re PR target/69894 (dependency of gcc-plugin.h not installed on aarch64-linux-gnu)
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
37
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
44
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
56
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
59
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
64
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
72
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
75 \f
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
78
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
84 {
85 if (base == array.stack)
86 {
87 if (i < LOCAL_ELEMS)
88 {
89 base[i] = x;
90 return base;
91 }
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
101 }
102 unsigned int length = array.heap->length ();
103 if (length > i)
104 {
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
108 }
109 else
110 {
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
114 }
115 }
116
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
119
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
125 {
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
130 {
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
136 {
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
142 }
143 }
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
147 {
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
153 }
154 else if (format[i] == 'E')
155 {
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
172 {
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
176 }
177 }
178 return end - orig_end;
179 }
180
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
184 {
185 vec_free (array.heap);
186 }
187
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
190
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
194
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
199
200 int
201 rtx_unstable_p (const_rtx x)
202 {
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
206
207 switch (code)
208 {
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
211
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
217
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
230
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
234
235 /* Fall through. */
236
237 default:
238 break;
239 }
240
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
244 {
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
247 }
248 else if (fmt[i] == 'E')
249 {
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
254 }
255
256 return 0;
257 }
258
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
265
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
268 {
269 RTX_CODE code;
270 int i;
271 const char *fmt;
272
273 if (!x)
274 return 0;
275
276 code = GET_CODE (x);
277 switch (code)
278 {
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
281
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
287
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
305
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
312
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
316
317 /* Fall through. */
318
319 default:
320 break;
321 }
322
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
326 {
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
329 }
330 else if (fmt[i] == 'E')
331 {
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
336 }
337
338 return 0;
339 }
340
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
344
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
347 {
348 #ifdef ELIMINABLE_REGS
349 static const struct elim_table_t
350 {
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
356
357 if (to == from)
358 return 0;
359
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
364 {
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
375 }
376
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
379 {
380 if (table[i].to == to)
381 {
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
385 }
386 for (j = 0; j < ARRAY_SIZE (table); j++)
387 {
388 if (table[j].to == to
389 && table[j].from == table[i].to)
390 {
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
396 }
397 if (table[j].from == to
398 && table[j].to == table[i].to)
399 {
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
405 }
406 }
407 }
408 else if (table[i].to == from)
409 {
410 if (table[i].from == to)
411 {
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
415 }
416 for (j = 0; j < ARRAY_SIZE (table); j++)
417 {
418 if (table[j].to == to
419 && table[j].from == table[i].from)
420 {
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
426 }
427 if (table[j].from == to
428 && table[j].to == table[i].from)
429 {
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
435 }
436 }
437 }
438
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
451
452 #else
453 HOST_WIDE_INT offset;
454
455 if (to == from)
456 return 0;
457
458 if (reload_completed)
459 {
460 INITIAL_FRAME_POINTER_OFFSET (offset);
461 }
462 else
463 {
464 offset = crtl->outgoing_args_size + get_frame_size ();
465 #if !STACK_GROWS_DOWNWARD
466 offset = - offset;
467 #endif
468 }
469
470 if (to == STACK_POINTER_REGNUM)
471 return offset;
472 else if (from == STACK_POINTER_REGNUM)
473 return - offset;
474 else
475 return 0;
476
477 #endif
478 }
479
480 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
481 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
482 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
483 references on strict alignment machines. */
484
485 static int
486 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
487 machine_mode mode, bool unaligned_mems)
488 {
489 enum rtx_code code = GET_CODE (x);
490
491 /* The offset must be a multiple of the mode size if we are considering
492 unaligned memory references on strict alignment machines. */
493 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
494 {
495 HOST_WIDE_INT actual_offset = offset;
496
497 #ifdef SPARC_STACK_BOUNDARY_HACK
498 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
499 the real alignment of %sp. However, when it does this, the
500 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
501 if (SPARC_STACK_BOUNDARY_HACK
502 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
503 actual_offset -= STACK_POINTER_OFFSET;
504 #endif
505
506 if (actual_offset % GET_MODE_SIZE (mode) != 0)
507 return 1;
508 }
509
510 switch (code)
511 {
512 case SYMBOL_REF:
513 if (SYMBOL_REF_WEAK (x))
514 return 1;
515 if (!CONSTANT_POOL_ADDRESS_P (x))
516 {
517 tree decl;
518 HOST_WIDE_INT decl_size;
519
520 if (offset < 0)
521 return 1;
522 if (size == 0)
523 size = GET_MODE_SIZE (mode);
524 if (size == 0)
525 return offset != 0;
526
527 /* If the size of the access or of the symbol is unknown,
528 assume the worst. */
529 decl = SYMBOL_REF_DECL (x);
530
531 /* Else check that the access is in bounds. TODO: restructure
532 expr_size/tree_expr_size/int_expr_size and just use the latter. */
533 if (!decl)
534 decl_size = -1;
535 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
536 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
537 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
538 : -1);
539 else if (TREE_CODE (decl) == STRING_CST)
540 decl_size = TREE_STRING_LENGTH (decl);
541 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
542 decl_size = int_size_in_bytes (TREE_TYPE (decl));
543 else
544 decl_size = -1;
545
546 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
547 }
548
549 return 0;
550
551 case LABEL_REF:
552 return 0;
553
554 case REG:
555 /* Stack references are assumed not to trap, but we need to deal with
556 nonsensical offsets. */
557 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
558 || x == stack_pointer_rtx
559 /* The arg pointer varies if it is not a fixed register. */
560 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
561 {
562 #ifdef RED_ZONE_SIZE
563 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
564 #else
565 HOST_WIDE_INT red_zone_size = 0;
566 #endif
567 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
568 / BITS_PER_UNIT;
569 HOST_WIDE_INT low_bound, high_bound;
570
571 if (size == 0)
572 size = GET_MODE_SIZE (mode);
573
574 if (x == frame_pointer_rtx)
575 {
576 if (FRAME_GROWS_DOWNWARD)
577 {
578 high_bound = STARTING_FRAME_OFFSET;
579 low_bound = high_bound - get_frame_size ();
580 }
581 else
582 {
583 low_bound = STARTING_FRAME_OFFSET;
584 high_bound = low_bound + get_frame_size ();
585 }
586 }
587 else if (x == hard_frame_pointer_rtx)
588 {
589 HOST_WIDE_INT sp_offset
590 = get_initial_register_offset (STACK_POINTER_REGNUM,
591 HARD_FRAME_POINTER_REGNUM);
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
595
596 #if STACK_GROWS_DOWNWARD
597 low_bound = sp_offset - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = sp_offset + red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
613 }
614 else if (x == stack_pointer_rtx)
615 {
616 HOST_WIDE_INT ap_offset
617 = get_initial_register_offset (ARG_POINTER_REGNUM,
618 STACK_POINTER_REGNUM);
619
620 #if STACK_GROWS_DOWNWARD
621 low_bound = - red_zone_size - stack_boundary;
622 high_bound = ap_offset
623 + FIRST_PARM_OFFSET (current_function_decl)
624 #if !ARGS_GROW_DOWNWARD
625 + crtl->args.size
626 #endif
627 + stack_boundary;
628 #else
629 high_bound = red_zone_size + stack_boundary;
630 low_bound = ap_offset
631 + FIRST_PARM_OFFSET (current_function_decl)
632 #if ARGS_GROW_DOWNWARD
633 - crtl->args.size
634 #endif
635 - stack_boundary;
636 #endif
637 }
638 else
639 {
640 /* We assume that accesses are safe to at least the
641 next stack boundary.
642 Examples are varargs and __builtin_return_address. */
643 #if ARGS_GROW_DOWNWARD
644 high_bound = FIRST_PARM_OFFSET (current_function_decl)
645 + stack_boundary;
646 low_bound = FIRST_PARM_OFFSET (current_function_decl)
647 - crtl->args.size - stack_boundary;
648 #else
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - stack_boundary;
651 high_bound = FIRST_PARM_OFFSET (current_function_decl)
652 + crtl->args.size + stack_boundary;
653 #endif
654 }
655
656 if (offset >= low_bound && offset <= high_bound - size)
657 return 0;
658 return 1;
659 }
660 /* All of the virtual frame registers are stack references. */
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return 0;
664 return 1;
665
666 case CONST:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
669
670 case PLUS:
671 /* An address is assumed not to trap if:
672 - it is the pic register plus a constant. */
673 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
674 return 0;
675
676 /* - or it is an address that can't trap plus a constant integer. */
677 if (CONST_INT_P (XEXP (x, 1))
678 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
679 size, mode, unaligned_mems))
680 return 0;
681
682 return 1;
683
684 case LO_SUM:
685 case PRE_MODIFY:
686 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
687 mode, unaligned_mems);
688
689 case PRE_DEC:
690 case PRE_INC:
691 case POST_DEC:
692 case POST_INC:
693 case POST_MODIFY:
694 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
695 mode, unaligned_mems);
696
697 default:
698 break;
699 }
700
701 /* If it isn't one of the case above, it can cause a trap. */
702 return 1;
703 }
704
705 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
706
707 int
708 rtx_addr_can_trap_p (const_rtx x)
709 {
710 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
711 }
712
713 /* Return true if X is an address that is known to not be zero. */
714
715 bool
716 nonzero_address_p (const_rtx x)
717 {
718 const enum rtx_code code = GET_CODE (x);
719
720 switch (code)
721 {
722 case SYMBOL_REF:
723 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
724
725 case LABEL_REF:
726 return true;
727
728 case REG:
729 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
730 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
731 || x == stack_pointer_rtx
732 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
733 return true;
734 /* All of the virtual frame registers are stack references. */
735 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
736 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
737 return true;
738 return false;
739
740 case CONST:
741 return nonzero_address_p (XEXP (x, 0));
742
743 case PLUS:
744 /* Handle PIC references. */
745 if (XEXP (x, 0) == pic_offset_table_rtx
746 && CONSTANT_P (XEXP (x, 1)))
747 return true;
748 return false;
749
750 case PRE_MODIFY:
751 /* Similar to the above; allow positive offsets. Further, since
752 auto-inc is only allowed in memories, the register must be a
753 pointer. */
754 if (CONST_INT_P (XEXP (x, 1))
755 && INTVAL (XEXP (x, 1)) > 0)
756 return true;
757 return nonzero_address_p (XEXP (x, 0));
758
759 case PRE_INC:
760 /* Similarly. Further, the offset is always positive. */
761 return true;
762
763 case PRE_DEC:
764 case POST_DEC:
765 case POST_INC:
766 case POST_MODIFY:
767 return nonzero_address_p (XEXP (x, 0));
768
769 case LO_SUM:
770 return nonzero_address_p (XEXP (x, 1));
771
772 default:
773 break;
774 }
775
776 /* If it isn't one of the case above, might be zero. */
777 return false;
778 }
779
780 /* Return 1 if X refers to a memory location whose address
781 cannot be compared reliably with constant addresses,
782 or if X refers to a BLKmode memory object.
783 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
784 zero, we are slightly more conservative. */
785
786 bool
787 rtx_addr_varies_p (const_rtx x, bool for_alias)
788 {
789 enum rtx_code code;
790 int i;
791 const char *fmt;
792
793 if (x == 0)
794 return 0;
795
796 code = GET_CODE (x);
797 if (code == MEM)
798 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
799
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 if (fmt[i] == 'e')
803 {
804 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
805 return 1;
806 }
807 else if (fmt[i] == 'E')
808 {
809 int j;
810 for (j = 0; j < XVECLEN (x, i); j++)
811 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
812 return 1;
813 }
814 return 0;
815 }
816 \f
817 /* Return the CALL in X if there is one. */
818
819 rtx
820 get_call_rtx_from (rtx x)
821 {
822 if (INSN_P (x))
823 x = PATTERN (x);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
831 }
832 \f
833 /* Return the value of the integer term in X, if one is apparent;
834 otherwise return 0.
835 Only obvious integer terms are detected.
836 This is used in cse.c with the `related_value' field. */
837
838 HOST_WIDE_INT
839 get_integer_term (const_rtx x)
840 {
841 if (GET_CODE (x) == CONST)
842 x = XEXP (x, 0);
843
844 if (GET_CODE (x) == MINUS
845 && CONST_INT_P (XEXP (x, 1)))
846 return - INTVAL (XEXP (x, 1));
847 if (GET_CODE (x) == PLUS
848 && CONST_INT_P (XEXP (x, 1)))
849 return INTVAL (XEXP (x, 1));
850 return 0;
851 }
852
853 /* If X is a constant, return the value sans apparent integer term;
854 otherwise return 0.
855 Only obvious integer terms are detected. */
856
857 rtx
858 get_related_value (const_rtx x)
859 {
860 if (GET_CODE (x) != CONST)
861 return 0;
862 x = XEXP (x, 0);
863 if (GET_CODE (x) == PLUS
864 && CONST_INT_P (XEXP (x, 1)))
865 return XEXP (x, 0);
866 else if (GET_CODE (x) == MINUS
867 && CONST_INT_P (XEXP (x, 1)))
868 return XEXP (x, 0);
869 return 0;
870 }
871 \f
872 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
873 to somewhere in the same object or object_block as SYMBOL. */
874
875 bool
876 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
877 {
878 tree decl;
879
880 if (GET_CODE (symbol) != SYMBOL_REF)
881 return false;
882
883 if (offset == 0)
884 return true;
885
886 if (offset > 0)
887 {
888 if (CONSTANT_POOL_ADDRESS_P (symbol)
889 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
890 return true;
891
892 decl = SYMBOL_REF_DECL (symbol);
893 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
894 return true;
895 }
896
897 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
898 && SYMBOL_REF_BLOCK (symbol)
899 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
900 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
901 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
902 return true;
903
904 return false;
905 }
906
907 /* Split X into a base and a constant offset, storing them in *BASE_OUT
908 and *OFFSET_OUT respectively. */
909
910 void
911 split_const (rtx x, rtx *base_out, rtx *offset_out)
912 {
913 if (GET_CODE (x) == CONST)
914 {
915 x = XEXP (x, 0);
916 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
917 {
918 *base_out = XEXP (x, 0);
919 *offset_out = XEXP (x, 1);
920 return;
921 }
922 }
923 *base_out = x;
924 *offset_out = const0_rtx;
925 }
926 \f
927 /* Return the number of places FIND appears within X. If COUNT_DEST is
928 zero, we do not count occurrences inside the destination of a SET. */
929
930 int
931 count_occurrences (const_rtx x, const_rtx find, int count_dest)
932 {
933 int i, j;
934 enum rtx_code code;
935 const char *format_ptr;
936 int count;
937
938 if (x == find)
939 return 1;
940
941 code = GET_CODE (x);
942
943 switch (code)
944 {
945 case REG:
946 CASE_CONST_ANY:
947 case SYMBOL_REF:
948 case CODE_LABEL:
949 case PC:
950 case CC0:
951 return 0;
952
953 case EXPR_LIST:
954 count = count_occurrences (XEXP (x, 0), find, count_dest);
955 if (XEXP (x, 1))
956 count += count_occurrences (XEXP (x, 1), find, count_dest);
957 return count;
958
959 case MEM:
960 if (MEM_P (find) && rtx_equal_p (x, find))
961 return 1;
962 break;
963
964 case SET:
965 if (SET_DEST (x) == find && ! count_dest)
966 return count_occurrences (SET_SRC (x), find, count_dest);
967 break;
968
969 default:
970 break;
971 }
972
973 format_ptr = GET_RTX_FORMAT (code);
974 count = 0;
975
976 for (i = 0; i < GET_RTX_LENGTH (code); i++)
977 {
978 switch (*format_ptr++)
979 {
980 case 'e':
981 count += count_occurrences (XEXP (x, i), find, count_dest);
982 break;
983
984 case 'E':
985 for (j = 0; j < XVECLEN (x, i); j++)
986 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
987 break;
988 }
989 }
990 return count;
991 }
992
993 \f
994 /* Return TRUE if OP is a register or subreg of a register that
995 holds an unsigned quantity. Otherwise, return FALSE. */
996
997 bool
998 unsigned_reg_p (rtx op)
999 {
1000 if (REG_P (op)
1001 && REG_EXPR (op)
1002 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1003 return true;
1004
1005 if (GET_CODE (op) == SUBREG
1006 && SUBREG_PROMOTED_SIGN (op))
1007 return true;
1008
1009 return false;
1010 }
1011
1012 \f
1013 /* Nonzero if register REG appears somewhere within IN.
1014 Also works if REG is not a register; in this case it checks
1015 for a subexpression of IN that is Lisp "equal" to REG. */
1016
1017 int
1018 reg_mentioned_p (const_rtx reg, const_rtx in)
1019 {
1020 const char *fmt;
1021 int i;
1022 enum rtx_code code;
1023
1024 if (in == 0)
1025 return 0;
1026
1027 if (reg == in)
1028 return 1;
1029
1030 if (GET_CODE (in) == LABEL_REF)
1031 return reg == LABEL_REF_LABEL (in);
1032
1033 code = GET_CODE (in);
1034
1035 switch (code)
1036 {
1037 /* Compare registers by number. */
1038 case REG:
1039 return REG_P (reg) && REGNO (in) == REGNO (reg);
1040
1041 /* These codes have no constituent expressions
1042 and are unique. */
1043 case SCRATCH:
1044 case CC0:
1045 case PC:
1046 return 0;
1047
1048 CASE_CONST_ANY:
1049 /* These are kept unique for a given value. */
1050 return 0;
1051
1052 default:
1053 break;
1054 }
1055
1056 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1057 return 1;
1058
1059 fmt = GET_RTX_FORMAT (code);
1060
1061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1062 {
1063 if (fmt[i] == 'E')
1064 {
1065 int j;
1066 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1067 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1068 return 1;
1069 }
1070 else if (fmt[i] == 'e'
1071 && reg_mentioned_p (reg, XEXP (in, i)))
1072 return 1;
1073 }
1074 return 0;
1075 }
1076 \f
1077 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1078 no CODE_LABEL insn. */
1079
1080 int
1081 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1082 {
1083 rtx_insn *p;
1084 if (beg == end)
1085 return 0;
1086 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1087 if (LABEL_P (p))
1088 return 0;
1089 return 1;
1090 }
1091
1092 /* Nonzero if register REG is used in an insn between
1093 FROM_INSN and TO_INSN (exclusive of those two). */
1094
1095 int
1096 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1097 const rtx_insn *to_insn)
1098 {
1099 rtx_insn *insn;
1100
1101 if (from_insn == to_insn)
1102 return 0;
1103
1104 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1105 if (NONDEBUG_INSN_P (insn)
1106 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1107 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1108 return 1;
1109 return 0;
1110 }
1111 \f
1112 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1113 is entirely replaced by a new value and the only use is as a SET_DEST,
1114 we do not consider it a reference. */
1115
1116 int
1117 reg_referenced_p (const_rtx x, const_rtx body)
1118 {
1119 int i;
1120
1121 switch (GET_CODE (body))
1122 {
1123 case SET:
1124 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1125 return 1;
1126
1127 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1128 of a REG that occupies all of the REG, the insn references X if
1129 it is mentioned in the destination. */
1130 if (GET_CODE (SET_DEST (body)) != CC0
1131 && GET_CODE (SET_DEST (body)) != PC
1132 && !REG_P (SET_DEST (body))
1133 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1134 && REG_P (SUBREG_REG (SET_DEST (body)))
1135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1137 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1139 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1140 return 1;
1141 return 0;
1142
1143 case ASM_OPERANDS:
1144 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1145 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1146 return 1;
1147 return 0;
1148
1149 case CALL:
1150 case USE:
1151 case IF_THEN_ELSE:
1152 return reg_overlap_mentioned_p (x, body);
1153
1154 case TRAP_IF:
1155 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1156
1157 case PREFETCH:
1158 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1159
1160 case UNSPEC:
1161 case UNSPEC_VOLATILE:
1162 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1163 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1164 return 1;
1165 return 0;
1166
1167 case PARALLEL:
1168 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1169 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1170 return 1;
1171 return 0;
1172
1173 case CLOBBER:
1174 if (MEM_P (XEXP (body, 0)))
1175 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1176 return 1;
1177 return 0;
1178
1179 case COND_EXEC:
1180 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1181 return 1;
1182 return reg_referenced_p (x, COND_EXEC_CODE (body));
1183
1184 default:
1185 return 0;
1186 }
1187 }
1188 \f
1189 /* Nonzero if register REG is set or clobbered in an insn between
1190 FROM_INSN and TO_INSN (exclusive of those two). */
1191
1192 int
1193 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1194 const rtx_insn *to_insn)
1195 {
1196 const rtx_insn *insn;
1197
1198 if (from_insn == to_insn)
1199 return 0;
1200
1201 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1202 if (INSN_P (insn) && reg_set_p (reg, insn))
1203 return 1;
1204 return 0;
1205 }
1206
1207 /* Return true if REG is set or clobbered inside INSN. */
1208
1209 int
1210 reg_set_p (const_rtx reg, const_rtx insn)
1211 {
1212 /* After delay slot handling, call and branch insns might be in a
1213 sequence. Check all the elements there. */
1214 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1215 {
1216 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1217 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1218 return true;
1219
1220 return false;
1221 }
1222
1223 /* We can be passed an insn or part of one. If we are passed an insn,
1224 check if a side-effect of the insn clobbers REG. */
1225 if (INSN_P (insn)
1226 && (FIND_REG_INC_NOTE (insn, reg)
1227 || (CALL_P (insn)
1228 && ((REG_P (reg)
1229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1230 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1231 GET_MODE (reg), REGNO (reg)))
1232 || MEM_P (reg)
1233 || find_reg_fusage (insn, CLOBBER, reg)))))
1234 return true;
1235
1236 return set_of (reg, insn) != NULL_RTX;
1237 }
1238
1239 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1240 only if none of them are modified between START and END. Return 1 if
1241 X contains a MEM; this routine does use memory aliasing. */
1242
1243 int
1244 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1245 {
1246 const enum rtx_code code = GET_CODE (x);
1247 const char *fmt;
1248 int i, j;
1249 rtx_insn *insn;
1250
1251 if (start == end)
1252 return 0;
1253
1254 switch (code)
1255 {
1256 CASE_CONST_ANY:
1257 case CONST:
1258 case SYMBOL_REF:
1259 case LABEL_REF:
1260 return 0;
1261
1262 case PC:
1263 case CC0:
1264 return 1;
1265
1266 case MEM:
1267 if (modified_between_p (XEXP (x, 0), start, end))
1268 return 1;
1269 if (MEM_READONLY_P (x))
1270 return 0;
1271 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1272 if (memory_modified_in_insn_p (x, insn))
1273 return 1;
1274 return 0;
1275 break;
1276
1277 case REG:
1278 return reg_set_between_p (x, start, end);
1279
1280 default:
1281 break;
1282 }
1283
1284 fmt = GET_RTX_FORMAT (code);
1285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1286 {
1287 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1288 return 1;
1289
1290 else if (fmt[i] == 'E')
1291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1292 if (modified_between_p (XVECEXP (x, i, j), start, end))
1293 return 1;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1300 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1301 does use memory aliasing. */
1302
1303 int
1304 modified_in_p (const_rtx x, const_rtx insn)
1305 {
1306 const enum rtx_code code = GET_CODE (x);
1307 const char *fmt;
1308 int i, j;
1309
1310 switch (code)
1311 {
1312 CASE_CONST_ANY:
1313 case CONST:
1314 case SYMBOL_REF:
1315 case LABEL_REF:
1316 return 0;
1317
1318 case PC:
1319 case CC0:
1320 return 1;
1321
1322 case MEM:
1323 if (modified_in_p (XEXP (x, 0), insn))
1324 return 1;
1325 if (MEM_READONLY_P (x))
1326 return 0;
1327 if (memory_modified_in_insn_p (x, insn))
1328 return 1;
1329 return 0;
1330 break;
1331
1332 case REG:
1333 return reg_set_p (x, insn);
1334
1335 default:
1336 break;
1337 }
1338
1339 fmt = GET_RTX_FORMAT (code);
1340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1341 {
1342 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1343 return 1;
1344
1345 else if (fmt[i] == 'E')
1346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1347 if (modified_in_p (XVECEXP (x, i, j), insn))
1348 return 1;
1349 }
1350
1351 return 0;
1352 }
1353 \f
1354 /* Helper function for set_of. */
1355 struct set_of_data
1356 {
1357 const_rtx found;
1358 const_rtx pat;
1359 };
1360
1361 static void
1362 set_of_1 (rtx x, const_rtx pat, void *data1)
1363 {
1364 struct set_of_data *const data = (struct set_of_data *) (data1);
1365 if (rtx_equal_p (x, data->pat)
1366 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1367 data->found = pat;
1368 }
1369
1370 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1371 (either directly or via STRICT_LOW_PART and similar modifiers). */
1372 const_rtx
1373 set_of (const_rtx pat, const_rtx insn)
1374 {
1375 struct set_of_data data;
1376 data.found = NULL_RTX;
1377 data.pat = pat;
1378 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1379 return data.found;
1380 }
1381
1382 /* Add all hard register in X to *PSET. */
1383 void
1384 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1385 {
1386 subrtx_iterator::array_type array;
1387 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1388 {
1389 const_rtx x = *iter;
1390 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1391 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1392 }
1393 }
1394
1395 /* This function, called through note_stores, collects sets and
1396 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1397 by DATA. */
1398 void
1399 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1400 {
1401 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1402 if (REG_P (x) && HARD_REGISTER_P (x))
1403 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1404 }
1405
1406 /* Examine INSN, and compute the set of hard registers written by it.
1407 Store it in *PSET. Should only be called after reload. */
1408 void
1409 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1410 {
1411 rtx link;
1412
1413 CLEAR_HARD_REG_SET (*pset);
1414 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1415 if (CALL_P (insn))
1416 {
1417 if (implicit)
1418 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1419
1420 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1421 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1422 }
1423 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1424 if (REG_NOTE_KIND (link) == REG_INC)
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1426 }
1427
1428 /* Like record_hard_reg_sets, but called through note_uses. */
1429 void
1430 record_hard_reg_uses (rtx *px, void *data)
1431 {
1432 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1433 }
1434 \f
1435 /* Given an INSN, return a SET expression if this insn has only a single SET.
1436 It may also have CLOBBERs, USEs, or SET whose output
1437 will not be used, which we ignore. */
1438
1439 rtx
1440 single_set_2 (const rtx_insn *insn, const_rtx pat)
1441 {
1442 rtx set = NULL;
1443 int set_verified = 1;
1444 int i;
1445
1446 if (GET_CODE (pat) == PARALLEL)
1447 {
1448 for (i = 0; i < XVECLEN (pat, 0); i++)
1449 {
1450 rtx sub = XVECEXP (pat, 0, i);
1451 switch (GET_CODE (sub))
1452 {
1453 case USE:
1454 case CLOBBER:
1455 break;
1456
1457 case SET:
1458 /* We can consider insns having multiple sets, where all
1459 but one are dead as single set insns. In common case
1460 only single set is present in the pattern so we want
1461 to avoid checking for REG_UNUSED notes unless necessary.
1462
1463 When we reach set first time, we just expect this is
1464 the single set we are looking for and only when more
1465 sets are found in the insn, we check them. */
1466 if (!set_verified)
1467 {
1468 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1469 && !side_effects_p (set))
1470 set = NULL;
1471 else
1472 set_verified = 1;
1473 }
1474 if (!set)
1475 set = sub, set_verified = 0;
1476 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1477 || side_effects_p (sub))
1478 return NULL_RTX;
1479 break;
1480
1481 default:
1482 return NULL_RTX;
1483 }
1484 }
1485 }
1486 return set;
1487 }
1488
1489 /* Given an INSN, return nonzero if it has more than one SET, else return
1490 zero. */
1491
1492 int
1493 multiple_sets (const_rtx insn)
1494 {
1495 int found;
1496 int i;
1497
1498 /* INSN must be an insn. */
1499 if (! INSN_P (insn))
1500 return 0;
1501
1502 /* Only a PARALLEL can have multiple SETs. */
1503 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1504 {
1505 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1506 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1507 {
1508 /* If we have already found a SET, then return now. */
1509 if (found)
1510 return 1;
1511 else
1512 found = 1;
1513 }
1514 }
1515
1516 /* Either zero or one SET. */
1517 return 0;
1518 }
1519 \f
1520 /* Return nonzero if the destination of SET equals the source
1521 and there are no side effects. */
1522
1523 int
1524 set_noop_p (const_rtx set)
1525 {
1526 rtx src = SET_SRC (set);
1527 rtx dst = SET_DEST (set);
1528
1529 if (dst == pc_rtx && src == pc_rtx)
1530 return 1;
1531
1532 if (MEM_P (dst) && MEM_P (src))
1533 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1534
1535 if (GET_CODE (dst) == ZERO_EXTRACT)
1536 return rtx_equal_p (XEXP (dst, 0), src)
1537 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1538 && !side_effects_p (src);
1539
1540 if (GET_CODE (dst) == STRICT_LOW_PART)
1541 dst = XEXP (dst, 0);
1542
1543 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1544 {
1545 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1546 return 0;
1547 src = SUBREG_REG (src);
1548 dst = SUBREG_REG (dst);
1549 }
1550
1551 /* It is a NOOP if destination overlaps with selected src vector
1552 elements. */
1553 if (GET_CODE (src) == VEC_SELECT
1554 && REG_P (XEXP (src, 0)) && REG_P (dst)
1555 && HARD_REGISTER_P (XEXP (src, 0))
1556 && HARD_REGISTER_P (dst))
1557 {
1558 int i;
1559 rtx par = XEXP (src, 1);
1560 rtx src0 = XEXP (src, 0);
1561 int c0 = INTVAL (XVECEXP (par, 0, 0));
1562 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1563
1564 for (i = 1; i < XVECLEN (par, 0); i++)
1565 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1566 return 0;
1567 return
1568 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1569 offset, GET_MODE (dst)) == (int) REGNO (dst);
1570 }
1571
1572 return (REG_P (src) && REG_P (dst)
1573 && REGNO (src) == REGNO (dst));
1574 }
1575 \f
1576 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1577 value to itself. */
1578
1579 int
1580 noop_move_p (const rtx_insn *insn)
1581 {
1582 rtx pat = PATTERN (insn);
1583
1584 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1585 return 1;
1586
1587 /* Insns carrying these notes are useful later on. */
1588 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1589 return 0;
1590
1591 /* Check the code to be executed for COND_EXEC. */
1592 if (GET_CODE (pat) == COND_EXEC)
1593 pat = COND_EXEC_CODE (pat);
1594
1595 if (GET_CODE (pat) == SET && set_noop_p (pat))
1596 return 1;
1597
1598 if (GET_CODE (pat) == PARALLEL)
1599 {
1600 int i;
1601 /* If nothing but SETs of registers to themselves,
1602 this insn can also be deleted. */
1603 for (i = 0; i < XVECLEN (pat, 0); i++)
1604 {
1605 rtx tem = XVECEXP (pat, 0, i);
1606
1607 if (GET_CODE (tem) == USE
1608 || GET_CODE (tem) == CLOBBER)
1609 continue;
1610
1611 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1612 return 0;
1613 }
1614
1615 return 1;
1616 }
1617 return 0;
1618 }
1619 \f
1620
1621 /* Return nonzero if register in range [REGNO, ENDREGNO)
1622 appears either explicitly or implicitly in X
1623 other than being stored into.
1624
1625 References contained within the substructure at LOC do not count.
1626 LOC may be zero, meaning don't ignore anything. */
1627
1628 bool
1629 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1630 rtx *loc)
1631 {
1632 int i;
1633 unsigned int x_regno;
1634 RTX_CODE code;
1635 const char *fmt;
1636
1637 repeat:
1638 /* The contents of a REG_NONNEG note is always zero, so we must come here
1639 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1640 if (x == 0)
1641 return false;
1642
1643 code = GET_CODE (x);
1644
1645 switch (code)
1646 {
1647 case REG:
1648 x_regno = REGNO (x);
1649
1650 /* If we modifying the stack, frame, or argument pointer, it will
1651 clobber a virtual register. In fact, we could be more precise,
1652 but it isn't worth it. */
1653 if ((x_regno == STACK_POINTER_REGNUM
1654 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1655 && x_regno == ARG_POINTER_REGNUM)
1656 || x_regno == FRAME_POINTER_REGNUM)
1657 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1658 return true;
1659
1660 return endregno > x_regno && regno < END_REGNO (x);
1661
1662 case SUBREG:
1663 /* If this is a SUBREG of a hard reg, we can see exactly which
1664 registers are being modified. Otherwise, handle normally. */
1665 if (REG_P (SUBREG_REG (x))
1666 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1667 {
1668 unsigned int inner_regno = subreg_regno (x);
1669 unsigned int inner_endregno
1670 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1671 ? subreg_nregs (x) : 1);
1672
1673 return endregno > inner_regno && regno < inner_endregno;
1674 }
1675 break;
1676
1677 case CLOBBER:
1678 case SET:
1679 if (&SET_DEST (x) != loc
1680 /* Note setting a SUBREG counts as referring to the REG it is in for
1681 a pseudo but not for hard registers since we can
1682 treat each word individually. */
1683 && ((GET_CODE (SET_DEST (x)) == SUBREG
1684 && loc != &SUBREG_REG (SET_DEST (x))
1685 && REG_P (SUBREG_REG (SET_DEST (x)))
1686 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1687 && refers_to_regno_p (regno, endregno,
1688 SUBREG_REG (SET_DEST (x)), loc))
1689 || (!REG_P (SET_DEST (x))
1690 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1691 return true;
1692
1693 if (code == CLOBBER || loc == &SET_SRC (x))
1694 return false;
1695 x = SET_SRC (x);
1696 goto repeat;
1697
1698 default:
1699 break;
1700 }
1701
1702 /* X does not match, so try its subexpressions. */
1703
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1706 {
1707 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1708 {
1709 if (i == 0)
1710 {
1711 x = XEXP (x, 0);
1712 goto repeat;
1713 }
1714 else
1715 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1716 return true;
1717 }
1718 else if (fmt[i] == 'E')
1719 {
1720 int j;
1721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1722 if (loc != &XVECEXP (x, i, j)
1723 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1724 return true;
1725 }
1726 }
1727 return false;
1728 }
1729
1730 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1731 we check if any register number in X conflicts with the relevant register
1732 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1733 contains a MEM (we don't bother checking for memory addresses that can't
1734 conflict because we expect this to be a rare case. */
1735
1736 int
1737 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1738 {
1739 unsigned int regno, endregno;
1740
1741 /* If either argument is a constant, then modifying X can not
1742 affect IN. Here we look at IN, we can profitably combine
1743 CONSTANT_P (x) with the switch statement below. */
1744 if (CONSTANT_P (in))
1745 return 0;
1746
1747 recurse:
1748 switch (GET_CODE (x))
1749 {
1750 case STRICT_LOW_PART:
1751 case ZERO_EXTRACT:
1752 case SIGN_EXTRACT:
1753 /* Overly conservative. */
1754 x = XEXP (x, 0);
1755 goto recurse;
1756
1757 case SUBREG:
1758 regno = REGNO (SUBREG_REG (x));
1759 if (regno < FIRST_PSEUDO_REGISTER)
1760 regno = subreg_regno (x);
1761 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1762 ? subreg_nregs (x) : 1);
1763 goto do_reg;
1764
1765 case REG:
1766 regno = REGNO (x);
1767 endregno = END_REGNO (x);
1768 do_reg:
1769 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1770
1771 case MEM:
1772 {
1773 const char *fmt;
1774 int i;
1775
1776 if (MEM_P (in))
1777 return 1;
1778
1779 fmt = GET_RTX_FORMAT (GET_CODE (in));
1780 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1781 if (fmt[i] == 'e')
1782 {
1783 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1784 return 1;
1785 }
1786 else if (fmt[i] == 'E')
1787 {
1788 int j;
1789 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1790 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1791 return 1;
1792 }
1793
1794 return 0;
1795 }
1796
1797 case SCRATCH:
1798 case PC:
1799 case CC0:
1800 return reg_mentioned_p (x, in);
1801
1802 case PARALLEL:
1803 {
1804 int i;
1805
1806 /* If any register in here refers to it we return true. */
1807 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1808 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1809 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1810 return 1;
1811 return 0;
1812 }
1813
1814 default:
1815 gcc_assert (CONSTANT_P (x));
1816 return 0;
1817 }
1818 }
1819 \f
1820 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1821 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1822 ignored by note_stores, but passed to FUN.
1823
1824 FUN receives three arguments:
1825 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1826 2. the SET or CLOBBER rtx that does the store,
1827 3. the pointer DATA provided to note_stores.
1828
1829 If the item being stored in or clobbered is a SUBREG of a hard register,
1830 the SUBREG will be passed. */
1831
1832 void
1833 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1834 {
1835 int i;
1836
1837 if (GET_CODE (x) == COND_EXEC)
1838 x = COND_EXEC_CODE (x);
1839
1840 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1841 {
1842 rtx dest = SET_DEST (x);
1843
1844 while ((GET_CODE (dest) == SUBREG
1845 && (!REG_P (SUBREG_REG (dest))
1846 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1847 || GET_CODE (dest) == ZERO_EXTRACT
1848 || GET_CODE (dest) == STRICT_LOW_PART)
1849 dest = XEXP (dest, 0);
1850
1851 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1852 each of whose first operand is a register. */
1853 if (GET_CODE (dest) == PARALLEL)
1854 {
1855 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1856 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1857 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1858 }
1859 else
1860 (*fun) (dest, x, data);
1861 }
1862
1863 else if (GET_CODE (x) == PARALLEL)
1864 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1865 note_stores (XVECEXP (x, 0, i), fun, data);
1866 }
1867 \f
1868 /* Like notes_stores, but call FUN for each expression that is being
1869 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1870 FUN for each expression, not any interior subexpressions. FUN receives a
1871 pointer to the expression and the DATA passed to this function.
1872
1873 Note that this is not quite the same test as that done in reg_referenced_p
1874 since that considers something as being referenced if it is being
1875 partially set, while we do not. */
1876
1877 void
1878 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1879 {
1880 rtx body = *pbody;
1881 int i;
1882
1883 switch (GET_CODE (body))
1884 {
1885 case COND_EXEC:
1886 (*fun) (&COND_EXEC_TEST (body), data);
1887 note_uses (&COND_EXEC_CODE (body), fun, data);
1888 return;
1889
1890 case PARALLEL:
1891 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1892 note_uses (&XVECEXP (body, 0, i), fun, data);
1893 return;
1894
1895 case SEQUENCE:
1896 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1897 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1898 return;
1899
1900 case USE:
1901 (*fun) (&XEXP (body, 0), data);
1902 return;
1903
1904 case ASM_OPERANDS:
1905 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1906 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1907 return;
1908
1909 case TRAP_IF:
1910 (*fun) (&TRAP_CONDITION (body), data);
1911 return;
1912
1913 case PREFETCH:
1914 (*fun) (&XEXP (body, 0), data);
1915 return;
1916
1917 case UNSPEC:
1918 case UNSPEC_VOLATILE:
1919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1920 (*fun) (&XVECEXP (body, 0, i), data);
1921 return;
1922
1923 case CLOBBER:
1924 if (MEM_P (XEXP (body, 0)))
1925 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1926 return;
1927
1928 case SET:
1929 {
1930 rtx dest = SET_DEST (body);
1931
1932 /* For sets we replace everything in source plus registers in memory
1933 expression in store and operands of a ZERO_EXTRACT. */
1934 (*fun) (&SET_SRC (body), data);
1935
1936 if (GET_CODE (dest) == ZERO_EXTRACT)
1937 {
1938 (*fun) (&XEXP (dest, 1), data);
1939 (*fun) (&XEXP (dest, 2), data);
1940 }
1941
1942 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1943 dest = XEXP (dest, 0);
1944
1945 if (MEM_P (dest))
1946 (*fun) (&XEXP (dest, 0), data);
1947 }
1948 return;
1949
1950 default:
1951 /* All the other possibilities never store. */
1952 (*fun) (pbody, data);
1953 return;
1954 }
1955 }
1956 \f
1957 /* Return nonzero if X's old contents don't survive after INSN.
1958 This will be true if X is (cc0) or if X is a register and
1959 X dies in INSN or because INSN entirely sets X.
1960
1961 "Entirely set" means set directly and not through a SUBREG, or
1962 ZERO_EXTRACT, so no trace of the old contents remains.
1963 Likewise, REG_INC does not count.
1964
1965 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1966 but for this use that makes no difference, since regs don't overlap
1967 during their lifetimes. Therefore, this function may be used
1968 at any time after deaths have been computed.
1969
1970 If REG is a hard reg that occupies multiple machine registers, this
1971 function will only return 1 if each of those registers will be replaced
1972 by INSN. */
1973
1974 int
1975 dead_or_set_p (const_rtx insn, const_rtx x)
1976 {
1977 unsigned int regno, end_regno;
1978 unsigned int i;
1979
1980 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1981 if (GET_CODE (x) == CC0)
1982 return 1;
1983
1984 gcc_assert (REG_P (x));
1985
1986 regno = REGNO (x);
1987 end_regno = END_REGNO (x);
1988 for (i = regno; i < end_regno; i++)
1989 if (! dead_or_set_regno_p (insn, i))
1990 return 0;
1991
1992 return 1;
1993 }
1994
1995 /* Return TRUE iff DEST is a register or subreg of a register and
1996 doesn't change the number of words of the inner register, and any
1997 part of the register is TEST_REGNO. */
1998
1999 static bool
2000 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2001 {
2002 unsigned int regno, endregno;
2003
2004 if (GET_CODE (dest) == SUBREG
2005 && (((GET_MODE_SIZE (GET_MODE (dest))
2006 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2007 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2009 dest = SUBREG_REG (dest);
2010
2011 if (!REG_P (dest))
2012 return false;
2013
2014 regno = REGNO (dest);
2015 endregno = END_REGNO (dest);
2016 return (test_regno >= regno && test_regno < endregno);
2017 }
2018
2019 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2020 any member matches the covers_regno_no_parallel_p criteria. */
2021
2022 static bool
2023 covers_regno_p (const_rtx dest, unsigned int test_regno)
2024 {
2025 if (GET_CODE (dest) == PARALLEL)
2026 {
2027 /* Some targets place small structures in registers for return
2028 values of functions, and those registers are wrapped in
2029 PARALLELs that we may see as the destination of a SET. */
2030 int i;
2031
2032 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2033 {
2034 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2035 if (inner != NULL_RTX
2036 && covers_regno_no_parallel_p (inner, test_regno))
2037 return true;
2038 }
2039
2040 return false;
2041 }
2042 else
2043 return covers_regno_no_parallel_p (dest, test_regno);
2044 }
2045
2046 /* Utility function for dead_or_set_p to check an individual register. */
2047
2048 int
2049 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2050 {
2051 const_rtx pattern;
2052
2053 /* See if there is a death note for something that includes TEST_REGNO. */
2054 if (find_regno_note (insn, REG_DEAD, test_regno))
2055 return 1;
2056
2057 if (CALL_P (insn)
2058 && find_regno_fusage (insn, CLOBBER, test_regno))
2059 return 1;
2060
2061 pattern = PATTERN (insn);
2062
2063 /* If a COND_EXEC is not executed, the value survives. */
2064 if (GET_CODE (pattern) == COND_EXEC)
2065 return 0;
2066
2067 if (GET_CODE (pattern) == SET)
2068 return covers_regno_p (SET_DEST (pattern), test_regno);
2069 else if (GET_CODE (pattern) == PARALLEL)
2070 {
2071 int i;
2072
2073 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2074 {
2075 rtx body = XVECEXP (pattern, 0, i);
2076
2077 if (GET_CODE (body) == COND_EXEC)
2078 body = COND_EXEC_CODE (body);
2079
2080 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2081 && covers_regno_p (SET_DEST (body), test_regno))
2082 return 1;
2083 }
2084 }
2085
2086 return 0;
2087 }
2088
2089 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2090 If DATUM is nonzero, look for one whose datum is DATUM. */
2091
2092 rtx
2093 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2094 {
2095 rtx link;
2096
2097 gcc_checking_assert (insn);
2098
2099 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2100 if (! INSN_P (insn))
2101 return 0;
2102 if (datum == 0)
2103 {
2104 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2105 if (REG_NOTE_KIND (link) == kind)
2106 return link;
2107 return 0;
2108 }
2109
2110 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2111 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2112 return link;
2113 return 0;
2114 }
2115
2116 /* Return the reg-note of kind KIND in insn INSN which applies to register
2117 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2118 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2119 it might be the case that the note overlaps REGNO. */
2120
2121 rtx
2122 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2123 {
2124 rtx link;
2125
2126 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2127 if (! INSN_P (insn))
2128 return 0;
2129
2130 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2131 if (REG_NOTE_KIND (link) == kind
2132 /* Verify that it is a register, so that scratch and MEM won't cause a
2133 problem here. */
2134 && REG_P (XEXP (link, 0))
2135 && REGNO (XEXP (link, 0)) <= regno
2136 && END_REGNO (XEXP (link, 0)) > regno)
2137 return link;
2138 return 0;
2139 }
2140
2141 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2142 has such a note. */
2143
2144 rtx
2145 find_reg_equal_equiv_note (const_rtx insn)
2146 {
2147 rtx link;
2148
2149 if (!INSN_P (insn))
2150 return 0;
2151
2152 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2153 if (REG_NOTE_KIND (link) == REG_EQUAL
2154 || REG_NOTE_KIND (link) == REG_EQUIV)
2155 {
2156 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2157 insns that have multiple sets. Checking single_set to
2158 make sure of this is not the proper check, as explained
2159 in the comment in set_unique_reg_note.
2160
2161 This should be changed into an assert. */
2162 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2163 return 0;
2164 return link;
2165 }
2166 return NULL;
2167 }
2168
2169 /* Check whether INSN is a single_set whose source is known to be
2170 equivalent to a constant. Return that constant if so, otherwise
2171 return null. */
2172
2173 rtx
2174 find_constant_src (const rtx_insn *insn)
2175 {
2176 rtx note, set, x;
2177
2178 set = single_set (insn);
2179 if (set)
2180 {
2181 x = avoid_constant_pool_reference (SET_SRC (set));
2182 if (CONSTANT_P (x))
2183 return x;
2184 }
2185
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && CONSTANT_P (XEXP (note, 0)))
2188 return XEXP (note, 0);
2189
2190 return NULL_RTX;
2191 }
2192
2193 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2194 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2195
2196 int
2197 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2198 {
2199 /* If it's not a CALL_INSN, it can't possibly have a
2200 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2201 if (!CALL_P (insn))
2202 return 0;
2203
2204 gcc_assert (datum);
2205
2206 if (!REG_P (datum))
2207 {
2208 rtx link;
2209
2210 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2211 link;
2212 link = XEXP (link, 1))
2213 if (GET_CODE (XEXP (link, 0)) == code
2214 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2215 return 1;
2216 }
2217 else
2218 {
2219 unsigned int regno = REGNO (datum);
2220
2221 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2222 to pseudo registers, so don't bother checking. */
2223
2224 if (regno < FIRST_PSEUDO_REGISTER)
2225 {
2226 unsigned int end_regno = END_REGNO (datum);
2227 unsigned int i;
2228
2229 for (i = regno; i < end_regno; i++)
2230 if (find_regno_fusage (insn, code, i))
2231 return 1;
2232 }
2233 }
2234
2235 return 0;
2236 }
2237
2238 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2239 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2240
2241 int
2242 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2243 {
2244 rtx link;
2245
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2248
2249 if (regno >= FIRST_PSEUDO_REGISTER
2250 || !CALL_P (insn) )
2251 return 0;
2252
2253 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2254 {
2255 rtx op, reg;
2256
2257 if (GET_CODE (op = XEXP (link, 0)) == code
2258 && REG_P (reg = XEXP (op, 0))
2259 && REGNO (reg) <= regno
2260 && END_REGNO (reg) > regno)
2261 return 1;
2262 }
2263
2264 return 0;
2265 }
2266
2267 \f
2268 /* Return true if KIND is an integer REG_NOTE. */
2269
2270 static bool
2271 int_reg_note_p (enum reg_note kind)
2272 {
2273 return kind == REG_BR_PROB;
2274 }
2275
2276 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2277 stored as the pointer to the next register note. */
2278
2279 rtx
2280 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2281 {
2282 rtx note;
2283
2284 gcc_checking_assert (!int_reg_note_p (kind));
2285 switch (kind)
2286 {
2287 case REG_CC_SETTER:
2288 case REG_CC_USER:
2289 case REG_LABEL_TARGET:
2290 case REG_LABEL_OPERAND:
2291 case REG_TM:
2292 /* These types of register notes use an INSN_LIST rather than an
2293 EXPR_LIST, so that copying is done right and dumps look
2294 better. */
2295 note = alloc_INSN_LIST (datum, list);
2296 PUT_REG_NOTE_KIND (note, kind);
2297 break;
2298
2299 default:
2300 note = alloc_EXPR_LIST (kind, datum, list);
2301 break;
2302 }
2303
2304 return note;
2305 }
2306
2307 /* Add register note with kind KIND and datum DATUM to INSN. */
2308
2309 void
2310 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2311 {
2312 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2313 }
2314
2315 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2316
2317 void
2318 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2319 {
2320 gcc_checking_assert (int_reg_note_p (kind));
2321 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2322 datum, REG_NOTES (insn));
2323 }
2324
2325 /* Add a register note like NOTE to INSN. */
2326
2327 void
2328 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2329 {
2330 if (GET_CODE (note) == INT_LIST)
2331 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2332 else
2333 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2334 }
2335
2336 /* Remove register note NOTE from the REG_NOTES of INSN. */
2337
2338 void
2339 remove_note (rtx insn, const_rtx note)
2340 {
2341 rtx link;
2342
2343 if (note == NULL_RTX)
2344 return;
2345
2346 if (REG_NOTES (insn) == note)
2347 REG_NOTES (insn) = XEXP (note, 1);
2348 else
2349 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2350 if (XEXP (link, 1) == note)
2351 {
2352 XEXP (link, 1) = XEXP (note, 1);
2353 break;
2354 }
2355
2356 switch (REG_NOTE_KIND (note))
2357 {
2358 case REG_EQUAL:
2359 case REG_EQUIV:
2360 df_notes_rescan (as_a <rtx_insn *> (insn));
2361 break;
2362 default:
2363 break;
2364 }
2365 }
2366
2367 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2368
2369 void
2370 remove_reg_equal_equiv_notes (rtx_insn *insn)
2371 {
2372 rtx *loc;
2373
2374 loc = &REG_NOTES (insn);
2375 while (*loc)
2376 {
2377 enum reg_note kind = REG_NOTE_KIND (*loc);
2378 if (kind == REG_EQUAL || kind == REG_EQUIV)
2379 *loc = XEXP (*loc, 1);
2380 else
2381 loc = &XEXP (*loc, 1);
2382 }
2383 }
2384
2385 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2386
2387 void
2388 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2389 {
2390 df_ref eq_use;
2391
2392 if (!df)
2393 return;
2394
2395 /* This loop is a little tricky. We cannot just go down the chain because
2396 it is being modified by some actions in the loop. So we just iterate
2397 over the head. We plan to drain the list anyway. */
2398 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2399 {
2400 rtx_insn *insn = DF_REF_INSN (eq_use);
2401 rtx note = find_reg_equal_equiv_note (insn);
2402
2403 /* This assert is generally triggered when someone deletes a REG_EQUAL
2404 or REG_EQUIV note by hacking the list manually rather than calling
2405 remove_note. */
2406 gcc_assert (note);
2407
2408 remove_note (insn, note);
2409 }
2410 }
2411
2412 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2413 return 1 if it is found. A simple equality test is used to determine if
2414 NODE matches. */
2415
2416 bool
2417 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2418 {
2419 const_rtx x;
2420
2421 for (x = listp; x; x = XEXP (x, 1))
2422 if (node == XEXP (x, 0))
2423 return true;
2424
2425 return false;
2426 }
2427
2428 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
2430
2431 A simple equality test is used to determine if NODE matches. */
2432
2433 void
2434 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2435 {
2436 rtx_expr_list *temp = *listp;
2437 rtx_expr_list *prev = NULL;
2438
2439 while (temp)
2440 {
2441 if (node == temp->element ())
2442 {
2443 /* Splice the node out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = temp->next ();
2446 else
2447 *listp = temp->next ();
2448
2449 return;
2450 }
2451
2452 prev = temp;
2453 temp = temp->next ();
2454 }
2455 }
2456
2457 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2458 remove that entry from the list if it is found.
2459
2460 A simple equality test is used to determine if NODE matches. */
2461
2462 void
2463 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2464 {
2465 rtx_insn_list *temp = *listp;
2466 rtx_insn_list *prev = NULL;
2467
2468 while (temp)
2469 {
2470 if (node == temp->insn ())
2471 {
2472 /* Splice the node out of the list. */
2473 if (prev)
2474 XEXP (prev, 1) = temp->next ();
2475 else
2476 *listp = temp->next ();
2477
2478 return;
2479 }
2480
2481 prev = temp;
2482 temp = temp->next ();
2483 }
2484 }
2485 \f
2486 /* Nonzero if X contains any volatile instructions. These are instructions
2487 which may cause unpredictable machine state instructions, and thus no
2488 instructions or register uses should be moved or combined across them.
2489 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2490
2491 int
2492 volatile_insn_p (const_rtx x)
2493 {
2494 const RTX_CODE code = GET_CODE (x);
2495 switch (code)
2496 {
2497 case LABEL_REF:
2498 case SYMBOL_REF:
2499 case CONST:
2500 CASE_CONST_ANY:
2501 case CC0:
2502 case PC:
2503 case REG:
2504 case SCRATCH:
2505 case CLOBBER:
2506 case ADDR_VEC:
2507 case ADDR_DIFF_VEC:
2508 case CALL:
2509 case MEM:
2510 return 0;
2511
2512 case UNSPEC_VOLATILE:
2513 return 1;
2514
2515 case ASM_INPUT:
2516 case ASM_OPERANDS:
2517 if (MEM_VOLATILE_P (x))
2518 return 1;
2519
2520 default:
2521 break;
2522 }
2523
2524 /* Recursively scan the operands of this expression. */
2525
2526 {
2527 const char *const fmt = GET_RTX_FORMAT (code);
2528 int i;
2529
2530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2531 {
2532 if (fmt[i] == 'e')
2533 {
2534 if (volatile_insn_p (XEXP (x, i)))
2535 return 1;
2536 }
2537 else if (fmt[i] == 'E')
2538 {
2539 int j;
2540 for (j = 0; j < XVECLEN (x, i); j++)
2541 if (volatile_insn_p (XVECEXP (x, i, j)))
2542 return 1;
2543 }
2544 }
2545 }
2546 return 0;
2547 }
2548
2549 /* Nonzero if X contains any volatile memory references
2550 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2551
2552 int
2553 volatile_refs_p (const_rtx x)
2554 {
2555 const RTX_CODE code = GET_CODE (x);
2556 switch (code)
2557 {
2558 case LABEL_REF:
2559 case SYMBOL_REF:
2560 case CONST:
2561 CASE_CONST_ANY:
2562 case CC0:
2563 case PC:
2564 case REG:
2565 case SCRATCH:
2566 case CLOBBER:
2567 case ADDR_VEC:
2568 case ADDR_DIFF_VEC:
2569 return 0;
2570
2571 case UNSPEC_VOLATILE:
2572 return 1;
2573
2574 case MEM:
2575 case ASM_INPUT:
2576 case ASM_OPERANDS:
2577 if (MEM_VOLATILE_P (x))
2578 return 1;
2579
2580 default:
2581 break;
2582 }
2583
2584 /* Recursively scan the operands of this expression. */
2585
2586 {
2587 const char *const fmt = GET_RTX_FORMAT (code);
2588 int i;
2589
2590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2591 {
2592 if (fmt[i] == 'e')
2593 {
2594 if (volatile_refs_p (XEXP (x, i)))
2595 return 1;
2596 }
2597 else if (fmt[i] == 'E')
2598 {
2599 int j;
2600 for (j = 0; j < XVECLEN (x, i); j++)
2601 if (volatile_refs_p (XVECEXP (x, i, j)))
2602 return 1;
2603 }
2604 }
2605 }
2606 return 0;
2607 }
2608
2609 /* Similar to above, except that it also rejects register pre- and post-
2610 incrementing. */
2611
2612 int
2613 side_effects_p (const_rtx x)
2614 {
2615 const RTX_CODE code = GET_CODE (x);
2616 switch (code)
2617 {
2618 case LABEL_REF:
2619 case SYMBOL_REF:
2620 case CONST:
2621 CASE_CONST_ANY:
2622 case CC0:
2623 case PC:
2624 case REG:
2625 case SCRATCH:
2626 case ADDR_VEC:
2627 case ADDR_DIFF_VEC:
2628 case VAR_LOCATION:
2629 return 0;
2630
2631 case CLOBBER:
2632 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2633 when some combination can't be done. If we see one, don't think
2634 that we can simplify the expression. */
2635 return (GET_MODE (x) != VOIDmode);
2636
2637 case PRE_INC:
2638 case PRE_DEC:
2639 case POST_INC:
2640 case POST_DEC:
2641 case PRE_MODIFY:
2642 case POST_MODIFY:
2643 case CALL:
2644 case UNSPEC_VOLATILE:
2645 return 1;
2646
2647 case MEM:
2648 case ASM_INPUT:
2649 case ASM_OPERANDS:
2650 if (MEM_VOLATILE_P (x))
2651 return 1;
2652
2653 default:
2654 break;
2655 }
2656
2657 /* Recursively scan the operands of this expression. */
2658
2659 {
2660 const char *fmt = GET_RTX_FORMAT (code);
2661 int i;
2662
2663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2664 {
2665 if (fmt[i] == 'e')
2666 {
2667 if (side_effects_p (XEXP (x, i)))
2668 return 1;
2669 }
2670 else if (fmt[i] == 'E')
2671 {
2672 int j;
2673 for (j = 0; j < XVECLEN (x, i); j++)
2674 if (side_effects_p (XVECEXP (x, i, j)))
2675 return 1;
2676 }
2677 }
2678 }
2679 return 0;
2680 }
2681 \f
2682 /* Return nonzero if evaluating rtx X might cause a trap.
2683 FLAGS controls how to consider MEMs. A nonzero means the context
2684 of the access may have changed from the original, such that the
2685 address may have become invalid. */
2686
2687 int
2688 may_trap_p_1 (const_rtx x, unsigned flags)
2689 {
2690 int i;
2691 enum rtx_code code;
2692 const char *fmt;
2693
2694 /* We make no distinction currently, but this function is part of
2695 the internal target-hooks ABI so we keep the parameter as
2696 "unsigned flags". */
2697 bool code_changed = flags != 0;
2698
2699 if (x == 0)
2700 return 0;
2701 code = GET_CODE (x);
2702 switch (code)
2703 {
2704 /* Handle these cases quickly. */
2705 CASE_CONST_ANY:
2706 case SYMBOL_REF:
2707 case LABEL_REF:
2708 case CONST:
2709 case PC:
2710 case CC0:
2711 case REG:
2712 case SCRATCH:
2713 return 0;
2714
2715 case UNSPEC:
2716 return targetm.unspec_may_trap_p (x, flags);
2717
2718 case UNSPEC_VOLATILE:
2719 case ASM_INPUT:
2720 case TRAP_IF:
2721 return 1;
2722
2723 case ASM_OPERANDS:
2724 return MEM_VOLATILE_P (x);
2725
2726 /* Memory ref can trap unless it's a static var or a stack slot. */
2727 case MEM:
2728 /* Recognize specific pattern of stack checking probes. */
2729 if (flag_stack_check
2730 && MEM_VOLATILE_P (x)
2731 && XEXP (x, 0) == stack_pointer_rtx)
2732 return 1;
2733 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2734 reference; moving it out of context such as when moving code
2735 when optimizing, might cause its address to become invalid. */
2736 code_changed
2737 || !MEM_NOTRAP_P (x))
2738 {
2739 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2740 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2741 GET_MODE (x), code_changed);
2742 }
2743
2744 return 0;
2745
2746 /* Division by a non-constant might trap. */
2747 case DIV:
2748 case MOD:
2749 case UDIV:
2750 case UMOD:
2751 if (HONOR_SNANS (x))
2752 return 1;
2753 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2754 return flag_trapping_math;
2755 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2756 return 1;
2757 break;
2758
2759 case EXPR_LIST:
2760 /* An EXPR_LIST is used to represent a function call. This
2761 certainly may trap. */
2762 return 1;
2763
2764 case GE:
2765 case GT:
2766 case LE:
2767 case LT:
2768 case LTGT:
2769 case COMPARE:
2770 /* Some floating point comparisons may trap. */
2771 if (!flag_trapping_math)
2772 break;
2773 /* ??? There is no machine independent way to check for tests that trap
2774 when COMPARE is used, though many targets do make this distinction.
2775 For instance, sparc uses CCFPE for compares which generate exceptions
2776 and CCFP for compares which do not generate exceptions. */
2777 if (HONOR_NANS (x))
2778 return 1;
2779 /* But often the compare has some CC mode, so check operand
2780 modes as well. */
2781 if (HONOR_NANS (XEXP (x, 0))
2782 || HONOR_NANS (XEXP (x, 1)))
2783 return 1;
2784 break;
2785
2786 case EQ:
2787 case NE:
2788 if (HONOR_SNANS (x))
2789 return 1;
2790 /* Often comparison is CC mode, so check operand modes. */
2791 if (HONOR_SNANS (XEXP (x, 0))
2792 || HONOR_SNANS (XEXP (x, 1)))
2793 return 1;
2794 break;
2795
2796 case FIX:
2797 /* Conversion of floating point might trap. */
2798 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2799 return 1;
2800 break;
2801
2802 case NEG:
2803 case ABS:
2804 case SUBREG:
2805 /* These operations don't trap even with floating point. */
2806 break;
2807
2808 default:
2809 /* Any floating arithmetic may trap. */
2810 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2811 return 1;
2812 }
2813
2814 fmt = GET_RTX_FORMAT (code);
2815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2816 {
2817 if (fmt[i] == 'e')
2818 {
2819 if (may_trap_p_1 (XEXP (x, i), flags))
2820 return 1;
2821 }
2822 else if (fmt[i] == 'E')
2823 {
2824 int j;
2825 for (j = 0; j < XVECLEN (x, i); j++)
2826 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2827 return 1;
2828 }
2829 }
2830 return 0;
2831 }
2832
2833 /* Return nonzero if evaluating rtx X might cause a trap. */
2834
2835 int
2836 may_trap_p (const_rtx x)
2837 {
2838 return may_trap_p_1 (x, 0);
2839 }
2840
2841 /* Same as above, but additionally return nonzero if evaluating rtx X might
2842 cause a fault. We define a fault for the purpose of this function as a
2843 erroneous execution condition that cannot be encountered during the normal
2844 execution of a valid program; the typical example is an unaligned memory
2845 access on a strict alignment machine. The compiler guarantees that it
2846 doesn't generate code that will fault from a valid program, but this
2847 guarantee doesn't mean anything for individual instructions. Consider
2848 the following example:
2849
2850 struct S { int d; union { char *cp; int *ip; }; };
2851
2852 int foo(struct S *s)
2853 {
2854 if (s->d == 1)
2855 return *s->ip;
2856 else
2857 return *s->cp;
2858 }
2859
2860 on a strict alignment machine. In a valid program, foo will never be
2861 invoked on a structure for which d is equal to 1 and the underlying
2862 unique field of the union not aligned on a 4-byte boundary, but the
2863 expression *s->ip might cause a fault if considered individually.
2864
2865 At the RTL level, potentially problematic expressions will almost always
2866 verify may_trap_p; for example, the above dereference can be emitted as
2867 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2868 However, suppose that foo is inlined in a caller that causes s->cp to
2869 point to a local character variable and guarantees that s->d is not set
2870 to 1; foo may have been effectively translated into pseudo-RTL as:
2871
2872 if ((reg:SI) == 1)
2873 (set (reg:SI) (mem:SI (%fp - 7)))
2874 else
2875 (set (reg:QI) (mem:QI (%fp - 7)))
2876
2877 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2878 memory reference to a stack slot, but it will certainly cause a fault
2879 on a strict alignment machine. */
2880
2881 int
2882 may_trap_or_fault_p (const_rtx x)
2883 {
2884 return may_trap_p_1 (x, 1);
2885 }
2886 \f
2887 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2888 i.e., an inequality. */
2889
2890 int
2891 inequality_comparisons_p (const_rtx x)
2892 {
2893 const char *fmt;
2894 int len, i;
2895 const enum rtx_code code = GET_CODE (x);
2896
2897 switch (code)
2898 {
2899 case REG:
2900 case SCRATCH:
2901 case PC:
2902 case CC0:
2903 CASE_CONST_ANY:
2904 case CONST:
2905 case LABEL_REF:
2906 case SYMBOL_REF:
2907 return 0;
2908
2909 case LT:
2910 case LTU:
2911 case GT:
2912 case GTU:
2913 case LE:
2914 case LEU:
2915 case GE:
2916 case GEU:
2917 return 1;
2918
2919 default:
2920 break;
2921 }
2922
2923 len = GET_RTX_LENGTH (code);
2924 fmt = GET_RTX_FORMAT (code);
2925
2926 for (i = 0; i < len; i++)
2927 {
2928 if (fmt[i] == 'e')
2929 {
2930 if (inequality_comparisons_p (XEXP (x, i)))
2931 return 1;
2932 }
2933 else if (fmt[i] == 'E')
2934 {
2935 int j;
2936 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2937 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2938 return 1;
2939 }
2940 }
2941
2942 return 0;
2943 }
2944 \f
2945 /* Replace any occurrence of FROM in X with TO. The function does
2946 not enter into CONST_DOUBLE for the replace.
2947
2948 Note that copying is not done so X must not be shared unless all copies
2949 are to be modified. */
2950
2951 rtx
2952 replace_rtx (rtx x, rtx from, rtx to)
2953 {
2954 int i, j;
2955 const char *fmt;
2956
2957 if (x == from)
2958 return to;
2959
2960 /* Allow this function to make replacements in EXPR_LISTs. */
2961 if (x == 0)
2962 return 0;
2963
2964 if (GET_CODE (x) == SUBREG)
2965 {
2966 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2967
2968 if (CONST_INT_P (new_rtx))
2969 {
2970 x = simplify_subreg (GET_MODE (x), new_rtx,
2971 GET_MODE (SUBREG_REG (x)),
2972 SUBREG_BYTE (x));
2973 gcc_assert (x);
2974 }
2975 else
2976 SUBREG_REG (x) = new_rtx;
2977
2978 return x;
2979 }
2980 else if (GET_CODE (x) == ZERO_EXTEND)
2981 {
2982 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2983
2984 if (CONST_INT_P (new_rtx))
2985 {
2986 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2987 new_rtx, GET_MODE (XEXP (x, 0)));
2988 gcc_assert (x);
2989 }
2990 else
2991 XEXP (x, 0) = new_rtx;
2992
2993 return x;
2994 }
2995
2996 fmt = GET_RTX_FORMAT (GET_CODE (x));
2997 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2998 {
2999 if (fmt[i] == 'e')
3000 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
3001 else if (fmt[i] == 'E')
3002 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3003 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
3004 }
3005
3006 return x;
3007 }
3008 \f
3009 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3010 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3011
3012 void
3013 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3014 {
3015 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3016 rtx x = *loc;
3017 if (JUMP_TABLE_DATA_P (x))
3018 {
3019 x = PATTERN (x);
3020 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3021 int len = GET_NUM_ELEM (vec);
3022 for (int i = 0; i < len; ++i)
3023 {
3024 rtx ref = RTVEC_ELT (vec, i);
3025 if (XEXP (ref, 0) == old_label)
3026 {
3027 XEXP (ref, 0) = new_label;
3028 if (update_label_nuses)
3029 {
3030 ++LABEL_NUSES (new_label);
3031 --LABEL_NUSES (old_label);
3032 }
3033 }
3034 }
3035 return;
3036 }
3037
3038 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3039 field. This is not handled by the iterator because it doesn't
3040 handle unprinted ('0') fields. */
3041 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3042 JUMP_LABEL (x) = new_label;
3043
3044 subrtx_ptr_iterator::array_type array;
3045 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3046 {
3047 rtx *loc = *iter;
3048 if (rtx x = *loc)
3049 {
3050 if (GET_CODE (x) == SYMBOL_REF
3051 && CONSTANT_POOL_ADDRESS_P (x))
3052 {
3053 rtx c = get_pool_constant (x);
3054 if (rtx_referenced_p (old_label, c))
3055 {
3056 /* Create a copy of constant C; replace the label inside
3057 but do not update LABEL_NUSES because uses in constant pool
3058 are not counted. */
3059 rtx new_c = copy_rtx (c);
3060 replace_label (&new_c, old_label, new_label, false);
3061
3062 /* Add the new constant NEW_C to constant pool and replace
3063 the old reference to constant by new reference. */
3064 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3065 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3066 }
3067 }
3068
3069 if ((GET_CODE (x) == LABEL_REF
3070 || GET_CODE (x) == INSN_LIST)
3071 && XEXP (x, 0) == old_label)
3072 {
3073 XEXP (x, 0) = new_label;
3074 if (update_label_nuses)
3075 {
3076 ++LABEL_NUSES (new_label);
3077 --LABEL_NUSES (old_label);
3078 }
3079 }
3080 }
3081 }
3082 }
3083
3084 void
3085 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3086 bool update_label_nuses)
3087 {
3088 rtx insn_as_rtx = insn;
3089 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3090 gcc_checking_assert (insn_as_rtx == insn);
3091 }
3092
3093 /* Return true if X is referenced in BODY. */
3094
3095 bool
3096 rtx_referenced_p (const_rtx x, const_rtx body)
3097 {
3098 subrtx_iterator::array_type array;
3099 FOR_EACH_SUBRTX (iter, array, body, ALL)
3100 if (const_rtx y = *iter)
3101 {
3102 /* Check if a label_ref Y refers to label X. */
3103 if (GET_CODE (y) == LABEL_REF
3104 && LABEL_P (x)
3105 && LABEL_REF_LABEL (y) == x)
3106 return true;
3107
3108 if (rtx_equal_p (x, y))
3109 return true;
3110
3111 /* If Y is a reference to pool constant traverse the constant. */
3112 if (GET_CODE (y) == SYMBOL_REF
3113 && CONSTANT_POOL_ADDRESS_P (y))
3114 iter.substitute (get_pool_constant (y));
3115 }
3116 return false;
3117 }
3118
3119 /* If INSN is a tablejump return true and store the label (before jump table) to
3120 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3121
3122 bool
3123 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3124 {
3125 rtx label;
3126 rtx_insn *table;
3127
3128 if (!JUMP_P (insn))
3129 return false;
3130
3131 label = JUMP_LABEL (insn);
3132 if (label != NULL_RTX && !ANY_RETURN_P (label)
3133 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3134 && JUMP_TABLE_DATA_P (table))
3135 {
3136 if (labelp)
3137 *labelp = label;
3138 if (tablep)
3139 *tablep = as_a <rtx_jump_table_data *> (table);
3140 return true;
3141 }
3142 return false;
3143 }
3144
3145 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3146 constant that is not in the constant pool and not in the condition
3147 of an IF_THEN_ELSE. */
3148
3149 static int
3150 computed_jump_p_1 (const_rtx x)
3151 {
3152 const enum rtx_code code = GET_CODE (x);
3153 int i, j;
3154 const char *fmt;
3155
3156 switch (code)
3157 {
3158 case LABEL_REF:
3159 case PC:
3160 return 0;
3161
3162 case CONST:
3163 CASE_CONST_ANY:
3164 case SYMBOL_REF:
3165 case REG:
3166 return 1;
3167
3168 case MEM:
3169 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3170 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3171
3172 case IF_THEN_ELSE:
3173 return (computed_jump_p_1 (XEXP (x, 1))
3174 || computed_jump_p_1 (XEXP (x, 2)));
3175
3176 default:
3177 break;
3178 }
3179
3180 fmt = GET_RTX_FORMAT (code);
3181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3182 {
3183 if (fmt[i] == 'e'
3184 && computed_jump_p_1 (XEXP (x, i)))
3185 return 1;
3186
3187 else if (fmt[i] == 'E')
3188 for (j = 0; j < XVECLEN (x, i); j++)
3189 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3190 return 1;
3191 }
3192
3193 return 0;
3194 }
3195
3196 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3197
3198 Tablejumps and casesi insns are not considered indirect jumps;
3199 we can recognize them by a (use (label_ref)). */
3200
3201 int
3202 computed_jump_p (const rtx_insn *insn)
3203 {
3204 int i;
3205 if (JUMP_P (insn))
3206 {
3207 rtx pat = PATTERN (insn);
3208
3209 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3210 if (JUMP_LABEL (insn) != NULL)
3211 return 0;
3212
3213 if (GET_CODE (pat) == PARALLEL)
3214 {
3215 int len = XVECLEN (pat, 0);
3216 int has_use_labelref = 0;
3217
3218 for (i = len - 1; i >= 0; i--)
3219 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3220 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3221 == LABEL_REF))
3222 {
3223 has_use_labelref = 1;
3224 break;
3225 }
3226
3227 if (! has_use_labelref)
3228 for (i = len - 1; i >= 0; i--)
3229 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3230 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3231 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3232 return 1;
3233 }
3234 else if (GET_CODE (pat) == SET
3235 && SET_DEST (pat) == pc_rtx
3236 && computed_jump_p_1 (SET_SRC (pat)))
3237 return 1;
3238 }
3239 return 0;
3240 }
3241
3242 \f
3243
3244 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3245 the equivalent add insn and pass the result to FN, using DATA as the
3246 final argument. */
3247
3248 static int
3249 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3250 {
3251 rtx x = XEXP (mem, 0);
3252 switch (GET_CODE (x))
3253 {
3254 case PRE_INC:
3255 case POST_INC:
3256 {
3257 int size = GET_MODE_SIZE (GET_MODE (mem));
3258 rtx r1 = XEXP (x, 0);
3259 rtx c = gen_int_mode (size, GET_MODE (r1));
3260 return fn (mem, x, r1, r1, c, data);
3261 }
3262
3263 case PRE_DEC:
3264 case POST_DEC:
3265 {
3266 int size = GET_MODE_SIZE (GET_MODE (mem));
3267 rtx r1 = XEXP (x, 0);
3268 rtx c = gen_int_mode (-size, GET_MODE (r1));
3269 return fn (mem, x, r1, r1, c, data);
3270 }
3271
3272 case PRE_MODIFY:
3273 case POST_MODIFY:
3274 {
3275 rtx r1 = XEXP (x, 0);
3276 rtx add = XEXP (x, 1);
3277 return fn (mem, x, r1, add, NULL, data);
3278 }
3279
3280 default:
3281 gcc_unreachable ();
3282 }
3283 }
3284
3285 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3286 For each such autoinc operation found, call FN, passing it
3287 the innermost enclosing MEM, the operation itself, the RTX modified
3288 by the operation, two RTXs (the second may be NULL) that, once
3289 added, represent the value to be held by the modified RTX
3290 afterwards, and DATA. FN is to return 0 to continue the
3291 traversal or any other value to have it returned to the caller of
3292 for_each_inc_dec. */
3293
3294 int
3295 for_each_inc_dec (rtx x,
3296 for_each_inc_dec_fn fn,
3297 void *data)
3298 {
3299 subrtx_var_iterator::array_type array;
3300 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3301 {
3302 rtx mem = *iter;
3303 if (mem
3304 && MEM_P (mem)
3305 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3306 {
3307 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3308 if (res != 0)
3309 return res;
3310 iter.skip_subrtxes ();
3311 }
3312 }
3313 return 0;
3314 }
3315
3316 \f
3317 /* Searches X for any reference to REGNO, returning the rtx of the
3318 reference found if any. Otherwise, returns NULL_RTX. */
3319
3320 rtx
3321 regno_use_in (unsigned int regno, rtx x)
3322 {
3323 const char *fmt;
3324 int i, j;
3325 rtx tem;
3326
3327 if (REG_P (x) && REGNO (x) == regno)
3328 return x;
3329
3330 fmt = GET_RTX_FORMAT (GET_CODE (x));
3331 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3332 {
3333 if (fmt[i] == 'e')
3334 {
3335 if ((tem = regno_use_in (regno, XEXP (x, i))))
3336 return tem;
3337 }
3338 else if (fmt[i] == 'E')
3339 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3340 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3341 return tem;
3342 }
3343
3344 return NULL_RTX;
3345 }
3346
3347 /* Return a value indicating whether OP, an operand of a commutative
3348 operation, is preferred as the first or second operand. The more
3349 positive the value, the stronger the preference for being the first
3350 operand. */
3351
3352 int
3353 commutative_operand_precedence (rtx op)
3354 {
3355 enum rtx_code code = GET_CODE (op);
3356
3357 /* Constants always become the second operand. Prefer "nice" constants. */
3358 if (code == CONST_INT)
3359 return -8;
3360 if (code == CONST_WIDE_INT)
3361 return -8;
3362 if (code == CONST_DOUBLE)
3363 return -7;
3364 if (code == CONST_FIXED)
3365 return -7;
3366 op = avoid_constant_pool_reference (op);
3367 code = GET_CODE (op);
3368
3369 switch (GET_RTX_CLASS (code))
3370 {
3371 case RTX_CONST_OBJ:
3372 if (code == CONST_INT)
3373 return -6;
3374 if (code == CONST_WIDE_INT)
3375 return -6;
3376 if (code == CONST_DOUBLE)
3377 return -5;
3378 if (code == CONST_FIXED)
3379 return -5;
3380 return -4;
3381
3382 case RTX_EXTRA:
3383 /* SUBREGs of objects should come second. */
3384 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3385 return -3;
3386 return 0;
3387
3388 case RTX_OBJ:
3389 /* Complex expressions should be the first, so decrease priority
3390 of objects. Prefer pointer objects over non pointer objects. */
3391 if ((REG_P (op) && REG_POINTER (op))
3392 || (MEM_P (op) && MEM_POINTER (op)))
3393 return -1;
3394 return -2;
3395
3396 case RTX_COMM_ARITH:
3397 /* Prefer operands that are themselves commutative to be first.
3398 This helps to make things linear. In particular,
3399 (and (and (reg) (reg)) (not (reg))) is canonical. */
3400 return 4;
3401
3402 case RTX_BIN_ARITH:
3403 /* If only one operand is a binary expression, it will be the first
3404 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3405 is canonical, although it will usually be further simplified. */
3406 return 2;
3407
3408 case RTX_UNARY:
3409 /* Then prefer NEG and NOT. */
3410 if (code == NEG || code == NOT)
3411 return 1;
3412
3413 default:
3414 return 0;
3415 }
3416 }
3417
3418 /* Return 1 iff it is necessary to swap operands of commutative operation
3419 in order to canonicalize expression. */
3420
3421 bool
3422 swap_commutative_operands_p (rtx x, rtx y)
3423 {
3424 return (commutative_operand_precedence (x)
3425 < commutative_operand_precedence (y));
3426 }
3427
3428 /* Return 1 if X is an autoincrement side effect and the register is
3429 not the stack pointer. */
3430 int
3431 auto_inc_p (const_rtx x)
3432 {
3433 switch (GET_CODE (x))
3434 {
3435 case PRE_INC:
3436 case POST_INC:
3437 case PRE_DEC:
3438 case POST_DEC:
3439 case PRE_MODIFY:
3440 case POST_MODIFY:
3441 /* There are no REG_INC notes for SP. */
3442 if (XEXP (x, 0) != stack_pointer_rtx)
3443 return 1;
3444 default:
3445 break;
3446 }
3447 return 0;
3448 }
3449
3450 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3451 int
3452 loc_mentioned_in_p (rtx *loc, const_rtx in)
3453 {
3454 enum rtx_code code;
3455 const char *fmt;
3456 int i, j;
3457
3458 if (!in)
3459 return 0;
3460
3461 code = GET_CODE (in);
3462 fmt = GET_RTX_FORMAT (code);
3463 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3464 {
3465 if (fmt[i] == 'e')
3466 {
3467 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3468 return 1;
3469 }
3470 else if (fmt[i] == 'E')
3471 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3472 if (loc == &XVECEXP (in, i, j)
3473 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3474 return 1;
3475 }
3476 return 0;
3477 }
3478
3479 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3480 and SUBREG_BYTE, return the bit offset where the subreg begins
3481 (counting from the least significant bit of the operand). */
3482
3483 unsigned int
3484 subreg_lsb_1 (machine_mode outer_mode,
3485 machine_mode inner_mode,
3486 unsigned int subreg_byte)
3487 {
3488 unsigned int bitpos;
3489 unsigned int byte;
3490 unsigned int word;
3491
3492 /* A paradoxical subreg begins at bit position 0. */
3493 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3494 return 0;
3495
3496 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3497 /* If the subreg crosses a word boundary ensure that
3498 it also begins and ends on a word boundary. */
3499 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3500 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3501 && (subreg_byte % UNITS_PER_WORD
3502 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3503
3504 if (WORDS_BIG_ENDIAN)
3505 word = (GET_MODE_SIZE (inner_mode)
3506 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3507 else
3508 word = subreg_byte / UNITS_PER_WORD;
3509 bitpos = word * BITS_PER_WORD;
3510
3511 if (BYTES_BIG_ENDIAN)
3512 byte = (GET_MODE_SIZE (inner_mode)
3513 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3514 else
3515 byte = subreg_byte % UNITS_PER_WORD;
3516 bitpos += byte * BITS_PER_UNIT;
3517
3518 return bitpos;
3519 }
3520
3521 /* Given a subreg X, return the bit offset where the subreg begins
3522 (counting from the least significant bit of the reg). */
3523
3524 unsigned int
3525 subreg_lsb (const_rtx x)
3526 {
3527 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3528 SUBREG_BYTE (x));
3529 }
3530
3531 /* Fill in information about a subreg of a hard register.
3532 xregno - A regno of an inner hard subreg_reg (or what will become one).
3533 xmode - The mode of xregno.
3534 offset - The byte offset.
3535 ymode - The mode of a top level SUBREG (or what may become one).
3536 info - Pointer to structure to fill in.
3537
3538 Rather than considering one particular inner register (and thus one
3539 particular "outer" register) in isolation, this function really uses
3540 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3541 function does not check whether adding INFO->offset to XREGNO gives
3542 a valid hard register; even if INFO->offset + XREGNO is out of range,
3543 there might be another register of the same type that is in range.
3544 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3545 register, since that can depend on things like whether the final
3546 register number is even or odd. Callers that want to check whether
3547 this particular subreg can be replaced by a simple (reg ...) should
3548 use simplify_subreg_regno. */
3549
3550 void
3551 subreg_get_info (unsigned int xregno, machine_mode xmode,
3552 unsigned int offset, machine_mode ymode,
3553 struct subreg_info *info)
3554 {
3555 int nregs_xmode, nregs_ymode;
3556 int mode_multiple, nregs_multiple;
3557 int offset_adj, y_offset, y_offset_adj;
3558 int regsize_xmode, regsize_ymode;
3559 bool rknown;
3560
3561 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3562
3563 rknown = false;
3564
3565 /* If there are holes in a non-scalar mode in registers, we expect
3566 that it is made up of its units concatenated together. */
3567 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3568 {
3569 machine_mode xmode_unit;
3570
3571 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3572 xmode_unit = GET_MODE_INNER (xmode);
3573 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3574 gcc_assert (nregs_xmode
3575 == (GET_MODE_NUNITS (xmode)
3576 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3577 gcc_assert (hard_regno_nregs[xregno][xmode]
3578 == (hard_regno_nregs[xregno][xmode_unit]
3579 * GET_MODE_NUNITS (xmode)));
3580
3581 /* You can only ask for a SUBREG of a value with holes in the middle
3582 if you don't cross the holes. (Such a SUBREG should be done by
3583 picking a different register class, or doing it in memory if
3584 necessary.) An example of a value with holes is XCmode on 32-bit
3585 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3586 3 for each part, but in memory it's two 128-bit parts.
3587 Padding is assumed to be at the end (not necessarily the 'high part')
3588 of each unit. */
3589 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3590 < GET_MODE_NUNITS (xmode))
3591 && (offset / GET_MODE_SIZE (xmode_unit)
3592 != ((offset + GET_MODE_SIZE (ymode) - 1)
3593 / GET_MODE_SIZE (xmode_unit))))
3594 {
3595 info->representable_p = false;
3596 rknown = true;
3597 }
3598 }
3599 else
3600 nregs_xmode = hard_regno_nregs[xregno][xmode];
3601
3602 nregs_ymode = hard_regno_nregs[xregno][ymode];
3603
3604 /* Paradoxical subregs are otherwise valid. */
3605 if (!rknown
3606 && offset == 0
3607 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3608 {
3609 info->representable_p = true;
3610 /* If this is a big endian paradoxical subreg, which uses more
3611 actual hard registers than the original register, we must
3612 return a negative offset so that we find the proper highpart
3613 of the register. */
3614 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3615 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3616 info->offset = nregs_xmode - nregs_ymode;
3617 else
3618 info->offset = 0;
3619 info->nregs = nregs_ymode;
3620 return;
3621 }
3622
3623 /* If registers store different numbers of bits in the different
3624 modes, we cannot generally form this subreg. */
3625 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3626 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3627 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3628 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3629 {
3630 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3631 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3632 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3633 {
3634 info->representable_p = false;
3635 info->nregs
3636 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3637 info->offset = offset / regsize_xmode;
3638 return;
3639 }
3640 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3641 {
3642 info->representable_p = false;
3643 info->nregs
3644 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3645 info->offset = offset / regsize_xmode;
3646 return;
3647 }
3648 /* Quick exit for the simple and common case of extracting whole
3649 subregisters from a multiregister value. */
3650 /* ??? It would be better to integrate this into the code below,
3651 if we can generalize the concept enough and figure out how
3652 odd-sized modes can coexist with the other weird cases we support. */
3653 if (!rknown
3654 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3655 && regsize_xmode == regsize_ymode
3656 && (offset % regsize_ymode) == 0)
3657 {
3658 info->representable_p = true;
3659 info->nregs = nregs_ymode;
3660 info->offset = offset / regsize_ymode;
3661 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3662 return;
3663 }
3664 }
3665
3666 /* Lowpart subregs are otherwise valid. */
3667 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3668 {
3669 info->representable_p = true;
3670 rknown = true;
3671
3672 if (offset == 0 || nregs_xmode == nregs_ymode)
3673 {
3674 info->offset = 0;
3675 info->nregs = nregs_ymode;
3676 return;
3677 }
3678 }
3679
3680 /* This should always pass, otherwise we don't know how to verify
3681 the constraint. These conditions may be relaxed but
3682 subreg_regno_offset would need to be redesigned. */
3683 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3684 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3685
3686 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3687 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3688 {
3689 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3690 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3691 HOST_WIDE_INT off_low = offset & (ysize - 1);
3692 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3693 offset = (xsize - ysize - off_high) | off_low;
3694 }
3695 /* The XMODE value can be seen as a vector of NREGS_XMODE
3696 values. The subreg must represent a lowpart of given field.
3697 Compute what field it is. */
3698 offset_adj = offset;
3699 offset_adj -= subreg_lowpart_offset (ymode,
3700 mode_for_size (GET_MODE_BITSIZE (xmode)
3701 / nregs_xmode,
3702 MODE_INT, 0));
3703
3704 /* Size of ymode must not be greater than the size of xmode. */
3705 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3706 gcc_assert (mode_multiple != 0);
3707
3708 y_offset = offset / GET_MODE_SIZE (ymode);
3709 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3710 nregs_multiple = nregs_xmode / nregs_ymode;
3711
3712 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3713 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3714
3715 if (!rknown)
3716 {
3717 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3718 rknown = true;
3719 }
3720 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3721 info->nregs = nregs_ymode;
3722 }
3723
3724 /* This function returns the regno offset of a subreg expression.
3725 xregno - A regno of an inner hard subreg_reg (or what will become one).
3726 xmode - The mode of xregno.
3727 offset - The byte offset.
3728 ymode - The mode of a top level SUBREG (or what may become one).
3729 RETURN - The regno offset which would be used. */
3730 unsigned int
3731 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3732 unsigned int offset, machine_mode ymode)
3733 {
3734 struct subreg_info info;
3735 subreg_get_info (xregno, xmode, offset, ymode, &info);
3736 return info.offset;
3737 }
3738
3739 /* This function returns true when the offset is representable via
3740 subreg_offset in the given regno.
3741 xregno - A regno of an inner hard subreg_reg (or what will become one).
3742 xmode - The mode of xregno.
3743 offset - The byte offset.
3744 ymode - The mode of a top level SUBREG (or what may become one).
3745 RETURN - Whether the offset is representable. */
3746 bool
3747 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3748 unsigned int offset, machine_mode ymode)
3749 {
3750 struct subreg_info info;
3751 subreg_get_info (xregno, xmode, offset, ymode, &info);
3752 return info.representable_p;
3753 }
3754
3755 /* Return the number of a YMODE register to which
3756
3757 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3758
3759 can be simplified. Return -1 if the subreg can't be simplified.
3760
3761 XREGNO is a hard register number. */
3762
3763 int
3764 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3765 unsigned int offset, machine_mode ymode)
3766 {
3767 struct subreg_info info;
3768 unsigned int yregno;
3769
3770 #ifdef CANNOT_CHANGE_MODE_CLASS
3771 /* Give the backend a chance to disallow the mode change. */
3772 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3773 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3774 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3775 /* We can use mode change in LRA for some transformations. */
3776 && ! lra_in_progress)
3777 return -1;
3778 #endif
3779
3780 /* We shouldn't simplify stack-related registers. */
3781 if ((!reload_completed || frame_pointer_needed)
3782 && xregno == FRAME_POINTER_REGNUM)
3783 return -1;
3784
3785 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3786 && xregno == ARG_POINTER_REGNUM)
3787 return -1;
3788
3789 if (xregno == STACK_POINTER_REGNUM
3790 /* We should convert hard stack register in LRA if it is
3791 possible. */
3792 && ! lra_in_progress)
3793 return -1;
3794
3795 /* Try to get the register offset. */
3796 subreg_get_info (xregno, xmode, offset, ymode, &info);
3797 if (!info.representable_p)
3798 return -1;
3799
3800 /* Make sure that the offsetted register value is in range. */
3801 yregno = xregno + info.offset;
3802 if (!HARD_REGISTER_NUM_P (yregno))
3803 return -1;
3804
3805 /* See whether (reg:YMODE YREGNO) is valid.
3806
3807 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3808 This is a kludge to work around how complex FP arguments are passed
3809 on IA-64 and should be fixed. See PR target/49226. */
3810 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3811 && HARD_REGNO_MODE_OK (xregno, xmode))
3812 return -1;
3813
3814 return (int) yregno;
3815 }
3816
3817 /* Return the final regno that a subreg expression refers to. */
3818 unsigned int
3819 subreg_regno (const_rtx x)
3820 {
3821 unsigned int ret;
3822 rtx subreg = SUBREG_REG (x);
3823 int regno = REGNO (subreg);
3824
3825 ret = regno + subreg_regno_offset (regno,
3826 GET_MODE (subreg),
3827 SUBREG_BYTE (x),
3828 GET_MODE (x));
3829 return ret;
3830
3831 }
3832
3833 /* Return the number of registers that a subreg expression refers
3834 to. */
3835 unsigned int
3836 subreg_nregs (const_rtx x)
3837 {
3838 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3839 }
3840
3841 /* Return the number of registers that a subreg REG with REGNO
3842 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3843 changed so that the regno can be passed in. */
3844
3845 unsigned int
3846 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3847 {
3848 struct subreg_info info;
3849 rtx subreg = SUBREG_REG (x);
3850
3851 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3852 &info);
3853 return info.nregs;
3854 }
3855
3856
3857 struct parms_set_data
3858 {
3859 int nregs;
3860 HARD_REG_SET regs;
3861 };
3862
3863 /* Helper function for noticing stores to parameter registers. */
3864 static void
3865 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3866 {
3867 struct parms_set_data *const d = (struct parms_set_data *) data;
3868 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3869 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3870 {
3871 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3872 d->nregs--;
3873 }
3874 }
3875
3876 /* Look backward for first parameter to be loaded.
3877 Note that loads of all parameters will not necessarily be
3878 found if CSE has eliminated some of them (e.g., an argument
3879 to the outer function is passed down as a parameter).
3880 Do not skip BOUNDARY. */
3881 rtx_insn *
3882 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3883 {
3884 struct parms_set_data parm;
3885 rtx p;
3886 rtx_insn *before, *first_set;
3887
3888 /* Since different machines initialize their parameter registers
3889 in different orders, assume nothing. Collect the set of all
3890 parameter registers. */
3891 CLEAR_HARD_REG_SET (parm.regs);
3892 parm.nregs = 0;
3893 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3894 if (GET_CODE (XEXP (p, 0)) == USE
3895 && REG_P (XEXP (XEXP (p, 0), 0)))
3896 {
3897 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3898
3899 /* We only care about registers which can hold function
3900 arguments. */
3901 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3902 continue;
3903
3904 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3905 parm.nregs++;
3906 }
3907 before = call_insn;
3908 first_set = call_insn;
3909
3910 /* Search backward for the first set of a register in this set. */
3911 while (parm.nregs && before != boundary)
3912 {
3913 before = PREV_INSN (before);
3914
3915 /* It is possible that some loads got CSEed from one call to
3916 another. Stop in that case. */
3917 if (CALL_P (before))
3918 break;
3919
3920 /* Our caller needs either ensure that we will find all sets
3921 (in case code has not been optimized yet), or take care
3922 for possible labels in a way by setting boundary to preceding
3923 CODE_LABEL. */
3924 if (LABEL_P (before))
3925 {
3926 gcc_assert (before == boundary);
3927 break;
3928 }
3929
3930 if (INSN_P (before))
3931 {
3932 int nregs_old = parm.nregs;
3933 note_stores (PATTERN (before), parms_set, &parm);
3934 /* If we found something that did not set a parameter reg,
3935 we're done. Do not keep going, as that might result
3936 in hoisting an insn before the setting of a pseudo
3937 that is used by the hoisted insn. */
3938 if (nregs_old != parm.nregs)
3939 first_set = before;
3940 else
3941 break;
3942 }
3943 }
3944 return first_set;
3945 }
3946
3947 /* Return true if we should avoid inserting code between INSN and preceding
3948 call instruction. */
3949
3950 bool
3951 keep_with_call_p (const rtx_insn *insn)
3952 {
3953 rtx set;
3954
3955 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3956 {
3957 if (REG_P (SET_DEST (set))
3958 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3959 && fixed_regs[REGNO (SET_DEST (set))]
3960 && general_operand (SET_SRC (set), VOIDmode))
3961 return true;
3962 if (REG_P (SET_SRC (set))
3963 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3964 && REG_P (SET_DEST (set))
3965 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3966 return true;
3967 /* There may be a stack pop just after the call and before the store
3968 of the return register. Search for the actual store when deciding
3969 if we can break or not. */
3970 if (SET_DEST (set) == stack_pointer_rtx)
3971 {
3972 /* This CONST_CAST is okay because next_nonnote_insn just
3973 returns its argument and we assign it to a const_rtx
3974 variable. */
3975 const rtx_insn *i2
3976 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3977 if (i2 && keep_with_call_p (i2))
3978 return true;
3979 }
3980 }
3981 return false;
3982 }
3983
3984 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3985 to non-complex jumps. That is, direct unconditional, conditional,
3986 and tablejumps, but not computed jumps or returns. It also does
3987 not apply to the fallthru case of a conditional jump. */
3988
3989 bool
3990 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3991 {
3992 rtx tmp = JUMP_LABEL (jump_insn);
3993 rtx_jump_table_data *table;
3994
3995 if (label == tmp)
3996 return true;
3997
3998 if (tablejump_p (jump_insn, NULL, &table))
3999 {
4000 rtvec vec = table->get_labels ();
4001 int i, veclen = GET_NUM_ELEM (vec);
4002
4003 for (i = 0; i < veclen; ++i)
4004 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4005 return true;
4006 }
4007
4008 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4009 return true;
4010
4011 return false;
4012 }
4013
4014 \f
4015 /* Return an estimate of the cost of computing rtx X.
4016 One use is in cse, to decide which expression to keep in the hash table.
4017 Another is in rtl generation, to pick the cheapest way to multiply.
4018 Other uses like the latter are expected in the future.
4019
4020 X appears as operand OPNO in an expression with code OUTER_CODE.
4021 SPEED specifies whether costs optimized for speed or size should
4022 be returned. */
4023
4024 int
4025 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4026 int opno, bool speed)
4027 {
4028 int i, j;
4029 enum rtx_code code;
4030 const char *fmt;
4031 int total;
4032 int factor;
4033
4034 if (x == 0)
4035 return 0;
4036
4037 if (GET_MODE (x) != VOIDmode)
4038 mode = GET_MODE (x);
4039
4040 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4041 many insns, taking N times as long. */
4042 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4043 if (factor == 0)
4044 factor = 1;
4045
4046 /* Compute the default costs of certain things.
4047 Note that targetm.rtx_costs can override the defaults. */
4048
4049 code = GET_CODE (x);
4050 switch (code)
4051 {
4052 case MULT:
4053 /* Multiplication has time-complexity O(N*N), where N is the
4054 number of units (translated from digits) when using
4055 schoolbook long multiplication. */
4056 total = factor * factor * COSTS_N_INSNS (5);
4057 break;
4058 case DIV:
4059 case UDIV:
4060 case MOD:
4061 case UMOD:
4062 /* Similarly, complexity for schoolbook long division. */
4063 total = factor * factor * COSTS_N_INSNS (7);
4064 break;
4065 case USE:
4066 /* Used in combine.c as a marker. */
4067 total = 0;
4068 break;
4069 case SET:
4070 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4071 the mode for the factor. */
4072 mode = GET_MODE (SET_DEST (x));
4073 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4074 if (factor == 0)
4075 factor = 1;
4076 /* Pass through. */
4077 default:
4078 total = factor * COSTS_N_INSNS (1);
4079 }
4080
4081 switch (code)
4082 {
4083 case REG:
4084 return 0;
4085
4086 case SUBREG:
4087 total = 0;
4088 /* If we can't tie these modes, make this expensive. The larger
4089 the mode, the more expensive it is. */
4090 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4091 return COSTS_N_INSNS (2 + factor);
4092 break;
4093
4094 default:
4095 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4096 return total;
4097 break;
4098 }
4099
4100 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4101 which is already in total. */
4102
4103 fmt = GET_RTX_FORMAT (code);
4104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4105 if (fmt[i] == 'e')
4106 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4107 else if (fmt[i] == 'E')
4108 for (j = 0; j < XVECLEN (x, i); j++)
4109 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4110
4111 return total;
4112 }
4113
4114 /* Fill in the structure C with information about both speed and size rtx
4115 costs for X, which is operand OPNO in an expression with code OUTER. */
4116
4117 void
4118 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4119 struct full_rtx_costs *c)
4120 {
4121 c->speed = rtx_cost (x, mode, outer, opno, true);
4122 c->size = rtx_cost (x, mode, outer, opno, false);
4123 }
4124
4125 \f
4126 /* Return cost of address expression X.
4127 Expect that X is properly formed address reference.
4128
4129 SPEED parameter specify whether costs optimized for speed or size should
4130 be returned. */
4131
4132 int
4133 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4134 {
4135 /* We may be asked for cost of various unusual addresses, such as operands
4136 of push instruction. It is not worthwhile to complicate writing
4137 of the target hook by such cases. */
4138
4139 if (!memory_address_addr_space_p (mode, x, as))
4140 return 1000;
4141
4142 return targetm.address_cost (x, mode, as, speed);
4143 }
4144
4145 /* If the target doesn't override, compute the cost as with arithmetic. */
4146
4147 int
4148 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4149 {
4150 return rtx_cost (x, Pmode, MEM, 0, speed);
4151 }
4152 \f
4153
4154 unsigned HOST_WIDE_INT
4155 nonzero_bits (const_rtx x, machine_mode mode)
4156 {
4157 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4158 }
4159
4160 unsigned int
4161 num_sign_bit_copies (const_rtx x, machine_mode mode)
4162 {
4163 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4164 }
4165
4166 /* Return true if nonzero_bits1 might recurse into both operands
4167 of X. */
4168
4169 static inline bool
4170 nonzero_bits_binary_arith_p (const_rtx x)
4171 {
4172 if (!ARITHMETIC_P (x))
4173 return false;
4174 switch (GET_CODE (x))
4175 {
4176 case AND:
4177 case XOR:
4178 case IOR:
4179 case UMIN:
4180 case UMAX:
4181 case SMIN:
4182 case SMAX:
4183 case PLUS:
4184 case MINUS:
4185 case MULT:
4186 case DIV:
4187 case UDIV:
4188 case MOD:
4189 case UMOD:
4190 return true;
4191 default:
4192 return false;
4193 }
4194 }
4195
4196 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4197 It avoids exponential behavior in nonzero_bits1 when X has
4198 identical subexpressions on the first or the second level. */
4199
4200 static unsigned HOST_WIDE_INT
4201 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4202 machine_mode known_mode,
4203 unsigned HOST_WIDE_INT known_ret)
4204 {
4205 if (x == known_x && mode == known_mode)
4206 return known_ret;
4207
4208 /* Try to find identical subexpressions. If found call
4209 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4210 precomputed value for the subexpression as KNOWN_RET. */
4211
4212 if (nonzero_bits_binary_arith_p (x))
4213 {
4214 rtx x0 = XEXP (x, 0);
4215 rtx x1 = XEXP (x, 1);
4216
4217 /* Check the first level. */
4218 if (x0 == x1)
4219 return nonzero_bits1 (x, mode, x0, mode,
4220 cached_nonzero_bits (x0, mode, known_x,
4221 known_mode, known_ret));
4222
4223 /* Check the second level. */
4224 if (nonzero_bits_binary_arith_p (x0)
4225 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4226 return nonzero_bits1 (x, mode, x1, mode,
4227 cached_nonzero_bits (x1, mode, known_x,
4228 known_mode, known_ret));
4229
4230 if (nonzero_bits_binary_arith_p (x1)
4231 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4232 return nonzero_bits1 (x, mode, x0, mode,
4233 cached_nonzero_bits (x0, mode, known_x,
4234 known_mode, known_ret));
4235 }
4236
4237 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4238 }
4239
4240 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4241 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4242 is less useful. We can't allow both, because that results in exponential
4243 run time recursion. There is a nullstone testcase that triggered
4244 this. This macro avoids accidental uses of num_sign_bit_copies. */
4245 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4246
4247 /* Given an expression, X, compute which bits in X can be nonzero.
4248 We don't care about bits outside of those defined in MODE.
4249
4250 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4251 an arithmetic operation, we can do better. */
4252
4253 static unsigned HOST_WIDE_INT
4254 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4255 machine_mode known_mode,
4256 unsigned HOST_WIDE_INT known_ret)
4257 {
4258 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4259 unsigned HOST_WIDE_INT inner_nz;
4260 enum rtx_code code;
4261 machine_mode inner_mode;
4262 unsigned int mode_width = GET_MODE_PRECISION (mode);
4263
4264 /* For floating-point and vector values, assume all bits are needed. */
4265 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4266 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4267 return nonzero;
4268
4269 /* If X is wider than MODE, use its mode instead. */
4270 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4271 {
4272 mode = GET_MODE (x);
4273 nonzero = GET_MODE_MASK (mode);
4274 mode_width = GET_MODE_PRECISION (mode);
4275 }
4276
4277 if (mode_width > HOST_BITS_PER_WIDE_INT)
4278 /* Our only callers in this case look for single bit values. So
4279 just return the mode mask. Those tests will then be false. */
4280 return nonzero;
4281
4282 /* If MODE is wider than X, but both are a single word for both the host
4283 and target machines, we can compute this from which bits of the
4284 object might be nonzero in its own mode, taking into account the fact
4285 that on many CISC machines, accessing an object in a wider mode
4286 causes the high-order bits to become undefined. So they are
4287 not known to be zero. */
4288
4289 if (!WORD_REGISTER_OPERATIONS
4290 && GET_MODE (x) != VOIDmode
4291 && GET_MODE (x) != mode
4292 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4293 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4294 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4295 {
4296 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4297 known_x, known_mode, known_ret);
4298 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4299 return nonzero;
4300 }
4301
4302 /* Please keep nonzero_bits_binary_arith_p above in sync with
4303 the code in the switch below. */
4304 code = GET_CODE (x);
4305 switch (code)
4306 {
4307 case REG:
4308 #if defined(POINTERS_EXTEND_UNSIGNED)
4309 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4310 all the bits above ptr_mode are known to be zero. */
4311 /* As we do not know which address space the pointer is referring to,
4312 we can do this only if the target does not support different pointer
4313 or address modes depending on the address space. */
4314 if (target_default_pointer_address_modes_p ()
4315 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4316 && REG_POINTER (x)
4317 && !targetm.have_ptr_extend ())
4318 nonzero &= GET_MODE_MASK (ptr_mode);
4319 #endif
4320
4321 /* Include declared information about alignment of pointers. */
4322 /* ??? We don't properly preserve REG_POINTER changes across
4323 pointer-to-integer casts, so we can't trust it except for
4324 things that we know must be pointers. See execute/960116-1.c. */
4325 if ((x == stack_pointer_rtx
4326 || x == frame_pointer_rtx
4327 || x == arg_pointer_rtx)
4328 && REGNO_POINTER_ALIGN (REGNO (x)))
4329 {
4330 unsigned HOST_WIDE_INT alignment
4331 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4332
4333 #ifdef PUSH_ROUNDING
4334 /* If PUSH_ROUNDING is defined, it is possible for the
4335 stack to be momentarily aligned only to that amount,
4336 so we pick the least alignment. */
4337 if (x == stack_pointer_rtx && PUSH_ARGS)
4338 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4339 alignment);
4340 #endif
4341
4342 nonzero &= ~(alignment - 1);
4343 }
4344
4345 {
4346 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4347 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4348 known_mode, known_ret,
4349 &nonzero_for_hook);
4350
4351 if (new_rtx)
4352 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4353 known_mode, known_ret);
4354
4355 return nonzero_for_hook;
4356 }
4357
4358 case CONST_INT:
4359 /* If X is negative in MODE, sign-extend the value. */
4360 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4361 && mode_width < BITS_PER_WORD
4362 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4363 != 0)
4364 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4365
4366 return UINTVAL (x);
4367
4368 case MEM:
4369 #ifdef LOAD_EXTEND_OP
4370 /* In many, if not most, RISC machines, reading a byte from memory
4371 zeros the rest of the register. Noticing that fact saves a lot
4372 of extra zero-extends. */
4373 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4374 nonzero &= GET_MODE_MASK (GET_MODE (x));
4375 #endif
4376 break;
4377
4378 case EQ: case NE:
4379 case UNEQ: case LTGT:
4380 case GT: case GTU: case UNGT:
4381 case LT: case LTU: case UNLT:
4382 case GE: case GEU: case UNGE:
4383 case LE: case LEU: case UNLE:
4384 case UNORDERED: case ORDERED:
4385 /* If this produces an integer result, we know which bits are set.
4386 Code here used to clear bits outside the mode of X, but that is
4387 now done above. */
4388 /* Mind that MODE is the mode the caller wants to look at this
4389 operation in, and not the actual operation mode. We can wind
4390 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4391 that describes the results of a vector compare. */
4392 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4393 && mode_width <= HOST_BITS_PER_WIDE_INT)
4394 nonzero = STORE_FLAG_VALUE;
4395 break;
4396
4397 case NEG:
4398 #if 0
4399 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4400 and num_sign_bit_copies. */
4401 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4402 == GET_MODE_PRECISION (GET_MODE (x)))
4403 nonzero = 1;
4404 #endif
4405
4406 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4407 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4408 break;
4409
4410 case ABS:
4411 #if 0
4412 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4413 and num_sign_bit_copies. */
4414 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4415 == GET_MODE_PRECISION (GET_MODE (x)))
4416 nonzero = 1;
4417 #endif
4418 break;
4419
4420 case TRUNCATE:
4421 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4422 known_x, known_mode, known_ret)
4423 & GET_MODE_MASK (mode));
4424 break;
4425
4426 case ZERO_EXTEND:
4427 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4428 known_x, known_mode, known_ret);
4429 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4430 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4431 break;
4432
4433 case SIGN_EXTEND:
4434 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4435 Otherwise, show all the bits in the outer mode but not the inner
4436 may be nonzero. */
4437 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4438 known_x, known_mode, known_ret);
4439 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4440 {
4441 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4442 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4443 inner_nz |= (GET_MODE_MASK (mode)
4444 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4445 }
4446
4447 nonzero &= inner_nz;
4448 break;
4449
4450 case AND:
4451 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4452 known_x, known_mode, known_ret)
4453 & cached_nonzero_bits (XEXP (x, 1), mode,
4454 known_x, known_mode, known_ret);
4455 break;
4456
4457 case XOR: case IOR:
4458 case UMIN: case UMAX: case SMIN: case SMAX:
4459 {
4460 unsigned HOST_WIDE_INT nonzero0
4461 = cached_nonzero_bits (XEXP (x, 0), mode,
4462 known_x, known_mode, known_ret);
4463
4464 /* Don't call nonzero_bits for the second time if it cannot change
4465 anything. */
4466 if ((nonzero & nonzero0) != nonzero)
4467 nonzero &= nonzero0
4468 | cached_nonzero_bits (XEXP (x, 1), mode,
4469 known_x, known_mode, known_ret);
4470 }
4471 break;
4472
4473 case PLUS: case MINUS:
4474 case MULT:
4475 case DIV: case UDIV:
4476 case MOD: case UMOD:
4477 /* We can apply the rules of arithmetic to compute the number of
4478 high- and low-order zero bits of these operations. We start by
4479 computing the width (position of the highest-order nonzero bit)
4480 and the number of low-order zero bits for each value. */
4481 {
4482 unsigned HOST_WIDE_INT nz0
4483 = cached_nonzero_bits (XEXP (x, 0), mode,
4484 known_x, known_mode, known_ret);
4485 unsigned HOST_WIDE_INT nz1
4486 = cached_nonzero_bits (XEXP (x, 1), mode,
4487 known_x, known_mode, known_ret);
4488 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4489 int width0 = floor_log2 (nz0) + 1;
4490 int width1 = floor_log2 (nz1) + 1;
4491 int low0 = floor_log2 (nz0 & -nz0);
4492 int low1 = floor_log2 (nz1 & -nz1);
4493 unsigned HOST_WIDE_INT op0_maybe_minusp
4494 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4495 unsigned HOST_WIDE_INT op1_maybe_minusp
4496 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4497 unsigned int result_width = mode_width;
4498 int result_low = 0;
4499
4500 switch (code)
4501 {
4502 case PLUS:
4503 result_width = MAX (width0, width1) + 1;
4504 result_low = MIN (low0, low1);
4505 break;
4506 case MINUS:
4507 result_low = MIN (low0, low1);
4508 break;
4509 case MULT:
4510 result_width = width0 + width1;
4511 result_low = low0 + low1;
4512 break;
4513 case DIV:
4514 if (width1 == 0)
4515 break;
4516 if (!op0_maybe_minusp && !op1_maybe_minusp)
4517 result_width = width0;
4518 break;
4519 case UDIV:
4520 if (width1 == 0)
4521 break;
4522 result_width = width0;
4523 break;
4524 case MOD:
4525 if (width1 == 0)
4526 break;
4527 if (!op0_maybe_minusp && !op1_maybe_minusp)
4528 result_width = MIN (width0, width1);
4529 result_low = MIN (low0, low1);
4530 break;
4531 case UMOD:
4532 if (width1 == 0)
4533 break;
4534 result_width = MIN (width0, width1);
4535 result_low = MIN (low0, low1);
4536 break;
4537 default:
4538 gcc_unreachable ();
4539 }
4540
4541 if (result_width < mode_width)
4542 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4543
4544 if (result_low > 0)
4545 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4546 }
4547 break;
4548
4549 case ZERO_EXTRACT:
4550 if (CONST_INT_P (XEXP (x, 1))
4551 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4552 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4553 break;
4554
4555 case SUBREG:
4556 /* If this is a SUBREG formed for a promoted variable that has
4557 been zero-extended, we know that at least the high-order bits
4558 are zero, though others might be too. */
4559
4560 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4561 nonzero = GET_MODE_MASK (GET_MODE (x))
4562 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4563 known_x, known_mode, known_ret);
4564
4565 inner_mode = GET_MODE (SUBREG_REG (x));
4566 /* If the inner mode is a single word for both the host and target
4567 machines, we can compute this from which bits of the inner
4568 object might be nonzero. */
4569 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4570 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4571 {
4572 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4573 known_x, known_mode, known_ret);
4574
4575 #if WORD_REGISTER_OPERATIONS && defined (LOAD_EXTEND_OP)
4576 /* If this is a typical RISC machine, we only have to worry
4577 about the way loads are extended. */
4578 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4579 ? val_signbit_known_set_p (inner_mode, nonzero)
4580 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4581 || !MEM_P (SUBREG_REG (x)))
4582 #endif
4583 {
4584 /* On many CISC machines, accessing an object in a wider mode
4585 causes the high-order bits to become undefined. So they are
4586 not known to be zero. */
4587 if (GET_MODE_PRECISION (GET_MODE (x))
4588 > GET_MODE_PRECISION (inner_mode))
4589 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4590 & ~GET_MODE_MASK (inner_mode));
4591 }
4592 }
4593 break;
4594
4595 case ASHIFTRT:
4596 case LSHIFTRT:
4597 case ASHIFT:
4598 case ROTATE:
4599 /* The nonzero bits are in two classes: any bits within MODE
4600 that aren't in GET_MODE (x) are always significant. The rest of the
4601 nonzero bits are those that are significant in the operand of
4602 the shift when shifted the appropriate number of bits. This
4603 shows that high-order bits are cleared by the right shift and
4604 low-order bits by left shifts. */
4605 if (CONST_INT_P (XEXP (x, 1))
4606 && INTVAL (XEXP (x, 1)) >= 0
4607 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4608 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4609 {
4610 machine_mode inner_mode = GET_MODE (x);
4611 unsigned int width = GET_MODE_PRECISION (inner_mode);
4612 int count = INTVAL (XEXP (x, 1));
4613 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4614 unsigned HOST_WIDE_INT op_nonzero
4615 = cached_nonzero_bits (XEXP (x, 0), mode,
4616 known_x, known_mode, known_ret);
4617 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4618 unsigned HOST_WIDE_INT outer = 0;
4619
4620 if (mode_width > width)
4621 outer = (op_nonzero & nonzero & ~mode_mask);
4622
4623 if (code == LSHIFTRT)
4624 inner >>= count;
4625 else if (code == ASHIFTRT)
4626 {
4627 inner >>= count;
4628
4629 /* If the sign bit may have been nonzero before the shift, we
4630 need to mark all the places it could have been copied to
4631 by the shift as possibly nonzero. */
4632 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4633 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4634 << (width - count);
4635 }
4636 else if (code == ASHIFT)
4637 inner <<= count;
4638 else
4639 inner = ((inner << (count % width)
4640 | (inner >> (width - (count % width)))) & mode_mask);
4641
4642 nonzero &= (outer | inner);
4643 }
4644 break;
4645
4646 case FFS:
4647 case POPCOUNT:
4648 /* This is at most the number of bits in the mode. */
4649 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4650 break;
4651
4652 case CLZ:
4653 /* If CLZ has a known value at zero, then the nonzero bits are
4654 that value, plus the number of bits in the mode minus one. */
4655 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4656 nonzero
4657 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4658 else
4659 nonzero = -1;
4660 break;
4661
4662 case CTZ:
4663 /* If CTZ has a known value at zero, then the nonzero bits are
4664 that value, plus the number of bits in the mode minus one. */
4665 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4666 nonzero
4667 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4668 else
4669 nonzero = -1;
4670 break;
4671
4672 case CLRSB:
4673 /* This is at most the number of bits in the mode minus 1. */
4674 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4675 break;
4676
4677 case PARITY:
4678 nonzero = 1;
4679 break;
4680
4681 case IF_THEN_ELSE:
4682 {
4683 unsigned HOST_WIDE_INT nonzero_true
4684 = cached_nonzero_bits (XEXP (x, 1), mode,
4685 known_x, known_mode, known_ret);
4686
4687 /* Don't call nonzero_bits for the second time if it cannot change
4688 anything. */
4689 if ((nonzero & nonzero_true) != nonzero)
4690 nonzero &= nonzero_true
4691 | cached_nonzero_bits (XEXP (x, 2), mode,
4692 known_x, known_mode, known_ret);
4693 }
4694 break;
4695
4696 default:
4697 break;
4698 }
4699
4700 return nonzero;
4701 }
4702
4703 /* See the macro definition above. */
4704 #undef cached_num_sign_bit_copies
4705
4706 \f
4707 /* Return true if num_sign_bit_copies1 might recurse into both operands
4708 of X. */
4709
4710 static inline bool
4711 num_sign_bit_copies_binary_arith_p (const_rtx x)
4712 {
4713 if (!ARITHMETIC_P (x))
4714 return false;
4715 switch (GET_CODE (x))
4716 {
4717 case IOR:
4718 case AND:
4719 case XOR:
4720 case SMIN:
4721 case SMAX:
4722 case UMIN:
4723 case UMAX:
4724 case PLUS:
4725 case MINUS:
4726 case MULT:
4727 return true;
4728 default:
4729 return false;
4730 }
4731 }
4732
4733 /* The function cached_num_sign_bit_copies is a wrapper around
4734 num_sign_bit_copies1. It avoids exponential behavior in
4735 num_sign_bit_copies1 when X has identical subexpressions on the
4736 first or the second level. */
4737
4738 static unsigned int
4739 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4740 machine_mode known_mode,
4741 unsigned int known_ret)
4742 {
4743 if (x == known_x && mode == known_mode)
4744 return known_ret;
4745
4746 /* Try to find identical subexpressions. If found call
4747 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4748 the precomputed value for the subexpression as KNOWN_RET. */
4749
4750 if (num_sign_bit_copies_binary_arith_p (x))
4751 {
4752 rtx x0 = XEXP (x, 0);
4753 rtx x1 = XEXP (x, 1);
4754
4755 /* Check the first level. */
4756 if (x0 == x1)
4757 return
4758 num_sign_bit_copies1 (x, mode, x0, mode,
4759 cached_num_sign_bit_copies (x0, mode, known_x,
4760 known_mode,
4761 known_ret));
4762
4763 /* Check the second level. */
4764 if (num_sign_bit_copies_binary_arith_p (x0)
4765 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4766 return
4767 num_sign_bit_copies1 (x, mode, x1, mode,
4768 cached_num_sign_bit_copies (x1, mode, known_x,
4769 known_mode,
4770 known_ret));
4771
4772 if (num_sign_bit_copies_binary_arith_p (x1)
4773 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4774 return
4775 num_sign_bit_copies1 (x, mode, x0, mode,
4776 cached_num_sign_bit_copies (x0, mode, known_x,
4777 known_mode,
4778 known_ret));
4779 }
4780
4781 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4782 }
4783
4784 /* Return the number of bits at the high-order end of X that are known to
4785 be equal to the sign bit. X will be used in mode MODE; if MODE is
4786 VOIDmode, X will be used in its own mode. The returned value will always
4787 be between 1 and the number of bits in MODE. */
4788
4789 static unsigned int
4790 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4791 machine_mode known_mode,
4792 unsigned int known_ret)
4793 {
4794 enum rtx_code code = GET_CODE (x);
4795 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4796 int num0, num1, result;
4797 unsigned HOST_WIDE_INT nonzero;
4798
4799 /* If we weren't given a mode, use the mode of X. If the mode is still
4800 VOIDmode, we don't know anything. Likewise if one of the modes is
4801 floating-point. */
4802
4803 if (mode == VOIDmode)
4804 mode = GET_MODE (x);
4805
4806 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4807 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4808 return 1;
4809
4810 /* For a smaller object, just ignore the high bits. */
4811 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4812 {
4813 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4814 known_x, known_mode, known_ret);
4815 return MAX (1,
4816 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4817 }
4818
4819 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4820 {
4821 /* If this machine does not do all register operations on the entire
4822 register and MODE is wider than the mode of X, we can say nothing
4823 at all about the high-order bits. */
4824 if (!WORD_REGISTER_OPERATIONS)
4825 return 1;
4826
4827 /* Likewise on machines that do, if the mode of the object is smaller
4828 than a word and loads of that size don't sign extend, we can say
4829 nothing about the high order bits. */
4830 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4831 #ifdef LOAD_EXTEND_OP
4832 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4833 #endif
4834 )
4835 return 1;
4836 }
4837
4838 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4839 the code in the switch below. */
4840 switch (code)
4841 {
4842 case REG:
4843
4844 #if defined(POINTERS_EXTEND_UNSIGNED)
4845 /* If pointers extend signed and this is a pointer in Pmode, say that
4846 all the bits above ptr_mode are known to be sign bit copies. */
4847 /* As we do not know which address space the pointer is referring to,
4848 we can do this only if the target does not support different pointer
4849 or address modes depending on the address space. */
4850 if (target_default_pointer_address_modes_p ()
4851 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4852 && mode == Pmode && REG_POINTER (x)
4853 && !targetm.have_ptr_extend ())
4854 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4855 #endif
4856
4857 {
4858 unsigned int copies_for_hook = 1, copies = 1;
4859 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4860 known_mode, known_ret,
4861 &copies_for_hook);
4862
4863 if (new_rtx)
4864 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4865 known_mode, known_ret);
4866
4867 if (copies > 1 || copies_for_hook > 1)
4868 return MAX (copies, copies_for_hook);
4869
4870 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4871 }
4872 break;
4873
4874 case MEM:
4875 #ifdef LOAD_EXTEND_OP
4876 /* Some RISC machines sign-extend all loads of smaller than a word. */
4877 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4878 return MAX (1, ((int) bitwidth
4879 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4880 #endif
4881 break;
4882
4883 case CONST_INT:
4884 /* If the constant is negative, take its 1's complement and remask.
4885 Then see how many zero bits we have. */
4886 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4887 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4888 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4889 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4890
4891 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4892
4893 case SUBREG:
4894 /* If this is a SUBREG for a promoted object that is sign-extended
4895 and we are looking at it in a wider mode, we know that at least the
4896 high-order bits are known to be sign bit copies. */
4897
4898 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4899 {
4900 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4901 known_x, known_mode, known_ret);
4902 return MAX ((int) bitwidth
4903 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4904 num0);
4905 }
4906
4907 /* For a smaller object, just ignore the high bits. */
4908 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4909 {
4910 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4911 known_x, known_mode, known_ret);
4912 return MAX (1, (num0
4913 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4914 - bitwidth)));
4915 }
4916
4917 #ifdef LOAD_EXTEND_OP
4918 /* For paradoxical SUBREGs on machines where all register operations
4919 affect the entire register, just look inside. Note that we are
4920 passing MODE to the recursive call, so the number of sign bit copies
4921 will remain relative to that mode, not the inner mode. */
4922
4923 /* This works only if loads sign extend. Otherwise, if we get a
4924 reload for the inner part, it may be loaded from the stack, and
4925 then we lose all sign bit copies that existed before the store
4926 to the stack. */
4927
4928 if (WORD_REGISTER_OPERATIONS
4929 && paradoxical_subreg_p (x)
4930 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4931 && MEM_P (SUBREG_REG (x)))
4932 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4933 known_x, known_mode, known_ret);
4934 #endif
4935 break;
4936
4937 case SIGN_EXTRACT:
4938 if (CONST_INT_P (XEXP (x, 1)))
4939 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4940 break;
4941
4942 case SIGN_EXTEND:
4943 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4944 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4945 known_x, known_mode, known_ret));
4946
4947 case TRUNCATE:
4948 /* For a smaller object, just ignore the high bits. */
4949 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4950 known_x, known_mode, known_ret);
4951 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4952 - bitwidth)));
4953
4954 case NOT:
4955 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4956 known_x, known_mode, known_ret);
4957
4958 case ROTATE: case ROTATERT:
4959 /* If we are rotating left by a number of bits less than the number
4960 of sign bit copies, we can just subtract that amount from the
4961 number. */
4962 if (CONST_INT_P (XEXP (x, 1))
4963 && INTVAL (XEXP (x, 1)) >= 0
4964 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4965 {
4966 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4967 known_x, known_mode, known_ret);
4968 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4969 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4970 }
4971 break;
4972
4973 case NEG:
4974 /* In general, this subtracts one sign bit copy. But if the value
4975 is known to be positive, the number of sign bit copies is the
4976 same as that of the input. Finally, if the input has just one bit
4977 that might be nonzero, all the bits are copies of the sign bit. */
4978 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4979 known_x, known_mode, known_ret);
4980 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4981 return num0 > 1 ? num0 - 1 : 1;
4982
4983 nonzero = nonzero_bits (XEXP (x, 0), mode);
4984 if (nonzero == 1)
4985 return bitwidth;
4986
4987 if (num0 > 1
4988 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4989 num0--;
4990
4991 return num0;
4992
4993 case IOR: case AND: case XOR:
4994 case SMIN: case SMAX: case UMIN: case UMAX:
4995 /* Logical operations will preserve the number of sign-bit copies.
4996 MIN and MAX operations always return one of the operands. */
4997 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4998 known_x, known_mode, known_ret);
4999 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5000 known_x, known_mode, known_ret);
5001
5002 /* If num1 is clearing some of the top bits then regardless of
5003 the other term, we are guaranteed to have at least that many
5004 high-order zero bits. */
5005 if (code == AND
5006 && num1 > 1
5007 && bitwidth <= HOST_BITS_PER_WIDE_INT
5008 && CONST_INT_P (XEXP (x, 1))
5009 && (UINTVAL (XEXP (x, 1))
5010 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
5011 return num1;
5012
5013 /* Similarly for IOR when setting high-order bits. */
5014 if (code == IOR
5015 && num1 > 1
5016 && bitwidth <= HOST_BITS_PER_WIDE_INT
5017 && CONST_INT_P (XEXP (x, 1))
5018 && (UINTVAL (XEXP (x, 1))
5019 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5020 return num1;
5021
5022 return MIN (num0, num1);
5023
5024 case PLUS: case MINUS:
5025 /* For addition and subtraction, we can have a 1-bit carry. However,
5026 if we are subtracting 1 from a positive number, there will not
5027 be such a carry. Furthermore, if the positive number is known to
5028 be 0 or 1, we know the result is either -1 or 0. */
5029
5030 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5031 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5032 {
5033 nonzero = nonzero_bits (XEXP (x, 0), mode);
5034 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
5035 return (nonzero == 1 || nonzero == 0 ? bitwidth
5036 : bitwidth - floor_log2 (nonzero) - 1);
5037 }
5038
5039 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5040 known_x, known_mode, known_ret);
5041 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5042 known_x, known_mode, known_ret);
5043 result = MAX (1, MIN (num0, num1) - 1);
5044
5045 return result;
5046
5047 case MULT:
5048 /* The number of bits of the product is the sum of the number of
5049 bits of both terms. However, unless one of the terms if known
5050 to be positive, we must allow for an additional bit since negating
5051 a negative number can remove one sign bit copy. */
5052
5053 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5054 known_x, known_mode, known_ret);
5055 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5056 known_x, known_mode, known_ret);
5057
5058 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5059 if (result > 0
5060 && (bitwidth > HOST_BITS_PER_WIDE_INT
5061 || (((nonzero_bits (XEXP (x, 0), mode)
5062 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5063 && ((nonzero_bits (XEXP (x, 1), mode)
5064 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5065 != 0))))
5066 result--;
5067
5068 return MAX (1, result);
5069
5070 case UDIV:
5071 /* The result must be <= the first operand. If the first operand
5072 has the high bit set, we know nothing about the number of sign
5073 bit copies. */
5074 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5075 return 1;
5076 else if ((nonzero_bits (XEXP (x, 0), mode)
5077 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5078 return 1;
5079 else
5080 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5081 known_x, known_mode, known_ret);
5082
5083 case UMOD:
5084 /* The result must be <= the second operand. If the second operand
5085 has (or just might have) the high bit set, we know nothing about
5086 the number of sign bit copies. */
5087 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5088 return 1;
5089 else if ((nonzero_bits (XEXP (x, 1), mode)
5090 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5091 return 1;
5092 else
5093 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5094 known_x, known_mode, known_ret);
5095
5096 case DIV:
5097 /* Similar to unsigned division, except that we have to worry about
5098 the case where the divisor is negative, in which case we have
5099 to add 1. */
5100 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5101 known_x, known_mode, known_ret);
5102 if (result > 1
5103 && (bitwidth > HOST_BITS_PER_WIDE_INT
5104 || (nonzero_bits (XEXP (x, 1), mode)
5105 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5106 result--;
5107
5108 return result;
5109
5110 case MOD:
5111 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5112 known_x, known_mode, known_ret);
5113 if (result > 1
5114 && (bitwidth > HOST_BITS_PER_WIDE_INT
5115 || (nonzero_bits (XEXP (x, 1), mode)
5116 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5117 result--;
5118
5119 return result;
5120
5121 case ASHIFTRT:
5122 /* Shifts by a constant add to the number of bits equal to the
5123 sign bit. */
5124 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5125 known_x, known_mode, known_ret);
5126 if (CONST_INT_P (XEXP (x, 1))
5127 && INTVAL (XEXP (x, 1)) > 0
5128 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5129 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5130
5131 return num0;
5132
5133 case ASHIFT:
5134 /* Left shifts destroy copies. */
5135 if (!CONST_INT_P (XEXP (x, 1))
5136 || INTVAL (XEXP (x, 1)) < 0
5137 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5138 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5139 return 1;
5140
5141 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5142 known_x, known_mode, known_ret);
5143 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5144
5145 case IF_THEN_ELSE:
5146 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5147 known_x, known_mode, known_ret);
5148 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5149 known_x, known_mode, known_ret);
5150 return MIN (num0, num1);
5151
5152 case EQ: case NE: case GE: case GT: case LE: case LT:
5153 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5154 case GEU: case GTU: case LEU: case LTU:
5155 case UNORDERED: case ORDERED:
5156 /* If the constant is negative, take its 1's complement and remask.
5157 Then see how many zero bits we have. */
5158 nonzero = STORE_FLAG_VALUE;
5159 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5160 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5161 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5162
5163 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5164
5165 default:
5166 break;
5167 }
5168
5169 /* If we haven't been able to figure it out by one of the above rules,
5170 see if some of the high-order bits are known to be zero. If so,
5171 count those bits and return one less than that amount. If we can't
5172 safely compute the mask for this mode, always return BITWIDTH. */
5173
5174 bitwidth = GET_MODE_PRECISION (mode);
5175 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5176 return 1;
5177
5178 nonzero = nonzero_bits (x, mode);
5179 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5180 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5181 }
5182
5183 /* Calculate the rtx_cost of a single instruction. A return value of
5184 zero indicates an instruction pattern without a known cost. */
5185
5186 int
5187 insn_rtx_cost (rtx pat, bool speed)
5188 {
5189 int i, cost;
5190 rtx set;
5191
5192 /* Extract the single set rtx from the instruction pattern.
5193 We can't use single_set since we only have the pattern. */
5194 if (GET_CODE (pat) == SET)
5195 set = pat;
5196 else if (GET_CODE (pat) == PARALLEL)
5197 {
5198 set = NULL_RTX;
5199 for (i = 0; i < XVECLEN (pat, 0); i++)
5200 {
5201 rtx x = XVECEXP (pat, 0, i);
5202 if (GET_CODE (x) == SET)
5203 {
5204 if (set)
5205 return 0;
5206 set = x;
5207 }
5208 }
5209 if (!set)
5210 return 0;
5211 }
5212 else
5213 return 0;
5214
5215 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5216 return cost > 0 ? cost : COSTS_N_INSNS (1);
5217 }
5218
5219 /* Returns estimate on cost of computing SEQ. */
5220
5221 unsigned
5222 seq_cost (const rtx_insn *seq, bool speed)
5223 {
5224 unsigned cost = 0;
5225 rtx set;
5226
5227 for (; seq; seq = NEXT_INSN (seq))
5228 {
5229 set = single_set (seq);
5230 if (set)
5231 cost += set_rtx_cost (set, speed);
5232 else
5233 cost++;
5234 }
5235
5236 return cost;
5237 }
5238
5239 /* Given an insn INSN and condition COND, return the condition in a
5240 canonical form to simplify testing by callers. Specifically:
5241
5242 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5243 (2) Both operands will be machine operands; (cc0) will have been replaced.
5244 (3) If an operand is a constant, it will be the second operand.
5245 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5246 for GE, GEU, and LEU.
5247
5248 If the condition cannot be understood, or is an inequality floating-point
5249 comparison which needs to be reversed, 0 will be returned.
5250
5251 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5252
5253 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5254 insn used in locating the condition was found. If a replacement test
5255 of the condition is desired, it should be placed in front of that
5256 insn and we will be sure that the inputs are still valid.
5257
5258 If WANT_REG is nonzero, we wish the condition to be relative to that
5259 register, if possible. Therefore, do not canonicalize the condition
5260 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5261 to be a compare to a CC mode register.
5262
5263 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5264 and at INSN. */
5265
5266 rtx
5267 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5268 rtx_insn **earliest,
5269 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5270 {
5271 enum rtx_code code;
5272 rtx_insn *prev = insn;
5273 const_rtx set;
5274 rtx tem;
5275 rtx op0, op1;
5276 int reverse_code = 0;
5277 machine_mode mode;
5278 basic_block bb = BLOCK_FOR_INSN (insn);
5279
5280 code = GET_CODE (cond);
5281 mode = GET_MODE (cond);
5282 op0 = XEXP (cond, 0);
5283 op1 = XEXP (cond, 1);
5284
5285 if (reverse)
5286 code = reversed_comparison_code (cond, insn);
5287 if (code == UNKNOWN)
5288 return 0;
5289
5290 if (earliest)
5291 *earliest = insn;
5292
5293 /* If we are comparing a register with zero, see if the register is set
5294 in the previous insn to a COMPARE or a comparison operation. Perform
5295 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5296 in cse.c */
5297
5298 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5299 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5300 && op1 == CONST0_RTX (GET_MODE (op0))
5301 && op0 != want_reg)
5302 {
5303 /* Set nonzero when we find something of interest. */
5304 rtx x = 0;
5305
5306 /* If comparison with cc0, import actual comparison from compare
5307 insn. */
5308 if (op0 == cc0_rtx)
5309 {
5310 if ((prev = prev_nonnote_insn (prev)) == 0
5311 || !NONJUMP_INSN_P (prev)
5312 || (set = single_set (prev)) == 0
5313 || SET_DEST (set) != cc0_rtx)
5314 return 0;
5315
5316 op0 = SET_SRC (set);
5317 op1 = CONST0_RTX (GET_MODE (op0));
5318 if (earliest)
5319 *earliest = prev;
5320 }
5321
5322 /* If this is a COMPARE, pick up the two things being compared. */
5323 if (GET_CODE (op0) == COMPARE)
5324 {
5325 op1 = XEXP (op0, 1);
5326 op0 = XEXP (op0, 0);
5327 continue;
5328 }
5329 else if (!REG_P (op0))
5330 break;
5331
5332 /* Go back to the previous insn. Stop if it is not an INSN. We also
5333 stop if it isn't a single set or if it has a REG_INC note because
5334 we don't want to bother dealing with it. */
5335
5336 prev = prev_nonnote_nondebug_insn (prev);
5337
5338 if (prev == 0
5339 || !NONJUMP_INSN_P (prev)
5340 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5341 /* In cfglayout mode, there do not have to be labels at the
5342 beginning of a block, or jumps at the end, so the previous
5343 conditions would not stop us when we reach bb boundary. */
5344 || BLOCK_FOR_INSN (prev) != bb)
5345 break;
5346
5347 set = set_of (op0, prev);
5348
5349 if (set
5350 && (GET_CODE (set) != SET
5351 || !rtx_equal_p (SET_DEST (set), op0)))
5352 break;
5353
5354 /* If this is setting OP0, get what it sets it to if it looks
5355 relevant. */
5356 if (set)
5357 {
5358 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5359 #ifdef FLOAT_STORE_FLAG_VALUE
5360 REAL_VALUE_TYPE fsfv;
5361 #endif
5362
5363 /* ??? We may not combine comparisons done in a CCmode with
5364 comparisons not done in a CCmode. This is to aid targets
5365 like Alpha that have an IEEE compliant EQ instruction, and
5366 a non-IEEE compliant BEQ instruction. The use of CCmode is
5367 actually artificial, simply to prevent the combination, but
5368 should not affect other platforms.
5369
5370 However, we must allow VOIDmode comparisons to match either
5371 CCmode or non-CCmode comparison, because some ports have
5372 modeless comparisons inside branch patterns.
5373
5374 ??? This mode check should perhaps look more like the mode check
5375 in simplify_comparison in combine. */
5376 if (((GET_MODE_CLASS (mode) == MODE_CC)
5377 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5378 && mode != VOIDmode
5379 && inner_mode != VOIDmode)
5380 break;
5381 if (GET_CODE (SET_SRC (set)) == COMPARE
5382 || (((code == NE
5383 || (code == LT
5384 && val_signbit_known_set_p (inner_mode,
5385 STORE_FLAG_VALUE))
5386 #ifdef FLOAT_STORE_FLAG_VALUE
5387 || (code == LT
5388 && SCALAR_FLOAT_MODE_P (inner_mode)
5389 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5390 REAL_VALUE_NEGATIVE (fsfv)))
5391 #endif
5392 ))
5393 && COMPARISON_P (SET_SRC (set))))
5394 x = SET_SRC (set);
5395 else if (((code == EQ
5396 || (code == GE
5397 && val_signbit_known_set_p (inner_mode,
5398 STORE_FLAG_VALUE))
5399 #ifdef FLOAT_STORE_FLAG_VALUE
5400 || (code == GE
5401 && SCALAR_FLOAT_MODE_P (inner_mode)
5402 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5403 REAL_VALUE_NEGATIVE (fsfv)))
5404 #endif
5405 ))
5406 && COMPARISON_P (SET_SRC (set)))
5407 {
5408 reverse_code = 1;
5409 x = SET_SRC (set);
5410 }
5411 else if ((code == EQ || code == NE)
5412 && GET_CODE (SET_SRC (set)) == XOR)
5413 /* Handle sequences like:
5414
5415 (set op0 (xor X Y))
5416 ...(eq|ne op0 (const_int 0))...
5417
5418 in which case:
5419
5420 (eq op0 (const_int 0)) reduces to (eq X Y)
5421 (ne op0 (const_int 0)) reduces to (ne X Y)
5422
5423 This is the form used by MIPS16, for example. */
5424 x = SET_SRC (set);
5425 else
5426 break;
5427 }
5428
5429 else if (reg_set_p (op0, prev))
5430 /* If this sets OP0, but not directly, we have to give up. */
5431 break;
5432
5433 if (x)
5434 {
5435 /* If the caller is expecting the condition to be valid at INSN,
5436 make sure X doesn't change before INSN. */
5437 if (valid_at_insn_p)
5438 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5439 break;
5440 if (COMPARISON_P (x))
5441 code = GET_CODE (x);
5442 if (reverse_code)
5443 {
5444 code = reversed_comparison_code (x, prev);
5445 if (code == UNKNOWN)
5446 return 0;
5447 reverse_code = 0;
5448 }
5449
5450 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5451 if (earliest)
5452 *earliest = prev;
5453 }
5454 }
5455
5456 /* If constant is first, put it last. */
5457 if (CONSTANT_P (op0))
5458 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5459
5460 /* If OP0 is the result of a comparison, we weren't able to find what
5461 was really being compared, so fail. */
5462 if (!allow_cc_mode
5463 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5464 return 0;
5465
5466 /* Canonicalize any ordered comparison with integers involving equality
5467 if we can do computations in the relevant mode and we do not
5468 overflow. */
5469
5470 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5471 && CONST_INT_P (op1)
5472 && GET_MODE (op0) != VOIDmode
5473 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5474 {
5475 HOST_WIDE_INT const_val = INTVAL (op1);
5476 unsigned HOST_WIDE_INT uconst_val = const_val;
5477 unsigned HOST_WIDE_INT max_val
5478 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5479
5480 switch (code)
5481 {
5482 case LE:
5483 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5484 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5485 break;
5486
5487 /* When cross-compiling, const_val might be sign-extended from
5488 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5489 case GE:
5490 if ((const_val & max_val)
5491 != ((unsigned HOST_WIDE_INT) 1
5492 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5493 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5494 break;
5495
5496 case LEU:
5497 if (uconst_val < max_val)
5498 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5499 break;
5500
5501 case GEU:
5502 if (uconst_val != 0)
5503 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5504 break;
5505
5506 default:
5507 break;
5508 }
5509 }
5510
5511 /* Never return CC0; return zero instead. */
5512 if (CC0_P (op0))
5513 return 0;
5514
5515 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5516 }
5517
5518 /* Given a jump insn JUMP, return the condition that will cause it to branch
5519 to its JUMP_LABEL. If the condition cannot be understood, or is an
5520 inequality floating-point comparison which needs to be reversed, 0 will
5521 be returned.
5522
5523 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5524 insn used in locating the condition was found. If a replacement test
5525 of the condition is desired, it should be placed in front of that
5526 insn and we will be sure that the inputs are still valid. If EARLIEST
5527 is null, the returned condition will be valid at INSN.
5528
5529 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5530 compare CC mode register.
5531
5532 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5533
5534 rtx
5535 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5536 int valid_at_insn_p)
5537 {
5538 rtx cond;
5539 int reverse;
5540 rtx set;
5541
5542 /* If this is not a standard conditional jump, we can't parse it. */
5543 if (!JUMP_P (jump)
5544 || ! any_condjump_p (jump))
5545 return 0;
5546 set = pc_set (jump);
5547
5548 cond = XEXP (SET_SRC (set), 0);
5549
5550 /* If this branches to JUMP_LABEL when the condition is false, reverse
5551 the condition. */
5552 reverse
5553 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5554 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5555
5556 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5557 allow_cc_mode, valid_at_insn_p);
5558 }
5559
5560 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5561 TARGET_MODE_REP_EXTENDED.
5562
5563 Note that we assume that the property of
5564 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5565 narrower than mode B. I.e., if A is a mode narrower than B then in
5566 order to be able to operate on it in mode B, mode A needs to
5567 satisfy the requirements set by the representation of mode B. */
5568
5569 static void
5570 init_num_sign_bit_copies_in_rep (void)
5571 {
5572 machine_mode mode, in_mode;
5573
5574 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5575 in_mode = GET_MODE_WIDER_MODE (mode))
5576 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5577 mode = GET_MODE_WIDER_MODE (mode))
5578 {
5579 machine_mode i;
5580
5581 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5582 extends to the next widest mode. */
5583 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5584 || GET_MODE_WIDER_MODE (mode) == in_mode);
5585
5586 /* We are in in_mode. Count how many bits outside of mode
5587 have to be copies of the sign-bit. */
5588 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5589 {
5590 machine_mode wider = GET_MODE_WIDER_MODE (i);
5591
5592 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5593 /* We can only check sign-bit copies starting from the
5594 top-bit. In order to be able to check the bits we
5595 have already seen we pretend that subsequent bits
5596 have to be sign-bit copies too. */
5597 || num_sign_bit_copies_in_rep [in_mode][mode])
5598 num_sign_bit_copies_in_rep [in_mode][mode]
5599 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5600 }
5601 }
5602 }
5603
5604 /* Suppose that truncation from the machine mode of X to MODE is not a
5605 no-op. See if there is anything special about X so that we can
5606 assume it already contains a truncated value of MODE. */
5607
5608 bool
5609 truncated_to_mode (machine_mode mode, const_rtx x)
5610 {
5611 /* This register has already been used in MODE without explicit
5612 truncation. */
5613 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5614 return true;
5615
5616 /* See if we already satisfy the requirements of MODE. If yes we
5617 can just switch to MODE. */
5618 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5619 && (num_sign_bit_copies (x, GET_MODE (x))
5620 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5621 return true;
5622
5623 return false;
5624 }
5625 \f
5626 /* Return true if RTX code CODE has a single sequence of zero or more
5627 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5628 entry in that case. */
5629
5630 static bool
5631 setup_reg_subrtx_bounds (unsigned int code)
5632 {
5633 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5634 unsigned int i = 0;
5635 for (; format[i] != 'e'; ++i)
5636 {
5637 if (!format[i])
5638 /* No subrtxes. Leave start and count as 0. */
5639 return true;
5640 if (format[i] == 'E' || format[i] == 'V')
5641 return false;
5642 }
5643
5644 /* Record the sequence of 'e's. */
5645 rtx_all_subrtx_bounds[code].start = i;
5646 do
5647 ++i;
5648 while (format[i] == 'e');
5649 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5650 /* rtl-iter.h relies on this. */
5651 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5652
5653 for (; format[i]; ++i)
5654 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5655 return false;
5656
5657 return true;
5658 }
5659
5660 /* Initialize rtx_all_subrtx_bounds. */
5661 void
5662 init_rtlanal (void)
5663 {
5664 int i;
5665 for (i = 0; i < NUM_RTX_CODE; i++)
5666 {
5667 if (!setup_reg_subrtx_bounds (i))
5668 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5669 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5670 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5671 }
5672
5673 init_num_sign_bit_copies_in_rep ();
5674 }
5675 \f
5676 /* Check whether this is a constant pool constant. */
5677 bool
5678 constant_pool_constant_p (rtx x)
5679 {
5680 x = avoid_constant_pool_reference (x);
5681 return CONST_DOUBLE_P (x);
5682 }
5683 \f
5684 /* If M is a bitmask that selects a field of low-order bits within an item but
5685 not the entire word, return the length of the field. Return -1 otherwise.
5686 M is used in machine mode MODE. */
5687
5688 int
5689 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5690 {
5691 if (mode != VOIDmode)
5692 {
5693 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5694 return -1;
5695 m &= GET_MODE_MASK (mode);
5696 }
5697
5698 return exact_log2 (m + 1);
5699 }
5700
5701 /* Return the mode of MEM's address. */
5702
5703 machine_mode
5704 get_address_mode (rtx mem)
5705 {
5706 machine_mode mode;
5707
5708 gcc_assert (MEM_P (mem));
5709 mode = GET_MODE (XEXP (mem, 0));
5710 if (mode != VOIDmode)
5711 return mode;
5712 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5713 }
5714 \f
5715 /* Split up a CONST_DOUBLE or integer constant rtx
5716 into two rtx's for single words,
5717 storing in *FIRST the word that comes first in memory in the target
5718 and in *SECOND the other.
5719
5720 TODO: This function needs to be rewritten to work on any size
5721 integer. */
5722
5723 void
5724 split_double (rtx value, rtx *first, rtx *second)
5725 {
5726 if (CONST_INT_P (value))
5727 {
5728 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5729 {
5730 /* In this case the CONST_INT holds both target words.
5731 Extract the bits from it into two word-sized pieces.
5732 Sign extend each half to HOST_WIDE_INT. */
5733 unsigned HOST_WIDE_INT low, high;
5734 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5735 unsigned bits_per_word = BITS_PER_WORD;
5736
5737 /* Set sign_bit to the most significant bit of a word. */
5738 sign_bit = 1;
5739 sign_bit <<= bits_per_word - 1;
5740
5741 /* Set mask so that all bits of the word are set. We could
5742 have used 1 << BITS_PER_WORD instead of basing the
5743 calculation on sign_bit. However, on machines where
5744 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5745 compiler warning, even though the code would never be
5746 executed. */
5747 mask = sign_bit << 1;
5748 mask--;
5749
5750 /* Set sign_extend as any remaining bits. */
5751 sign_extend = ~mask;
5752
5753 /* Pick the lower word and sign-extend it. */
5754 low = INTVAL (value);
5755 low &= mask;
5756 if (low & sign_bit)
5757 low |= sign_extend;
5758
5759 /* Pick the higher word, shifted to the least significant
5760 bits, and sign-extend it. */
5761 high = INTVAL (value);
5762 high >>= bits_per_word - 1;
5763 high >>= 1;
5764 high &= mask;
5765 if (high & sign_bit)
5766 high |= sign_extend;
5767
5768 /* Store the words in the target machine order. */
5769 if (WORDS_BIG_ENDIAN)
5770 {
5771 *first = GEN_INT (high);
5772 *second = GEN_INT (low);
5773 }
5774 else
5775 {
5776 *first = GEN_INT (low);
5777 *second = GEN_INT (high);
5778 }
5779 }
5780 else
5781 {
5782 /* The rule for using CONST_INT for a wider mode
5783 is that we regard the value as signed.
5784 So sign-extend it. */
5785 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5786 if (WORDS_BIG_ENDIAN)
5787 {
5788 *first = high;
5789 *second = value;
5790 }
5791 else
5792 {
5793 *first = value;
5794 *second = high;
5795 }
5796 }
5797 }
5798 else if (GET_CODE (value) == CONST_WIDE_INT)
5799 {
5800 /* All of this is scary code and needs to be converted to
5801 properly work with any size integer. */
5802 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5803 if (WORDS_BIG_ENDIAN)
5804 {
5805 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5806 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5807 }
5808 else
5809 {
5810 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5811 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5812 }
5813 }
5814 else if (!CONST_DOUBLE_P (value))
5815 {
5816 if (WORDS_BIG_ENDIAN)
5817 {
5818 *first = const0_rtx;
5819 *second = value;
5820 }
5821 else
5822 {
5823 *first = value;
5824 *second = const0_rtx;
5825 }
5826 }
5827 else if (GET_MODE (value) == VOIDmode
5828 /* This is the old way we did CONST_DOUBLE integers. */
5829 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5830 {
5831 /* In an integer, the words are defined as most and least significant.
5832 So order them by the target's convention. */
5833 if (WORDS_BIG_ENDIAN)
5834 {
5835 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5836 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5837 }
5838 else
5839 {
5840 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5841 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5842 }
5843 }
5844 else
5845 {
5846 long l[2];
5847
5848 /* Note, this converts the REAL_VALUE_TYPE to the target's
5849 format, splits up the floating point double and outputs
5850 exactly 32 bits of it into each of l[0] and l[1] --
5851 not necessarily BITS_PER_WORD bits. */
5852 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5853
5854 /* If 32 bits is an entire word for the target, but not for the host,
5855 then sign-extend on the host so that the number will look the same
5856 way on the host that it would on the target. See for instance
5857 simplify_unary_operation. The #if is needed to avoid compiler
5858 warnings. */
5859
5860 #if HOST_BITS_PER_LONG > 32
5861 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5862 {
5863 if (l[0] & ((long) 1 << 31))
5864 l[0] |= ((unsigned long) (-1) << 32);
5865 if (l[1] & ((long) 1 << 31))
5866 l[1] |= ((unsigned long) (-1) << 32);
5867 }
5868 #endif
5869
5870 *first = GEN_INT (l[0]);
5871 *second = GEN_INT (l[1]);
5872 }
5873 }
5874
5875 /* Return true if X is a sign_extract or zero_extract from the least
5876 significant bit. */
5877
5878 static bool
5879 lsb_bitfield_op_p (rtx x)
5880 {
5881 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5882 {
5883 machine_mode mode = GET_MODE (XEXP (x, 0));
5884 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5885 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5886
5887 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5888 }
5889 return false;
5890 }
5891
5892 /* Strip outer address "mutations" from LOC and return a pointer to the
5893 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5894 stripped expression there.
5895
5896 "Mutations" either convert between modes or apply some kind of
5897 extension, truncation or alignment. */
5898
5899 rtx *
5900 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5901 {
5902 for (;;)
5903 {
5904 enum rtx_code code = GET_CODE (*loc);
5905 if (GET_RTX_CLASS (code) == RTX_UNARY)
5906 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5907 used to convert between pointer sizes. */
5908 loc = &XEXP (*loc, 0);
5909 else if (lsb_bitfield_op_p (*loc))
5910 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5911 acts as a combined truncation and extension. */
5912 loc = &XEXP (*loc, 0);
5913 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5914 /* (and ... (const_int -X)) is used to align to X bytes. */
5915 loc = &XEXP (*loc, 0);
5916 else if (code == SUBREG
5917 && !OBJECT_P (SUBREG_REG (*loc))
5918 && subreg_lowpart_p (*loc))
5919 /* (subreg (operator ...) ...) inside and is used for mode
5920 conversion too. */
5921 loc = &SUBREG_REG (*loc);
5922 else
5923 return loc;
5924 if (outer_code)
5925 *outer_code = code;
5926 }
5927 }
5928
5929 /* Return true if CODE applies some kind of scale. The scaled value is
5930 is the first operand and the scale is the second. */
5931
5932 static bool
5933 binary_scale_code_p (enum rtx_code code)
5934 {
5935 return (code == MULT
5936 || code == ASHIFT
5937 /* Needed by ARM targets. */
5938 || code == ASHIFTRT
5939 || code == LSHIFTRT
5940 || code == ROTATE
5941 || code == ROTATERT);
5942 }
5943
5944 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5945 (see address_info). Return null otherwise. */
5946
5947 static rtx *
5948 get_base_term (rtx *inner)
5949 {
5950 if (GET_CODE (*inner) == LO_SUM)
5951 inner = strip_address_mutations (&XEXP (*inner, 0));
5952 if (REG_P (*inner)
5953 || MEM_P (*inner)
5954 || GET_CODE (*inner) == SUBREG
5955 || GET_CODE (*inner) == SCRATCH)
5956 return inner;
5957 return 0;
5958 }
5959
5960 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5961 (see address_info). Return null otherwise. */
5962
5963 static rtx *
5964 get_index_term (rtx *inner)
5965 {
5966 /* At present, only constant scales are allowed. */
5967 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5968 inner = strip_address_mutations (&XEXP (*inner, 0));
5969 if (REG_P (*inner)
5970 || MEM_P (*inner)
5971 || GET_CODE (*inner) == SUBREG
5972 || GET_CODE (*inner) == SCRATCH)
5973 return inner;
5974 return 0;
5975 }
5976
5977 /* Set the segment part of address INFO to LOC, given that INNER is the
5978 unmutated value. */
5979
5980 static void
5981 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5982 {
5983 gcc_assert (!info->segment);
5984 info->segment = loc;
5985 info->segment_term = inner;
5986 }
5987
5988 /* Set the base part of address INFO to LOC, given that INNER is the
5989 unmutated value. */
5990
5991 static void
5992 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5993 {
5994 gcc_assert (!info->base);
5995 info->base = loc;
5996 info->base_term = inner;
5997 }
5998
5999 /* Set the index part of address INFO to LOC, given that INNER is the
6000 unmutated value. */
6001
6002 static void
6003 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6004 {
6005 gcc_assert (!info->index);
6006 info->index = loc;
6007 info->index_term = inner;
6008 }
6009
6010 /* Set the displacement part of address INFO to LOC, given that INNER
6011 is the constant term. */
6012
6013 static void
6014 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6015 {
6016 gcc_assert (!info->disp);
6017 info->disp = loc;
6018 info->disp_term = inner;
6019 }
6020
6021 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6022 rest of INFO accordingly. */
6023
6024 static void
6025 decompose_incdec_address (struct address_info *info)
6026 {
6027 info->autoinc_p = true;
6028
6029 rtx *base = &XEXP (*info->inner, 0);
6030 set_address_base (info, base, base);
6031 gcc_checking_assert (info->base == info->base_term);
6032
6033 /* These addresses are only valid when the size of the addressed
6034 value is known. */
6035 gcc_checking_assert (info->mode != VOIDmode);
6036 }
6037
6038 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6039 of INFO accordingly. */
6040
6041 static void
6042 decompose_automod_address (struct address_info *info)
6043 {
6044 info->autoinc_p = true;
6045
6046 rtx *base = &XEXP (*info->inner, 0);
6047 set_address_base (info, base, base);
6048 gcc_checking_assert (info->base == info->base_term);
6049
6050 rtx plus = XEXP (*info->inner, 1);
6051 gcc_assert (GET_CODE (plus) == PLUS);
6052
6053 info->base_term2 = &XEXP (plus, 0);
6054 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6055
6056 rtx *step = &XEXP (plus, 1);
6057 rtx *inner_step = strip_address_mutations (step);
6058 if (CONSTANT_P (*inner_step))
6059 set_address_disp (info, step, inner_step);
6060 else
6061 set_address_index (info, step, inner_step);
6062 }
6063
6064 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6065 values in [PTR, END). Return a pointer to the end of the used array. */
6066
6067 static rtx **
6068 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6069 {
6070 rtx x = *loc;
6071 if (GET_CODE (x) == PLUS)
6072 {
6073 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6074 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6075 }
6076 else
6077 {
6078 gcc_assert (ptr != end);
6079 *ptr++ = loc;
6080 }
6081 return ptr;
6082 }
6083
6084 /* Evaluate the likelihood of X being a base or index value, returning
6085 positive if it is likely to be a base, negative if it is likely to be
6086 an index, and 0 if we can't tell. Make the magnitude of the return
6087 value reflect the amount of confidence we have in the answer.
6088
6089 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6090
6091 static int
6092 baseness (rtx x, machine_mode mode, addr_space_t as,
6093 enum rtx_code outer_code, enum rtx_code index_code)
6094 {
6095 /* Believe *_POINTER unless the address shape requires otherwise. */
6096 if (REG_P (x) && REG_POINTER (x))
6097 return 2;
6098 if (MEM_P (x) && MEM_POINTER (x))
6099 return 2;
6100
6101 if (REG_P (x) && HARD_REGISTER_P (x))
6102 {
6103 /* X is a hard register. If it only fits one of the base
6104 or index classes, choose that interpretation. */
6105 int regno = REGNO (x);
6106 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6107 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6108 if (base_p != index_p)
6109 return base_p ? 1 : -1;
6110 }
6111 return 0;
6112 }
6113
6114 /* INFO->INNER describes a normal, non-automodified address.
6115 Fill in the rest of INFO accordingly. */
6116
6117 static void
6118 decompose_normal_address (struct address_info *info)
6119 {
6120 /* Treat the address as the sum of up to four values. */
6121 rtx *ops[4];
6122 size_t n_ops = extract_plus_operands (info->inner, ops,
6123 ops + ARRAY_SIZE (ops)) - ops;
6124
6125 /* If there is more than one component, any base component is in a PLUS. */
6126 if (n_ops > 1)
6127 info->base_outer_code = PLUS;
6128
6129 /* Try to classify each sum operand now. Leave those that could be
6130 either a base or an index in OPS. */
6131 rtx *inner_ops[4];
6132 size_t out = 0;
6133 for (size_t in = 0; in < n_ops; ++in)
6134 {
6135 rtx *loc = ops[in];
6136 rtx *inner = strip_address_mutations (loc);
6137 if (CONSTANT_P (*inner))
6138 set_address_disp (info, loc, inner);
6139 else if (GET_CODE (*inner) == UNSPEC)
6140 set_address_segment (info, loc, inner);
6141 else
6142 {
6143 /* The only other possibilities are a base or an index. */
6144 rtx *base_term = get_base_term (inner);
6145 rtx *index_term = get_index_term (inner);
6146 gcc_assert (base_term || index_term);
6147 if (!base_term)
6148 set_address_index (info, loc, index_term);
6149 else if (!index_term)
6150 set_address_base (info, loc, base_term);
6151 else
6152 {
6153 gcc_assert (base_term == index_term);
6154 ops[out] = loc;
6155 inner_ops[out] = base_term;
6156 ++out;
6157 }
6158 }
6159 }
6160
6161 /* Classify the remaining OPS members as bases and indexes. */
6162 if (out == 1)
6163 {
6164 /* If we haven't seen a base or an index yet, assume that this is
6165 the base. If we were confident that another term was the base
6166 or index, treat the remaining operand as the other kind. */
6167 if (!info->base)
6168 set_address_base (info, ops[0], inner_ops[0]);
6169 else
6170 set_address_index (info, ops[0], inner_ops[0]);
6171 }
6172 else if (out == 2)
6173 {
6174 /* In the event of a tie, assume the base comes first. */
6175 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6176 GET_CODE (*ops[1]))
6177 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6178 GET_CODE (*ops[0])))
6179 {
6180 set_address_base (info, ops[0], inner_ops[0]);
6181 set_address_index (info, ops[1], inner_ops[1]);
6182 }
6183 else
6184 {
6185 set_address_base (info, ops[1], inner_ops[1]);
6186 set_address_index (info, ops[0], inner_ops[0]);
6187 }
6188 }
6189 else
6190 gcc_assert (out == 0);
6191 }
6192
6193 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6194 or VOIDmode if not known. AS is the address space associated with LOC.
6195 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6196
6197 void
6198 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6199 addr_space_t as, enum rtx_code outer_code)
6200 {
6201 memset (info, 0, sizeof (*info));
6202 info->mode = mode;
6203 info->as = as;
6204 info->addr_outer_code = outer_code;
6205 info->outer = loc;
6206 info->inner = strip_address_mutations (loc, &outer_code);
6207 info->base_outer_code = outer_code;
6208 switch (GET_CODE (*info->inner))
6209 {
6210 case PRE_DEC:
6211 case PRE_INC:
6212 case POST_DEC:
6213 case POST_INC:
6214 decompose_incdec_address (info);
6215 break;
6216
6217 case PRE_MODIFY:
6218 case POST_MODIFY:
6219 decompose_automod_address (info);
6220 break;
6221
6222 default:
6223 decompose_normal_address (info);
6224 break;
6225 }
6226 }
6227
6228 /* Describe address operand LOC in INFO. */
6229
6230 void
6231 decompose_lea_address (struct address_info *info, rtx *loc)
6232 {
6233 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6234 }
6235
6236 /* Describe the address of MEM X in INFO. */
6237
6238 void
6239 decompose_mem_address (struct address_info *info, rtx x)
6240 {
6241 gcc_assert (MEM_P (x));
6242 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6243 MEM_ADDR_SPACE (x), MEM);
6244 }
6245
6246 /* Update INFO after a change to the address it describes. */
6247
6248 void
6249 update_address (struct address_info *info)
6250 {
6251 decompose_address (info, info->outer, info->mode, info->as,
6252 info->addr_outer_code);
6253 }
6254
6255 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6256 more complicated than that. */
6257
6258 HOST_WIDE_INT
6259 get_index_scale (const struct address_info *info)
6260 {
6261 rtx index = *info->index;
6262 if (GET_CODE (index) == MULT
6263 && CONST_INT_P (XEXP (index, 1))
6264 && info->index_term == &XEXP (index, 0))
6265 return INTVAL (XEXP (index, 1));
6266
6267 if (GET_CODE (index) == ASHIFT
6268 && CONST_INT_P (XEXP (index, 1))
6269 && info->index_term == &XEXP (index, 0))
6270 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6271
6272 if (info->index == info->index_term)
6273 return 1;
6274
6275 return 0;
6276 }
6277
6278 /* Return the "index code" of INFO, in the form required by
6279 ok_for_base_p_1. */
6280
6281 enum rtx_code
6282 get_index_code (const struct address_info *info)
6283 {
6284 if (info->index)
6285 return GET_CODE (*info->index);
6286
6287 if (info->disp)
6288 return GET_CODE (*info->disp);
6289
6290 return SCRATCH;
6291 }
6292
6293 /* Return true if RTL X contains a SYMBOL_REF. */
6294
6295 bool
6296 contains_symbol_ref_p (const_rtx x)
6297 {
6298 subrtx_iterator::array_type array;
6299 FOR_EACH_SUBRTX (iter, array, x, ALL)
6300 if (SYMBOL_REF_P (*iter))
6301 return true;
6302
6303 return false;
6304 }
6305
6306 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6307
6308 bool
6309 contains_symbolic_reference_p (const_rtx x)
6310 {
6311 subrtx_iterator::array_type array;
6312 FOR_EACH_SUBRTX (iter, array, x, ALL)
6313 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6314 return true;
6315
6316 return false;
6317 }
6318
6319 /* Return true if X contains a thread-local symbol. */
6320
6321 bool
6322 tls_referenced_p (const_rtx x)
6323 {
6324 if (!targetm.have_tls)
6325 return false;
6326
6327 subrtx_iterator::array_type array;
6328 FOR_EACH_SUBRTX (iter, array, x, ALL)
6329 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6330 return true;
6331 return false;
6332 }