the wi:: routines. If we ever put modes into rtx
1983 integer constants, this should go away and then just pass an rtx in. */
1984 typedef std::pair <rtx, machine_mode> rtx_mode_t;
1985
1986 namespace wi
1987 {
1988 template <>
1989 struct int_traits <rtx_mode_t>
1990 {
1991 static const enum precision_type precision_type = VAR_PRECISION;
1992 static const bool host_dependent_precision = false;
1993 /* This ought to be true, except for the special case that BImode
1994 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
1995 static const bool is_sign_extended = false;
1996 static unsigned int get_precision (const rtx_mode_t &);
1997 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1998 const rtx_mode_t &);
1999 };
2000 }
2001
2002 inline unsigned int
2003 wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2004 {
2005 return GET_MODE_PRECISION (x.second);
2006 }
2007
2008 inline wi::storage_ref
2009 wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2010 unsigned int precision,
2011 const rtx_mode_t &x)
2012 {
2013 gcc_checking_assert (precision == get_precision (x));
2014 switch (GET_CODE (x.first))
2015 {
2016 case CONST_INT:
2017 if (precision < HOST_BITS_PER_WIDE_INT)
2018 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2019 targets is 1 rather than -1. */
2020 gcc_checking_assert (INTVAL (x.first)
2021 == sext_hwi (INTVAL (x.first), precision)
2022 || (x.second == BImode && INTVAL (x.first) == 1));
2023
2024 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2025
2026 case CONST_WIDE_INT:
2027 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2028 CONST_WIDE_INT_NUNITS (x.first), precision);
2029
2030 #if TARGET_SUPPORTS_WIDE_INT == 0
2031 case CONST_DOUBLE:
2032 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2033 #endif
2034
2035 default:
2036 gcc_unreachable ();
2037 }
2038 }
2039
2040 namespace wi
2041 {
2042 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2043 wide_int min_value (machine_mode, signop);
2044 wide_int max_value (machine_mode, signop);
2045 }
2046
2047 inline wi::hwi_with_prec
2048 wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2049 {
2050 return shwi (val, GET_MODE_PRECISION (mode));
2051 }
2052
2053 /* Produce the smallest number that is represented in MODE. The precision
2054 is taken from MODE and the sign from SGN. */
2055 inline wide_int
2056 wi::min_value (machine_mode mode, signop sgn)
2057 {
2058 return min_value (GET_MODE_PRECISION (mode), sgn);
2059 }
2060
2061 /* Produce the largest number that is represented in MODE. The precision
2062 is taken from MODE and the sign from SGN. */
2063 inline wide_int
2064 wi::max_value (machine_mode mode, signop sgn)
2065 {
2066 return max_value (GET_MODE_PRECISION (mode), sgn);
2067 }
2068
2069 extern void init_rtlanal (void);
2070 extern int rtx_cost (rtx, enum rtx_code, int, bool);
2071 extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2072 extern void get_full_rtx_cost (rtx, enum rtx_code, int,
2073 struct full_rtx_costs *);
2074 extern unsigned int subreg_lsb (const_rtx);
2075 extern unsigned int subreg_lsb_1 (machine_mode, machine_mode,
2076 unsigned int);
2077 extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2078 unsigned int, machine_mode);
2079 extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2080 unsigned int, machine_mode);
2081 extern unsigned int subreg_regno (const_rtx);
2082 extern int simplify_subreg_regno (unsigned int, machine_mode,
2083 unsigned int, machine_mode);
2084 extern unsigned int subreg_nregs (const_rtx);
2085 extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2086 extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2087 extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2088 extern bool constant_pool_constant_p (rtx);
2089 extern bool truncated_to_mode (machine_mode, const_rtx);
2090 extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2091 extern void split_double (rtx, rtx *, rtx *);
2092 extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2093 extern void decompose_address (struct address_info *, rtx *,
2094 machine_mode, addr_space_t, enum rtx_code);
2095 extern void decompose_lea_address (struct address_info *, rtx *);
2096 extern void decompose_mem_address (struct address_info *, rtx);
2097 extern void update_address (struct address_info *);
2098 extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2099 extern enum rtx_code get_index_code (const struct address_info *);
2100
2101 #ifndef GENERATOR_FILE
2102 /* Return the cost of SET X. SPEED_P is true if optimizing for speed
2103 rather than size. */
2104
2105 static inline int
2106 set_rtx_cost (rtx x, bool speed_p)
2107 {
2108 return rtx_cost (x, INSN, 4, speed_p);
2109 }
2110
2111 /* Like set_rtx_cost, but return both the speed and size costs in C. */
2112
2113 static inline void
2114 get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2115 {
2116 get_full_rtx_cost (x, INSN, 4, c);
2117 }
2118
2119 /* Return the cost of moving X into a register, relative to the cost
2120 of a register move. SPEED_P is true if optimizing for speed rather
2121 than size. */
2122
2123 static inline int
2124 set_src_cost (rtx x, bool speed_p)
2125 {
2126 return rtx_cost (x, SET, 1, speed_p);
2127 }
2128
2129 /* Like set_src_cost, but return both the speed and size costs in C. */
2130
2131 static inline void
2132 get_full_set_src_cost (rtx x, struct full_rtx_costs *c)
2133 {
2134 get_full_rtx_cost (x, SET, 1, c);
2135 }
2136 #endif
2137
2138 /* 1 if RTX is a subreg containing a reg that is already known to be
2139 sign- or zero-extended from the mode of the subreg to the mode of
2140 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2141 extension.
2142
2143 When used as a LHS, is means that this extension must be done
2144 when assigning to SUBREG_REG. */
2145
2146 #define SUBREG_PROMOTED_VAR_P(RTX) \
2147 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2148
2149 /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2150 this gives the necessary extensions:
2151 0 - signed (SPR_SIGNED)
2152 1 - normal unsigned (SPR_UNSIGNED)
2153 2 - value is both sign and unsign extended for mode
2154 (SPR_SIGNED_AND_UNSIGNED).
2155 -1 - pointer unsigned, which most often can be handled like unsigned
2156 extension, except for generating instructions where we need to
2157 emit special code (ptr_extend insns) on some architectures
2158 (SPR_POINTER). */
2159
2160 const int SRP_POINTER = -1;
2161 const int SRP_SIGNED = 0;
2162 const int SRP_UNSIGNED = 1;
2163 const int SRP_SIGNED_AND_UNSIGNED = 2;
2164
2165 /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2166 #define SUBREG_PROMOTED_SET(RTX, VAL) \
2167 do { \
2168 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2169 (RTX), SUBREG); \
2170 switch (VAL) \
2171 { \
2172 case SRP_POINTER: \
2173 _rtx->volatil = 0; \
2174 _rtx->unchanging = 0; \
2175 break; \
2176 case SRP_SIGNED: \
2177 _rtx->volatil = 0; \
2178 _rtx->unchanging = 1; \
2179 break; \
2180 case SRP_UNSIGNED: \
2181 _rtx->volatil = 1; \
2182 _rtx->unchanging = 0; \
2183 break; \
2184 case SRP_SIGNED_AND_UNSIGNED: \
2185 _rtx->volatil = 1; \
2186 _rtx->unchanging = 1; \
2187 break; \
2188 } \
2189 } while (0)
2190
2191 /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2192 including SRP_SIGNED_AND_UNSIGNED if promoted for
2193 both signed and unsigned. */
2194 #define SUBREG_PROMOTED_GET(RTX) \
2195 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2196 + (RTX)->unchanging - 1)
2197
2198 /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2199 #define SUBREG_PROMOTED_SIGN(RTX) \
2200 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2201 : (RTX)->unchanging - 1)
2202
2203 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2204 for SIGNED type. */
2205 #define SUBREG_PROMOTED_SIGNED_P(RTX) \
2206 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2207
2208 /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2209 for UNSIGNED type. */
2210 #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2211 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2212
2213 /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2214 #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2215 ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2216 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2217 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2218
2219 /* True if the subreg was generated by LRA for reload insns. Such
2220 subregs are valid only during LRA. */
2221 #define LRA_SUBREG_P(RTX) \
2222 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2223
2224 /* True if call is instrumented by Pointer Bounds Checker. */
2225 #define CALL_EXPR_WITH_BOUNDS_P(RTX) \
2226 (RTL_FLAG_CHECK1 ("CALL_EXPR_WITH_BOUNDS_P", (RTX), CALL)->jump)
2227
2228 /* Access various components of an ASM_OPERANDS rtx. */
2229
2230 #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2231 #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2232 #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2233 #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2234 #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2235 #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2236 #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2237 #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2238 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2239 #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2240 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2241 #define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2242 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2243 #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2244 #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2245 #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2246 #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS)
2247 #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT)
2248
2249 /* 1 if RTX is a mem that is statically allocated in read-only memory. */
2250 #define MEM_READONLY_P(RTX) \
2251 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2252
2253 /* 1 if RTX is a mem and we should keep the alias set for this mem
2254 unchanged when we access a component. Set to 1, or example, when we
2255 are already in a non-addressable component of an aggregate. */
2256 #define MEM_KEEP_ALIAS_SET_P(RTX) \
2257 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2258
2259 /* 1 if RTX is a mem or asm_operand for a volatile reference. */
2260 #define MEM_VOLATILE_P(RTX) \
2261 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2262 ASM_INPUT)->volatil)
2263
2264 /* 1 if RTX is a mem that cannot trap. */
2265 #define MEM_NOTRAP_P(RTX) \
2266 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2267
2268 /* The memory attribute block. We provide access macros for each value
2269 in the block and provide defaults if none specified. */
2270 #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2271
2272 /* The register attribute block. We provide access macros for each value
2273 in the block and provide defaults if none specified. */
2274 #define REG_ATTRS(RTX) X0REGATTR (RTX, 1)
2275
2276 #ifndef GENERATOR_FILE
2277 /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2278 set, and may alias anything. Otherwise, the MEM can only alias
2279 MEMs in a conflicting alias set. This value is set in a
2280 language-dependent manner in the front-end, and should not be
2281 altered in the back-end. These set numbers are tested with
2282 alias_sets_conflict_p. */
2283 #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2284
2285 /* For a MEM rtx, the decl it is known to refer to, if it is known to
2286 refer to part of a DECL. It may also be a COMPONENT_REF. */
2287 #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2288
2289 /* For a MEM rtx, true if its MEM_OFFSET is known. */
2290 #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2291
2292 /* For a MEM rtx, the offset from the start of MEM_EXPR. */
2293 #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2294
2295 /* For a MEM rtx, the address space. */
2296 #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2297
2298 /* For a MEM rtx, true if its MEM_SIZE is known. */
2299 #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2300
2301 /* For a MEM rtx, the size in bytes of the MEM. */
2302 #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2303
2304 /* For a MEM rtx, the alignment in bits. We can use the alignment of the
2305 mode as a default when STRICT_ALIGNMENT, but not if not. */
2306 #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2307 #else
2308 #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2309 #endif
2310
2311 /* For a REG rtx, the decl it is known to refer to, if it is known to
2312 refer to part of a DECL. */
2313 #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2314
2315 /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2316 HOST_WIDE_INT. */
2317 #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2318
2319 /* Copy the attributes that apply to memory locations from RHS to LHS. */
2320 #define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2321 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2322 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2323 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2324 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2325 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2326 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2327
2328 /* 1 if RTX is a label_ref for a nonlocal label. */
2329 /* Likewise in an expr_list for a REG_LABEL_OPERAND or
2330 REG_LABEL_TARGET note. */
2331 #define LABEL_REF_NONLOCAL_P(RTX) \
2332 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2333
2334 /* 1 if RTX is a code_label that should always be considered to be needed. */
2335 #define LABEL_PRESERVE_P(RTX) \
2336 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2337
2338 /* During sched, 1 if RTX is an insn that must be scheduled together
2339 with the preceding insn. */
2340 #define SCHED_GROUP_P(RTX) \
2341 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2342 JUMP_INSN, CALL_INSN)->in_struct)
2343
2344 /* For a SET rtx, SET_DEST is the place that is set
2345 and SET_SRC is the value it is set to. */
2346 #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2347 #define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2348 #define SET_IS_RETURN_P(RTX) \
2349 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2350
2351 /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2352 #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2353 #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2354
2355 /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2356 conditionally executing the code on, COND_EXEC_CODE is the code
2357 to execute if the condition is true. */
2358 #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2359 #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2360
2361 /* 1 if RTX is a symbol_ref that addresses this function's rtl
2362 constants pool. */
2363 #define CONSTANT_POOL_ADDRESS_P(RTX) \
2364 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2365
2366 /* 1 if RTX is a symbol_ref that addresses a value in the file's
2367 tree constant pool. This information is private to varasm.c. */
2368 #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2369 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2370 (RTX), SYMBOL_REF)->frame_related)
2371
2372 /* Used if RTX is a symbol_ref, for machine-specific purposes. */
2373 #define SYMBOL_REF_FLAG(RTX) \
2374 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2375
2376 /* 1 if RTX is a symbol_ref that has been the library function in
2377 emit_library_call. */
2378 #define SYMBOL_REF_USED(RTX) \
2379 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2380
2381 /* 1 if RTX is a symbol_ref for a weak symbol. */
2382 #define SYMBOL_REF_WEAK(RTX) \
2383 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2384
2385 /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2386 SYMBOL_REF_CONSTANT. */
2387 #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2388
2389 /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2390 pool symbol. */
2391 #define SET_SYMBOL_REF_DECL(RTX, DECL) \
2392 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2393
2394 /* The tree (decl or constant) associated with the symbol, or null. */
2395 #define SYMBOL_REF_DECL(RTX) \
2396 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2397
2398 /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2399 #define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2400 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2401
2402 /* The rtx constant pool entry for a symbol, or null. */
2403 #define SYMBOL_REF_CONSTANT(RTX) \
2404 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2405
2406 /* A set of flags on a symbol_ref that are, in some respects, redundant with
2407 information derivable from the tree decl associated with this symbol.
2408 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2409 decl. In some cases this is a bug. But beyond that, it's nice to cache
2410 this information to avoid recomputing it. Finally, this allows space for
2411 the target to store more than one bit of information, as with
2412 SYMBOL_REF_FLAG. */
2413 #define SYMBOL_REF_FLAGS(RTX) \
2414 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2415 ->u2.symbol_ref_flags)
2416
2417 /* These flags are common enough to be defined for all targets. They
2418 are computed by the default version of targetm.encode_section_info. */
2419
2420 /* Set if this symbol is a function. */
2421 #define SYMBOL_FLAG_FUNCTION (1 << 0)
2422 #define SYMBOL_REF_FUNCTION_P(RTX) \
2423 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2424 /* Set if targetm.binds_local_p is true. */
2425 #define SYMBOL_FLAG_LOCAL (1 << 1)
2426 #define SYMBOL_REF_LOCAL_P(RTX) \
2427 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2428 /* Set if targetm.in_small_data_p is true. */
2429 #define SYMBOL_FLAG_SMALL (1 << 2)
2430 #define SYMBOL_REF_SMALL_P(RTX) \
2431 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2432 /* The three-bit field at [5:3] is true for TLS variables; use
2433 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2434 #define SYMBOL_FLAG_TLS_SHIFT 3
2435 #define SYMBOL_REF_TLS_MODEL(RTX) \
2436 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2437 /* Set if this symbol is not defined in this translation unit. */
2438 #define SYMBOL_FLAG_EXTERNAL (1 << 6)
2439 #define SYMBOL_REF_EXTERNAL_P(RTX) \
2440 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2441 /* Set if this symbol has a block_symbol structure associated with it. */
2442 #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2443 #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2444 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2445 /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2446 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2447 #define SYMBOL_FLAG_ANCHOR (1 << 8)
2448 #define SYMBOL_REF_ANCHOR_P(RTX) \
2449 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2450
2451 /* Subsequent bits are available for the target to use. */
2452 #define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2453 #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2454
2455 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2456 structure to which the symbol belongs, or NULL if it has not been
2457 assigned a block. */
2458 #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2459
2460 /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2461 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2462 RTX has not yet been assigned to a block, or it has not been given an
2463 offset within that block. */
2464 #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2465
2466 /* True if RTX is flagged to be a scheduling barrier. */
2467 #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2468 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2469
2470 /* Indicate whether the machine has any sort of auto increment addressing.
2471 If not, we can avoid checking for REG_INC notes. */
2472
2473 #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2474 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2475 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2476 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2477 #define AUTO_INC_DEC
2478 #endif
2479
2480 /* Define a macro to look for REG_INC notes,
2481 but save time on machines where they never exist. */
2482
2483 #ifdef AUTO_INC_DEC
2484 #define FIND_REG_INC_NOTE(INSN, REG) \
2485 ((REG) != NULL_RTX && REG_P ((REG)) \
2486 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2487 : find_reg_note ((INSN), REG_INC, (REG)))
2488 #else
2489 #define FIND_REG_INC_NOTE(INSN, REG) 0
2490 #endif
2491
2492 #ifndef HAVE_PRE_INCREMENT
2493 #define HAVE_PRE_INCREMENT 0
2494 #endif
2495
2496 #ifndef HAVE_PRE_DECREMENT
2497 #define HAVE_PRE_DECREMENT 0
2498 #endif
2499
2500 #ifndef HAVE_POST_INCREMENT
2501 #define HAVE_POST_INCREMENT 0
2502 #endif
2503
2504 #ifndef HAVE_POST_DECREMENT
2505 #define HAVE_POST_DECREMENT 0
2506 #endif
2507
2508 #ifndef HAVE_POST_MODIFY_DISP
2509 #define HAVE_POST_MODIFY_DISP 0
2510 #endif
2511
2512 #ifndef HAVE_POST_MODIFY_REG
2513 #define HAVE_POST_MODIFY_REG 0
2514 #endif
2515
2516 #ifndef HAVE_PRE_MODIFY_DISP
2517 #define HAVE_PRE_MODIFY_DISP 0
2518 #endif
2519
2520 #ifndef HAVE_PRE_MODIFY_REG
2521 #define HAVE_PRE_MODIFY_REG 0
2522 #endif
2523
2524
2525 /* Some architectures do not have complete pre/post increment/decrement
2526 instruction sets, or only move some modes efficiently. These macros
2527 allow us to tune autoincrement generation. */
2528
2529 #ifndef USE_LOAD_POST_INCREMENT
2530 #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2531 #endif
2532
2533 #ifndef USE_LOAD_POST_DECREMENT
2534 #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2535 #endif
2536
2537 #ifndef USE_LOAD_PRE_INCREMENT
2538 #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2539 #endif
2540
2541 #ifndef USE_LOAD_PRE_DECREMENT
2542 #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2543 #endif
2544
2545 #ifndef USE_STORE_POST_INCREMENT
2546 #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2547 #endif
2548
2549 #ifndef USE_STORE_POST_DECREMENT
2550 #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2551 #endif
2552
2553 #ifndef USE_STORE_PRE_INCREMENT
2554 #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2555 #endif
2556
2557 #ifndef USE_STORE_PRE_DECREMENT
2558 #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2559 #endif
2560 \f
2561 /* Nonzero when we are generating CONCATs. */
2562 extern int generating_concat_p;
2563
2564 /* Nonzero when we are expanding trees to RTL. */
2565 extern int currently_expanding_to_rtl;
2566
2567 /* Generally useful functions. */
2568
2569 /* In explow.c */
2570 extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
2571 extern rtx plus_constant (machine_mode, rtx, HOST_WIDE_INT, bool = false);
2572
2573 /* In rtl.c */
2574 extern rtx rtx_alloc_stat (RTX_CODE MEM_STAT_DECL);
2575 #define rtx_alloc(c) rtx_alloc_stat (c MEM_STAT_INFO)
2576 extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
2577 #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
2578 #define const_wide_int_alloc(NWORDS) \
2579 rtx_alloc_v (CONST_WIDE_INT, \
2580 (sizeof (struct hwivec_def) \
2581 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
2582
2583 extern rtvec rtvec_alloc (int);
2584 extern rtvec shallow_copy_rtvec (rtvec);
2585 extern bool shared_const_p (const_rtx);
2586 extern rtx copy_rtx (rtx);
2587 extern void dump_rtx_statistics (void);
2588
2589 /* In emit-rtl.c */
2590 extern rtx copy_rtx_if_shared (rtx);
2591
2592 /* In rtl.c */
2593 extern unsigned int rtx_size (const_rtx);
2594 extern rtx shallow_copy_rtx_stat (const_rtx MEM_STAT_DECL);
2595 #define shallow_copy_rtx(a) shallow_copy_rtx_stat (a MEM_STAT_INFO)
2596 extern int rtx_equal_p (const_rtx, const_rtx);
2597
2598 /* In emit-rtl.c */
2599 extern rtvec gen_rtvec_v (int, rtx *);
2600 extern rtvec gen_rtvec_v (int, rtx_insn **);
2601 extern rtx gen_reg_rtx (machine_mode);
2602 extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, int);
2603 extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
2604 extern rtx gen_reg_rtx_and_attrs (rtx);
2605 extern rtx_code_label *gen_label_rtx (void);
2606 extern rtx gen_lowpart_common (machine_mode, rtx);
2607
2608 /* In cse.c */
2609 extern rtx gen_lowpart_if_possible (machine_mode, rtx);
2610
2611 /* In emit-rtl.c */
2612 extern rtx gen_highpart (machine_mode, rtx);
2613 extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
2614 extern rtx operand_subword (rtx, unsigned int, int, machine_mode);
2615
2616 /* In emit-rtl.c */
2617 extern rtx operand_subword_force (rtx, unsigned int, machine_mode);
2618 extern bool paradoxical_subreg_p (const_rtx);
2619 extern int subreg_lowpart_p (const_rtx);
2620 extern unsigned int subreg_lowpart_offset (machine_mode,
2621 machine_mode);
2622 extern unsigned int subreg_highpart_offset (machine_mode,
2623 machine_mode);
2624 extern int byte_lowpart_offset (machine_mode, machine_mode);
2625 extern rtx make_safe_from (rtx, rtx);
2626 extern rtx convert_memory_address_addr_space (machine_mode, rtx,
2627 addr_space_t);
2628 #define convert_memory_address(to_mode,x) \
2629 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
2630 extern const char *get_insn_name (int);
2631 extern rtx_insn *get_last_insn_anywhere (void);
2632 extern rtx_insn *get_first_nonnote_insn (void);
2633 extern rtx_insn *get_last_nonnote_insn (void);
2634 extern void start_sequence (void);
2635 extern void push_to_sequence (rtx_insn *);
2636 extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
2637 extern void end_sequence (void);
2638 #if TARGET_SUPPORTS_WIDE_INT == 0
2639 extern double_int rtx_to_double_int (const_rtx);
2640 #endif
2641 extern void cwi_output_hex (FILE *, const_rtx);
2642 #ifndef GENERATOR_FILE
2643 extern rtx immed_wide_int_const (const wide_int_ref &, machine_mode);
2644 #endif
2645 #if TARGET_SUPPORTS_WIDE_INT == 0
2646 extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
2647 machine_mode);
2648 #endif
2649
2650 /* In loop-iv.c */
2651
2652 extern rtx lowpart_subreg (machine_mode, rtx, machine_mode);
2653
2654 /* In varasm.c */
2655 extern rtx force_const_mem (machine_mode, rtx);
2656
2657 /* In varasm.c */
2658
2659 struct function;
2660 extern rtx get_pool_constant (const_rtx);
2661 extern rtx get_pool_constant_mark (rtx, bool *);
2662 extern machine_mode get_pool_mode (const_rtx);
2663 extern rtx simplify_subtraction (rtx);
2664 extern void decide_function_section (tree);
2665
2666 /* In emit-rtl.c */
2667 extern rtx_insn *emit_insn_before (rtx, rtx);
2668 extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
2669 extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, int);
2670 extern rtx_insn *emit_jump_insn_before (rtx, rtx);
2671 extern rtx_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
2672 extern rtx_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, int);
2673 extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
2674 extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
2675 extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, int);
2676 extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
2677 extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx);
2678 extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx, int);
2679 extern rtx_barrier *emit_barrier_before (rtx);
2680 extern rtx_insn *emit_label_before (rtx, rtx_insn *);
2681 extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
2682 extern rtx_insn *emit_insn_after (rtx, rtx);
2683 extern rtx_insn *emit_insn_after_noloc (rtx, rtx, basic_block);
2684 extern rtx_insn *emit_insn_after_setloc (rtx, rtx, int);
2685 extern rtx_insn *emit_jump_insn_after (rtx, rtx);
2686 extern rtx_insn *emit_jump_insn_after_noloc (rtx, rtx);
2687 extern rtx_insn *emit_jump_insn_after_setloc (rtx, rtx, int);
2688 extern rtx_insn *emit_call_insn_after (rtx, rtx);
2689 extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx);
2690 extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx, int);
2691 extern rtx_insn *emit_debug_insn_after (rtx, rtx);
2692 extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx);
2693 extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx, int);
2694 extern rtx_barrier *emit_barrier_after (rtx);
2695 extern rtx_insn *emit_label_after (rtx, rtx_insn *);
2696 extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
2697 extern rtx_insn *emit_insn (rtx);
2698 extern rtx_insn *emit_debug_insn (rtx);
2699 extern rtx_insn *emit_jump_insn (rtx);
2700 extern rtx_insn *emit_call_insn (rtx);
2701 extern rtx_insn *emit_label (rtx);
2702 extern rtx_jump_table_data *emit_jump_table_data (rtx);
2703 extern rtx_barrier *emit_barrier (void);
2704 extern rtx_note *emit_note (enum insn_note);
2705 extern rtx_note *emit_note_copy (rtx_note *);
2706 extern rtx_insn *gen_clobber (rtx);
2707 extern rtx_insn *emit_clobber (rtx);
2708 extern rtx_insn *gen_use (rtx);
2709 extern rtx_insn *emit_use (rtx);
2710 extern rtx_insn *make_insn_raw (rtx);
2711 extern void add_function_usage_to (rtx, rtx);
2712 extern rtx_call_insn *last_call_insn (void);
2713 extern rtx_insn *previous_insn (rtx_insn *);
2714 extern rtx_insn *next_insn (rtx_insn *);
2715 extern rtx_insn *prev_nonnote_insn (rtx);
2716 extern rtx_insn *prev_nonnote_insn_bb (rtx);
2717 extern rtx_insn *next_nonnote_insn (rtx);
2718 extern rtx_insn *next_nonnote_insn_bb (rtx_insn *);
2719 extern rtx_insn *prev_nondebug_insn (rtx);
2720 extern rtx_insn *next_nondebug_insn (rtx);
2721 extern rtx_insn *prev_nonnote_nondebug_insn (rtx);
2722 extern rtx_insn *next_nonnote_nondebug_insn (rtx);
2723 extern rtx_insn *prev_real_insn (rtx);
2724 extern rtx_insn *next_real_insn (rtx);
2725 extern rtx_insn *prev_active_insn (rtx);
2726 extern rtx_insn *next_active_insn (rtx);
2727 extern int active_insn_p (const_rtx);
2728 extern rtx_insn *next_cc0_user (rtx);
2729 extern rtx_insn *prev_cc0_setter (rtx_insn *);
2730
2731 /* In emit-rtl.c */
2732 extern int insn_line (const rtx_insn *);
2733 extern const char * insn_file (const rtx_insn *);
2734 extern tree insn_scope (const rtx_insn *);
2735 extern expanded_location insn_location (const rtx_insn *);
2736 extern location_t prologue_location, epilogue_location;
2737
2738 /* In jump.c */
2739 extern enum rtx_code reverse_condition (enum rtx_code);
2740 extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
2741 extern enum rtx_code swap_condition (enum rtx_code);
2742 extern enum rtx_code unsigned_condition (enum rtx_code);
2743 extern enum rtx_code signed_condition (enum rtx_code);
2744 extern void mark_jump_label (rtx, rtx_insn *, int);
2745
2746 /* In jump.c */
2747 extern rtx_insn *delete_related_insns (rtx);
2748
2749 /* In recog.c */
2750 extern rtx *find_constant_term_loc (rtx *);
2751
2752 /* In emit-rtl.c */
2753 extern rtx_insn *try_split (rtx, rtx, int);
2754 extern int split_branch_probability;
2755
2756 /* In unknown file */
2757 extern rtx split_insns (rtx, rtx);
2758
2759 /* In simplify-rtx.c */
2760 extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
2761 rtx, machine_mode);
2762 extern rtx simplify_unary_operation (enum rtx_code, machine_mode, rtx,
2763 machine_mode);
2764 extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
2765 rtx, rtx);
2766 extern rtx simplify_binary_operation (enum rtx_code, machine_mode, rtx,
2767 rtx);
2768 extern rtx simplify_ternary_operation (enum rtx_code, machine_mode,
2769 machine_mode, rtx, rtx, rtx);
2770 extern rtx simplify_const_relational_operation (enum rtx_code,
2771 machine_mode, rtx, rtx);
2772 extern rtx simplify_relational_operation (enum rtx_code, machine_mode,
2773 machine_mode, rtx, rtx);
2774 extern rtx simplify_gen_binary (enum rtx_code, machine_mode, rtx, rtx);
2775 extern rtx simplify_gen_unary (enum rtx_code, machine_mode, rtx,
2776 machine_mode);
2777 extern rtx simplify_gen_ternary (enum rtx_code, machine_mode,
2778 machine_mode, rtx, rtx, rtx);
2779 extern rtx simplify_gen_relational (enum rtx_code, machine_mode,
2780 machine_mode, rtx, rtx);
2781 extern rtx simplify_subreg (machine_mode, rtx, machine_mode,
2782 unsigned int);
2783 extern rtx simplify_gen_subreg (machine_mode, rtx, machine_mode,
2784 unsigned int);
2785 extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
2786 rtx (*fn) (rtx, const_rtx, void *), void *);
2787 extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
2788 extern rtx simplify_rtx (const_rtx);
2789 extern rtx avoid_constant_pool_reference (rtx);
2790 extern rtx delegitimize_mem_from_attrs (rtx);
2791 extern bool mode_signbit_p (machine_mode, const_rtx);
2792 extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
2793 extern bool val_signbit_known_set_p (machine_mode,
2794 unsigned HOST_WIDE_INT);
2795 extern bool val_signbit_known_clear_p (machine_mode,
2796 unsigned HOST_WIDE_INT);
2797
2798 /* In reginfo.c */
2799 extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
2800 bool);
2801 #ifdef HARD_CONST
2802 extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
2803 #endif
2804
2805 /* In emit-rtl.c */
2806 extern rtx set_for_reg_notes (rtx);
2807 extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
2808 extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
2809 extern void set_insn_deleted (rtx);
2810
2811 /* Functions in rtlanal.c */
2812
2813 extern rtx single_set_2 (const rtx_insn *, const_rtx);
2814
2815 /* Handle the cheap and common cases inline for performance. */
2816
2817 inline rtx single_set (const rtx_insn *insn)
2818 {
2819 if (!INSN_P (insn))
2820 return NULL_RTX;
2821
2822 if (GET_CODE (PATTERN (insn)) == SET)
2823 return PATTERN (insn);
2824
2825 /* Defer to the more expensive case. */
2826 return single_set_2 (insn, PATTERN (insn));
2827 }
2828
2829 extern machine_mode get_address_mode (rtx mem);
2830 extern int rtx_addr_can_trap_p (const_rtx);
2831 extern bool nonzero_address_p (const_rtx);
2832 extern int rtx_unstable_p (const_rtx);
2833 extern bool rtx_varies_p (const_rtx, bool);
2834 extern bool rtx_addr_varies_p (const_rtx, bool);
2835 extern rtx get_call_rtx_from (rtx);
2836 extern HOST_WIDE_INT get_integer_term (const_rtx);
2837 extern rtx get_related_value (const_rtx);
2838 extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
2839 extern void split_const (rtx, rtx *, rtx *);
2840 extern bool unsigned_reg_p (rtx);
2841 extern int reg_mentioned_p (const_rtx, const_rtx);
2842 extern int count_occurrences (const_rtx, const_rtx, int);
2843 extern int reg_referenced_p (const_rtx, const_rtx);
2844 extern int reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2845 extern int reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2846 extern int commutative_operand_precedence (rtx);
2847 extern bool swap_commutative_operands_p (rtx, rtx);
2848 extern int modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
2849 extern int no_labels_between_p (const rtx_insn *, const rtx_insn *);
2850 extern int modified_in_p (const_rtx, const_rtx);
2851 extern int reg_set_p (const_rtx, const_rtx);
2852 extern int multiple_sets (const_rtx);
2853 extern int set_noop_p (const_rtx);
2854 extern int noop_move_p (const rtx_insn *);
2855 extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
2856 extern int reg_overlap_mentioned_p (const_rtx, const_rtx);
2857 extern const_rtx set_of (const_rtx, const_rtx);
2858 extern void record_hard_reg_sets (rtx, const_rtx, void *);
2859 extern void record_hard_reg_uses (rtx *, void *);
2860 #ifdef HARD_CONST
2861 extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
2862 extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
2863 #endif
2864 extern void note_stores (const_rtx, void (*) (rtx, const_rtx, void *), void *);
2865 extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
2866 extern int dead_or_set_p (const_rtx, const_rtx);
2867 extern int dead_or_set_regno_p (const_rtx, unsigned int);
2868 extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
2869 extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
2870 extern rtx find_reg_equal_equiv_note (const_rtx);
2871 extern rtx find_constant_src (const rtx_insn *);
2872 extern int find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
2873 extern int find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
2874 extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
2875 extern void add_reg_note (rtx, enum reg_note, rtx);
2876 extern void add_int_reg_note (rtx, enum reg_note, int);
2877 extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
2878 extern void remove_note (rtx, const_rtx);
2879 extern void remove_reg_equal_equiv_notes (rtx_insn *);
2880 extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
2881 extern int side_effects_p (const_rtx);
2882 extern int volatile_refs_p (const_rtx);
2883 extern int volatile_insn_p (const_rtx);
2884 extern int may_trap_p_1 (const_rtx, unsigned);
2885 extern int may_trap_p (const_rtx);
2886 extern int may_trap_or_fault_p (const_rtx);
2887 extern bool can_throw_internal (const_rtx);
2888 extern bool can_throw_external (const_rtx);
2889 extern bool insn_could_throw_p (const_rtx);
2890 extern bool insn_nothrow_p (const_rtx);
2891 extern bool can_nonlocal_goto (const rtx_insn *);
2892 extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
2893 extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
2894 extern int inequality_comparisons_p (const_rtx);
2895 extern rtx replace_rtx (rtx, rtx, rtx);
2896 extern void replace_label (rtx *, rtx, rtx, bool);
2897 extern void replace_label_in_insn (rtx_insn *, rtx, rtx, bool);
2898 extern bool rtx_referenced_p (const_rtx, const_rtx);
2899 extern bool tablejump_p (const rtx_insn *, rtx *, rtx_jump_table_data **);
2900 extern int computed_jump_p (const rtx_insn *);
2901 extern bool tls_referenced_p (const_rtx);
2902
2903 /* Overload for refers_to_regno_p for checking a single register. */
2904 inline bool
2905 refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
2906 {
2907 return refers_to_regno_p (regnum, regnum + 1, x, loc);
2908 }
2909
2910 /* Callback for for_each_inc_dec, to process the autoinc operation OP
2911 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
2912 NULL. The callback is passed the same opaque ARG passed to
2913 for_each_inc_dec. Return zero to continue looking for other
2914 autoinc operations or any other value to interrupt the traversal and
2915 return that value to the caller of for_each_inc_dec. */
2916 typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
2917 rtx srcoff, void *arg);
2918 extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
2919
2920 typedef int (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
2921 rtx *, rtx *);
2922 extern int rtx_equal_p_cb (const_rtx, const_rtx,
2923 rtx_equal_p_callback_function);
2924
2925 typedef int (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
2926 machine_mode *);
2927 extern unsigned hash_rtx_cb (const_rtx, machine_mode, int *, int *,
2928 bool, hash_rtx_callback_function);
2929
2930 extern rtx regno_use_in (unsigned int, rtx);
2931 extern int auto_inc_p (const_rtx);
2932 extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
2933 extern void remove_node_from_expr_list (const_rtx, rtx_expr_list **);
2934 extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
2935 extern int loc_mentioned_in_p (rtx *, const_rtx);
2936 extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
2937 extern bool keep_with_call_p (const rtx_insn *);
2938 extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
2939 extern int insn_rtx_cost (rtx, bool);
2940 extern unsigned seq_cost (const rtx_insn *, bool);
2941
2942 /* Given an insn and condition, return a canonical description of
2943 the test being made. */
2944 extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
2945 int, int);
2946
2947 /* Given a JUMP_INSN, return a canonical description of the test
2948 being made. */
2949 extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
2950
2951 /* Information about a subreg of a hard register. */
2952 struct subreg_info
2953 {
2954 /* Offset of first hard register involved in the subreg. */
2955 int offset;
2956 /* Number of hard registers involved in the subreg. In the case of
2957 a paradoxical subreg, this is the number of registers that would
2958 be modified by writing to the subreg; some of them may be don't-care
2959 when reading from the subreg. */
2960 int nregs;
2961 /* Whether this subreg can be represented as a hard reg with the new
2962 mode (by adding OFFSET to the original hard register). */
2963 bool representable_p;
2964 };
2965
2966 extern void subreg_get_info (unsigned int, machine_mode,
2967 unsigned int, machine_mode,
2968 struct subreg_info *);
2969
2970 /* lists.c */
2971
2972 extern void free_EXPR_LIST_list (rtx_expr_list **);
2973 extern void free_INSN_LIST_list (rtx_insn_list **);
2974 extern void free_EXPR_LIST_node (rtx);
2975 extern void free_INSN_LIST_node (rtx);
2976 extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
2977 extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
2978 extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
2979 extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
2980 extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
2981 extern rtx remove_list_elem (rtx, rtx *);
2982 extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
2983 extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
2984
2985
2986 /* reginfo.c */
2987
2988 /* Resize reg info. */
2989 extern bool resize_reg_info (void);
2990 /* Free up register info memory. */
2991 extern void free_reg_info (void);
2992 extern void init_subregs_of_mode (void);
2993 extern void finish_subregs_of_mode (void);
2994
2995 /* recog.c */
2996 extern rtx extract_asm_operands (rtx);
2997 extern int asm_noperands (const_rtx);
2998 extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
2999 machine_mode *, location_t *);
3000 extern void get_referenced_operands (const char *, bool *, unsigned int);
3001
3002 extern enum reg_class reg_preferred_class (int);
3003 extern enum reg_class reg_alternate_class (int);
3004 extern enum reg_class reg_allocno_class (int);
3005 extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3006 enum reg_class);
3007
3008 extern void split_all_insns (void);
3009 extern unsigned int split_all_insns_noflow (void);
3010
3011 #define MAX_SAVED_CONST_INT 64
3012 extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3013
3014 #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3015 #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3016 #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3017 #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3018 extern GTY(()) rtx const_true_rtx;
3019
3020 extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3021
3022 /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3023 same as VOIDmode. */
3024
3025 #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3026
3027 /* Likewise, for the constants 1 and 2 and -1. */
3028
3029 #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3030 #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3031 #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3032
3033 extern GTY(()) rtx pc_rtx;
3034 extern GTY(()) rtx cc0_rtx;
3035 extern GTY(()) rtx ret_rtx;
3036 extern GTY(()) rtx simple_return_rtx;
3037
3038 /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3039 is used to represent the frame pointer. This is because the
3040 hard frame pointer and the automatic variables are separated by an amount
3041 that cannot be determined until after register allocation. We can assume
3042 that in this case ELIMINABLE_REGS will be defined, one action of which
3043 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3044 #ifndef HARD_FRAME_POINTER_REGNUM
3045 #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3046 #endif
3047
3048 #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3049 #define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3050 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3051 #endif
3052
3053 #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3054 #define HARD_FRAME_POINTER_IS_ARG_POINTER \
3055 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3056 #endif
3057
3058 /* Index labels for global_rtl. */
3059 enum global_rtl_index
3060 {
3061 GR_STACK_POINTER,
3062 GR_FRAME_POINTER,
3063 /* For register elimination to work properly these hard_frame_pointer_rtx,
3064 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3065 the same register. */
3066 #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3067 GR_ARG_POINTER = GR_FRAME_POINTER,
3068 #endif
3069 #if HARD_FRAME_POINTER_IS_FRAME_POINTER
3070 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3071 #else
3072 GR_HARD_FRAME_POINTER,
3073 #endif
3074 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3075 #if HARD_FRAME_POINTER_IS_ARG_POINTER
3076 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3077 #else
3078 GR_ARG_POINTER,
3079 #endif
3080 #endif
3081 GR_VIRTUAL_INCOMING_ARGS,
3082 GR_VIRTUAL_STACK_ARGS,
3083 GR_VIRTUAL_STACK_DYNAMIC,
3084 GR_VIRTUAL_OUTGOING_ARGS,
3085 GR_VIRTUAL_CFA,
3086 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3087
3088 GR_MAX
3089 };
3090
3091 /* Target-dependent globals. */
3092 struct GTY(()) target_rtl {
3093 /* All references to the hard registers in global_rtl_index go through
3094 these unique rtl objects. On machines where the frame-pointer and
3095 arg-pointer are the same register, they use the same unique object.
3096
3097 After register allocation, other rtl objects which used to be pseudo-regs
3098 may be clobbered to refer to the frame-pointer register.
3099 But references that were originally to the frame-pointer can be
3100 distinguished from the others because they contain frame_pointer_rtx.
3101
3102 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3103 tricky: until register elimination has taken place hard_frame_pointer_rtx
3104 should be used if it is being set, and frame_pointer_rtx otherwise. After
3105 register elimination hard_frame_pointer_rtx should always be used.
3106 On machines where the two registers are same (most) then these are the
3107 same. */
3108 rtx x_global_rtl[GR_MAX];
3109
3110 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3111 rtx x_pic_offset_table_rtx;
3112
3113 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3114 This is used to implement __builtin_return_address for some machines;
3115 see for instance the MIPS port. */
3116 rtx x_return_address_pointer_rtx;
3117
3118 /* Commonly used RTL for hard registers. These objects are not
3119 necessarily unique, so we allocate them separately from global_rtl.
3120 They are initialized once per compilation unit, then copied into
3121 regno_reg_rtx at the beginning of each function. */
3122 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3123
3124 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3125 rtx x_top_of_stack[MAX_MACHINE_MODE];
3126
3127 /* Static hunks of RTL used by the aliasing code; these are treated
3128 as persistent to avoid unnecessary RTL allocations. */
3129 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3130
3131 /* The default memory attributes for each mode. */
3132 struct mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3133
3134 /* Track if RTL has been initialized. */
3135 bool target_specific_initialized;
3136 };
3137
3138 extern GTY(()) struct target_rtl default_target_rtl;
3139 #if SWITCHABLE_TARGET
3140 extern struct target_rtl *this_target_rtl;
3141 #else
3142 #define this_target_rtl (&default_target_rtl)
3143 #endif
3144
3145 #define global_rtl \
3146 (this_target_rtl->x_global_rtl)
3147 #define pic_offset_table_rtx \
3148 (this_target_rtl->x_pic_offset_table_rtx)
3149 #define return_address_pointer_rtx \
3150 (this_target_rtl->x_return_address_pointer_rtx)
3151 #define top_of_stack \
3152 (this_target_rtl->x_top_of_stack)
3153 #define mode_mem_attrs \
3154 (this_target_rtl->x_mode_mem_attrs)
3155
3156 /* All references to certain hard regs, except those created
3157 by allocating pseudo regs into them (when that's possible),
3158 go through these unique rtx objects. */
3159 #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
3160 #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
3161 #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
3162 #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
3163
3164 #ifndef GENERATOR_FILE
3165 /* Return the attributes of a MEM rtx. */
3166 static inline struct mem_attrs *
3167 get_mem_attrs (const_rtx x)
3168 {
3169 struct mem_attrs *attrs;
3170
3171 attrs = MEM_ATTRS (x);
3172 if (!attrs)
3173 attrs = mode_mem_attrs[(int) GET_MODE (x)];
3174 return attrs;
3175 }
3176 #endif
3177
3178 /* Include the RTL generation functions. */
3179
3180 #ifndef GENERATOR_FILE
3181 #include "genrtl.h"
3182 #undef gen_rtx_ASM_INPUT
3183 #define gen_rtx_ASM_INPUT(MODE, ARG0) \
3184 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0)
3185 #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
3186 gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC))
3187 #endif
3188
3189 /* There are some RTL codes that require special attention; the
3190 generation functions included above do the raw handling. If you
3191 add to this list, modify special_rtx in gengenrtl.c as well. */
3192
3193 extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
3194 extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
3195 extern rtx_insn *
3196 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
3197 basic_block bb, rtx pattern, int location, int code,
3198 rtx reg_notes);
3199 extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
3200 extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
3201 extern rtx gen_raw_REG (machine_mode, int);
3202 extern rtx gen_rtx_REG (machine_mode, unsigned);
3203 extern rtx gen_rtx_SUBREG (machine_mode, rtx, int);
3204 extern rtx gen_rtx_MEM (machine_mode, rtx);
3205 extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
3206 enum var_init_status);
3207
3208 #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
3209
3210 /* Virtual registers are used during RTL generation to refer to locations into
3211 the stack frame when the actual location isn't known until RTL generation
3212 is complete. The routine instantiate_virtual_regs replaces these with
3213 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
3214 a constant. */
3215
3216 #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
3217
3218 /* This points to the first word of the incoming arguments passed on the stack,
3219 either by the caller or by the callee when pretending it was passed by the
3220 caller. */
3221
3222 #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
3223
3224 #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
3225
3226 /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
3227 variable on the stack. Otherwise, it points to the first variable on
3228 the stack. */
3229
3230 #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
3231
3232 #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
3233
3234 /* This points to the location of dynamically-allocated memory on the stack
3235 immediately after the stack pointer has been adjusted by the amount
3236 desired. */
3237
3238 #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
3239
3240 #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
3241
3242 /* This points to the location in the stack at which outgoing arguments should
3243 be written when the stack is pre-pushed (arguments pushed using push
3244 insns always use sp). */
3245
3246 #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
3247
3248 #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
3249
3250 /* This points to the Canonical Frame Address of the function. This
3251 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
3252 but is calculated relative to the arg pointer for simplicity; the
3253 frame pointer nor stack pointer are necessarily fixed relative to
3254 the CFA until after reload. */
3255
3256 #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
3257
3258 #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
3259
3260 #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
3261
3262 /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
3263 when finalized. */
3264
3265 #define virtual_preferred_stack_boundary_rtx \
3266 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
3267
3268 #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
3269 ((FIRST_VIRTUAL_REGISTER) + 5)
3270
3271 #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
3272
3273 /* Nonzero if REGNUM is a pointer into the stack frame. */
3274 #define REGNO_PTR_FRAME_P(REGNUM) \
3275 ((REGNUM) == STACK_POINTER_REGNUM \
3276 || (REGNUM) == FRAME_POINTER_REGNUM \
3277 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
3278 || (REGNUM) == ARG_POINTER_REGNUM \
3279 || ((REGNUM) >= FIRST_VIRTUAL_REGISTER \
3280 && (REGNUM) <= LAST_VIRTUAL_POINTER_REGISTER))
3281
3282 /* REGNUM never really appearing in the INSN stream. */
3283 #define INVALID_REGNUM (~(unsigned int) 0)
3284
3285 /* REGNUM for which no debug information can be generated. */
3286 #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
3287
3288 extern rtx output_constant_def (tree, int);
3289 extern rtx lookup_constant_def (tree);
3290
3291 /* Nonzero after end of reload pass.
3292 Set to 1 or 0 by reload1.c. */
3293
3294 extern int reload_completed;
3295
3296 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
3297 extern int epilogue_completed;
3298
3299 /* Set to 1 while reload_as_needed is operating.
3300 Required by some machines to handle any generated moves differently. */
3301
3302 extern int reload_in_progress;
3303
3304 /* Set to 1 while in lra. */
3305 extern int lra_in_progress;
3306
3307 /* This macro indicates whether you may create a new
3308 pseudo-register. */
3309
3310 #define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
3311
3312 #ifdef STACK_REGS
3313 /* Nonzero after end of regstack pass.
3314 Set to 1 or 0 by reg-stack.c. */
3315 extern int regstack_completed;
3316 #endif
3317
3318 /* If this is nonzero, we do not bother generating VOLATILE
3319 around volatile memory references, and we are willing to
3320 output indirect addresses. If cse is to follow, we reject
3321 indirect addresses so a useful potential cse is generated;
3322 if it is used only once, instruction combination will produce
3323 the same indirect address eventually. */
3324 extern int cse_not_expected;
3325
3326 /* Translates rtx code to tree code, for those codes needed by
3327 REAL_ARITHMETIC. The function returns an int because the caller may not
3328 know what `enum tree_code' means. */
3329
3330 extern int rtx_to_tree_code (enum rtx_code);
3331
3332 /* In cse.c */
3333 extern int delete_trivially_dead_insns (rtx_insn *, int);
3334 extern int exp_equiv_p (const_rtx, const_rtx, int, bool);
3335 extern unsigned hash_rtx (const_rtx x, machine_mode, int *, int *, bool);
3336
3337 /* In dse.c */
3338 extern bool check_for_inc_dec (rtx_insn *insn);
3339
3340 /* In jump.c */
3341 extern int comparison_dominates_p (enum rtx_code, enum rtx_code);
3342 extern bool jump_to_label_p (const rtx_insn *);
3343 extern int condjump_p (const rtx_insn *);
3344 extern int any_condjump_p (const rtx_insn *);
3345 extern int any_uncondjump_p (const rtx_insn *);
3346 extern rtx pc_set (const rtx_insn *);
3347 extern rtx condjump_label (const rtx_insn *);
3348 extern int simplejump_p (const rtx_insn *);
3349 extern int returnjump_p (const rtx_insn *);
3350 extern int eh_returnjump_p (rtx_insn *);
3351 extern int onlyjump_p (const rtx_insn *);
3352 extern int only_sets_cc0_p (const_rtx);
3353 extern int sets_cc0_p (const_rtx);
3354 extern int invert_jump_1 (rtx_insn *, rtx);
3355 extern int invert_jump (rtx_insn *, rtx, int);
3356 extern int rtx_renumbered_equal_p (const_rtx, const_rtx);
3357 extern int true_regnum (const_rtx);
3358 extern unsigned int reg_or_subregno (const_rtx);
3359 extern int redirect_jump_1 (rtx_insn *, rtx);
3360 extern void redirect_jump_2 (rtx_insn *, rtx, rtx, int, int);
3361 extern int redirect_jump (rtx_insn *, rtx, int);
3362 extern void rebuild_jump_labels (rtx_insn *);
3363 extern void rebuild_jump_labels_chain (rtx_insn *);
3364 extern rtx reversed_comparison (const_rtx, machine_mode);
3365 extern enum rtx_code reversed_comparison_code (const_rtx, const_rtx);
3366 extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
3367 const_rtx, const_rtx);
3368 extern void delete_for_peephole (rtx_insn *, rtx_insn *);
3369 extern int condjump_in_parallel_p (const rtx_insn *);
3370
3371 /* In emit-rtl.c. */
3372 extern int max_reg_num (void);
3373 extern int max_label_num (void);
3374 extern int get_first_label_num (void);
3375 extern void maybe_set_first_label_num (rtx);
3376 extern void delete_insns_since (rtx_insn *);
3377 extern void mark_reg_pointer (rtx, int);
3378 extern void mark_user_reg (rtx);
3379 extern void reset_used_flags (rtx);
3380 extern void set_used_flags (rtx);
3381 extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
3382 extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
3383 extern int get_max_insn_count (void);
3384 extern int in_sequence_p (void);
3385 extern void init_emit (void);
3386 extern void init_emit_regs (void);
3387 extern void init_derived_machine_modes (void);
3388 extern void init_emit_once (void);
3389 extern void push_topmost_sequence (void);
3390 extern void pop_topmost_sequence (void);
3391 extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
3392 extern unsigned int unshare_all_rtl (void);
3393 extern void unshare_all_rtl_again (rtx_insn *);
3394 extern void unshare_all_rtl_in_chain (rtx_insn *);
3395 extern void verify_rtl_sharing (void);
3396 extern void add_insn (rtx_insn *);
3397 extern void add_insn_before (rtx, rtx, basic_block);
3398 extern void add_insn_after (rtx, rtx, basic_block);
3399 extern void remove_insn (rtx);
3400 extern rtx_insn *emit (rtx);
3401 extern void emit_insn_at_entry (rtx);
3402 extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
3403 extern rtx gen_const_mem (machine_mode, rtx);
3404 extern rtx gen_frame_mem (machine_mode, rtx);
3405 extern rtx gen_tmp_stack_mem (machine_mode, rtx);
3406 extern bool validate_subreg (machine_mode, machine_mode,
3407 const_rtx, unsigned int);
3408
3409 /* In combine.c */
3410 extern unsigned int extended_count (const_rtx, machine_mode, int);
3411 extern rtx remove_death (unsigned int, rtx_insn *);
3412 extern void dump_combine_stats (FILE *);
3413 extern void dump_combine_total_stats (FILE *);
3414 extern rtx make_compound_operation (rtx, enum rtx_code);
3415
3416 /* In sched-rgn.c. */
3417 extern void schedule_insns (void);
3418
3419 /* In sched-ebb.c. */
3420 extern void schedule_ebbs (void);
3421
3422 /* In sel-sched-dump.c. */
3423 extern void sel_sched_fix_param (const char *param, const char *val);
3424
3425 /* In print-rtl.c */
3426 extern const char *print_rtx_head;
3427 extern void debug (const rtx_def &ref);
3428 extern void debug (const rtx_def *ptr);
3429 extern void debug_rtx (const_rtx);
3430 extern void debug_rtx_list (const rtx_insn *, int);
3431 extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
3432 extern const_rtx debug_rtx_find (const rtx_insn *, int);
3433 extern void print_mem_expr (FILE *, const_tree);
3434 extern void print_rtl (FILE *, const_rtx);
3435 extern void print_simple_rtl (FILE *, const_rtx);
3436 extern int print_rtl_single (FILE *, const_rtx);
3437 extern int print_rtl_single_with_indent (FILE *, const_rtx, int);
3438 extern void print_inline_rtx (FILE *, const_rtx, int);
3439
3440 /* Functions in sched-vis.c. FIXME: Ideally these functions would
3441 not be in sched-vis.c but in rtl.c, because they are not only used
3442 by the scheduler anymore but for all "slim" RTL dumping. */
3443 extern void dump_value_slim (FILE *, const_rtx, int);
3444 extern void dump_insn_slim (FILE *, const_rtx);
3445 extern void dump_rtl_slim (FILE *, const rtx_insn *, const rtx_insn *,
3446 int, int);
3447 extern void print_value (pretty_printer *, const_rtx, int);
3448 extern void print_pattern (pretty_printer *, const_rtx, int);
3449 extern void print_insn (pretty_printer *, const_rtx, int);
3450 extern void rtl_dump_bb_for_graph (pretty_printer *, basic_block);
3451 extern const char *str_pattern_slim (const_rtx);
3452
3453 /* In stmt.c */
3454 extern void expand_null_return (void);
3455 extern void expand_naked_return (void);
3456 extern void emit_jump (rtx);
3457
3458 /* In expr.c */
3459 extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
3460 unsigned int, int);
3461 extern HOST_WIDE_INT find_args_size_adjust (rtx_insn *);
3462 extern int fixup_args_size_notes (rtx_insn *, rtx_insn *, int);
3463
3464 /* In expmed.c */
3465 extern void init_expmed (void);
3466 extern void expand_inc (rtx, rtx);
3467 extern void expand_dec (rtx, rtx);
3468
3469 /* In lower-subreg.c */
3470 extern void init_lower_subreg (void);
3471
3472 /* In gcse.c */
3473 extern bool can_copy_p (machine_mode);
3474 extern bool can_assign_to_reg_without_clobbers_p (rtx);
3475 extern rtx fis_get_condition (rtx_insn *);
3476
3477 /* In ira.c */
3478 #ifdef HARD_CONST
3479 extern HARD_REG_SET eliminable_regset;
3480 #endif
3481 extern void mark_elimination (int, int);
3482
3483 /* In reginfo.c */
3484 extern int reg_classes_intersect_p (reg_class_t, reg_class_t);
3485 extern int reg_class_subset_p (reg_class_t, reg_class_t);
3486 extern void globalize_reg (tree, int);
3487 extern void init_reg_modes_target (void);
3488 extern void init_regs (void);
3489 extern void reinit_regs (void);
3490 extern void init_fake_stack_mems (void);
3491 extern void save_register_info (void);
3492 extern void init_reg_sets (void);
3493 extern void regclass (rtx, int);
3494 extern void reg_scan (rtx_insn *, unsigned int);
3495 extern void fix_register (const char *, int, int);
3496 #ifdef HARD_CONST
3497 extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
3498 #endif
3499
3500 /* In reload1.c */
3501 extern int function_invariant_p (const_rtx);
3502
3503 /* In calls.c */
3504 enum libcall_type
3505 {
3506 LCT_NORMAL = 0,
3507 LCT_CONST = 1,
3508 LCT_PURE = 2,
3509 LCT_NORETURN = 3,
3510 LCT_THROW = 4,
3511 LCT_RETURNS_TWICE = 5
3512 };
3513
3514 extern void emit_library_call (rtx, enum libcall_type, machine_mode, int,
3515 ...);
3516 extern rtx emit_library_call_value (rtx, rtx, enum libcall_type,
3517 machine_mode, int, ...);
3518
3519 /* In varasm.c */
3520 extern void init_varasm_once (void);
3521
3522 extern rtx make_debug_expr_from_rtl (const_rtx);
3523
3524 /* In read-rtl.c */
3525 extern bool read_rtx (const char *, rtx *);
3526
3527 /* In alias.c */
3528 extern rtx canon_rtx (rtx);
3529 extern int true_dependence (const_rtx, machine_mode, const_rtx);
3530 extern rtx get_addr (rtx);
3531 extern int canon_true_dependence (const_rtx, machine_mode, rtx,
3532 const_rtx, rtx);
3533 extern int read_dependence (const_rtx, const_rtx);
3534 extern int anti_dependence (const_rtx, const_rtx);
3535 extern int canon_anti_dependence (const_rtx, bool,
3536 const_rtx, machine_mode, rtx);
3537 extern int output_dependence (const_rtx, const_rtx);
3538 extern int may_alias_p (const_rtx, const_rtx);
3539 extern void init_alias_target (void);
3540 extern void init_alias_analysis (void);
3541 extern void end_alias_analysis (void);
3542 extern void vt_equate_reg_base_value (const_rtx, const_rtx);
3543 extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
3544 extern bool memory_must_be_modified_in_insn_p (const_rtx, const_rtx);
3545 extern bool may_be_sp_based_p (rtx);
3546 extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
3547 extern rtx get_reg_known_value (unsigned int);
3548 extern bool get_reg_known_equiv_p (unsigned int);
3549 extern rtx get_reg_base_value (unsigned int);
3550
3551 #ifdef STACK_REGS
3552 extern int stack_regs_mentioned (const_rtx insn);
3553 #endif
3554
3555 /* In toplev.c */
3556 extern GTY(()) rtx stack_limit_rtx;
3557
3558 /* In var-tracking.c */
3559 extern unsigned int variable_tracking_main (void);
3560
3561 /* In stor-layout.c. */
3562 extern void get_mode_bounds (machine_mode, int, machine_mode,
3563 rtx *, rtx *);
3564
3565 /* In loop-iv.c */
3566 extern rtx canon_condition (rtx);
3567 extern void simplify_using_condition (rtx, rtx *, bitmap);
3568
3569 /* In final.c */
3570 extern unsigned int compute_alignments (void);
3571 extern void update_alignments (vec<rtx> &);
3572 extern int asm_str_count (const char *templ);
3573 \f
3574 struct rtl_hooks
3575 {
3576 rtx (*gen_lowpart) (machine_mode, rtx);
3577 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
3578 rtx (*reg_nonzero_bits) (const_rtx, machine_mode, const_rtx, machine_mode,
3579 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT *);
3580 rtx (*reg_num_sign_bit_copies) (const_rtx, machine_mode, const_rtx, machine_mode,
3581 unsigned int, unsigned int *);
3582 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
3583
3584 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
3585 };
3586
3587 /* Each pass can provide its own. */
3588 extern struct rtl_hooks rtl_hooks;
3589
3590 /* ... but then it has to restore these. */
3591 extern const struct rtl_hooks general_rtl_hooks;
3592
3593 /* Keep this for the nonce. */
3594 #define gen_lowpart rtl_hooks.gen_lowpart
3595
3596 extern void insn_locations_init (void);
3597 extern void insn_locations_finalize (void);
3598 extern void set_curr_insn_location (location_t);
3599 extern location_t curr_insn_location (void);
3600
3601 /* rtl-error.c */
3602 extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
3603 ATTRIBUTE_NORETURN;
3604 extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
3605 ATTRIBUTE_NORETURN;
3606
3607 #define fatal_insn(msgid, insn) \
3608 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
3609 #define fatal_insn_not_found(insn) \
3610 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
3611
3612 /* reginfo.c */
3613 extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
3614
3615 #endif /* ! GCC_RTL_H */