rtlanal.c (subreg_get_info): Exit early for simple and common cases.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "hashtab.h"
36 #include "hash-set.h"
37 #include "vec.h"
38 #include "machmode.h"
39 #include "input.h"
40 #include "function.h"
41 #include "predict.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "symtab.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
49 #include "addresses.h"
50 #include "rtl-iter.h"
51
52 /* Forward declarations */
53 static void set_of_1 (rtx, const_rtx, void *);
54 static bool covers_regno_p (const_rtx, unsigned int);
55 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
56 static int computed_jump_p_1 (const_rtx);
57 static void parms_set (rtx, const_rtx, void *);
58
59 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
60 const_rtx, machine_mode,
61 unsigned HOST_WIDE_INT);
62 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
63 const_rtx, machine_mode,
64 unsigned HOST_WIDE_INT);
65 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
66 machine_mode,
67 unsigned int);
68 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
69 machine_mode, unsigned int);
70
71 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
72 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
73
74 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
75 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
76 SIGN_EXTEND then while narrowing we also have to enforce the
77 representation and sign-extend the value to mode DESTINATION_REP.
78
79 If the value is already sign-extended to DESTINATION_REP mode we
80 can just switch to DESTINATION mode on it. For each pair of
81 integral modes SOURCE and DESTINATION, when truncating from SOURCE
82 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
83 contains the number of high-order bits in SOURCE that have to be
84 copies of the sign-bit so that we can do this mode-switch to
85 DESTINATION. */
86
87 static unsigned int
88 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
89 \f
90 /* Store X into index I of ARRAY. ARRAY is known to have at least I
91 elements. Return the new base of ARRAY. */
92
93 template <typename T>
94 typename T::value_type *
95 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
96 value_type *base,
97 size_t i, value_type x)
98 {
99 if (base == array.stack)
100 {
101 if (i < LOCAL_ELEMS)
102 {
103 base[i] = x;
104 return base;
105 }
106 gcc_checking_assert (i == LOCAL_ELEMS);
107 vec_safe_grow (array.heap, i + 1);
108 base = array.heap->address ();
109 memcpy (base, array.stack, sizeof (array.stack));
110 base[LOCAL_ELEMS] = x;
111 return base;
112 }
113 unsigned int length = array.heap->length ();
114 if (length > i)
115 {
116 gcc_checking_assert (base == array.heap->address ());
117 base[i] = x;
118 return base;
119 }
120 else
121 {
122 gcc_checking_assert (i == length);
123 vec_safe_push (array.heap, x);
124 return array.heap->address ();
125 }
126 }
127
128 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
129 number of elements added to the worklist. */
130
131 template <typename T>
132 size_t
133 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
134 value_type *base,
135 size_t end, rtx_type x)
136 {
137 enum rtx_code code = GET_CODE (x);
138 const char *format = GET_RTX_FORMAT (code);
139 size_t orig_end = end;
140 if (__builtin_expect (INSN_P (x), false))
141 {
142 /* Put the pattern at the top of the queue, since that's what
143 we're likely to want most. It also allows for the SEQUENCE
144 code below. */
145 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
146 if (format[i] == 'e')
147 {
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
153 }
154 }
155 else
156 for (int i = 0; format[i]; ++i)
157 if (format[i] == 'e')
158 {
159 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
160 if (__builtin_expect (end < LOCAL_ELEMS, true))
161 base[end++] = subx;
162 else
163 base = add_single_to_queue (array, base, end++, subx);
164 }
165 else if (format[i] == 'E')
166 {
167 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
168 rtx *vec = x->u.fld[i].rt_rtvec->elem;
169 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
170 for (unsigned int j = 0; j < length; j++)
171 base[end++] = T::get_value (vec[j]);
172 else
173 for (unsigned int j = 0; j < length; j++)
174 base = add_single_to_queue (array, base, end++,
175 T::get_value (vec[j]));
176 if (code == SEQUENCE && end == length)
177 /* If the subrtxes of the sequence fill the entire array then
178 we know that no other parts of a containing insn are queued.
179 The caller is therefore iterating over the sequence as a
180 PATTERN (...), so we also want the patterns of the
181 subinstructions. */
182 for (unsigned int j = 0; j < length; j++)
183 {
184 typename T::rtx_type x = T::get_rtx (base[j]);
185 if (INSN_P (x))
186 base[j] = T::get_value (PATTERN (x));
187 }
188 }
189 return end - orig_end;
190 }
191
192 template <typename T>
193 void
194 generic_subrtx_iterator <T>::free_array (array_type &array)
195 {
196 vec_free (array.heap);
197 }
198
199 template <typename T>
200 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
201
202 template class generic_subrtx_iterator <const_rtx_accessor>;
203 template class generic_subrtx_iterator <rtx_var_accessor>;
204 template class generic_subrtx_iterator <rtx_ptr_accessor>;
205
206 /* Return 1 if the value of X is unstable
207 (would be different at a different point in the program).
208 The frame pointer, arg pointer, etc. are considered stable
209 (within one function) and so is anything marked `unchanging'. */
210
211 int
212 rtx_unstable_p (const_rtx x)
213 {
214 const RTX_CODE code = GET_CODE (x);
215 int i;
216 const char *fmt;
217
218 switch (code)
219 {
220 case MEM:
221 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
222
223 case CONST:
224 CASE_CONST_ANY:
225 case SYMBOL_REF:
226 case LABEL_REF:
227 return 0;
228
229 case REG:
230 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
231 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
232 /* The arg pointer varies if it is not a fixed register. */
233 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
234 return 0;
235 /* ??? When call-clobbered, the value is stable modulo the restore
236 that must happen after a call. This currently screws up local-alloc
237 into believing that the restore is not needed. */
238 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
239 return 0;
240 return 1;
241
242 case ASM_OPERANDS:
243 if (MEM_VOLATILE_P (x))
244 return 1;
245
246 /* Fall through. */
247
248 default:
249 break;
250 }
251
252 fmt = GET_RTX_FORMAT (code);
253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
254 if (fmt[i] == 'e')
255 {
256 if (rtx_unstable_p (XEXP (x, i)))
257 return 1;
258 }
259 else if (fmt[i] == 'E')
260 {
261 int j;
262 for (j = 0; j < XVECLEN (x, i); j++)
263 if (rtx_unstable_p (XVECEXP (x, i, j)))
264 return 1;
265 }
266
267 return 0;
268 }
269
270 /* Return 1 if X has a value that can vary even between two
271 executions of the program. 0 means X can be compared reliably
272 against certain constants or near-constants.
273 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
274 zero, we are slightly more conservative.
275 The frame pointer and the arg pointer are considered constant. */
276
277 bool
278 rtx_varies_p (const_rtx x, bool for_alias)
279 {
280 RTX_CODE code;
281 int i;
282 const char *fmt;
283
284 if (!x)
285 return 0;
286
287 code = GET_CODE (x);
288 switch (code)
289 {
290 case MEM:
291 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
292
293 case CONST:
294 CASE_CONST_ANY:
295 case SYMBOL_REF:
296 case LABEL_REF:
297 return 0;
298
299 case REG:
300 /* Note that we have to test for the actual rtx used for the frame
301 and arg pointers and not just the register number in case we have
302 eliminated the frame and/or arg pointer and are using it
303 for pseudos. */
304 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
305 /* The arg pointer varies if it is not a fixed register. */
306 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
307 return 0;
308 if (x == pic_offset_table_rtx
309 /* ??? When call-clobbered, the value is stable modulo the restore
310 that must happen after a call. This currently screws up
311 local-alloc into believing that the restore is not needed, so we
312 must return 0 only if we are called from alias analysis. */
313 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
314 return 0;
315 return 1;
316
317 case LO_SUM:
318 /* The operand 0 of a LO_SUM is considered constant
319 (in fact it is related specifically to operand 1)
320 during alias analysis. */
321 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
322 || rtx_varies_p (XEXP (x, 1), for_alias);
323
324 case ASM_OPERANDS:
325 if (MEM_VOLATILE_P (x))
326 return 1;
327
328 /* Fall through. */
329
330 default:
331 break;
332 }
333
334 fmt = GET_RTX_FORMAT (code);
335 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
336 if (fmt[i] == 'e')
337 {
338 if (rtx_varies_p (XEXP (x, i), for_alias))
339 return 1;
340 }
341 else if (fmt[i] == 'E')
342 {
343 int j;
344 for (j = 0; j < XVECLEN (x, i); j++)
345 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
346 return 1;
347 }
348
349 return 0;
350 }
351
352 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
353 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
354 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
355 references on strict alignment machines. */
356
357 static int
358 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
359 machine_mode mode, bool unaligned_mems)
360 {
361 enum rtx_code code = GET_CODE (x);
362
363 /* The offset must be a multiple of the mode size if we are considering
364 unaligned memory references on strict alignment machines. */
365 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
366 {
367 HOST_WIDE_INT actual_offset = offset;
368
369 #ifdef SPARC_STACK_BOUNDARY_HACK
370 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
371 the real alignment of %sp. However, when it does this, the
372 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
373 if (SPARC_STACK_BOUNDARY_HACK
374 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
375 actual_offset -= STACK_POINTER_OFFSET;
376 #endif
377
378 if (actual_offset % GET_MODE_SIZE (mode) != 0)
379 return 1;
380 }
381
382 switch (code)
383 {
384 case SYMBOL_REF:
385 if (SYMBOL_REF_WEAK (x))
386 return 1;
387 if (!CONSTANT_POOL_ADDRESS_P (x))
388 {
389 tree decl;
390 HOST_WIDE_INT decl_size;
391
392 if (offset < 0)
393 return 1;
394 if (size == 0)
395 size = GET_MODE_SIZE (mode);
396 if (size == 0)
397 return offset != 0;
398
399 /* If the size of the access or of the symbol is unknown,
400 assume the worst. */
401 decl = SYMBOL_REF_DECL (x);
402
403 /* Else check that the access is in bounds. TODO: restructure
404 expr_size/tree_expr_size/int_expr_size and just use the latter. */
405 if (!decl)
406 decl_size = -1;
407 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
408 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
409 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
410 : -1);
411 else if (TREE_CODE (decl) == STRING_CST)
412 decl_size = TREE_STRING_LENGTH (decl);
413 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
414 decl_size = int_size_in_bytes (TREE_TYPE (decl));
415 else
416 decl_size = -1;
417
418 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
419 }
420
421 return 0;
422
423 case LABEL_REF:
424 return 0;
425
426 case REG:
427 /* Stack references are assumed not to trap, but we need to deal with
428 nonsensical offsets. */
429 if (x == frame_pointer_rtx)
430 {
431 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
432 if (size == 0)
433 size = GET_MODE_SIZE (mode);
434 if (FRAME_GROWS_DOWNWARD)
435 {
436 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
437 return 1;
438 }
439 else
440 {
441 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
442 return 1;
443 }
444 return 0;
445 }
446 /* ??? Need to add a similar guard for nonsensical offsets. */
447 if (x == hard_frame_pointer_rtx
448 || x == stack_pointer_rtx
449 /* The arg pointer varies if it is not a fixed register. */
450 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
451 return 0;
452 /* All of the virtual frame registers are stack references. */
453 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
454 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
455 return 0;
456 return 1;
457
458 case CONST:
459 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
460 mode, unaligned_mems);
461
462 case PLUS:
463 /* An address is assumed not to trap if:
464 - it is the pic register plus a constant. */
465 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
466 return 0;
467
468 /* - or it is an address that can't trap plus a constant integer. */
469 if (CONST_INT_P (XEXP (x, 1))
470 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
471 size, mode, unaligned_mems))
472 return 0;
473
474 return 1;
475
476 case LO_SUM:
477 case PRE_MODIFY:
478 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
479 mode, unaligned_mems);
480
481 case PRE_DEC:
482 case PRE_INC:
483 case POST_DEC:
484 case POST_INC:
485 case POST_MODIFY:
486 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
487 mode, unaligned_mems);
488
489 default:
490 break;
491 }
492
493 /* If it isn't one of the case above, it can cause a trap. */
494 return 1;
495 }
496
497 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
498
499 int
500 rtx_addr_can_trap_p (const_rtx x)
501 {
502 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
503 }
504
505 /* Return true if X is an address that is known to not be zero. */
506
507 bool
508 nonzero_address_p (const_rtx x)
509 {
510 const enum rtx_code code = GET_CODE (x);
511
512 switch (code)
513 {
514 case SYMBOL_REF:
515 return !SYMBOL_REF_WEAK (x);
516
517 case LABEL_REF:
518 return true;
519
520 case REG:
521 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
522 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
523 || x == stack_pointer_rtx
524 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
525 return true;
526 /* All of the virtual frame registers are stack references. */
527 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
528 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
529 return true;
530 return false;
531
532 case CONST:
533 return nonzero_address_p (XEXP (x, 0));
534
535 case PLUS:
536 /* Handle PIC references. */
537 if (XEXP (x, 0) == pic_offset_table_rtx
538 && CONSTANT_P (XEXP (x, 1)))
539 return true;
540 return false;
541
542 case PRE_MODIFY:
543 /* Similar to the above; allow positive offsets. Further, since
544 auto-inc is only allowed in memories, the register must be a
545 pointer. */
546 if (CONST_INT_P (XEXP (x, 1))
547 && INTVAL (XEXP (x, 1)) > 0)
548 return true;
549 return nonzero_address_p (XEXP (x, 0));
550
551 case PRE_INC:
552 /* Similarly. Further, the offset is always positive. */
553 return true;
554
555 case PRE_DEC:
556 case POST_DEC:
557 case POST_INC:
558 case POST_MODIFY:
559 return nonzero_address_p (XEXP (x, 0));
560
561 case LO_SUM:
562 return nonzero_address_p (XEXP (x, 1));
563
564 default:
565 break;
566 }
567
568 /* If it isn't one of the case above, might be zero. */
569 return false;
570 }
571
572 /* Return 1 if X refers to a memory location whose address
573 cannot be compared reliably with constant addresses,
574 or if X refers to a BLKmode memory object.
575 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
576 zero, we are slightly more conservative. */
577
578 bool
579 rtx_addr_varies_p (const_rtx x, bool for_alias)
580 {
581 enum rtx_code code;
582 int i;
583 const char *fmt;
584
585 if (x == 0)
586 return 0;
587
588 code = GET_CODE (x);
589 if (code == MEM)
590 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
591
592 fmt = GET_RTX_FORMAT (code);
593 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
594 if (fmt[i] == 'e')
595 {
596 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
597 return 1;
598 }
599 else if (fmt[i] == 'E')
600 {
601 int j;
602 for (j = 0; j < XVECLEN (x, i); j++)
603 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
604 return 1;
605 }
606 return 0;
607 }
608 \f
609 /* Return the CALL in X if there is one. */
610
611 rtx
612 get_call_rtx_from (rtx x)
613 {
614 if (INSN_P (x))
615 x = PATTERN (x);
616 if (GET_CODE (x) == PARALLEL)
617 x = XVECEXP (x, 0, 0);
618 if (GET_CODE (x) == SET)
619 x = SET_SRC (x);
620 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
621 return x;
622 return NULL_RTX;
623 }
624 \f
625 /* Return the value of the integer term in X, if one is apparent;
626 otherwise return 0.
627 Only obvious integer terms are detected.
628 This is used in cse.c with the `related_value' field. */
629
630 HOST_WIDE_INT
631 get_integer_term (const_rtx x)
632 {
633 if (GET_CODE (x) == CONST)
634 x = XEXP (x, 0);
635
636 if (GET_CODE (x) == MINUS
637 && CONST_INT_P (XEXP (x, 1)))
638 return - INTVAL (XEXP (x, 1));
639 if (GET_CODE (x) == PLUS
640 && CONST_INT_P (XEXP (x, 1)))
641 return INTVAL (XEXP (x, 1));
642 return 0;
643 }
644
645 /* If X is a constant, return the value sans apparent integer term;
646 otherwise return 0.
647 Only obvious integer terms are detected. */
648
649 rtx
650 get_related_value (const_rtx x)
651 {
652 if (GET_CODE (x) != CONST)
653 return 0;
654 x = XEXP (x, 0);
655 if (GET_CODE (x) == PLUS
656 && CONST_INT_P (XEXP (x, 1)))
657 return XEXP (x, 0);
658 else if (GET_CODE (x) == MINUS
659 && CONST_INT_P (XEXP (x, 1)))
660 return XEXP (x, 0);
661 return 0;
662 }
663 \f
664 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
665 to somewhere in the same object or object_block as SYMBOL. */
666
667 bool
668 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
669 {
670 tree decl;
671
672 if (GET_CODE (symbol) != SYMBOL_REF)
673 return false;
674
675 if (offset == 0)
676 return true;
677
678 if (offset > 0)
679 {
680 if (CONSTANT_POOL_ADDRESS_P (symbol)
681 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
682 return true;
683
684 decl = SYMBOL_REF_DECL (symbol);
685 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
686 return true;
687 }
688
689 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
690 && SYMBOL_REF_BLOCK (symbol)
691 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
692 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
693 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
694 return true;
695
696 return false;
697 }
698
699 /* Split X into a base and a constant offset, storing them in *BASE_OUT
700 and *OFFSET_OUT respectively. */
701
702 void
703 split_const (rtx x, rtx *base_out, rtx *offset_out)
704 {
705 if (GET_CODE (x) == CONST)
706 {
707 x = XEXP (x, 0);
708 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
709 {
710 *base_out = XEXP (x, 0);
711 *offset_out = XEXP (x, 1);
712 return;
713 }
714 }
715 *base_out = x;
716 *offset_out = const0_rtx;
717 }
718 \f
719 /* Return the number of places FIND appears within X. If COUNT_DEST is
720 zero, we do not count occurrences inside the destination of a SET. */
721
722 int
723 count_occurrences (const_rtx x, const_rtx find, int count_dest)
724 {
725 int i, j;
726 enum rtx_code code;
727 const char *format_ptr;
728 int count;
729
730 if (x == find)
731 return 1;
732
733 code = GET_CODE (x);
734
735 switch (code)
736 {
737 case REG:
738 CASE_CONST_ANY:
739 case SYMBOL_REF:
740 case CODE_LABEL:
741 case PC:
742 case CC0:
743 return 0;
744
745 case EXPR_LIST:
746 count = count_occurrences (XEXP (x, 0), find, count_dest);
747 if (XEXP (x, 1))
748 count += count_occurrences (XEXP (x, 1), find, count_dest);
749 return count;
750
751 case MEM:
752 if (MEM_P (find) && rtx_equal_p (x, find))
753 return 1;
754 break;
755
756 case SET:
757 if (SET_DEST (x) == find && ! count_dest)
758 return count_occurrences (SET_SRC (x), find, count_dest);
759 break;
760
761 default:
762 break;
763 }
764
765 format_ptr = GET_RTX_FORMAT (code);
766 count = 0;
767
768 for (i = 0; i < GET_RTX_LENGTH (code); i++)
769 {
770 switch (*format_ptr++)
771 {
772 case 'e':
773 count += count_occurrences (XEXP (x, i), find, count_dest);
774 break;
775
776 case 'E':
777 for (j = 0; j < XVECLEN (x, i); j++)
778 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
779 break;
780 }
781 }
782 return count;
783 }
784
785 \f
786 /* Return TRUE if OP is a register or subreg of a register that
787 holds an unsigned quantity. Otherwise, return FALSE. */
788
789 bool
790 unsigned_reg_p (rtx op)
791 {
792 if (REG_P (op)
793 && REG_EXPR (op)
794 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
795 return true;
796
797 if (GET_CODE (op) == SUBREG
798 && SUBREG_PROMOTED_SIGN (op))
799 return true;
800
801 return false;
802 }
803
804 \f
805 /* Nonzero if register REG appears somewhere within IN.
806 Also works if REG is not a register; in this case it checks
807 for a subexpression of IN that is Lisp "equal" to REG. */
808
809 int
810 reg_mentioned_p (const_rtx reg, const_rtx in)
811 {
812 const char *fmt;
813 int i;
814 enum rtx_code code;
815
816 if (in == 0)
817 return 0;
818
819 if (reg == in)
820 return 1;
821
822 if (GET_CODE (in) == LABEL_REF)
823 return reg == LABEL_REF_LABEL (in);
824
825 code = GET_CODE (in);
826
827 switch (code)
828 {
829 /* Compare registers by number. */
830 case REG:
831 return REG_P (reg) && REGNO (in) == REGNO (reg);
832
833 /* These codes have no constituent expressions
834 and are unique. */
835 case SCRATCH:
836 case CC0:
837 case PC:
838 return 0;
839
840 CASE_CONST_ANY:
841 /* These are kept unique for a given value. */
842 return 0;
843
844 default:
845 break;
846 }
847
848 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
849 return 1;
850
851 fmt = GET_RTX_FORMAT (code);
852
853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
854 {
855 if (fmt[i] == 'E')
856 {
857 int j;
858 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
859 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
860 return 1;
861 }
862 else if (fmt[i] == 'e'
863 && reg_mentioned_p (reg, XEXP (in, i)))
864 return 1;
865 }
866 return 0;
867 }
868 \f
869 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
870 no CODE_LABEL insn. */
871
872 int
873 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
874 {
875 rtx_insn *p;
876 if (beg == end)
877 return 0;
878 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
879 if (LABEL_P (p))
880 return 0;
881 return 1;
882 }
883
884 /* Nonzero if register REG is used in an insn between
885 FROM_INSN and TO_INSN (exclusive of those two). */
886
887 int
888 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
889 const rtx_insn *to_insn)
890 {
891 rtx_insn *insn;
892
893 if (from_insn == to_insn)
894 return 0;
895
896 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
897 if (NONDEBUG_INSN_P (insn)
898 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
899 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
900 return 1;
901 return 0;
902 }
903 \f
904 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
905 is entirely replaced by a new value and the only use is as a SET_DEST,
906 we do not consider it a reference. */
907
908 int
909 reg_referenced_p (const_rtx x, const_rtx body)
910 {
911 int i;
912
913 switch (GET_CODE (body))
914 {
915 case SET:
916 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
917 return 1;
918
919 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
920 of a REG that occupies all of the REG, the insn references X if
921 it is mentioned in the destination. */
922 if (GET_CODE (SET_DEST (body)) != CC0
923 && GET_CODE (SET_DEST (body)) != PC
924 && !REG_P (SET_DEST (body))
925 && ! (GET_CODE (SET_DEST (body)) == SUBREG
926 && REG_P (SUBREG_REG (SET_DEST (body)))
927 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
928 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
929 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
930 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
931 && reg_overlap_mentioned_p (x, SET_DEST (body)))
932 return 1;
933 return 0;
934
935 case ASM_OPERANDS:
936 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
937 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
938 return 1;
939 return 0;
940
941 case CALL:
942 case USE:
943 case IF_THEN_ELSE:
944 return reg_overlap_mentioned_p (x, body);
945
946 case TRAP_IF:
947 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
948
949 case PREFETCH:
950 return reg_overlap_mentioned_p (x, XEXP (body, 0));
951
952 case UNSPEC:
953 case UNSPEC_VOLATILE:
954 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
955 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
956 return 1;
957 return 0;
958
959 case PARALLEL:
960 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
961 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
962 return 1;
963 return 0;
964
965 case CLOBBER:
966 if (MEM_P (XEXP (body, 0)))
967 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
968 return 1;
969 return 0;
970
971 case COND_EXEC:
972 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
973 return 1;
974 return reg_referenced_p (x, COND_EXEC_CODE (body));
975
976 default:
977 return 0;
978 }
979 }
980 \f
981 /* Nonzero if register REG is set or clobbered in an insn between
982 FROM_INSN and TO_INSN (exclusive of those two). */
983
984 int
985 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
986 const rtx_insn *to_insn)
987 {
988 const rtx_insn *insn;
989
990 if (from_insn == to_insn)
991 return 0;
992
993 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
994 if (INSN_P (insn) && reg_set_p (reg, insn))
995 return 1;
996 return 0;
997 }
998
999 /* Internals of reg_set_between_p. */
1000 int
1001 reg_set_p (const_rtx reg, const_rtx insn)
1002 {
1003 /* After delay slot handling, call and branch insns might be in a
1004 sequence. Check all the elements there. */
1005 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1006 {
1007 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1008 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1009 return true;
1010
1011 return false;
1012 }
1013
1014 /* We can be passed an insn or part of one. If we are passed an insn,
1015 check if a side-effect of the insn clobbers REG. */
1016 if (INSN_P (insn)
1017 && (FIND_REG_INC_NOTE (insn, reg)
1018 || (CALL_P (insn)
1019 && ((REG_P (reg)
1020 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1021 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1022 GET_MODE (reg), REGNO (reg)))
1023 || MEM_P (reg)
1024 || find_reg_fusage (insn, CLOBBER, reg)))))
1025 return true;
1026
1027 return set_of (reg, insn) != NULL_RTX;
1028 }
1029
1030 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1031 only if none of them are modified between START and END. Return 1 if
1032 X contains a MEM; this routine does use memory aliasing. */
1033
1034 int
1035 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1036 {
1037 const enum rtx_code code = GET_CODE (x);
1038 const char *fmt;
1039 int i, j;
1040 rtx_insn *insn;
1041
1042 if (start == end)
1043 return 0;
1044
1045 switch (code)
1046 {
1047 CASE_CONST_ANY:
1048 case CONST:
1049 case SYMBOL_REF:
1050 case LABEL_REF:
1051 return 0;
1052
1053 case PC:
1054 case CC0:
1055 return 1;
1056
1057 case MEM:
1058 if (modified_between_p (XEXP (x, 0), start, end))
1059 return 1;
1060 if (MEM_READONLY_P (x))
1061 return 0;
1062 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1063 if (memory_modified_in_insn_p (x, insn))
1064 return 1;
1065 return 0;
1066 break;
1067
1068 case REG:
1069 return reg_set_between_p (x, start, end);
1070
1071 default:
1072 break;
1073 }
1074
1075 fmt = GET_RTX_FORMAT (code);
1076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1077 {
1078 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1079 return 1;
1080
1081 else if (fmt[i] == 'E')
1082 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1083 if (modified_between_p (XVECEXP (x, i, j), start, end))
1084 return 1;
1085 }
1086
1087 return 0;
1088 }
1089
1090 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1091 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1092 does use memory aliasing. */
1093
1094 int
1095 modified_in_p (const_rtx x, const_rtx insn)
1096 {
1097 const enum rtx_code code = GET_CODE (x);
1098 const char *fmt;
1099 int i, j;
1100
1101 switch (code)
1102 {
1103 CASE_CONST_ANY:
1104 case CONST:
1105 case SYMBOL_REF:
1106 case LABEL_REF:
1107 return 0;
1108
1109 case PC:
1110 case CC0:
1111 return 1;
1112
1113 case MEM:
1114 if (modified_in_p (XEXP (x, 0), insn))
1115 return 1;
1116 if (MEM_READONLY_P (x))
1117 return 0;
1118 if (memory_modified_in_insn_p (x, insn))
1119 return 1;
1120 return 0;
1121 break;
1122
1123 case REG:
1124 return reg_set_p (x, insn);
1125
1126 default:
1127 break;
1128 }
1129
1130 fmt = GET_RTX_FORMAT (code);
1131 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1132 {
1133 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1134 return 1;
1135
1136 else if (fmt[i] == 'E')
1137 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1138 if (modified_in_p (XVECEXP (x, i, j), insn))
1139 return 1;
1140 }
1141
1142 return 0;
1143 }
1144 \f
1145 /* Helper function for set_of. */
1146 struct set_of_data
1147 {
1148 const_rtx found;
1149 const_rtx pat;
1150 };
1151
1152 static void
1153 set_of_1 (rtx x, const_rtx pat, void *data1)
1154 {
1155 struct set_of_data *const data = (struct set_of_data *) (data1);
1156 if (rtx_equal_p (x, data->pat)
1157 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1158 data->found = pat;
1159 }
1160
1161 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1162 (either directly or via STRICT_LOW_PART and similar modifiers). */
1163 const_rtx
1164 set_of (const_rtx pat, const_rtx insn)
1165 {
1166 struct set_of_data data;
1167 data.found = NULL_RTX;
1168 data.pat = pat;
1169 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1170 return data.found;
1171 }
1172
1173 /* Add all hard register in X to *PSET. */
1174 void
1175 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1176 {
1177 subrtx_iterator::array_type array;
1178 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1179 {
1180 const_rtx x = *iter;
1181 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1182 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1183 }
1184 }
1185
1186 /* This function, called through note_stores, collects sets and
1187 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1188 by DATA. */
1189 void
1190 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1191 {
1192 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1193 if (REG_P (x) && HARD_REGISTER_P (x))
1194 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1195 }
1196
1197 /* Examine INSN, and compute the set of hard registers written by it.
1198 Store it in *PSET. Should only be called after reload. */
1199 void
1200 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1201 {
1202 rtx link;
1203
1204 CLEAR_HARD_REG_SET (*pset);
1205 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1206 if (CALL_P (insn))
1207 {
1208 if (implicit)
1209 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1210
1211 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1212 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1213 }
1214 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1215 if (REG_NOTE_KIND (link) == REG_INC)
1216 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1217 }
1218
1219 /* Like record_hard_reg_sets, but called through note_uses. */
1220 void
1221 record_hard_reg_uses (rtx *px, void *data)
1222 {
1223 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1224 }
1225 \f
1226 /* Given an INSN, return a SET expression if this insn has only a single SET.
1227 It may also have CLOBBERs, USEs, or SET whose output
1228 will not be used, which we ignore. */
1229
1230 rtx
1231 single_set_2 (const rtx_insn *insn, const_rtx pat)
1232 {
1233 rtx set = NULL;
1234 int set_verified = 1;
1235 int i;
1236
1237 if (GET_CODE (pat) == PARALLEL)
1238 {
1239 for (i = 0; i < XVECLEN (pat, 0); i++)
1240 {
1241 rtx sub = XVECEXP (pat, 0, i);
1242 switch (GET_CODE (sub))
1243 {
1244 case USE:
1245 case CLOBBER:
1246 break;
1247
1248 case SET:
1249 /* We can consider insns having multiple sets, where all
1250 but one are dead as single set insns. In common case
1251 only single set is present in the pattern so we want
1252 to avoid checking for REG_UNUSED notes unless necessary.
1253
1254 When we reach set first time, we just expect this is
1255 the single set we are looking for and only when more
1256 sets are found in the insn, we check them. */
1257 if (!set_verified)
1258 {
1259 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1260 && !side_effects_p (set))
1261 set = NULL;
1262 else
1263 set_verified = 1;
1264 }
1265 if (!set)
1266 set = sub, set_verified = 0;
1267 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1268 || side_effects_p (sub))
1269 return NULL_RTX;
1270 break;
1271
1272 default:
1273 return NULL_RTX;
1274 }
1275 }
1276 }
1277 return set;
1278 }
1279
1280 /* Given an INSN, return nonzero if it has more than one SET, else return
1281 zero. */
1282
1283 int
1284 multiple_sets (const_rtx insn)
1285 {
1286 int found;
1287 int i;
1288
1289 /* INSN must be an insn. */
1290 if (! INSN_P (insn))
1291 return 0;
1292
1293 /* Only a PARALLEL can have multiple SETs. */
1294 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1295 {
1296 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1297 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1298 {
1299 /* If we have already found a SET, then return now. */
1300 if (found)
1301 return 1;
1302 else
1303 found = 1;
1304 }
1305 }
1306
1307 /* Either zero or one SET. */
1308 return 0;
1309 }
1310 \f
1311 /* Return nonzero if the destination of SET equals the source
1312 and there are no side effects. */
1313
1314 int
1315 set_noop_p (const_rtx set)
1316 {
1317 rtx src = SET_SRC (set);
1318 rtx dst = SET_DEST (set);
1319
1320 if (dst == pc_rtx && src == pc_rtx)
1321 return 1;
1322
1323 if (MEM_P (dst) && MEM_P (src))
1324 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1325
1326 if (GET_CODE (dst) == ZERO_EXTRACT)
1327 return rtx_equal_p (XEXP (dst, 0), src)
1328 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1329 && !side_effects_p (src);
1330
1331 if (GET_CODE (dst) == STRICT_LOW_PART)
1332 dst = XEXP (dst, 0);
1333
1334 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1335 {
1336 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1337 return 0;
1338 src = SUBREG_REG (src);
1339 dst = SUBREG_REG (dst);
1340 }
1341
1342 /* It is a NOOP if destination overlaps with selected src vector
1343 elements. */
1344 if (GET_CODE (src) == VEC_SELECT
1345 && REG_P (XEXP (src, 0)) && REG_P (dst)
1346 && HARD_REGISTER_P (XEXP (src, 0))
1347 && HARD_REGISTER_P (dst))
1348 {
1349 int i;
1350 rtx par = XEXP (src, 1);
1351 rtx src0 = XEXP (src, 0);
1352 int c0 = INTVAL (XVECEXP (par, 0, 0));
1353 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1354
1355 for (i = 1; i < XVECLEN (par, 0); i++)
1356 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1357 return 0;
1358 return
1359 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1360 offset, GET_MODE (dst)) == (int) REGNO (dst);
1361 }
1362
1363 return (REG_P (src) && REG_P (dst)
1364 && REGNO (src) == REGNO (dst));
1365 }
1366 \f
1367 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1368 value to itself. */
1369
1370 int
1371 noop_move_p (const_rtx insn)
1372 {
1373 rtx pat = PATTERN (insn);
1374
1375 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1376 return 1;
1377
1378 /* Insns carrying these notes are useful later on. */
1379 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1380 return 0;
1381
1382 /* Check the code to be executed for COND_EXEC. */
1383 if (GET_CODE (pat) == COND_EXEC)
1384 pat = COND_EXEC_CODE (pat);
1385
1386 if (GET_CODE (pat) == SET && set_noop_p (pat))
1387 return 1;
1388
1389 if (GET_CODE (pat) == PARALLEL)
1390 {
1391 int i;
1392 /* If nothing but SETs of registers to themselves,
1393 this insn can also be deleted. */
1394 for (i = 0; i < XVECLEN (pat, 0); i++)
1395 {
1396 rtx tem = XVECEXP (pat, 0, i);
1397
1398 if (GET_CODE (tem) == USE
1399 || GET_CODE (tem) == CLOBBER)
1400 continue;
1401
1402 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1403 return 0;
1404 }
1405
1406 return 1;
1407 }
1408 return 0;
1409 }
1410 \f
1411
1412 /* Return nonzero if register in range [REGNO, ENDREGNO)
1413 appears either explicitly or implicitly in X
1414 other than being stored into.
1415
1416 References contained within the substructure at LOC do not count.
1417 LOC may be zero, meaning don't ignore anything. */
1418
1419 bool
1420 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1421 rtx *loc)
1422 {
1423 int i;
1424 unsigned int x_regno;
1425 RTX_CODE code;
1426 const char *fmt;
1427
1428 repeat:
1429 /* The contents of a REG_NONNEG note is always zero, so we must come here
1430 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1431 if (x == 0)
1432 return false;
1433
1434 code = GET_CODE (x);
1435
1436 switch (code)
1437 {
1438 case REG:
1439 x_regno = REGNO (x);
1440
1441 /* If we modifying the stack, frame, or argument pointer, it will
1442 clobber a virtual register. In fact, we could be more precise,
1443 but it isn't worth it. */
1444 if ((x_regno == STACK_POINTER_REGNUM
1445 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1446 || x_regno == ARG_POINTER_REGNUM
1447 #endif
1448 || x_regno == FRAME_POINTER_REGNUM)
1449 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1450 return true;
1451
1452 return endregno > x_regno && regno < END_REGNO (x);
1453
1454 case SUBREG:
1455 /* If this is a SUBREG of a hard reg, we can see exactly which
1456 registers are being modified. Otherwise, handle normally. */
1457 if (REG_P (SUBREG_REG (x))
1458 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1459 {
1460 unsigned int inner_regno = subreg_regno (x);
1461 unsigned int inner_endregno
1462 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1463 ? subreg_nregs (x) : 1);
1464
1465 return endregno > inner_regno && regno < inner_endregno;
1466 }
1467 break;
1468
1469 case CLOBBER:
1470 case SET:
1471 if (&SET_DEST (x) != loc
1472 /* Note setting a SUBREG counts as referring to the REG it is in for
1473 a pseudo but not for hard registers since we can
1474 treat each word individually. */
1475 && ((GET_CODE (SET_DEST (x)) == SUBREG
1476 && loc != &SUBREG_REG (SET_DEST (x))
1477 && REG_P (SUBREG_REG (SET_DEST (x)))
1478 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1479 && refers_to_regno_p (regno, endregno,
1480 SUBREG_REG (SET_DEST (x)), loc))
1481 || (!REG_P (SET_DEST (x))
1482 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1483 return true;
1484
1485 if (code == CLOBBER || loc == &SET_SRC (x))
1486 return false;
1487 x = SET_SRC (x);
1488 goto repeat;
1489
1490 default:
1491 break;
1492 }
1493
1494 /* X does not match, so try its subexpressions. */
1495
1496 fmt = GET_RTX_FORMAT (code);
1497 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1498 {
1499 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1500 {
1501 if (i == 0)
1502 {
1503 x = XEXP (x, 0);
1504 goto repeat;
1505 }
1506 else
1507 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1508 return true;
1509 }
1510 else if (fmt[i] == 'E')
1511 {
1512 int j;
1513 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1514 if (loc != &XVECEXP (x, i, j)
1515 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1516 return true;
1517 }
1518 }
1519 return false;
1520 }
1521
1522 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1523 we check if any register number in X conflicts with the relevant register
1524 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1525 contains a MEM (we don't bother checking for memory addresses that can't
1526 conflict because we expect this to be a rare case. */
1527
1528 int
1529 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1530 {
1531 unsigned int regno, endregno;
1532
1533 /* If either argument is a constant, then modifying X can not
1534 affect IN. Here we look at IN, we can profitably combine
1535 CONSTANT_P (x) with the switch statement below. */
1536 if (CONSTANT_P (in))
1537 return 0;
1538
1539 recurse:
1540 switch (GET_CODE (x))
1541 {
1542 case STRICT_LOW_PART:
1543 case ZERO_EXTRACT:
1544 case SIGN_EXTRACT:
1545 /* Overly conservative. */
1546 x = XEXP (x, 0);
1547 goto recurse;
1548
1549 case SUBREG:
1550 regno = REGNO (SUBREG_REG (x));
1551 if (regno < FIRST_PSEUDO_REGISTER)
1552 regno = subreg_regno (x);
1553 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1554 ? subreg_nregs (x) : 1);
1555 goto do_reg;
1556
1557 case REG:
1558 regno = REGNO (x);
1559 endregno = END_REGNO (x);
1560 do_reg:
1561 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1562
1563 case MEM:
1564 {
1565 const char *fmt;
1566 int i;
1567
1568 if (MEM_P (in))
1569 return 1;
1570
1571 fmt = GET_RTX_FORMAT (GET_CODE (in));
1572 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1573 if (fmt[i] == 'e')
1574 {
1575 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1576 return 1;
1577 }
1578 else if (fmt[i] == 'E')
1579 {
1580 int j;
1581 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1582 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1583 return 1;
1584 }
1585
1586 return 0;
1587 }
1588
1589 case SCRATCH:
1590 case PC:
1591 case CC0:
1592 return reg_mentioned_p (x, in);
1593
1594 case PARALLEL:
1595 {
1596 int i;
1597
1598 /* If any register in here refers to it we return true. */
1599 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1600 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1601 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1602 return 1;
1603 return 0;
1604 }
1605
1606 default:
1607 gcc_assert (CONSTANT_P (x));
1608 return 0;
1609 }
1610 }
1611 \f
1612 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1613 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1614 ignored by note_stores, but passed to FUN.
1615
1616 FUN receives three arguments:
1617 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1618 2. the SET or CLOBBER rtx that does the store,
1619 3. the pointer DATA provided to note_stores.
1620
1621 If the item being stored in or clobbered is a SUBREG of a hard register,
1622 the SUBREG will be passed. */
1623
1624 void
1625 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1626 {
1627 int i;
1628
1629 if (GET_CODE (x) == COND_EXEC)
1630 x = COND_EXEC_CODE (x);
1631
1632 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1633 {
1634 rtx dest = SET_DEST (x);
1635
1636 while ((GET_CODE (dest) == SUBREG
1637 && (!REG_P (SUBREG_REG (dest))
1638 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1639 || GET_CODE (dest) == ZERO_EXTRACT
1640 || GET_CODE (dest) == STRICT_LOW_PART)
1641 dest = XEXP (dest, 0);
1642
1643 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1644 each of whose first operand is a register. */
1645 if (GET_CODE (dest) == PARALLEL)
1646 {
1647 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1648 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1649 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1650 }
1651 else
1652 (*fun) (dest, x, data);
1653 }
1654
1655 else if (GET_CODE (x) == PARALLEL)
1656 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1657 note_stores (XVECEXP (x, 0, i), fun, data);
1658 }
1659 \f
1660 /* Like notes_stores, but call FUN for each expression that is being
1661 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1662 FUN for each expression, not any interior subexpressions. FUN receives a
1663 pointer to the expression and the DATA passed to this function.
1664
1665 Note that this is not quite the same test as that done in reg_referenced_p
1666 since that considers something as being referenced if it is being
1667 partially set, while we do not. */
1668
1669 void
1670 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1671 {
1672 rtx body = *pbody;
1673 int i;
1674
1675 switch (GET_CODE (body))
1676 {
1677 case COND_EXEC:
1678 (*fun) (&COND_EXEC_TEST (body), data);
1679 note_uses (&COND_EXEC_CODE (body), fun, data);
1680 return;
1681
1682 case PARALLEL:
1683 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1684 note_uses (&XVECEXP (body, 0, i), fun, data);
1685 return;
1686
1687 case SEQUENCE:
1688 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1689 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1690 return;
1691
1692 case USE:
1693 (*fun) (&XEXP (body, 0), data);
1694 return;
1695
1696 case ASM_OPERANDS:
1697 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1698 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1699 return;
1700
1701 case TRAP_IF:
1702 (*fun) (&TRAP_CONDITION (body), data);
1703 return;
1704
1705 case PREFETCH:
1706 (*fun) (&XEXP (body, 0), data);
1707 return;
1708
1709 case UNSPEC:
1710 case UNSPEC_VOLATILE:
1711 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1712 (*fun) (&XVECEXP (body, 0, i), data);
1713 return;
1714
1715 case CLOBBER:
1716 if (MEM_P (XEXP (body, 0)))
1717 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1718 return;
1719
1720 case SET:
1721 {
1722 rtx dest = SET_DEST (body);
1723
1724 /* For sets we replace everything in source plus registers in memory
1725 expression in store and operands of a ZERO_EXTRACT. */
1726 (*fun) (&SET_SRC (body), data);
1727
1728 if (GET_CODE (dest) == ZERO_EXTRACT)
1729 {
1730 (*fun) (&XEXP (dest, 1), data);
1731 (*fun) (&XEXP (dest, 2), data);
1732 }
1733
1734 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1735 dest = XEXP (dest, 0);
1736
1737 if (MEM_P (dest))
1738 (*fun) (&XEXP (dest, 0), data);
1739 }
1740 return;
1741
1742 default:
1743 /* All the other possibilities never store. */
1744 (*fun) (pbody, data);
1745 return;
1746 }
1747 }
1748 \f
1749 /* Return nonzero if X's old contents don't survive after INSN.
1750 This will be true if X is (cc0) or if X is a register and
1751 X dies in INSN or because INSN entirely sets X.
1752
1753 "Entirely set" means set directly and not through a SUBREG, or
1754 ZERO_EXTRACT, so no trace of the old contents remains.
1755 Likewise, REG_INC does not count.
1756
1757 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1758 but for this use that makes no difference, since regs don't overlap
1759 during their lifetimes. Therefore, this function may be used
1760 at any time after deaths have been computed.
1761
1762 If REG is a hard reg that occupies multiple machine registers, this
1763 function will only return 1 if each of those registers will be replaced
1764 by INSN. */
1765
1766 int
1767 dead_or_set_p (const_rtx insn, const_rtx x)
1768 {
1769 unsigned int regno, end_regno;
1770 unsigned int i;
1771
1772 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1773 if (GET_CODE (x) == CC0)
1774 return 1;
1775
1776 gcc_assert (REG_P (x));
1777
1778 regno = REGNO (x);
1779 end_regno = END_REGNO (x);
1780 for (i = regno; i < end_regno; i++)
1781 if (! dead_or_set_regno_p (insn, i))
1782 return 0;
1783
1784 return 1;
1785 }
1786
1787 /* Return TRUE iff DEST is a register or subreg of a register and
1788 doesn't change the number of words of the inner register, and any
1789 part of the register is TEST_REGNO. */
1790
1791 static bool
1792 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1793 {
1794 unsigned int regno, endregno;
1795
1796 if (GET_CODE (dest) == SUBREG
1797 && (((GET_MODE_SIZE (GET_MODE (dest))
1798 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1799 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1800 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1801 dest = SUBREG_REG (dest);
1802
1803 if (!REG_P (dest))
1804 return false;
1805
1806 regno = REGNO (dest);
1807 endregno = END_REGNO (dest);
1808 return (test_regno >= regno && test_regno < endregno);
1809 }
1810
1811 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1812 any member matches the covers_regno_no_parallel_p criteria. */
1813
1814 static bool
1815 covers_regno_p (const_rtx dest, unsigned int test_regno)
1816 {
1817 if (GET_CODE (dest) == PARALLEL)
1818 {
1819 /* Some targets place small structures in registers for return
1820 values of functions, and those registers are wrapped in
1821 PARALLELs that we may see as the destination of a SET. */
1822 int i;
1823
1824 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1825 {
1826 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1827 if (inner != NULL_RTX
1828 && covers_regno_no_parallel_p (inner, test_regno))
1829 return true;
1830 }
1831
1832 return false;
1833 }
1834 else
1835 return covers_regno_no_parallel_p (dest, test_regno);
1836 }
1837
1838 /* Utility function for dead_or_set_p to check an individual register. */
1839
1840 int
1841 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1842 {
1843 const_rtx pattern;
1844
1845 /* See if there is a death note for something that includes TEST_REGNO. */
1846 if (find_regno_note (insn, REG_DEAD, test_regno))
1847 return 1;
1848
1849 if (CALL_P (insn)
1850 && find_regno_fusage (insn, CLOBBER, test_regno))
1851 return 1;
1852
1853 pattern = PATTERN (insn);
1854
1855 /* If a COND_EXEC is not executed, the value survives. */
1856 if (GET_CODE (pattern) == COND_EXEC)
1857 return 0;
1858
1859 if (GET_CODE (pattern) == SET)
1860 return covers_regno_p (SET_DEST (pattern), test_regno);
1861 else if (GET_CODE (pattern) == PARALLEL)
1862 {
1863 int i;
1864
1865 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1866 {
1867 rtx body = XVECEXP (pattern, 0, i);
1868
1869 if (GET_CODE (body) == COND_EXEC)
1870 body = COND_EXEC_CODE (body);
1871
1872 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1873 && covers_regno_p (SET_DEST (body), test_regno))
1874 return 1;
1875 }
1876 }
1877
1878 return 0;
1879 }
1880
1881 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1882 If DATUM is nonzero, look for one whose datum is DATUM. */
1883
1884 rtx
1885 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1886 {
1887 rtx link;
1888
1889 gcc_checking_assert (insn);
1890
1891 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1892 if (! INSN_P (insn))
1893 return 0;
1894 if (datum == 0)
1895 {
1896 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1897 if (REG_NOTE_KIND (link) == kind)
1898 return link;
1899 return 0;
1900 }
1901
1902 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1903 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1904 return link;
1905 return 0;
1906 }
1907
1908 /* Return the reg-note of kind KIND in insn INSN which applies to register
1909 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1910 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1911 it might be the case that the note overlaps REGNO. */
1912
1913 rtx
1914 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1915 {
1916 rtx link;
1917
1918 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1919 if (! INSN_P (insn))
1920 return 0;
1921
1922 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1923 if (REG_NOTE_KIND (link) == kind
1924 /* Verify that it is a register, so that scratch and MEM won't cause a
1925 problem here. */
1926 && REG_P (XEXP (link, 0))
1927 && REGNO (XEXP (link, 0)) <= regno
1928 && END_REGNO (XEXP (link, 0)) > regno)
1929 return link;
1930 return 0;
1931 }
1932
1933 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1934 has such a note. */
1935
1936 rtx
1937 find_reg_equal_equiv_note (const_rtx insn)
1938 {
1939 rtx link;
1940
1941 if (!INSN_P (insn))
1942 return 0;
1943
1944 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1945 if (REG_NOTE_KIND (link) == REG_EQUAL
1946 || REG_NOTE_KIND (link) == REG_EQUIV)
1947 {
1948 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1949 insns that have multiple sets. Checking single_set to
1950 make sure of this is not the proper check, as explained
1951 in the comment in set_unique_reg_note.
1952
1953 This should be changed into an assert. */
1954 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1955 return 0;
1956 return link;
1957 }
1958 return NULL;
1959 }
1960
1961 /* Check whether INSN is a single_set whose source is known to be
1962 equivalent to a constant. Return that constant if so, otherwise
1963 return null. */
1964
1965 rtx
1966 find_constant_src (const rtx_insn *insn)
1967 {
1968 rtx note, set, x;
1969
1970 set = single_set (insn);
1971 if (set)
1972 {
1973 x = avoid_constant_pool_reference (SET_SRC (set));
1974 if (CONSTANT_P (x))
1975 return x;
1976 }
1977
1978 note = find_reg_equal_equiv_note (insn);
1979 if (note && CONSTANT_P (XEXP (note, 0)))
1980 return XEXP (note, 0);
1981
1982 return NULL_RTX;
1983 }
1984
1985 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1986 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1987
1988 int
1989 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1990 {
1991 /* If it's not a CALL_INSN, it can't possibly have a
1992 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1993 if (!CALL_P (insn))
1994 return 0;
1995
1996 gcc_assert (datum);
1997
1998 if (!REG_P (datum))
1999 {
2000 rtx link;
2001
2002 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2003 link;
2004 link = XEXP (link, 1))
2005 if (GET_CODE (XEXP (link, 0)) == code
2006 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2007 return 1;
2008 }
2009 else
2010 {
2011 unsigned int regno = REGNO (datum);
2012
2013 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2014 to pseudo registers, so don't bother checking. */
2015
2016 if (regno < FIRST_PSEUDO_REGISTER)
2017 {
2018 unsigned int end_regno = END_HARD_REGNO (datum);
2019 unsigned int i;
2020
2021 for (i = regno; i < end_regno; i++)
2022 if (find_regno_fusage (insn, code, i))
2023 return 1;
2024 }
2025 }
2026
2027 return 0;
2028 }
2029
2030 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2031 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2032
2033 int
2034 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2035 {
2036 rtx link;
2037
2038 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2039 to pseudo registers, so don't bother checking. */
2040
2041 if (regno >= FIRST_PSEUDO_REGISTER
2042 || !CALL_P (insn) )
2043 return 0;
2044
2045 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2046 {
2047 rtx op, reg;
2048
2049 if (GET_CODE (op = XEXP (link, 0)) == code
2050 && REG_P (reg = XEXP (op, 0))
2051 && REGNO (reg) <= regno
2052 && END_HARD_REGNO (reg) > regno)
2053 return 1;
2054 }
2055
2056 return 0;
2057 }
2058
2059 \f
2060 /* Return true if KIND is an integer REG_NOTE. */
2061
2062 static bool
2063 int_reg_note_p (enum reg_note kind)
2064 {
2065 return kind == REG_BR_PROB;
2066 }
2067
2068 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2069 stored as the pointer to the next register note. */
2070
2071 rtx
2072 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2073 {
2074 rtx note;
2075
2076 gcc_checking_assert (!int_reg_note_p (kind));
2077 switch (kind)
2078 {
2079 case REG_CC_SETTER:
2080 case REG_CC_USER:
2081 case REG_LABEL_TARGET:
2082 case REG_LABEL_OPERAND:
2083 case REG_TM:
2084 /* These types of register notes use an INSN_LIST rather than an
2085 EXPR_LIST, so that copying is done right and dumps look
2086 better. */
2087 note = alloc_INSN_LIST (datum, list);
2088 PUT_REG_NOTE_KIND (note, kind);
2089 break;
2090
2091 default:
2092 note = alloc_EXPR_LIST (kind, datum, list);
2093 break;
2094 }
2095
2096 return note;
2097 }
2098
2099 /* Add register note with kind KIND and datum DATUM to INSN. */
2100
2101 void
2102 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2103 {
2104 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2105 }
2106
2107 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2108
2109 void
2110 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2111 {
2112 gcc_checking_assert (int_reg_note_p (kind));
2113 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2114 datum, REG_NOTES (insn));
2115 }
2116
2117 /* Add a register note like NOTE to INSN. */
2118
2119 void
2120 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2121 {
2122 if (GET_CODE (note) == INT_LIST)
2123 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2124 else
2125 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2126 }
2127
2128 /* Remove register note NOTE from the REG_NOTES of INSN. */
2129
2130 void
2131 remove_note (rtx insn, const_rtx note)
2132 {
2133 rtx link;
2134
2135 if (note == NULL_RTX)
2136 return;
2137
2138 if (REG_NOTES (insn) == note)
2139 REG_NOTES (insn) = XEXP (note, 1);
2140 else
2141 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2142 if (XEXP (link, 1) == note)
2143 {
2144 XEXP (link, 1) = XEXP (note, 1);
2145 break;
2146 }
2147
2148 switch (REG_NOTE_KIND (note))
2149 {
2150 case REG_EQUAL:
2151 case REG_EQUIV:
2152 df_notes_rescan (as_a <rtx_insn *> (insn));
2153 break;
2154 default:
2155 break;
2156 }
2157 }
2158
2159 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2160
2161 void
2162 remove_reg_equal_equiv_notes (rtx insn)
2163 {
2164 rtx *loc;
2165
2166 loc = &REG_NOTES (insn);
2167 while (*loc)
2168 {
2169 enum reg_note kind = REG_NOTE_KIND (*loc);
2170 if (kind == REG_EQUAL || kind == REG_EQUIV)
2171 *loc = XEXP (*loc, 1);
2172 else
2173 loc = &XEXP (*loc, 1);
2174 }
2175 }
2176
2177 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2178
2179 void
2180 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2181 {
2182 df_ref eq_use;
2183
2184 if (!df)
2185 return;
2186
2187 /* This loop is a little tricky. We cannot just go down the chain because
2188 it is being modified by some actions in the loop. So we just iterate
2189 over the head. We plan to drain the list anyway. */
2190 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2191 {
2192 rtx_insn *insn = DF_REF_INSN (eq_use);
2193 rtx note = find_reg_equal_equiv_note (insn);
2194
2195 /* This assert is generally triggered when someone deletes a REG_EQUAL
2196 or REG_EQUIV note by hacking the list manually rather than calling
2197 remove_note. */
2198 gcc_assert (note);
2199
2200 remove_note (insn, note);
2201 }
2202 }
2203
2204 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2205 return 1 if it is found. A simple equality test is used to determine if
2206 NODE matches. */
2207
2208 int
2209 in_expr_list_p (const_rtx listp, const_rtx node)
2210 {
2211 const_rtx x;
2212
2213 for (x = listp; x; x = XEXP (x, 1))
2214 if (node == XEXP (x, 0))
2215 return 1;
2216
2217 return 0;
2218 }
2219
2220 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2221 remove that entry from the list if it is found.
2222
2223 A simple equality test is used to determine if NODE matches. */
2224
2225 void
2226 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2227 {
2228 rtx_expr_list *temp = *listp;
2229 rtx prev = NULL_RTX;
2230
2231 while (temp)
2232 {
2233 if (node == temp->element ())
2234 {
2235 /* Splice the node out of the list. */
2236 if (prev)
2237 XEXP (prev, 1) = temp->next ();
2238 else
2239 *listp = temp->next ();
2240
2241 return;
2242 }
2243
2244 prev = temp;
2245 temp = temp->next ();
2246 }
2247 }
2248
2249 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2250 remove that entry from the list if it is found.
2251
2252 A simple equality test is used to determine if NODE matches. */
2253
2254 void
2255 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2256 {
2257 rtx_insn_list *temp = *listp;
2258 rtx prev = NULL;
2259
2260 while (temp)
2261 {
2262 if (node == temp->insn ())
2263 {
2264 /* Splice the node out of the list. */
2265 if (prev)
2266 XEXP (prev, 1) = temp->next ();
2267 else
2268 *listp = temp->next ();
2269
2270 return;
2271 }
2272
2273 prev = temp;
2274 temp = temp->next ();
2275 }
2276 }
2277 \f
2278 /* Nonzero if X contains any volatile instructions. These are instructions
2279 which may cause unpredictable machine state instructions, and thus no
2280 instructions or register uses should be moved or combined across them.
2281 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2282
2283 int
2284 volatile_insn_p (const_rtx x)
2285 {
2286 const RTX_CODE code = GET_CODE (x);
2287 switch (code)
2288 {
2289 case LABEL_REF:
2290 case SYMBOL_REF:
2291 case CONST:
2292 CASE_CONST_ANY:
2293 case CC0:
2294 case PC:
2295 case REG:
2296 case SCRATCH:
2297 case CLOBBER:
2298 case ADDR_VEC:
2299 case ADDR_DIFF_VEC:
2300 case CALL:
2301 case MEM:
2302 return 0;
2303
2304 case UNSPEC_VOLATILE:
2305 return 1;
2306
2307 case ASM_INPUT:
2308 case ASM_OPERANDS:
2309 if (MEM_VOLATILE_P (x))
2310 return 1;
2311
2312 default:
2313 break;
2314 }
2315
2316 /* Recursively scan the operands of this expression. */
2317
2318 {
2319 const char *const fmt = GET_RTX_FORMAT (code);
2320 int i;
2321
2322 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2323 {
2324 if (fmt[i] == 'e')
2325 {
2326 if (volatile_insn_p (XEXP (x, i)))
2327 return 1;
2328 }
2329 else if (fmt[i] == 'E')
2330 {
2331 int j;
2332 for (j = 0; j < XVECLEN (x, i); j++)
2333 if (volatile_insn_p (XVECEXP (x, i, j)))
2334 return 1;
2335 }
2336 }
2337 }
2338 return 0;
2339 }
2340
2341 /* Nonzero if X contains any volatile memory references
2342 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2343
2344 int
2345 volatile_refs_p (const_rtx x)
2346 {
2347 const RTX_CODE code = GET_CODE (x);
2348 switch (code)
2349 {
2350 case LABEL_REF:
2351 case SYMBOL_REF:
2352 case CONST:
2353 CASE_CONST_ANY:
2354 case CC0:
2355 case PC:
2356 case REG:
2357 case SCRATCH:
2358 case CLOBBER:
2359 case ADDR_VEC:
2360 case ADDR_DIFF_VEC:
2361 return 0;
2362
2363 case UNSPEC_VOLATILE:
2364 return 1;
2365
2366 case MEM:
2367 case ASM_INPUT:
2368 case ASM_OPERANDS:
2369 if (MEM_VOLATILE_P (x))
2370 return 1;
2371
2372 default:
2373 break;
2374 }
2375
2376 /* Recursively scan the operands of this expression. */
2377
2378 {
2379 const char *const fmt = GET_RTX_FORMAT (code);
2380 int i;
2381
2382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2383 {
2384 if (fmt[i] == 'e')
2385 {
2386 if (volatile_refs_p (XEXP (x, i)))
2387 return 1;
2388 }
2389 else if (fmt[i] == 'E')
2390 {
2391 int j;
2392 for (j = 0; j < XVECLEN (x, i); j++)
2393 if (volatile_refs_p (XVECEXP (x, i, j)))
2394 return 1;
2395 }
2396 }
2397 }
2398 return 0;
2399 }
2400
2401 /* Similar to above, except that it also rejects register pre- and post-
2402 incrementing. */
2403
2404 int
2405 side_effects_p (const_rtx x)
2406 {
2407 const RTX_CODE code = GET_CODE (x);
2408 switch (code)
2409 {
2410 case LABEL_REF:
2411 case SYMBOL_REF:
2412 case CONST:
2413 CASE_CONST_ANY:
2414 case CC0:
2415 case PC:
2416 case REG:
2417 case SCRATCH:
2418 case ADDR_VEC:
2419 case ADDR_DIFF_VEC:
2420 case VAR_LOCATION:
2421 return 0;
2422
2423 case CLOBBER:
2424 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2425 when some combination can't be done. If we see one, don't think
2426 that we can simplify the expression. */
2427 return (GET_MODE (x) != VOIDmode);
2428
2429 case PRE_INC:
2430 case PRE_DEC:
2431 case POST_INC:
2432 case POST_DEC:
2433 case PRE_MODIFY:
2434 case POST_MODIFY:
2435 case CALL:
2436 case UNSPEC_VOLATILE:
2437 return 1;
2438
2439 case MEM:
2440 case ASM_INPUT:
2441 case ASM_OPERANDS:
2442 if (MEM_VOLATILE_P (x))
2443 return 1;
2444
2445 default:
2446 break;
2447 }
2448
2449 /* Recursively scan the operands of this expression. */
2450
2451 {
2452 const char *fmt = GET_RTX_FORMAT (code);
2453 int i;
2454
2455 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2456 {
2457 if (fmt[i] == 'e')
2458 {
2459 if (side_effects_p (XEXP (x, i)))
2460 return 1;
2461 }
2462 else if (fmt[i] == 'E')
2463 {
2464 int j;
2465 for (j = 0; j < XVECLEN (x, i); j++)
2466 if (side_effects_p (XVECEXP (x, i, j)))
2467 return 1;
2468 }
2469 }
2470 }
2471 return 0;
2472 }
2473 \f
2474 /* Return nonzero if evaluating rtx X might cause a trap.
2475 FLAGS controls how to consider MEMs. A nonzero means the context
2476 of the access may have changed from the original, such that the
2477 address may have become invalid. */
2478
2479 int
2480 may_trap_p_1 (const_rtx x, unsigned flags)
2481 {
2482 int i;
2483 enum rtx_code code;
2484 const char *fmt;
2485
2486 /* We make no distinction currently, but this function is part of
2487 the internal target-hooks ABI so we keep the parameter as
2488 "unsigned flags". */
2489 bool code_changed = flags != 0;
2490
2491 if (x == 0)
2492 return 0;
2493 code = GET_CODE (x);
2494 switch (code)
2495 {
2496 /* Handle these cases quickly. */
2497 CASE_CONST_ANY:
2498 case SYMBOL_REF:
2499 case LABEL_REF:
2500 case CONST:
2501 case PC:
2502 case CC0:
2503 case REG:
2504 case SCRATCH:
2505 return 0;
2506
2507 case UNSPEC:
2508 return targetm.unspec_may_trap_p (x, flags);
2509
2510 case UNSPEC_VOLATILE:
2511 case ASM_INPUT:
2512 case TRAP_IF:
2513 return 1;
2514
2515 case ASM_OPERANDS:
2516 return MEM_VOLATILE_P (x);
2517
2518 /* Memory ref can trap unless it's a static var or a stack slot. */
2519 case MEM:
2520 /* Recognize specific pattern of stack checking probes. */
2521 if (flag_stack_check
2522 && MEM_VOLATILE_P (x)
2523 && XEXP (x, 0) == stack_pointer_rtx)
2524 return 1;
2525 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2526 reference; moving it out of context such as when moving code
2527 when optimizing, might cause its address to become invalid. */
2528 code_changed
2529 || !MEM_NOTRAP_P (x))
2530 {
2531 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2532 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2533 GET_MODE (x), code_changed);
2534 }
2535
2536 return 0;
2537
2538 /* Division by a non-constant might trap. */
2539 case DIV:
2540 case MOD:
2541 case UDIV:
2542 case UMOD:
2543 if (HONOR_SNANS (x))
2544 return 1;
2545 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2546 return flag_trapping_math;
2547 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2548 return 1;
2549 break;
2550
2551 case EXPR_LIST:
2552 /* An EXPR_LIST is used to represent a function call. This
2553 certainly may trap. */
2554 return 1;
2555
2556 case GE:
2557 case GT:
2558 case LE:
2559 case LT:
2560 case LTGT:
2561 case COMPARE:
2562 /* Some floating point comparisons may trap. */
2563 if (!flag_trapping_math)
2564 break;
2565 /* ??? There is no machine independent way to check for tests that trap
2566 when COMPARE is used, though many targets do make this distinction.
2567 For instance, sparc uses CCFPE for compares which generate exceptions
2568 and CCFP for compares which do not generate exceptions. */
2569 if (HONOR_NANS (x))
2570 return 1;
2571 /* But often the compare has some CC mode, so check operand
2572 modes as well. */
2573 if (HONOR_NANS (XEXP (x, 0))
2574 || HONOR_NANS (XEXP (x, 1)))
2575 return 1;
2576 break;
2577
2578 case EQ:
2579 case NE:
2580 if (HONOR_SNANS (x))
2581 return 1;
2582 /* Often comparison is CC mode, so check operand modes. */
2583 if (HONOR_SNANS (XEXP (x, 0))
2584 || HONOR_SNANS (XEXP (x, 1)))
2585 return 1;
2586 break;
2587
2588 case FIX:
2589 /* Conversion of floating point might trap. */
2590 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2591 return 1;
2592 break;
2593
2594 case NEG:
2595 case ABS:
2596 case SUBREG:
2597 /* These operations don't trap even with floating point. */
2598 break;
2599
2600 default:
2601 /* Any floating arithmetic may trap. */
2602 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2603 return 1;
2604 }
2605
2606 fmt = GET_RTX_FORMAT (code);
2607 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2608 {
2609 if (fmt[i] == 'e')
2610 {
2611 if (may_trap_p_1 (XEXP (x, i), flags))
2612 return 1;
2613 }
2614 else if (fmt[i] == 'E')
2615 {
2616 int j;
2617 for (j = 0; j < XVECLEN (x, i); j++)
2618 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2619 return 1;
2620 }
2621 }
2622 return 0;
2623 }
2624
2625 /* Return nonzero if evaluating rtx X might cause a trap. */
2626
2627 int
2628 may_trap_p (const_rtx x)
2629 {
2630 return may_trap_p_1 (x, 0);
2631 }
2632
2633 /* Same as above, but additionally return nonzero if evaluating rtx X might
2634 cause a fault. We define a fault for the purpose of this function as a
2635 erroneous execution condition that cannot be encountered during the normal
2636 execution of a valid program; the typical example is an unaligned memory
2637 access on a strict alignment machine. The compiler guarantees that it
2638 doesn't generate code that will fault from a valid program, but this
2639 guarantee doesn't mean anything for individual instructions. Consider
2640 the following example:
2641
2642 struct S { int d; union { char *cp; int *ip; }; };
2643
2644 int foo(struct S *s)
2645 {
2646 if (s->d == 1)
2647 return *s->ip;
2648 else
2649 return *s->cp;
2650 }
2651
2652 on a strict alignment machine. In a valid program, foo will never be
2653 invoked on a structure for which d is equal to 1 and the underlying
2654 unique field of the union not aligned on a 4-byte boundary, but the
2655 expression *s->ip might cause a fault if considered individually.
2656
2657 At the RTL level, potentially problematic expressions will almost always
2658 verify may_trap_p; for example, the above dereference can be emitted as
2659 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2660 However, suppose that foo is inlined in a caller that causes s->cp to
2661 point to a local character variable and guarantees that s->d is not set
2662 to 1; foo may have been effectively translated into pseudo-RTL as:
2663
2664 if ((reg:SI) == 1)
2665 (set (reg:SI) (mem:SI (%fp - 7)))
2666 else
2667 (set (reg:QI) (mem:QI (%fp - 7)))
2668
2669 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2670 memory reference to a stack slot, but it will certainly cause a fault
2671 on a strict alignment machine. */
2672
2673 int
2674 may_trap_or_fault_p (const_rtx x)
2675 {
2676 return may_trap_p_1 (x, 1);
2677 }
2678 \f
2679 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2680 i.e., an inequality. */
2681
2682 int
2683 inequality_comparisons_p (const_rtx x)
2684 {
2685 const char *fmt;
2686 int len, i;
2687 const enum rtx_code code = GET_CODE (x);
2688
2689 switch (code)
2690 {
2691 case REG:
2692 case SCRATCH:
2693 case PC:
2694 case CC0:
2695 CASE_CONST_ANY:
2696 case CONST:
2697 case LABEL_REF:
2698 case SYMBOL_REF:
2699 return 0;
2700
2701 case LT:
2702 case LTU:
2703 case GT:
2704 case GTU:
2705 case LE:
2706 case LEU:
2707 case GE:
2708 case GEU:
2709 return 1;
2710
2711 default:
2712 break;
2713 }
2714
2715 len = GET_RTX_LENGTH (code);
2716 fmt = GET_RTX_FORMAT (code);
2717
2718 for (i = 0; i < len; i++)
2719 {
2720 if (fmt[i] == 'e')
2721 {
2722 if (inequality_comparisons_p (XEXP (x, i)))
2723 return 1;
2724 }
2725 else if (fmt[i] == 'E')
2726 {
2727 int j;
2728 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2729 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2730 return 1;
2731 }
2732 }
2733
2734 return 0;
2735 }
2736 \f
2737 /* Replace any occurrence of FROM in X with TO. The function does
2738 not enter into CONST_DOUBLE for the replace.
2739
2740 Note that copying is not done so X must not be shared unless all copies
2741 are to be modified. */
2742
2743 rtx
2744 replace_rtx (rtx x, rtx from, rtx to)
2745 {
2746 int i, j;
2747 const char *fmt;
2748
2749 if (x == from)
2750 return to;
2751
2752 /* Allow this function to make replacements in EXPR_LISTs. */
2753 if (x == 0)
2754 return 0;
2755
2756 if (GET_CODE (x) == SUBREG)
2757 {
2758 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2759
2760 if (CONST_INT_P (new_rtx))
2761 {
2762 x = simplify_subreg (GET_MODE (x), new_rtx,
2763 GET_MODE (SUBREG_REG (x)),
2764 SUBREG_BYTE (x));
2765 gcc_assert (x);
2766 }
2767 else
2768 SUBREG_REG (x) = new_rtx;
2769
2770 return x;
2771 }
2772 else if (GET_CODE (x) == ZERO_EXTEND)
2773 {
2774 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2775
2776 if (CONST_INT_P (new_rtx))
2777 {
2778 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2779 new_rtx, GET_MODE (XEXP (x, 0)));
2780 gcc_assert (x);
2781 }
2782 else
2783 XEXP (x, 0) = new_rtx;
2784
2785 return x;
2786 }
2787
2788 fmt = GET_RTX_FORMAT (GET_CODE (x));
2789 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2790 {
2791 if (fmt[i] == 'e')
2792 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2793 else if (fmt[i] == 'E')
2794 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2795 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2796 }
2797
2798 return x;
2799 }
2800 \f
2801 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2802 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2803
2804 void
2805 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2806 {
2807 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2808 rtx x = *loc;
2809 if (JUMP_TABLE_DATA_P (x))
2810 {
2811 x = PATTERN (x);
2812 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2813 int len = GET_NUM_ELEM (vec);
2814 for (int i = 0; i < len; ++i)
2815 {
2816 rtx ref = RTVEC_ELT (vec, i);
2817 if (XEXP (ref, 0) == old_label)
2818 {
2819 XEXP (ref, 0) = new_label;
2820 if (update_label_nuses)
2821 {
2822 ++LABEL_NUSES (new_label);
2823 --LABEL_NUSES (old_label);
2824 }
2825 }
2826 }
2827 return;
2828 }
2829
2830 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2831 field. This is not handled by the iterator because it doesn't
2832 handle unprinted ('0') fields. */
2833 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2834 JUMP_LABEL (x) = new_label;
2835
2836 subrtx_ptr_iterator::array_type array;
2837 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2838 {
2839 rtx *loc = *iter;
2840 if (rtx x = *loc)
2841 {
2842 if (GET_CODE (x) == SYMBOL_REF
2843 && CONSTANT_POOL_ADDRESS_P (x))
2844 {
2845 rtx c = get_pool_constant (x);
2846 if (rtx_referenced_p (old_label, c))
2847 {
2848 /* Create a copy of constant C; replace the label inside
2849 but do not update LABEL_NUSES because uses in constant pool
2850 are not counted. */
2851 rtx new_c = copy_rtx (c);
2852 replace_label (&new_c, old_label, new_label, false);
2853
2854 /* Add the new constant NEW_C to constant pool and replace
2855 the old reference to constant by new reference. */
2856 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2857 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2858 }
2859 }
2860
2861 if ((GET_CODE (x) == LABEL_REF
2862 || GET_CODE (x) == INSN_LIST)
2863 && XEXP (x, 0) == old_label)
2864 {
2865 XEXP (x, 0) = new_label;
2866 if (update_label_nuses)
2867 {
2868 ++LABEL_NUSES (new_label);
2869 --LABEL_NUSES (old_label);
2870 }
2871 }
2872 }
2873 }
2874 }
2875
2876 void
2877 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2878 bool update_label_nuses)
2879 {
2880 rtx insn_as_rtx = insn;
2881 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2882 gcc_checking_assert (insn_as_rtx == insn);
2883 }
2884
2885 /* Return true if X is referenced in BODY. */
2886
2887 bool
2888 rtx_referenced_p (const_rtx x, const_rtx body)
2889 {
2890 subrtx_iterator::array_type array;
2891 FOR_EACH_SUBRTX (iter, array, body, ALL)
2892 if (const_rtx y = *iter)
2893 {
2894 /* Check if a label_ref Y refers to label X. */
2895 if (GET_CODE (y) == LABEL_REF
2896 && LABEL_P (x)
2897 && LABEL_REF_LABEL (y) == x)
2898 return true;
2899
2900 if (rtx_equal_p (x, y))
2901 return true;
2902
2903 /* If Y is a reference to pool constant traverse the constant. */
2904 if (GET_CODE (y) == SYMBOL_REF
2905 && CONSTANT_POOL_ADDRESS_P (y))
2906 iter.substitute (get_pool_constant (y));
2907 }
2908 return false;
2909 }
2910
2911 /* If INSN is a tablejump return true and store the label (before jump table) to
2912 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2913
2914 bool
2915 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2916 {
2917 rtx label, table;
2918
2919 if (!JUMP_P (insn))
2920 return false;
2921
2922 label = JUMP_LABEL (insn);
2923 if (label != NULL_RTX && !ANY_RETURN_P (label)
2924 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2925 && JUMP_TABLE_DATA_P (table))
2926 {
2927 if (labelp)
2928 *labelp = label;
2929 if (tablep)
2930 *tablep = as_a <rtx_jump_table_data *> (table);
2931 return true;
2932 }
2933 return false;
2934 }
2935
2936 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2937 constant that is not in the constant pool and not in the condition
2938 of an IF_THEN_ELSE. */
2939
2940 static int
2941 computed_jump_p_1 (const_rtx x)
2942 {
2943 const enum rtx_code code = GET_CODE (x);
2944 int i, j;
2945 const char *fmt;
2946
2947 switch (code)
2948 {
2949 case LABEL_REF:
2950 case PC:
2951 return 0;
2952
2953 case CONST:
2954 CASE_CONST_ANY:
2955 case SYMBOL_REF:
2956 case REG:
2957 return 1;
2958
2959 case MEM:
2960 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2961 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2962
2963 case IF_THEN_ELSE:
2964 return (computed_jump_p_1 (XEXP (x, 1))
2965 || computed_jump_p_1 (XEXP (x, 2)));
2966
2967 default:
2968 break;
2969 }
2970
2971 fmt = GET_RTX_FORMAT (code);
2972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2973 {
2974 if (fmt[i] == 'e'
2975 && computed_jump_p_1 (XEXP (x, i)))
2976 return 1;
2977
2978 else if (fmt[i] == 'E')
2979 for (j = 0; j < XVECLEN (x, i); j++)
2980 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2981 return 1;
2982 }
2983
2984 return 0;
2985 }
2986
2987 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2988
2989 Tablejumps and casesi insns are not considered indirect jumps;
2990 we can recognize them by a (use (label_ref)). */
2991
2992 int
2993 computed_jump_p (const_rtx insn)
2994 {
2995 int i;
2996 if (JUMP_P (insn))
2997 {
2998 rtx pat = PATTERN (insn);
2999
3000 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3001 if (JUMP_LABEL (insn) != NULL)
3002 return 0;
3003
3004 if (GET_CODE (pat) == PARALLEL)
3005 {
3006 int len = XVECLEN (pat, 0);
3007 int has_use_labelref = 0;
3008
3009 for (i = len - 1; i >= 0; i--)
3010 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3011 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3012 == LABEL_REF))
3013 {
3014 has_use_labelref = 1;
3015 break;
3016 }
3017
3018 if (! has_use_labelref)
3019 for (i = len - 1; i >= 0; i--)
3020 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3021 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3022 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3023 return 1;
3024 }
3025 else if (GET_CODE (pat) == SET
3026 && SET_DEST (pat) == pc_rtx
3027 && computed_jump_p_1 (SET_SRC (pat)))
3028 return 1;
3029 }
3030 return 0;
3031 }
3032
3033 \f
3034
3035 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3036 the equivalent add insn and pass the result to FN, using DATA as the
3037 final argument. */
3038
3039 static int
3040 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3041 {
3042 rtx x = XEXP (mem, 0);
3043 switch (GET_CODE (x))
3044 {
3045 case PRE_INC:
3046 case POST_INC:
3047 {
3048 int size = GET_MODE_SIZE (GET_MODE (mem));
3049 rtx r1 = XEXP (x, 0);
3050 rtx c = gen_int_mode (size, GET_MODE (r1));
3051 return fn (mem, x, r1, r1, c, data);
3052 }
3053
3054 case PRE_DEC:
3055 case POST_DEC:
3056 {
3057 int size = GET_MODE_SIZE (GET_MODE (mem));
3058 rtx r1 = XEXP (x, 0);
3059 rtx c = gen_int_mode (-size, GET_MODE (r1));
3060 return fn (mem, x, r1, r1, c, data);
3061 }
3062
3063 case PRE_MODIFY:
3064 case POST_MODIFY:
3065 {
3066 rtx r1 = XEXP (x, 0);
3067 rtx add = XEXP (x, 1);
3068 return fn (mem, x, r1, add, NULL, data);
3069 }
3070
3071 default:
3072 gcc_unreachable ();
3073 }
3074 }
3075
3076 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3077 For each such autoinc operation found, call FN, passing it
3078 the innermost enclosing MEM, the operation itself, the RTX modified
3079 by the operation, two RTXs (the second may be NULL) that, once
3080 added, represent the value to be held by the modified RTX
3081 afterwards, and DATA. FN is to return 0 to continue the
3082 traversal or any other value to have it returned to the caller of
3083 for_each_inc_dec. */
3084
3085 int
3086 for_each_inc_dec (rtx x,
3087 for_each_inc_dec_fn fn,
3088 void *data)
3089 {
3090 subrtx_var_iterator::array_type array;
3091 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3092 {
3093 rtx mem = *iter;
3094 if (mem
3095 && MEM_P (mem)
3096 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3097 {
3098 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3099 if (res != 0)
3100 return res;
3101 iter.skip_subrtxes ();
3102 }
3103 }
3104 return 0;
3105 }
3106
3107 \f
3108 /* Searches X for any reference to REGNO, returning the rtx of the
3109 reference found if any. Otherwise, returns NULL_RTX. */
3110
3111 rtx
3112 regno_use_in (unsigned int regno, rtx x)
3113 {
3114 const char *fmt;
3115 int i, j;
3116 rtx tem;
3117
3118 if (REG_P (x) && REGNO (x) == regno)
3119 return x;
3120
3121 fmt = GET_RTX_FORMAT (GET_CODE (x));
3122 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3123 {
3124 if (fmt[i] == 'e')
3125 {
3126 if ((tem = regno_use_in (regno, XEXP (x, i))))
3127 return tem;
3128 }
3129 else if (fmt[i] == 'E')
3130 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3131 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3132 return tem;
3133 }
3134
3135 return NULL_RTX;
3136 }
3137
3138 /* Return a value indicating whether OP, an operand of a commutative
3139 operation, is preferred as the first or second operand. The higher
3140 the value, the stronger the preference for being the first operand.
3141 We use negative values to indicate a preference for the first operand
3142 and positive values for the second operand. */
3143
3144 int
3145 commutative_operand_precedence (rtx op)
3146 {
3147 enum rtx_code code = GET_CODE (op);
3148
3149 /* Constants always come the second operand. Prefer "nice" constants. */
3150 if (code == CONST_INT)
3151 return -8;
3152 if (code == CONST_WIDE_INT)
3153 return -8;
3154 if (code == CONST_DOUBLE)
3155 return -7;
3156 if (code == CONST_FIXED)
3157 return -7;
3158 op = avoid_constant_pool_reference (op);
3159 code = GET_CODE (op);
3160
3161 switch (GET_RTX_CLASS (code))
3162 {
3163 case RTX_CONST_OBJ:
3164 if (code == CONST_INT)
3165 return -6;
3166 if (code == CONST_WIDE_INT)
3167 return -6;
3168 if (code == CONST_DOUBLE)
3169 return -5;
3170 if (code == CONST_FIXED)
3171 return -5;
3172 return -4;
3173
3174 case RTX_EXTRA:
3175 /* SUBREGs of objects should come second. */
3176 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3177 return -3;
3178 return 0;
3179
3180 case RTX_OBJ:
3181 /* Complex expressions should be the first, so decrease priority
3182 of objects. Prefer pointer objects over non pointer objects. */
3183 if ((REG_P (op) && REG_POINTER (op))
3184 || (MEM_P (op) && MEM_POINTER (op)))
3185 return -1;
3186 return -2;
3187
3188 case RTX_COMM_ARITH:
3189 /* Prefer operands that are themselves commutative to be first.
3190 This helps to make things linear. In particular,
3191 (and (and (reg) (reg)) (not (reg))) is canonical. */
3192 return 4;
3193
3194 case RTX_BIN_ARITH:
3195 /* If only one operand is a binary expression, it will be the first
3196 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3197 is canonical, although it will usually be further simplified. */
3198 return 2;
3199
3200 case RTX_UNARY:
3201 /* Then prefer NEG and NOT. */
3202 if (code == NEG || code == NOT)
3203 return 1;
3204
3205 default:
3206 return 0;
3207 }
3208 }
3209
3210 /* Return 1 iff it is necessary to swap operands of commutative operation
3211 in order to canonicalize expression. */
3212
3213 bool
3214 swap_commutative_operands_p (rtx x, rtx y)
3215 {
3216 return (commutative_operand_precedence (x)
3217 < commutative_operand_precedence (y));
3218 }
3219
3220 /* Return 1 if X is an autoincrement side effect and the register is
3221 not the stack pointer. */
3222 int
3223 auto_inc_p (const_rtx x)
3224 {
3225 switch (GET_CODE (x))
3226 {
3227 case PRE_INC:
3228 case POST_INC:
3229 case PRE_DEC:
3230 case POST_DEC:
3231 case PRE_MODIFY:
3232 case POST_MODIFY:
3233 /* There are no REG_INC notes for SP. */
3234 if (XEXP (x, 0) != stack_pointer_rtx)
3235 return 1;
3236 default:
3237 break;
3238 }
3239 return 0;
3240 }
3241
3242 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3243 int
3244 loc_mentioned_in_p (rtx *loc, const_rtx in)
3245 {
3246 enum rtx_code code;
3247 const char *fmt;
3248 int i, j;
3249
3250 if (!in)
3251 return 0;
3252
3253 code = GET_CODE (in);
3254 fmt = GET_RTX_FORMAT (code);
3255 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3256 {
3257 if (fmt[i] == 'e')
3258 {
3259 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3260 return 1;
3261 }
3262 else if (fmt[i] == 'E')
3263 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3264 if (loc == &XVECEXP (in, i, j)
3265 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3266 return 1;
3267 }
3268 return 0;
3269 }
3270
3271 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3272 and SUBREG_BYTE, return the bit offset where the subreg begins
3273 (counting from the least significant bit of the operand). */
3274
3275 unsigned int
3276 subreg_lsb_1 (machine_mode outer_mode,
3277 machine_mode inner_mode,
3278 unsigned int subreg_byte)
3279 {
3280 unsigned int bitpos;
3281 unsigned int byte;
3282 unsigned int word;
3283
3284 /* A paradoxical subreg begins at bit position 0. */
3285 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3286 return 0;
3287
3288 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3289 /* If the subreg crosses a word boundary ensure that
3290 it also begins and ends on a word boundary. */
3291 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3292 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3293 && (subreg_byte % UNITS_PER_WORD
3294 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3295
3296 if (WORDS_BIG_ENDIAN)
3297 word = (GET_MODE_SIZE (inner_mode)
3298 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3299 else
3300 word = subreg_byte / UNITS_PER_WORD;
3301 bitpos = word * BITS_PER_WORD;
3302
3303 if (BYTES_BIG_ENDIAN)
3304 byte = (GET_MODE_SIZE (inner_mode)
3305 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3306 else
3307 byte = subreg_byte % UNITS_PER_WORD;
3308 bitpos += byte * BITS_PER_UNIT;
3309
3310 return bitpos;
3311 }
3312
3313 /* Given a subreg X, return the bit offset where the subreg begins
3314 (counting from the least significant bit of the reg). */
3315
3316 unsigned int
3317 subreg_lsb (const_rtx x)
3318 {
3319 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3320 SUBREG_BYTE (x));
3321 }
3322
3323 /* Fill in information about a subreg of a hard register.
3324 xregno - A regno of an inner hard subreg_reg (or what will become one).
3325 xmode - The mode of xregno.
3326 offset - The byte offset.
3327 ymode - The mode of a top level SUBREG (or what may become one).
3328 info - Pointer to structure to fill in.
3329
3330 Rather than considering one particular inner register (and thus one
3331 particular "outer" register) in isolation, this function really uses
3332 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3333 function does not check whether adding INFO->offset to XREGNO gives
3334 a valid hard register; even if INFO->offset + XREGNO is out of range,
3335 there might be another register of the same type that is in range.
3336 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3337 register, since that can depend on things like whether the final
3338 register number is even or odd. Callers that want to check whether
3339 this particular subreg can be replaced by a simple (reg ...) should
3340 use simplify_subreg_regno. */
3341
3342 void
3343 subreg_get_info (unsigned int xregno, machine_mode xmode,
3344 unsigned int offset, machine_mode ymode,
3345 struct subreg_info *info)
3346 {
3347 int nregs_xmode, nregs_ymode;
3348 int mode_multiple, nregs_multiple;
3349 int offset_adj, y_offset, y_offset_adj;
3350 int regsize_xmode, regsize_ymode;
3351 bool rknown;
3352
3353 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3354
3355 rknown = false;
3356
3357 /* If there are holes in a non-scalar mode in registers, we expect
3358 that it is made up of its units concatenated together. */
3359 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3360 {
3361 machine_mode xmode_unit;
3362
3363 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3364 if (GET_MODE_INNER (xmode) == VOIDmode)
3365 xmode_unit = xmode;
3366 else
3367 xmode_unit = GET_MODE_INNER (xmode);
3368 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3369 gcc_assert (nregs_xmode
3370 == (GET_MODE_NUNITS (xmode)
3371 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3372 gcc_assert (hard_regno_nregs[xregno][xmode]
3373 == (hard_regno_nregs[xregno][xmode_unit]
3374 * GET_MODE_NUNITS (xmode)));
3375
3376 /* You can only ask for a SUBREG of a value with holes in the middle
3377 if you don't cross the holes. (Such a SUBREG should be done by
3378 picking a different register class, or doing it in memory if
3379 necessary.) An example of a value with holes is XCmode on 32-bit
3380 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3381 3 for each part, but in memory it's two 128-bit parts.
3382 Padding is assumed to be at the end (not necessarily the 'high part')
3383 of each unit. */
3384 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3385 < GET_MODE_NUNITS (xmode))
3386 && (offset / GET_MODE_SIZE (xmode_unit)
3387 != ((offset + GET_MODE_SIZE (ymode) - 1)
3388 / GET_MODE_SIZE (xmode_unit))))
3389 {
3390 info->representable_p = false;
3391 rknown = true;
3392 }
3393 }
3394 else
3395 nregs_xmode = hard_regno_nregs[xregno][xmode];
3396
3397 nregs_ymode = hard_regno_nregs[xregno][ymode];
3398
3399 /* Paradoxical subregs are otherwise valid. */
3400 if (!rknown
3401 && offset == 0
3402 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3403 {
3404 info->representable_p = true;
3405 /* If this is a big endian paradoxical subreg, which uses more
3406 actual hard registers than the original register, we must
3407 return a negative offset so that we find the proper highpart
3408 of the register. */
3409 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3410 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3411 info->offset = nregs_xmode - nregs_ymode;
3412 else
3413 info->offset = 0;
3414 info->nregs = nregs_ymode;
3415 return;
3416 }
3417
3418 /* If registers store different numbers of bits in the different
3419 modes, we cannot generally form this subreg. */
3420 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3421 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3422 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3423 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3424 {
3425 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3426 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3427 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3428 {
3429 info->representable_p = false;
3430 info->nregs
3431 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3432 info->offset = offset / regsize_xmode;
3433 return;
3434 }
3435 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3436 {
3437 info->representable_p = false;
3438 info->nregs
3439 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3440 info->offset = offset / regsize_xmode;
3441 return;
3442 }
3443 /* Quick exit for the simple and common case of extracting whole
3444 subregisters from a multiregister value. */
3445 /* ??? It would be better to integrate this into the code below,
3446 if we can generalize the concept enough and figure out how
3447 odd-sized modes can coexist with the other weird cases we support. */
3448 if (!rknown
3449 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3450 && regsize_xmode == regsize_ymode
3451 && (offset % regsize_ymode) == 0)
3452 {
3453 info->representable_p = true;
3454 info->nregs = nregs_ymode;
3455 info->offset = offset / regsize_ymode;
3456 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3457 return;
3458 }
3459 }
3460
3461 /* Lowpart subregs are otherwise valid. */
3462 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3463 {
3464 info->representable_p = true;
3465 rknown = true;
3466
3467 if (offset == 0 || nregs_xmode == nregs_ymode)
3468 {
3469 info->offset = 0;
3470 info->nregs = nregs_ymode;
3471 return;
3472 }
3473 }
3474
3475 /* This should always pass, otherwise we don't know how to verify
3476 the constraint. These conditions may be relaxed but
3477 subreg_regno_offset would need to be redesigned. */
3478 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3479 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3480
3481 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3482 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3483 {
3484 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3485 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3486 HOST_WIDE_INT off_low = offset & (ysize - 1);
3487 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3488 offset = (xsize - ysize - off_high) | off_low;
3489 }
3490 /* The XMODE value can be seen as a vector of NREGS_XMODE
3491 values. The subreg must represent a lowpart of given field.
3492 Compute what field it is. */
3493 offset_adj = offset;
3494 offset_adj -= subreg_lowpart_offset (ymode,
3495 mode_for_size (GET_MODE_BITSIZE (xmode)
3496 / nregs_xmode,
3497 MODE_INT, 0));
3498
3499 /* Size of ymode must not be greater than the size of xmode. */
3500 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3501 gcc_assert (mode_multiple != 0);
3502
3503 y_offset = offset / GET_MODE_SIZE (ymode);
3504 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3505 nregs_multiple = nregs_xmode / nregs_ymode;
3506
3507 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3508 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3509
3510 if (!rknown)
3511 {
3512 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3513 rknown = true;
3514 }
3515 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3516 info->nregs = nregs_ymode;
3517 }
3518
3519 /* This function returns the regno offset of a subreg expression.
3520 xregno - A regno of an inner hard subreg_reg (or what will become one).
3521 xmode - The mode of xregno.
3522 offset - The byte offset.
3523 ymode - The mode of a top level SUBREG (or what may become one).
3524 RETURN - The regno offset which would be used. */
3525 unsigned int
3526 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3527 unsigned int offset, machine_mode ymode)
3528 {
3529 struct subreg_info info;
3530 subreg_get_info (xregno, xmode, offset, ymode, &info);
3531 return info.offset;
3532 }
3533
3534 /* This function returns true when the offset is representable via
3535 subreg_offset in the given regno.
3536 xregno - A regno of an inner hard subreg_reg (or what will become one).
3537 xmode - The mode of xregno.
3538 offset - The byte offset.
3539 ymode - The mode of a top level SUBREG (or what may become one).
3540 RETURN - Whether the offset is representable. */
3541 bool
3542 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3543 unsigned int offset, machine_mode ymode)
3544 {
3545 struct subreg_info info;
3546 subreg_get_info (xregno, xmode, offset, ymode, &info);
3547 return info.representable_p;
3548 }
3549
3550 /* Return the number of a YMODE register to which
3551
3552 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3553
3554 can be simplified. Return -1 if the subreg can't be simplified.
3555
3556 XREGNO is a hard register number. */
3557
3558 int
3559 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3560 unsigned int offset, machine_mode ymode)
3561 {
3562 struct subreg_info info;
3563 unsigned int yregno;
3564
3565 #ifdef CANNOT_CHANGE_MODE_CLASS
3566 /* Give the backend a chance to disallow the mode change. */
3567 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3568 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3569 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3570 /* We can use mode change in LRA for some transformations. */
3571 && ! lra_in_progress)
3572 return -1;
3573 #endif
3574
3575 /* We shouldn't simplify stack-related registers. */
3576 if ((!reload_completed || frame_pointer_needed)
3577 && xregno == FRAME_POINTER_REGNUM)
3578 return -1;
3579
3580 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3581 && xregno == ARG_POINTER_REGNUM)
3582 return -1;
3583
3584 if (xregno == STACK_POINTER_REGNUM
3585 /* We should convert hard stack register in LRA if it is
3586 possible. */
3587 && ! lra_in_progress)
3588 return -1;
3589
3590 /* Try to get the register offset. */
3591 subreg_get_info (xregno, xmode, offset, ymode, &info);
3592 if (!info.representable_p)
3593 return -1;
3594
3595 /* Make sure that the offsetted register value is in range. */
3596 yregno = xregno + info.offset;
3597 if (!HARD_REGISTER_NUM_P (yregno))
3598 return -1;
3599
3600 /* See whether (reg:YMODE YREGNO) is valid.
3601
3602 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3603 This is a kludge to work around how complex FP arguments are passed
3604 on IA-64 and should be fixed. See PR target/49226. */
3605 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3606 && HARD_REGNO_MODE_OK (xregno, xmode))
3607 return -1;
3608
3609 return (int) yregno;
3610 }
3611
3612 /* Return the final regno that a subreg expression refers to. */
3613 unsigned int
3614 subreg_regno (const_rtx x)
3615 {
3616 unsigned int ret;
3617 rtx subreg = SUBREG_REG (x);
3618 int regno = REGNO (subreg);
3619
3620 ret = regno + subreg_regno_offset (regno,
3621 GET_MODE (subreg),
3622 SUBREG_BYTE (x),
3623 GET_MODE (x));
3624 return ret;
3625
3626 }
3627
3628 /* Return the number of registers that a subreg expression refers
3629 to. */
3630 unsigned int
3631 subreg_nregs (const_rtx x)
3632 {
3633 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3634 }
3635
3636 /* Return the number of registers that a subreg REG with REGNO
3637 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3638 changed so that the regno can be passed in. */
3639
3640 unsigned int
3641 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3642 {
3643 struct subreg_info info;
3644 rtx subreg = SUBREG_REG (x);
3645
3646 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3647 &info);
3648 return info.nregs;
3649 }
3650
3651
3652 struct parms_set_data
3653 {
3654 int nregs;
3655 HARD_REG_SET regs;
3656 };
3657
3658 /* Helper function for noticing stores to parameter registers. */
3659 static void
3660 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3661 {
3662 struct parms_set_data *const d = (struct parms_set_data *) data;
3663 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3664 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3665 {
3666 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3667 d->nregs--;
3668 }
3669 }
3670
3671 /* Look backward for first parameter to be loaded.
3672 Note that loads of all parameters will not necessarily be
3673 found if CSE has eliminated some of them (e.g., an argument
3674 to the outer function is passed down as a parameter).
3675 Do not skip BOUNDARY. */
3676 rtx_insn *
3677 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3678 {
3679 struct parms_set_data parm;
3680 rtx p;
3681 rtx_insn *before, *first_set;
3682
3683 /* Since different machines initialize their parameter registers
3684 in different orders, assume nothing. Collect the set of all
3685 parameter registers. */
3686 CLEAR_HARD_REG_SET (parm.regs);
3687 parm.nregs = 0;
3688 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3689 if (GET_CODE (XEXP (p, 0)) == USE
3690 && REG_P (XEXP (XEXP (p, 0), 0)))
3691 {
3692 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3693
3694 /* We only care about registers which can hold function
3695 arguments. */
3696 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3697 continue;
3698
3699 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3700 parm.nregs++;
3701 }
3702 before = call_insn;
3703 first_set = call_insn;
3704
3705 /* Search backward for the first set of a register in this set. */
3706 while (parm.nregs && before != boundary)
3707 {
3708 before = PREV_INSN (before);
3709
3710 /* It is possible that some loads got CSEed from one call to
3711 another. Stop in that case. */
3712 if (CALL_P (before))
3713 break;
3714
3715 /* Our caller needs either ensure that we will find all sets
3716 (in case code has not been optimized yet), or take care
3717 for possible labels in a way by setting boundary to preceding
3718 CODE_LABEL. */
3719 if (LABEL_P (before))
3720 {
3721 gcc_assert (before == boundary);
3722 break;
3723 }
3724
3725 if (INSN_P (before))
3726 {
3727 int nregs_old = parm.nregs;
3728 note_stores (PATTERN (before), parms_set, &parm);
3729 /* If we found something that did not set a parameter reg,
3730 we're done. Do not keep going, as that might result
3731 in hoisting an insn before the setting of a pseudo
3732 that is used by the hoisted insn. */
3733 if (nregs_old != parm.nregs)
3734 first_set = before;
3735 else
3736 break;
3737 }
3738 }
3739 return first_set;
3740 }
3741
3742 /* Return true if we should avoid inserting code between INSN and preceding
3743 call instruction. */
3744
3745 bool
3746 keep_with_call_p (const rtx_insn *insn)
3747 {
3748 rtx set;
3749
3750 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3751 {
3752 if (REG_P (SET_DEST (set))
3753 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3754 && fixed_regs[REGNO (SET_DEST (set))]
3755 && general_operand (SET_SRC (set), VOIDmode))
3756 return true;
3757 if (REG_P (SET_SRC (set))
3758 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3759 && REG_P (SET_DEST (set))
3760 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3761 return true;
3762 /* There may be a stack pop just after the call and before the store
3763 of the return register. Search for the actual store when deciding
3764 if we can break or not. */
3765 if (SET_DEST (set) == stack_pointer_rtx)
3766 {
3767 /* This CONST_CAST is okay because next_nonnote_insn just
3768 returns its argument and we assign it to a const_rtx
3769 variable. */
3770 const rtx_insn *i2
3771 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3772 if (i2 && keep_with_call_p (i2))
3773 return true;
3774 }
3775 }
3776 return false;
3777 }
3778
3779 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3780 to non-complex jumps. That is, direct unconditional, conditional,
3781 and tablejumps, but not computed jumps or returns. It also does
3782 not apply to the fallthru case of a conditional jump. */
3783
3784 bool
3785 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3786 {
3787 rtx tmp = JUMP_LABEL (jump_insn);
3788 rtx_jump_table_data *table;
3789
3790 if (label == tmp)
3791 return true;
3792
3793 if (tablejump_p (jump_insn, NULL, &table))
3794 {
3795 rtvec vec = table->get_labels ();
3796 int i, veclen = GET_NUM_ELEM (vec);
3797
3798 for (i = 0; i < veclen; ++i)
3799 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3800 return true;
3801 }
3802
3803 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3804 return true;
3805
3806 return false;
3807 }
3808
3809 \f
3810 /* Return an estimate of the cost of computing rtx X.
3811 One use is in cse, to decide which expression to keep in the hash table.
3812 Another is in rtl generation, to pick the cheapest way to multiply.
3813 Other uses like the latter are expected in the future.
3814
3815 X appears as operand OPNO in an expression with code OUTER_CODE.
3816 SPEED specifies whether costs optimized for speed or size should
3817 be returned. */
3818
3819 int
3820 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3821 {
3822 int i, j;
3823 enum rtx_code code;
3824 const char *fmt;
3825 int total;
3826 int factor;
3827
3828 if (x == 0)
3829 return 0;
3830
3831 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3832 many insns, taking N times as long. */
3833 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3834 if (factor == 0)
3835 factor = 1;
3836
3837 /* Compute the default costs of certain things.
3838 Note that targetm.rtx_costs can override the defaults. */
3839
3840 code = GET_CODE (x);
3841 switch (code)
3842 {
3843 case MULT:
3844 /* Multiplication has time-complexity O(N*N), where N is the
3845 number of units (translated from digits) when using
3846 schoolbook long multiplication. */
3847 total = factor * factor * COSTS_N_INSNS (5);
3848 break;
3849 case DIV:
3850 case UDIV:
3851 case MOD:
3852 case UMOD:
3853 /* Similarly, complexity for schoolbook long division. */
3854 total = factor * factor * COSTS_N_INSNS (7);
3855 break;
3856 case USE:
3857 /* Used in combine.c as a marker. */
3858 total = 0;
3859 break;
3860 case SET:
3861 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3862 the mode for the factor. */
3863 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3864 if (factor == 0)
3865 factor = 1;
3866 /* Pass through. */
3867 default:
3868 total = factor * COSTS_N_INSNS (1);
3869 }
3870
3871 switch (code)
3872 {
3873 case REG:
3874 return 0;
3875
3876 case SUBREG:
3877 total = 0;
3878 /* If we can't tie these modes, make this expensive. The larger
3879 the mode, the more expensive it is. */
3880 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3881 return COSTS_N_INSNS (2 + factor);
3882 break;
3883
3884 default:
3885 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3886 return total;
3887 break;
3888 }
3889
3890 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3891 which is already in total. */
3892
3893 fmt = GET_RTX_FORMAT (code);
3894 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3895 if (fmt[i] == 'e')
3896 total += rtx_cost (XEXP (x, i), code, i, speed);
3897 else if (fmt[i] == 'E')
3898 for (j = 0; j < XVECLEN (x, i); j++)
3899 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3900
3901 return total;
3902 }
3903
3904 /* Fill in the structure C with information about both speed and size rtx
3905 costs for X, which is operand OPNO in an expression with code OUTER. */
3906
3907 void
3908 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3909 struct full_rtx_costs *c)
3910 {
3911 c->speed = rtx_cost (x, outer, opno, true);
3912 c->size = rtx_cost (x, outer, opno, false);
3913 }
3914
3915 \f
3916 /* Return cost of address expression X.
3917 Expect that X is properly formed address reference.
3918
3919 SPEED parameter specify whether costs optimized for speed or size should
3920 be returned. */
3921
3922 int
3923 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
3924 {
3925 /* We may be asked for cost of various unusual addresses, such as operands
3926 of push instruction. It is not worthwhile to complicate writing
3927 of the target hook by such cases. */
3928
3929 if (!memory_address_addr_space_p (mode, x, as))
3930 return 1000;
3931
3932 return targetm.address_cost (x, mode, as, speed);
3933 }
3934
3935 /* If the target doesn't override, compute the cost as with arithmetic. */
3936
3937 int
3938 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
3939 {
3940 return rtx_cost (x, MEM, 0, speed);
3941 }
3942 \f
3943
3944 unsigned HOST_WIDE_INT
3945 nonzero_bits (const_rtx x, machine_mode mode)
3946 {
3947 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3948 }
3949
3950 unsigned int
3951 num_sign_bit_copies (const_rtx x, machine_mode mode)
3952 {
3953 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3954 }
3955
3956 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3957 It avoids exponential behavior in nonzero_bits1 when X has
3958 identical subexpressions on the first or the second level. */
3959
3960 static unsigned HOST_WIDE_INT
3961 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
3962 machine_mode known_mode,
3963 unsigned HOST_WIDE_INT known_ret)
3964 {
3965 if (x == known_x && mode == known_mode)
3966 return known_ret;
3967
3968 /* Try to find identical subexpressions. If found call
3969 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3970 precomputed value for the subexpression as KNOWN_RET. */
3971
3972 if (ARITHMETIC_P (x))
3973 {
3974 rtx x0 = XEXP (x, 0);
3975 rtx x1 = XEXP (x, 1);
3976
3977 /* Check the first level. */
3978 if (x0 == x1)
3979 return nonzero_bits1 (x, mode, x0, mode,
3980 cached_nonzero_bits (x0, mode, known_x,
3981 known_mode, known_ret));
3982
3983 /* Check the second level. */
3984 if (ARITHMETIC_P (x0)
3985 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3986 return nonzero_bits1 (x, mode, x1, mode,
3987 cached_nonzero_bits (x1, mode, known_x,
3988 known_mode, known_ret));
3989
3990 if (ARITHMETIC_P (x1)
3991 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3992 return nonzero_bits1 (x, mode, x0, mode,
3993 cached_nonzero_bits (x0, mode, known_x,
3994 known_mode, known_ret));
3995 }
3996
3997 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3998 }
3999
4000 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4001 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4002 is less useful. We can't allow both, because that results in exponential
4003 run time recursion. There is a nullstone testcase that triggered
4004 this. This macro avoids accidental uses of num_sign_bit_copies. */
4005 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4006
4007 /* Given an expression, X, compute which bits in X can be nonzero.
4008 We don't care about bits outside of those defined in MODE.
4009
4010 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4011 an arithmetic operation, we can do better. */
4012
4013 static unsigned HOST_WIDE_INT
4014 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4015 machine_mode known_mode,
4016 unsigned HOST_WIDE_INT known_ret)
4017 {
4018 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4019 unsigned HOST_WIDE_INT inner_nz;
4020 enum rtx_code code;
4021 machine_mode inner_mode;
4022 unsigned int mode_width = GET_MODE_PRECISION (mode);
4023
4024 /* For floating-point and vector values, assume all bits are needed. */
4025 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4026 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4027 return nonzero;
4028
4029 /* If X is wider than MODE, use its mode instead. */
4030 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4031 {
4032 mode = GET_MODE (x);
4033 nonzero = GET_MODE_MASK (mode);
4034 mode_width = GET_MODE_PRECISION (mode);
4035 }
4036
4037 if (mode_width > HOST_BITS_PER_WIDE_INT)
4038 /* Our only callers in this case look for single bit values. So
4039 just return the mode mask. Those tests will then be false. */
4040 return nonzero;
4041
4042 #ifndef WORD_REGISTER_OPERATIONS
4043 /* If MODE is wider than X, but both are a single word for both the host
4044 and target machines, we can compute this from which bits of the
4045 object might be nonzero in its own mode, taking into account the fact
4046 that on many CISC machines, accessing an object in a wider mode
4047 causes the high-order bits to become undefined. So they are
4048 not known to be zero. */
4049
4050 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4051 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4052 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4053 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4054 {
4055 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4056 known_x, known_mode, known_ret);
4057 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4058 return nonzero;
4059 }
4060 #endif
4061
4062 code = GET_CODE (x);
4063 switch (code)
4064 {
4065 case REG:
4066 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4067 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4068 all the bits above ptr_mode are known to be zero. */
4069 /* As we do not know which address space the pointer is referring to,
4070 we can do this only if the target does not support different pointer
4071 or address modes depending on the address space. */
4072 if (target_default_pointer_address_modes_p ()
4073 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4074 && REG_POINTER (x))
4075 nonzero &= GET_MODE_MASK (ptr_mode);
4076 #endif
4077
4078 /* Include declared information about alignment of pointers. */
4079 /* ??? We don't properly preserve REG_POINTER changes across
4080 pointer-to-integer casts, so we can't trust it except for
4081 things that we know must be pointers. See execute/960116-1.c. */
4082 if ((x == stack_pointer_rtx
4083 || x == frame_pointer_rtx
4084 || x == arg_pointer_rtx)
4085 && REGNO_POINTER_ALIGN (REGNO (x)))
4086 {
4087 unsigned HOST_WIDE_INT alignment
4088 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4089
4090 #ifdef PUSH_ROUNDING
4091 /* If PUSH_ROUNDING is defined, it is possible for the
4092 stack to be momentarily aligned only to that amount,
4093 so we pick the least alignment. */
4094 if (x == stack_pointer_rtx && PUSH_ARGS)
4095 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4096 alignment);
4097 #endif
4098
4099 nonzero &= ~(alignment - 1);
4100 }
4101
4102 {
4103 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4104 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4105 known_mode, known_ret,
4106 &nonzero_for_hook);
4107
4108 if (new_rtx)
4109 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4110 known_mode, known_ret);
4111
4112 return nonzero_for_hook;
4113 }
4114
4115 case CONST_INT:
4116 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4117 /* If X is negative in MODE, sign-extend the value. */
4118 if (INTVAL (x) > 0
4119 && mode_width < BITS_PER_WORD
4120 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4121 != 0)
4122 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4123 #endif
4124
4125 return UINTVAL (x);
4126
4127 case MEM:
4128 #ifdef LOAD_EXTEND_OP
4129 /* In many, if not most, RISC machines, reading a byte from memory
4130 zeros the rest of the register. Noticing that fact saves a lot
4131 of extra zero-extends. */
4132 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4133 nonzero &= GET_MODE_MASK (GET_MODE (x));
4134 #endif
4135 break;
4136
4137 case EQ: case NE:
4138 case UNEQ: case LTGT:
4139 case GT: case GTU: case UNGT:
4140 case LT: case LTU: case UNLT:
4141 case GE: case GEU: case UNGE:
4142 case LE: case LEU: case UNLE:
4143 case UNORDERED: case ORDERED:
4144 /* If this produces an integer result, we know which bits are set.
4145 Code here used to clear bits outside the mode of X, but that is
4146 now done above. */
4147 /* Mind that MODE is the mode the caller wants to look at this
4148 operation in, and not the actual operation mode. We can wind
4149 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4150 that describes the results of a vector compare. */
4151 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4152 && mode_width <= HOST_BITS_PER_WIDE_INT)
4153 nonzero = STORE_FLAG_VALUE;
4154 break;
4155
4156 case NEG:
4157 #if 0
4158 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4159 and num_sign_bit_copies. */
4160 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4161 == GET_MODE_PRECISION (GET_MODE (x)))
4162 nonzero = 1;
4163 #endif
4164
4165 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4166 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4167 break;
4168
4169 case ABS:
4170 #if 0
4171 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4172 and num_sign_bit_copies. */
4173 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4174 == GET_MODE_PRECISION (GET_MODE (x)))
4175 nonzero = 1;
4176 #endif
4177 break;
4178
4179 case TRUNCATE:
4180 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4181 known_x, known_mode, known_ret)
4182 & GET_MODE_MASK (mode));
4183 break;
4184
4185 case ZERO_EXTEND:
4186 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4187 known_x, known_mode, known_ret);
4188 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4189 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4190 break;
4191
4192 case SIGN_EXTEND:
4193 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4194 Otherwise, show all the bits in the outer mode but not the inner
4195 may be nonzero. */
4196 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4197 known_x, known_mode, known_ret);
4198 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4199 {
4200 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4201 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4202 inner_nz |= (GET_MODE_MASK (mode)
4203 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4204 }
4205
4206 nonzero &= inner_nz;
4207 break;
4208
4209 case AND:
4210 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4211 known_x, known_mode, known_ret)
4212 & cached_nonzero_bits (XEXP (x, 1), mode,
4213 known_x, known_mode, known_ret);
4214 break;
4215
4216 case XOR: case IOR:
4217 case UMIN: case UMAX: case SMIN: case SMAX:
4218 {
4219 unsigned HOST_WIDE_INT nonzero0
4220 = cached_nonzero_bits (XEXP (x, 0), mode,
4221 known_x, known_mode, known_ret);
4222
4223 /* Don't call nonzero_bits for the second time if it cannot change
4224 anything. */
4225 if ((nonzero & nonzero0) != nonzero)
4226 nonzero &= nonzero0
4227 | cached_nonzero_bits (XEXP (x, 1), mode,
4228 known_x, known_mode, known_ret);
4229 }
4230 break;
4231
4232 case PLUS: case MINUS:
4233 case MULT:
4234 case DIV: case UDIV:
4235 case MOD: case UMOD:
4236 /* We can apply the rules of arithmetic to compute the number of
4237 high- and low-order zero bits of these operations. We start by
4238 computing the width (position of the highest-order nonzero bit)
4239 and the number of low-order zero bits for each value. */
4240 {
4241 unsigned HOST_WIDE_INT nz0
4242 = cached_nonzero_bits (XEXP (x, 0), mode,
4243 known_x, known_mode, known_ret);
4244 unsigned HOST_WIDE_INT nz1
4245 = cached_nonzero_bits (XEXP (x, 1), mode,
4246 known_x, known_mode, known_ret);
4247 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4248 int width0 = floor_log2 (nz0) + 1;
4249 int width1 = floor_log2 (nz1) + 1;
4250 int low0 = floor_log2 (nz0 & -nz0);
4251 int low1 = floor_log2 (nz1 & -nz1);
4252 unsigned HOST_WIDE_INT op0_maybe_minusp
4253 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4254 unsigned HOST_WIDE_INT op1_maybe_minusp
4255 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4256 unsigned int result_width = mode_width;
4257 int result_low = 0;
4258
4259 switch (code)
4260 {
4261 case PLUS:
4262 result_width = MAX (width0, width1) + 1;
4263 result_low = MIN (low0, low1);
4264 break;
4265 case MINUS:
4266 result_low = MIN (low0, low1);
4267 break;
4268 case MULT:
4269 result_width = width0 + width1;
4270 result_low = low0 + low1;
4271 break;
4272 case DIV:
4273 if (width1 == 0)
4274 break;
4275 if (!op0_maybe_minusp && !op1_maybe_minusp)
4276 result_width = width0;
4277 break;
4278 case UDIV:
4279 if (width1 == 0)
4280 break;
4281 result_width = width0;
4282 break;
4283 case MOD:
4284 if (width1 == 0)
4285 break;
4286 if (!op0_maybe_minusp && !op1_maybe_minusp)
4287 result_width = MIN (width0, width1);
4288 result_low = MIN (low0, low1);
4289 break;
4290 case UMOD:
4291 if (width1 == 0)
4292 break;
4293 result_width = MIN (width0, width1);
4294 result_low = MIN (low0, low1);
4295 break;
4296 default:
4297 gcc_unreachable ();
4298 }
4299
4300 if (result_width < mode_width)
4301 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4302
4303 if (result_low > 0)
4304 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4305 }
4306 break;
4307
4308 case ZERO_EXTRACT:
4309 if (CONST_INT_P (XEXP (x, 1))
4310 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4311 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4312 break;
4313
4314 case SUBREG:
4315 /* If this is a SUBREG formed for a promoted variable that has
4316 been zero-extended, we know that at least the high-order bits
4317 are zero, though others might be too. */
4318
4319 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4320 nonzero = GET_MODE_MASK (GET_MODE (x))
4321 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4322 known_x, known_mode, known_ret);
4323
4324 inner_mode = GET_MODE (SUBREG_REG (x));
4325 /* If the inner mode is a single word for both the host and target
4326 machines, we can compute this from which bits of the inner
4327 object might be nonzero. */
4328 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4329 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4330 {
4331 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4332 known_x, known_mode, known_ret);
4333
4334 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4335 /* If this is a typical RISC machine, we only have to worry
4336 about the way loads are extended. */
4337 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4338 ? val_signbit_known_set_p (inner_mode, nonzero)
4339 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4340 || !MEM_P (SUBREG_REG (x)))
4341 #endif
4342 {
4343 /* On many CISC machines, accessing an object in a wider mode
4344 causes the high-order bits to become undefined. So they are
4345 not known to be zero. */
4346 if (GET_MODE_PRECISION (GET_MODE (x))
4347 > GET_MODE_PRECISION (inner_mode))
4348 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4349 & ~GET_MODE_MASK (inner_mode));
4350 }
4351 }
4352 break;
4353
4354 case ASHIFTRT:
4355 case LSHIFTRT:
4356 case ASHIFT:
4357 case ROTATE:
4358 /* The nonzero bits are in two classes: any bits within MODE
4359 that aren't in GET_MODE (x) are always significant. The rest of the
4360 nonzero bits are those that are significant in the operand of
4361 the shift when shifted the appropriate number of bits. This
4362 shows that high-order bits are cleared by the right shift and
4363 low-order bits by left shifts. */
4364 if (CONST_INT_P (XEXP (x, 1))
4365 && INTVAL (XEXP (x, 1)) >= 0
4366 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4367 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4368 {
4369 machine_mode inner_mode = GET_MODE (x);
4370 unsigned int width = GET_MODE_PRECISION (inner_mode);
4371 int count = INTVAL (XEXP (x, 1));
4372 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4373 unsigned HOST_WIDE_INT op_nonzero
4374 = cached_nonzero_bits (XEXP (x, 0), mode,
4375 known_x, known_mode, known_ret);
4376 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4377 unsigned HOST_WIDE_INT outer = 0;
4378
4379 if (mode_width > width)
4380 outer = (op_nonzero & nonzero & ~mode_mask);
4381
4382 if (code == LSHIFTRT)
4383 inner >>= count;
4384 else if (code == ASHIFTRT)
4385 {
4386 inner >>= count;
4387
4388 /* If the sign bit may have been nonzero before the shift, we
4389 need to mark all the places it could have been copied to
4390 by the shift as possibly nonzero. */
4391 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4392 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4393 << (width - count);
4394 }
4395 else if (code == ASHIFT)
4396 inner <<= count;
4397 else
4398 inner = ((inner << (count % width)
4399 | (inner >> (width - (count % width)))) & mode_mask);
4400
4401 nonzero &= (outer | inner);
4402 }
4403 break;
4404
4405 case FFS:
4406 case POPCOUNT:
4407 /* This is at most the number of bits in the mode. */
4408 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4409 break;
4410
4411 case CLZ:
4412 /* If CLZ has a known value at zero, then the nonzero bits are
4413 that value, plus the number of bits in the mode minus one. */
4414 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4415 nonzero
4416 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4417 else
4418 nonzero = -1;
4419 break;
4420
4421 case CTZ:
4422 /* If CTZ has a known value at zero, then the nonzero bits are
4423 that value, plus the number of bits in the mode minus one. */
4424 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4425 nonzero
4426 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4427 else
4428 nonzero = -1;
4429 break;
4430
4431 case CLRSB:
4432 /* This is at most the number of bits in the mode minus 1. */
4433 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4434 break;
4435
4436 case PARITY:
4437 nonzero = 1;
4438 break;
4439
4440 case IF_THEN_ELSE:
4441 {
4442 unsigned HOST_WIDE_INT nonzero_true
4443 = cached_nonzero_bits (XEXP (x, 1), mode,
4444 known_x, known_mode, known_ret);
4445
4446 /* Don't call nonzero_bits for the second time if it cannot change
4447 anything. */
4448 if ((nonzero & nonzero_true) != nonzero)
4449 nonzero &= nonzero_true
4450 | cached_nonzero_bits (XEXP (x, 2), mode,
4451 known_x, known_mode, known_ret);
4452 }
4453 break;
4454
4455 default:
4456 break;
4457 }
4458
4459 return nonzero;
4460 }
4461
4462 /* See the macro definition above. */
4463 #undef cached_num_sign_bit_copies
4464
4465 \f
4466 /* The function cached_num_sign_bit_copies is a wrapper around
4467 num_sign_bit_copies1. It avoids exponential behavior in
4468 num_sign_bit_copies1 when X has identical subexpressions on the
4469 first or the second level. */
4470
4471 static unsigned int
4472 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4473 machine_mode known_mode,
4474 unsigned int known_ret)
4475 {
4476 if (x == known_x && mode == known_mode)
4477 return known_ret;
4478
4479 /* Try to find identical subexpressions. If found call
4480 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4481 the precomputed value for the subexpression as KNOWN_RET. */
4482
4483 if (ARITHMETIC_P (x))
4484 {
4485 rtx x0 = XEXP (x, 0);
4486 rtx x1 = XEXP (x, 1);
4487
4488 /* Check the first level. */
4489 if (x0 == x1)
4490 return
4491 num_sign_bit_copies1 (x, mode, x0, mode,
4492 cached_num_sign_bit_copies (x0, mode, known_x,
4493 known_mode,
4494 known_ret));
4495
4496 /* Check the second level. */
4497 if (ARITHMETIC_P (x0)
4498 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4499 return
4500 num_sign_bit_copies1 (x, mode, x1, mode,
4501 cached_num_sign_bit_copies (x1, mode, known_x,
4502 known_mode,
4503 known_ret));
4504
4505 if (ARITHMETIC_P (x1)
4506 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4507 return
4508 num_sign_bit_copies1 (x, mode, x0, mode,
4509 cached_num_sign_bit_copies (x0, mode, known_x,
4510 known_mode,
4511 known_ret));
4512 }
4513
4514 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4515 }
4516
4517 /* Return the number of bits at the high-order end of X that are known to
4518 be equal to the sign bit. X will be used in mode MODE; if MODE is
4519 VOIDmode, X will be used in its own mode. The returned value will always
4520 be between 1 and the number of bits in MODE. */
4521
4522 static unsigned int
4523 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4524 machine_mode known_mode,
4525 unsigned int known_ret)
4526 {
4527 enum rtx_code code = GET_CODE (x);
4528 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4529 int num0, num1, result;
4530 unsigned HOST_WIDE_INT nonzero;
4531
4532 /* If we weren't given a mode, use the mode of X. If the mode is still
4533 VOIDmode, we don't know anything. Likewise if one of the modes is
4534 floating-point. */
4535
4536 if (mode == VOIDmode)
4537 mode = GET_MODE (x);
4538
4539 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4540 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4541 return 1;
4542
4543 /* For a smaller object, just ignore the high bits. */
4544 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4545 {
4546 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4547 known_x, known_mode, known_ret);
4548 return MAX (1,
4549 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4550 }
4551
4552 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4553 {
4554 #ifndef WORD_REGISTER_OPERATIONS
4555 /* If this machine does not do all register operations on the entire
4556 register and MODE is wider than the mode of X, we can say nothing
4557 at all about the high-order bits. */
4558 return 1;
4559 #else
4560 /* Likewise on machines that do, if the mode of the object is smaller
4561 than a word and loads of that size don't sign extend, we can say
4562 nothing about the high order bits. */
4563 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4564 #ifdef LOAD_EXTEND_OP
4565 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4566 #endif
4567 )
4568 return 1;
4569 #endif
4570 }
4571
4572 switch (code)
4573 {
4574 case REG:
4575
4576 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4577 /* If pointers extend signed and this is a pointer in Pmode, say that
4578 all the bits above ptr_mode are known to be sign bit copies. */
4579 /* As we do not know which address space the pointer is referring to,
4580 we can do this only if the target does not support different pointer
4581 or address modes depending on the address space. */
4582 if (target_default_pointer_address_modes_p ()
4583 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4584 && mode == Pmode && REG_POINTER (x))
4585 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4586 #endif
4587
4588 {
4589 unsigned int copies_for_hook = 1, copies = 1;
4590 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4591 known_mode, known_ret,
4592 &copies_for_hook);
4593
4594 if (new_rtx)
4595 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4596 known_mode, known_ret);
4597
4598 if (copies > 1 || copies_for_hook > 1)
4599 return MAX (copies, copies_for_hook);
4600
4601 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4602 }
4603 break;
4604
4605 case MEM:
4606 #ifdef LOAD_EXTEND_OP
4607 /* Some RISC machines sign-extend all loads of smaller than a word. */
4608 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4609 return MAX (1, ((int) bitwidth
4610 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4611 #endif
4612 break;
4613
4614 case CONST_INT:
4615 /* If the constant is negative, take its 1's complement and remask.
4616 Then see how many zero bits we have. */
4617 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4618 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4619 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4620 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4621
4622 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4623
4624 case SUBREG:
4625 /* If this is a SUBREG for a promoted object that is sign-extended
4626 and we are looking at it in a wider mode, we know that at least the
4627 high-order bits are known to be sign bit copies. */
4628
4629 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4630 {
4631 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4632 known_x, known_mode, known_ret);
4633 return MAX ((int) bitwidth
4634 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4635 num0);
4636 }
4637
4638 /* For a smaller object, just ignore the high bits. */
4639 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4640 {
4641 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4642 known_x, known_mode, known_ret);
4643 return MAX (1, (num0
4644 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4645 - bitwidth)));
4646 }
4647
4648 #ifdef WORD_REGISTER_OPERATIONS
4649 #ifdef LOAD_EXTEND_OP
4650 /* For paradoxical SUBREGs on machines where all register operations
4651 affect the entire register, just look inside. Note that we are
4652 passing MODE to the recursive call, so the number of sign bit copies
4653 will remain relative to that mode, not the inner mode. */
4654
4655 /* This works only if loads sign extend. Otherwise, if we get a
4656 reload for the inner part, it may be loaded from the stack, and
4657 then we lose all sign bit copies that existed before the store
4658 to the stack. */
4659
4660 if (paradoxical_subreg_p (x)
4661 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4662 && MEM_P (SUBREG_REG (x)))
4663 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4664 known_x, known_mode, known_ret);
4665 #endif
4666 #endif
4667 break;
4668
4669 case SIGN_EXTRACT:
4670 if (CONST_INT_P (XEXP (x, 1)))
4671 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4672 break;
4673
4674 case SIGN_EXTEND:
4675 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4676 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4677 known_x, known_mode, known_ret));
4678
4679 case TRUNCATE:
4680 /* For a smaller object, just ignore the high bits. */
4681 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4682 known_x, known_mode, known_ret);
4683 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4684 - bitwidth)));
4685
4686 case NOT:
4687 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4688 known_x, known_mode, known_ret);
4689
4690 case ROTATE: case ROTATERT:
4691 /* If we are rotating left by a number of bits less than the number
4692 of sign bit copies, we can just subtract that amount from the
4693 number. */
4694 if (CONST_INT_P (XEXP (x, 1))
4695 && INTVAL (XEXP (x, 1)) >= 0
4696 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4697 {
4698 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4699 known_x, known_mode, known_ret);
4700 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4701 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4702 }
4703 break;
4704
4705 case NEG:
4706 /* In general, this subtracts one sign bit copy. But if the value
4707 is known to be positive, the number of sign bit copies is the
4708 same as that of the input. Finally, if the input has just one bit
4709 that might be nonzero, all the bits are copies of the sign bit. */
4710 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4711 known_x, known_mode, known_ret);
4712 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4713 return num0 > 1 ? num0 - 1 : 1;
4714
4715 nonzero = nonzero_bits (XEXP (x, 0), mode);
4716 if (nonzero == 1)
4717 return bitwidth;
4718
4719 if (num0 > 1
4720 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4721 num0--;
4722
4723 return num0;
4724
4725 case IOR: case AND: case XOR:
4726 case SMIN: case SMAX: case UMIN: case UMAX:
4727 /* Logical operations will preserve the number of sign-bit copies.
4728 MIN and MAX operations always return one of the operands. */
4729 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4730 known_x, known_mode, known_ret);
4731 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4732 known_x, known_mode, known_ret);
4733
4734 /* If num1 is clearing some of the top bits then regardless of
4735 the other term, we are guaranteed to have at least that many
4736 high-order zero bits. */
4737 if (code == AND
4738 && num1 > 1
4739 && bitwidth <= HOST_BITS_PER_WIDE_INT
4740 && CONST_INT_P (XEXP (x, 1))
4741 && (UINTVAL (XEXP (x, 1))
4742 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4743 return num1;
4744
4745 /* Similarly for IOR when setting high-order bits. */
4746 if (code == IOR
4747 && num1 > 1
4748 && bitwidth <= HOST_BITS_PER_WIDE_INT
4749 && CONST_INT_P (XEXP (x, 1))
4750 && (UINTVAL (XEXP (x, 1))
4751 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4752 return num1;
4753
4754 return MIN (num0, num1);
4755
4756 case PLUS: case MINUS:
4757 /* For addition and subtraction, we can have a 1-bit carry. However,
4758 if we are subtracting 1 from a positive number, there will not
4759 be such a carry. Furthermore, if the positive number is known to
4760 be 0 or 1, we know the result is either -1 or 0. */
4761
4762 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4763 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4764 {
4765 nonzero = nonzero_bits (XEXP (x, 0), mode);
4766 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4767 return (nonzero == 1 || nonzero == 0 ? bitwidth
4768 : bitwidth - floor_log2 (nonzero) - 1);
4769 }
4770
4771 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4772 known_x, known_mode, known_ret);
4773 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4774 known_x, known_mode, known_ret);
4775 result = MAX (1, MIN (num0, num1) - 1);
4776
4777 return result;
4778
4779 case MULT:
4780 /* The number of bits of the product is the sum of the number of
4781 bits of both terms. However, unless one of the terms if known
4782 to be positive, we must allow for an additional bit since negating
4783 a negative number can remove one sign bit copy. */
4784
4785 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4786 known_x, known_mode, known_ret);
4787 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4788 known_x, known_mode, known_ret);
4789
4790 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4791 if (result > 0
4792 && (bitwidth > HOST_BITS_PER_WIDE_INT
4793 || (((nonzero_bits (XEXP (x, 0), mode)
4794 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4795 && ((nonzero_bits (XEXP (x, 1), mode)
4796 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4797 != 0))))
4798 result--;
4799
4800 return MAX (1, result);
4801
4802 case UDIV:
4803 /* The result must be <= the first operand. If the first operand
4804 has the high bit set, we know nothing about the number of sign
4805 bit copies. */
4806 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4807 return 1;
4808 else if ((nonzero_bits (XEXP (x, 0), mode)
4809 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4810 return 1;
4811 else
4812 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4813 known_x, known_mode, known_ret);
4814
4815 case UMOD:
4816 /* The result must be <= the second operand. If the second operand
4817 has (or just might have) the high bit set, we know nothing about
4818 the number of sign bit copies. */
4819 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4820 return 1;
4821 else if ((nonzero_bits (XEXP (x, 1), mode)
4822 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4823 return 1;
4824 else
4825 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4826 known_x, known_mode, known_ret);
4827
4828 case DIV:
4829 /* Similar to unsigned division, except that we have to worry about
4830 the case where the divisor is negative, in which case we have
4831 to add 1. */
4832 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4833 known_x, known_mode, known_ret);
4834 if (result > 1
4835 && (bitwidth > HOST_BITS_PER_WIDE_INT
4836 || (nonzero_bits (XEXP (x, 1), mode)
4837 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4838 result--;
4839
4840 return result;
4841
4842 case MOD:
4843 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4844 known_x, known_mode, known_ret);
4845 if (result > 1
4846 && (bitwidth > HOST_BITS_PER_WIDE_INT
4847 || (nonzero_bits (XEXP (x, 1), mode)
4848 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4849 result--;
4850
4851 return result;
4852
4853 case ASHIFTRT:
4854 /* Shifts by a constant add to the number of bits equal to the
4855 sign bit. */
4856 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4857 known_x, known_mode, known_ret);
4858 if (CONST_INT_P (XEXP (x, 1))
4859 && INTVAL (XEXP (x, 1)) > 0
4860 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4861 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4862
4863 return num0;
4864
4865 case ASHIFT:
4866 /* Left shifts destroy copies. */
4867 if (!CONST_INT_P (XEXP (x, 1))
4868 || INTVAL (XEXP (x, 1)) < 0
4869 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4870 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4871 return 1;
4872
4873 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4874 known_x, known_mode, known_ret);
4875 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4876
4877 case IF_THEN_ELSE:
4878 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4879 known_x, known_mode, known_ret);
4880 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4881 known_x, known_mode, known_ret);
4882 return MIN (num0, num1);
4883
4884 case EQ: case NE: case GE: case GT: case LE: case LT:
4885 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4886 case GEU: case GTU: case LEU: case LTU:
4887 case UNORDERED: case ORDERED:
4888 /* If the constant is negative, take its 1's complement and remask.
4889 Then see how many zero bits we have. */
4890 nonzero = STORE_FLAG_VALUE;
4891 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4892 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4893 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4894
4895 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4896
4897 default:
4898 break;
4899 }
4900
4901 /* If we haven't been able to figure it out by one of the above rules,
4902 see if some of the high-order bits are known to be zero. If so,
4903 count those bits and return one less than that amount. If we can't
4904 safely compute the mask for this mode, always return BITWIDTH. */
4905
4906 bitwidth = GET_MODE_PRECISION (mode);
4907 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4908 return 1;
4909
4910 nonzero = nonzero_bits (x, mode);
4911 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4912 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4913 }
4914
4915 /* Calculate the rtx_cost of a single instruction. A return value of
4916 zero indicates an instruction pattern without a known cost. */
4917
4918 int
4919 insn_rtx_cost (rtx pat, bool speed)
4920 {
4921 int i, cost;
4922 rtx set;
4923
4924 /* Extract the single set rtx from the instruction pattern.
4925 We can't use single_set since we only have the pattern. */
4926 if (GET_CODE (pat) == SET)
4927 set = pat;
4928 else if (GET_CODE (pat) == PARALLEL)
4929 {
4930 set = NULL_RTX;
4931 for (i = 0; i < XVECLEN (pat, 0); i++)
4932 {
4933 rtx x = XVECEXP (pat, 0, i);
4934 if (GET_CODE (x) == SET)
4935 {
4936 if (set)
4937 return 0;
4938 set = x;
4939 }
4940 }
4941 if (!set)
4942 return 0;
4943 }
4944 else
4945 return 0;
4946
4947 cost = set_src_cost (SET_SRC (set), speed);
4948 return cost > 0 ? cost : COSTS_N_INSNS (1);
4949 }
4950
4951 /* Returns estimate on cost of computing SEQ. */
4952
4953 unsigned
4954 seq_cost (const rtx_insn *seq, bool speed)
4955 {
4956 unsigned cost = 0;
4957 rtx set;
4958
4959 for (; seq; seq = NEXT_INSN (seq))
4960 {
4961 set = single_set (seq);
4962 if (set)
4963 cost += set_rtx_cost (set, speed);
4964 else
4965 cost++;
4966 }
4967
4968 return cost;
4969 }
4970
4971 /* Given an insn INSN and condition COND, return the condition in a
4972 canonical form to simplify testing by callers. Specifically:
4973
4974 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4975 (2) Both operands will be machine operands; (cc0) will have been replaced.
4976 (3) If an operand is a constant, it will be the second operand.
4977 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4978 for GE, GEU, and LEU.
4979
4980 If the condition cannot be understood, or is an inequality floating-point
4981 comparison which needs to be reversed, 0 will be returned.
4982
4983 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4984
4985 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4986 insn used in locating the condition was found. If a replacement test
4987 of the condition is desired, it should be placed in front of that
4988 insn and we will be sure that the inputs are still valid.
4989
4990 If WANT_REG is nonzero, we wish the condition to be relative to that
4991 register, if possible. Therefore, do not canonicalize the condition
4992 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4993 to be a compare to a CC mode register.
4994
4995 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4996 and at INSN. */
4997
4998 rtx
4999 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5000 rtx_insn **earliest,
5001 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5002 {
5003 enum rtx_code code;
5004 rtx_insn *prev = insn;
5005 const_rtx set;
5006 rtx tem;
5007 rtx op0, op1;
5008 int reverse_code = 0;
5009 machine_mode mode;
5010 basic_block bb = BLOCK_FOR_INSN (insn);
5011
5012 code = GET_CODE (cond);
5013 mode = GET_MODE (cond);
5014 op0 = XEXP (cond, 0);
5015 op1 = XEXP (cond, 1);
5016
5017 if (reverse)
5018 code = reversed_comparison_code (cond, insn);
5019 if (code == UNKNOWN)
5020 return 0;
5021
5022 if (earliest)
5023 *earliest = insn;
5024
5025 /* If we are comparing a register with zero, see if the register is set
5026 in the previous insn to a COMPARE or a comparison operation. Perform
5027 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5028 in cse.c */
5029
5030 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5031 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5032 && op1 == CONST0_RTX (GET_MODE (op0))
5033 && op0 != want_reg)
5034 {
5035 /* Set nonzero when we find something of interest. */
5036 rtx x = 0;
5037
5038 #ifdef HAVE_cc0
5039 /* If comparison with cc0, import actual comparison from compare
5040 insn. */
5041 if (op0 == cc0_rtx)
5042 {
5043 if ((prev = prev_nonnote_insn (prev)) == 0
5044 || !NONJUMP_INSN_P (prev)
5045 || (set = single_set (prev)) == 0
5046 || SET_DEST (set) != cc0_rtx)
5047 return 0;
5048
5049 op0 = SET_SRC (set);
5050 op1 = CONST0_RTX (GET_MODE (op0));
5051 if (earliest)
5052 *earliest = prev;
5053 }
5054 #endif
5055
5056 /* If this is a COMPARE, pick up the two things being compared. */
5057 if (GET_CODE (op0) == COMPARE)
5058 {
5059 op1 = XEXP (op0, 1);
5060 op0 = XEXP (op0, 0);
5061 continue;
5062 }
5063 else if (!REG_P (op0))
5064 break;
5065
5066 /* Go back to the previous insn. Stop if it is not an INSN. We also
5067 stop if it isn't a single set or if it has a REG_INC note because
5068 we don't want to bother dealing with it. */
5069
5070 prev = prev_nonnote_nondebug_insn (prev);
5071
5072 if (prev == 0
5073 || !NONJUMP_INSN_P (prev)
5074 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5075 /* In cfglayout mode, there do not have to be labels at the
5076 beginning of a block, or jumps at the end, so the previous
5077 conditions would not stop us when we reach bb boundary. */
5078 || BLOCK_FOR_INSN (prev) != bb)
5079 break;
5080
5081 set = set_of (op0, prev);
5082
5083 if (set
5084 && (GET_CODE (set) != SET
5085 || !rtx_equal_p (SET_DEST (set), op0)))
5086 break;
5087
5088 /* If this is setting OP0, get what it sets it to if it looks
5089 relevant. */
5090 if (set)
5091 {
5092 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5093 #ifdef FLOAT_STORE_FLAG_VALUE
5094 REAL_VALUE_TYPE fsfv;
5095 #endif
5096
5097 /* ??? We may not combine comparisons done in a CCmode with
5098 comparisons not done in a CCmode. This is to aid targets
5099 like Alpha that have an IEEE compliant EQ instruction, and
5100 a non-IEEE compliant BEQ instruction. The use of CCmode is
5101 actually artificial, simply to prevent the combination, but
5102 should not affect other platforms.
5103
5104 However, we must allow VOIDmode comparisons to match either
5105 CCmode or non-CCmode comparison, because some ports have
5106 modeless comparisons inside branch patterns.
5107
5108 ??? This mode check should perhaps look more like the mode check
5109 in simplify_comparison in combine. */
5110 if (((GET_MODE_CLASS (mode) == MODE_CC)
5111 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5112 && mode != VOIDmode
5113 && inner_mode != VOIDmode)
5114 break;
5115 if (GET_CODE (SET_SRC (set)) == COMPARE
5116 || (((code == NE
5117 || (code == LT
5118 && val_signbit_known_set_p (inner_mode,
5119 STORE_FLAG_VALUE))
5120 #ifdef FLOAT_STORE_FLAG_VALUE
5121 || (code == LT
5122 && SCALAR_FLOAT_MODE_P (inner_mode)
5123 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5124 REAL_VALUE_NEGATIVE (fsfv)))
5125 #endif
5126 ))
5127 && COMPARISON_P (SET_SRC (set))))
5128 x = SET_SRC (set);
5129 else if (((code == EQ
5130 || (code == GE
5131 && val_signbit_known_set_p (inner_mode,
5132 STORE_FLAG_VALUE))
5133 #ifdef FLOAT_STORE_FLAG_VALUE
5134 || (code == GE
5135 && SCALAR_FLOAT_MODE_P (inner_mode)
5136 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5137 REAL_VALUE_NEGATIVE (fsfv)))
5138 #endif
5139 ))
5140 && COMPARISON_P (SET_SRC (set)))
5141 {
5142 reverse_code = 1;
5143 x = SET_SRC (set);
5144 }
5145 else if ((code == EQ || code == NE)
5146 && GET_CODE (SET_SRC (set)) == XOR)
5147 /* Handle sequences like:
5148
5149 (set op0 (xor X Y))
5150 ...(eq|ne op0 (const_int 0))...
5151
5152 in which case:
5153
5154 (eq op0 (const_int 0)) reduces to (eq X Y)
5155 (ne op0 (const_int 0)) reduces to (ne X Y)
5156
5157 This is the form used by MIPS16, for example. */
5158 x = SET_SRC (set);
5159 else
5160 break;
5161 }
5162
5163 else if (reg_set_p (op0, prev))
5164 /* If this sets OP0, but not directly, we have to give up. */
5165 break;
5166
5167 if (x)
5168 {
5169 /* If the caller is expecting the condition to be valid at INSN,
5170 make sure X doesn't change before INSN. */
5171 if (valid_at_insn_p)
5172 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5173 break;
5174 if (COMPARISON_P (x))
5175 code = GET_CODE (x);
5176 if (reverse_code)
5177 {
5178 code = reversed_comparison_code (x, prev);
5179 if (code == UNKNOWN)
5180 return 0;
5181 reverse_code = 0;
5182 }
5183
5184 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5185 if (earliest)
5186 *earliest = prev;
5187 }
5188 }
5189
5190 /* If constant is first, put it last. */
5191 if (CONSTANT_P (op0))
5192 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5193
5194 /* If OP0 is the result of a comparison, we weren't able to find what
5195 was really being compared, so fail. */
5196 if (!allow_cc_mode
5197 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5198 return 0;
5199
5200 /* Canonicalize any ordered comparison with integers involving equality
5201 if we can do computations in the relevant mode and we do not
5202 overflow. */
5203
5204 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5205 && CONST_INT_P (op1)
5206 && GET_MODE (op0) != VOIDmode
5207 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5208 {
5209 HOST_WIDE_INT const_val = INTVAL (op1);
5210 unsigned HOST_WIDE_INT uconst_val = const_val;
5211 unsigned HOST_WIDE_INT max_val
5212 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5213
5214 switch (code)
5215 {
5216 case LE:
5217 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5218 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5219 break;
5220
5221 /* When cross-compiling, const_val might be sign-extended from
5222 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5223 case GE:
5224 if ((const_val & max_val)
5225 != ((unsigned HOST_WIDE_INT) 1
5226 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5227 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5228 break;
5229
5230 case LEU:
5231 if (uconst_val < max_val)
5232 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5233 break;
5234
5235 case GEU:
5236 if (uconst_val != 0)
5237 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5238 break;
5239
5240 default:
5241 break;
5242 }
5243 }
5244
5245 /* Never return CC0; return zero instead. */
5246 if (CC0_P (op0))
5247 return 0;
5248
5249 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5250 }
5251
5252 /* Given a jump insn JUMP, return the condition that will cause it to branch
5253 to its JUMP_LABEL. If the condition cannot be understood, or is an
5254 inequality floating-point comparison which needs to be reversed, 0 will
5255 be returned.
5256
5257 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5258 insn used in locating the condition was found. If a replacement test
5259 of the condition is desired, it should be placed in front of that
5260 insn and we will be sure that the inputs are still valid. If EARLIEST
5261 is null, the returned condition will be valid at INSN.
5262
5263 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5264 compare CC mode register.
5265
5266 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5267
5268 rtx
5269 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5270 int valid_at_insn_p)
5271 {
5272 rtx cond;
5273 int reverse;
5274 rtx set;
5275
5276 /* If this is not a standard conditional jump, we can't parse it. */
5277 if (!JUMP_P (jump)
5278 || ! any_condjump_p (jump))
5279 return 0;
5280 set = pc_set (jump);
5281
5282 cond = XEXP (SET_SRC (set), 0);
5283
5284 /* If this branches to JUMP_LABEL when the condition is false, reverse
5285 the condition. */
5286 reverse
5287 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5288 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5289
5290 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5291 allow_cc_mode, valid_at_insn_p);
5292 }
5293
5294 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5295 TARGET_MODE_REP_EXTENDED.
5296
5297 Note that we assume that the property of
5298 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5299 narrower than mode B. I.e., if A is a mode narrower than B then in
5300 order to be able to operate on it in mode B, mode A needs to
5301 satisfy the requirements set by the representation of mode B. */
5302
5303 static void
5304 init_num_sign_bit_copies_in_rep (void)
5305 {
5306 machine_mode mode, in_mode;
5307
5308 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5309 in_mode = GET_MODE_WIDER_MODE (mode))
5310 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5311 mode = GET_MODE_WIDER_MODE (mode))
5312 {
5313 machine_mode i;
5314
5315 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5316 extends to the next widest mode. */
5317 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5318 || GET_MODE_WIDER_MODE (mode) == in_mode);
5319
5320 /* We are in in_mode. Count how many bits outside of mode
5321 have to be copies of the sign-bit. */
5322 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5323 {
5324 machine_mode wider = GET_MODE_WIDER_MODE (i);
5325
5326 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5327 /* We can only check sign-bit copies starting from the
5328 top-bit. In order to be able to check the bits we
5329 have already seen we pretend that subsequent bits
5330 have to be sign-bit copies too. */
5331 || num_sign_bit_copies_in_rep [in_mode][mode])
5332 num_sign_bit_copies_in_rep [in_mode][mode]
5333 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5334 }
5335 }
5336 }
5337
5338 /* Suppose that truncation from the machine mode of X to MODE is not a
5339 no-op. See if there is anything special about X so that we can
5340 assume it already contains a truncated value of MODE. */
5341
5342 bool
5343 truncated_to_mode (machine_mode mode, const_rtx x)
5344 {
5345 /* This register has already been used in MODE without explicit
5346 truncation. */
5347 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5348 return true;
5349
5350 /* See if we already satisfy the requirements of MODE. If yes we
5351 can just switch to MODE. */
5352 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5353 && (num_sign_bit_copies (x, GET_MODE (x))
5354 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5355 return true;
5356
5357 return false;
5358 }
5359 \f
5360 /* Return true if RTX code CODE has a single sequence of zero or more
5361 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5362 entry in that case. */
5363
5364 static bool
5365 setup_reg_subrtx_bounds (unsigned int code)
5366 {
5367 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5368 unsigned int i = 0;
5369 for (; format[i] != 'e'; ++i)
5370 {
5371 if (!format[i])
5372 /* No subrtxes. Leave start and count as 0. */
5373 return true;
5374 if (format[i] == 'E' || format[i] == 'V')
5375 return false;
5376 }
5377
5378 /* Record the sequence of 'e's. */
5379 rtx_all_subrtx_bounds[code].start = i;
5380 do
5381 ++i;
5382 while (format[i] == 'e');
5383 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5384 /* rtl-iter.h relies on this. */
5385 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5386
5387 for (; format[i]; ++i)
5388 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5389 return false;
5390
5391 return true;
5392 }
5393
5394 /* Initialize rtx_all_subrtx_bounds. */
5395 void
5396 init_rtlanal (void)
5397 {
5398 int i;
5399 for (i = 0; i < NUM_RTX_CODE; i++)
5400 {
5401 if (!setup_reg_subrtx_bounds (i))
5402 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5403 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5404 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5405 }
5406
5407 init_num_sign_bit_copies_in_rep ();
5408 }
5409 \f
5410 /* Check whether this is a constant pool constant. */
5411 bool
5412 constant_pool_constant_p (rtx x)
5413 {
5414 x = avoid_constant_pool_reference (x);
5415 return CONST_DOUBLE_P (x);
5416 }
5417 \f
5418 /* If M is a bitmask that selects a field of low-order bits within an item but
5419 not the entire word, return the length of the field. Return -1 otherwise.
5420 M is used in machine mode MODE. */
5421
5422 int
5423 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5424 {
5425 if (mode != VOIDmode)
5426 {
5427 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5428 return -1;
5429 m &= GET_MODE_MASK (mode);
5430 }
5431
5432 return exact_log2 (m + 1);
5433 }
5434
5435 /* Return the mode of MEM's address. */
5436
5437 machine_mode
5438 get_address_mode (rtx mem)
5439 {
5440 machine_mode mode;
5441
5442 gcc_assert (MEM_P (mem));
5443 mode = GET_MODE (XEXP (mem, 0));
5444 if (mode != VOIDmode)
5445 return mode;
5446 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5447 }
5448 \f
5449 /* Split up a CONST_DOUBLE or integer constant rtx
5450 into two rtx's for single words,
5451 storing in *FIRST the word that comes first in memory in the target
5452 and in *SECOND the other.
5453
5454 TODO: This function needs to be rewritten to work on any size
5455 integer. */
5456
5457 void
5458 split_double (rtx value, rtx *first, rtx *second)
5459 {
5460 if (CONST_INT_P (value))
5461 {
5462 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5463 {
5464 /* In this case the CONST_INT holds both target words.
5465 Extract the bits from it into two word-sized pieces.
5466 Sign extend each half to HOST_WIDE_INT. */
5467 unsigned HOST_WIDE_INT low, high;
5468 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5469 unsigned bits_per_word = BITS_PER_WORD;
5470
5471 /* Set sign_bit to the most significant bit of a word. */
5472 sign_bit = 1;
5473 sign_bit <<= bits_per_word - 1;
5474
5475 /* Set mask so that all bits of the word are set. We could
5476 have used 1 << BITS_PER_WORD instead of basing the
5477 calculation on sign_bit. However, on machines where
5478 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5479 compiler warning, even though the code would never be
5480 executed. */
5481 mask = sign_bit << 1;
5482 mask--;
5483
5484 /* Set sign_extend as any remaining bits. */
5485 sign_extend = ~mask;
5486
5487 /* Pick the lower word and sign-extend it. */
5488 low = INTVAL (value);
5489 low &= mask;
5490 if (low & sign_bit)
5491 low |= sign_extend;
5492
5493 /* Pick the higher word, shifted to the least significant
5494 bits, and sign-extend it. */
5495 high = INTVAL (value);
5496 high >>= bits_per_word - 1;
5497 high >>= 1;
5498 high &= mask;
5499 if (high & sign_bit)
5500 high |= sign_extend;
5501
5502 /* Store the words in the target machine order. */
5503 if (WORDS_BIG_ENDIAN)
5504 {
5505 *first = GEN_INT (high);
5506 *second = GEN_INT (low);
5507 }
5508 else
5509 {
5510 *first = GEN_INT (low);
5511 *second = GEN_INT (high);
5512 }
5513 }
5514 else
5515 {
5516 /* The rule for using CONST_INT for a wider mode
5517 is that we regard the value as signed.
5518 So sign-extend it. */
5519 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5520 if (WORDS_BIG_ENDIAN)
5521 {
5522 *first = high;
5523 *second = value;
5524 }
5525 else
5526 {
5527 *first = value;
5528 *second = high;
5529 }
5530 }
5531 }
5532 else if (GET_CODE (value) == CONST_WIDE_INT)
5533 {
5534 /* All of this is scary code and needs to be converted to
5535 properly work with any size integer. */
5536 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5537 if (WORDS_BIG_ENDIAN)
5538 {
5539 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5540 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5541 }
5542 else
5543 {
5544 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5545 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5546 }
5547 }
5548 else if (!CONST_DOUBLE_P (value))
5549 {
5550 if (WORDS_BIG_ENDIAN)
5551 {
5552 *first = const0_rtx;
5553 *second = value;
5554 }
5555 else
5556 {
5557 *first = value;
5558 *second = const0_rtx;
5559 }
5560 }
5561 else if (GET_MODE (value) == VOIDmode
5562 /* This is the old way we did CONST_DOUBLE integers. */
5563 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5564 {
5565 /* In an integer, the words are defined as most and least significant.
5566 So order them by the target's convention. */
5567 if (WORDS_BIG_ENDIAN)
5568 {
5569 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5570 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5571 }
5572 else
5573 {
5574 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5575 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5576 }
5577 }
5578 else
5579 {
5580 REAL_VALUE_TYPE r;
5581 long l[2];
5582 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5583
5584 /* Note, this converts the REAL_VALUE_TYPE to the target's
5585 format, splits up the floating point double and outputs
5586 exactly 32 bits of it into each of l[0] and l[1] --
5587 not necessarily BITS_PER_WORD bits. */
5588 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5589
5590 /* If 32 bits is an entire word for the target, but not for the host,
5591 then sign-extend on the host so that the number will look the same
5592 way on the host that it would on the target. See for instance
5593 simplify_unary_operation. The #if is needed to avoid compiler
5594 warnings. */
5595
5596 #if HOST_BITS_PER_LONG > 32
5597 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5598 {
5599 if (l[0] & ((long) 1 << 31))
5600 l[0] |= ((long) (-1) << 32);
5601 if (l[1] & ((long) 1 << 31))
5602 l[1] |= ((long) (-1) << 32);
5603 }
5604 #endif
5605
5606 *first = GEN_INT (l[0]);
5607 *second = GEN_INT (l[1]);
5608 }
5609 }
5610
5611 /* Return true if X is a sign_extract or zero_extract from the least
5612 significant bit. */
5613
5614 static bool
5615 lsb_bitfield_op_p (rtx x)
5616 {
5617 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5618 {
5619 machine_mode mode = GET_MODE (XEXP (x, 0));
5620 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5621 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5622
5623 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5624 }
5625 return false;
5626 }
5627
5628 /* Strip outer address "mutations" from LOC and return a pointer to the
5629 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5630 stripped expression there.
5631
5632 "Mutations" either convert between modes or apply some kind of
5633 extension, truncation or alignment. */
5634
5635 rtx *
5636 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5637 {
5638 for (;;)
5639 {
5640 enum rtx_code code = GET_CODE (*loc);
5641 if (GET_RTX_CLASS (code) == RTX_UNARY)
5642 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5643 used to convert between pointer sizes. */
5644 loc = &XEXP (*loc, 0);
5645 else if (lsb_bitfield_op_p (*loc))
5646 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5647 acts as a combined truncation and extension. */
5648 loc = &XEXP (*loc, 0);
5649 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5650 /* (and ... (const_int -X)) is used to align to X bytes. */
5651 loc = &XEXP (*loc, 0);
5652 else if (code == SUBREG
5653 && !OBJECT_P (SUBREG_REG (*loc))
5654 && subreg_lowpart_p (*loc))
5655 /* (subreg (operator ...) ...) inside and is used for mode
5656 conversion too. */
5657 loc = &SUBREG_REG (*loc);
5658 else
5659 return loc;
5660 if (outer_code)
5661 *outer_code = code;
5662 }
5663 }
5664
5665 /* Return true if CODE applies some kind of scale. The scaled value is
5666 is the first operand and the scale is the second. */
5667
5668 static bool
5669 binary_scale_code_p (enum rtx_code code)
5670 {
5671 return (code == MULT
5672 || code == ASHIFT
5673 /* Needed by ARM targets. */
5674 || code == ASHIFTRT
5675 || code == LSHIFTRT
5676 || code == ROTATE
5677 || code == ROTATERT);
5678 }
5679
5680 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5681 (see address_info). Return null otherwise. */
5682
5683 static rtx *
5684 get_base_term (rtx *inner)
5685 {
5686 if (GET_CODE (*inner) == LO_SUM)
5687 inner = strip_address_mutations (&XEXP (*inner, 0));
5688 if (REG_P (*inner)
5689 || MEM_P (*inner)
5690 || GET_CODE (*inner) == SUBREG
5691 || GET_CODE (*inner) == SCRATCH)
5692 return inner;
5693 return 0;
5694 }
5695
5696 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5697 (see address_info). Return null otherwise. */
5698
5699 static rtx *
5700 get_index_term (rtx *inner)
5701 {
5702 /* At present, only constant scales are allowed. */
5703 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5704 inner = strip_address_mutations (&XEXP (*inner, 0));
5705 if (REG_P (*inner)
5706 || MEM_P (*inner)
5707 || GET_CODE (*inner) == SUBREG
5708 || GET_CODE (*inner) == SCRATCH)
5709 return inner;
5710 return 0;
5711 }
5712
5713 /* Set the segment part of address INFO to LOC, given that INNER is the
5714 unmutated value. */
5715
5716 static void
5717 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5718 {
5719 gcc_assert (!info->segment);
5720 info->segment = loc;
5721 info->segment_term = inner;
5722 }
5723
5724 /* Set the base part of address INFO to LOC, given that INNER is the
5725 unmutated value. */
5726
5727 static void
5728 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5729 {
5730 gcc_assert (!info->base);
5731 info->base = loc;
5732 info->base_term = inner;
5733 }
5734
5735 /* Set the index part of address INFO to LOC, given that INNER is the
5736 unmutated value. */
5737
5738 static void
5739 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5740 {
5741 gcc_assert (!info->index);
5742 info->index = loc;
5743 info->index_term = inner;
5744 }
5745
5746 /* Set the displacement part of address INFO to LOC, given that INNER
5747 is the constant term. */
5748
5749 static void
5750 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5751 {
5752 gcc_assert (!info->disp);
5753 info->disp = loc;
5754 info->disp_term = inner;
5755 }
5756
5757 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5758 rest of INFO accordingly. */
5759
5760 static void
5761 decompose_incdec_address (struct address_info *info)
5762 {
5763 info->autoinc_p = true;
5764
5765 rtx *base = &XEXP (*info->inner, 0);
5766 set_address_base (info, base, base);
5767 gcc_checking_assert (info->base == info->base_term);
5768
5769 /* These addresses are only valid when the size of the addressed
5770 value is known. */
5771 gcc_checking_assert (info->mode != VOIDmode);
5772 }
5773
5774 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5775 of INFO accordingly. */
5776
5777 static void
5778 decompose_automod_address (struct address_info *info)
5779 {
5780 info->autoinc_p = true;
5781
5782 rtx *base = &XEXP (*info->inner, 0);
5783 set_address_base (info, base, base);
5784 gcc_checking_assert (info->base == info->base_term);
5785
5786 rtx plus = XEXP (*info->inner, 1);
5787 gcc_assert (GET_CODE (plus) == PLUS);
5788
5789 info->base_term2 = &XEXP (plus, 0);
5790 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5791
5792 rtx *step = &XEXP (plus, 1);
5793 rtx *inner_step = strip_address_mutations (step);
5794 if (CONSTANT_P (*inner_step))
5795 set_address_disp (info, step, inner_step);
5796 else
5797 set_address_index (info, step, inner_step);
5798 }
5799
5800 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5801 values in [PTR, END). Return a pointer to the end of the used array. */
5802
5803 static rtx **
5804 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5805 {
5806 rtx x = *loc;
5807 if (GET_CODE (x) == PLUS)
5808 {
5809 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5810 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5811 }
5812 else
5813 {
5814 gcc_assert (ptr != end);
5815 *ptr++ = loc;
5816 }
5817 return ptr;
5818 }
5819
5820 /* Evaluate the likelihood of X being a base or index value, returning
5821 positive if it is likely to be a base, negative if it is likely to be
5822 an index, and 0 if we can't tell. Make the magnitude of the return
5823 value reflect the amount of confidence we have in the answer.
5824
5825 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5826
5827 static int
5828 baseness (rtx x, machine_mode mode, addr_space_t as,
5829 enum rtx_code outer_code, enum rtx_code index_code)
5830 {
5831 /* Believe *_POINTER unless the address shape requires otherwise. */
5832 if (REG_P (x) && REG_POINTER (x))
5833 return 2;
5834 if (MEM_P (x) && MEM_POINTER (x))
5835 return 2;
5836
5837 if (REG_P (x) && HARD_REGISTER_P (x))
5838 {
5839 /* X is a hard register. If it only fits one of the base
5840 or index classes, choose that interpretation. */
5841 int regno = REGNO (x);
5842 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5843 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5844 if (base_p != index_p)
5845 return base_p ? 1 : -1;
5846 }
5847 return 0;
5848 }
5849
5850 /* INFO->INNER describes a normal, non-automodified address.
5851 Fill in the rest of INFO accordingly. */
5852
5853 static void
5854 decompose_normal_address (struct address_info *info)
5855 {
5856 /* Treat the address as the sum of up to four values. */
5857 rtx *ops[4];
5858 size_t n_ops = extract_plus_operands (info->inner, ops,
5859 ops + ARRAY_SIZE (ops)) - ops;
5860
5861 /* If there is more than one component, any base component is in a PLUS. */
5862 if (n_ops > 1)
5863 info->base_outer_code = PLUS;
5864
5865 /* Try to classify each sum operand now. Leave those that could be
5866 either a base or an index in OPS. */
5867 rtx *inner_ops[4];
5868 size_t out = 0;
5869 for (size_t in = 0; in < n_ops; ++in)
5870 {
5871 rtx *loc = ops[in];
5872 rtx *inner = strip_address_mutations (loc);
5873 if (CONSTANT_P (*inner))
5874 set_address_disp (info, loc, inner);
5875 else if (GET_CODE (*inner) == UNSPEC)
5876 set_address_segment (info, loc, inner);
5877 else
5878 {
5879 /* The only other possibilities are a base or an index. */
5880 rtx *base_term = get_base_term (inner);
5881 rtx *index_term = get_index_term (inner);
5882 gcc_assert (base_term || index_term);
5883 if (!base_term)
5884 set_address_index (info, loc, index_term);
5885 else if (!index_term)
5886 set_address_base (info, loc, base_term);
5887 else
5888 {
5889 gcc_assert (base_term == index_term);
5890 ops[out] = loc;
5891 inner_ops[out] = base_term;
5892 ++out;
5893 }
5894 }
5895 }
5896
5897 /* Classify the remaining OPS members as bases and indexes. */
5898 if (out == 1)
5899 {
5900 /* If we haven't seen a base or an index yet, assume that this is
5901 the base. If we were confident that another term was the base
5902 or index, treat the remaining operand as the other kind. */
5903 if (!info->base)
5904 set_address_base (info, ops[0], inner_ops[0]);
5905 else
5906 set_address_index (info, ops[0], inner_ops[0]);
5907 }
5908 else if (out == 2)
5909 {
5910 /* In the event of a tie, assume the base comes first. */
5911 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5912 GET_CODE (*ops[1]))
5913 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5914 GET_CODE (*ops[0])))
5915 {
5916 set_address_base (info, ops[0], inner_ops[0]);
5917 set_address_index (info, ops[1], inner_ops[1]);
5918 }
5919 else
5920 {
5921 set_address_base (info, ops[1], inner_ops[1]);
5922 set_address_index (info, ops[0], inner_ops[0]);
5923 }
5924 }
5925 else
5926 gcc_assert (out == 0);
5927 }
5928
5929 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5930 or VOIDmode if not known. AS is the address space associated with LOC.
5931 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5932
5933 void
5934 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
5935 addr_space_t as, enum rtx_code outer_code)
5936 {
5937 memset (info, 0, sizeof (*info));
5938 info->mode = mode;
5939 info->as = as;
5940 info->addr_outer_code = outer_code;
5941 info->outer = loc;
5942 info->inner = strip_address_mutations (loc, &outer_code);
5943 info->base_outer_code = outer_code;
5944 switch (GET_CODE (*info->inner))
5945 {
5946 case PRE_DEC:
5947 case PRE_INC:
5948 case POST_DEC:
5949 case POST_INC:
5950 decompose_incdec_address (info);
5951 break;
5952
5953 case PRE_MODIFY:
5954 case POST_MODIFY:
5955 decompose_automod_address (info);
5956 break;
5957
5958 default:
5959 decompose_normal_address (info);
5960 break;
5961 }
5962 }
5963
5964 /* Describe address operand LOC in INFO. */
5965
5966 void
5967 decompose_lea_address (struct address_info *info, rtx *loc)
5968 {
5969 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5970 }
5971
5972 /* Describe the address of MEM X in INFO. */
5973
5974 void
5975 decompose_mem_address (struct address_info *info, rtx x)
5976 {
5977 gcc_assert (MEM_P (x));
5978 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5979 MEM_ADDR_SPACE (x), MEM);
5980 }
5981
5982 /* Update INFO after a change to the address it describes. */
5983
5984 void
5985 update_address (struct address_info *info)
5986 {
5987 decompose_address (info, info->outer, info->mode, info->as,
5988 info->addr_outer_code);
5989 }
5990
5991 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5992 more complicated than that. */
5993
5994 HOST_WIDE_INT
5995 get_index_scale (const struct address_info *info)
5996 {
5997 rtx index = *info->index;
5998 if (GET_CODE (index) == MULT
5999 && CONST_INT_P (XEXP (index, 1))
6000 && info->index_term == &XEXP (index, 0))
6001 return INTVAL (XEXP (index, 1));
6002
6003 if (GET_CODE (index) == ASHIFT
6004 && CONST_INT_P (XEXP (index, 1))
6005 && info->index_term == &XEXP (index, 0))
6006 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6007
6008 if (info->index == info->index_term)
6009 return 1;
6010
6011 return 0;
6012 }
6013
6014 /* Return the "index code" of INFO, in the form required by
6015 ok_for_base_p_1. */
6016
6017 enum rtx_code
6018 get_index_code (const struct address_info *info)
6019 {
6020 if (info->index)
6021 return GET_CODE (*info->index);
6022
6023 if (info->disp)
6024 return GET_CODE (*info->disp);
6025
6026 return SCRATCH;
6027 }
6028
6029 /* Return true if X contains a thread-local symbol. */
6030
6031 bool
6032 tls_referenced_p (const_rtx x)
6033 {
6034 if (!targetm.have_tls)
6035 return false;
6036
6037 subrtx_iterator::array_type array;
6038 FOR_EACH_SUBRTX (iter, array, x, ALL)
6039 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6040 return true;
6041 return false;
6042 }