* jvspec.c (jvgenmain_spec): Don't handle -fnew-verifier.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42
43 /* Forward declarations */
44 static void set_of_1 (rtx, const_rtx, void *);
45 static bool covers_regno_p (const_rtx, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
47 static int rtx_referenced_p_1 (rtx *, void *);
48 static int computed_jump_p_1 (const_rtx);
49 static void parms_set (rtx, const_rtx, void *);
50
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
52 const_rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
55 const_rtx, enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
61 enum machine_mode, unsigned int);
62
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands[NUM_RTX_CODE];
66
67 /* Bit flags that specify the machine subtype we are compiling for.
68 Bits are tested using macros TARGET_... defined in the tm.h file
69 and set by `-m...' switches. Must be defined in rtlanal.c. */
70
71 int target_flags;
72
73 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
74 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
75 SIGN_EXTEND then while narrowing we also have to enforce the
76 representation and sign-extend the value to mode DESTINATION_REP.
77
78 If the value is already sign-extended to DESTINATION_REP mode we
79 can just switch to DESTINATION mode on it. For each pair of
80 integral modes SOURCE and DESTINATION, when truncating from SOURCE
81 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
82 contains the number of high-order bits in SOURCE that have to be
83 copies of the sign-bit so that we can do this mode-switch to
84 DESTINATION. */
85
86 static unsigned int
87 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
88 \f
89 /* Return 1 if the value of X is unstable
90 (would be different at a different point in the program).
91 The frame pointer, arg pointer, etc. are considered stable
92 (within one function) and so is anything marked `unchanging'. */
93
94 int
95 rtx_unstable_p (const_rtx x)
96 {
97 const RTX_CODE code = GET_CODE (x);
98 int i;
99 const char *fmt;
100
101 switch (code)
102 {
103 case MEM:
104 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
105
106 case CONST:
107 case CONST_INT:
108 case CONST_DOUBLE:
109 case CONST_FIXED:
110 case CONST_VECTOR:
111 case SYMBOL_REF:
112 case LABEL_REF:
113 return 0;
114
115 case REG:
116 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
117 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
118 /* The arg pointer varies if it is not a fixed register. */
119 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
120 return 0;
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
125 return 0;
126 return 1;
127
128 case ASM_OPERANDS:
129 if (MEM_VOLATILE_P (x))
130 return 1;
131
132 /* Fall through. */
133
134 default:
135 break;
136 }
137
138 fmt = GET_RTX_FORMAT (code);
139 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
140 if (fmt[i] == 'e')
141 {
142 if (rtx_unstable_p (XEXP (x, i)))
143 return 1;
144 }
145 else if (fmt[i] == 'E')
146 {
147 int j;
148 for (j = 0; j < XVECLEN (x, i); j++)
149 if (rtx_unstable_p (XVECEXP (x, i, j)))
150 return 1;
151 }
152
153 return 0;
154 }
155
156 /* Return 1 if X has a value that can vary even between two
157 executions of the program. 0 means X can be compared reliably
158 against certain constants or near-constants.
159 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
160 zero, we are slightly more conservative.
161 The frame pointer and the arg pointer are considered constant. */
162
163 bool
164 rtx_varies_p (const_rtx x, bool for_alias)
165 {
166 RTX_CODE code;
167 int i;
168 const char *fmt;
169
170 if (!x)
171 return 0;
172
173 code = GET_CODE (x);
174 switch (code)
175 {
176 case MEM:
177 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
178
179 case CONST:
180 case CONST_INT:
181 case CONST_DOUBLE:
182 case CONST_FIXED:
183 case CONST_VECTOR:
184 case SYMBOL_REF:
185 case LABEL_REF:
186 return 0;
187
188 case REG:
189 /* Note that we have to test for the actual rtx used for the frame
190 and arg pointers and not just the register number in case we have
191 eliminated the frame and/or arg pointer and are using it
192 for pseudos. */
193 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
194 /* The arg pointer varies if it is not a fixed register. */
195 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
196 return 0;
197 if (x == pic_offset_table_rtx
198 /* ??? When call-clobbered, the value is stable modulo the restore
199 that must happen after a call. This currently screws up
200 local-alloc into believing that the restore is not needed, so we
201 must return 0 only if we are called from alias analysis. */
202 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
203 return 0;
204 return 1;
205
206 case LO_SUM:
207 /* The operand 0 of a LO_SUM is considered constant
208 (in fact it is related specifically to operand 1)
209 during alias analysis. */
210 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
211 || rtx_varies_p (XEXP (x, 1), for_alias);
212
213 case ASM_OPERANDS:
214 if (MEM_VOLATILE_P (x))
215 return 1;
216
217 /* Fall through. */
218
219 default:
220 break;
221 }
222
223 fmt = GET_RTX_FORMAT (code);
224 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
225 if (fmt[i] == 'e')
226 {
227 if (rtx_varies_p (XEXP (x, i), for_alias))
228 return 1;
229 }
230 else if (fmt[i] == 'E')
231 {
232 int j;
233 for (j = 0; j < XVECLEN (x, i); j++)
234 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
235 return 1;
236 }
237
238 return 0;
239 }
240
241 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
242 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
243 whether nonzero is returned for unaligned memory accesses on strict
244 alignment machines. */
245
246 static int
247 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
248 enum machine_mode mode, bool unaligned_mems)
249 {
250 enum rtx_code code = GET_CODE (x);
251
252 if (STRICT_ALIGNMENT
253 && unaligned_mems
254 && GET_MODE_SIZE (mode) != 0)
255 {
256 HOST_WIDE_INT actual_offset = offset;
257 #ifdef SPARC_STACK_BOUNDARY_HACK
258 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
259 the real alignment of %sp. However, when it does this, the
260 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
261 if (SPARC_STACK_BOUNDARY_HACK
262 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
263 actual_offset -= STACK_POINTER_OFFSET;
264 #endif
265
266 if (actual_offset % GET_MODE_SIZE (mode) != 0)
267 return 1;
268 }
269
270 switch (code)
271 {
272 case SYMBOL_REF:
273 if (SYMBOL_REF_WEAK (x))
274 return 1;
275 if (!CONSTANT_POOL_ADDRESS_P (x))
276 {
277 tree decl;
278 HOST_WIDE_INT decl_size;
279
280 if (offset < 0)
281 return 1;
282 if (size == 0)
283 size = GET_MODE_SIZE (mode);
284 if (size == 0)
285 return offset != 0;
286
287 /* If the size of the access or of the symbol is unknown,
288 assume the worst. */
289 decl = SYMBOL_REF_DECL (x);
290
291 /* Else check that the access is in bounds. TODO: restructure
292 expr_size/tree_expr_size/int_expr_size and just use the latter. */
293 if (!decl)
294 decl_size = -1;
295 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
296 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
297 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
298 : -1);
299 else if (TREE_CODE (decl) == STRING_CST)
300 decl_size = TREE_STRING_LENGTH (decl);
301 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
302 decl_size = int_size_in_bytes (TREE_TYPE (decl));
303 else
304 decl_size = -1;
305
306 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
307 }
308
309 return 0;
310
311 case LABEL_REF:
312 return 0;
313
314 case REG:
315 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
316 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
317 || x == stack_pointer_rtx
318 /* The arg pointer varies if it is not a fixed register. */
319 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
320 return 0;
321 /* All of the virtual frame registers are stack references. */
322 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
323 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
324 return 0;
325 return 1;
326
327 case CONST:
328 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
329 mode, unaligned_mems);
330
331 case PLUS:
332 /* An address is assumed not to trap if:
333 - it is the pic register plus a constant. */
334 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
335 return 0;
336
337 /* - or it is an address that can't trap plus a constant integer,
338 with the proper remainder modulo the mode size if we are
339 considering unaligned memory references. */
340 if (CONST_INT_P (XEXP (x, 1))
341 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
342 size, mode, unaligned_mems))
343 return 0;
344
345 return 1;
346
347 case LO_SUM:
348 case PRE_MODIFY:
349 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
350 mode, unaligned_mems);
351
352 case PRE_DEC:
353 case PRE_INC:
354 case POST_DEC:
355 case POST_INC:
356 case POST_MODIFY:
357 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
358 mode, unaligned_mems);
359
360 default:
361 break;
362 }
363
364 /* If it isn't one of the case above, it can cause a trap. */
365 return 1;
366 }
367
368 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
369
370 int
371 rtx_addr_can_trap_p (const_rtx x)
372 {
373 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
374 }
375
376 /* Return true if X is an address that is known to not be zero. */
377
378 bool
379 nonzero_address_p (const_rtx x)
380 {
381 const enum rtx_code code = GET_CODE (x);
382
383 switch (code)
384 {
385 case SYMBOL_REF:
386 return !SYMBOL_REF_WEAK (x);
387
388 case LABEL_REF:
389 return true;
390
391 case REG:
392 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
393 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
394 || x == stack_pointer_rtx
395 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
396 return true;
397 /* All of the virtual frame registers are stack references. */
398 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
399 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
400 return true;
401 return false;
402
403 case CONST:
404 return nonzero_address_p (XEXP (x, 0));
405
406 case PLUS:
407 if (CONST_INT_P (XEXP (x, 1)))
408 return nonzero_address_p (XEXP (x, 0));
409 /* Handle PIC references. */
410 else if (XEXP (x, 0) == pic_offset_table_rtx
411 && CONSTANT_P (XEXP (x, 1)))
412 return true;
413 return false;
414
415 case PRE_MODIFY:
416 /* Similar to the above; allow positive offsets. Further, since
417 auto-inc is only allowed in memories, the register must be a
418 pointer. */
419 if (CONST_INT_P (XEXP (x, 1))
420 && INTVAL (XEXP (x, 1)) > 0)
421 return true;
422 return nonzero_address_p (XEXP (x, 0));
423
424 case PRE_INC:
425 /* Similarly. Further, the offset is always positive. */
426 return true;
427
428 case PRE_DEC:
429 case POST_DEC:
430 case POST_INC:
431 case POST_MODIFY:
432 return nonzero_address_p (XEXP (x, 0));
433
434 case LO_SUM:
435 return nonzero_address_p (XEXP (x, 1));
436
437 default:
438 break;
439 }
440
441 /* If it isn't one of the case above, might be zero. */
442 return false;
443 }
444
445 /* Return 1 if X refers to a memory location whose address
446 cannot be compared reliably with constant addresses,
447 or if X refers to a BLKmode memory object.
448 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
449 zero, we are slightly more conservative. */
450
451 bool
452 rtx_addr_varies_p (const_rtx x, bool for_alias)
453 {
454 enum rtx_code code;
455 int i;
456 const char *fmt;
457
458 if (x == 0)
459 return 0;
460
461 code = GET_CODE (x);
462 if (code == MEM)
463 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
464
465 fmt = GET_RTX_FORMAT (code);
466 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
467 if (fmt[i] == 'e')
468 {
469 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
470 return 1;
471 }
472 else if (fmt[i] == 'E')
473 {
474 int j;
475 for (j = 0; j < XVECLEN (x, i); j++)
476 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
477 return 1;
478 }
479 return 0;
480 }
481 \f
482 /* Return the value of the integer term in X, if one is apparent;
483 otherwise return 0.
484 Only obvious integer terms are detected.
485 This is used in cse.c with the `related_value' field. */
486
487 HOST_WIDE_INT
488 get_integer_term (const_rtx x)
489 {
490 if (GET_CODE (x) == CONST)
491 x = XEXP (x, 0);
492
493 if (GET_CODE (x) == MINUS
494 && CONST_INT_P (XEXP (x, 1)))
495 return - INTVAL (XEXP (x, 1));
496 if (GET_CODE (x) == PLUS
497 && CONST_INT_P (XEXP (x, 1)))
498 return INTVAL (XEXP (x, 1));
499 return 0;
500 }
501
502 /* If X is a constant, return the value sans apparent integer term;
503 otherwise return 0.
504 Only obvious integer terms are detected. */
505
506 rtx
507 get_related_value (const_rtx x)
508 {
509 if (GET_CODE (x) != CONST)
510 return 0;
511 x = XEXP (x, 0);
512 if (GET_CODE (x) == PLUS
513 && CONST_INT_P (XEXP (x, 1)))
514 return XEXP (x, 0);
515 else if (GET_CODE (x) == MINUS
516 && CONST_INT_P (XEXP (x, 1)))
517 return XEXP (x, 0);
518 return 0;
519 }
520 \f
521 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
522 to somewhere in the same object or object_block as SYMBOL. */
523
524 bool
525 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
526 {
527 tree decl;
528
529 if (GET_CODE (symbol) != SYMBOL_REF)
530 return false;
531
532 if (offset == 0)
533 return true;
534
535 if (offset > 0)
536 {
537 if (CONSTANT_POOL_ADDRESS_P (symbol)
538 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
539 return true;
540
541 decl = SYMBOL_REF_DECL (symbol);
542 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
543 return true;
544 }
545
546 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
547 && SYMBOL_REF_BLOCK (symbol)
548 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
549 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
550 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
551 return true;
552
553 return false;
554 }
555
556 /* Split X into a base and a constant offset, storing them in *BASE_OUT
557 and *OFFSET_OUT respectively. */
558
559 void
560 split_const (rtx x, rtx *base_out, rtx *offset_out)
561 {
562 if (GET_CODE (x) == CONST)
563 {
564 x = XEXP (x, 0);
565 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
566 {
567 *base_out = XEXP (x, 0);
568 *offset_out = XEXP (x, 1);
569 return;
570 }
571 }
572 *base_out = x;
573 *offset_out = const0_rtx;
574 }
575 \f
576 /* Return the number of places FIND appears within X. If COUNT_DEST is
577 zero, we do not count occurrences inside the destination of a SET. */
578
579 int
580 count_occurrences (const_rtx x, const_rtx find, int count_dest)
581 {
582 int i, j;
583 enum rtx_code code;
584 const char *format_ptr;
585 int count;
586
587 if (x == find)
588 return 1;
589
590 code = GET_CODE (x);
591
592 switch (code)
593 {
594 case REG:
595 case CONST_INT:
596 case CONST_DOUBLE:
597 case CONST_FIXED:
598 case CONST_VECTOR:
599 case SYMBOL_REF:
600 case CODE_LABEL:
601 case PC:
602 case CC0:
603 return 0;
604
605 case EXPR_LIST:
606 count = count_occurrences (XEXP (x, 0), find, count_dest);
607 if (XEXP (x, 1))
608 count += count_occurrences (XEXP (x, 1), find, count_dest);
609 return count;
610
611 case MEM:
612 if (MEM_P (find) && rtx_equal_p (x, find))
613 return 1;
614 break;
615
616 case SET:
617 if (SET_DEST (x) == find && ! count_dest)
618 return count_occurrences (SET_SRC (x), find, count_dest);
619 break;
620
621 default:
622 break;
623 }
624
625 format_ptr = GET_RTX_FORMAT (code);
626 count = 0;
627
628 for (i = 0; i < GET_RTX_LENGTH (code); i++)
629 {
630 switch (*format_ptr++)
631 {
632 case 'e':
633 count += count_occurrences (XEXP (x, i), find, count_dest);
634 break;
635
636 case 'E':
637 for (j = 0; j < XVECLEN (x, i); j++)
638 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
639 break;
640 }
641 }
642 return count;
643 }
644
645 \f
646 /* Nonzero if register REG appears somewhere within IN.
647 Also works if REG is not a register; in this case it checks
648 for a subexpression of IN that is Lisp "equal" to REG. */
649
650 int
651 reg_mentioned_p (const_rtx reg, const_rtx in)
652 {
653 const char *fmt;
654 int i;
655 enum rtx_code code;
656
657 if (in == 0)
658 return 0;
659
660 if (reg == in)
661 return 1;
662
663 if (GET_CODE (in) == LABEL_REF)
664 return reg == XEXP (in, 0);
665
666 code = GET_CODE (in);
667
668 switch (code)
669 {
670 /* Compare registers by number. */
671 case REG:
672 return REG_P (reg) && REGNO (in) == REGNO (reg);
673
674 /* These codes have no constituent expressions
675 and are unique. */
676 case SCRATCH:
677 case CC0:
678 case PC:
679 return 0;
680
681 case CONST_INT:
682 case CONST_VECTOR:
683 case CONST_DOUBLE:
684 case CONST_FIXED:
685 /* These are kept unique for a given value. */
686 return 0;
687
688 default:
689 break;
690 }
691
692 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
693 return 1;
694
695 fmt = GET_RTX_FORMAT (code);
696
697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
698 {
699 if (fmt[i] == 'E')
700 {
701 int j;
702 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
703 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
704 return 1;
705 }
706 else if (fmt[i] == 'e'
707 && reg_mentioned_p (reg, XEXP (in, i)))
708 return 1;
709 }
710 return 0;
711 }
712 \f
713 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
714 no CODE_LABEL insn. */
715
716 int
717 no_labels_between_p (const_rtx beg, const_rtx end)
718 {
719 rtx p;
720 if (beg == end)
721 return 0;
722 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
723 if (LABEL_P (p))
724 return 0;
725 return 1;
726 }
727
728 /* Nonzero if register REG is used in an insn between
729 FROM_INSN and TO_INSN (exclusive of those two). */
730
731 int
732 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
733 {
734 rtx insn;
735
736 if (from_insn == to_insn)
737 return 0;
738
739 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
740 if (NONDEBUG_INSN_P (insn)
741 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
742 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
743 return 1;
744 return 0;
745 }
746 \f
747 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
748 is entirely replaced by a new value and the only use is as a SET_DEST,
749 we do not consider it a reference. */
750
751 int
752 reg_referenced_p (const_rtx x, const_rtx body)
753 {
754 int i;
755
756 switch (GET_CODE (body))
757 {
758 case SET:
759 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
760 return 1;
761
762 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
763 of a REG that occupies all of the REG, the insn references X if
764 it is mentioned in the destination. */
765 if (GET_CODE (SET_DEST (body)) != CC0
766 && GET_CODE (SET_DEST (body)) != PC
767 && !REG_P (SET_DEST (body))
768 && ! (GET_CODE (SET_DEST (body)) == SUBREG
769 && REG_P (SUBREG_REG (SET_DEST (body)))
770 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
771 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
772 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
773 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
774 && reg_overlap_mentioned_p (x, SET_DEST (body)))
775 return 1;
776 return 0;
777
778 case ASM_OPERANDS:
779 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
780 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
781 return 1;
782 return 0;
783
784 case CALL:
785 case USE:
786 case IF_THEN_ELSE:
787 return reg_overlap_mentioned_p (x, body);
788
789 case TRAP_IF:
790 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
791
792 case PREFETCH:
793 return reg_overlap_mentioned_p (x, XEXP (body, 0));
794
795 case UNSPEC:
796 case UNSPEC_VOLATILE:
797 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
798 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
799 return 1;
800 return 0;
801
802 case PARALLEL:
803 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
804 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
805 return 1;
806 return 0;
807
808 case CLOBBER:
809 if (MEM_P (XEXP (body, 0)))
810 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
811 return 1;
812 return 0;
813
814 case COND_EXEC:
815 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
816 return 1;
817 return reg_referenced_p (x, COND_EXEC_CODE (body));
818
819 default:
820 return 0;
821 }
822 }
823 \f
824 /* Nonzero if register REG is set or clobbered in an insn between
825 FROM_INSN and TO_INSN (exclusive of those two). */
826
827 int
828 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
829 {
830 const_rtx insn;
831
832 if (from_insn == to_insn)
833 return 0;
834
835 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
836 if (INSN_P (insn) && reg_set_p (reg, insn))
837 return 1;
838 return 0;
839 }
840
841 /* Internals of reg_set_between_p. */
842 int
843 reg_set_p (const_rtx reg, const_rtx insn)
844 {
845 /* We can be passed an insn or part of one. If we are passed an insn,
846 check if a side-effect of the insn clobbers REG. */
847 if (INSN_P (insn)
848 && (FIND_REG_INC_NOTE (insn, reg)
849 || (CALL_P (insn)
850 && ((REG_P (reg)
851 && REGNO (reg) < FIRST_PSEUDO_REGISTER
852 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
853 GET_MODE (reg), REGNO (reg)))
854 || MEM_P (reg)
855 || find_reg_fusage (insn, CLOBBER, reg)))))
856 return 1;
857
858 return set_of (reg, insn) != NULL_RTX;
859 }
860
861 /* Similar to reg_set_between_p, but check all registers in X. Return 0
862 only if none of them are modified between START and END. Return 1 if
863 X contains a MEM; this routine does use memory aliasing. */
864
865 int
866 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
867 {
868 const enum rtx_code code = GET_CODE (x);
869 const char *fmt;
870 int i, j;
871 rtx insn;
872
873 if (start == end)
874 return 0;
875
876 switch (code)
877 {
878 case CONST_INT:
879 case CONST_DOUBLE:
880 case CONST_FIXED:
881 case CONST_VECTOR:
882 case CONST:
883 case SYMBOL_REF:
884 case LABEL_REF:
885 return 0;
886
887 case PC:
888 case CC0:
889 return 1;
890
891 case MEM:
892 if (modified_between_p (XEXP (x, 0), start, end))
893 return 1;
894 if (MEM_READONLY_P (x))
895 return 0;
896 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
897 if (memory_modified_in_insn_p (x, insn))
898 return 1;
899 return 0;
900 break;
901
902 case REG:
903 return reg_set_between_p (x, start, end);
904
905 default:
906 break;
907 }
908
909 fmt = GET_RTX_FORMAT (code);
910 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
911 {
912 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
913 return 1;
914
915 else if (fmt[i] == 'E')
916 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
917 if (modified_between_p (XVECEXP (x, i, j), start, end))
918 return 1;
919 }
920
921 return 0;
922 }
923
924 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
925 of them are modified in INSN. Return 1 if X contains a MEM; this routine
926 does use memory aliasing. */
927
928 int
929 modified_in_p (const_rtx x, const_rtx insn)
930 {
931 const enum rtx_code code = GET_CODE (x);
932 const char *fmt;
933 int i, j;
934
935 switch (code)
936 {
937 case CONST_INT:
938 case CONST_DOUBLE:
939 case CONST_FIXED:
940 case CONST_VECTOR:
941 case CONST:
942 case SYMBOL_REF:
943 case LABEL_REF:
944 return 0;
945
946 case PC:
947 case CC0:
948 return 1;
949
950 case MEM:
951 if (modified_in_p (XEXP (x, 0), insn))
952 return 1;
953 if (MEM_READONLY_P (x))
954 return 0;
955 if (memory_modified_in_insn_p (x, insn))
956 return 1;
957 return 0;
958 break;
959
960 case REG:
961 return reg_set_p (x, insn);
962
963 default:
964 break;
965 }
966
967 fmt = GET_RTX_FORMAT (code);
968 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
969 {
970 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
971 return 1;
972
973 else if (fmt[i] == 'E')
974 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
975 if (modified_in_p (XVECEXP (x, i, j), insn))
976 return 1;
977 }
978
979 return 0;
980 }
981 \f
982 /* Helper function for set_of. */
983 struct set_of_data
984 {
985 const_rtx found;
986 const_rtx pat;
987 };
988
989 static void
990 set_of_1 (rtx x, const_rtx pat, void *data1)
991 {
992 struct set_of_data *const data = (struct set_of_data *) (data1);
993 if (rtx_equal_p (x, data->pat)
994 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
995 data->found = pat;
996 }
997
998 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
999 (either directly or via STRICT_LOW_PART and similar modifiers). */
1000 const_rtx
1001 set_of (const_rtx pat, const_rtx insn)
1002 {
1003 struct set_of_data data;
1004 data.found = NULL_RTX;
1005 data.pat = pat;
1006 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1007 return data.found;
1008 }
1009 \f
1010 /* Given an INSN, return a SET expression if this insn has only a single SET.
1011 It may also have CLOBBERs, USEs, or SET whose output
1012 will not be used, which we ignore. */
1013
1014 rtx
1015 single_set_2 (const_rtx insn, const_rtx pat)
1016 {
1017 rtx set = NULL;
1018 int set_verified = 1;
1019 int i;
1020
1021 if (GET_CODE (pat) == PARALLEL)
1022 {
1023 for (i = 0; i < XVECLEN (pat, 0); i++)
1024 {
1025 rtx sub = XVECEXP (pat, 0, i);
1026 switch (GET_CODE (sub))
1027 {
1028 case USE:
1029 case CLOBBER:
1030 break;
1031
1032 case SET:
1033 /* We can consider insns having multiple sets, where all
1034 but one are dead as single set insns. In common case
1035 only single set is present in the pattern so we want
1036 to avoid checking for REG_UNUSED notes unless necessary.
1037
1038 When we reach set first time, we just expect this is
1039 the single set we are looking for and only when more
1040 sets are found in the insn, we check them. */
1041 if (!set_verified)
1042 {
1043 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1044 && !side_effects_p (set))
1045 set = NULL;
1046 else
1047 set_verified = 1;
1048 }
1049 if (!set)
1050 set = sub, set_verified = 0;
1051 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1052 || side_effects_p (sub))
1053 return NULL_RTX;
1054 break;
1055
1056 default:
1057 return NULL_RTX;
1058 }
1059 }
1060 }
1061 return set;
1062 }
1063
1064 /* Given an INSN, return nonzero if it has more than one SET, else return
1065 zero. */
1066
1067 int
1068 multiple_sets (const_rtx insn)
1069 {
1070 int found;
1071 int i;
1072
1073 /* INSN must be an insn. */
1074 if (! INSN_P (insn))
1075 return 0;
1076
1077 /* Only a PARALLEL can have multiple SETs. */
1078 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1079 {
1080 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1081 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1082 {
1083 /* If we have already found a SET, then return now. */
1084 if (found)
1085 return 1;
1086 else
1087 found = 1;
1088 }
1089 }
1090
1091 /* Either zero or one SET. */
1092 return 0;
1093 }
1094 \f
1095 /* Return nonzero if the destination of SET equals the source
1096 and there are no side effects. */
1097
1098 int
1099 set_noop_p (const_rtx set)
1100 {
1101 rtx src = SET_SRC (set);
1102 rtx dst = SET_DEST (set);
1103
1104 if (dst == pc_rtx && src == pc_rtx)
1105 return 1;
1106
1107 if (MEM_P (dst) && MEM_P (src))
1108 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1109
1110 if (GET_CODE (dst) == ZERO_EXTRACT)
1111 return rtx_equal_p (XEXP (dst, 0), src)
1112 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1113 && !side_effects_p (src);
1114
1115 if (GET_CODE (dst) == STRICT_LOW_PART)
1116 dst = XEXP (dst, 0);
1117
1118 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1119 {
1120 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1121 return 0;
1122 src = SUBREG_REG (src);
1123 dst = SUBREG_REG (dst);
1124 }
1125
1126 return (REG_P (src) && REG_P (dst)
1127 && REGNO (src) == REGNO (dst));
1128 }
1129 \f
1130 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1131 value to itself. */
1132
1133 int
1134 noop_move_p (const_rtx insn)
1135 {
1136 rtx pat = PATTERN (insn);
1137
1138 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1139 return 1;
1140
1141 /* Insns carrying these notes are useful later on. */
1142 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1143 return 0;
1144
1145 if (GET_CODE (pat) == SET && set_noop_p (pat))
1146 return 1;
1147
1148 if (GET_CODE (pat) == PARALLEL)
1149 {
1150 int i;
1151 /* If nothing but SETs of registers to themselves,
1152 this insn can also be deleted. */
1153 for (i = 0; i < XVECLEN (pat, 0); i++)
1154 {
1155 rtx tem = XVECEXP (pat, 0, i);
1156
1157 if (GET_CODE (tem) == USE
1158 || GET_CODE (tem) == CLOBBER)
1159 continue;
1160
1161 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1162 return 0;
1163 }
1164
1165 return 1;
1166 }
1167 return 0;
1168 }
1169 \f
1170
1171 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1172 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1173 If the object was modified, if we hit a partial assignment to X, or hit a
1174 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1175 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1176 be the src. */
1177
1178 rtx
1179 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1180 {
1181 rtx p;
1182
1183 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1184 p = PREV_INSN (p))
1185 if (INSN_P (p))
1186 {
1187 rtx set = single_set (p);
1188 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1189
1190 if (set && rtx_equal_p (x, SET_DEST (set)))
1191 {
1192 rtx src = SET_SRC (set);
1193
1194 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1195 src = XEXP (note, 0);
1196
1197 if ((valid_to == NULL_RTX
1198 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1199 /* Reject hard registers because we don't usually want
1200 to use them; we'd rather use a pseudo. */
1201 && (! (REG_P (src)
1202 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1203 {
1204 *pinsn = p;
1205 return src;
1206 }
1207 }
1208
1209 /* If set in non-simple way, we don't have a value. */
1210 if (reg_set_p (x, p))
1211 break;
1212 }
1213
1214 return x;
1215 }
1216 \f
1217 /* Return nonzero if register in range [REGNO, ENDREGNO)
1218 appears either explicitly or implicitly in X
1219 other than being stored into.
1220
1221 References contained within the substructure at LOC do not count.
1222 LOC may be zero, meaning don't ignore anything. */
1223
1224 int
1225 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1226 rtx *loc)
1227 {
1228 int i;
1229 unsigned int x_regno;
1230 RTX_CODE code;
1231 const char *fmt;
1232
1233 repeat:
1234 /* The contents of a REG_NONNEG note is always zero, so we must come here
1235 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1236 if (x == 0)
1237 return 0;
1238
1239 code = GET_CODE (x);
1240
1241 switch (code)
1242 {
1243 case REG:
1244 x_regno = REGNO (x);
1245
1246 /* If we modifying the stack, frame, or argument pointer, it will
1247 clobber a virtual register. In fact, we could be more precise,
1248 but it isn't worth it. */
1249 if ((x_regno == STACK_POINTER_REGNUM
1250 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1251 || x_regno == ARG_POINTER_REGNUM
1252 #endif
1253 || x_regno == FRAME_POINTER_REGNUM)
1254 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1255 return 1;
1256
1257 return endregno > x_regno && regno < END_REGNO (x);
1258
1259 case SUBREG:
1260 /* If this is a SUBREG of a hard reg, we can see exactly which
1261 registers are being modified. Otherwise, handle normally. */
1262 if (REG_P (SUBREG_REG (x))
1263 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1264 {
1265 unsigned int inner_regno = subreg_regno (x);
1266 unsigned int inner_endregno
1267 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1268 ? subreg_nregs (x) : 1);
1269
1270 return endregno > inner_regno && regno < inner_endregno;
1271 }
1272 break;
1273
1274 case CLOBBER:
1275 case SET:
1276 if (&SET_DEST (x) != loc
1277 /* Note setting a SUBREG counts as referring to the REG it is in for
1278 a pseudo but not for hard registers since we can
1279 treat each word individually. */
1280 && ((GET_CODE (SET_DEST (x)) == SUBREG
1281 && loc != &SUBREG_REG (SET_DEST (x))
1282 && REG_P (SUBREG_REG (SET_DEST (x)))
1283 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1284 && refers_to_regno_p (regno, endregno,
1285 SUBREG_REG (SET_DEST (x)), loc))
1286 || (!REG_P (SET_DEST (x))
1287 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1288 return 1;
1289
1290 if (code == CLOBBER || loc == &SET_SRC (x))
1291 return 0;
1292 x = SET_SRC (x);
1293 goto repeat;
1294
1295 default:
1296 break;
1297 }
1298
1299 /* X does not match, so try its subexpressions. */
1300
1301 fmt = GET_RTX_FORMAT (code);
1302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1303 {
1304 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1305 {
1306 if (i == 0)
1307 {
1308 x = XEXP (x, 0);
1309 goto repeat;
1310 }
1311 else
1312 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1313 return 1;
1314 }
1315 else if (fmt[i] == 'E')
1316 {
1317 int j;
1318 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1319 if (loc != &XVECEXP (x, i, j)
1320 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1321 return 1;
1322 }
1323 }
1324 return 0;
1325 }
1326
1327 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1328 we check if any register number in X conflicts with the relevant register
1329 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1330 contains a MEM (we don't bother checking for memory addresses that can't
1331 conflict because we expect this to be a rare case. */
1332
1333 int
1334 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1335 {
1336 unsigned int regno, endregno;
1337
1338 /* If either argument is a constant, then modifying X can not
1339 affect IN. Here we look at IN, we can profitably combine
1340 CONSTANT_P (x) with the switch statement below. */
1341 if (CONSTANT_P (in))
1342 return 0;
1343
1344 recurse:
1345 switch (GET_CODE (x))
1346 {
1347 case STRICT_LOW_PART:
1348 case ZERO_EXTRACT:
1349 case SIGN_EXTRACT:
1350 /* Overly conservative. */
1351 x = XEXP (x, 0);
1352 goto recurse;
1353
1354 case SUBREG:
1355 regno = REGNO (SUBREG_REG (x));
1356 if (regno < FIRST_PSEUDO_REGISTER)
1357 regno = subreg_regno (x);
1358 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1359 ? subreg_nregs (x) : 1);
1360 goto do_reg;
1361
1362 case REG:
1363 regno = REGNO (x);
1364 endregno = END_REGNO (x);
1365 do_reg:
1366 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1367
1368 case MEM:
1369 {
1370 const char *fmt;
1371 int i;
1372
1373 if (MEM_P (in))
1374 return 1;
1375
1376 fmt = GET_RTX_FORMAT (GET_CODE (in));
1377 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1378 if (fmt[i] == 'e')
1379 {
1380 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1381 return 1;
1382 }
1383 else if (fmt[i] == 'E')
1384 {
1385 int j;
1386 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1387 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1388 return 1;
1389 }
1390
1391 return 0;
1392 }
1393
1394 case SCRATCH:
1395 case PC:
1396 case CC0:
1397 return reg_mentioned_p (x, in);
1398
1399 case PARALLEL:
1400 {
1401 int i;
1402
1403 /* If any register in here refers to it we return true. */
1404 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1405 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1406 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1407 return 1;
1408 return 0;
1409 }
1410
1411 default:
1412 gcc_assert (CONSTANT_P (x));
1413 return 0;
1414 }
1415 }
1416 \f
1417 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1418 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1419 ignored by note_stores, but passed to FUN.
1420
1421 FUN receives three arguments:
1422 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1423 2. the SET or CLOBBER rtx that does the store,
1424 3. the pointer DATA provided to note_stores.
1425
1426 If the item being stored in or clobbered is a SUBREG of a hard register,
1427 the SUBREG will be passed. */
1428
1429 void
1430 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1431 {
1432 int i;
1433
1434 if (GET_CODE (x) == COND_EXEC)
1435 x = COND_EXEC_CODE (x);
1436
1437 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1438 {
1439 rtx dest = SET_DEST (x);
1440
1441 while ((GET_CODE (dest) == SUBREG
1442 && (!REG_P (SUBREG_REG (dest))
1443 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1444 || GET_CODE (dest) == ZERO_EXTRACT
1445 || GET_CODE (dest) == STRICT_LOW_PART)
1446 dest = XEXP (dest, 0);
1447
1448 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1449 each of whose first operand is a register. */
1450 if (GET_CODE (dest) == PARALLEL)
1451 {
1452 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1453 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1454 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1455 }
1456 else
1457 (*fun) (dest, x, data);
1458 }
1459
1460 else if (GET_CODE (x) == PARALLEL)
1461 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1462 note_stores (XVECEXP (x, 0, i), fun, data);
1463 }
1464 \f
1465 /* Like notes_stores, but call FUN for each expression that is being
1466 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1467 FUN for each expression, not any interior subexpressions. FUN receives a
1468 pointer to the expression and the DATA passed to this function.
1469
1470 Note that this is not quite the same test as that done in reg_referenced_p
1471 since that considers something as being referenced if it is being
1472 partially set, while we do not. */
1473
1474 void
1475 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1476 {
1477 rtx body = *pbody;
1478 int i;
1479
1480 switch (GET_CODE (body))
1481 {
1482 case COND_EXEC:
1483 (*fun) (&COND_EXEC_TEST (body), data);
1484 note_uses (&COND_EXEC_CODE (body), fun, data);
1485 return;
1486
1487 case PARALLEL:
1488 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1489 note_uses (&XVECEXP (body, 0, i), fun, data);
1490 return;
1491
1492 case SEQUENCE:
1493 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1494 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1495 return;
1496
1497 case USE:
1498 (*fun) (&XEXP (body, 0), data);
1499 return;
1500
1501 case ASM_OPERANDS:
1502 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1503 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1504 return;
1505
1506 case TRAP_IF:
1507 (*fun) (&TRAP_CONDITION (body), data);
1508 return;
1509
1510 case PREFETCH:
1511 (*fun) (&XEXP (body, 0), data);
1512 return;
1513
1514 case UNSPEC:
1515 case UNSPEC_VOLATILE:
1516 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1517 (*fun) (&XVECEXP (body, 0, i), data);
1518 return;
1519
1520 case CLOBBER:
1521 if (MEM_P (XEXP (body, 0)))
1522 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1523 return;
1524
1525 case SET:
1526 {
1527 rtx dest = SET_DEST (body);
1528
1529 /* For sets we replace everything in source plus registers in memory
1530 expression in store and operands of a ZERO_EXTRACT. */
1531 (*fun) (&SET_SRC (body), data);
1532
1533 if (GET_CODE (dest) == ZERO_EXTRACT)
1534 {
1535 (*fun) (&XEXP (dest, 1), data);
1536 (*fun) (&XEXP (dest, 2), data);
1537 }
1538
1539 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1540 dest = XEXP (dest, 0);
1541
1542 if (MEM_P (dest))
1543 (*fun) (&XEXP (dest, 0), data);
1544 }
1545 return;
1546
1547 default:
1548 /* All the other possibilities never store. */
1549 (*fun) (pbody, data);
1550 return;
1551 }
1552 }
1553 \f
1554 /* Return nonzero if X's old contents don't survive after INSN.
1555 This will be true if X is (cc0) or if X is a register and
1556 X dies in INSN or because INSN entirely sets X.
1557
1558 "Entirely set" means set directly and not through a SUBREG, or
1559 ZERO_EXTRACT, so no trace of the old contents remains.
1560 Likewise, REG_INC does not count.
1561
1562 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1563 but for this use that makes no difference, since regs don't overlap
1564 during their lifetimes. Therefore, this function may be used
1565 at any time after deaths have been computed.
1566
1567 If REG is a hard reg that occupies multiple machine registers, this
1568 function will only return 1 if each of those registers will be replaced
1569 by INSN. */
1570
1571 int
1572 dead_or_set_p (const_rtx insn, const_rtx x)
1573 {
1574 unsigned int regno, end_regno;
1575 unsigned int i;
1576
1577 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1578 if (GET_CODE (x) == CC0)
1579 return 1;
1580
1581 gcc_assert (REG_P (x));
1582
1583 regno = REGNO (x);
1584 end_regno = END_REGNO (x);
1585 for (i = regno; i < end_regno; i++)
1586 if (! dead_or_set_regno_p (insn, i))
1587 return 0;
1588
1589 return 1;
1590 }
1591
1592 /* Return TRUE iff DEST is a register or subreg of a register and
1593 doesn't change the number of words of the inner register, and any
1594 part of the register is TEST_REGNO. */
1595
1596 static bool
1597 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1598 {
1599 unsigned int regno, endregno;
1600
1601 if (GET_CODE (dest) == SUBREG
1602 && (((GET_MODE_SIZE (GET_MODE (dest))
1603 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1604 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1605 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1606 dest = SUBREG_REG (dest);
1607
1608 if (!REG_P (dest))
1609 return false;
1610
1611 regno = REGNO (dest);
1612 endregno = END_REGNO (dest);
1613 return (test_regno >= regno && test_regno < endregno);
1614 }
1615
1616 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1617 any member matches the covers_regno_no_parallel_p criteria. */
1618
1619 static bool
1620 covers_regno_p (const_rtx dest, unsigned int test_regno)
1621 {
1622 if (GET_CODE (dest) == PARALLEL)
1623 {
1624 /* Some targets place small structures in registers for return
1625 values of functions, and those registers are wrapped in
1626 PARALLELs that we may see as the destination of a SET. */
1627 int i;
1628
1629 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1630 {
1631 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1632 if (inner != NULL_RTX
1633 && covers_regno_no_parallel_p (inner, test_regno))
1634 return true;
1635 }
1636
1637 return false;
1638 }
1639 else
1640 return covers_regno_no_parallel_p (dest, test_regno);
1641 }
1642
1643 /* Utility function for dead_or_set_p to check an individual register. */
1644
1645 int
1646 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1647 {
1648 const_rtx pattern;
1649
1650 /* See if there is a death note for something that includes TEST_REGNO. */
1651 if (find_regno_note (insn, REG_DEAD, test_regno))
1652 return 1;
1653
1654 if (CALL_P (insn)
1655 && find_regno_fusage (insn, CLOBBER, test_regno))
1656 return 1;
1657
1658 pattern = PATTERN (insn);
1659
1660 if (GET_CODE (pattern) == COND_EXEC)
1661 pattern = COND_EXEC_CODE (pattern);
1662
1663 if (GET_CODE (pattern) == SET)
1664 return covers_regno_p (SET_DEST (pattern), test_regno);
1665 else if (GET_CODE (pattern) == PARALLEL)
1666 {
1667 int i;
1668
1669 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1670 {
1671 rtx body = XVECEXP (pattern, 0, i);
1672
1673 if (GET_CODE (body) == COND_EXEC)
1674 body = COND_EXEC_CODE (body);
1675
1676 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1677 && covers_regno_p (SET_DEST (body), test_regno))
1678 return 1;
1679 }
1680 }
1681
1682 return 0;
1683 }
1684
1685 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1686 If DATUM is nonzero, look for one whose datum is DATUM. */
1687
1688 rtx
1689 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1690 {
1691 rtx link;
1692
1693 gcc_checking_assert (insn);
1694
1695 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1696 if (! INSN_P (insn))
1697 return 0;
1698 if (datum == 0)
1699 {
1700 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1701 if (REG_NOTE_KIND (link) == kind)
1702 return link;
1703 return 0;
1704 }
1705
1706 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1707 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1708 return link;
1709 return 0;
1710 }
1711
1712 /* Return the reg-note of kind KIND in insn INSN which applies to register
1713 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1714 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1715 it might be the case that the note overlaps REGNO. */
1716
1717 rtx
1718 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1719 {
1720 rtx link;
1721
1722 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1723 if (! INSN_P (insn))
1724 return 0;
1725
1726 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1727 if (REG_NOTE_KIND (link) == kind
1728 /* Verify that it is a register, so that scratch and MEM won't cause a
1729 problem here. */
1730 && REG_P (XEXP (link, 0))
1731 && REGNO (XEXP (link, 0)) <= regno
1732 && END_REGNO (XEXP (link, 0)) > regno)
1733 return link;
1734 return 0;
1735 }
1736
1737 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1738 has such a note. */
1739
1740 rtx
1741 find_reg_equal_equiv_note (const_rtx insn)
1742 {
1743 rtx link;
1744
1745 if (!INSN_P (insn))
1746 return 0;
1747
1748 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1749 if (REG_NOTE_KIND (link) == REG_EQUAL
1750 || REG_NOTE_KIND (link) == REG_EQUIV)
1751 {
1752 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1753 insns that have multiple sets. Checking single_set to
1754 make sure of this is not the proper check, as explained
1755 in the comment in set_unique_reg_note.
1756
1757 This should be changed into an assert. */
1758 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1759 return 0;
1760 return link;
1761 }
1762 return NULL;
1763 }
1764
1765 /* Check whether INSN is a single_set whose source is known to be
1766 equivalent to a constant. Return that constant if so, otherwise
1767 return null. */
1768
1769 rtx
1770 find_constant_src (const_rtx insn)
1771 {
1772 rtx note, set, x;
1773
1774 set = single_set (insn);
1775 if (set)
1776 {
1777 x = avoid_constant_pool_reference (SET_SRC (set));
1778 if (CONSTANT_P (x))
1779 return x;
1780 }
1781
1782 note = find_reg_equal_equiv_note (insn);
1783 if (note && CONSTANT_P (XEXP (note, 0)))
1784 return XEXP (note, 0);
1785
1786 return NULL_RTX;
1787 }
1788
1789 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1790 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1791
1792 int
1793 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1794 {
1795 /* If it's not a CALL_INSN, it can't possibly have a
1796 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1797 if (!CALL_P (insn))
1798 return 0;
1799
1800 gcc_assert (datum);
1801
1802 if (!REG_P (datum))
1803 {
1804 rtx link;
1805
1806 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1807 link;
1808 link = XEXP (link, 1))
1809 if (GET_CODE (XEXP (link, 0)) == code
1810 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1811 return 1;
1812 }
1813 else
1814 {
1815 unsigned int regno = REGNO (datum);
1816
1817 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1818 to pseudo registers, so don't bother checking. */
1819
1820 if (regno < FIRST_PSEUDO_REGISTER)
1821 {
1822 unsigned int end_regno = END_HARD_REGNO (datum);
1823 unsigned int i;
1824
1825 for (i = regno; i < end_regno; i++)
1826 if (find_regno_fusage (insn, code, i))
1827 return 1;
1828 }
1829 }
1830
1831 return 0;
1832 }
1833
1834 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1835 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1836
1837 int
1838 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1839 {
1840 rtx link;
1841
1842 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1843 to pseudo registers, so don't bother checking. */
1844
1845 if (regno >= FIRST_PSEUDO_REGISTER
1846 || !CALL_P (insn) )
1847 return 0;
1848
1849 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1850 {
1851 rtx op, reg;
1852
1853 if (GET_CODE (op = XEXP (link, 0)) == code
1854 && REG_P (reg = XEXP (op, 0))
1855 && REGNO (reg) <= regno
1856 && END_HARD_REGNO (reg) > regno)
1857 return 1;
1858 }
1859
1860 return 0;
1861 }
1862
1863 \f
1864 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1865 stored as the pointer to the next register note. */
1866
1867 rtx
1868 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1869 {
1870 rtx note;
1871
1872 switch (kind)
1873 {
1874 case REG_CC_SETTER:
1875 case REG_CC_USER:
1876 case REG_LABEL_TARGET:
1877 case REG_LABEL_OPERAND:
1878 /* These types of register notes use an INSN_LIST rather than an
1879 EXPR_LIST, so that copying is done right and dumps look
1880 better. */
1881 note = alloc_INSN_LIST (datum, list);
1882 PUT_REG_NOTE_KIND (note, kind);
1883 break;
1884
1885 default:
1886 note = alloc_EXPR_LIST (kind, datum, list);
1887 break;
1888 }
1889
1890 return note;
1891 }
1892
1893 /* Add register note with kind KIND and datum DATUM to INSN. */
1894
1895 void
1896 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1897 {
1898 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1899 }
1900
1901 /* Remove register note NOTE from the REG_NOTES of INSN. */
1902
1903 void
1904 remove_note (rtx insn, const_rtx note)
1905 {
1906 rtx link;
1907
1908 if (note == NULL_RTX)
1909 return;
1910
1911 if (REG_NOTES (insn) == note)
1912 REG_NOTES (insn) = XEXP (note, 1);
1913 else
1914 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1915 if (XEXP (link, 1) == note)
1916 {
1917 XEXP (link, 1) = XEXP (note, 1);
1918 break;
1919 }
1920
1921 switch (REG_NOTE_KIND (note))
1922 {
1923 case REG_EQUAL:
1924 case REG_EQUIV:
1925 df_notes_rescan (insn);
1926 break;
1927 default:
1928 break;
1929 }
1930 }
1931
1932 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1933
1934 void
1935 remove_reg_equal_equiv_notes (rtx insn)
1936 {
1937 rtx *loc;
1938
1939 loc = &REG_NOTES (insn);
1940 while (*loc)
1941 {
1942 enum reg_note kind = REG_NOTE_KIND (*loc);
1943 if (kind == REG_EQUAL || kind == REG_EQUIV)
1944 *loc = XEXP (*loc, 1);
1945 else
1946 loc = &XEXP (*loc, 1);
1947 }
1948 }
1949
1950 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1951 return 1 if it is found. A simple equality test is used to determine if
1952 NODE matches. */
1953
1954 int
1955 in_expr_list_p (const_rtx listp, const_rtx node)
1956 {
1957 const_rtx x;
1958
1959 for (x = listp; x; x = XEXP (x, 1))
1960 if (node == XEXP (x, 0))
1961 return 1;
1962
1963 return 0;
1964 }
1965
1966 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1967 remove that entry from the list if it is found.
1968
1969 A simple equality test is used to determine if NODE matches. */
1970
1971 void
1972 remove_node_from_expr_list (const_rtx node, rtx *listp)
1973 {
1974 rtx temp = *listp;
1975 rtx prev = NULL_RTX;
1976
1977 while (temp)
1978 {
1979 if (node == XEXP (temp, 0))
1980 {
1981 /* Splice the node out of the list. */
1982 if (prev)
1983 XEXP (prev, 1) = XEXP (temp, 1);
1984 else
1985 *listp = XEXP (temp, 1);
1986
1987 return;
1988 }
1989
1990 prev = temp;
1991 temp = XEXP (temp, 1);
1992 }
1993 }
1994 \f
1995 /* Nonzero if X contains any volatile instructions. These are instructions
1996 which may cause unpredictable machine state instructions, and thus no
1997 instructions should be moved or combined across them. This includes
1998 only volatile asms and UNSPEC_VOLATILE instructions. */
1999
2000 int
2001 volatile_insn_p (const_rtx x)
2002 {
2003 const RTX_CODE code = GET_CODE (x);
2004 switch (code)
2005 {
2006 case LABEL_REF:
2007 case SYMBOL_REF:
2008 case CONST_INT:
2009 case CONST:
2010 case CONST_DOUBLE:
2011 case CONST_FIXED:
2012 case CONST_VECTOR:
2013 case CC0:
2014 case PC:
2015 case REG:
2016 case SCRATCH:
2017 case CLOBBER:
2018 case ADDR_VEC:
2019 case ADDR_DIFF_VEC:
2020 case CALL:
2021 case MEM:
2022 return 0;
2023
2024 case UNSPEC_VOLATILE:
2025 /* case TRAP_IF: This isn't clear yet. */
2026 return 1;
2027
2028 case ASM_INPUT:
2029 case ASM_OPERANDS:
2030 if (MEM_VOLATILE_P (x))
2031 return 1;
2032
2033 default:
2034 break;
2035 }
2036
2037 /* Recursively scan the operands of this expression. */
2038
2039 {
2040 const char *const fmt = GET_RTX_FORMAT (code);
2041 int i;
2042
2043 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2044 {
2045 if (fmt[i] == 'e')
2046 {
2047 if (volatile_insn_p (XEXP (x, i)))
2048 return 1;
2049 }
2050 else if (fmt[i] == 'E')
2051 {
2052 int j;
2053 for (j = 0; j < XVECLEN (x, i); j++)
2054 if (volatile_insn_p (XVECEXP (x, i, j)))
2055 return 1;
2056 }
2057 }
2058 }
2059 return 0;
2060 }
2061
2062 /* Nonzero if X contains any volatile memory references
2063 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2064
2065 int
2066 volatile_refs_p (const_rtx x)
2067 {
2068 const RTX_CODE code = GET_CODE (x);
2069 switch (code)
2070 {
2071 case LABEL_REF:
2072 case SYMBOL_REF:
2073 case CONST_INT:
2074 case CONST:
2075 case CONST_DOUBLE:
2076 case CONST_FIXED:
2077 case CONST_VECTOR:
2078 case CC0:
2079 case PC:
2080 case REG:
2081 case SCRATCH:
2082 case CLOBBER:
2083 case ADDR_VEC:
2084 case ADDR_DIFF_VEC:
2085 return 0;
2086
2087 case UNSPEC_VOLATILE:
2088 return 1;
2089
2090 case MEM:
2091 case ASM_INPUT:
2092 case ASM_OPERANDS:
2093 if (MEM_VOLATILE_P (x))
2094 return 1;
2095
2096 default:
2097 break;
2098 }
2099
2100 /* Recursively scan the operands of this expression. */
2101
2102 {
2103 const char *const fmt = GET_RTX_FORMAT (code);
2104 int i;
2105
2106 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2107 {
2108 if (fmt[i] == 'e')
2109 {
2110 if (volatile_refs_p (XEXP (x, i)))
2111 return 1;
2112 }
2113 else if (fmt[i] == 'E')
2114 {
2115 int j;
2116 for (j = 0; j < XVECLEN (x, i); j++)
2117 if (volatile_refs_p (XVECEXP (x, i, j)))
2118 return 1;
2119 }
2120 }
2121 }
2122 return 0;
2123 }
2124
2125 /* Similar to above, except that it also rejects register pre- and post-
2126 incrementing. */
2127
2128 int
2129 side_effects_p (const_rtx x)
2130 {
2131 const RTX_CODE code = GET_CODE (x);
2132 switch (code)
2133 {
2134 case LABEL_REF:
2135 case SYMBOL_REF:
2136 case CONST_INT:
2137 case CONST:
2138 case CONST_DOUBLE:
2139 case CONST_FIXED:
2140 case CONST_VECTOR:
2141 case CC0:
2142 case PC:
2143 case REG:
2144 case SCRATCH:
2145 case ADDR_VEC:
2146 case ADDR_DIFF_VEC:
2147 case VAR_LOCATION:
2148 return 0;
2149
2150 case CLOBBER:
2151 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2152 when some combination can't be done. If we see one, don't think
2153 that we can simplify the expression. */
2154 return (GET_MODE (x) != VOIDmode);
2155
2156 case PRE_INC:
2157 case PRE_DEC:
2158 case POST_INC:
2159 case POST_DEC:
2160 case PRE_MODIFY:
2161 case POST_MODIFY:
2162 case CALL:
2163 case UNSPEC_VOLATILE:
2164 /* case TRAP_IF: This isn't clear yet. */
2165 return 1;
2166
2167 case MEM:
2168 case ASM_INPUT:
2169 case ASM_OPERANDS:
2170 if (MEM_VOLATILE_P (x))
2171 return 1;
2172
2173 default:
2174 break;
2175 }
2176
2177 /* Recursively scan the operands of this expression. */
2178
2179 {
2180 const char *fmt = GET_RTX_FORMAT (code);
2181 int i;
2182
2183 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2184 {
2185 if (fmt[i] == 'e')
2186 {
2187 if (side_effects_p (XEXP (x, i)))
2188 return 1;
2189 }
2190 else if (fmt[i] == 'E')
2191 {
2192 int j;
2193 for (j = 0; j < XVECLEN (x, i); j++)
2194 if (side_effects_p (XVECEXP (x, i, j)))
2195 return 1;
2196 }
2197 }
2198 }
2199 return 0;
2200 }
2201 \f
2202 /* Return nonzero if evaluating rtx X might cause a trap.
2203 FLAGS controls how to consider MEMs. A nonzero means the context
2204 of the access may have changed from the original, such that the
2205 address may have become invalid. */
2206
2207 int
2208 may_trap_p_1 (const_rtx x, unsigned flags)
2209 {
2210 int i;
2211 enum rtx_code code;
2212 const char *fmt;
2213
2214 /* We make no distinction currently, but this function is part of
2215 the internal target-hooks ABI so we keep the parameter as
2216 "unsigned flags". */
2217 bool code_changed = flags != 0;
2218
2219 if (x == 0)
2220 return 0;
2221 code = GET_CODE (x);
2222 switch (code)
2223 {
2224 /* Handle these cases quickly. */
2225 case CONST_INT:
2226 case CONST_DOUBLE:
2227 case CONST_FIXED:
2228 case CONST_VECTOR:
2229 case SYMBOL_REF:
2230 case LABEL_REF:
2231 case CONST:
2232 case PC:
2233 case CC0:
2234 case REG:
2235 case SCRATCH:
2236 return 0;
2237
2238 case UNSPEC:
2239 case UNSPEC_VOLATILE:
2240 return targetm.unspec_may_trap_p (x, flags);
2241
2242 case ASM_INPUT:
2243 case TRAP_IF:
2244 return 1;
2245
2246 case ASM_OPERANDS:
2247 return MEM_VOLATILE_P (x);
2248
2249 /* Memory ref can trap unless it's a static var or a stack slot. */
2250 case MEM:
2251 /* Recognize specific pattern of stack checking probes. */
2252 if (flag_stack_check
2253 && MEM_VOLATILE_P (x)
2254 && XEXP (x, 0) == stack_pointer_rtx)
2255 return 1;
2256 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2257 reference; moving it out of context such as when moving code
2258 when optimizing, might cause its address to become invalid. */
2259 code_changed
2260 || !MEM_NOTRAP_P (x))
2261 {
2262 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2263 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2264 GET_MODE (x), code_changed);
2265 }
2266
2267 return 0;
2268
2269 /* Division by a non-constant might trap. */
2270 case DIV:
2271 case MOD:
2272 case UDIV:
2273 case UMOD:
2274 if (HONOR_SNANS (GET_MODE (x)))
2275 return 1;
2276 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2277 return flag_trapping_math;
2278 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2279 return 1;
2280 break;
2281
2282 case EXPR_LIST:
2283 /* An EXPR_LIST is used to represent a function call. This
2284 certainly may trap. */
2285 return 1;
2286
2287 case GE:
2288 case GT:
2289 case LE:
2290 case LT:
2291 case LTGT:
2292 case COMPARE:
2293 /* Some floating point comparisons may trap. */
2294 if (!flag_trapping_math)
2295 break;
2296 /* ??? There is no machine independent way to check for tests that trap
2297 when COMPARE is used, though many targets do make this distinction.
2298 For instance, sparc uses CCFPE for compares which generate exceptions
2299 and CCFP for compares which do not generate exceptions. */
2300 if (HONOR_NANS (GET_MODE (x)))
2301 return 1;
2302 /* But often the compare has some CC mode, so check operand
2303 modes as well. */
2304 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2305 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2306 return 1;
2307 break;
2308
2309 case EQ:
2310 case NE:
2311 if (HONOR_SNANS (GET_MODE (x)))
2312 return 1;
2313 /* Often comparison is CC mode, so check operand modes. */
2314 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2315 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2316 return 1;
2317 break;
2318
2319 case FIX:
2320 /* Conversion of floating point might trap. */
2321 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2322 return 1;
2323 break;
2324
2325 case NEG:
2326 case ABS:
2327 case SUBREG:
2328 /* These operations don't trap even with floating point. */
2329 break;
2330
2331 default:
2332 /* Any floating arithmetic may trap. */
2333 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2334 && flag_trapping_math)
2335 return 1;
2336 }
2337
2338 fmt = GET_RTX_FORMAT (code);
2339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2340 {
2341 if (fmt[i] == 'e')
2342 {
2343 if (may_trap_p_1 (XEXP (x, i), flags))
2344 return 1;
2345 }
2346 else if (fmt[i] == 'E')
2347 {
2348 int j;
2349 for (j = 0; j < XVECLEN (x, i); j++)
2350 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2351 return 1;
2352 }
2353 }
2354 return 0;
2355 }
2356
2357 /* Return nonzero if evaluating rtx X might cause a trap. */
2358
2359 int
2360 may_trap_p (const_rtx x)
2361 {
2362 return may_trap_p_1 (x, 0);
2363 }
2364
2365 /* Same as above, but additionally return nonzero if evaluating rtx X might
2366 cause a fault. We define a fault for the purpose of this function as a
2367 erroneous execution condition that cannot be encountered during the normal
2368 execution of a valid program; the typical example is an unaligned memory
2369 access on a strict alignment machine. The compiler guarantees that it
2370 doesn't generate code that will fault from a valid program, but this
2371 guarantee doesn't mean anything for individual instructions. Consider
2372 the following example:
2373
2374 struct S { int d; union { char *cp; int *ip; }; };
2375
2376 int foo(struct S *s)
2377 {
2378 if (s->d == 1)
2379 return *s->ip;
2380 else
2381 return *s->cp;
2382 }
2383
2384 on a strict alignment machine. In a valid program, foo will never be
2385 invoked on a structure for which d is equal to 1 and the underlying
2386 unique field of the union not aligned on a 4-byte boundary, but the
2387 expression *s->ip might cause a fault if considered individually.
2388
2389 At the RTL level, potentially problematic expressions will almost always
2390 verify may_trap_p; for example, the above dereference can be emitted as
2391 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2392 However, suppose that foo is inlined in a caller that causes s->cp to
2393 point to a local character variable and guarantees that s->d is not set
2394 to 1; foo may have been effectively translated into pseudo-RTL as:
2395
2396 if ((reg:SI) == 1)
2397 (set (reg:SI) (mem:SI (%fp - 7)))
2398 else
2399 (set (reg:QI) (mem:QI (%fp - 7)))
2400
2401 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2402 memory reference to a stack slot, but it will certainly cause a fault
2403 on a strict alignment machine. */
2404
2405 int
2406 may_trap_or_fault_p (const_rtx x)
2407 {
2408 return may_trap_p_1 (x, 1);
2409 }
2410 \f
2411 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2412 i.e., an inequality. */
2413
2414 int
2415 inequality_comparisons_p (const_rtx x)
2416 {
2417 const char *fmt;
2418 int len, i;
2419 const enum rtx_code code = GET_CODE (x);
2420
2421 switch (code)
2422 {
2423 case REG:
2424 case SCRATCH:
2425 case PC:
2426 case CC0:
2427 case CONST_INT:
2428 case CONST_DOUBLE:
2429 case CONST_FIXED:
2430 case CONST_VECTOR:
2431 case CONST:
2432 case LABEL_REF:
2433 case SYMBOL_REF:
2434 return 0;
2435
2436 case LT:
2437 case LTU:
2438 case GT:
2439 case GTU:
2440 case LE:
2441 case LEU:
2442 case GE:
2443 case GEU:
2444 return 1;
2445
2446 default:
2447 break;
2448 }
2449
2450 len = GET_RTX_LENGTH (code);
2451 fmt = GET_RTX_FORMAT (code);
2452
2453 for (i = 0; i < len; i++)
2454 {
2455 if (fmt[i] == 'e')
2456 {
2457 if (inequality_comparisons_p (XEXP (x, i)))
2458 return 1;
2459 }
2460 else if (fmt[i] == 'E')
2461 {
2462 int j;
2463 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2464 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2465 return 1;
2466 }
2467 }
2468
2469 return 0;
2470 }
2471 \f
2472 /* Replace any occurrence of FROM in X with TO. The function does
2473 not enter into CONST_DOUBLE for the replace.
2474
2475 Note that copying is not done so X must not be shared unless all copies
2476 are to be modified. */
2477
2478 rtx
2479 replace_rtx (rtx x, rtx from, rtx to)
2480 {
2481 int i, j;
2482 const char *fmt;
2483
2484 /* The following prevents loops occurrence when we change MEM in
2485 CONST_DOUBLE onto the same CONST_DOUBLE. */
2486 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2487 return x;
2488
2489 if (x == from)
2490 return to;
2491
2492 /* Allow this function to make replacements in EXPR_LISTs. */
2493 if (x == 0)
2494 return 0;
2495
2496 if (GET_CODE (x) == SUBREG)
2497 {
2498 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2499
2500 if (CONST_INT_P (new_rtx))
2501 {
2502 x = simplify_subreg (GET_MODE (x), new_rtx,
2503 GET_MODE (SUBREG_REG (x)),
2504 SUBREG_BYTE (x));
2505 gcc_assert (x);
2506 }
2507 else
2508 SUBREG_REG (x) = new_rtx;
2509
2510 return x;
2511 }
2512 else if (GET_CODE (x) == ZERO_EXTEND)
2513 {
2514 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2515
2516 if (CONST_INT_P (new_rtx))
2517 {
2518 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2519 new_rtx, GET_MODE (XEXP (x, 0)));
2520 gcc_assert (x);
2521 }
2522 else
2523 XEXP (x, 0) = new_rtx;
2524
2525 return x;
2526 }
2527
2528 fmt = GET_RTX_FORMAT (GET_CODE (x));
2529 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2530 {
2531 if (fmt[i] == 'e')
2532 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2533 else if (fmt[i] == 'E')
2534 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2535 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2536 }
2537
2538 return x;
2539 }
2540 \f
2541 /* Replace occurrences of the old label in *X with the new one.
2542 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2543
2544 int
2545 replace_label (rtx *x, void *data)
2546 {
2547 rtx l = *x;
2548 rtx old_label = ((replace_label_data *) data)->r1;
2549 rtx new_label = ((replace_label_data *) data)->r2;
2550 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2551
2552 if (l == NULL_RTX)
2553 return 0;
2554
2555 if (GET_CODE (l) == SYMBOL_REF
2556 && CONSTANT_POOL_ADDRESS_P (l))
2557 {
2558 rtx c = get_pool_constant (l);
2559 if (rtx_referenced_p (old_label, c))
2560 {
2561 rtx new_c, new_l;
2562 replace_label_data *d = (replace_label_data *) data;
2563
2564 /* Create a copy of constant C; replace the label inside
2565 but do not update LABEL_NUSES because uses in constant pool
2566 are not counted. */
2567 new_c = copy_rtx (c);
2568 d->update_label_nuses = false;
2569 for_each_rtx (&new_c, replace_label, data);
2570 d->update_label_nuses = update_label_nuses;
2571
2572 /* Add the new constant NEW_C to constant pool and replace
2573 the old reference to constant by new reference. */
2574 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2575 *x = replace_rtx (l, l, new_l);
2576 }
2577 return 0;
2578 }
2579
2580 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2581 field. This is not handled by for_each_rtx because it doesn't
2582 handle unprinted ('0') fields. */
2583 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2584 JUMP_LABEL (l) = new_label;
2585
2586 if ((GET_CODE (l) == LABEL_REF
2587 || GET_CODE (l) == INSN_LIST)
2588 && XEXP (l, 0) == old_label)
2589 {
2590 XEXP (l, 0) = new_label;
2591 if (update_label_nuses)
2592 {
2593 ++LABEL_NUSES (new_label);
2594 --LABEL_NUSES (old_label);
2595 }
2596 return 0;
2597 }
2598
2599 return 0;
2600 }
2601
2602 /* When *BODY is equal to X or X is directly referenced by *BODY
2603 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2604 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2605
2606 static int
2607 rtx_referenced_p_1 (rtx *body, void *x)
2608 {
2609 rtx y = (rtx) x;
2610
2611 if (*body == NULL_RTX)
2612 return y == NULL_RTX;
2613
2614 /* Return true if a label_ref *BODY refers to label Y. */
2615 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2616 return XEXP (*body, 0) == y;
2617
2618 /* If *BODY is a reference to pool constant traverse the constant. */
2619 if (GET_CODE (*body) == SYMBOL_REF
2620 && CONSTANT_POOL_ADDRESS_P (*body))
2621 return rtx_referenced_p (y, get_pool_constant (*body));
2622
2623 /* By default, compare the RTL expressions. */
2624 return rtx_equal_p (*body, y);
2625 }
2626
2627 /* Return true if X is referenced in BODY. */
2628
2629 int
2630 rtx_referenced_p (rtx x, rtx body)
2631 {
2632 return for_each_rtx (&body, rtx_referenced_p_1, x);
2633 }
2634
2635 /* If INSN is a tablejump return true and store the label (before jump table) to
2636 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2637
2638 bool
2639 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2640 {
2641 rtx label, table;
2642
2643 if (JUMP_P (insn)
2644 && (label = JUMP_LABEL (insn)) != NULL_RTX
2645 && (table = next_active_insn (label)) != NULL_RTX
2646 && JUMP_TABLE_DATA_P (table))
2647 {
2648 if (labelp)
2649 *labelp = label;
2650 if (tablep)
2651 *tablep = table;
2652 return true;
2653 }
2654 return false;
2655 }
2656
2657 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2658 constant that is not in the constant pool and not in the condition
2659 of an IF_THEN_ELSE. */
2660
2661 static int
2662 computed_jump_p_1 (const_rtx x)
2663 {
2664 const enum rtx_code code = GET_CODE (x);
2665 int i, j;
2666 const char *fmt;
2667
2668 switch (code)
2669 {
2670 case LABEL_REF:
2671 case PC:
2672 return 0;
2673
2674 case CONST:
2675 case CONST_INT:
2676 case CONST_DOUBLE:
2677 case CONST_FIXED:
2678 case CONST_VECTOR:
2679 case SYMBOL_REF:
2680 case REG:
2681 return 1;
2682
2683 case MEM:
2684 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2685 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2686
2687 case IF_THEN_ELSE:
2688 return (computed_jump_p_1 (XEXP (x, 1))
2689 || computed_jump_p_1 (XEXP (x, 2)));
2690
2691 default:
2692 break;
2693 }
2694
2695 fmt = GET_RTX_FORMAT (code);
2696 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2697 {
2698 if (fmt[i] == 'e'
2699 && computed_jump_p_1 (XEXP (x, i)))
2700 return 1;
2701
2702 else if (fmt[i] == 'E')
2703 for (j = 0; j < XVECLEN (x, i); j++)
2704 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2705 return 1;
2706 }
2707
2708 return 0;
2709 }
2710
2711 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2712
2713 Tablejumps and casesi insns are not considered indirect jumps;
2714 we can recognize them by a (use (label_ref)). */
2715
2716 int
2717 computed_jump_p (const_rtx insn)
2718 {
2719 int i;
2720 if (JUMP_P (insn))
2721 {
2722 rtx pat = PATTERN (insn);
2723
2724 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2725 if (JUMP_LABEL (insn) != NULL)
2726 return 0;
2727
2728 if (GET_CODE (pat) == PARALLEL)
2729 {
2730 int len = XVECLEN (pat, 0);
2731 int has_use_labelref = 0;
2732
2733 for (i = len - 1; i >= 0; i--)
2734 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2735 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2736 == LABEL_REF))
2737 has_use_labelref = 1;
2738
2739 if (! has_use_labelref)
2740 for (i = len - 1; i >= 0; i--)
2741 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2742 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2743 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2744 return 1;
2745 }
2746 else if (GET_CODE (pat) == SET
2747 && SET_DEST (pat) == pc_rtx
2748 && computed_jump_p_1 (SET_SRC (pat)))
2749 return 1;
2750 }
2751 return 0;
2752 }
2753
2754 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2755 calls. Processes the subexpressions of EXP and passes them to F. */
2756 static int
2757 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2758 {
2759 int result, i, j;
2760 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2761 rtx *x;
2762
2763 for (; format[n] != '\0'; n++)
2764 {
2765 switch (format[n])
2766 {
2767 case 'e':
2768 /* Call F on X. */
2769 x = &XEXP (exp, n);
2770 result = (*f) (x, data);
2771 if (result == -1)
2772 /* Do not traverse sub-expressions. */
2773 continue;
2774 else if (result != 0)
2775 /* Stop the traversal. */
2776 return result;
2777
2778 if (*x == NULL_RTX)
2779 /* There are no sub-expressions. */
2780 continue;
2781
2782 i = non_rtx_starting_operands[GET_CODE (*x)];
2783 if (i >= 0)
2784 {
2785 result = for_each_rtx_1 (*x, i, f, data);
2786 if (result != 0)
2787 return result;
2788 }
2789 break;
2790
2791 case 'V':
2792 case 'E':
2793 if (XVEC (exp, n) == 0)
2794 continue;
2795 for (j = 0; j < XVECLEN (exp, n); ++j)
2796 {
2797 /* Call F on X. */
2798 x = &XVECEXP (exp, n, j);
2799 result = (*f) (x, data);
2800 if (result == -1)
2801 /* Do not traverse sub-expressions. */
2802 continue;
2803 else if (result != 0)
2804 /* Stop the traversal. */
2805 return result;
2806
2807 if (*x == NULL_RTX)
2808 /* There are no sub-expressions. */
2809 continue;
2810
2811 i = non_rtx_starting_operands[GET_CODE (*x)];
2812 if (i >= 0)
2813 {
2814 result = for_each_rtx_1 (*x, i, f, data);
2815 if (result != 0)
2816 return result;
2817 }
2818 }
2819 break;
2820
2821 default:
2822 /* Nothing to do. */
2823 break;
2824 }
2825 }
2826
2827 return 0;
2828 }
2829
2830 /* Traverse X via depth-first search, calling F for each
2831 sub-expression (including X itself). F is also passed the DATA.
2832 If F returns -1, do not traverse sub-expressions, but continue
2833 traversing the rest of the tree. If F ever returns any other
2834 nonzero value, stop the traversal, and return the value returned
2835 by F. Otherwise, return 0. This function does not traverse inside
2836 tree structure that contains RTX_EXPRs, or into sub-expressions
2837 whose format code is `0' since it is not known whether or not those
2838 codes are actually RTL.
2839
2840 This routine is very general, and could (should?) be used to
2841 implement many of the other routines in this file. */
2842
2843 int
2844 for_each_rtx (rtx *x, rtx_function f, void *data)
2845 {
2846 int result;
2847 int i;
2848
2849 /* Call F on X. */
2850 result = (*f) (x, data);
2851 if (result == -1)
2852 /* Do not traverse sub-expressions. */
2853 return 0;
2854 else if (result != 0)
2855 /* Stop the traversal. */
2856 return result;
2857
2858 if (*x == NULL_RTX)
2859 /* There are no sub-expressions. */
2860 return 0;
2861
2862 i = non_rtx_starting_operands[GET_CODE (*x)];
2863 if (i < 0)
2864 return 0;
2865
2866 return for_each_rtx_1 (*x, i, f, data);
2867 }
2868
2869
2870 /* Searches X for any reference to REGNO, returning the rtx of the
2871 reference found if any. Otherwise, returns NULL_RTX. */
2872
2873 rtx
2874 regno_use_in (unsigned int regno, rtx x)
2875 {
2876 const char *fmt;
2877 int i, j;
2878 rtx tem;
2879
2880 if (REG_P (x) && REGNO (x) == regno)
2881 return x;
2882
2883 fmt = GET_RTX_FORMAT (GET_CODE (x));
2884 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2885 {
2886 if (fmt[i] == 'e')
2887 {
2888 if ((tem = regno_use_in (regno, XEXP (x, i))))
2889 return tem;
2890 }
2891 else if (fmt[i] == 'E')
2892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2893 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2894 return tem;
2895 }
2896
2897 return NULL_RTX;
2898 }
2899
2900 /* Return a value indicating whether OP, an operand of a commutative
2901 operation, is preferred as the first or second operand. The higher
2902 the value, the stronger the preference for being the first operand.
2903 We use negative values to indicate a preference for the first operand
2904 and positive values for the second operand. */
2905
2906 int
2907 commutative_operand_precedence (rtx op)
2908 {
2909 enum rtx_code code = GET_CODE (op);
2910
2911 /* Constants always come the second operand. Prefer "nice" constants. */
2912 if (code == CONST_INT)
2913 return -8;
2914 if (code == CONST_DOUBLE)
2915 return -7;
2916 if (code == CONST_FIXED)
2917 return -7;
2918 op = avoid_constant_pool_reference (op);
2919 code = GET_CODE (op);
2920
2921 switch (GET_RTX_CLASS (code))
2922 {
2923 case RTX_CONST_OBJ:
2924 if (code == CONST_INT)
2925 return -6;
2926 if (code == CONST_DOUBLE)
2927 return -5;
2928 if (code == CONST_FIXED)
2929 return -5;
2930 return -4;
2931
2932 case RTX_EXTRA:
2933 /* SUBREGs of objects should come second. */
2934 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2935 return -3;
2936 return 0;
2937
2938 case RTX_OBJ:
2939 /* Complex expressions should be the first, so decrease priority
2940 of objects. Prefer pointer objects over non pointer objects. */
2941 if ((REG_P (op) && REG_POINTER (op))
2942 || (MEM_P (op) && MEM_POINTER (op)))
2943 return -1;
2944 return -2;
2945
2946 case RTX_COMM_ARITH:
2947 /* Prefer operands that are themselves commutative to be first.
2948 This helps to make things linear. In particular,
2949 (and (and (reg) (reg)) (not (reg))) is canonical. */
2950 return 4;
2951
2952 case RTX_BIN_ARITH:
2953 /* If only one operand is a binary expression, it will be the first
2954 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2955 is canonical, although it will usually be further simplified. */
2956 return 2;
2957
2958 case RTX_UNARY:
2959 /* Then prefer NEG and NOT. */
2960 if (code == NEG || code == NOT)
2961 return 1;
2962
2963 default:
2964 return 0;
2965 }
2966 }
2967
2968 /* Return 1 iff it is necessary to swap operands of commutative operation
2969 in order to canonicalize expression. */
2970
2971 bool
2972 swap_commutative_operands_p (rtx x, rtx y)
2973 {
2974 return (commutative_operand_precedence (x)
2975 < commutative_operand_precedence (y));
2976 }
2977
2978 /* Return 1 if X is an autoincrement side effect and the register is
2979 not the stack pointer. */
2980 int
2981 auto_inc_p (const_rtx x)
2982 {
2983 switch (GET_CODE (x))
2984 {
2985 case PRE_INC:
2986 case POST_INC:
2987 case PRE_DEC:
2988 case POST_DEC:
2989 case PRE_MODIFY:
2990 case POST_MODIFY:
2991 /* There are no REG_INC notes for SP. */
2992 if (XEXP (x, 0) != stack_pointer_rtx)
2993 return 1;
2994 default:
2995 break;
2996 }
2997 return 0;
2998 }
2999
3000 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3001 int
3002 loc_mentioned_in_p (rtx *loc, const_rtx in)
3003 {
3004 enum rtx_code code;
3005 const char *fmt;
3006 int i, j;
3007
3008 if (!in)
3009 return 0;
3010
3011 code = GET_CODE (in);
3012 fmt = GET_RTX_FORMAT (code);
3013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3014 {
3015 if (fmt[i] == 'e')
3016 {
3017 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3018 return 1;
3019 }
3020 else if (fmt[i] == 'E')
3021 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3022 if (loc == &XVECEXP (in, i, j)
3023 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3024 return 1;
3025 }
3026 return 0;
3027 }
3028
3029 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3030 and SUBREG_BYTE, return the bit offset where the subreg begins
3031 (counting from the least significant bit of the operand). */
3032
3033 unsigned int
3034 subreg_lsb_1 (enum machine_mode outer_mode,
3035 enum machine_mode inner_mode,
3036 unsigned int subreg_byte)
3037 {
3038 unsigned int bitpos;
3039 unsigned int byte;
3040 unsigned int word;
3041
3042 /* A paradoxical subreg begins at bit position 0. */
3043 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3044 return 0;
3045
3046 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3047 /* If the subreg crosses a word boundary ensure that
3048 it also begins and ends on a word boundary. */
3049 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3050 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3051 && (subreg_byte % UNITS_PER_WORD
3052 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3053
3054 if (WORDS_BIG_ENDIAN)
3055 word = (GET_MODE_SIZE (inner_mode)
3056 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3057 else
3058 word = subreg_byte / UNITS_PER_WORD;
3059 bitpos = word * BITS_PER_WORD;
3060
3061 if (BYTES_BIG_ENDIAN)
3062 byte = (GET_MODE_SIZE (inner_mode)
3063 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3064 else
3065 byte = subreg_byte % UNITS_PER_WORD;
3066 bitpos += byte * BITS_PER_UNIT;
3067
3068 return bitpos;
3069 }
3070
3071 /* Given a subreg X, return the bit offset where the subreg begins
3072 (counting from the least significant bit of the reg). */
3073
3074 unsigned int
3075 subreg_lsb (const_rtx x)
3076 {
3077 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3078 SUBREG_BYTE (x));
3079 }
3080
3081 /* Fill in information about a subreg of a hard register.
3082 xregno - A regno of an inner hard subreg_reg (or what will become one).
3083 xmode - The mode of xregno.
3084 offset - The byte offset.
3085 ymode - The mode of a top level SUBREG (or what may become one).
3086 info - Pointer to structure to fill in. */
3087 void
3088 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3089 unsigned int offset, enum machine_mode ymode,
3090 struct subreg_info *info)
3091 {
3092 int nregs_xmode, nregs_ymode;
3093 int mode_multiple, nregs_multiple;
3094 int offset_adj, y_offset, y_offset_adj;
3095 int regsize_xmode, regsize_ymode;
3096 bool rknown;
3097
3098 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3099
3100 rknown = false;
3101
3102 /* If there are holes in a non-scalar mode in registers, we expect
3103 that it is made up of its units concatenated together. */
3104 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3105 {
3106 enum machine_mode xmode_unit;
3107
3108 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3109 if (GET_MODE_INNER (xmode) == VOIDmode)
3110 xmode_unit = xmode;
3111 else
3112 xmode_unit = GET_MODE_INNER (xmode);
3113 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3114 gcc_assert (nregs_xmode
3115 == (GET_MODE_NUNITS (xmode)
3116 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3117 gcc_assert (hard_regno_nregs[xregno][xmode]
3118 == (hard_regno_nregs[xregno][xmode_unit]
3119 * GET_MODE_NUNITS (xmode)));
3120
3121 /* You can only ask for a SUBREG of a value with holes in the middle
3122 if you don't cross the holes. (Such a SUBREG should be done by
3123 picking a different register class, or doing it in memory if
3124 necessary.) An example of a value with holes is XCmode on 32-bit
3125 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3126 3 for each part, but in memory it's two 128-bit parts.
3127 Padding is assumed to be at the end (not necessarily the 'high part')
3128 of each unit. */
3129 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3130 < GET_MODE_NUNITS (xmode))
3131 && (offset / GET_MODE_SIZE (xmode_unit)
3132 != ((offset + GET_MODE_SIZE (ymode) - 1)
3133 / GET_MODE_SIZE (xmode_unit))))
3134 {
3135 info->representable_p = false;
3136 rknown = true;
3137 }
3138 }
3139 else
3140 nregs_xmode = hard_regno_nregs[xregno][xmode];
3141
3142 nregs_ymode = hard_regno_nregs[xregno][ymode];
3143
3144 /* Paradoxical subregs are otherwise valid. */
3145 if (!rknown
3146 && offset == 0
3147 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3148 {
3149 info->representable_p = true;
3150 /* If this is a big endian paradoxical subreg, which uses more
3151 actual hard registers than the original register, we must
3152 return a negative offset so that we find the proper highpart
3153 of the register. */
3154 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3155 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3156 info->offset = nregs_xmode - nregs_ymode;
3157 else
3158 info->offset = 0;
3159 info->nregs = nregs_ymode;
3160 return;
3161 }
3162
3163 /* If registers store different numbers of bits in the different
3164 modes, we cannot generally form this subreg. */
3165 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3166 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3167 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3168 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3169 {
3170 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3171 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3172 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3173 {
3174 info->representable_p = false;
3175 info->nregs
3176 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3177 info->offset = offset / regsize_xmode;
3178 return;
3179 }
3180 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3181 {
3182 info->representable_p = false;
3183 info->nregs
3184 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3185 info->offset = offset / regsize_xmode;
3186 return;
3187 }
3188 }
3189
3190 /* Lowpart subregs are otherwise valid. */
3191 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3192 {
3193 info->representable_p = true;
3194 rknown = true;
3195
3196 if (offset == 0 || nregs_xmode == nregs_ymode)
3197 {
3198 info->offset = 0;
3199 info->nregs = nregs_ymode;
3200 return;
3201 }
3202 }
3203
3204 /* This should always pass, otherwise we don't know how to verify
3205 the constraint. These conditions may be relaxed but
3206 subreg_regno_offset would need to be redesigned. */
3207 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3208 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3209
3210 /* The XMODE value can be seen as a vector of NREGS_XMODE
3211 values. The subreg must represent a lowpart of given field.
3212 Compute what field it is. */
3213 offset_adj = offset;
3214 offset_adj -= subreg_lowpart_offset (ymode,
3215 mode_for_size (GET_MODE_BITSIZE (xmode)
3216 / nregs_xmode,
3217 MODE_INT, 0));
3218
3219 /* Size of ymode must not be greater than the size of xmode. */
3220 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3221 gcc_assert (mode_multiple != 0);
3222
3223 y_offset = offset / GET_MODE_SIZE (ymode);
3224 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3225 nregs_multiple = nregs_xmode / nregs_ymode;
3226
3227 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3228 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3229
3230 if (!rknown)
3231 {
3232 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3233 rknown = true;
3234 }
3235 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3236 info->nregs = nregs_ymode;
3237 }
3238
3239 /* This function returns the regno offset of a subreg expression.
3240 xregno - A regno of an inner hard subreg_reg (or what will become one).
3241 xmode - The mode of xregno.
3242 offset - The byte offset.
3243 ymode - The mode of a top level SUBREG (or what may become one).
3244 RETURN - The regno offset which would be used. */
3245 unsigned int
3246 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3247 unsigned int offset, enum machine_mode ymode)
3248 {
3249 struct subreg_info info;
3250 subreg_get_info (xregno, xmode, offset, ymode, &info);
3251 return info.offset;
3252 }
3253
3254 /* This function returns true when the offset is representable via
3255 subreg_offset in the given regno.
3256 xregno - A regno of an inner hard subreg_reg (or what will become one).
3257 xmode - The mode of xregno.
3258 offset - The byte offset.
3259 ymode - The mode of a top level SUBREG (or what may become one).
3260 RETURN - Whether the offset is representable. */
3261 bool
3262 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3263 unsigned int offset, enum machine_mode ymode)
3264 {
3265 struct subreg_info info;
3266 subreg_get_info (xregno, xmode, offset, ymode, &info);
3267 return info.representable_p;
3268 }
3269
3270 /* Return the number of a YMODE register to which
3271
3272 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3273
3274 can be simplified. Return -1 if the subreg can't be simplified.
3275
3276 XREGNO is a hard register number. */
3277
3278 int
3279 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3280 unsigned int offset, enum machine_mode ymode)
3281 {
3282 struct subreg_info info;
3283 unsigned int yregno;
3284
3285 #ifdef CANNOT_CHANGE_MODE_CLASS
3286 /* Give the backend a chance to disallow the mode change. */
3287 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3288 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3289 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3290 return -1;
3291 #endif
3292
3293 /* We shouldn't simplify stack-related registers. */
3294 if ((!reload_completed || frame_pointer_needed)
3295 && xregno == FRAME_POINTER_REGNUM)
3296 return -1;
3297
3298 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3299 && xregno == ARG_POINTER_REGNUM)
3300 return -1;
3301
3302 if (xregno == STACK_POINTER_REGNUM)
3303 return -1;
3304
3305 /* Try to get the register offset. */
3306 subreg_get_info (xregno, xmode, offset, ymode, &info);
3307 if (!info.representable_p)
3308 return -1;
3309
3310 /* Make sure that the offsetted register value is in range. */
3311 yregno = xregno + info.offset;
3312 if (!HARD_REGISTER_NUM_P (yregno))
3313 return -1;
3314
3315 /* See whether (reg:YMODE YREGNO) is valid.
3316
3317 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3318 This is a kludge to work around how float/complex arguments are passed
3319 on 32-bit SPARC and should be fixed. */
3320 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3321 && HARD_REGNO_MODE_OK (xregno, xmode))
3322 return -1;
3323
3324 return (int) yregno;
3325 }
3326
3327 /* Return the final regno that a subreg expression refers to. */
3328 unsigned int
3329 subreg_regno (const_rtx x)
3330 {
3331 unsigned int ret;
3332 rtx subreg = SUBREG_REG (x);
3333 int regno = REGNO (subreg);
3334
3335 ret = regno + subreg_regno_offset (regno,
3336 GET_MODE (subreg),
3337 SUBREG_BYTE (x),
3338 GET_MODE (x));
3339 return ret;
3340
3341 }
3342
3343 /* Return the number of registers that a subreg expression refers
3344 to. */
3345 unsigned int
3346 subreg_nregs (const_rtx x)
3347 {
3348 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3349 }
3350
3351 /* Return the number of registers that a subreg REG with REGNO
3352 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3353 changed so that the regno can be passed in. */
3354
3355 unsigned int
3356 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3357 {
3358 struct subreg_info info;
3359 rtx subreg = SUBREG_REG (x);
3360
3361 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3362 &info);
3363 return info.nregs;
3364 }
3365
3366
3367 struct parms_set_data
3368 {
3369 int nregs;
3370 HARD_REG_SET regs;
3371 };
3372
3373 /* Helper function for noticing stores to parameter registers. */
3374 static void
3375 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3376 {
3377 struct parms_set_data *const d = (struct parms_set_data *) data;
3378 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3379 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3380 {
3381 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3382 d->nregs--;
3383 }
3384 }
3385
3386 /* Look backward for first parameter to be loaded.
3387 Note that loads of all parameters will not necessarily be
3388 found if CSE has eliminated some of them (e.g., an argument
3389 to the outer function is passed down as a parameter).
3390 Do not skip BOUNDARY. */
3391 rtx
3392 find_first_parameter_load (rtx call_insn, rtx boundary)
3393 {
3394 struct parms_set_data parm;
3395 rtx p, before, first_set;
3396
3397 /* Since different machines initialize their parameter registers
3398 in different orders, assume nothing. Collect the set of all
3399 parameter registers. */
3400 CLEAR_HARD_REG_SET (parm.regs);
3401 parm.nregs = 0;
3402 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3403 if (GET_CODE (XEXP (p, 0)) == USE
3404 && REG_P (XEXP (XEXP (p, 0), 0)))
3405 {
3406 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3407
3408 /* We only care about registers which can hold function
3409 arguments. */
3410 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3411 continue;
3412
3413 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3414 parm.nregs++;
3415 }
3416 before = call_insn;
3417 first_set = call_insn;
3418
3419 /* Search backward for the first set of a register in this set. */
3420 while (parm.nregs && before != boundary)
3421 {
3422 before = PREV_INSN (before);
3423
3424 /* It is possible that some loads got CSEed from one call to
3425 another. Stop in that case. */
3426 if (CALL_P (before))
3427 break;
3428
3429 /* Our caller needs either ensure that we will find all sets
3430 (in case code has not been optimized yet), or take care
3431 for possible labels in a way by setting boundary to preceding
3432 CODE_LABEL. */
3433 if (LABEL_P (before))
3434 {
3435 gcc_assert (before == boundary);
3436 break;
3437 }
3438
3439 if (INSN_P (before))
3440 {
3441 int nregs_old = parm.nregs;
3442 note_stores (PATTERN (before), parms_set, &parm);
3443 /* If we found something that did not set a parameter reg,
3444 we're done. Do not keep going, as that might result
3445 in hoisting an insn before the setting of a pseudo
3446 that is used by the hoisted insn. */
3447 if (nregs_old != parm.nregs)
3448 first_set = before;
3449 else
3450 break;
3451 }
3452 }
3453 return first_set;
3454 }
3455
3456 /* Return true if we should avoid inserting code between INSN and preceding
3457 call instruction. */
3458
3459 bool
3460 keep_with_call_p (const_rtx insn)
3461 {
3462 rtx set;
3463
3464 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3465 {
3466 if (REG_P (SET_DEST (set))
3467 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3468 && fixed_regs[REGNO (SET_DEST (set))]
3469 && general_operand (SET_SRC (set), VOIDmode))
3470 return true;
3471 if (REG_P (SET_SRC (set))
3472 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3473 && REG_P (SET_DEST (set))
3474 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3475 return true;
3476 /* There may be a stack pop just after the call and before the store
3477 of the return register. Search for the actual store when deciding
3478 if we can break or not. */
3479 if (SET_DEST (set) == stack_pointer_rtx)
3480 {
3481 /* This CONST_CAST is okay because next_nonnote_insn just
3482 returns its argument and we assign it to a const_rtx
3483 variable. */
3484 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3485 if (i2 && keep_with_call_p (i2))
3486 return true;
3487 }
3488 }
3489 return false;
3490 }
3491
3492 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3493 to non-complex jumps. That is, direct unconditional, conditional,
3494 and tablejumps, but not computed jumps or returns. It also does
3495 not apply to the fallthru case of a conditional jump. */
3496
3497 bool
3498 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3499 {
3500 rtx tmp = JUMP_LABEL (jump_insn);
3501
3502 if (label == tmp)
3503 return true;
3504
3505 if (tablejump_p (jump_insn, NULL, &tmp))
3506 {
3507 rtvec vec = XVEC (PATTERN (tmp),
3508 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3509 int i, veclen = GET_NUM_ELEM (vec);
3510
3511 for (i = 0; i < veclen; ++i)
3512 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3513 return true;
3514 }
3515
3516 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3517 return true;
3518
3519 return false;
3520 }
3521
3522 \f
3523 /* Return an estimate of the cost of computing rtx X.
3524 One use is in cse, to decide which expression to keep in the hash table.
3525 Another is in rtl generation, to pick the cheapest way to multiply.
3526 Other uses like the latter are expected in the future.
3527
3528 SPEED parameter specify whether costs optimized for speed or size should
3529 be returned. */
3530
3531 int
3532 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3533 {
3534 int i, j;
3535 enum rtx_code code;
3536 const char *fmt;
3537 int total;
3538
3539 if (x == 0)
3540 return 0;
3541
3542 /* Compute the default costs of certain things.
3543 Note that targetm.rtx_costs can override the defaults. */
3544
3545 code = GET_CODE (x);
3546 switch (code)
3547 {
3548 case MULT:
3549 total = COSTS_N_INSNS (5);
3550 break;
3551 case DIV:
3552 case UDIV:
3553 case MOD:
3554 case UMOD:
3555 total = COSTS_N_INSNS (7);
3556 break;
3557 case USE:
3558 /* Used in combine.c as a marker. */
3559 total = 0;
3560 break;
3561 default:
3562 total = COSTS_N_INSNS (1);
3563 }
3564
3565 switch (code)
3566 {
3567 case REG:
3568 return 0;
3569
3570 case SUBREG:
3571 total = 0;
3572 /* If we can't tie these modes, make this expensive. The larger
3573 the mode, the more expensive it is. */
3574 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3575 return COSTS_N_INSNS (2
3576 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3577 break;
3578
3579 default:
3580 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3581 return total;
3582 break;
3583 }
3584
3585 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3586 which is already in total. */
3587
3588 fmt = GET_RTX_FORMAT (code);
3589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3590 if (fmt[i] == 'e')
3591 total += rtx_cost (XEXP (x, i), code, speed);
3592 else if (fmt[i] == 'E')
3593 for (j = 0; j < XVECLEN (x, i); j++)
3594 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3595
3596 return total;
3597 }
3598 \f
3599 /* Return cost of address expression X.
3600 Expect that X is properly formed address reference.
3601
3602 SPEED parameter specify whether costs optimized for speed or size should
3603 be returned. */
3604
3605 int
3606 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3607 {
3608 /* We may be asked for cost of various unusual addresses, such as operands
3609 of push instruction. It is not worthwhile to complicate writing
3610 of the target hook by such cases. */
3611
3612 if (!memory_address_addr_space_p (mode, x, as))
3613 return 1000;
3614
3615 return targetm.address_cost (x, speed);
3616 }
3617
3618 /* If the target doesn't override, compute the cost as with arithmetic. */
3619
3620 int
3621 default_address_cost (rtx x, bool speed)
3622 {
3623 return rtx_cost (x, MEM, speed);
3624 }
3625 \f
3626
3627 unsigned HOST_WIDE_INT
3628 nonzero_bits (const_rtx x, enum machine_mode mode)
3629 {
3630 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3631 }
3632
3633 unsigned int
3634 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3635 {
3636 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3637 }
3638
3639 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3640 It avoids exponential behavior in nonzero_bits1 when X has
3641 identical subexpressions on the first or the second level. */
3642
3643 static unsigned HOST_WIDE_INT
3644 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3645 enum machine_mode known_mode,
3646 unsigned HOST_WIDE_INT known_ret)
3647 {
3648 if (x == known_x && mode == known_mode)
3649 return known_ret;
3650
3651 /* Try to find identical subexpressions. If found call
3652 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3653 precomputed value for the subexpression as KNOWN_RET. */
3654
3655 if (ARITHMETIC_P (x))
3656 {
3657 rtx x0 = XEXP (x, 0);
3658 rtx x1 = XEXP (x, 1);
3659
3660 /* Check the first level. */
3661 if (x0 == x1)
3662 return nonzero_bits1 (x, mode, x0, mode,
3663 cached_nonzero_bits (x0, mode, known_x,
3664 known_mode, known_ret));
3665
3666 /* Check the second level. */
3667 if (ARITHMETIC_P (x0)
3668 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3669 return nonzero_bits1 (x, mode, x1, mode,
3670 cached_nonzero_bits (x1, mode, known_x,
3671 known_mode, known_ret));
3672
3673 if (ARITHMETIC_P (x1)
3674 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3675 return nonzero_bits1 (x, mode, x0, mode,
3676 cached_nonzero_bits (x0, mode, known_x,
3677 known_mode, known_ret));
3678 }
3679
3680 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3681 }
3682
3683 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3684 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3685 is less useful. We can't allow both, because that results in exponential
3686 run time recursion. There is a nullstone testcase that triggered
3687 this. This macro avoids accidental uses of num_sign_bit_copies. */
3688 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3689
3690 /* Given an expression, X, compute which bits in X can be nonzero.
3691 We don't care about bits outside of those defined in MODE.
3692
3693 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3694 an arithmetic operation, we can do better. */
3695
3696 static unsigned HOST_WIDE_INT
3697 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3698 enum machine_mode known_mode,
3699 unsigned HOST_WIDE_INT known_ret)
3700 {
3701 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3702 unsigned HOST_WIDE_INT inner_nz;
3703 enum rtx_code code;
3704 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3705
3706 /* For floating-point and vector values, assume all bits are needed. */
3707 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3708 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3709 return nonzero;
3710
3711 /* If X is wider than MODE, use its mode instead. */
3712 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3713 {
3714 mode = GET_MODE (x);
3715 nonzero = GET_MODE_MASK (mode);
3716 mode_width = GET_MODE_BITSIZE (mode);
3717 }
3718
3719 if (mode_width > HOST_BITS_PER_WIDE_INT)
3720 /* Our only callers in this case look for single bit values. So
3721 just return the mode mask. Those tests will then be false. */
3722 return nonzero;
3723
3724 #ifndef WORD_REGISTER_OPERATIONS
3725 /* If MODE is wider than X, but both are a single word for both the host
3726 and target machines, we can compute this from which bits of the
3727 object might be nonzero in its own mode, taking into account the fact
3728 that on many CISC machines, accessing an object in a wider mode
3729 causes the high-order bits to become undefined. So they are
3730 not known to be zero. */
3731
3732 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3733 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3734 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3735 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3736 {
3737 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3738 known_x, known_mode, known_ret);
3739 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3740 return nonzero;
3741 }
3742 #endif
3743
3744 code = GET_CODE (x);
3745 switch (code)
3746 {
3747 case REG:
3748 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3749 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3750 all the bits above ptr_mode are known to be zero. */
3751 /* As we do not know which address space the pointer is refering to,
3752 we can do this only if the target does not support different pointer
3753 or address modes depending on the address space. */
3754 if (target_default_pointer_address_modes_p ()
3755 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3756 && REG_POINTER (x))
3757 nonzero &= GET_MODE_MASK (ptr_mode);
3758 #endif
3759
3760 /* Include declared information about alignment of pointers. */
3761 /* ??? We don't properly preserve REG_POINTER changes across
3762 pointer-to-integer casts, so we can't trust it except for
3763 things that we know must be pointers. See execute/960116-1.c. */
3764 if ((x == stack_pointer_rtx
3765 || x == frame_pointer_rtx
3766 || x == arg_pointer_rtx)
3767 && REGNO_POINTER_ALIGN (REGNO (x)))
3768 {
3769 unsigned HOST_WIDE_INT alignment
3770 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3771
3772 #ifdef PUSH_ROUNDING
3773 /* If PUSH_ROUNDING is defined, it is possible for the
3774 stack to be momentarily aligned only to that amount,
3775 so we pick the least alignment. */
3776 if (x == stack_pointer_rtx && PUSH_ARGS)
3777 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3778 alignment);
3779 #endif
3780
3781 nonzero &= ~(alignment - 1);
3782 }
3783
3784 {
3785 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3786 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3787 known_mode, known_ret,
3788 &nonzero_for_hook);
3789
3790 if (new_rtx)
3791 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3792 known_mode, known_ret);
3793
3794 return nonzero_for_hook;
3795 }
3796
3797 case CONST_INT:
3798 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3799 /* If X is negative in MODE, sign-extend the value. */
3800 if (INTVAL (x) > 0
3801 && mode_width < BITS_PER_WORD
3802 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
3803 != 0)
3804 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
3805 #endif
3806
3807 return UINTVAL (x);
3808
3809 case MEM:
3810 #ifdef LOAD_EXTEND_OP
3811 /* In many, if not most, RISC machines, reading a byte from memory
3812 zeros the rest of the register. Noticing that fact saves a lot
3813 of extra zero-extends. */
3814 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3815 nonzero &= GET_MODE_MASK (GET_MODE (x));
3816 #endif
3817 break;
3818
3819 case EQ: case NE:
3820 case UNEQ: case LTGT:
3821 case GT: case GTU: case UNGT:
3822 case LT: case LTU: case UNLT:
3823 case GE: case GEU: case UNGE:
3824 case LE: case LEU: case UNLE:
3825 case UNORDERED: case ORDERED:
3826 /* If this produces an integer result, we know which bits are set.
3827 Code here used to clear bits outside the mode of X, but that is
3828 now done above. */
3829 /* Mind that MODE is the mode the caller wants to look at this
3830 operation in, and not the actual operation mode. We can wind
3831 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3832 that describes the results of a vector compare. */
3833 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3834 && mode_width <= HOST_BITS_PER_WIDE_INT)
3835 nonzero = STORE_FLAG_VALUE;
3836 break;
3837
3838 case NEG:
3839 #if 0
3840 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3841 and num_sign_bit_copies. */
3842 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3843 == GET_MODE_BITSIZE (GET_MODE (x)))
3844 nonzero = 1;
3845 #endif
3846
3847 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3848 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3849 break;
3850
3851 case ABS:
3852 #if 0
3853 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3854 and num_sign_bit_copies. */
3855 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3856 == GET_MODE_BITSIZE (GET_MODE (x)))
3857 nonzero = 1;
3858 #endif
3859 break;
3860
3861 case TRUNCATE:
3862 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3863 known_x, known_mode, known_ret)
3864 & GET_MODE_MASK (mode));
3865 break;
3866
3867 case ZERO_EXTEND:
3868 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3869 known_x, known_mode, known_ret);
3870 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3871 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3872 break;
3873
3874 case SIGN_EXTEND:
3875 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3876 Otherwise, show all the bits in the outer mode but not the inner
3877 may be nonzero. */
3878 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3879 known_x, known_mode, known_ret);
3880 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3881 {
3882 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3883 if (inner_nz
3884 & (((unsigned HOST_WIDE_INT) 1
3885 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3886 inner_nz |= (GET_MODE_MASK (mode)
3887 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3888 }
3889
3890 nonzero &= inner_nz;
3891 break;
3892
3893 case AND:
3894 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3895 known_x, known_mode, known_ret)
3896 & cached_nonzero_bits (XEXP (x, 1), mode,
3897 known_x, known_mode, known_ret);
3898 break;
3899
3900 case XOR: case IOR:
3901 case UMIN: case UMAX: case SMIN: case SMAX:
3902 {
3903 unsigned HOST_WIDE_INT nonzero0
3904 = cached_nonzero_bits (XEXP (x, 0), mode,
3905 known_x, known_mode, known_ret);
3906
3907 /* Don't call nonzero_bits for the second time if it cannot change
3908 anything. */
3909 if ((nonzero & nonzero0) != nonzero)
3910 nonzero &= nonzero0
3911 | cached_nonzero_bits (XEXP (x, 1), mode,
3912 known_x, known_mode, known_ret);
3913 }
3914 break;
3915
3916 case PLUS: case MINUS:
3917 case MULT:
3918 case DIV: case UDIV:
3919 case MOD: case UMOD:
3920 /* We can apply the rules of arithmetic to compute the number of
3921 high- and low-order zero bits of these operations. We start by
3922 computing the width (position of the highest-order nonzero bit)
3923 and the number of low-order zero bits for each value. */
3924 {
3925 unsigned HOST_WIDE_INT nz0
3926 = cached_nonzero_bits (XEXP (x, 0), mode,
3927 known_x, known_mode, known_ret);
3928 unsigned HOST_WIDE_INT nz1
3929 = cached_nonzero_bits (XEXP (x, 1), mode,
3930 known_x, known_mode, known_ret);
3931 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3932 int width0 = floor_log2 (nz0) + 1;
3933 int width1 = floor_log2 (nz1) + 1;
3934 int low0 = floor_log2 (nz0 & -nz0);
3935 int low1 = floor_log2 (nz1 & -nz1);
3936 unsigned HOST_WIDE_INT op0_maybe_minusp
3937 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
3938 unsigned HOST_WIDE_INT op1_maybe_minusp
3939 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
3940 unsigned int result_width = mode_width;
3941 int result_low = 0;
3942
3943 switch (code)
3944 {
3945 case PLUS:
3946 result_width = MAX (width0, width1) + 1;
3947 result_low = MIN (low0, low1);
3948 break;
3949 case MINUS:
3950 result_low = MIN (low0, low1);
3951 break;
3952 case MULT:
3953 result_width = width0 + width1;
3954 result_low = low0 + low1;
3955 break;
3956 case DIV:
3957 if (width1 == 0)
3958 break;
3959 if (!op0_maybe_minusp && !op1_maybe_minusp)
3960 result_width = width0;
3961 break;
3962 case UDIV:
3963 if (width1 == 0)
3964 break;
3965 result_width = width0;
3966 break;
3967 case MOD:
3968 if (width1 == 0)
3969 break;
3970 if (!op0_maybe_minusp && !op1_maybe_minusp)
3971 result_width = MIN (width0, width1);
3972 result_low = MIN (low0, low1);
3973 break;
3974 case UMOD:
3975 if (width1 == 0)
3976 break;
3977 result_width = MIN (width0, width1);
3978 result_low = MIN (low0, low1);
3979 break;
3980 default:
3981 gcc_unreachable ();
3982 }
3983
3984 if (result_width < mode_width)
3985 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
3986
3987 if (result_low > 0)
3988 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
3989
3990 #ifdef POINTERS_EXTEND_UNSIGNED
3991 /* If pointers extend unsigned and this is an addition or subtraction
3992 to a pointer in Pmode, all the bits above ptr_mode are known to be
3993 zero. */
3994 /* As we do not know which address space the pointer is refering to,
3995 we can do this only if the target does not support different pointer
3996 or address modes depending on the address space. */
3997 if (target_default_pointer_address_modes_p ()
3998 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3999 && (code == PLUS || code == MINUS)
4000 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4001 nonzero &= GET_MODE_MASK (ptr_mode);
4002 #endif
4003 }
4004 break;
4005
4006 case ZERO_EXTRACT:
4007 if (CONST_INT_P (XEXP (x, 1))
4008 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4009 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4010 break;
4011
4012 case SUBREG:
4013 /* If this is a SUBREG formed for a promoted variable that has
4014 been zero-extended, we know that at least the high-order bits
4015 are zero, though others might be too. */
4016
4017 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4018 nonzero = GET_MODE_MASK (GET_MODE (x))
4019 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4020 known_x, known_mode, known_ret);
4021
4022 /* If the inner mode is a single word for both the host and target
4023 machines, we can compute this from which bits of the inner
4024 object might be nonzero. */
4025 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4026 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4027 <= HOST_BITS_PER_WIDE_INT))
4028 {
4029 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4030 known_x, known_mode, known_ret);
4031
4032 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4033 /* If this is a typical RISC machine, we only have to worry
4034 about the way loads are extended. */
4035 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4036 ? (((nonzero
4037 & (((unsigned HOST_WIDE_INT) 1
4038 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4039 != 0))
4040 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4041 || !MEM_P (SUBREG_REG (x)))
4042 #endif
4043 {
4044 /* On many CISC machines, accessing an object in a wider mode
4045 causes the high-order bits to become undefined. So they are
4046 not known to be zero. */
4047 if (GET_MODE_SIZE (GET_MODE (x))
4048 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4049 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4050 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4051 }
4052 }
4053 break;
4054
4055 case ASHIFTRT:
4056 case LSHIFTRT:
4057 case ASHIFT:
4058 case ROTATE:
4059 /* The nonzero bits are in two classes: any bits within MODE
4060 that aren't in GET_MODE (x) are always significant. The rest of the
4061 nonzero bits are those that are significant in the operand of
4062 the shift when shifted the appropriate number of bits. This
4063 shows that high-order bits are cleared by the right shift and
4064 low-order bits by left shifts. */
4065 if (CONST_INT_P (XEXP (x, 1))
4066 && INTVAL (XEXP (x, 1)) >= 0
4067 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4068 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4069 {
4070 enum machine_mode inner_mode = GET_MODE (x);
4071 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4072 int count = INTVAL (XEXP (x, 1));
4073 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4074 unsigned HOST_WIDE_INT op_nonzero
4075 = cached_nonzero_bits (XEXP (x, 0), mode,
4076 known_x, known_mode, known_ret);
4077 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4078 unsigned HOST_WIDE_INT outer = 0;
4079
4080 if (mode_width > width)
4081 outer = (op_nonzero & nonzero & ~mode_mask);
4082
4083 if (code == LSHIFTRT)
4084 inner >>= count;
4085 else if (code == ASHIFTRT)
4086 {
4087 inner >>= count;
4088
4089 /* If the sign bit may have been nonzero before the shift, we
4090 need to mark all the places it could have been copied to
4091 by the shift as possibly nonzero. */
4092 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4093 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4094 << (width - count);
4095 }
4096 else if (code == ASHIFT)
4097 inner <<= count;
4098 else
4099 inner = ((inner << (count % width)
4100 | (inner >> (width - (count % width)))) & mode_mask);
4101
4102 nonzero &= (outer | inner);
4103 }
4104 break;
4105
4106 case FFS:
4107 case POPCOUNT:
4108 /* This is at most the number of bits in the mode. */
4109 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4110 break;
4111
4112 case CLZ:
4113 /* If CLZ has a known value at zero, then the nonzero bits are
4114 that value, plus the number of bits in the mode minus one. */
4115 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4116 nonzero
4117 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4118 else
4119 nonzero = -1;
4120 break;
4121
4122 case CTZ:
4123 /* If CTZ has a known value at zero, then the nonzero bits are
4124 that value, plus the number of bits in the mode minus one. */
4125 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4126 nonzero
4127 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4128 else
4129 nonzero = -1;
4130 break;
4131
4132 case PARITY:
4133 nonzero = 1;
4134 break;
4135
4136 case IF_THEN_ELSE:
4137 {
4138 unsigned HOST_WIDE_INT nonzero_true
4139 = cached_nonzero_bits (XEXP (x, 1), mode,
4140 known_x, known_mode, known_ret);
4141
4142 /* Don't call nonzero_bits for the second time if it cannot change
4143 anything. */
4144 if ((nonzero & nonzero_true) != nonzero)
4145 nonzero &= nonzero_true
4146 | cached_nonzero_bits (XEXP (x, 2), mode,
4147 known_x, known_mode, known_ret);
4148 }
4149 break;
4150
4151 default:
4152 break;
4153 }
4154
4155 return nonzero;
4156 }
4157
4158 /* See the macro definition above. */
4159 #undef cached_num_sign_bit_copies
4160
4161 \f
4162 /* The function cached_num_sign_bit_copies is a wrapper around
4163 num_sign_bit_copies1. It avoids exponential behavior in
4164 num_sign_bit_copies1 when X has identical subexpressions on the
4165 first or the second level. */
4166
4167 static unsigned int
4168 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4169 enum machine_mode known_mode,
4170 unsigned int known_ret)
4171 {
4172 if (x == known_x && mode == known_mode)
4173 return known_ret;
4174
4175 /* Try to find identical subexpressions. If found call
4176 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4177 the precomputed value for the subexpression as KNOWN_RET. */
4178
4179 if (ARITHMETIC_P (x))
4180 {
4181 rtx x0 = XEXP (x, 0);
4182 rtx x1 = XEXP (x, 1);
4183
4184 /* Check the first level. */
4185 if (x0 == x1)
4186 return
4187 num_sign_bit_copies1 (x, mode, x0, mode,
4188 cached_num_sign_bit_copies (x0, mode, known_x,
4189 known_mode,
4190 known_ret));
4191
4192 /* Check the second level. */
4193 if (ARITHMETIC_P (x0)
4194 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4195 return
4196 num_sign_bit_copies1 (x, mode, x1, mode,
4197 cached_num_sign_bit_copies (x1, mode, known_x,
4198 known_mode,
4199 known_ret));
4200
4201 if (ARITHMETIC_P (x1)
4202 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4203 return
4204 num_sign_bit_copies1 (x, mode, x0, mode,
4205 cached_num_sign_bit_copies (x0, mode, known_x,
4206 known_mode,
4207 known_ret));
4208 }
4209
4210 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4211 }
4212
4213 /* Return the number of bits at the high-order end of X that are known to
4214 be equal to the sign bit. X will be used in mode MODE; if MODE is
4215 VOIDmode, X will be used in its own mode. The returned value will always
4216 be between 1 and the number of bits in MODE. */
4217
4218 static unsigned int
4219 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4220 enum machine_mode known_mode,
4221 unsigned int known_ret)
4222 {
4223 enum rtx_code code = GET_CODE (x);
4224 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4225 int num0, num1, result;
4226 unsigned HOST_WIDE_INT nonzero;
4227
4228 /* If we weren't given a mode, use the mode of X. If the mode is still
4229 VOIDmode, we don't know anything. Likewise if one of the modes is
4230 floating-point. */
4231
4232 if (mode == VOIDmode)
4233 mode = GET_MODE (x);
4234
4235 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4236 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4237 return 1;
4238
4239 /* For a smaller object, just ignore the high bits. */
4240 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4241 {
4242 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4243 known_x, known_mode, known_ret);
4244 return MAX (1,
4245 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4246 }
4247
4248 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4249 {
4250 #ifndef WORD_REGISTER_OPERATIONS
4251 /* If this machine does not do all register operations on the entire
4252 register and MODE is wider than the mode of X, we can say nothing
4253 at all about the high-order bits. */
4254 return 1;
4255 #else
4256 /* Likewise on machines that do, if the mode of the object is smaller
4257 than a word and loads of that size don't sign extend, we can say
4258 nothing about the high order bits. */
4259 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4260 #ifdef LOAD_EXTEND_OP
4261 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4262 #endif
4263 )
4264 return 1;
4265 #endif
4266 }
4267
4268 switch (code)
4269 {
4270 case REG:
4271
4272 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4273 /* If pointers extend signed and this is a pointer in Pmode, say that
4274 all the bits above ptr_mode are known to be sign bit copies. */
4275 /* As we do not know which address space the pointer is refering to,
4276 we can do this only if the target does not support different pointer
4277 or address modes depending on the address space. */
4278 if (target_default_pointer_address_modes_p ()
4279 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4280 && mode == Pmode && REG_POINTER (x))
4281 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4282 #endif
4283
4284 {
4285 unsigned int copies_for_hook = 1, copies = 1;
4286 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4287 known_mode, known_ret,
4288 &copies_for_hook);
4289
4290 if (new_rtx)
4291 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4292 known_mode, known_ret);
4293
4294 if (copies > 1 || copies_for_hook > 1)
4295 return MAX (copies, copies_for_hook);
4296
4297 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4298 }
4299 break;
4300
4301 case MEM:
4302 #ifdef LOAD_EXTEND_OP
4303 /* Some RISC machines sign-extend all loads of smaller than a word. */
4304 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4305 return MAX (1, ((int) bitwidth
4306 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4307 #endif
4308 break;
4309
4310 case CONST_INT:
4311 /* If the constant is negative, take its 1's complement and remask.
4312 Then see how many zero bits we have. */
4313 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4314 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4315 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4316 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4317
4318 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4319
4320 case SUBREG:
4321 /* If this is a SUBREG for a promoted object that is sign-extended
4322 and we are looking at it in a wider mode, we know that at least the
4323 high-order bits are known to be sign bit copies. */
4324
4325 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4326 {
4327 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4328 known_x, known_mode, known_ret);
4329 return MAX ((int) bitwidth
4330 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4331 num0);
4332 }
4333
4334 /* For a smaller object, just ignore the high bits. */
4335 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4336 {
4337 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4338 known_x, known_mode, known_ret);
4339 return MAX (1, (num0
4340 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4341 - bitwidth)));
4342 }
4343
4344 #ifdef WORD_REGISTER_OPERATIONS
4345 #ifdef LOAD_EXTEND_OP
4346 /* For paradoxical SUBREGs on machines where all register operations
4347 affect the entire register, just look inside. Note that we are
4348 passing MODE to the recursive call, so the number of sign bit copies
4349 will remain relative to that mode, not the inner mode. */
4350
4351 /* This works only if loads sign extend. Otherwise, if we get a
4352 reload for the inner part, it may be loaded from the stack, and
4353 then we lose all sign bit copies that existed before the store
4354 to the stack. */
4355
4356 if ((GET_MODE_SIZE (GET_MODE (x))
4357 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4358 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4359 && MEM_P (SUBREG_REG (x)))
4360 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4361 known_x, known_mode, known_ret);
4362 #endif
4363 #endif
4364 break;
4365
4366 case SIGN_EXTRACT:
4367 if (CONST_INT_P (XEXP (x, 1)))
4368 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4369 break;
4370
4371 case SIGN_EXTEND:
4372 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4373 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4374 known_x, known_mode, known_ret));
4375
4376 case TRUNCATE:
4377 /* For a smaller object, just ignore the high bits. */
4378 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4379 known_x, known_mode, known_ret);
4380 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4381 - bitwidth)));
4382
4383 case NOT:
4384 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4385 known_x, known_mode, known_ret);
4386
4387 case ROTATE: case ROTATERT:
4388 /* If we are rotating left by a number of bits less than the number
4389 of sign bit copies, we can just subtract that amount from the
4390 number. */
4391 if (CONST_INT_P (XEXP (x, 1))
4392 && INTVAL (XEXP (x, 1)) >= 0
4393 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4394 {
4395 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4396 known_x, known_mode, known_ret);
4397 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4398 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4399 }
4400 break;
4401
4402 case NEG:
4403 /* In general, this subtracts one sign bit copy. But if the value
4404 is known to be positive, the number of sign bit copies is the
4405 same as that of the input. Finally, if the input has just one bit
4406 that might be nonzero, all the bits are copies of the sign bit. */
4407 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4408 known_x, known_mode, known_ret);
4409 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4410 return num0 > 1 ? num0 - 1 : 1;
4411
4412 nonzero = nonzero_bits (XEXP (x, 0), mode);
4413 if (nonzero == 1)
4414 return bitwidth;
4415
4416 if (num0 > 1
4417 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4418 num0--;
4419
4420 return num0;
4421
4422 case IOR: case AND: case XOR:
4423 case SMIN: case SMAX: case UMIN: case UMAX:
4424 /* Logical operations will preserve the number of sign-bit copies.
4425 MIN and MAX operations always return one of the operands. */
4426 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4427 known_x, known_mode, known_ret);
4428 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4429 known_x, known_mode, known_ret);
4430
4431 /* If num1 is clearing some of the top bits then regardless of
4432 the other term, we are guaranteed to have at least that many
4433 high-order zero bits. */
4434 if (code == AND
4435 && num1 > 1
4436 && bitwidth <= HOST_BITS_PER_WIDE_INT
4437 && CONST_INT_P (XEXP (x, 1))
4438 && (UINTVAL (XEXP (x, 1))
4439 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4440 return num1;
4441
4442 /* Similarly for IOR when setting high-order bits. */
4443 if (code == IOR
4444 && num1 > 1
4445 && bitwidth <= HOST_BITS_PER_WIDE_INT
4446 && CONST_INT_P (XEXP (x, 1))
4447 && (UINTVAL (XEXP (x, 1))
4448 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4449 return num1;
4450
4451 return MIN (num0, num1);
4452
4453 case PLUS: case MINUS:
4454 /* For addition and subtraction, we can have a 1-bit carry. However,
4455 if we are subtracting 1 from a positive number, there will not
4456 be such a carry. Furthermore, if the positive number is known to
4457 be 0 or 1, we know the result is either -1 or 0. */
4458
4459 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4460 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4461 {
4462 nonzero = nonzero_bits (XEXP (x, 0), mode);
4463 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4464 return (nonzero == 1 || nonzero == 0 ? bitwidth
4465 : bitwidth - floor_log2 (nonzero) - 1);
4466 }
4467
4468 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4469 known_x, known_mode, known_ret);
4470 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4471 known_x, known_mode, known_ret);
4472 result = MAX (1, MIN (num0, num1) - 1);
4473
4474 #ifdef POINTERS_EXTEND_UNSIGNED
4475 /* If pointers extend signed and this is an addition or subtraction
4476 to a pointer in Pmode, all the bits above ptr_mode are known to be
4477 sign bit copies. */
4478 /* As we do not know which address space the pointer is refering to,
4479 we can do this only if the target does not support different pointer
4480 or address modes depending on the address space. */
4481 if (target_default_pointer_address_modes_p ()
4482 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4483 && (code == PLUS || code == MINUS)
4484 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4485 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4486 - GET_MODE_BITSIZE (ptr_mode) + 1),
4487 result);
4488 #endif
4489 return result;
4490
4491 case MULT:
4492 /* The number of bits of the product is the sum of the number of
4493 bits of both terms. However, unless one of the terms if known
4494 to be positive, we must allow for an additional bit since negating
4495 a negative number can remove one sign bit copy. */
4496
4497 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4498 known_x, known_mode, known_ret);
4499 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4500 known_x, known_mode, known_ret);
4501
4502 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4503 if (result > 0
4504 && (bitwidth > HOST_BITS_PER_WIDE_INT
4505 || (((nonzero_bits (XEXP (x, 0), mode)
4506 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4507 && ((nonzero_bits (XEXP (x, 1), mode)
4508 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4509 != 0))))
4510 result--;
4511
4512 return MAX (1, result);
4513
4514 case UDIV:
4515 /* The result must be <= the first operand. If the first operand
4516 has the high bit set, we know nothing about the number of sign
4517 bit copies. */
4518 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4519 return 1;
4520 else if ((nonzero_bits (XEXP (x, 0), mode)
4521 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4522 return 1;
4523 else
4524 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4525 known_x, known_mode, known_ret);
4526
4527 case UMOD:
4528 /* The result must be <= the second operand. If the second operand
4529 has (or just might have) the high bit set, we know nothing about
4530 the number of sign bit copies. */
4531 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4532 return 1;
4533 else if ((nonzero_bits (XEXP (x, 1), mode)
4534 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4535 return 1;
4536 else
4537 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4538 known_x, known_mode, known_ret);
4539
4540 case DIV:
4541 /* Similar to unsigned division, except that we have to worry about
4542 the case where the divisor is negative, in which case we have
4543 to add 1. */
4544 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4545 known_x, known_mode, known_ret);
4546 if (result > 1
4547 && (bitwidth > HOST_BITS_PER_WIDE_INT
4548 || (nonzero_bits (XEXP (x, 1), mode)
4549 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4550 result--;
4551
4552 return result;
4553
4554 case MOD:
4555 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4556 known_x, known_mode, known_ret);
4557 if (result > 1
4558 && (bitwidth > HOST_BITS_PER_WIDE_INT
4559 || (nonzero_bits (XEXP (x, 1), mode)
4560 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4561 result--;
4562
4563 return result;
4564
4565 case ASHIFTRT:
4566 /* Shifts by a constant add to the number of bits equal to the
4567 sign bit. */
4568 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4569 known_x, known_mode, known_ret);
4570 if (CONST_INT_P (XEXP (x, 1))
4571 && INTVAL (XEXP (x, 1)) > 0
4572 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4573 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4574
4575 return num0;
4576
4577 case ASHIFT:
4578 /* Left shifts destroy copies. */
4579 if (!CONST_INT_P (XEXP (x, 1))
4580 || INTVAL (XEXP (x, 1)) < 0
4581 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4582 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4583 return 1;
4584
4585 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4586 known_x, known_mode, known_ret);
4587 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4588
4589 case IF_THEN_ELSE:
4590 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4591 known_x, known_mode, known_ret);
4592 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4593 known_x, known_mode, known_ret);
4594 return MIN (num0, num1);
4595
4596 case EQ: case NE: case GE: case GT: case LE: case LT:
4597 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4598 case GEU: case GTU: case LEU: case LTU:
4599 case UNORDERED: case ORDERED:
4600 /* If the constant is negative, take its 1's complement and remask.
4601 Then see how many zero bits we have. */
4602 nonzero = STORE_FLAG_VALUE;
4603 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4604 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4605 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4606
4607 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4608
4609 default:
4610 break;
4611 }
4612
4613 /* If we haven't been able to figure it out by one of the above rules,
4614 see if some of the high-order bits are known to be zero. If so,
4615 count those bits and return one less than that amount. If we can't
4616 safely compute the mask for this mode, always return BITWIDTH. */
4617
4618 bitwidth = GET_MODE_BITSIZE (mode);
4619 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4620 return 1;
4621
4622 nonzero = nonzero_bits (x, mode);
4623 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4624 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4625 }
4626
4627 /* Calculate the rtx_cost of a single instruction. A return value of
4628 zero indicates an instruction pattern without a known cost. */
4629
4630 int
4631 insn_rtx_cost (rtx pat, bool speed)
4632 {
4633 int i, cost;
4634 rtx set;
4635
4636 /* Extract the single set rtx from the instruction pattern.
4637 We can't use single_set since we only have the pattern. */
4638 if (GET_CODE (pat) == SET)
4639 set = pat;
4640 else if (GET_CODE (pat) == PARALLEL)
4641 {
4642 set = NULL_RTX;
4643 for (i = 0; i < XVECLEN (pat, 0); i++)
4644 {
4645 rtx x = XVECEXP (pat, 0, i);
4646 if (GET_CODE (x) == SET)
4647 {
4648 if (set)
4649 return 0;
4650 set = x;
4651 }
4652 }
4653 if (!set)
4654 return 0;
4655 }
4656 else
4657 return 0;
4658
4659 cost = rtx_cost (SET_SRC (set), SET, speed);
4660 return cost > 0 ? cost : COSTS_N_INSNS (1);
4661 }
4662
4663 /* Given an insn INSN and condition COND, return the condition in a
4664 canonical form to simplify testing by callers. Specifically:
4665
4666 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4667 (2) Both operands will be machine operands; (cc0) will have been replaced.
4668 (3) If an operand is a constant, it will be the second operand.
4669 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4670 for GE, GEU, and LEU.
4671
4672 If the condition cannot be understood, or is an inequality floating-point
4673 comparison which needs to be reversed, 0 will be returned.
4674
4675 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4676
4677 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4678 insn used in locating the condition was found. If a replacement test
4679 of the condition is desired, it should be placed in front of that
4680 insn and we will be sure that the inputs are still valid.
4681
4682 If WANT_REG is nonzero, we wish the condition to be relative to that
4683 register, if possible. Therefore, do not canonicalize the condition
4684 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4685 to be a compare to a CC mode register.
4686
4687 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4688 and at INSN. */
4689
4690 rtx
4691 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4692 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4693 {
4694 enum rtx_code code;
4695 rtx prev = insn;
4696 const_rtx set;
4697 rtx tem;
4698 rtx op0, op1;
4699 int reverse_code = 0;
4700 enum machine_mode mode;
4701 basic_block bb = BLOCK_FOR_INSN (insn);
4702
4703 code = GET_CODE (cond);
4704 mode = GET_MODE (cond);
4705 op0 = XEXP (cond, 0);
4706 op1 = XEXP (cond, 1);
4707
4708 if (reverse)
4709 code = reversed_comparison_code (cond, insn);
4710 if (code == UNKNOWN)
4711 return 0;
4712
4713 if (earliest)
4714 *earliest = insn;
4715
4716 /* If we are comparing a register with zero, see if the register is set
4717 in the previous insn to a COMPARE or a comparison operation. Perform
4718 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4719 in cse.c */
4720
4721 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4722 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4723 && op1 == CONST0_RTX (GET_MODE (op0))
4724 && op0 != want_reg)
4725 {
4726 /* Set nonzero when we find something of interest. */
4727 rtx x = 0;
4728
4729 #ifdef HAVE_cc0
4730 /* If comparison with cc0, import actual comparison from compare
4731 insn. */
4732 if (op0 == cc0_rtx)
4733 {
4734 if ((prev = prev_nonnote_insn (prev)) == 0
4735 || !NONJUMP_INSN_P (prev)
4736 || (set = single_set (prev)) == 0
4737 || SET_DEST (set) != cc0_rtx)
4738 return 0;
4739
4740 op0 = SET_SRC (set);
4741 op1 = CONST0_RTX (GET_MODE (op0));
4742 if (earliest)
4743 *earliest = prev;
4744 }
4745 #endif
4746
4747 /* If this is a COMPARE, pick up the two things being compared. */
4748 if (GET_CODE (op0) == COMPARE)
4749 {
4750 op1 = XEXP (op0, 1);
4751 op0 = XEXP (op0, 0);
4752 continue;
4753 }
4754 else if (!REG_P (op0))
4755 break;
4756
4757 /* Go back to the previous insn. Stop if it is not an INSN. We also
4758 stop if it isn't a single set or if it has a REG_INC note because
4759 we don't want to bother dealing with it. */
4760
4761 prev = prev_nonnote_nondebug_insn (prev);
4762
4763 if (prev == 0
4764 || !NONJUMP_INSN_P (prev)
4765 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4766 /* In cfglayout mode, there do not have to be labels at the
4767 beginning of a block, or jumps at the end, so the previous
4768 conditions would not stop us when we reach bb boundary. */
4769 || BLOCK_FOR_INSN (prev) != bb)
4770 break;
4771
4772 set = set_of (op0, prev);
4773
4774 if (set
4775 && (GET_CODE (set) != SET
4776 || !rtx_equal_p (SET_DEST (set), op0)))
4777 break;
4778
4779 /* If this is setting OP0, get what it sets it to if it looks
4780 relevant. */
4781 if (set)
4782 {
4783 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4784 #ifdef FLOAT_STORE_FLAG_VALUE
4785 REAL_VALUE_TYPE fsfv;
4786 #endif
4787
4788 /* ??? We may not combine comparisons done in a CCmode with
4789 comparisons not done in a CCmode. This is to aid targets
4790 like Alpha that have an IEEE compliant EQ instruction, and
4791 a non-IEEE compliant BEQ instruction. The use of CCmode is
4792 actually artificial, simply to prevent the combination, but
4793 should not affect other platforms.
4794
4795 However, we must allow VOIDmode comparisons to match either
4796 CCmode or non-CCmode comparison, because some ports have
4797 modeless comparisons inside branch patterns.
4798
4799 ??? This mode check should perhaps look more like the mode check
4800 in simplify_comparison in combine. */
4801
4802 if ((GET_CODE (SET_SRC (set)) == COMPARE
4803 || (((code == NE
4804 || (code == LT
4805 && GET_MODE_CLASS (inner_mode) == MODE_INT
4806 && (GET_MODE_BITSIZE (inner_mode)
4807 <= HOST_BITS_PER_WIDE_INT)
4808 && (STORE_FLAG_VALUE
4809 & ((unsigned HOST_WIDE_INT) 1
4810 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4811 #ifdef FLOAT_STORE_FLAG_VALUE
4812 || (code == LT
4813 && SCALAR_FLOAT_MODE_P (inner_mode)
4814 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4815 REAL_VALUE_NEGATIVE (fsfv)))
4816 #endif
4817 ))
4818 && COMPARISON_P (SET_SRC (set))))
4819 && (((GET_MODE_CLASS (mode) == MODE_CC)
4820 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4821 || mode == VOIDmode || inner_mode == VOIDmode))
4822 x = SET_SRC (set);
4823 else if (((code == EQ
4824 || (code == GE
4825 && (GET_MODE_BITSIZE (inner_mode)
4826 <= HOST_BITS_PER_WIDE_INT)
4827 && GET_MODE_CLASS (inner_mode) == MODE_INT
4828 && (STORE_FLAG_VALUE
4829 & ((unsigned HOST_WIDE_INT) 1
4830 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4831 #ifdef FLOAT_STORE_FLAG_VALUE
4832 || (code == GE
4833 && SCALAR_FLOAT_MODE_P (inner_mode)
4834 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4835 REAL_VALUE_NEGATIVE (fsfv)))
4836 #endif
4837 ))
4838 && COMPARISON_P (SET_SRC (set))
4839 && (((GET_MODE_CLASS (mode) == MODE_CC)
4840 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4841 || mode == VOIDmode || inner_mode == VOIDmode))
4842
4843 {
4844 reverse_code = 1;
4845 x = SET_SRC (set);
4846 }
4847 else
4848 break;
4849 }
4850
4851 else if (reg_set_p (op0, prev))
4852 /* If this sets OP0, but not directly, we have to give up. */
4853 break;
4854
4855 if (x)
4856 {
4857 /* If the caller is expecting the condition to be valid at INSN,
4858 make sure X doesn't change before INSN. */
4859 if (valid_at_insn_p)
4860 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4861 break;
4862 if (COMPARISON_P (x))
4863 code = GET_CODE (x);
4864 if (reverse_code)
4865 {
4866 code = reversed_comparison_code (x, prev);
4867 if (code == UNKNOWN)
4868 return 0;
4869 reverse_code = 0;
4870 }
4871
4872 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4873 if (earliest)
4874 *earliest = prev;
4875 }
4876 }
4877
4878 /* If constant is first, put it last. */
4879 if (CONSTANT_P (op0))
4880 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4881
4882 /* If OP0 is the result of a comparison, we weren't able to find what
4883 was really being compared, so fail. */
4884 if (!allow_cc_mode
4885 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4886 return 0;
4887
4888 /* Canonicalize any ordered comparison with integers involving equality
4889 if we can do computations in the relevant mode and we do not
4890 overflow. */
4891
4892 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4893 && CONST_INT_P (op1)
4894 && GET_MODE (op0) != VOIDmode
4895 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4896 {
4897 HOST_WIDE_INT const_val = INTVAL (op1);
4898 unsigned HOST_WIDE_INT uconst_val = const_val;
4899 unsigned HOST_WIDE_INT max_val
4900 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4901
4902 switch (code)
4903 {
4904 case LE:
4905 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4906 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4907 break;
4908
4909 /* When cross-compiling, const_val might be sign-extended from
4910 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4911 case GE:
4912 if ((const_val & max_val)
4913 != ((unsigned HOST_WIDE_INT) 1
4914 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))
4915 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4916 break;
4917
4918 case LEU:
4919 if (uconst_val < max_val)
4920 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4921 break;
4922
4923 case GEU:
4924 if (uconst_val != 0)
4925 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4926 break;
4927
4928 default:
4929 break;
4930 }
4931 }
4932
4933 /* Never return CC0; return zero instead. */
4934 if (CC0_P (op0))
4935 return 0;
4936
4937 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4938 }
4939
4940 /* Given a jump insn JUMP, return the condition that will cause it to branch
4941 to its JUMP_LABEL. If the condition cannot be understood, or is an
4942 inequality floating-point comparison which needs to be reversed, 0 will
4943 be returned.
4944
4945 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4946 insn used in locating the condition was found. If a replacement test
4947 of the condition is desired, it should be placed in front of that
4948 insn and we will be sure that the inputs are still valid. If EARLIEST
4949 is null, the returned condition will be valid at INSN.
4950
4951 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4952 compare CC mode register.
4953
4954 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4955
4956 rtx
4957 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4958 {
4959 rtx cond;
4960 int reverse;
4961 rtx set;
4962
4963 /* If this is not a standard conditional jump, we can't parse it. */
4964 if (!JUMP_P (jump)
4965 || ! any_condjump_p (jump))
4966 return 0;
4967 set = pc_set (jump);
4968
4969 cond = XEXP (SET_SRC (set), 0);
4970
4971 /* If this branches to JUMP_LABEL when the condition is false, reverse
4972 the condition. */
4973 reverse
4974 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4975 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4976
4977 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4978 allow_cc_mode, valid_at_insn_p);
4979 }
4980
4981 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4982 TARGET_MODE_REP_EXTENDED.
4983
4984 Note that we assume that the property of
4985 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4986 narrower than mode B. I.e., if A is a mode narrower than B then in
4987 order to be able to operate on it in mode B, mode A needs to
4988 satisfy the requirements set by the representation of mode B. */
4989
4990 static void
4991 init_num_sign_bit_copies_in_rep (void)
4992 {
4993 enum machine_mode mode, in_mode;
4994
4995 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4996 in_mode = GET_MODE_WIDER_MODE (mode))
4997 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4998 mode = GET_MODE_WIDER_MODE (mode))
4999 {
5000 enum machine_mode i;
5001
5002 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5003 extends to the next widest mode. */
5004 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5005 || GET_MODE_WIDER_MODE (mode) == in_mode);
5006
5007 /* We are in in_mode. Count how many bits outside of mode
5008 have to be copies of the sign-bit. */
5009 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5010 {
5011 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5012
5013 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5014 /* We can only check sign-bit copies starting from the
5015 top-bit. In order to be able to check the bits we
5016 have already seen we pretend that subsequent bits
5017 have to be sign-bit copies too. */
5018 || num_sign_bit_copies_in_rep [in_mode][mode])
5019 num_sign_bit_copies_in_rep [in_mode][mode]
5020 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5021 }
5022 }
5023 }
5024
5025 /* Suppose that truncation from the machine mode of X to MODE is not a
5026 no-op. See if there is anything special about X so that we can
5027 assume it already contains a truncated value of MODE. */
5028
5029 bool
5030 truncated_to_mode (enum machine_mode mode, const_rtx x)
5031 {
5032 /* This register has already been used in MODE without explicit
5033 truncation. */
5034 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5035 return true;
5036
5037 /* See if we already satisfy the requirements of MODE. If yes we
5038 can just switch to MODE. */
5039 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5040 && (num_sign_bit_copies (x, GET_MODE (x))
5041 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5042 return true;
5043
5044 return false;
5045 }
5046 \f
5047 /* Initialize non_rtx_starting_operands, which is used to speed up
5048 for_each_rtx. */
5049 void
5050 init_rtlanal (void)
5051 {
5052 int i;
5053 for (i = 0; i < NUM_RTX_CODE; i++)
5054 {
5055 const char *format = GET_RTX_FORMAT (i);
5056 const char *first = strpbrk (format, "eEV");
5057 non_rtx_starting_operands[i] = first ? first - format : -1;
5058 }
5059
5060 init_num_sign_bit_copies_in_rep ();
5061 }
5062 \f
5063 /* Check whether this is a constant pool constant. */
5064 bool
5065 constant_pool_constant_p (rtx x)
5066 {
5067 x = avoid_constant_pool_reference (x);
5068 return GET_CODE (x) == CONST_DOUBLE;
5069 }
5070 \f
5071 /* If M is a bitmask that selects a field of low-order bits within an item but
5072 not the entire word, return the length of the field. Return -1 otherwise.
5073 M is used in machine mode MODE. */
5074
5075 int
5076 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5077 {
5078 if (mode != VOIDmode)
5079 {
5080 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5081 return -1;
5082 m &= GET_MODE_MASK (mode);
5083 }
5084
5085 return exact_log2 (m + 1);
5086 }