20020201-1.c: Remove declarations for exit, abort, rand, srand.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
70
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
78
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 \f
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
86
87 int
88 rtx_unstable_p (const_rtx x)
89 {
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
93
94 switch (code)
95 {
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
107
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
120
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
124
125 /* Fall through. */
126
127 default:
128 break;
129 }
130
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
134 {
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
137 }
138 else if (fmt[i] == 'E')
139 {
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
144 }
145
146 return 0;
147 }
148
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
155
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
158 {
159 RTX_CODE code;
160 int i;
161 const char *fmt;
162
163 if (!x)
164 return 0;
165
166 code = GET_CODE (x);
167 switch (code)
168 {
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
171
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
180
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
198
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
205
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
209
210 /* Fall through. */
211
212 default:
213 break;
214 }
215
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
219 {
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
222 }
223 else if (fmt[i] == 'E')
224 {
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
229 }
230
231 return 0;
232 }
233
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
238
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
242 {
243 enum rtx_code code = GET_CODE (x);
244
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
248 {
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
258
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
261 }
262
263 switch (code)
264 {
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
269 {
270 tree decl;
271 HOST_WIDE_INT decl_size;
272
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
279
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
283
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
298
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
300 }
301
302 return 0;
303
304 case LABEL_REF:
305 return 0;
306
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
319
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
323
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
329
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
337
338 return 1;
339
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
344
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
352
353 default:
354 break;
355 }
356
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
359 }
360
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
362
363 int
364 rtx_addr_can_trap_p (const_rtx x)
365 {
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
367 }
368
369 /* Return true if X is an address that is known to not be zero. */
370
371 bool
372 nonzero_address_p (const_rtx x)
373 {
374 const enum rtx_code code = GET_CODE (x);
375
376 switch (code)
377 {
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
380
381 case LABEL_REF:
382 return true;
383
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
395
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
398
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
407
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
416
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
420
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
426
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
429
430 default:
431 break;
432 }
433
434 /* If it isn't one of the case above, might be zero. */
435 return false;
436 }
437
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
443
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
446 {
447 enum rtx_code code;
448 int i;
449 const char *fmt;
450
451 if (x == 0)
452 return 0;
453
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
457
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
461 {
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
464 }
465 else if (fmt[i] == 'E')
466 {
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
471 }
472 return 0;
473 }
474 \f
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
479
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
482 {
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
485
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
493 }
494
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
498
499 rtx
500 get_related_value (const_rtx x)
501 {
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
512 }
513 \f
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
516
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
519 {
520 tree decl;
521
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
524
525 if (offset == 0)
526 return true;
527
528 if (offset > 0)
529 {
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
533
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
537 }
538
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
545
546 return false;
547 }
548
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
551
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
554 {
555 if (GET_CODE (x) == CONST)
556 {
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
559 {
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
563 }
564 }
565 *base_out = x;
566 *offset_out = const0_rtx;
567 }
568 \f
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
571
572 int
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
574 {
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
579
580 if (x == find)
581 return 1;
582
583 code = GET_CODE (x);
584
585 switch (code)
586 {
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
597
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
603
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
608
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
613
614 default:
615 break;
616 }
617
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
620
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
622 {
623 switch (*format_ptr++)
624 {
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
628
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
633 }
634 }
635 return count;
636 }
637
638 \f
639 /* Return TRUE if OP is a register or subreg of a register that
640 holds an unsigned quantity. Otherwise, return FALSE. */
641
642 bool
643 unsigned_reg_p (rtx op)
644 {
645 if (REG_P (op)
646 && REG_EXPR (op)
647 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
648 return true;
649
650 if (GET_CODE (op) == SUBREG
651 && SUBREG_PROMOTED_UNSIGNED_P (op))
652 return true;
653
654 return false;
655 }
656
657 \f
658 /* Nonzero if register REG appears somewhere within IN.
659 Also works if REG is not a register; in this case it checks
660 for a subexpression of IN that is Lisp "equal" to REG. */
661
662 int
663 reg_mentioned_p (const_rtx reg, const_rtx in)
664 {
665 const char *fmt;
666 int i;
667 enum rtx_code code;
668
669 if (in == 0)
670 return 0;
671
672 if (reg == in)
673 return 1;
674
675 if (GET_CODE (in) == LABEL_REF)
676 return reg == XEXP (in, 0);
677
678 code = GET_CODE (in);
679
680 switch (code)
681 {
682 /* Compare registers by number. */
683 case REG:
684 return REG_P (reg) && REGNO (in) == REGNO (reg);
685
686 /* These codes have no constituent expressions
687 and are unique. */
688 case SCRATCH:
689 case CC0:
690 case PC:
691 return 0;
692
693 case CONST_INT:
694 case CONST_VECTOR:
695 case CONST_DOUBLE:
696 case CONST_FIXED:
697 /* These are kept unique for a given value. */
698 return 0;
699
700 default:
701 break;
702 }
703
704 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
705 return 1;
706
707 fmt = GET_RTX_FORMAT (code);
708
709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
710 {
711 if (fmt[i] == 'E')
712 {
713 int j;
714 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
715 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
716 return 1;
717 }
718 else if (fmt[i] == 'e'
719 && reg_mentioned_p (reg, XEXP (in, i)))
720 return 1;
721 }
722 return 0;
723 }
724 \f
725 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
726 no CODE_LABEL insn. */
727
728 int
729 no_labels_between_p (const_rtx beg, const_rtx end)
730 {
731 rtx p;
732 if (beg == end)
733 return 0;
734 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
735 if (LABEL_P (p))
736 return 0;
737 return 1;
738 }
739
740 /* Nonzero if register REG is used in an insn between
741 FROM_INSN and TO_INSN (exclusive of those two). */
742
743 int
744 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
745 {
746 rtx insn;
747
748 if (from_insn == to_insn)
749 return 0;
750
751 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
752 if (NONDEBUG_INSN_P (insn)
753 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
754 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
755 return 1;
756 return 0;
757 }
758 \f
759 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
760 is entirely replaced by a new value and the only use is as a SET_DEST,
761 we do not consider it a reference. */
762
763 int
764 reg_referenced_p (const_rtx x, const_rtx body)
765 {
766 int i;
767
768 switch (GET_CODE (body))
769 {
770 case SET:
771 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
772 return 1;
773
774 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
775 of a REG that occupies all of the REG, the insn references X if
776 it is mentioned in the destination. */
777 if (GET_CODE (SET_DEST (body)) != CC0
778 && GET_CODE (SET_DEST (body)) != PC
779 && !REG_P (SET_DEST (body))
780 && ! (GET_CODE (SET_DEST (body)) == SUBREG
781 && REG_P (SUBREG_REG (SET_DEST (body)))
782 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
783 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
784 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
785 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
786 && reg_overlap_mentioned_p (x, SET_DEST (body)))
787 return 1;
788 return 0;
789
790 case ASM_OPERANDS:
791 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
792 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
793 return 1;
794 return 0;
795
796 case CALL:
797 case USE:
798 case IF_THEN_ELSE:
799 return reg_overlap_mentioned_p (x, body);
800
801 case TRAP_IF:
802 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
803
804 case PREFETCH:
805 return reg_overlap_mentioned_p (x, XEXP (body, 0));
806
807 case UNSPEC:
808 case UNSPEC_VOLATILE:
809 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
810 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
811 return 1;
812 return 0;
813
814 case PARALLEL:
815 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
816 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
817 return 1;
818 return 0;
819
820 case CLOBBER:
821 if (MEM_P (XEXP (body, 0)))
822 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
823 return 1;
824 return 0;
825
826 case COND_EXEC:
827 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
828 return 1;
829 return reg_referenced_p (x, COND_EXEC_CODE (body));
830
831 default:
832 return 0;
833 }
834 }
835 \f
836 /* Nonzero if register REG is set or clobbered in an insn between
837 FROM_INSN and TO_INSN (exclusive of those two). */
838
839 int
840 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
841 {
842 const_rtx insn;
843
844 if (from_insn == to_insn)
845 return 0;
846
847 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
848 if (INSN_P (insn) && reg_set_p (reg, insn))
849 return 1;
850 return 0;
851 }
852
853 /* Internals of reg_set_between_p. */
854 int
855 reg_set_p (const_rtx reg, const_rtx insn)
856 {
857 /* We can be passed an insn or part of one. If we are passed an insn,
858 check if a side-effect of the insn clobbers REG. */
859 if (INSN_P (insn)
860 && (FIND_REG_INC_NOTE (insn, reg)
861 || (CALL_P (insn)
862 && ((REG_P (reg)
863 && REGNO (reg) < FIRST_PSEUDO_REGISTER
864 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
865 GET_MODE (reg), REGNO (reg)))
866 || MEM_P (reg)
867 || find_reg_fusage (insn, CLOBBER, reg)))))
868 return 1;
869
870 return set_of (reg, insn) != NULL_RTX;
871 }
872
873 /* Similar to reg_set_between_p, but check all registers in X. Return 0
874 only if none of them are modified between START and END. Return 1 if
875 X contains a MEM; this routine does use memory aliasing. */
876
877 int
878 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
879 {
880 const enum rtx_code code = GET_CODE (x);
881 const char *fmt;
882 int i, j;
883 rtx insn;
884
885 if (start == end)
886 return 0;
887
888 switch (code)
889 {
890 case CONST_INT:
891 case CONST_DOUBLE:
892 case CONST_FIXED:
893 case CONST_VECTOR:
894 case CONST:
895 case SYMBOL_REF:
896 case LABEL_REF:
897 return 0;
898
899 case PC:
900 case CC0:
901 return 1;
902
903 case MEM:
904 if (modified_between_p (XEXP (x, 0), start, end))
905 return 1;
906 if (MEM_READONLY_P (x))
907 return 0;
908 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
909 if (memory_modified_in_insn_p (x, insn))
910 return 1;
911 return 0;
912 break;
913
914 case REG:
915 return reg_set_between_p (x, start, end);
916
917 default:
918 break;
919 }
920
921 fmt = GET_RTX_FORMAT (code);
922 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
923 {
924 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
925 return 1;
926
927 else if (fmt[i] == 'E')
928 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
929 if (modified_between_p (XVECEXP (x, i, j), start, end))
930 return 1;
931 }
932
933 return 0;
934 }
935
936 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
937 of them are modified in INSN. Return 1 if X contains a MEM; this routine
938 does use memory aliasing. */
939
940 int
941 modified_in_p (const_rtx x, const_rtx insn)
942 {
943 const enum rtx_code code = GET_CODE (x);
944 const char *fmt;
945 int i, j;
946
947 switch (code)
948 {
949 case CONST_INT:
950 case CONST_DOUBLE:
951 case CONST_FIXED:
952 case CONST_VECTOR:
953 case CONST:
954 case SYMBOL_REF:
955 case LABEL_REF:
956 return 0;
957
958 case PC:
959 case CC0:
960 return 1;
961
962 case MEM:
963 if (modified_in_p (XEXP (x, 0), insn))
964 return 1;
965 if (MEM_READONLY_P (x))
966 return 0;
967 if (memory_modified_in_insn_p (x, insn))
968 return 1;
969 return 0;
970 break;
971
972 case REG:
973 return reg_set_p (x, insn);
974
975 default:
976 break;
977 }
978
979 fmt = GET_RTX_FORMAT (code);
980 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
981 {
982 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
983 return 1;
984
985 else if (fmt[i] == 'E')
986 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
987 if (modified_in_p (XVECEXP (x, i, j), insn))
988 return 1;
989 }
990
991 return 0;
992 }
993 \f
994 /* Helper function for set_of. */
995 struct set_of_data
996 {
997 const_rtx found;
998 const_rtx pat;
999 };
1000
1001 static void
1002 set_of_1 (rtx x, const_rtx pat, void *data1)
1003 {
1004 struct set_of_data *const data = (struct set_of_data *) (data1);
1005 if (rtx_equal_p (x, data->pat)
1006 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1007 data->found = pat;
1008 }
1009
1010 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1011 (either directly or via STRICT_LOW_PART and similar modifiers). */
1012 const_rtx
1013 set_of (const_rtx pat, const_rtx insn)
1014 {
1015 struct set_of_data data;
1016 data.found = NULL_RTX;
1017 data.pat = pat;
1018 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1019 return data.found;
1020 }
1021
1022 /* This function, called through note_stores, collects sets and
1023 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1024 by DATA. */
1025 void
1026 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1027 {
1028 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1029 if (REG_P (x) && HARD_REGISTER_P (x))
1030 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1031 }
1032
1033 /* Examine INSN, and compute the set of hard registers written by it.
1034 Store it in *PSET. Should only be called after reload. */
1035 void
1036 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1037 {
1038 rtx link;
1039
1040 CLEAR_HARD_REG_SET (*pset);
1041 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1042 if (CALL_P (insn))
1043 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1044 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1045 if (REG_NOTE_KIND (link) == REG_INC)
1046 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1047 }
1048
1049 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1050 static int
1051 record_hard_reg_uses_1 (rtx *px, void *data)
1052 {
1053 rtx x = *px;
1054 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1055
1056 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1057 {
1058 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1059 while (nregs-- > 0)
1060 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1061 }
1062 return 0;
1063 }
1064
1065 /* Like record_hard_reg_sets, but called through note_uses. */
1066 void
1067 record_hard_reg_uses (rtx *px, void *data)
1068 {
1069 for_each_rtx (px, record_hard_reg_uses_1, data);
1070 }
1071 \f
1072 /* Given an INSN, return a SET expression if this insn has only a single SET.
1073 It may also have CLOBBERs, USEs, or SET whose output
1074 will not be used, which we ignore. */
1075
1076 rtx
1077 single_set_2 (const_rtx insn, const_rtx pat)
1078 {
1079 rtx set = NULL;
1080 int set_verified = 1;
1081 int i;
1082
1083 if (GET_CODE (pat) == PARALLEL)
1084 {
1085 for (i = 0; i < XVECLEN (pat, 0); i++)
1086 {
1087 rtx sub = XVECEXP (pat, 0, i);
1088 switch (GET_CODE (sub))
1089 {
1090 case USE:
1091 case CLOBBER:
1092 break;
1093
1094 case SET:
1095 /* We can consider insns having multiple sets, where all
1096 but one are dead as single set insns. In common case
1097 only single set is present in the pattern so we want
1098 to avoid checking for REG_UNUSED notes unless necessary.
1099
1100 When we reach set first time, we just expect this is
1101 the single set we are looking for and only when more
1102 sets are found in the insn, we check them. */
1103 if (!set_verified)
1104 {
1105 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1106 && !side_effects_p (set))
1107 set = NULL;
1108 else
1109 set_verified = 1;
1110 }
1111 if (!set)
1112 set = sub, set_verified = 0;
1113 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1114 || side_effects_p (sub))
1115 return NULL_RTX;
1116 break;
1117
1118 default:
1119 return NULL_RTX;
1120 }
1121 }
1122 }
1123 return set;
1124 }
1125
1126 /* Given an INSN, return nonzero if it has more than one SET, else return
1127 zero. */
1128
1129 int
1130 multiple_sets (const_rtx insn)
1131 {
1132 int found;
1133 int i;
1134
1135 /* INSN must be an insn. */
1136 if (! INSN_P (insn))
1137 return 0;
1138
1139 /* Only a PARALLEL can have multiple SETs. */
1140 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1141 {
1142 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1143 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1144 {
1145 /* If we have already found a SET, then return now. */
1146 if (found)
1147 return 1;
1148 else
1149 found = 1;
1150 }
1151 }
1152
1153 /* Either zero or one SET. */
1154 return 0;
1155 }
1156 \f
1157 /* Return nonzero if the destination of SET equals the source
1158 and there are no side effects. */
1159
1160 int
1161 set_noop_p (const_rtx set)
1162 {
1163 rtx src = SET_SRC (set);
1164 rtx dst = SET_DEST (set);
1165
1166 if (dst == pc_rtx && src == pc_rtx)
1167 return 1;
1168
1169 if (MEM_P (dst) && MEM_P (src))
1170 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1171
1172 if (GET_CODE (dst) == ZERO_EXTRACT)
1173 return rtx_equal_p (XEXP (dst, 0), src)
1174 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1175 && !side_effects_p (src);
1176
1177 if (GET_CODE (dst) == STRICT_LOW_PART)
1178 dst = XEXP (dst, 0);
1179
1180 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1181 {
1182 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1183 return 0;
1184 src = SUBREG_REG (src);
1185 dst = SUBREG_REG (dst);
1186 }
1187
1188 return (REG_P (src) && REG_P (dst)
1189 && REGNO (src) == REGNO (dst));
1190 }
1191 \f
1192 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1193 value to itself. */
1194
1195 int
1196 noop_move_p (const_rtx insn)
1197 {
1198 rtx pat = PATTERN (insn);
1199
1200 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1201 return 1;
1202
1203 /* Insns carrying these notes are useful later on. */
1204 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1205 return 0;
1206
1207 if (GET_CODE (pat) == SET && set_noop_p (pat))
1208 return 1;
1209
1210 if (GET_CODE (pat) == PARALLEL)
1211 {
1212 int i;
1213 /* If nothing but SETs of registers to themselves,
1214 this insn can also be deleted. */
1215 for (i = 0; i < XVECLEN (pat, 0); i++)
1216 {
1217 rtx tem = XVECEXP (pat, 0, i);
1218
1219 if (GET_CODE (tem) == USE
1220 || GET_CODE (tem) == CLOBBER)
1221 continue;
1222
1223 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1224 return 0;
1225 }
1226
1227 return 1;
1228 }
1229 return 0;
1230 }
1231 \f
1232
1233 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1234 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1235 If the object was modified, if we hit a partial assignment to X, or hit a
1236 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1237 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1238 be the src. */
1239
1240 rtx
1241 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1242 {
1243 rtx p;
1244
1245 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1246 p = PREV_INSN (p))
1247 if (INSN_P (p))
1248 {
1249 rtx set = single_set (p);
1250 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1251
1252 if (set && rtx_equal_p (x, SET_DEST (set)))
1253 {
1254 rtx src = SET_SRC (set);
1255
1256 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1257 src = XEXP (note, 0);
1258
1259 if ((valid_to == NULL_RTX
1260 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1261 /* Reject hard registers because we don't usually want
1262 to use them; we'd rather use a pseudo. */
1263 && (! (REG_P (src)
1264 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1265 {
1266 *pinsn = p;
1267 return src;
1268 }
1269 }
1270
1271 /* If set in non-simple way, we don't have a value. */
1272 if (reg_set_p (x, p))
1273 break;
1274 }
1275
1276 return x;
1277 }
1278 \f
1279 /* Return nonzero if register in range [REGNO, ENDREGNO)
1280 appears either explicitly or implicitly in X
1281 other than being stored into.
1282
1283 References contained within the substructure at LOC do not count.
1284 LOC may be zero, meaning don't ignore anything. */
1285
1286 int
1287 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1288 rtx *loc)
1289 {
1290 int i;
1291 unsigned int x_regno;
1292 RTX_CODE code;
1293 const char *fmt;
1294
1295 repeat:
1296 /* The contents of a REG_NONNEG note is always zero, so we must come here
1297 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1298 if (x == 0)
1299 return 0;
1300
1301 code = GET_CODE (x);
1302
1303 switch (code)
1304 {
1305 case REG:
1306 x_regno = REGNO (x);
1307
1308 /* If we modifying the stack, frame, or argument pointer, it will
1309 clobber a virtual register. In fact, we could be more precise,
1310 but it isn't worth it. */
1311 if ((x_regno == STACK_POINTER_REGNUM
1312 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1313 || x_regno == ARG_POINTER_REGNUM
1314 #endif
1315 || x_regno == FRAME_POINTER_REGNUM)
1316 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1317 return 1;
1318
1319 return endregno > x_regno && regno < END_REGNO (x);
1320
1321 case SUBREG:
1322 /* If this is a SUBREG of a hard reg, we can see exactly which
1323 registers are being modified. Otherwise, handle normally. */
1324 if (REG_P (SUBREG_REG (x))
1325 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1326 {
1327 unsigned int inner_regno = subreg_regno (x);
1328 unsigned int inner_endregno
1329 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1330 ? subreg_nregs (x) : 1);
1331
1332 return endregno > inner_regno && regno < inner_endregno;
1333 }
1334 break;
1335
1336 case CLOBBER:
1337 case SET:
1338 if (&SET_DEST (x) != loc
1339 /* Note setting a SUBREG counts as referring to the REG it is in for
1340 a pseudo but not for hard registers since we can
1341 treat each word individually. */
1342 && ((GET_CODE (SET_DEST (x)) == SUBREG
1343 && loc != &SUBREG_REG (SET_DEST (x))
1344 && REG_P (SUBREG_REG (SET_DEST (x)))
1345 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1346 && refers_to_regno_p (regno, endregno,
1347 SUBREG_REG (SET_DEST (x)), loc))
1348 || (!REG_P (SET_DEST (x))
1349 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1350 return 1;
1351
1352 if (code == CLOBBER || loc == &SET_SRC (x))
1353 return 0;
1354 x = SET_SRC (x);
1355 goto repeat;
1356
1357 default:
1358 break;
1359 }
1360
1361 /* X does not match, so try its subexpressions. */
1362
1363 fmt = GET_RTX_FORMAT (code);
1364 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1365 {
1366 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1367 {
1368 if (i == 0)
1369 {
1370 x = XEXP (x, 0);
1371 goto repeat;
1372 }
1373 else
1374 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1375 return 1;
1376 }
1377 else if (fmt[i] == 'E')
1378 {
1379 int j;
1380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1381 if (loc != &XVECEXP (x, i, j)
1382 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1383 return 1;
1384 }
1385 }
1386 return 0;
1387 }
1388
1389 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1390 we check if any register number in X conflicts with the relevant register
1391 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1392 contains a MEM (we don't bother checking for memory addresses that can't
1393 conflict because we expect this to be a rare case. */
1394
1395 int
1396 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1397 {
1398 unsigned int regno, endregno;
1399
1400 /* If either argument is a constant, then modifying X can not
1401 affect IN. Here we look at IN, we can profitably combine
1402 CONSTANT_P (x) with the switch statement below. */
1403 if (CONSTANT_P (in))
1404 return 0;
1405
1406 recurse:
1407 switch (GET_CODE (x))
1408 {
1409 case STRICT_LOW_PART:
1410 case ZERO_EXTRACT:
1411 case SIGN_EXTRACT:
1412 /* Overly conservative. */
1413 x = XEXP (x, 0);
1414 goto recurse;
1415
1416 case SUBREG:
1417 regno = REGNO (SUBREG_REG (x));
1418 if (regno < FIRST_PSEUDO_REGISTER)
1419 regno = subreg_regno (x);
1420 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1421 ? subreg_nregs (x) : 1);
1422 goto do_reg;
1423
1424 case REG:
1425 regno = REGNO (x);
1426 endregno = END_REGNO (x);
1427 do_reg:
1428 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1429
1430 case MEM:
1431 {
1432 const char *fmt;
1433 int i;
1434
1435 if (MEM_P (in))
1436 return 1;
1437
1438 fmt = GET_RTX_FORMAT (GET_CODE (in));
1439 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1440 if (fmt[i] == 'e')
1441 {
1442 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1443 return 1;
1444 }
1445 else if (fmt[i] == 'E')
1446 {
1447 int j;
1448 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1449 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1450 return 1;
1451 }
1452
1453 return 0;
1454 }
1455
1456 case SCRATCH:
1457 case PC:
1458 case CC0:
1459 return reg_mentioned_p (x, in);
1460
1461 case PARALLEL:
1462 {
1463 int i;
1464
1465 /* If any register in here refers to it we return true. */
1466 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1467 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1468 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1469 return 1;
1470 return 0;
1471 }
1472
1473 default:
1474 gcc_assert (CONSTANT_P (x));
1475 return 0;
1476 }
1477 }
1478 \f
1479 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1480 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1481 ignored by note_stores, but passed to FUN.
1482
1483 FUN receives three arguments:
1484 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1485 2. the SET or CLOBBER rtx that does the store,
1486 3. the pointer DATA provided to note_stores.
1487
1488 If the item being stored in or clobbered is a SUBREG of a hard register,
1489 the SUBREG will be passed. */
1490
1491 void
1492 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1493 {
1494 int i;
1495
1496 if (GET_CODE (x) == COND_EXEC)
1497 x = COND_EXEC_CODE (x);
1498
1499 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1500 {
1501 rtx dest = SET_DEST (x);
1502
1503 while ((GET_CODE (dest) == SUBREG
1504 && (!REG_P (SUBREG_REG (dest))
1505 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1506 || GET_CODE (dest) == ZERO_EXTRACT
1507 || GET_CODE (dest) == STRICT_LOW_PART)
1508 dest = XEXP (dest, 0);
1509
1510 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1511 each of whose first operand is a register. */
1512 if (GET_CODE (dest) == PARALLEL)
1513 {
1514 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1515 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1516 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1517 }
1518 else
1519 (*fun) (dest, x, data);
1520 }
1521
1522 else if (GET_CODE (x) == PARALLEL)
1523 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1524 note_stores (XVECEXP (x, 0, i), fun, data);
1525 }
1526 \f
1527 /* Like notes_stores, but call FUN for each expression that is being
1528 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1529 FUN for each expression, not any interior subexpressions. FUN receives a
1530 pointer to the expression and the DATA passed to this function.
1531
1532 Note that this is not quite the same test as that done in reg_referenced_p
1533 since that considers something as being referenced if it is being
1534 partially set, while we do not. */
1535
1536 void
1537 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1538 {
1539 rtx body = *pbody;
1540 int i;
1541
1542 switch (GET_CODE (body))
1543 {
1544 case COND_EXEC:
1545 (*fun) (&COND_EXEC_TEST (body), data);
1546 note_uses (&COND_EXEC_CODE (body), fun, data);
1547 return;
1548
1549 case PARALLEL:
1550 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1551 note_uses (&XVECEXP (body, 0, i), fun, data);
1552 return;
1553
1554 case SEQUENCE:
1555 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1556 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1557 return;
1558
1559 case USE:
1560 (*fun) (&XEXP (body, 0), data);
1561 return;
1562
1563 case ASM_OPERANDS:
1564 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1565 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1566 return;
1567
1568 case TRAP_IF:
1569 (*fun) (&TRAP_CONDITION (body), data);
1570 return;
1571
1572 case PREFETCH:
1573 (*fun) (&XEXP (body, 0), data);
1574 return;
1575
1576 case UNSPEC:
1577 case UNSPEC_VOLATILE:
1578 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1579 (*fun) (&XVECEXP (body, 0, i), data);
1580 return;
1581
1582 case CLOBBER:
1583 if (MEM_P (XEXP (body, 0)))
1584 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1585 return;
1586
1587 case SET:
1588 {
1589 rtx dest = SET_DEST (body);
1590
1591 /* For sets we replace everything in source plus registers in memory
1592 expression in store and operands of a ZERO_EXTRACT. */
1593 (*fun) (&SET_SRC (body), data);
1594
1595 if (GET_CODE (dest) == ZERO_EXTRACT)
1596 {
1597 (*fun) (&XEXP (dest, 1), data);
1598 (*fun) (&XEXP (dest, 2), data);
1599 }
1600
1601 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1602 dest = XEXP (dest, 0);
1603
1604 if (MEM_P (dest))
1605 (*fun) (&XEXP (dest, 0), data);
1606 }
1607 return;
1608
1609 default:
1610 /* All the other possibilities never store. */
1611 (*fun) (pbody, data);
1612 return;
1613 }
1614 }
1615 \f
1616 /* Return nonzero if X's old contents don't survive after INSN.
1617 This will be true if X is (cc0) or if X is a register and
1618 X dies in INSN or because INSN entirely sets X.
1619
1620 "Entirely set" means set directly and not through a SUBREG, or
1621 ZERO_EXTRACT, so no trace of the old contents remains.
1622 Likewise, REG_INC does not count.
1623
1624 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1625 but for this use that makes no difference, since regs don't overlap
1626 during their lifetimes. Therefore, this function may be used
1627 at any time after deaths have been computed.
1628
1629 If REG is a hard reg that occupies multiple machine registers, this
1630 function will only return 1 if each of those registers will be replaced
1631 by INSN. */
1632
1633 int
1634 dead_or_set_p (const_rtx insn, const_rtx x)
1635 {
1636 unsigned int regno, end_regno;
1637 unsigned int i;
1638
1639 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1640 if (GET_CODE (x) == CC0)
1641 return 1;
1642
1643 gcc_assert (REG_P (x));
1644
1645 regno = REGNO (x);
1646 end_regno = END_REGNO (x);
1647 for (i = regno; i < end_regno; i++)
1648 if (! dead_or_set_regno_p (insn, i))
1649 return 0;
1650
1651 return 1;
1652 }
1653
1654 /* Return TRUE iff DEST is a register or subreg of a register and
1655 doesn't change the number of words of the inner register, and any
1656 part of the register is TEST_REGNO. */
1657
1658 static bool
1659 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1660 {
1661 unsigned int regno, endregno;
1662
1663 if (GET_CODE (dest) == SUBREG
1664 && (((GET_MODE_SIZE (GET_MODE (dest))
1665 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1666 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1667 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1668 dest = SUBREG_REG (dest);
1669
1670 if (!REG_P (dest))
1671 return false;
1672
1673 regno = REGNO (dest);
1674 endregno = END_REGNO (dest);
1675 return (test_regno >= regno && test_regno < endregno);
1676 }
1677
1678 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1679 any member matches the covers_regno_no_parallel_p criteria. */
1680
1681 static bool
1682 covers_regno_p (const_rtx dest, unsigned int test_regno)
1683 {
1684 if (GET_CODE (dest) == PARALLEL)
1685 {
1686 /* Some targets place small structures in registers for return
1687 values of functions, and those registers are wrapped in
1688 PARALLELs that we may see as the destination of a SET. */
1689 int i;
1690
1691 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1692 {
1693 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1694 if (inner != NULL_RTX
1695 && covers_regno_no_parallel_p (inner, test_regno))
1696 return true;
1697 }
1698
1699 return false;
1700 }
1701 else
1702 return covers_regno_no_parallel_p (dest, test_regno);
1703 }
1704
1705 /* Utility function for dead_or_set_p to check an individual register. */
1706
1707 int
1708 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1709 {
1710 const_rtx pattern;
1711
1712 /* See if there is a death note for something that includes TEST_REGNO. */
1713 if (find_regno_note (insn, REG_DEAD, test_regno))
1714 return 1;
1715
1716 if (CALL_P (insn)
1717 && find_regno_fusage (insn, CLOBBER, test_regno))
1718 return 1;
1719
1720 pattern = PATTERN (insn);
1721
1722 if (GET_CODE (pattern) == COND_EXEC)
1723 pattern = COND_EXEC_CODE (pattern);
1724
1725 if (GET_CODE (pattern) == SET)
1726 return covers_regno_p (SET_DEST (pattern), test_regno);
1727 else if (GET_CODE (pattern) == PARALLEL)
1728 {
1729 int i;
1730
1731 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1732 {
1733 rtx body = XVECEXP (pattern, 0, i);
1734
1735 if (GET_CODE (body) == COND_EXEC)
1736 body = COND_EXEC_CODE (body);
1737
1738 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1739 && covers_regno_p (SET_DEST (body), test_regno))
1740 return 1;
1741 }
1742 }
1743
1744 return 0;
1745 }
1746
1747 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1748 If DATUM is nonzero, look for one whose datum is DATUM. */
1749
1750 rtx
1751 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1752 {
1753 rtx link;
1754
1755 gcc_checking_assert (insn);
1756
1757 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1758 if (! INSN_P (insn))
1759 return 0;
1760 if (datum == 0)
1761 {
1762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1763 if (REG_NOTE_KIND (link) == kind)
1764 return link;
1765 return 0;
1766 }
1767
1768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1769 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1770 return link;
1771 return 0;
1772 }
1773
1774 /* Return the reg-note of kind KIND in insn INSN which applies to register
1775 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1776 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1777 it might be the case that the note overlaps REGNO. */
1778
1779 rtx
1780 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1781 {
1782 rtx link;
1783
1784 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1785 if (! INSN_P (insn))
1786 return 0;
1787
1788 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == kind
1790 /* Verify that it is a register, so that scratch and MEM won't cause a
1791 problem here. */
1792 && REG_P (XEXP (link, 0))
1793 && REGNO (XEXP (link, 0)) <= regno
1794 && END_REGNO (XEXP (link, 0)) > regno)
1795 return link;
1796 return 0;
1797 }
1798
1799 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1800 has such a note. */
1801
1802 rtx
1803 find_reg_equal_equiv_note (const_rtx insn)
1804 {
1805 rtx link;
1806
1807 if (!INSN_P (insn))
1808 return 0;
1809
1810 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_EQUAL
1812 || REG_NOTE_KIND (link) == REG_EQUIV)
1813 {
1814 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1815 insns that have multiple sets. Checking single_set to
1816 make sure of this is not the proper check, as explained
1817 in the comment in set_unique_reg_note.
1818
1819 This should be changed into an assert. */
1820 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1821 return 0;
1822 return link;
1823 }
1824 return NULL;
1825 }
1826
1827 /* Check whether INSN is a single_set whose source is known to be
1828 equivalent to a constant. Return that constant if so, otherwise
1829 return null. */
1830
1831 rtx
1832 find_constant_src (const_rtx insn)
1833 {
1834 rtx note, set, x;
1835
1836 set = single_set (insn);
1837 if (set)
1838 {
1839 x = avoid_constant_pool_reference (SET_SRC (set));
1840 if (CONSTANT_P (x))
1841 return x;
1842 }
1843
1844 note = find_reg_equal_equiv_note (insn);
1845 if (note && CONSTANT_P (XEXP (note, 0)))
1846 return XEXP (note, 0);
1847
1848 return NULL_RTX;
1849 }
1850
1851 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1852 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1853
1854 int
1855 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1856 {
1857 /* If it's not a CALL_INSN, it can't possibly have a
1858 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1859 if (!CALL_P (insn))
1860 return 0;
1861
1862 gcc_assert (datum);
1863
1864 if (!REG_P (datum))
1865 {
1866 rtx link;
1867
1868 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1869 link;
1870 link = XEXP (link, 1))
1871 if (GET_CODE (XEXP (link, 0)) == code
1872 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1873 return 1;
1874 }
1875 else
1876 {
1877 unsigned int regno = REGNO (datum);
1878
1879 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1880 to pseudo registers, so don't bother checking. */
1881
1882 if (regno < FIRST_PSEUDO_REGISTER)
1883 {
1884 unsigned int end_regno = END_HARD_REGNO (datum);
1885 unsigned int i;
1886
1887 for (i = regno; i < end_regno; i++)
1888 if (find_regno_fusage (insn, code, i))
1889 return 1;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
1896 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1897 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1898
1899 int
1900 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1901 {
1902 rtx link;
1903
1904 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1905 to pseudo registers, so don't bother checking. */
1906
1907 if (regno >= FIRST_PSEUDO_REGISTER
1908 || !CALL_P (insn) )
1909 return 0;
1910
1911 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1912 {
1913 rtx op, reg;
1914
1915 if (GET_CODE (op = XEXP (link, 0)) == code
1916 && REG_P (reg = XEXP (op, 0))
1917 && REGNO (reg) <= regno
1918 && END_HARD_REGNO (reg) > regno)
1919 return 1;
1920 }
1921
1922 return 0;
1923 }
1924
1925 \f
1926 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1927 stored as the pointer to the next register note. */
1928
1929 rtx
1930 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1931 {
1932 rtx note;
1933
1934 switch (kind)
1935 {
1936 case REG_CC_SETTER:
1937 case REG_CC_USER:
1938 case REG_LABEL_TARGET:
1939 case REG_LABEL_OPERAND:
1940 case REG_TM:
1941 /* These types of register notes use an INSN_LIST rather than an
1942 EXPR_LIST, so that copying is done right and dumps look
1943 better. */
1944 note = alloc_INSN_LIST (datum, list);
1945 PUT_REG_NOTE_KIND (note, kind);
1946 break;
1947
1948 default:
1949 note = alloc_EXPR_LIST (kind, datum, list);
1950 break;
1951 }
1952
1953 return note;
1954 }
1955
1956 /* Add register note with kind KIND and datum DATUM to INSN. */
1957
1958 void
1959 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1960 {
1961 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1962 }
1963
1964 /* Remove register note NOTE from the REG_NOTES of INSN. */
1965
1966 void
1967 remove_note (rtx insn, const_rtx note)
1968 {
1969 rtx link;
1970
1971 if (note == NULL_RTX)
1972 return;
1973
1974 if (REG_NOTES (insn) == note)
1975 REG_NOTES (insn) = XEXP (note, 1);
1976 else
1977 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1978 if (XEXP (link, 1) == note)
1979 {
1980 XEXP (link, 1) = XEXP (note, 1);
1981 break;
1982 }
1983
1984 switch (REG_NOTE_KIND (note))
1985 {
1986 case REG_EQUAL:
1987 case REG_EQUIV:
1988 df_notes_rescan (insn);
1989 break;
1990 default:
1991 break;
1992 }
1993 }
1994
1995 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1996
1997 void
1998 remove_reg_equal_equiv_notes (rtx insn)
1999 {
2000 rtx *loc;
2001
2002 loc = &REG_NOTES (insn);
2003 while (*loc)
2004 {
2005 enum reg_note kind = REG_NOTE_KIND (*loc);
2006 if (kind == REG_EQUAL || kind == REG_EQUIV)
2007 *loc = XEXP (*loc, 1);
2008 else
2009 loc = &XEXP (*loc, 1);
2010 }
2011 }
2012
2013 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2014
2015 void
2016 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2017 {
2018 df_ref eq_use;
2019
2020 if (!df)
2021 return;
2022
2023 /* This loop is a little tricky. We cannot just go down the chain because
2024 it is being modified by some actions in the loop. So we just iterate
2025 over the head. We plan to drain the list anyway. */
2026 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2027 {
2028 rtx insn = DF_REF_INSN (eq_use);
2029 rtx note = find_reg_equal_equiv_note (insn);
2030
2031 /* This assert is generally triggered when someone deletes a REG_EQUAL
2032 or REG_EQUIV note by hacking the list manually rather than calling
2033 remove_note. */
2034 gcc_assert (note);
2035
2036 remove_note (insn, note);
2037 }
2038 }
2039
2040 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2041 return 1 if it is found. A simple equality test is used to determine if
2042 NODE matches. */
2043
2044 int
2045 in_expr_list_p (const_rtx listp, const_rtx node)
2046 {
2047 const_rtx x;
2048
2049 for (x = listp; x; x = XEXP (x, 1))
2050 if (node == XEXP (x, 0))
2051 return 1;
2052
2053 return 0;
2054 }
2055
2056 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2057 remove that entry from the list if it is found.
2058
2059 A simple equality test is used to determine if NODE matches. */
2060
2061 void
2062 remove_node_from_expr_list (const_rtx node, rtx *listp)
2063 {
2064 rtx temp = *listp;
2065 rtx prev = NULL_RTX;
2066
2067 while (temp)
2068 {
2069 if (node == XEXP (temp, 0))
2070 {
2071 /* Splice the node out of the list. */
2072 if (prev)
2073 XEXP (prev, 1) = XEXP (temp, 1);
2074 else
2075 *listp = XEXP (temp, 1);
2076
2077 return;
2078 }
2079
2080 prev = temp;
2081 temp = XEXP (temp, 1);
2082 }
2083 }
2084 \f
2085 /* Nonzero if X contains any volatile instructions. These are instructions
2086 which may cause unpredictable machine state instructions, and thus no
2087 instructions should be moved or combined across them. This includes
2088 only volatile asms and UNSPEC_VOLATILE instructions. */
2089
2090 int
2091 volatile_insn_p (const_rtx x)
2092 {
2093 const RTX_CODE code = GET_CODE (x);
2094 switch (code)
2095 {
2096 case LABEL_REF:
2097 case SYMBOL_REF:
2098 case CONST_INT:
2099 case CONST:
2100 case CONST_DOUBLE:
2101 case CONST_FIXED:
2102 case CONST_VECTOR:
2103 case CC0:
2104 case PC:
2105 case REG:
2106 case SCRATCH:
2107 case CLOBBER:
2108 case ADDR_VEC:
2109 case ADDR_DIFF_VEC:
2110 case CALL:
2111 case MEM:
2112 return 0;
2113
2114 case UNSPEC_VOLATILE:
2115 /* case TRAP_IF: This isn't clear yet. */
2116 return 1;
2117
2118 case ASM_INPUT:
2119 case ASM_OPERANDS:
2120 if (MEM_VOLATILE_P (x))
2121 return 1;
2122
2123 default:
2124 break;
2125 }
2126
2127 /* Recursively scan the operands of this expression. */
2128
2129 {
2130 const char *const fmt = GET_RTX_FORMAT (code);
2131 int i;
2132
2133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2134 {
2135 if (fmt[i] == 'e')
2136 {
2137 if (volatile_insn_p (XEXP (x, i)))
2138 return 1;
2139 }
2140 else if (fmt[i] == 'E')
2141 {
2142 int j;
2143 for (j = 0; j < XVECLEN (x, i); j++)
2144 if (volatile_insn_p (XVECEXP (x, i, j)))
2145 return 1;
2146 }
2147 }
2148 }
2149 return 0;
2150 }
2151
2152 /* Nonzero if X contains any volatile memory references
2153 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2154
2155 int
2156 volatile_refs_p (const_rtx x)
2157 {
2158 const RTX_CODE code = GET_CODE (x);
2159 switch (code)
2160 {
2161 case LABEL_REF:
2162 case SYMBOL_REF:
2163 case CONST_INT:
2164 case CONST:
2165 case CONST_DOUBLE:
2166 case CONST_FIXED:
2167 case CONST_VECTOR:
2168 case CC0:
2169 case PC:
2170 case REG:
2171 case SCRATCH:
2172 case CLOBBER:
2173 case ADDR_VEC:
2174 case ADDR_DIFF_VEC:
2175 return 0;
2176
2177 case UNSPEC_VOLATILE:
2178 return 1;
2179
2180 case MEM:
2181 case ASM_INPUT:
2182 case ASM_OPERANDS:
2183 if (MEM_VOLATILE_P (x))
2184 return 1;
2185
2186 default:
2187 break;
2188 }
2189
2190 /* Recursively scan the operands of this expression. */
2191
2192 {
2193 const char *const fmt = GET_RTX_FORMAT (code);
2194 int i;
2195
2196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2197 {
2198 if (fmt[i] == 'e')
2199 {
2200 if (volatile_refs_p (XEXP (x, i)))
2201 return 1;
2202 }
2203 else if (fmt[i] == 'E')
2204 {
2205 int j;
2206 for (j = 0; j < XVECLEN (x, i); j++)
2207 if (volatile_refs_p (XVECEXP (x, i, j)))
2208 return 1;
2209 }
2210 }
2211 }
2212 return 0;
2213 }
2214
2215 /* Similar to above, except that it also rejects register pre- and post-
2216 incrementing. */
2217
2218 int
2219 side_effects_p (const_rtx x)
2220 {
2221 const RTX_CODE code = GET_CODE (x);
2222 switch (code)
2223 {
2224 case LABEL_REF:
2225 case SYMBOL_REF:
2226 case CONST_INT:
2227 case CONST:
2228 case CONST_DOUBLE:
2229 case CONST_FIXED:
2230 case CONST_VECTOR:
2231 case CC0:
2232 case PC:
2233 case REG:
2234 case SCRATCH:
2235 case ADDR_VEC:
2236 case ADDR_DIFF_VEC:
2237 case VAR_LOCATION:
2238 return 0;
2239
2240 case CLOBBER:
2241 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2242 when some combination can't be done. If we see one, don't think
2243 that we can simplify the expression. */
2244 return (GET_MODE (x) != VOIDmode);
2245
2246 case PRE_INC:
2247 case PRE_DEC:
2248 case POST_INC:
2249 case POST_DEC:
2250 case PRE_MODIFY:
2251 case POST_MODIFY:
2252 case CALL:
2253 case UNSPEC_VOLATILE:
2254 /* case TRAP_IF: This isn't clear yet. */
2255 return 1;
2256
2257 case MEM:
2258 case ASM_INPUT:
2259 case ASM_OPERANDS:
2260 if (MEM_VOLATILE_P (x))
2261 return 1;
2262
2263 default:
2264 break;
2265 }
2266
2267 /* Recursively scan the operands of this expression. */
2268
2269 {
2270 const char *fmt = GET_RTX_FORMAT (code);
2271 int i;
2272
2273 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2274 {
2275 if (fmt[i] == 'e')
2276 {
2277 if (side_effects_p (XEXP (x, i)))
2278 return 1;
2279 }
2280 else if (fmt[i] == 'E')
2281 {
2282 int j;
2283 for (j = 0; j < XVECLEN (x, i); j++)
2284 if (side_effects_p (XVECEXP (x, i, j)))
2285 return 1;
2286 }
2287 }
2288 }
2289 return 0;
2290 }
2291 \f
2292 /* Return nonzero if evaluating rtx X might cause a trap.
2293 FLAGS controls how to consider MEMs. A nonzero means the context
2294 of the access may have changed from the original, such that the
2295 address may have become invalid. */
2296
2297 int
2298 may_trap_p_1 (const_rtx x, unsigned flags)
2299 {
2300 int i;
2301 enum rtx_code code;
2302 const char *fmt;
2303
2304 /* We make no distinction currently, but this function is part of
2305 the internal target-hooks ABI so we keep the parameter as
2306 "unsigned flags". */
2307 bool code_changed = flags != 0;
2308
2309 if (x == 0)
2310 return 0;
2311 code = GET_CODE (x);
2312 switch (code)
2313 {
2314 /* Handle these cases quickly. */
2315 case CONST_INT:
2316 case CONST_DOUBLE:
2317 case CONST_FIXED:
2318 case CONST_VECTOR:
2319 case SYMBOL_REF:
2320 case LABEL_REF:
2321 case CONST:
2322 case PC:
2323 case CC0:
2324 case REG:
2325 case SCRATCH:
2326 return 0;
2327
2328 case UNSPEC:
2329 case UNSPEC_VOLATILE:
2330 return targetm.unspec_may_trap_p (x, flags);
2331
2332 case ASM_INPUT:
2333 case TRAP_IF:
2334 return 1;
2335
2336 case ASM_OPERANDS:
2337 return MEM_VOLATILE_P (x);
2338
2339 /* Memory ref can trap unless it's a static var or a stack slot. */
2340 case MEM:
2341 /* Recognize specific pattern of stack checking probes. */
2342 if (flag_stack_check
2343 && MEM_VOLATILE_P (x)
2344 && XEXP (x, 0) == stack_pointer_rtx)
2345 return 1;
2346 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2347 reference; moving it out of context such as when moving code
2348 when optimizing, might cause its address to become invalid. */
2349 code_changed
2350 || !MEM_NOTRAP_P (x))
2351 {
2352 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2353 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2354 GET_MODE (x), code_changed);
2355 }
2356
2357 return 0;
2358
2359 /* Division by a non-constant might trap. */
2360 case DIV:
2361 case MOD:
2362 case UDIV:
2363 case UMOD:
2364 if (HONOR_SNANS (GET_MODE (x)))
2365 return 1;
2366 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2367 return flag_trapping_math;
2368 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2369 return 1;
2370 break;
2371
2372 case EXPR_LIST:
2373 /* An EXPR_LIST is used to represent a function call. This
2374 certainly may trap. */
2375 return 1;
2376
2377 case GE:
2378 case GT:
2379 case LE:
2380 case LT:
2381 case LTGT:
2382 case COMPARE:
2383 /* Some floating point comparisons may trap. */
2384 if (!flag_trapping_math)
2385 break;
2386 /* ??? There is no machine independent way to check for tests that trap
2387 when COMPARE is used, though many targets do make this distinction.
2388 For instance, sparc uses CCFPE for compares which generate exceptions
2389 and CCFP for compares which do not generate exceptions. */
2390 if (HONOR_NANS (GET_MODE (x)))
2391 return 1;
2392 /* But often the compare has some CC mode, so check operand
2393 modes as well. */
2394 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2395 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2396 return 1;
2397 break;
2398
2399 case EQ:
2400 case NE:
2401 if (HONOR_SNANS (GET_MODE (x)))
2402 return 1;
2403 /* Often comparison is CC mode, so check operand modes. */
2404 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2405 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2406 return 1;
2407 break;
2408
2409 case FIX:
2410 /* Conversion of floating point might trap. */
2411 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2412 return 1;
2413 break;
2414
2415 case NEG:
2416 case ABS:
2417 case SUBREG:
2418 /* These operations don't trap even with floating point. */
2419 break;
2420
2421 default:
2422 /* Any floating arithmetic may trap. */
2423 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2424 && flag_trapping_math)
2425 return 1;
2426 }
2427
2428 fmt = GET_RTX_FORMAT (code);
2429 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2430 {
2431 if (fmt[i] == 'e')
2432 {
2433 if (may_trap_p_1 (XEXP (x, i), flags))
2434 return 1;
2435 }
2436 else if (fmt[i] == 'E')
2437 {
2438 int j;
2439 for (j = 0; j < XVECLEN (x, i); j++)
2440 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2441 return 1;
2442 }
2443 }
2444 return 0;
2445 }
2446
2447 /* Return nonzero if evaluating rtx X might cause a trap. */
2448
2449 int
2450 may_trap_p (const_rtx x)
2451 {
2452 return may_trap_p_1 (x, 0);
2453 }
2454
2455 /* Same as above, but additionally return nonzero if evaluating rtx X might
2456 cause a fault. We define a fault for the purpose of this function as a
2457 erroneous execution condition that cannot be encountered during the normal
2458 execution of a valid program; the typical example is an unaligned memory
2459 access on a strict alignment machine. The compiler guarantees that it
2460 doesn't generate code that will fault from a valid program, but this
2461 guarantee doesn't mean anything for individual instructions. Consider
2462 the following example:
2463
2464 struct S { int d; union { char *cp; int *ip; }; };
2465
2466 int foo(struct S *s)
2467 {
2468 if (s->d == 1)
2469 return *s->ip;
2470 else
2471 return *s->cp;
2472 }
2473
2474 on a strict alignment machine. In a valid program, foo will never be
2475 invoked on a structure for which d is equal to 1 and the underlying
2476 unique field of the union not aligned on a 4-byte boundary, but the
2477 expression *s->ip might cause a fault if considered individually.
2478
2479 At the RTL level, potentially problematic expressions will almost always
2480 verify may_trap_p; for example, the above dereference can be emitted as
2481 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2482 However, suppose that foo is inlined in a caller that causes s->cp to
2483 point to a local character variable and guarantees that s->d is not set
2484 to 1; foo may have been effectively translated into pseudo-RTL as:
2485
2486 if ((reg:SI) == 1)
2487 (set (reg:SI) (mem:SI (%fp - 7)))
2488 else
2489 (set (reg:QI) (mem:QI (%fp - 7)))
2490
2491 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2492 memory reference to a stack slot, but it will certainly cause a fault
2493 on a strict alignment machine. */
2494
2495 int
2496 may_trap_or_fault_p (const_rtx x)
2497 {
2498 return may_trap_p_1 (x, 1);
2499 }
2500 \f
2501 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2502 i.e., an inequality. */
2503
2504 int
2505 inequality_comparisons_p (const_rtx x)
2506 {
2507 const char *fmt;
2508 int len, i;
2509 const enum rtx_code code = GET_CODE (x);
2510
2511 switch (code)
2512 {
2513 case REG:
2514 case SCRATCH:
2515 case PC:
2516 case CC0:
2517 case CONST_INT:
2518 case CONST_DOUBLE:
2519 case CONST_FIXED:
2520 case CONST_VECTOR:
2521 case CONST:
2522 case LABEL_REF:
2523 case SYMBOL_REF:
2524 return 0;
2525
2526 case LT:
2527 case LTU:
2528 case GT:
2529 case GTU:
2530 case LE:
2531 case LEU:
2532 case GE:
2533 case GEU:
2534 return 1;
2535
2536 default:
2537 break;
2538 }
2539
2540 len = GET_RTX_LENGTH (code);
2541 fmt = GET_RTX_FORMAT (code);
2542
2543 for (i = 0; i < len; i++)
2544 {
2545 if (fmt[i] == 'e')
2546 {
2547 if (inequality_comparisons_p (XEXP (x, i)))
2548 return 1;
2549 }
2550 else if (fmt[i] == 'E')
2551 {
2552 int j;
2553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2554 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2555 return 1;
2556 }
2557 }
2558
2559 return 0;
2560 }
2561 \f
2562 /* Replace any occurrence of FROM in X with TO. The function does
2563 not enter into CONST_DOUBLE for the replace.
2564
2565 Note that copying is not done so X must not be shared unless all copies
2566 are to be modified. */
2567
2568 rtx
2569 replace_rtx (rtx x, rtx from, rtx to)
2570 {
2571 int i, j;
2572 const char *fmt;
2573
2574 /* The following prevents loops occurrence when we change MEM in
2575 CONST_DOUBLE onto the same CONST_DOUBLE. */
2576 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2577 return x;
2578
2579 if (x == from)
2580 return to;
2581
2582 /* Allow this function to make replacements in EXPR_LISTs. */
2583 if (x == 0)
2584 return 0;
2585
2586 if (GET_CODE (x) == SUBREG)
2587 {
2588 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2589
2590 if (CONST_INT_P (new_rtx))
2591 {
2592 x = simplify_subreg (GET_MODE (x), new_rtx,
2593 GET_MODE (SUBREG_REG (x)),
2594 SUBREG_BYTE (x));
2595 gcc_assert (x);
2596 }
2597 else
2598 SUBREG_REG (x) = new_rtx;
2599
2600 return x;
2601 }
2602 else if (GET_CODE (x) == ZERO_EXTEND)
2603 {
2604 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2605
2606 if (CONST_INT_P (new_rtx))
2607 {
2608 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2609 new_rtx, GET_MODE (XEXP (x, 0)));
2610 gcc_assert (x);
2611 }
2612 else
2613 XEXP (x, 0) = new_rtx;
2614
2615 return x;
2616 }
2617
2618 fmt = GET_RTX_FORMAT (GET_CODE (x));
2619 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2620 {
2621 if (fmt[i] == 'e')
2622 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2623 else if (fmt[i] == 'E')
2624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2625 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2626 }
2627
2628 return x;
2629 }
2630 \f
2631 /* Replace occurrences of the old label in *X with the new one.
2632 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2633
2634 int
2635 replace_label (rtx *x, void *data)
2636 {
2637 rtx l = *x;
2638 rtx old_label = ((replace_label_data *) data)->r1;
2639 rtx new_label = ((replace_label_data *) data)->r2;
2640 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2641
2642 if (l == NULL_RTX)
2643 return 0;
2644
2645 if (GET_CODE (l) == SYMBOL_REF
2646 && CONSTANT_POOL_ADDRESS_P (l))
2647 {
2648 rtx c = get_pool_constant (l);
2649 if (rtx_referenced_p (old_label, c))
2650 {
2651 rtx new_c, new_l;
2652 replace_label_data *d = (replace_label_data *) data;
2653
2654 /* Create a copy of constant C; replace the label inside
2655 but do not update LABEL_NUSES because uses in constant pool
2656 are not counted. */
2657 new_c = copy_rtx (c);
2658 d->update_label_nuses = false;
2659 for_each_rtx (&new_c, replace_label, data);
2660 d->update_label_nuses = update_label_nuses;
2661
2662 /* Add the new constant NEW_C to constant pool and replace
2663 the old reference to constant by new reference. */
2664 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2665 *x = replace_rtx (l, l, new_l);
2666 }
2667 return 0;
2668 }
2669
2670 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2671 field. This is not handled by for_each_rtx because it doesn't
2672 handle unprinted ('0') fields. */
2673 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2674 JUMP_LABEL (l) = new_label;
2675
2676 if ((GET_CODE (l) == LABEL_REF
2677 || GET_CODE (l) == INSN_LIST)
2678 && XEXP (l, 0) == old_label)
2679 {
2680 XEXP (l, 0) = new_label;
2681 if (update_label_nuses)
2682 {
2683 ++LABEL_NUSES (new_label);
2684 --LABEL_NUSES (old_label);
2685 }
2686 return 0;
2687 }
2688
2689 return 0;
2690 }
2691
2692 /* When *BODY is equal to X or X is directly referenced by *BODY
2693 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2694 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2695
2696 static int
2697 rtx_referenced_p_1 (rtx *body, void *x)
2698 {
2699 rtx y = (rtx) x;
2700
2701 if (*body == NULL_RTX)
2702 return y == NULL_RTX;
2703
2704 /* Return true if a label_ref *BODY refers to label Y. */
2705 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2706 return XEXP (*body, 0) == y;
2707
2708 /* If *BODY is a reference to pool constant traverse the constant. */
2709 if (GET_CODE (*body) == SYMBOL_REF
2710 && CONSTANT_POOL_ADDRESS_P (*body))
2711 return rtx_referenced_p (y, get_pool_constant (*body));
2712
2713 /* By default, compare the RTL expressions. */
2714 return rtx_equal_p (*body, y);
2715 }
2716
2717 /* Return true if X is referenced in BODY. */
2718
2719 int
2720 rtx_referenced_p (rtx x, rtx body)
2721 {
2722 return for_each_rtx (&body, rtx_referenced_p_1, x);
2723 }
2724
2725 /* If INSN is a tablejump return true and store the label (before jump table) to
2726 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2727
2728 bool
2729 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2730 {
2731 rtx label, table;
2732
2733 if (!JUMP_P (insn))
2734 return false;
2735
2736 label = JUMP_LABEL (insn);
2737 if (label != NULL_RTX && !ANY_RETURN_P (label)
2738 && (table = next_active_insn (label)) != NULL_RTX
2739 && JUMP_TABLE_DATA_P (table))
2740 {
2741 if (labelp)
2742 *labelp = label;
2743 if (tablep)
2744 *tablep = table;
2745 return true;
2746 }
2747 return false;
2748 }
2749
2750 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2751 constant that is not in the constant pool and not in the condition
2752 of an IF_THEN_ELSE. */
2753
2754 static int
2755 computed_jump_p_1 (const_rtx x)
2756 {
2757 const enum rtx_code code = GET_CODE (x);
2758 int i, j;
2759 const char *fmt;
2760
2761 switch (code)
2762 {
2763 case LABEL_REF:
2764 case PC:
2765 return 0;
2766
2767 case CONST:
2768 case CONST_INT:
2769 case CONST_DOUBLE:
2770 case CONST_FIXED:
2771 case CONST_VECTOR:
2772 case SYMBOL_REF:
2773 case REG:
2774 return 1;
2775
2776 case MEM:
2777 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2778 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2779
2780 case IF_THEN_ELSE:
2781 return (computed_jump_p_1 (XEXP (x, 1))
2782 || computed_jump_p_1 (XEXP (x, 2)));
2783
2784 default:
2785 break;
2786 }
2787
2788 fmt = GET_RTX_FORMAT (code);
2789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2790 {
2791 if (fmt[i] == 'e'
2792 && computed_jump_p_1 (XEXP (x, i)))
2793 return 1;
2794
2795 else if (fmt[i] == 'E')
2796 for (j = 0; j < XVECLEN (x, i); j++)
2797 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2798 return 1;
2799 }
2800
2801 return 0;
2802 }
2803
2804 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2805
2806 Tablejumps and casesi insns are not considered indirect jumps;
2807 we can recognize them by a (use (label_ref)). */
2808
2809 int
2810 computed_jump_p (const_rtx insn)
2811 {
2812 int i;
2813 if (JUMP_P (insn))
2814 {
2815 rtx pat = PATTERN (insn);
2816
2817 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2818 if (JUMP_LABEL (insn) != NULL)
2819 return 0;
2820
2821 if (GET_CODE (pat) == PARALLEL)
2822 {
2823 int len = XVECLEN (pat, 0);
2824 int has_use_labelref = 0;
2825
2826 for (i = len - 1; i >= 0; i--)
2827 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2828 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2829 == LABEL_REF))
2830 has_use_labelref = 1;
2831
2832 if (! has_use_labelref)
2833 for (i = len - 1; i >= 0; i--)
2834 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2835 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2836 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2837 return 1;
2838 }
2839 else if (GET_CODE (pat) == SET
2840 && SET_DEST (pat) == pc_rtx
2841 && computed_jump_p_1 (SET_SRC (pat)))
2842 return 1;
2843 }
2844 return 0;
2845 }
2846
2847 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2848 calls. Processes the subexpressions of EXP and passes them to F. */
2849 static int
2850 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2851 {
2852 int result, i, j;
2853 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2854 rtx *x;
2855
2856 for (; format[n] != '\0'; n++)
2857 {
2858 switch (format[n])
2859 {
2860 case 'e':
2861 /* Call F on X. */
2862 x = &XEXP (exp, n);
2863 result = (*f) (x, data);
2864 if (result == -1)
2865 /* Do not traverse sub-expressions. */
2866 continue;
2867 else if (result != 0)
2868 /* Stop the traversal. */
2869 return result;
2870
2871 if (*x == NULL_RTX)
2872 /* There are no sub-expressions. */
2873 continue;
2874
2875 i = non_rtx_starting_operands[GET_CODE (*x)];
2876 if (i >= 0)
2877 {
2878 result = for_each_rtx_1 (*x, i, f, data);
2879 if (result != 0)
2880 return result;
2881 }
2882 break;
2883
2884 case 'V':
2885 case 'E':
2886 if (XVEC (exp, n) == 0)
2887 continue;
2888 for (j = 0; j < XVECLEN (exp, n); ++j)
2889 {
2890 /* Call F on X. */
2891 x = &XVECEXP (exp, n, j);
2892 result = (*f) (x, data);
2893 if (result == -1)
2894 /* Do not traverse sub-expressions. */
2895 continue;
2896 else if (result != 0)
2897 /* Stop the traversal. */
2898 return result;
2899
2900 if (*x == NULL_RTX)
2901 /* There are no sub-expressions. */
2902 continue;
2903
2904 i = non_rtx_starting_operands[GET_CODE (*x)];
2905 if (i >= 0)
2906 {
2907 result = for_each_rtx_1 (*x, i, f, data);
2908 if (result != 0)
2909 return result;
2910 }
2911 }
2912 break;
2913
2914 default:
2915 /* Nothing to do. */
2916 break;
2917 }
2918 }
2919
2920 return 0;
2921 }
2922
2923 /* Traverse X via depth-first search, calling F for each
2924 sub-expression (including X itself). F is also passed the DATA.
2925 If F returns -1, do not traverse sub-expressions, but continue
2926 traversing the rest of the tree. If F ever returns any other
2927 nonzero value, stop the traversal, and return the value returned
2928 by F. Otherwise, return 0. This function does not traverse inside
2929 tree structure that contains RTX_EXPRs, or into sub-expressions
2930 whose format code is `0' since it is not known whether or not those
2931 codes are actually RTL.
2932
2933 This routine is very general, and could (should?) be used to
2934 implement many of the other routines in this file. */
2935
2936 int
2937 for_each_rtx (rtx *x, rtx_function f, void *data)
2938 {
2939 int result;
2940 int i;
2941
2942 /* Call F on X. */
2943 result = (*f) (x, data);
2944 if (result == -1)
2945 /* Do not traverse sub-expressions. */
2946 return 0;
2947 else if (result != 0)
2948 /* Stop the traversal. */
2949 return result;
2950
2951 if (*x == NULL_RTX)
2952 /* There are no sub-expressions. */
2953 return 0;
2954
2955 i = non_rtx_starting_operands[GET_CODE (*x)];
2956 if (i < 0)
2957 return 0;
2958
2959 return for_each_rtx_1 (*x, i, f, data);
2960 }
2961
2962 \f
2963
2964 /* Data structure that holds the internal state communicated between
2965 for_each_inc_dec, for_each_inc_dec_find_mem and
2966 for_each_inc_dec_find_inc_dec. */
2967
2968 struct for_each_inc_dec_ops {
2969 /* The function to be called for each autoinc operation found. */
2970 for_each_inc_dec_fn fn;
2971 /* The opaque argument to be passed to it. */
2972 void *arg;
2973 /* The MEM we're visiting, if any. */
2974 rtx mem;
2975 };
2976
2977 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2978
2979 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2980 operands of the equivalent add insn and pass the result to the
2981 operator specified by *D. */
2982
2983 static int
2984 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2985 {
2986 rtx x = *r;
2987 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2988
2989 switch (GET_CODE (x))
2990 {
2991 case PRE_INC:
2992 case POST_INC:
2993 {
2994 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2995 rtx r1 = XEXP (x, 0);
2996 rtx c = gen_int_mode (size, GET_MODE (r1));
2997 return data->fn (data->mem, x, r1, r1, c, data->arg);
2998 }
2999
3000 case PRE_DEC:
3001 case POST_DEC:
3002 {
3003 int size = GET_MODE_SIZE (GET_MODE (data->mem));
3004 rtx r1 = XEXP (x, 0);
3005 rtx c = gen_int_mode (-size, GET_MODE (r1));
3006 return data->fn (data->mem, x, r1, r1, c, data->arg);
3007 }
3008
3009 case PRE_MODIFY:
3010 case POST_MODIFY:
3011 {
3012 rtx r1 = XEXP (x, 0);
3013 rtx add = XEXP (x, 1);
3014 return data->fn (data->mem, x, r1, add, NULL, data->arg);
3015 }
3016
3017 case MEM:
3018 {
3019 rtx save = data->mem;
3020 int ret = for_each_inc_dec_find_mem (r, d);
3021 data->mem = save;
3022 return ret;
3023 }
3024
3025 default:
3026 return 0;
3027 }
3028 }
3029
3030 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3031 address, extract the operands of the equivalent add insn and pass
3032 the result to the operator specified by *D. */
3033
3034 static int
3035 for_each_inc_dec_find_mem (rtx *r, void *d)
3036 {
3037 rtx x = *r;
3038 if (x != NULL_RTX && MEM_P (x))
3039 {
3040 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3041 int result;
3042
3043 data->mem = x;
3044
3045 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3046 data);
3047 if (result)
3048 return result;
3049
3050 return -1;
3051 }
3052 return 0;
3053 }
3054
3055 /* Traverse *X looking for MEMs, and for autoinc operations within
3056 them. For each such autoinc operation found, call FN, passing it
3057 the innermost enclosing MEM, the operation itself, the RTX modified
3058 by the operation, two RTXs (the second may be NULL) that, once
3059 added, represent the value to be held by the modified RTX
3060 afterwards, and ARG. FN is to return -1 to skip looking for other
3061 autoinc operations within the visited operation, 0 to continue the
3062 traversal, or any other value to have it returned to the caller of
3063 for_each_inc_dec. */
3064
3065 int
3066 for_each_inc_dec (rtx *x,
3067 for_each_inc_dec_fn fn,
3068 void *arg)
3069 {
3070 struct for_each_inc_dec_ops data;
3071
3072 data.fn = fn;
3073 data.arg = arg;
3074 data.mem = NULL;
3075
3076 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3077 }
3078
3079 \f
3080 /* Searches X for any reference to REGNO, returning the rtx of the
3081 reference found if any. Otherwise, returns NULL_RTX. */
3082
3083 rtx
3084 regno_use_in (unsigned int regno, rtx x)
3085 {
3086 const char *fmt;
3087 int i, j;
3088 rtx tem;
3089
3090 if (REG_P (x) && REGNO (x) == regno)
3091 return x;
3092
3093 fmt = GET_RTX_FORMAT (GET_CODE (x));
3094 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3095 {
3096 if (fmt[i] == 'e')
3097 {
3098 if ((tem = regno_use_in (regno, XEXP (x, i))))
3099 return tem;
3100 }
3101 else if (fmt[i] == 'E')
3102 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3103 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3104 return tem;
3105 }
3106
3107 return NULL_RTX;
3108 }
3109
3110 /* Return a value indicating whether OP, an operand of a commutative
3111 operation, is preferred as the first or second operand. The higher
3112 the value, the stronger the preference for being the first operand.
3113 We use negative values to indicate a preference for the first operand
3114 and positive values for the second operand. */
3115
3116 int
3117 commutative_operand_precedence (rtx op)
3118 {
3119 enum rtx_code code = GET_CODE (op);
3120
3121 /* Constants always come the second operand. Prefer "nice" constants. */
3122 if (code == CONST_INT)
3123 return -8;
3124 if (code == CONST_DOUBLE)
3125 return -7;
3126 if (code == CONST_FIXED)
3127 return -7;
3128 op = avoid_constant_pool_reference (op);
3129 code = GET_CODE (op);
3130
3131 switch (GET_RTX_CLASS (code))
3132 {
3133 case RTX_CONST_OBJ:
3134 if (code == CONST_INT)
3135 return -6;
3136 if (code == CONST_DOUBLE)
3137 return -5;
3138 if (code == CONST_FIXED)
3139 return -5;
3140 return -4;
3141
3142 case RTX_EXTRA:
3143 /* SUBREGs of objects should come second. */
3144 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3145 return -3;
3146 return 0;
3147
3148 case RTX_OBJ:
3149 /* Complex expressions should be the first, so decrease priority
3150 of objects. Prefer pointer objects over non pointer objects. */
3151 if ((REG_P (op) && REG_POINTER (op))
3152 || (MEM_P (op) && MEM_POINTER (op)))
3153 return -1;
3154 return -2;
3155
3156 case RTX_COMM_ARITH:
3157 /* Prefer operands that are themselves commutative to be first.
3158 This helps to make things linear. In particular,
3159 (and (and (reg) (reg)) (not (reg))) is canonical. */
3160 return 4;
3161
3162 case RTX_BIN_ARITH:
3163 /* If only one operand is a binary expression, it will be the first
3164 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3165 is canonical, although it will usually be further simplified. */
3166 return 2;
3167
3168 case RTX_UNARY:
3169 /* Then prefer NEG and NOT. */
3170 if (code == NEG || code == NOT)
3171 return 1;
3172
3173 default:
3174 return 0;
3175 }
3176 }
3177
3178 /* Return 1 iff it is necessary to swap operands of commutative operation
3179 in order to canonicalize expression. */
3180
3181 bool
3182 swap_commutative_operands_p (rtx x, rtx y)
3183 {
3184 return (commutative_operand_precedence (x)
3185 < commutative_operand_precedence (y));
3186 }
3187
3188 /* Return 1 if X is an autoincrement side effect and the register is
3189 not the stack pointer. */
3190 int
3191 auto_inc_p (const_rtx x)
3192 {
3193 switch (GET_CODE (x))
3194 {
3195 case PRE_INC:
3196 case POST_INC:
3197 case PRE_DEC:
3198 case POST_DEC:
3199 case PRE_MODIFY:
3200 case POST_MODIFY:
3201 /* There are no REG_INC notes for SP. */
3202 if (XEXP (x, 0) != stack_pointer_rtx)
3203 return 1;
3204 default:
3205 break;
3206 }
3207 return 0;
3208 }
3209
3210 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3211 int
3212 loc_mentioned_in_p (rtx *loc, const_rtx in)
3213 {
3214 enum rtx_code code;
3215 const char *fmt;
3216 int i, j;
3217
3218 if (!in)
3219 return 0;
3220
3221 code = GET_CODE (in);
3222 fmt = GET_RTX_FORMAT (code);
3223 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3224 {
3225 if (fmt[i] == 'e')
3226 {
3227 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3228 return 1;
3229 }
3230 else if (fmt[i] == 'E')
3231 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3232 if (loc == &XVECEXP (in, i, j)
3233 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3234 return 1;
3235 }
3236 return 0;
3237 }
3238
3239 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3240 and SUBREG_BYTE, return the bit offset where the subreg begins
3241 (counting from the least significant bit of the operand). */
3242
3243 unsigned int
3244 subreg_lsb_1 (enum machine_mode outer_mode,
3245 enum machine_mode inner_mode,
3246 unsigned int subreg_byte)
3247 {
3248 unsigned int bitpos;
3249 unsigned int byte;
3250 unsigned int word;
3251
3252 /* A paradoxical subreg begins at bit position 0. */
3253 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3254 return 0;
3255
3256 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3257 /* If the subreg crosses a word boundary ensure that
3258 it also begins and ends on a word boundary. */
3259 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3260 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3261 && (subreg_byte % UNITS_PER_WORD
3262 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3263
3264 if (WORDS_BIG_ENDIAN)
3265 word = (GET_MODE_SIZE (inner_mode)
3266 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3267 else
3268 word = subreg_byte / UNITS_PER_WORD;
3269 bitpos = word * BITS_PER_WORD;
3270
3271 if (BYTES_BIG_ENDIAN)
3272 byte = (GET_MODE_SIZE (inner_mode)
3273 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3274 else
3275 byte = subreg_byte % UNITS_PER_WORD;
3276 bitpos += byte * BITS_PER_UNIT;
3277
3278 return bitpos;
3279 }
3280
3281 /* Given a subreg X, return the bit offset where the subreg begins
3282 (counting from the least significant bit of the reg). */
3283
3284 unsigned int
3285 subreg_lsb (const_rtx x)
3286 {
3287 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3288 SUBREG_BYTE (x));
3289 }
3290
3291 /* Fill in information about a subreg of a hard register.
3292 xregno - A regno of an inner hard subreg_reg (or what will become one).
3293 xmode - The mode of xregno.
3294 offset - The byte offset.
3295 ymode - The mode of a top level SUBREG (or what may become one).
3296 info - Pointer to structure to fill in. */
3297 void
3298 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3299 unsigned int offset, enum machine_mode ymode,
3300 struct subreg_info *info)
3301 {
3302 int nregs_xmode, nregs_ymode;
3303 int mode_multiple, nregs_multiple;
3304 int offset_adj, y_offset, y_offset_adj;
3305 int regsize_xmode, regsize_ymode;
3306 bool rknown;
3307
3308 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3309
3310 rknown = false;
3311
3312 /* If there are holes in a non-scalar mode in registers, we expect
3313 that it is made up of its units concatenated together. */
3314 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3315 {
3316 enum machine_mode xmode_unit;
3317
3318 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3319 if (GET_MODE_INNER (xmode) == VOIDmode)
3320 xmode_unit = xmode;
3321 else
3322 xmode_unit = GET_MODE_INNER (xmode);
3323 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3324 gcc_assert (nregs_xmode
3325 == (GET_MODE_NUNITS (xmode)
3326 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3327 gcc_assert (hard_regno_nregs[xregno][xmode]
3328 == (hard_regno_nregs[xregno][xmode_unit]
3329 * GET_MODE_NUNITS (xmode)));
3330
3331 /* You can only ask for a SUBREG of a value with holes in the middle
3332 if you don't cross the holes. (Such a SUBREG should be done by
3333 picking a different register class, or doing it in memory if
3334 necessary.) An example of a value with holes is XCmode on 32-bit
3335 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3336 3 for each part, but in memory it's two 128-bit parts.
3337 Padding is assumed to be at the end (not necessarily the 'high part')
3338 of each unit. */
3339 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3340 < GET_MODE_NUNITS (xmode))
3341 && (offset / GET_MODE_SIZE (xmode_unit)
3342 != ((offset + GET_MODE_SIZE (ymode) - 1)
3343 / GET_MODE_SIZE (xmode_unit))))
3344 {
3345 info->representable_p = false;
3346 rknown = true;
3347 }
3348 }
3349 else
3350 nregs_xmode = hard_regno_nregs[xregno][xmode];
3351
3352 nregs_ymode = hard_regno_nregs[xregno][ymode];
3353
3354 /* Paradoxical subregs are otherwise valid. */
3355 if (!rknown
3356 && offset == 0
3357 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3358 {
3359 info->representable_p = true;
3360 /* If this is a big endian paradoxical subreg, which uses more
3361 actual hard registers than the original register, we must
3362 return a negative offset so that we find the proper highpart
3363 of the register. */
3364 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3365 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3366 info->offset = nregs_xmode - nregs_ymode;
3367 else
3368 info->offset = 0;
3369 info->nregs = nregs_ymode;
3370 return;
3371 }
3372
3373 /* If registers store different numbers of bits in the different
3374 modes, we cannot generally form this subreg. */
3375 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3376 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3377 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3378 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3379 {
3380 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3381 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3382 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3383 {
3384 info->representable_p = false;
3385 info->nregs
3386 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3387 info->offset = offset / regsize_xmode;
3388 return;
3389 }
3390 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3391 {
3392 info->representable_p = false;
3393 info->nregs
3394 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3395 info->offset = offset / regsize_xmode;
3396 return;
3397 }
3398 }
3399
3400 /* Lowpart subregs are otherwise valid. */
3401 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3402 {
3403 info->representable_p = true;
3404 rknown = true;
3405
3406 if (offset == 0 || nregs_xmode == nregs_ymode)
3407 {
3408 info->offset = 0;
3409 info->nregs = nregs_ymode;
3410 return;
3411 }
3412 }
3413
3414 /* This should always pass, otherwise we don't know how to verify
3415 the constraint. These conditions may be relaxed but
3416 subreg_regno_offset would need to be redesigned. */
3417 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3418 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3419
3420 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3421 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3422 {
3423 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3424 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3425 HOST_WIDE_INT off_low = offset & (ysize - 1);
3426 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3427 offset = (xsize - ysize - off_high) | off_low;
3428 }
3429 /* The XMODE value can be seen as a vector of NREGS_XMODE
3430 values. The subreg must represent a lowpart of given field.
3431 Compute what field it is. */
3432 offset_adj = offset;
3433 offset_adj -= subreg_lowpart_offset (ymode,
3434 mode_for_size (GET_MODE_BITSIZE (xmode)
3435 / nregs_xmode,
3436 MODE_INT, 0));
3437
3438 /* Size of ymode must not be greater than the size of xmode. */
3439 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3440 gcc_assert (mode_multiple != 0);
3441
3442 y_offset = offset / GET_MODE_SIZE (ymode);
3443 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3444 nregs_multiple = nregs_xmode / nregs_ymode;
3445
3446 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3447 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3448
3449 if (!rknown)
3450 {
3451 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3452 rknown = true;
3453 }
3454 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3455 info->nregs = nregs_ymode;
3456 }
3457
3458 /* This function returns the regno offset of a subreg expression.
3459 xregno - A regno of an inner hard subreg_reg (or what will become one).
3460 xmode - The mode of xregno.
3461 offset - The byte offset.
3462 ymode - The mode of a top level SUBREG (or what may become one).
3463 RETURN - The regno offset which would be used. */
3464 unsigned int
3465 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3466 unsigned int offset, enum machine_mode ymode)
3467 {
3468 struct subreg_info info;
3469 subreg_get_info (xregno, xmode, offset, ymode, &info);
3470 return info.offset;
3471 }
3472
3473 /* This function returns true when the offset is representable via
3474 subreg_offset in the given regno.
3475 xregno - A regno of an inner hard subreg_reg (or what will become one).
3476 xmode - The mode of xregno.
3477 offset - The byte offset.
3478 ymode - The mode of a top level SUBREG (or what may become one).
3479 RETURN - Whether the offset is representable. */
3480 bool
3481 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3482 unsigned int offset, enum machine_mode ymode)
3483 {
3484 struct subreg_info info;
3485 subreg_get_info (xregno, xmode, offset, ymode, &info);
3486 return info.representable_p;
3487 }
3488
3489 /* Return the number of a YMODE register to which
3490
3491 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3492
3493 can be simplified. Return -1 if the subreg can't be simplified.
3494
3495 XREGNO is a hard register number. */
3496
3497 int
3498 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3499 unsigned int offset, enum machine_mode ymode)
3500 {
3501 struct subreg_info info;
3502 unsigned int yregno;
3503
3504 #ifdef CANNOT_CHANGE_MODE_CLASS
3505 /* Give the backend a chance to disallow the mode change. */
3506 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3507 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3508 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3509 return -1;
3510 #endif
3511
3512 /* We shouldn't simplify stack-related registers. */
3513 if ((!reload_completed || frame_pointer_needed)
3514 && xregno == FRAME_POINTER_REGNUM)
3515 return -1;
3516
3517 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3518 && xregno == ARG_POINTER_REGNUM)
3519 return -1;
3520
3521 if (xregno == STACK_POINTER_REGNUM)
3522 return -1;
3523
3524 /* Try to get the register offset. */
3525 subreg_get_info (xregno, xmode, offset, ymode, &info);
3526 if (!info.representable_p)
3527 return -1;
3528
3529 /* Make sure that the offsetted register value is in range. */
3530 yregno = xregno + info.offset;
3531 if (!HARD_REGISTER_NUM_P (yregno))
3532 return -1;
3533
3534 /* See whether (reg:YMODE YREGNO) is valid.
3535
3536 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3537 This is a kludge to work around how complex FP arguments are passed
3538 on IA-64 and should be fixed. See PR target/49226. */
3539 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3540 && HARD_REGNO_MODE_OK (xregno, xmode))
3541 return -1;
3542
3543 return (int) yregno;
3544 }
3545
3546 /* Return the final regno that a subreg expression refers to. */
3547 unsigned int
3548 subreg_regno (const_rtx x)
3549 {
3550 unsigned int ret;
3551 rtx subreg = SUBREG_REG (x);
3552 int regno = REGNO (subreg);
3553
3554 ret = regno + subreg_regno_offset (regno,
3555 GET_MODE (subreg),
3556 SUBREG_BYTE (x),
3557 GET_MODE (x));
3558 return ret;
3559
3560 }
3561
3562 /* Return the number of registers that a subreg expression refers
3563 to. */
3564 unsigned int
3565 subreg_nregs (const_rtx x)
3566 {
3567 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3568 }
3569
3570 /* Return the number of registers that a subreg REG with REGNO
3571 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3572 changed so that the regno can be passed in. */
3573
3574 unsigned int
3575 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3576 {
3577 struct subreg_info info;
3578 rtx subreg = SUBREG_REG (x);
3579
3580 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3581 &info);
3582 return info.nregs;
3583 }
3584
3585
3586 struct parms_set_data
3587 {
3588 int nregs;
3589 HARD_REG_SET regs;
3590 };
3591
3592 /* Helper function for noticing stores to parameter registers. */
3593 static void
3594 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3595 {
3596 struct parms_set_data *const d = (struct parms_set_data *) data;
3597 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3598 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3599 {
3600 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3601 d->nregs--;
3602 }
3603 }
3604
3605 /* Look backward for first parameter to be loaded.
3606 Note that loads of all parameters will not necessarily be
3607 found if CSE has eliminated some of them (e.g., an argument
3608 to the outer function is passed down as a parameter).
3609 Do not skip BOUNDARY. */
3610 rtx
3611 find_first_parameter_load (rtx call_insn, rtx boundary)
3612 {
3613 struct parms_set_data parm;
3614 rtx p, before, first_set;
3615
3616 /* Since different machines initialize their parameter registers
3617 in different orders, assume nothing. Collect the set of all
3618 parameter registers. */
3619 CLEAR_HARD_REG_SET (parm.regs);
3620 parm.nregs = 0;
3621 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3622 if (GET_CODE (XEXP (p, 0)) == USE
3623 && REG_P (XEXP (XEXP (p, 0), 0)))
3624 {
3625 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3626
3627 /* We only care about registers which can hold function
3628 arguments. */
3629 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3630 continue;
3631
3632 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3633 parm.nregs++;
3634 }
3635 before = call_insn;
3636 first_set = call_insn;
3637
3638 /* Search backward for the first set of a register in this set. */
3639 while (parm.nregs && before != boundary)
3640 {
3641 before = PREV_INSN (before);
3642
3643 /* It is possible that some loads got CSEed from one call to
3644 another. Stop in that case. */
3645 if (CALL_P (before))
3646 break;
3647
3648 /* Our caller needs either ensure that we will find all sets
3649 (in case code has not been optimized yet), or take care
3650 for possible labels in a way by setting boundary to preceding
3651 CODE_LABEL. */
3652 if (LABEL_P (before))
3653 {
3654 gcc_assert (before == boundary);
3655 break;
3656 }
3657
3658 if (INSN_P (before))
3659 {
3660 int nregs_old = parm.nregs;
3661 note_stores (PATTERN (before), parms_set, &parm);
3662 /* If we found something that did not set a parameter reg,
3663 we're done. Do not keep going, as that might result
3664 in hoisting an insn before the setting of a pseudo
3665 that is used by the hoisted insn. */
3666 if (nregs_old != parm.nregs)
3667 first_set = before;
3668 else
3669 break;
3670 }
3671 }
3672 return first_set;
3673 }
3674
3675 /* Return true if we should avoid inserting code between INSN and preceding
3676 call instruction. */
3677
3678 bool
3679 keep_with_call_p (const_rtx insn)
3680 {
3681 rtx set;
3682
3683 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3684 {
3685 if (REG_P (SET_DEST (set))
3686 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3687 && fixed_regs[REGNO (SET_DEST (set))]
3688 && general_operand (SET_SRC (set), VOIDmode))
3689 return true;
3690 if (REG_P (SET_SRC (set))
3691 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3692 && REG_P (SET_DEST (set))
3693 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3694 return true;
3695 /* There may be a stack pop just after the call and before the store
3696 of the return register. Search for the actual store when deciding
3697 if we can break or not. */
3698 if (SET_DEST (set) == stack_pointer_rtx)
3699 {
3700 /* This CONST_CAST is okay because next_nonnote_insn just
3701 returns its argument and we assign it to a const_rtx
3702 variable. */
3703 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3704 if (i2 && keep_with_call_p (i2))
3705 return true;
3706 }
3707 }
3708 return false;
3709 }
3710
3711 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3712 to non-complex jumps. That is, direct unconditional, conditional,
3713 and tablejumps, but not computed jumps or returns. It also does
3714 not apply to the fallthru case of a conditional jump. */
3715
3716 bool
3717 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3718 {
3719 rtx tmp = JUMP_LABEL (jump_insn);
3720
3721 if (label == tmp)
3722 return true;
3723
3724 if (tablejump_p (jump_insn, NULL, &tmp))
3725 {
3726 rtvec vec = XVEC (PATTERN (tmp),
3727 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3728 int i, veclen = GET_NUM_ELEM (vec);
3729
3730 for (i = 0; i < veclen; ++i)
3731 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3732 return true;
3733 }
3734
3735 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3736 return true;
3737
3738 return false;
3739 }
3740
3741 \f
3742 /* Return an estimate of the cost of computing rtx X.
3743 One use is in cse, to decide which expression to keep in the hash table.
3744 Another is in rtl generation, to pick the cheapest way to multiply.
3745 Other uses like the latter are expected in the future.
3746
3747 X appears as operand OPNO in an expression with code OUTER_CODE.
3748 SPEED specifies whether costs optimized for speed or size should
3749 be returned. */
3750
3751 int
3752 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3753 {
3754 int i, j;
3755 enum rtx_code code;
3756 const char *fmt;
3757 int total;
3758 int factor;
3759
3760 if (x == 0)
3761 return 0;
3762
3763 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3764 many insns, taking N times as long. */
3765 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3766 if (factor == 0)
3767 factor = 1;
3768
3769 /* Compute the default costs of certain things.
3770 Note that targetm.rtx_costs can override the defaults. */
3771
3772 code = GET_CODE (x);
3773 switch (code)
3774 {
3775 case MULT:
3776 /* Multiplication has time-complexity O(N*N), where N is the
3777 number of units (translated from digits) when using
3778 schoolbook long multiplication. */
3779 total = factor * factor * COSTS_N_INSNS (5);
3780 break;
3781 case DIV:
3782 case UDIV:
3783 case MOD:
3784 case UMOD:
3785 /* Similarly, complexity for schoolbook long division. */
3786 total = factor * factor * COSTS_N_INSNS (7);
3787 break;
3788 case USE:
3789 /* Used in combine.c as a marker. */
3790 total = 0;
3791 break;
3792 case SET:
3793 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3794 the mode for the factor. */
3795 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3796 if (factor == 0)
3797 factor = 1;
3798 /* Pass through. */
3799 default:
3800 total = factor * COSTS_N_INSNS (1);
3801 }
3802
3803 switch (code)
3804 {
3805 case REG:
3806 return 0;
3807
3808 case SUBREG:
3809 total = 0;
3810 /* If we can't tie these modes, make this expensive. The larger
3811 the mode, the more expensive it is. */
3812 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3813 return COSTS_N_INSNS (2 + factor);
3814 break;
3815
3816 default:
3817 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3818 return total;
3819 break;
3820 }
3821
3822 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3823 which is already in total. */
3824
3825 fmt = GET_RTX_FORMAT (code);
3826 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3827 if (fmt[i] == 'e')
3828 total += rtx_cost (XEXP (x, i), code, i, speed);
3829 else if (fmt[i] == 'E')
3830 for (j = 0; j < XVECLEN (x, i); j++)
3831 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3832
3833 return total;
3834 }
3835
3836 /* Fill in the structure C with information about both speed and size rtx
3837 costs for X, which is operand OPNO in an expression with code OUTER. */
3838
3839 void
3840 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3841 struct full_rtx_costs *c)
3842 {
3843 c->speed = rtx_cost (x, outer, opno, true);
3844 c->size = rtx_cost (x, outer, opno, false);
3845 }
3846
3847 \f
3848 /* Return cost of address expression X.
3849 Expect that X is properly formed address reference.
3850
3851 SPEED parameter specify whether costs optimized for speed or size should
3852 be returned. */
3853
3854 int
3855 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3856 {
3857 /* We may be asked for cost of various unusual addresses, such as operands
3858 of push instruction. It is not worthwhile to complicate writing
3859 of the target hook by such cases. */
3860
3861 if (!memory_address_addr_space_p (mode, x, as))
3862 return 1000;
3863
3864 return targetm.address_cost (x, speed);
3865 }
3866
3867 /* If the target doesn't override, compute the cost as with arithmetic. */
3868
3869 int
3870 default_address_cost (rtx x, bool speed)
3871 {
3872 return rtx_cost (x, MEM, 0, speed);
3873 }
3874 \f
3875
3876 unsigned HOST_WIDE_INT
3877 nonzero_bits (const_rtx x, enum machine_mode mode)
3878 {
3879 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3880 }
3881
3882 unsigned int
3883 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3884 {
3885 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3886 }
3887
3888 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3889 It avoids exponential behavior in nonzero_bits1 when X has
3890 identical subexpressions on the first or the second level. */
3891
3892 static unsigned HOST_WIDE_INT
3893 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3894 enum machine_mode known_mode,
3895 unsigned HOST_WIDE_INT known_ret)
3896 {
3897 if (x == known_x && mode == known_mode)
3898 return known_ret;
3899
3900 /* Try to find identical subexpressions. If found call
3901 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3902 precomputed value for the subexpression as KNOWN_RET. */
3903
3904 if (ARITHMETIC_P (x))
3905 {
3906 rtx x0 = XEXP (x, 0);
3907 rtx x1 = XEXP (x, 1);
3908
3909 /* Check the first level. */
3910 if (x0 == x1)
3911 return nonzero_bits1 (x, mode, x0, mode,
3912 cached_nonzero_bits (x0, mode, known_x,
3913 known_mode, known_ret));
3914
3915 /* Check the second level. */
3916 if (ARITHMETIC_P (x0)
3917 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3918 return nonzero_bits1 (x, mode, x1, mode,
3919 cached_nonzero_bits (x1, mode, known_x,
3920 known_mode, known_ret));
3921
3922 if (ARITHMETIC_P (x1)
3923 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3924 return nonzero_bits1 (x, mode, x0, mode,
3925 cached_nonzero_bits (x0, mode, known_x,
3926 known_mode, known_ret));
3927 }
3928
3929 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3930 }
3931
3932 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3933 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3934 is less useful. We can't allow both, because that results in exponential
3935 run time recursion. There is a nullstone testcase that triggered
3936 this. This macro avoids accidental uses of num_sign_bit_copies. */
3937 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3938
3939 /* Given an expression, X, compute which bits in X can be nonzero.
3940 We don't care about bits outside of those defined in MODE.
3941
3942 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3943 an arithmetic operation, we can do better. */
3944
3945 static unsigned HOST_WIDE_INT
3946 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3947 enum machine_mode known_mode,
3948 unsigned HOST_WIDE_INT known_ret)
3949 {
3950 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3951 unsigned HOST_WIDE_INT inner_nz;
3952 enum rtx_code code;
3953 enum machine_mode inner_mode;
3954 unsigned int mode_width = GET_MODE_PRECISION (mode);
3955
3956 /* For floating-point and vector values, assume all bits are needed. */
3957 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3958 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3959 return nonzero;
3960
3961 /* If X is wider than MODE, use its mode instead. */
3962 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3963 {
3964 mode = GET_MODE (x);
3965 nonzero = GET_MODE_MASK (mode);
3966 mode_width = GET_MODE_PRECISION (mode);
3967 }
3968
3969 if (mode_width > HOST_BITS_PER_WIDE_INT)
3970 /* Our only callers in this case look for single bit values. So
3971 just return the mode mask. Those tests will then be false. */
3972 return nonzero;
3973
3974 #ifndef WORD_REGISTER_OPERATIONS
3975 /* If MODE is wider than X, but both are a single word for both the host
3976 and target machines, we can compute this from which bits of the
3977 object might be nonzero in its own mode, taking into account the fact
3978 that on many CISC machines, accessing an object in a wider mode
3979 causes the high-order bits to become undefined. So they are
3980 not known to be zero. */
3981
3982 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3983 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3984 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3985 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3986 {
3987 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3988 known_x, known_mode, known_ret);
3989 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3990 return nonzero;
3991 }
3992 #endif
3993
3994 code = GET_CODE (x);
3995 switch (code)
3996 {
3997 case REG:
3998 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3999 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4000 all the bits above ptr_mode are known to be zero. */
4001 /* As we do not know which address space the pointer is referring to,
4002 we can do this only if the target does not support different pointer
4003 or address modes depending on the address space. */
4004 if (target_default_pointer_address_modes_p ()
4005 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4006 && REG_POINTER (x))
4007 nonzero &= GET_MODE_MASK (ptr_mode);
4008 #endif
4009
4010 /* Include declared information about alignment of pointers. */
4011 /* ??? We don't properly preserve REG_POINTER changes across
4012 pointer-to-integer casts, so we can't trust it except for
4013 things that we know must be pointers. See execute/960116-1.c. */
4014 if ((x == stack_pointer_rtx
4015 || x == frame_pointer_rtx
4016 || x == arg_pointer_rtx)
4017 && REGNO_POINTER_ALIGN (REGNO (x)))
4018 {
4019 unsigned HOST_WIDE_INT alignment
4020 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4021
4022 #ifdef PUSH_ROUNDING
4023 /* If PUSH_ROUNDING is defined, it is possible for the
4024 stack to be momentarily aligned only to that amount,
4025 so we pick the least alignment. */
4026 if (x == stack_pointer_rtx && PUSH_ARGS)
4027 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4028 alignment);
4029 #endif
4030
4031 nonzero &= ~(alignment - 1);
4032 }
4033
4034 {
4035 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4036 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4037 known_mode, known_ret,
4038 &nonzero_for_hook);
4039
4040 if (new_rtx)
4041 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4042 known_mode, known_ret);
4043
4044 return nonzero_for_hook;
4045 }
4046
4047 case CONST_INT:
4048 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4049 /* If X is negative in MODE, sign-extend the value. */
4050 if (INTVAL (x) > 0
4051 && mode_width < BITS_PER_WORD
4052 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4053 != 0)
4054 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4055 #endif
4056
4057 return UINTVAL (x);
4058
4059 case MEM:
4060 #ifdef LOAD_EXTEND_OP
4061 /* In many, if not most, RISC machines, reading a byte from memory
4062 zeros the rest of the register. Noticing that fact saves a lot
4063 of extra zero-extends. */
4064 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4065 nonzero &= GET_MODE_MASK (GET_MODE (x));
4066 #endif
4067 break;
4068
4069 case EQ: case NE:
4070 case UNEQ: case LTGT:
4071 case GT: case GTU: case UNGT:
4072 case LT: case LTU: case UNLT:
4073 case GE: case GEU: case UNGE:
4074 case LE: case LEU: case UNLE:
4075 case UNORDERED: case ORDERED:
4076 /* If this produces an integer result, we know which bits are set.
4077 Code here used to clear bits outside the mode of X, but that is
4078 now done above. */
4079 /* Mind that MODE is the mode the caller wants to look at this
4080 operation in, and not the actual operation mode. We can wind
4081 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4082 that describes the results of a vector compare. */
4083 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4084 && mode_width <= HOST_BITS_PER_WIDE_INT)
4085 nonzero = STORE_FLAG_VALUE;
4086 break;
4087
4088 case NEG:
4089 #if 0
4090 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4091 and num_sign_bit_copies. */
4092 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4093 == GET_MODE_PRECISION (GET_MODE (x)))
4094 nonzero = 1;
4095 #endif
4096
4097 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4098 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4099 break;
4100
4101 case ABS:
4102 #if 0
4103 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4104 and num_sign_bit_copies. */
4105 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4106 == GET_MODE_PRECISION (GET_MODE (x)))
4107 nonzero = 1;
4108 #endif
4109 break;
4110
4111 case TRUNCATE:
4112 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4113 known_x, known_mode, known_ret)
4114 & GET_MODE_MASK (mode));
4115 break;
4116
4117 case ZERO_EXTEND:
4118 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4119 known_x, known_mode, known_ret);
4120 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4121 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4122 break;
4123
4124 case SIGN_EXTEND:
4125 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4126 Otherwise, show all the bits in the outer mode but not the inner
4127 may be nonzero. */
4128 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4129 known_x, known_mode, known_ret);
4130 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4131 {
4132 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4133 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4134 inner_nz |= (GET_MODE_MASK (mode)
4135 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4136 }
4137
4138 nonzero &= inner_nz;
4139 break;
4140
4141 case AND:
4142 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4143 known_x, known_mode, known_ret)
4144 & cached_nonzero_bits (XEXP (x, 1), mode,
4145 known_x, known_mode, known_ret);
4146 break;
4147
4148 case XOR: case IOR:
4149 case UMIN: case UMAX: case SMIN: case SMAX:
4150 {
4151 unsigned HOST_WIDE_INT nonzero0
4152 = cached_nonzero_bits (XEXP (x, 0), mode,
4153 known_x, known_mode, known_ret);
4154
4155 /* Don't call nonzero_bits for the second time if it cannot change
4156 anything. */
4157 if ((nonzero & nonzero0) != nonzero)
4158 nonzero &= nonzero0
4159 | cached_nonzero_bits (XEXP (x, 1), mode,
4160 known_x, known_mode, known_ret);
4161 }
4162 break;
4163
4164 case PLUS: case MINUS:
4165 case MULT:
4166 case DIV: case UDIV:
4167 case MOD: case UMOD:
4168 /* We can apply the rules of arithmetic to compute the number of
4169 high- and low-order zero bits of these operations. We start by
4170 computing the width (position of the highest-order nonzero bit)
4171 and the number of low-order zero bits for each value. */
4172 {
4173 unsigned HOST_WIDE_INT nz0
4174 = cached_nonzero_bits (XEXP (x, 0), mode,
4175 known_x, known_mode, known_ret);
4176 unsigned HOST_WIDE_INT nz1
4177 = cached_nonzero_bits (XEXP (x, 1), mode,
4178 known_x, known_mode, known_ret);
4179 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4180 int width0 = floor_log2 (nz0) + 1;
4181 int width1 = floor_log2 (nz1) + 1;
4182 int low0 = floor_log2 (nz0 & -nz0);
4183 int low1 = floor_log2 (nz1 & -nz1);
4184 unsigned HOST_WIDE_INT op0_maybe_minusp
4185 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4186 unsigned HOST_WIDE_INT op1_maybe_minusp
4187 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4188 unsigned int result_width = mode_width;
4189 int result_low = 0;
4190
4191 switch (code)
4192 {
4193 case PLUS:
4194 result_width = MAX (width0, width1) + 1;
4195 result_low = MIN (low0, low1);
4196 break;
4197 case MINUS:
4198 result_low = MIN (low0, low1);
4199 break;
4200 case MULT:
4201 result_width = width0 + width1;
4202 result_low = low0 + low1;
4203 break;
4204 case DIV:
4205 if (width1 == 0)
4206 break;
4207 if (!op0_maybe_minusp && !op1_maybe_minusp)
4208 result_width = width0;
4209 break;
4210 case UDIV:
4211 if (width1 == 0)
4212 break;
4213 result_width = width0;
4214 break;
4215 case MOD:
4216 if (width1 == 0)
4217 break;
4218 if (!op0_maybe_minusp && !op1_maybe_minusp)
4219 result_width = MIN (width0, width1);
4220 result_low = MIN (low0, low1);
4221 break;
4222 case UMOD:
4223 if (width1 == 0)
4224 break;
4225 result_width = MIN (width0, width1);
4226 result_low = MIN (low0, low1);
4227 break;
4228 default:
4229 gcc_unreachable ();
4230 }
4231
4232 if (result_width < mode_width)
4233 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4234
4235 if (result_low > 0)
4236 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4237 }
4238 break;
4239
4240 case ZERO_EXTRACT:
4241 if (CONST_INT_P (XEXP (x, 1))
4242 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4243 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4244 break;
4245
4246 case SUBREG:
4247 /* If this is a SUBREG formed for a promoted variable that has
4248 been zero-extended, we know that at least the high-order bits
4249 are zero, though others might be too. */
4250
4251 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4252 nonzero = GET_MODE_MASK (GET_MODE (x))
4253 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4254 known_x, known_mode, known_ret);
4255
4256 inner_mode = GET_MODE (SUBREG_REG (x));
4257 /* If the inner mode is a single word for both the host and target
4258 machines, we can compute this from which bits of the inner
4259 object might be nonzero. */
4260 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4261 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4262 {
4263 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4264 known_x, known_mode, known_ret);
4265
4266 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4267 /* If this is a typical RISC machine, we only have to worry
4268 about the way loads are extended. */
4269 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4270 ? val_signbit_known_set_p (inner_mode, nonzero)
4271 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4272 || !MEM_P (SUBREG_REG (x)))
4273 #endif
4274 {
4275 /* On many CISC machines, accessing an object in a wider mode
4276 causes the high-order bits to become undefined. So they are
4277 not known to be zero. */
4278 if (GET_MODE_PRECISION (GET_MODE (x))
4279 > GET_MODE_PRECISION (inner_mode))
4280 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4281 & ~GET_MODE_MASK (inner_mode));
4282 }
4283 }
4284 break;
4285
4286 case ASHIFTRT:
4287 case LSHIFTRT:
4288 case ASHIFT:
4289 case ROTATE:
4290 /* The nonzero bits are in two classes: any bits within MODE
4291 that aren't in GET_MODE (x) are always significant. The rest of the
4292 nonzero bits are those that are significant in the operand of
4293 the shift when shifted the appropriate number of bits. This
4294 shows that high-order bits are cleared by the right shift and
4295 low-order bits by left shifts. */
4296 if (CONST_INT_P (XEXP (x, 1))
4297 && INTVAL (XEXP (x, 1)) >= 0
4298 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4299 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4300 {
4301 enum machine_mode inner_mode = GET_MODE (x);
4302 unsigned int width = GET_MODE_PRECISION (inner_mode);
4303 int count = INTVAL (XEXP (x, 1));
4304 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4305 unsigned HOST_WIDE_INT op_nonzero
4306 = cached_nonzero_bits (XEXP (x, 0), mode,
4307 known_x, known_mode, known_ret);
4308 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4309 unsigned HOST_WIDE_INT outer = 0;
4310
4311 if (mode_width > width)
4312 outer = (op_nonzero & nonzero & ~mode_mask);
4313
4314 if (code == LSHIFTRT)
4315 inner >>= count;
4316 else if (code == ASHIFTRT)
4317 {
4318 inner >>= count;
4319
4320 /* If the sign bit may have been nonzero before the shift, we
4321 need to mark all the places it could have been copied to
4322 by the shift as possibly nonzero. */
4323 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4324 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4325 << (width - count);
4326 }
4327 else if (code == ASHIFT)
4328 inner <<= count;
4329 else
4330 inner = ((inner << (count % width)
4331 | (inner >> (width - (count % width)))) & mode_mask);
4332
4333 nonzero &= (outer | inner);
4334 }
4335 break;
4336
4337 case FFS:
4338 case POPCOUNT:
4339 /* This is at most the number of bits in the mode. */
4340 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4341 break;
4342
4343 case CLZ:
4344 /* If CLZ has a known value at zero, then the nonzero bits are
4345 that value, plus the number of bits in the mode minus one. */
4346 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4347 nonzero
4348 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4349 else
4350 nonzero = -1;
4351 break;
4352
4353 case CTZ:
4354 /* If CTZ has a known value at zero, then the nonzero bits are
4355 that value, plus the number of bits in the mode minus one. */
4356 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4357 nonzero
4358 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4359 else
4360 nonzero = -1;
4361 break;
4362
4363 case CLRSB:
4364 /* This is at most the number of bits in the mode minus 1. */
4365 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4366 break;
4367
4368 case PARITY:
4369 nonzero = 1;
4370 break;
4371
4372 case IF_THEN_ELSE:
4373 {
4374 unsigned HOST_WIDE_INT nonzero_true
4375 = cached_nonzero_bits (XEXP (x, 1), mode,
4376 known_x, known_mode, known_ret);
4377
4378 /* Don't call nonzero_bits for the second time if it cannot change
4379 anything. */
4380 if ((nonzero & nonzero_true) != nonzero)
4381 nonzero &= nonzero_true
4382 | cached_nonzero_bits (XEXP (x, 2), mode,
4383 known_x, known_mode, known_ret);
4384 }
4385 break;
4386
4387 default:
4388 break;
4389 }
4390
4391 return nonzero;
4392 }
4393
4394 /* See the macro definition above. */
4395 #undef cached_num_sign_bit_copies
4396
4397 \f
4398 /* The function cached_num_sign_bit_copies is a wrapper around
4399 num_sign_bit_copies1. It avoids exponential behavior in
4400 num_sign_bit_copies1 when X has identical subexpressions on the
4401 first or the second level. */
4402
4403 static unsigned int
4404 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4405 enum machine_mode known_mode,
4406 unsigned int known_ret)
4407 {
4408 if (x == known_x && mode == known_mode)
4409 return known_ret;
4410
4411 /* Try to find identical subexpressions. If found call
4412 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4413 the precomputed value for the subexpression as KNOWN_RET. */
4414
4415 if (ARITHMETIC_P (x))
4416 {
4417 rtx x0 = XEXP (x, 0);
4418 rtx x1 = XEXP (x, 1);
4419
4420 /* Check the first level. */
4421 if (x0 == x1)
4422 return
4423 num_sign_bit_copies1 (x, mode, x0, mode,
4424 cached_num_sign_bit_copies (x0, mode, known_x,
4425 known_mode,
4426 known_ret));
4427
4428 /* Check the second level. */
4429 if (ARITHMETIC_P (x0)
4430 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4431 return
4432 num_sign_bit_copies1 (x, mode, x1, mode,
4433 cached_num_sign_bit_copies (x1, mode, known_x,
4434 known_mode,
4435 known_ret));
4436
4437 if (ARITHMETIC_P (x1)
4438 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4439 return
4440 num_sign_bit_copies1 (x, mode, x0, mode,
4441 cached_num_sign_bit_copies (x0, mode, known_x,
4442 known_mode,
4443 known_ret));
4444 }
4445
4446 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4447 }
4448
4449 /* Return the number of bits at the high-order end of X that are known to
4450 be equal to the sign bit. X will be used in mode MODE; if MODE is
4451 VOIDmode, X will be used in its own mode. The returned value will always
4452 be between 1 and the number of bits in MODE. */
4453
4454 static unsigned int
4455 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4456 enum machine_mode known_mode,
4457 unsigned int known_ret)
4458 {
4459 enum rtx_code code = GET_CODE (x);
4460 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4461 int num0, num1, result;
4462 unsigned HOST_WIDE_INT nonzero;
4463
4464 /* If we weren't given a mode, use the mode of X. If the mode is still
4465 VOIDmode, we don't know anything. Likewise if one of the modes is
4466 floating-point. */
4467
4468 if (mode == VOIDmode)
4469 mode = GET_MODE (x);
4470
4471 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4472 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4473 return 1;
4474
4475 /* For a smaller object, just ignore the high bits. */
4476 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4477 {
4478 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4479 known_x, known_mode, known_ret);
4480 return MAX (1,
4481 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4482 }
4483
4484 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4485 {
4486 #ifndef WORD_REGISTER_OPERATIONS
4487 /* If this machine does not do all register operations on the entire
4488 register and MODE is wider than the mode of X, we can say nothing
4489 at all about the high-order bits. */
4490 return 1;
4491 #else
4492 /* Likewise on machines that do, if the mode of the object is smaller
4493 than a word and loads of that size don't sign extend, we can say
4494 nothing about the high order bits. */
4495 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4496 #ifdef LOAD_EXTEND_OP
4497 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4498 #endif
4499 )
4500 return 1;
4501 #endif
4502 }
4503
4504 switch (code)
4505 {
4506 case REG:
4507
4508 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4509 /* If pointers extend signed and this is a pointer in Pmode, say that
4510 all the bits above ptr_mode are known to be sign bit copies. */
4511 /* As we do not know which address space the pointer is referring to,
4512 we can do this only if the target does not support different pointer
4513 or address modes depending on the address space. */
4514 if (target_default_pointer_address_modes_p ()
4515 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4516 && mode == Pmode && REG_POINTER (x))
4517 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4518 #endif
4519
4520 {
4521 unsigned int copies_for_hook = 1, copies = 1;
4522 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4523 known_mode, known_ret,
4524 &copies_for_hook);
4525
4526 if (new_rtx)
4527 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4528 known_mode, known_ret);
4529
4530 if (copies > 1 || copies_for_hook > 1)
4531 return MAX (copies, copies_for_hook);
4532
4533 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4534 }
4535 break;
4536
4537 case MEM:
4538 #ifdef LOAD_EXTEND_OP
4539 /* Some RISC machines sign-extend all loads of smaller than a word. */
4540 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4541 return MAX (1, ((int) bitwidth
4542 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4543 #endif
4544 break;
4545
4546 case CONST_INT:
4547 /* If the constant is negative, take its 1's complement and remask.
4548 Then see how many zero bits we have. */
4549 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4550 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4551 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4552 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4553
4554 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4555
4556 case SUBREG:
4557 /* If this is a SUBREG for a promoted object that is sign-extended
4558 and we are looking at it in a wider mode, we know that at least the
4559 high-order bits are known to be sign bit copies. */
4560
4561 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4562 {
4563 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4564 known_x, known_mode, known_ret);
4565 return MAX ((int) bitwidth
4566 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4567 num0);
4568 }
4569
4570 /* For a smaller object, just ignore the high bits. */
4571 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4572 {
4573 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4574 known_x, known_mode, known_ret);
4575 return MAX (1, (num0
4576 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4577 - bitwidth)));
4578 }
4579
4580 #ifdef WORD_REGISTER_OPERATIONS
4581 #ifdef LOAD_EXTEND_OP
4582 /* For paradoxical SUBREGs on machines where all register operations
4583 affect the entire register, just look inside. Note that we are
4584 passing MODE to the recursive call, so the number of sign bit copies
4585 will remain relative to that mode, not the inner mode. */
4586
4587 /* This works only if loads sign extend. Otherwise, if we get a
4588 reload for the inner part, it may be loaded from the stack, and
4589 then we lose all sign bit copies that existed before the store
4590 to the stack. */
4591
4592 if (paradoxical_subreg_p (x)
4593 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4594 && MEM_P (SUBREG_REG (x)))
4595 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4596 known_x, known_mode, known_ret);
4597 #endif
4598 #endif
4599 break;
4600
4601 case SIGN_EXTRACT:
4602 if (CONST_INT_P (XEXP (x, 1)))
4603 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4604 break;
4605
4606 case SIGN_EXTEND:
4607 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4608 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4609 known_x, known_mode, known_ret));
4610
4611 case TRUNCATE:
4612 /* For a smaller object, just ignore the high bits. */
4613 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4614 known_x, known_mode, known_ret);
4615 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4616 - bitwidth)));
4617
4618 case NOT:
4619 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4620 known_x, known_mode, known_ret);
4621
4622 case ROTATE: case ROTATERT:
4623 /* If we are rotating left by a number of bits less than the number
4624 of sign bit copies, we can just subtract that amount from the
4625 number. */
4626 if (CONST_INT_P (XEXP (x, 1))
4627 && INTVAL (XEXP (x, 1)) >= 0
4628 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4629 {
4630 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4631 known_x, known_mode, known_ret);
4632 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4633 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4634 }
4635 break;
4636
4637 case NEG:
4638 /* In general, this subtracts one sign bit copy. But if the value
4639 is known to be positive, the number of sign bit copies is the
4640 same as that of the input. Finally, if the input has just one bit
4641 that might be nonzero, all the bits are copies of the sign bit. */
4642 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4643 known_x, known_mode, known_ret);
4644 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4645 return num0 > 1 ? num0 - 1 : 1;
4646
4647 nonzero = nonzero_bits (XEXP (x, 0), mode);
4648 if (nonzero == 1)
4649 return bitwidth;
4650
4651 if (num0 > 1
4652 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4653 num0--;
4654
4655 return num0;
4656
4657 case IOR: case AND: case XOR:
4658 case SMIN: case SMAX: case UMIN: case UMAX:
4659 /* Logical operations will preserve the number of sign-bit copies.
4660 MIN and MAX operations always return one of the operands. */
4661 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4662 known_x, known_mode, known_ret);
4663 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4664 known_x, known_mode, known_ret);
4665
4666 /* If num1 is clearing some of the top bits then regardless of
4667 the other term, we are guaranteed to have at least that many
4668 high-order zero bits. */
4669 if (code == AND
4670 && num1 > 1
4671 && bitwidth <= HOST_BITS_PER_WIDE_INT
4672 && CONST_INT_P (XEXP (x, 1))
4673 && (UINTVAL (XEXP (x, 1))
4674 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4675 return num1;
4676
4677 /* Similarly for IOR when setting high-order bits. */
4678 if (code == IOR
4679 && num1 > 1
4680 && bitwidth <= HOST_BITS_PER_WIDE_INT
4681 && CONST_INT_P (XEXP (x, 1))
4682 && (UINTVAL (XEXP (x, 1))
4683 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4684 return num1;
4685
4686 return MIN (num0, num1);
4687
4688 case PLUS: case MINUS:
4689 /* For addition and subtraction, we can have a 1-bit carry. However,
4690 if we are subtracting 1 from a positive number, there will not
4691 be such a carry. Furthermore, if the positive number is known to
4692 be 0 or 1, we know the result is either -1 or 0. */
4693
4694 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4695 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4696 {
4697 nonzero = nonzero_bits (XEXP (x, 0), mode);
4698 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4699 return (nonzero == 1 || nonzero == 0 ? bitwidth
4700 : bitwidth - floor_log2 (nonzero) - 1);
4701 }
4702
4703 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4704 known_x, known_mode, known_ret);
4705 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4706 known_x, known_mode, known_ret);
4707 result = MAX (1, MIN (num0, num1) - 1);
4708
4709 return result;
4710
4711 case MULT:
4712 /* The number of bits of the product is the sum of the number of
4713 bits of both terms. However, unless one of the terms if known
4714 to be positive, we must allow for an additional bit since negating
4715 a negative number can remove one sign bit copy. */
4716
4717 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4718 known_x, known_mode, known_ret);
4719 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4720 known_x, known_mode, known_ret);
4721
4722 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4723 if (result > 0
4724 && (bitwidth > HOST_BITS_PER_WIDE_INT
4725 || (((nonzero_bits (XEXP (x, 0), mode)
4726 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4727 && ((nonzero_bits (XEXP (x, 1), mode)
4728 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4729 != 0))))
4730 result--;
4731
4732 return MAX (1, result);
4733
4734 case UDIV:
4735 /* The result must be <= the first operand. If the first operand
4736 has the high bit set, we know nothing about the number of sign
4737 bit copies. */
4738 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4739 return 1;
4740 else if ((nonzero_bits (XEXP (x, 0), mode)
4741 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4742 return 1;
4743 else
4744 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4745 known_x, known_mode, known_ret);
4746
4747 case UMOD:
4748 /* The result must be <= the second operand. If the second operand
4749 has (or just might have) the high bit set, we know nothing about
4750 the number of sign bit copies. */
4751 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4752 return 1;
4753 else if ((nonzero_bits (XEXP (x, 1), mode)
4754 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4755 return 1;
4756 else
4757 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4758 known_x, known_mode, known_ret);
4759
4760 case DIV:
4761 /* Similar to unsigned division, except that we have to worry about
4762 the case where the divisor is negative, in which case we have
4763 to add 1. */
4764 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4765 known_x, known_mode, known_ret);
4766 if (result > 1
4767 && (bitwidth > HOST_BITS_PER_WIDE_INT
4768 || (nonzero_bits (XEXP (x, 1), mode)
4769 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4770 result--;
4771
4772 return result;
4773
4774 case MOD:
4775 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4776 known_x, known_mode, known_ret);
4777 if (result > 1
4778 && (bitwidth > HOST_BITS_PER_WIDE_INT
4779 || (nonzero_bits (XEXP (x, 1), mode)
4780 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4781 result--;
4782
4783 return result;
4784
4785 case ASHIFTRT:
4786 /* Shifts by a constant add to the number of bits equal to the
4787 sign bit. */
4788 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4789 known_x, known_mode, known_ret);
4790 if (CONST_INT_P (XEXP (x, 1))
4791 && INTVAL (XEXP (x, 1)) > 0
4792 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4793 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4794
4795 return num0;
4796
4797 case ASHIFT:
4798 /* Left shifts destroy copies. */
4799 if (!CONST_INT_P (XEXP (x, 1))
4800 || INTVAL (XEXP (x, 1)) < 0
4801 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4802 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4803 return 1;
4804
4805 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4806 known_x, known_mode, known_ret);
4807 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4808
4809 case IF_THEN_ELSE:
4810 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4811 known_x, known_mode, known_ret);
4812 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4813 known_x, known_mode, known_ret);
4814 return MIN (num0, num1);
4815
4816 case EQ: case NE: case GE: case GT: case LE: case LT:
4817 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4818 case GEU: case GTU: case LEU: case LTU:
4819 case UNORDERED: case ORDERED:
4820 /* If the constant is negative, take its 1's complement and remask.
4821 Then see how many zero bits we have. */
4822 nonzero = STORE_FLAG_VALUE;
4823 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4824 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4825 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4826
4827 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4828
4829 default:
4830 break;
4831 }
4832
4833 /* If we haven't been able to figure it out by one of the above rules,
4834 see if some of the high-order bits are known to be zero. If so,
4835 count those bits and return one less than that amount. If we can't
4836 safely compute the mask for this mode, always return BITWIDTH. */
4837
4838 bitwidth = GET_MODE_PRECISION (mode);
4839 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4840 return 1;
4841
4842 nonzero = nonzero_bits (x, mode);
4843 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4844 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4845 }
4846
4847 /* Calculate the rtx_cost of a single instruction. A return value of
4848 zero indicates an instruction pattern without a known cost. */
4849
4850 int
4851 insn_rtx_cost (rtx pat, bool speed)
4852 {
4853 int i, cost;
4854 rtx set;
4855
4856 /* Extract the single set rtx from the instruction pattern.
4857 We can't use single_set since we only have the pattern. */
4858 if (GET_CODE (pat) == SET)
4859 set = pat;
4860 else if (GET_CODE (pat) == PARALLEL)
4861 {
4862 set = NULL_RTX;
4863 for (i = 0; i < XVECLEN (pat, 0); i++)
4864 {
4865 rtx x = XVECEXP (pat, 0, i);
4866 if (GET_CODE (x) == SET)
4867 {
4868 if (set)
4869 return 0;
4870 set = x;
4871 }
4872 }
4873 if (!set)
4874 return 0;
4875 }
4876 else
4877 return 0;
4878
4879 cost = set_src_cost (SET_SRC (set), speed);
4880 return cost > 0 ? cost : COSTS_N_INSNS (1);
4881 }
4882
4883 /* Given an insn INSN and condition COND, return the condition in a
4884 canonical form to simplify testing by callers. Specifically:
4885
4886 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4887 (2) Both operands will be machine operands; (cc0) will have been replaced.
4888 (3) If an operand is a constant, it will be the second operand.
4889 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4890 for GE, GEU, and LEU.
4891
4892 If the condition cannot be understood, or is an inequality floating-point
4893 comparison which needs to be reversed, 0 will be returned.
4894
4895 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4896
4897 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4898 insn used in locating the condition was found. If a replacement test
4899 of the condition is desired, it should be placed in front of that
4900 insn and we will be sure that the inputs are still valid.
4901
4902 If WANT_REG is nonzero, we wish the condition to be relative to that
4903 register, if possible. Therefore, do not canonicalize the condition
4904 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4905 to be a compare to a CC mode register.
4906
4907 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4908 and at INSN. */
4909
4910 rtx
4911 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4912 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4913 {
4914 enum rtx_code code;
4915 rtx prev = insn;
4916 const_rtx set;
4917 rtx tem;
4918 rtx op0, op1;
4919 int reverse_code = 0;
4920 enum machine_mode mode;
4921 basic_block bb = BLOCK_FOR_INSN (insn);
4922
4923 code = GET_CODE (cond);
4924 mode = GET_MODE (cond);
4925 op0 = XEXP (cond, 0);
4926 op1 = XEXP (cond, 1);
4927
4928 if (reverse)
4929 code = reversed_comparison_code (cond, insn);
4930 if (code == UNKNOWN)
4931 return 0;
4932
4933 if (earliest)
4934 *earliest = insn;
4935
4936 /* If we are comparing a register with zero, see if the register is set
4937 in the previous insn to a COMPARE or a comparison operation. Perform
4938 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4939 in cse.c */
4940
4941 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4942 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4943 && op1 == CONST0_RTX (GET_MODE (op0))
4944 && op0 != want_reg)
4945 {
4946 /* Set nonzero when we find something of interest. */
4947 rtx x = 0;
4948
4949 #ifdef HAVE_cc0
4950 /* If comparison with cc0, import actual comparison from compare
4951 insn. */
4952 if (op0 == cc0_rtx)
4953 {
4954 if ((prev = prev_nonnote_insn (prev)) == 0
4955 || !NONJUMP_INSN_P (prev)
4956 || (set = single_set (prev)) == 0
4957 || SET_DEST (set) != cc0_rtx)
4958 return 0;
4959
4960 op0 = SET_SRC (set);
4961 op1 = CONST0_RTX (GET_MODE (op0));
4962 if (earliest)
4963 *earliest = prev;
4964 }
4965 #endif
4966
4967 /* If this is a COMPARE, pick up the two things being compared. */
4968 if (GET_CODE (op0) == COMPARE)
4969 {
4970 op1 = XEXP (op0, 1);
4971 op0 = XEXP (op0, 0);
4972 continue;
4973 }
4974 else if (!REG_P (op0))
4975 break;
4976
4977 /* Go back to the previous insn. Stop if it is not an INSN. We also
4978 stop if it isn't a single set or if it has a REG_INC note because
4979 we don't want to bother dealing with it. */
4980
4981 prev = prev_nonnote_nondebug_insn (prev);
4982
4983 if (prev == 0
4984 || !NONJUMP_INSN_P (prev)
4985 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4986 /* In cfglayout mode, there do not have to be labels at the
4987 beginning of a block, or jumps at the end, so the previous
4988 conditions would not stop us when we reach bb boundary. */
4989 || BLOCK_FOR_INSN (prev) != bb)
4990 break;
4991
4992 set = set_of (op0, prev);
4993
4994 if (set
4995 && (GET_CODE (set) != SET
4996 || !rtx_equal_p (SET_DEST (set), op0)))
4997 break;
4998
4999 /* If this is setting OP0, get what it sets it to if it looks
5000 relevant. */
5001 if (set)
5002 {
5003 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5004 #ifdef FLOAT_STORE_FLAG_VALUE
5005 REAL_VALUE_TYPE fsfv;
5006 #endif
5007
5008 /* ??? We may not combine comparisons done in a CCmode with
5009 comparisons not done in a CCmode. This is to aid targets
5010 like Alpha that have an IEEE compliant EQ instruction, and
5011 a non-IEEE compliant BEQ instruction. The use of CCmode is
5012 actually artificial, simply to prevent the combination, but
5013 should not affect other platforms.
5014
5015 However, we must allow VOIDmode comparisons to match either
5016 CCmode or non-CCmode comparison, because some ports have
5017 modeless comparisons inside branch patterns.
5018
5019 ??? This mode check should perhaps look more like the mode check
5020 in simplify_comparison in combine. */
5021
5022 if ((GET_CODE (SET_SRC (set)) == COMPARE
5023 || (((code == NE
5024 || (code == LT
5025 && val_signbit_known_set_p (inner_mode,
5026 STORE_FLAG_VALUE))
5027 #ifdef FLOAT_STORE_FLAG_VALUE
5028 || (code == LT
5029 && SCALAR_FLOAT_MODE_P (inner_mode)
5030 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5031 REAL_VALUE_NEGATIVE (fsfv)))
5032 #endif
5033 ))
5034 && COMPARISON_P (SET_SRC (set))))
5035 && (((GET_MODE_CLASS (mode) == MODE_CC)
5036 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5037 || mode == VOIDmode || inner_mode == VOIDmode))
5038 x = SET_SRC (set);
5039 else if (((code == EQ
5040 || (code == GE
5041 && val_signbit_known_set_p (inner_mode,
5042 STORE_FLAG_VALUE))
5043 #ifdef FLOAT_STORE_FLAG_VALUE
5044 || (code == GE
5045 && SCALAR_FLOAT_MODE_P (inner_mode)
5046 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5047 REAL_VALUE_NEGATIVE (fsfv)))
5048 #endif
5049 ))
5050 && COMPARISON_P (SET_SRC (set))
5051 && (((GET_MODE_CLASS (mode) == MODE_CC)
5052 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5053 || mode == VOIDmode || inner_mode == VOIDmode))
5054
5055 {
5056 reverse_code = 1;
5057 x = SET_SRC (set);
5058 }
5059 else
5060 break;
5061 }
5062
5063 else if (reg_set_p (op0, prev))
5064 /* If this sets OP0, but not directly, we have to give up. */
5065 break;
5066
5067 if (x)
5068 {
5069 /* If the caller is expecting the condition to be valid at INSN,
5070 make sure X doesn't change before INSN. */
5071 if (valid_at_insn_p)
5072 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5073 break;
5074 if (COMPARISON_P (x))
5075 code = GET_CODE (x);
5076 if (reverse_code)
5077 {
5078 code = reversed_comparison_code (x, prev);
5079 if (code == UNKNOWN)
5080 return 0;
5081 reverse_code = 0;
5082 }
5083
5084 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5085 if (earliest)
5086 *earliest = prev;
5087 }
5088 }
5089
5090 /* If constant is first, put it last. */
5091 if (CONSTANT_P (op0))
5092 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5093
5094 /* If OP0 is the result of a comparison, we weren't able to find what
5095 was really being compared, so fail. */
5096 if (!allow_cc_mode
5097 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5098 return 0;
5099
5100 /* Canonicalize any ordered comparison with integers involving equality
5101 if we can do computations in the relevant mode and we do not
5102 overflow. */
5103
5104 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5105 && CONST_INT_P (op1)
5106 && GET_MODE (op0) != VOIDmode
5107 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5108 {
5109 HOST_WIDE_INT const_val = INTVAL (op1);
5110 unsigned HOST_WIDE_INT uconst_val = const_val;
5111 unsigned HOST_WIDE_INT max_val
5112 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5113
5114 switch (code)
5115 {
5116 case LE:
5117 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5118 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5119 break;
5120
5121 /* When cross-compiling, const_val might be sign-extended from
5122 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5123 case GE:
5124 if ((const_val & max_val)
5125 != ((unsigned HOST_WIDE_INT) 1
5126 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5127 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5128 break;
5129
5130 case LEU:
5131 if (uconst_val < max_val)
5132 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5133 break;
5134
5135 case GEU:
5136 if (uconst_val != 0)
5137 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5138 break;
5139
5140 default:
5141 break;
5142 }
5143 }
5144
5145 /* Never return CC0; return zero instead. */
5146 if (CC0_P (op0))
5147 return 0;
5148
5149 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5150 }
5151
5152 /* Given a jump insn JUMP, return the condition that will cause it to branch
5153 to its JUMP_LABEL. If the condition cannot be understood, or is an
5154 inequality floating-point comparison which needs to be reversed, 0 will
5155 be returned.
5156
5157 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5158 insn used in locating the condition was found. If a replacement test
5159 of the condition is desired, it should be placed in front of that
5160 insn and we will be sure that the inputs are still valid. If EARLIEST
5161 is null, the returned condition will be valid at INSN.
5162
5163 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5164 compare CC mode register.
5165
5166 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5167
5168 rtx
5169 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5170 {
5171 rtx cond;
5172 int reverse;
5173 rtx set;
5174
5175 /* If this is not a standard conditional jump, we can't parse it. */
5176 if (!JUMP_P (jump)
5177 || ! any_condjump_p (jump))
5178 return 0;
5179 set = pc_set (jump);
5180
5181 cond = XEXP (SET_SRC (set), 0);
5182
5183 /* If this branches to JUMP_LABEL when the condition is false, reverse
5184 the condition. */
5185 reverse
5186 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5187 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5188
5189 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5190 allow_cc_mode, valid_at_insn_p);
5191 }
5192
5193 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5194 TARGET_MODE_REP_EXTENDED.
5195
5196 Note that we assume that the property of
5197 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5198 narrower than mode B. I.e., if A is a mode narrower than B then in
5199 order to be able to operate on it in mode B, mode A needs to
5200 satisfy the requirements set by the representation of mode B. */
5201
5202 static void
5203 init_num_sign_bit_copies_in_rep (void)
5204 {
5205 enum machine_mode mode, in_mode;
5206
5207 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5208 in_mode = GET_MODE_WIDER_MODE (mode))
5209 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5210 mode = GET_MODE_WIDER_MODE (mode))
5211 {
5212 enum machine_mode i;
5213
5214 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5215 extends to the next widest mode. */
5216 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5217 || GET_MODE_WIDER_MODE (mode) == in_mode);
5218
5219 /* We are in in_mode. Count how many bits outside of mode
5220 have to be copies of the sign-bit. */
5221 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5222 {
5223 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5224
5225 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5226 /* We can only check sign-bit copies starting from the
5227 top-bit. In order to be able to check the bits we
5228 have already seen we pretend that subsequent bits
5229 have to be sign-bit copies too. */
5230 || num_sign_bit_copies_in_rep [in_mode][mode])
5231 num_sign_bit_copies_in_rep [in_mode][mode]
5232 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5233 }
5234 }
5235 }
5236
5237 /* Suppose that truncation from the machine mode of X to MODE is not a
5238 no-op. See if there is anything special about X so that we can
5239 assume it already contains a truncated value of MODE. */
5240
5241 bool
5242 truncated_to_mode (enum machine_mode mode, const_rtx x)
5243 {
5244 /* This register has already been used in MODE without explicit
5245 truncation. */
5246 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5247 return true;
5248
5249 /* See if we already satisfy the requirements of MODE. If yes we
5250 can just switch to MODE. */
5251 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5252 && (num_sign_bit_copies (x, GET_MODE (x))
5253 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5254 return true;
5255
5256 return false;
5257 }
5258 \f
5259 /* Initialize non_rtx_starting_operands, which is used to speed up
5260 for_each_rtx. */
5261 void
5262 init_rtlanal (void)
5263 {
5264 int i;
5265 for (i = 0; i < NUM_RTX_CODE; i++)
5266 {
5267 const char *format = GET_RTX_FORMAT (i);
5268 const char *first = strpbrk (format, "eEV");
5269 non_rtx_starting_operands[i] = first ? first - format : -1;
5270 }
5271
5272 init_num_sign_bit_copies_in_rep ();
5273 }
5274 \f
5275 /* Check whether this is a constant pool constant. */
5276 bool
5277 constant_pool_constant_p (rtx x)
5278 {
5279 x = avoid_constant_pool_reference (x);
5280 return GET_CODE (x) == CONST_DOUBLE;
5281 }
5282 \f
5283 /* If M is a bitmask that selects a field of low-order bits within an item but
5284 not the entire word, return the length of the field. Return -1 otherwise.
5285 M is used in machine mode MODE. */
5286
5287 int
5288 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5289 {
5290 if (mode != VOIDmode)
5291 {
5292 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5293 return -1;
5294 m &= GET_MODE_MASK (mode);
5295 }
5296
5297 return exact_log2 (m + 1);
5298 }
5299
5300 /* Return the mode of MEM's address. */
5301
5302 enum machine_mode
5303 get_address_mode (rtx mem)
5304 {
5305 enum machine_mode mode;
5306
5307 gcc_assert (MEM_P (mem));
5308 mode = GET_MODE (XEXP (mem, 0));
5309 if (mode != VOIDmode)
5310 return mode;
5311 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5312 }
5313 \f
5314 /* Split up a CONST_DOUBLE or integer constant rtx
5315 into two rtx's for single words,
5316 storing in *FIRST the word that comes first in memory in the target
5317 and in *SECOND the other. */
5318
5319 void
5320 split_double (rtx value, rtx *first, rtx *second)
5321 {
5322 if (CONST_INT_P (value))
5323 {
5324 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5325 {
5326 /* In this case the CONST_INT holds both target words.
5327 Extract the bits from it into two word-sized pieces.
5328 Sign extend each half to HOST_WIDE_INT. */
5329 unsigned HOST_WIDE_INT low, high;
5330 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5331 unsigned bits_per_word = BITS_PER_WORD;
5332
5333 /* Set sign_bit to the most significant bit of a word. */
5334 sign_bit = 1;
5335 sign_bit <<= bits_per_word - 1;
5336
5337 /* Set mask so that all bits of the word are set. We could
5338 have used 1 << BITS_PER_WORD instead of basing the
5339 calculation on sign_bit. However, on machines where
5340 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5341 compiler warning, even though the code would never be
5342 executed. */
5343 mask = sign_bit << 1;
5344 mask--;
5345
5346 /* Set sign_extend as any remaining bits. */
5347 sign_extend = ~mask;
5348
5349 /* Pick the lower word and sign-extend it. */
5350 low = INTVAL (value);
5351 low &= mask;
5352 if (low & sign_bit)
5353 low |= sign_extend;
5354
5355 /* Pick the higher word, shifted to the least significant
5356 bits, and sign-extend it. */
5357 high = INTVAL (value);
5358 high >>= bits_per_word - 1;
5359 high >>= 1;
5360 high &= mask;
5361 if (high & sign_bit)
5362 high |= sign_extend;
5363
5364 /* Store the words in the target machine order. */
5365 if (WORDS_BIG_ENDIAN)
5366 {
5367 *first = GEN_INT (high);
5368 *second = GEN_INT (low);
5369 }
5370 else
5371 {
5372 *first = GEN_INT (low);
5373 *second = GEN_INT (high);
5374 }
5375 }
5376 else
5377 {
5378 /* The rule for using CONST_INT for a wider mode
5379 is that we regard the value as signed.
5380 So sign-extend it. */
5381 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5382 if (WORDS_BIG_ENDIAN)
5383 {
5384 *first = high;
5385 *second = value;
5386 }
5387 else
5388 {
5389 *first = value;
5390 *second = high;
5391 }
5392 }
5393 }
5394 else if (GET_CODE (value) != CONST_DOUBLE)
5395 {
5396 if (WORDS_BIG_ENDIAN)
5397 {
5398 *first = const0_rtx;
5399 *second = value;
5400 }
5401 else
5402 {
5403 *first = value;
5404 *second = const0_rtx;
5405 }
5406 }
5407 else if (GET_MODE (value) == VOIDmode
5408 /* This is the old way we did CONST_DOUBLE integers. */
5409 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5410 {
5411 /* In an integer, the words are defined as most and least significant.
5412 So order them by the target's convention. */
5413 if (WORDS_BIG_ENDIAN)
5414 {
5415 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5416 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5417 }
5418 else
5419 {
5420 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5421 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5422 }
5423 }
5424 else
5425 {
5426 REAL_VALUE_TYPE r;
5427 long l[2];
5428 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5429
5430 /* Note, this converts the REAL_VALUE_TYPE to the target's
5431 format, splits up the floating point double and outputs
5432 exactly 32 bits of it into each of l[0] and l[1] --
5433 not necessarily BITS_PER_WORD bits. */
5434 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5435
5436 /* If 32 bits is an entire word for the target, but not for the host,
5437 then sign-extend on the host so that the number will look the same
5438 way on the host that it would on the target. See for instance
5439 simplify_unary_operation. The #if is needed to avoid compiler
5440 warnings. */
5441
5442 #if HOST_BITS_PER_LONG > 32
5443 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5444 {
5445 if (l[0] & ((long) 1 << 31))
5446 l[0] |= ((long) (-1) << 32);
5447 if (l[1] & ((long) 1 << 31))
5448 l[1] |= ((long) (-1) << 32);
5449 }
5450 #endif
5451
5452 *first = GEN_INT (l[0]);
5453 *second = GEN_INT (l[1]);
5454 }
5455 }
5456