tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for C-Compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40
41 /* Forward declarations */
42 static int global_reg_mentioned_p_1 (rtx *, void *);
43 static void set_of_1 (rtx, rtx, void *);
44 static void insn_dependent_p_1 (rtx, rtx, void *);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
48 static bool hoist_test_store (rtx, rtx, regset);
49 static void hoist_update_store (rtx, rtx *, rtx, rtx);
50
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
52 rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
55 enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
61 enum machine_mode, unsigned int);
62
63 /* Bit flags that specify the machine subtype we are compiling for.
64 Bits are tested using macros TARGET_... defined in the tm.h file
65 and set by `-m...' switches. Must be defined in rtlanal.c. */
66
67 int target_flags;
68 \f
69 /* Return 1 if the value of X is unstable
70 (would be different at a different point in the program).
71 The frame pointer, arg pointer, etc. are considered stable
72 (within one function) and so is anything marked `unchanging'. */
73
74 int
75 rtx_unstable_p (rtx x)
76 {
77 RTX_CODE code = GET_CODE (x);
78 int i;
79 const char *fmt;
80
81 switch (code)
82 {
83 case MEM:
84 return ! RTX_UNCHANGING_P (x) || rtx_unstable_p (XEXP (x, 0));
85
86 case QUEUED:
87 return 1;
88
89 case ADDRESSOF:
90 case CONST:
91 case CONST_INT:
92 case CONST_DOUBLE:
93 case CONST_VECTOR:
94 case SYMBOL_REF:
95 case LABEL_REF:
96 return 0;
97
98 case REG:
99 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
100 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
101 /* The arg pointer varies if it is not a fixed register. */
102 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
103 || RTX_UNCHANGING_P (x))
104 return 0;
105 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
106 /* ??? When call-clobbered, the value is stable modulo the restore
107 that must happen after a call. This currently screws up local-alloc
108 into believing that the restore is not needed. */
109 if (x == pic_offset_table_rtx)
110 return 0;
111 #endif
112 return 1;
113
114 case ASM_OPERANDS:
115 if (MEM_VOLATILE_P (x))
116 return 1;
117
118 /* Fall through. */
119
120 default:
121 break;
122 }
123
124 fmt = GET_RTX_FORMAT (code);
125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
126 if (fmt[i] == 'e')
127 {
128 if (rtx_unstable_p (XEXP (x, i)))
129 return 1;
130 }
131 else if (fmt[i] == 'E')
132 {
133 int j;
134 for (j = 0; j < XVECLEN (x, i); j++)
135 if (rtx_unstable_p (XVECEXP (x, i, j)))
136 return 1;
137 }
138
139 return 0;
140 }
141
142 /* Return 1 if X has a value that can vary even between two
143 executions of the program. 0 means X can be compared reliably
144 against certain constants or near-constants.
145 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
146 zero, we are slightly more conservative.
147 The frame pointer and the arg pointer are considered constant. */
148
149 int
150 rtx_varies_p (rtx x, int for_alias)
151 {
152 RTX_CODE code;
153 int i;
154 const char *fmt;
155
156 if (!x)
157 return 0;
158
159 code = GET_CODE (x);
160 switch (code)
161 {
162 case MEM:
163 return ! RTX_UNCHANGING_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
164
165 case QUEUED:
166 return 1;
167
168 case CONST:
169 case CONST_INT:
170 case CONST_DOUBLE:
171 case CONST_VECTOR:
172 case SYMBOL_REF:
173 case LABEL_REF:
174 return 0;
175
176 case ADDRESSOF:
177 /* This will resolve to some offset from the frame pointer. */
178 return 0;
179
180 case REG:
181 /* Note that we have to test for the actual rtx used for the frame
182 and arg pointers and not just the register number in case we have
183 eliminated the frame and/or arg pointer and are using it
184 for pseudos. */
185 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
186 /* The arg pointer varies if it is not a fixed register. */
187 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
188 return 0;
189 if (x == pic_offset_table_rtx
190 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && for_alias
196 #endif
197 )
198 return 0;
199 return 1;
200
201 case LO_SUM:
202 /* The operand 0 of a LO_SUM is considered constant
203 (in fact it is related specifically to operand 1)
204 during alias analysis. */
205 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
206 || rtx_varies_p (XEXP (x, 1), for_alias);
207
208 case ASM_OPERANDS:
209 if (MEM_VOLATILE_P (x))
210 return 1;
211
212 /* Fall through. */
213
214 default:
215 break;
216 }
217
218 fmt = GET_RTX_FORMAT (code);
219 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
220 if (fmt[i] == 'e')
221 {
222 if (rtx_varies_p (XEXP (x, i), for_alias))
223 return 1;
224 }
225 else if (fmt[i] == 'E')
226 {
227 int j;
228 for (j = 0; j < XVECLEN (x, i); j++)
229 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
230 return 1;
231 }
232
233 return 0;
234 }
235
236 /* Return 0 if the use of X as an address in a MEM can cause a trap. */
237
238 int
239 rtx_addr_can_trap_p (rtx x)
240 {
241 enum rtx_code code = GET_CODE (x);
242
243 switch (code)
244 {
245 case SYMBOL_REF:
246 return SYMBOL_REF_WEAK (x);
247
248 case LABEL_REF:
249 return 0;
250
251 case ADDRESSOF:
252 /* This will resolve to some offset from the frame pointer. */
253 return 0;
254
255 case REG:
256 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
257 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
258 || x == stack_pointer_rtx
259 /* The arg pointer varies if it is not a fixed register. */
260 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
261 return 0;
262 /* All of the virtual frame registers are stack references. */
263 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
264 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
265 return 0;
266 return 1;
267
268 case CONST:
269 return rtx_addr_can_trap_p (XEXP (x, 0));
270
271 case PLUS:
272 /* An address is assumed not to trap if it is an address that can't
273 trap plus a constant integer or it is the pic register plus a
274 constant. */
275 return ! ((! rtx_addr_can_trap_p (XEXP (x, 0))
276 && GET_CODE (XEXP (x, 1)) == CONST_INT)
277 || (XEXP (x, 0) == pic_offset_table_rtx
278 && CONSTANT_P (XEXP (x, 1))));
279
280 case LO_SUM:
281 case PRE_MODIFY:
282 return rtx_addr_can_trap_p (XEXP (x, 1));
283
284 case PRE_DEC:
285 case PRE_INC:
286 case POST_DEC:
287 case POST_INC:
288 case POST_MODIFY:
289 return rtx_addr_can_trap_p (XEXP (x, 0));
290
291 default:
292 break;
293 }
294
295 /* If it isn't one of the case above, it can cause a trap. */
296 return 1;
297 }
298
299 /* Return true if X is an address that is known to not be zero. */
300
301 bool
302 nonzero_address_p (rtx x)
303 {
304 enum rtx_code code = GET_CODE (x);
305
306 switch (code)
307 {
308 case SYMBOL_REF:
309 return !SYMBOL_REF_WEAK (x);
310
311 case LABEL_REF:
312 return true;
313
314 case ADDRESSOF:
315 /* This will resolve to some offset from the frame pointer. */
316 return true;
317
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
323 return true;
324 /* All of the virtual frame registers are stack references. */
325 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
326 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
327 return true;
328 return false;
329
330 case CONST:
331 return nonzero_address_p (XEXP (x, 0));
332
333 case PLUS:
334 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
335 {
336 /* Pointers aren't allowed to wrap. If we've got a register
337 that is known to be a pointer, and a positive offset, then
338 the composite can't be zero. */
339 if (INTVAL (XEXP (x, 1)) > 0
340 && REG_P (XEXP (x, 0))
341 && REG_POINTER (XEXP (x, 0)))
342 return true;
343
344 return nonzero_address_p (XEXP (x, 0));
345 }
346 /* Handle PIC references. */
347 else if (XEXP (x, 0) == pic_offset_table_rtx
348 && CONSTANT_P (XEXP (x, 1)))
349 return true;
350 return false;
351
352 case PRE_MODIFY:
353 /* Similar to the above; allow positive offsets. Further, since
354 auto-inc is only allowed in memories, the register must be a
355 pointer. */
356 if (GET_CODE (XEXP (x, 1)) == CONST_INT
357 && INTVAL (XEXP (x, 1)) > 0)
358 return true;
359 return nonzero_address_p (XEXP (x, 0));
360
361 case PRE_INC:
362 /* Similarly. Further, the offset is always positive. */
363 return true;
364
365 case PRE_DEC:
366 case POST_DEC:
367 case POST_INC:
368 case POST_MODIFY:
369 return nonzero_address_p (XEXP (x, 0));
370
371 case LO_SUM:
372 return nonzero_address_p (XEXP (x, 1));
373
374 default:
375 break;
376 }
377
378 /* If it isn't one of the case above, might be zero. */
379 return false;
380 }
381
382 /* Return 1 if X refers to a memory location whose address
383 cannot be compared reliably with constant addresses,
384 or if X refers to a BLKmode memory object.
385 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
386 zero, we are slightly more conservative. */
387
388 int
389 rtx_addr_varies_p (rtx x, int for_alias)
390 {
391 enum rtx_code code;
392 int i;
393 const char *fmt;
394
395 if (x == 0)
396 return 0;
397
398 code = GET_CODE (x);
399 if (code == MEM)
400 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
401
402 fmt = GET_RTX_FORMAT (code);
403 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
404 if (fmt[i] == 'e')
405 {
406 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
407 return 1;
408 }
409 else if (fmt[i] == 'E')
410 {
411 int j;
412 for (j = 0; j < XVECLEN (x, i); j++)
413 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
414 return 1;
415 }
416 return 0;
417 }
418 \f
419 /* Return the value of the integer term in X, if one is apparent;
420 otherwise return 0.
421 Only obvious integer terms are detected.
422 This is used in cse.c with the `related_value' field. */
423
424 HOST_WIDE_INT
425 get_integer_term (rtx x)
426 {
427 if (GET_CODE (x) == CONST)
428 x = XEXP (x, 0);
429
430 if (GET_CODE (x) == MINUS
431 && GET_CODE (XEXP (x, 1)) == CONST_INT)
432 return - INTVAL (XEXP (x, 1));
433 if (GET_CODE (x) == PLUS
434 && GET_CODE (XEXP (x, 1)) == CONST_INT)
435 return INTVAL (XEXP (x, 1));
436 return 0;
437 }
438
439 /* If X is a constant, return the value sans apparent integer term;
440 otherwise return 0.
441 Only obvious integer terms are detected. */
442
443 rtx
444 get_related_value (rtx x)
445 {
446 if (GET_CODE (x) != CONST)
447 return 0;
448 x = XEXP (x, 0);
449 if (GET_CODE (x) == PLUS
450 && GET_CODE (XEXP (x, 1)) == CONST_INT)
451 return XEXP (x, 0);
452 else if (GET_CODE (x) == MINUS
453 && GET_CODE (XEXP (x, 1)) == CONST_INT)
454 return XEXP (x, 0);
455 return 0;
456 }
457 \f
458 /* Given a tablejump insn INSN, return the RTL expression for the offset
459 into the jump table. If the offset cannot be determined, then return
460 NULL_RTX.
461
462 If EARLIEST is nonzero, it is a pointer to a place where the earliest
463 insn used in locating the offset was found. */
464
465 rtx
466 get_jump_table_offset (rtx insn, rtx *earliest)
467 {
468 rtx label = NULL;
469 rtx table = NULL;
470 rtx set;
471 rtx old_insn;
472 rtx x;
473 rtx old_x;
474 rtx y;
475 rtx old_y;
476 int i;
477
478 if (!tablejump_p (insn, &label, &table) || !(set = single_set (insn)))
479 return NULL_RTX;
480
481 x = SET_SRC (set);
482
483 /* Some targets (eg, ARM) emit a tablejump that also
484 contains the out-of-range target. */
485 if (GET_CODE (x) == IF_THEN_ELSE
486 && GET_CODE (XEXP (x, 2)) == LABEL_REF)
487 x = XEXP (x, 1);
488
489 /* Search backwards and locate the expression stored in X. */
490 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
491 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
492 ;
493
494 /* If X is an expression using a relative address then strip
495 off the addition / subtraction of PC, PIC_OFFSET_TABLE_REGNUM,
496 or the jump table label. */
497 if (GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC
498 && (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS))
499 {
500 for (i = 0; i < 2; i++)
501 {
502 old_insn = insn;
503 y = XEXP (x, i);
504
505 if (y == pc_rtx || y == pic_offset_table_rtx)
506 break;
507
508 for (old_y = NULL_RTX; REG_P (y) && y != old_y;
509 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
510 ;
511
512 if ((GET_CODE (y) == LABEL_REF && XEXP (y, 0) == label))
513 break;
514 }
515
516 if (i >= 2)
517 return NULL_RTX;
518
519 x = XEXP (x, 1 - i);
520
521 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
522 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
523 ;
524 }
525
526 /* Strip off any sign or zero extension. */
527 if (GET_CODE (x) == SIGN_EXTEND || GET_CODE (x) == ZERO_EXTEND)
528 {
529 x = XEXP (x, 0);
530
531 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
532 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
533 ;
534 }
535
536 /* If X isn't a MEM then this isn't a tablejump we understand. */
537 if (GET_CODE (x) != MEM)
538 return NULL_RTX;
539
540 /* Strip off the MEM. */
541 x = XEXP (x, 0);
542
543 for (old_x = NULL_RTX; REG_P (x) && x != old_x;
544 old_x = x, x = find_last_value (x, &insn, NULL_RTX, 0))
545 ;
546
547 /* If X isn't a PLUS than this isn't a tablejump we understand. */
548 if (GET_CODE (x) != PLUS)
549 return NULL_RTX;
550
551 /* At this point we should have an expression representing the jump table
552 plus an offset. Examine each operand in order to determine which one
553 represents the jump table. Knowing that tells us that the other operand
554 must represent the offset. */
555 for (i = 0; i < 2; i++)
556 {
557 old_insn = insn;
558 y = XEXP (x, i);
559
560 for (old_y = NULL_RTX; REG_P (y) && y != old_y;
561 old_y = y, y = find_last_value (y, &old_insn, NULL_RTX, 0))
562 ;
563
564 if ((GET_CODE (y) == CONST || GET_CODE (y) == LABEL_REF)
565 && reg_mentioned_p (label, y))
566 break;
567 }
568
569 if (i >= 2)
570 return NULL_RTX;
571
572 x = XEXP (x, 1 - i);
573
574 /* Strip off the addition / subtraction of PIC_OFFSET_TABLE_REGNUM. */
575 if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
576 for (i = 0; i < 2; i++)
577 if (XEXP (x, i) == pic_offset_table_rtx)
578 {
579 x = XEXP (x, 1 - i);
580 break;
581 }
582
583 if (earliest)
584 *earliest = insn;
585
586 /* Return the RTL expression representing the offset. */
587 return x;
588 }
589 \f
590 /* A subroutine of global_reg_mentioned_p, returns 1 if *LOC mentions
591 a global register. */
592
593 static int
594 global_reg_mentioned_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
595 {
596 int regno;
597 rtx x = *loc;
598
599 if (! x)
600 return 0;
601
602 switch (GET_CODE (x))
603 {
604 case SUBREG:
605 if (REG_P (SUBREG_REG (x)))
606 {
607 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER
608 && global_regs[subreg_regno (x)])
609 return 1;
610 return 0;
611 }
612 break;
613
614 case REG:
615 regno = REGNO (x);
616 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
617 return 1;
618 return 0;
619
620 case SCRATCH:
621 case PC:
622 case CC0:
623 case CONST_INT:
624 case CONST_DOUBLE:
625 case CONST:
626 case LABEL_REF:
627 return 0;
628
629 case CALL:
630 /* A non-constant call might use a global register. */
631 return 1;
632
633 default:
634 break;
635 }
636
637 return 0;
638 }
639
640 /* Returns nonzero if X mentions a global register. */
641
642 int
643 global_reg_mentioned_p (rtx x)
644 {
645 if (INSN_P (x))
646 {
647 if (GET_CODE (x) == CALL_INSN)
648 {
649 if (! CONST_OR_PURE_CALL_P (x))
650 return 1;
651 x = CALL_INSN_FUNCTION_USAGE (x);
652 if (x == 0)
653 return 0;
654 }
655 else
656 x = PATTERN (x);
657 }
658
659 return for_each_rtx (&x, global_reg_mentioned_p_1, NULL);
660 }
661 \f
662 /* Return the number of places FIND appears within X. If COUNT_DEST is
663 zero, we do not count occurrences inside the destination of a SET. */
664
665 int
666 count_occurrences (rtx x, rtx find, int count_dest)
667 {
668 int i, j;
669 enum rtx_code code;
670 const char *format_ptr;
671 int count;
672
673 if (x == find)
674 return 1;
675
676 code = GET_CODE (x);
677
678 switch (code)
679 {
680 case REG:
681 case CONST_INT:
682 case CONST_DOUBLE:
683 case CONST_VECTOR:
684 case SYMBOL_REF:
685 case CODE_LABEL:
686 case PC:
687 case CC0:
688 return 0;
689
690 case MEM:
691 if (GET_CODE (find) == MEM && rtx_equal_p (x, find))
692 return 1;
693 break;
694
695 case SET:
696 if (SET_DEST (x) == find && ! count_dest)
697 return count_occurrences (SET_SRC (x), find, count_dest);
698 break;
699
700 default:
701 break;
702 }
703
704 format_ptr = GET_RTX_FORMAT (code);
705 count = 0;
706
707 for (i = 0; i < GET_RTX_LENGTH (code); i++)
708 {
709 switch (*format_ptr++)
710 {
711 case 'e':
712 count += count_occurrences (XEXP (x, i), find, count_dest);
713 break;
714
715 case 'E':
716 for (j = 0; j < XVECLEN (x, i); j++)
717 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
718 break;
719 }
720 }
721 return count;
722 }
723 \f
724 /* Nonzero if register REG appears somewhere within IN.
725 Also works if REG is not a register; in this case it checks
726 for a subexpression of IN that is Lisp "equal" to REG. */
727
728 int
729 reg_mentioned_p (rtx reg, rtx in)
730 {
731 const char *fmt;
732 int i;
733 enum rtx_code code;
734
735 if (in == 0)
736 return 0;
737
738 if (reg == in)
739 return 1;
740
741 if (GET_CODE (in) == LABEL_REF)
742 return reg == XEXP (in, 0);
743
744 code = GET_CODE (in);
745
746 switch (code)
747 {
748 /* Compare registers by number. */
749 case REG:
750 return REG_P (reg) && REGNO (in) == REGNO (reg);
751
752 /* These codes have no constituent expressions
753 and are unique. */
754 case SCRATCH:
755 case CC0:
756 case PC:
757 return 0;
758
759 case CONST_INT:
760 case CONST_VECTOR:
761 case CONST_DOUBLE:
762 /* These are kept unique for a given value. */
763 return 0;
764
765 default:
766 break;
767 }
768
769 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
770 return 1;
771
772 fmt = GET_RTX_FORMAT (code);
773
774 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
775 {
776 if (fmt[i] == 'E')
777 {
778 int j;
779 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
780 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
781 return 1;
782 }
783 else if (fmt[i] == 'e'
784 && reg_mentioned_p (reg, XEXP (in, i)))
785 return 1;
786 }
787 return 0;
788 }
789 \f
790 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
791 no CODE_LABEL insn. */
792
793 int
794 no_labels_between_p (rtx beg, rtx end)
795 {
796 rtx p;
797 if (beg == end)
798 return 0;
799 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
800 if (GET_CODE (p) == CODE_LABEL)
801 return 0;
802 return 1;
803 }
804
805 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
806 no JUMP_INSN insn. */
807
808 int
809 no_jumps_between_p (rtx beg, rtx end)
810 {
811 rtx p;
812 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
813 if (GET_CODE (p) == JUMP_INSN)
814 return 0;
815 return 1;
816 }
817
818 /* Nonzero if register REG is used in an insn between
819 FROM_INSN and TO_INSN (exclusive of those two). */
820
821 int
822 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
823 {
824 rtx insn;
825
826 if (from_insn == to_insn)
827 return 0;
828
829 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
830 if (INSN_P (insn)
831 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
832 || (GET_CODE (insn) == CALL_INSN
833 && (find_reg_fusage (insn, USE, reg)
834 || find_reg_fusage (insn, CLOBBER, reg)))))
835 return 1;
836 return 0;
837 }
838 \f
839 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
840 is entirely replaced by a new value and the only use is as a SET_DEST,
841 we do not consider it a reference. */
842
843 int
844 reg_referenced_p (rtx x, rtx body)
845 {
846 int i;
847
848 switch (GET_CODE (body))
849 {
850 case SET:
851 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
852 return 1;
853
854 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
855 of a REG that occupies all of the REG, the insn references X if
856 it is mentioned in the destination. */
857 if (GET_CODE (SET_DEST (body)) != CC0
858 && GET_CODE (SET_DEST (body)) != PC
859 && !REG_P (SET_DEST (body))
860 && ! (GET_CODE (SET_DEST (body)) == SUBREG
861 && REG_P (SUBREG_REG (SET_DEST (body)))
862 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
863 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
864 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
865 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
866 && reg_overlap_mentioned_p (x, SET_DEST (body)))
867 return 1;
868 return 0;
869
870 case ASM_OPERANDS:
871 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
872 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
873 return 1;
874 return 0;
875
876 case CALL:
877 case USE:
878 case IF_THEN_ELSE:
879 return reg_overlap_mentioned_p (x, body);
880
881 case TRAP_IF:
882 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
883
884 case PREFETCH:
885 return reg_overlap_mentioned_p (x, XEXP (body, 0));
886
887 case UNSPEC:
888 case UNSPEC_VOLATILE:
889 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
890 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
891 return 1;
892 return 0;
893
894 case PARALLEL:
895 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
896 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
897 return 1;
898 return 0;
899
900 case CLOBBER:
901 if (GET_CODE (XEXP (body, 0)) == MEM)
902 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
903 return 1;
904 return 0;
905
906 case COND_EXEC:
907 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
908 return 1;
909 return reg_referenced_p (x, COND_EXEC_CODE (body));
910
911 default:
912 return 0;
913 }
914 }
915
916 /* Nonzero if register REG is referenced in an insn between
917 FROM_INSN and TO_INSN (exclusive of those two). Sets of REG do
918 not count. */
919
920 int
921 reg_referenced_between_p (rtx reg, rtx from_insn, rtx to_insn)
922 {
923 rtx insn;
924
925 if (from_insn == to_insn)
926 return 0;
927
928 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
929 if (INSN_P (insn)
930 && (reg_referenced_p (reg, PATTERN (insn))
931 || (GET_CODE (insn) == CALL_INSN
932 && find_reg_fusage (insn, USE, reg))))
933 return 1;
934 return 0;
935 }
936 \f
937 /* Nonzero if register REG is set or clobbered in an insn between
938 FROM_INSN and TO_INSN (exclusive of those two). */
939
940 int
941 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
942 {
943 rtx insn;
944
945 if (from_insn == to_insn)
946 return 0;
947
948 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
949 if (INSN_P (insn) && reg_set_p (reg, insn))
950 return 1;
951 return 0;
952 }
953
954 /* Internals of reg_set_between_p. */
955 int
956 reg_set_p (rtx reg, rtx insn)
957 {
958 /* We can be passed an insn or part of one. If we are passed an insn,
959 check if a side-effect of the insn clobbers REG. */
960 if (INSN_P (insn)
961 && (FIND_REG_INC_NOTE (insn, reg)
962 || (GET_CODE (insn) == CALL_INSN
963 /* We'd like to test call_used_regs here, but rtlanal.c can't
964 reference that variable due to its use in genattrtab. So
965 we'll just be more conservative.
966
967 ??? Unless we could ensure that the CALL_INSN_FUNCTION_USAGE
968 information holds all clobbered registers. */
969 && ((REG_P (reg)
970 && REGNO (reg) < FIRST_PSEUDO_REGISTER)
971 || GET_CODE (reg) == MEM
972 || find_reg_fusage (insn, CLOBBER, reg)))))
973 return 1;
974
975 return set_of (reg, insn) != NULL_RTX;
976 }
977
978 /* Similar to reg_set_between_p, but check all registers in X. Return 0
979 only if none of them are modified between START and END. Do not
980 consider non-registers one way or the other. */
981
982 int
983 regs_set_between_p (rtx x, rtx start, rtx end)
984 {
985 enum rtx_code code = GET_CODE (x);
986 const char *fmt;
987 int i, j;
988
989 switch (code)
990 {
991 case CONST_INT:
992 case CONST_DOUBLE:
993 case CONST_VECTOR:
994 case CONST:
995 case SYMBOL_REF:
996 case LABEL_REF:
997 case PC:
998 case CC0:
999 return 0;
1000
1001 case REG:
1002 return reg_set_between_p (x, start, end);
1003
1004 default:
1005 break;
1006 }
1007
1008 fmt = GET_RTX_FORMAT (code);
1009 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1010 {
1011 if (fmt[i] == 'e' && regs_set_between_p (XEXP (x, i), start, end))
1012 return 1;
1013
1014 else if (fmt[i] == 'E')
1015 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1016 if (regs_set_between_p (XVECEXP (x, i, j), start, end))
1017 return 1;
1018 }
1019
1020 return 0;
1021 }
1022
1023 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1024 only if none of them are modified between START and END. Return 1 if
1025 X contains a MEM; this routine does usememory aliasing. */
1026
1027 int
1028 modified_between_p (rtx x, rtx start, rtx end)
1029 {
1030 enum rtx_code code = GET_CODE (x);
1031 const char *fmt;
1032 int i, j;
1033 rtx insn;
1034
1035 if (start == end)
1036 return 0;
1037
1038 switch (code)
1039 {
1040 case CONST_INT:
1041 case CONST_DOUBLE:
1042 case CONST_VECTOR:
1043 case CONST:
1044 case SYMBOL_REF:
1045 case LABEL_REF:
1046 return 0;
1047
1048 case PC:
1049 case CC0:
1050 return 1;
1051
1052 case MEM:
1053 if (RTX_UNCHANGING_P (x))
1054 return 0;
1055 if (modified_between_p (XEXP (x, 0), start, end))
1056 return 1;
1057 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1058 if (memory_modified_in_insn_p (x, insn))
1059 return 1;
1060 return 0;
1061 break;
1062
1063 case REG:
1064 return reg_set_between_p (x, start, end);
1065
1066 default:
1067 break;
1068 }
1069
1070 fmt = GET_RTX_FORMAT (code);
1071 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1072 {
1073 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1074 return 1;
1075
1076 else if (fmt[i] == 'E')
1077 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1078 if (modified_between_p (XVECEXP (x, i, j), start, end))
1079 return 1;
1080 }
1081
1082 return 0;
1083 }
1084
1085 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1086 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1087 does use memory aliasing. */
1088
1089 int
1090 modified_in_p (rtx x, rtx insn)
1091 {
1092 enum rtx_code code = GET_CODE (x);
1093 const char *fmt;
1094 int i, j;
1095
1096 switch (code)
1097 {
1098 case CONST_INT:
1099 case CONST_DOUBLE:
1100 case CONST_VECTOR:
1101 case CONST:
1102 case SYMBOL_REF:
1103 case LABEL_REF:
1104 return 0;
1105
1106 case PC:
1107 case CC0:
1108 return 1;
1109
1110 case MEM:
1111 if (RTX_UNCHANGING_P (x))
1112 return 0;
1113 if (modified_in_p (XEXP (x, 0), insn))
1114 return 1;
1115 if (memory_modified_in_insn_p (x, insn))
1116 return 1;
1117 return 0;
1118 break;
1119
1120 case REG:
1121 return reg_set_p (x, insn);
1122
1123 default:
1124 break;
1125 }
1126
1127 fmt = GET_RTX_FORMAT (code);
1128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1129 {
1130 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1131 return 1;
1132
1133 else if (fmt[i] == 'E')
1134 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1135 if (modified_in_p (XVECEXP (x, i, j), insn))
1136 return 1;
1137 }
1138
1139 return 0;
1140 }
1141
1142 /* Return true if anything in insn X is (anti,output,true) dependent on
1143 anything in insn Y. */
1144
1145 int
1146 insn_dependent_p (rtx x, rtx y)
1147 {
1148 rtx tmp;
1149
1150 if (! INSN_P (x) || ! INSN_P (y))
1151 abort ();
1152
1153 tmp = PATTERN (y);
1154 note_stores (PATTERN (x), insn_dependent_p_1, &tmp);
1155 if (tmp == NULL_RTX)
1156 return 1;
1157
1158 tmp = PATTERN (x);
1159 note_stores (PATTERN (y), insn_dependent_p_1, &tmp);
1160 if (tmp == NULL_RTX)
1161 return 1;
1162
1163 return 0;
1164 }
1165
1166 /* A helper routine for insn_dependent_p called through note_stores. */
1167
1168 static void
1169 insn_dependent_p_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
1170 {
1171 rtx * pinsn = (rtx *) data;
1172
1173 if (*pinsn && reg_mentioned_p (x, *pinsn))
1174 *pinsn = NULL_RTX;
1175 }
1176 \f
1177 /* Helper function for set_of. */
1178 struct set_of_data
1179 {
1180 rtx found;
1181 rtx pat;
1182 };
1183
1184 static void
1185 set_of_1 (rtx x, rtx pat, void *data1)
1186 {
1187 struct set_of_data *data = (struct set_of_data *) (data1);
1188 if (rtx_equal_p (x, data->pat)
1189 || (GET_CODE (x) != MEM && reg_overlap_mentioned_p (data->pat, x)))
1190 data->found = pat;
1191 }
1192
1193 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1194 (either directly or via STRICT_LOW_PART and similar modifiers). */
1195 rtx
1196 set_of (rtx pat, rtx insn)
1197 {
1198 struct set_of_data data;
1199 data.found = NULL_RTX;
1200 data.pat = pat;
1201 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1202 return data.found;
1203 }
1204 \f
1205 /* Given an INSN, return a SET expression if this insn has only a single SET.
1206 It may also have CLOBBERs, USEs, or SET whose output
1207 will not be used, which we ignore. */
1208
1209 rtx
1210 single_set_2 (rtx insn, rtx pat)
1211 {
1212 rtx set = NULL;
1213 int set_verified = 1;
1214 int i;
1215
1216 if (GET_CODE (pat) == PARALLEL)
1217 {
1218 for (i = 0; i < XVECLEN (pat, 0); i++)
1219 {
1220 rtx sub = XVECEXP (pat, 0, i);
1221 switch (GET_CODE (sub))
1222 {
1223 case USE:
1224 case CLOBBER:
1225 break;
1226
1227 case SET:
1228 /* We can consider insns having multiple sets, where all
1229 but one are dead as single set insns. In common case
1230 only single set is present in the pattern so we want
1231 to avoid checking for REG_UNUSED notes unless necessary.
1232
1233 When we reach set first time, we just expect this is
1234 the single set we are looking for and only when more
1235 sets are found in the insn, we check them. */
1236 if (!set_verified)
1237 {
1238 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1239 && !side_effects_p (set))
1240 set = NULL;
1241 else
1242 set_verified = 1;
1243 }
1244 if (!set)
1245 set = sub, set_verified = 0;
1246 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1247 || side_effects_p (sub))
1248 return NULL_RTX;
1249 break;
1250
1251 default:
1252 return NULL_RTX;
1253 }
1254 }
1255 }
1256 return set;
1257 }
1258
1259 /* Given an INSN, return nonzero if it has more than one SET, else return
1260 zero. */
1261
1262 int
1263 multiple_sets (rtx insn)
1264 {
1265 int found;
1266 int i;
1267
1268 /* INSN must be an insn. */
1269 if (! INSN_P (insn))
1270 return 0;
1271
1272 /* Only a PARALLEL can have multiple SETs. */
1273 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1274 {
1275 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1276 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1277 {
1278 /* If we have already found a SET, then return now. */
1279 if (found)
1280 return 1;
1281 else
1282 found = 1;
1283 }
1284 }
1285
1286 /* Either zero or one SET. */
1287 return 0;
1288 }
1289 \f
1290 /* Return nonzero if the destination of SET equals the source
1291 and there are no side effects. */
1292
1293 int
1294 set_noop_p (rtx set)
1295 {
1296 rtx src = SET_SRC (set);
1297 rtx dst = SET_DEST (set);
1298
1299 if (dst == pc_rtx && src == pc_rtx)
1300 return 1;
1301
1302 if (GET_CODE (dst) == MEM && GET_CODE (src) == MEM)
1303 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1304
1305 if (GET_CODE (dst) == SIGN_EXTRACT
1306 || GET_CODE (dst) == ZERO_EXTRACT)
1307 return rtx_equal_p (XEXP (dst, 0), src)
1308 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1309 && !side_effects_p (src);
1310
1311 if (GET_CODE (dst) == STRICT_LOW_PART)
1312 dst = XEXP (dst, 0);
1313
1314 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1315 {
1316 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1317 return 0;
1318 src = SUBREG_REG (src);
1319 dst = SUBREG_REG (dst);
1320 }
1321
1322 return (REG_P (src) && REG_P (dst)
1323 && REGNO (src) == REGNO (dst));
1324 }
1325 \f
1326 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1327 value to itself. */
1328
1329 int
1330 noop_move_p (rtx insn)
1331 {
1332 rtx pat = PATTERN (insn);
1333
1334 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1335 return 1;
1336
1337 /* Insns carrying these notes are useful later on. */
1338 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1339 return 0;
1340
1341 /* For now treat an insn with a REG_RETVAL note as a
1342 a special insn which should not be considered a no-op. */
1343 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1344 return 0;
1345
1346 if (GET_CODE (pat) == SET && set_noop_p (pat))
1347 return 1;
1348
1349 if (GET_CODE (pat) == PARALLEL)
1350 {
1351 int i;
1352 /* If nothing but SETs of registers to themselves,
1353 this insn can also be deleted. */
1354 for (i = 0; i < XVECLEN (pat, 0); i++)
1355 {
1356 rtx tem = XVECEXP (pat, 0, i);
1357
1358 if (GET_CODE (tem) == USE
1359 || GET_CODE (tem) == CLOBBER)
1360 continue;
1361
1362 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1363 return 0;
1364 }
1365
1366 return 1;
1367 }
1368 return 0;
1369 }
1370 \f
1371
1372 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1373 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1374 If the object was modified, if we hit a partial assignment to X, or hit a
1375 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1376 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1377 be the src. */
1378
1379 rtx
1380 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1381 {
1382 rtx p;
1383
1384 for (p = PREV_INSN (*pinsn); p && GET_CODE (p) != CODE_LABEL;
1385 p = PREV_INSN (p))
1386 if (INSN_P (p))
1387 {
1388 rtx set = single_set (p);
1389 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1390
1391 if (set && rtx_equal_p (x, SET_DEST (set)))
1392 {
1393 rtx src = SET_SRC (set);
1394
1395 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1396 src = XEXP (note, 0);
1397
1398 if ((valid_to == NULL_RTX
1399 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1400 /* Reject hard registers because we don't usually want
1401 to use them; we'd rather use a pseudo. */
1402 && (! (REG_P (src)
1403 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1404 {
1405 *pinsn = p;
1406 return src;
1407 }
1408 }
1409
1410 /* If set in non-simple way, we don't have a value. */
1411 if (reg_set_p (x, p))
1412 break;
1413 }
1414
1415 return x;
1416 }
1417 \f
1418 /* Return nonzero if register in range [REGNO, ENDREGNO)
1419 appears either explicitly or implicitly in X
1420 other than being stored into.
1421
1422 References contained within the substructure at LOC do not count.
1423 LOC may be zero, meaning don't ignore anything. */
1424
1425 int
1426 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1427 rtx *loc)
1428 {
1429 int i;
1430 unsigned int x_regno;
1431 RTX_CODE code;
1432 const char *fmt;
1433
1434 repeat:
1435 /* The contents of a REG_NONNEG note is always zero, so we must come here
1436 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1437 if (x == 0)
1438 return 0;
1439
1440 code = GET_CODE (x);
1441
1442 switch (code)
1443 {
1444 case REG:
1445 x_regno = REGNO (x);
1446
1447 /* If we modifying the stack, frame, or argument pointer, it will
1448 clobber a virtual register. In fact, we could be more precise,
1449 but it isn't worth it. */
1450 if ((x_regno == STACK_POINTER_REGNUM
1451 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1452 || x_regno == ARG_POINTER_REGNUM
1453 #endif
1454 || x_regno == FRAME_POINTER_REGNUM)
1455 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1456 return 1;
1457
1458 return (endregno > x_regno
1459 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1460 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1461 : 1));
1462
1463 case SUBREG:
1464 /* If this is a SUBREG of a hard reg, we can see exactly which
1465 registers are being modified. Otherwise, handle normally. */
1466 if (REG_P (SUBREG_REG (x))
1467 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1468 {
1469 unsigned int inner_regno = subreg_regno (x);
1470 unsigned int inner_endregno
1471 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1472 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1473
1474 return endregno > inner_regno && regno < inner_endregno;
1475 }
1476 break;
1477
1478 case CLOBBER:
1479 case SET:
1480 if (&SET_DEST (x) != loc
1481 /* Note setting a SUBREG counts as referring to the REG it is in for
1482 a pseudo but not for hard registers since we can
1483 treat each word individually. */
1484 && ((GET_CODE (SET_DEST (x)) == SUBREG
1485 && loc != &SUBREG_REG (SET_DEST (x))
1486 && REG_P (SUBREG_REG (SET_DEST (x)))
1487 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1488 && refers_to_regno_p (regno, endregno,
1489 SUBREG_REG (SET_DEST (x)), loc))
1490 || (!REG_P (SET_DEST (x))
1491 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1492 return 1;
1493
1494 if (code == CLOBBER || loc == &SET_SRC (x))
1495 return 0;
1496 x = SET_SRC (x);
1497 goto repeat;
1498
1499 default:
1500 break;
1501 }
1502
1503 /* X does not match, so try its subexpressions. */
1504
1505 fmt = GET_RTX_FORMAT (code);
1506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1507 {
1508 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1509 {
1510 if (i == 0)
1511 {
1512 x = XEXP (x, 0);
1513 goto repeat;
1514 }
1515 else
1516 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1517 return 1;
1518 }
1519 else if (fmt[i] == 'E')
1520 {
1521 int j;
1522 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1523 if (loc != &XVECEXP (x, i, j)
1524 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1525 return 1;
1526 }
1527 }
1528 return 0;
1529 }
1530
1531 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1532 we check if any register number in X conflicts with the relevant register
1533 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1534 contains a MEM (we don't bother checking for memory addresses that can't
1535 conflict because we expect this to be a rare case. */
1536
1537 int
1538 reg_overlap_mentioned_p (rtx x, rtx in)
1539 {
1540 unsigned int regno, endregno;
1541
1542 /* If either argument is a constant, then modifying X can not
1543 affect IN. Here we look at IN, we can profitably combine
1544 CONSTANT_P (x) with the switch statement below. */
1545 if (CONSTANT_P (in))
1546 return 0;
1547
1548 recurse:
1549 switch (GET_CODE (x))
1550 {
1551 case STRICT_LOW_PART:
1552 case ZERO_EXTRACT:
1553 case SIGN_EXTRACT:
1554 /* Overly conservative. */
1555 x = XEXP (x, 0);
1556 goto recurse;
1557
1558 case SUBREG:
1559 regno = REGNO (SUBREG_REG (x));
1560 if (regno < FIRST_PSEUDO_REGISTER)
1561 regno = subreg_regno (x);
1562 goto do_reg;
1563
1564 case REG:
1565 regno = REGNO (x);
1566 do_reg:
1567 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1568 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1569 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1570
1571 case MEM:
1572 {
1573 const char *fmt;
1574 int i;
1575
1576 if (GET_CODE (in) == MEM)
1577 return 1;
1578
1579 fmt = GET_RTX_FORMAT (GET_CODE (in));
1580 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1581 if (fmt[i] == 'e' && reg_overlap_mentioned_p (x, XEXP (in, i)))
1582 return 1;
1583
1584 return 0;
1585 }
1586
1587 case SCRATCH:
1588 case PC:
1589 case CC0:
1590 return reg_mentioned_p (x, in);
1591
1592 case PARALLEL:
1593 {
1594 int i;
1595
1596 /* If any register in here refers to it we return true. */
1597 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1598 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1599 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1600 return 1;
1601 return 0;
1602 }
1603
1604 default:
1605 #ifdef ENABLE_CHECKING
1606 if (!CONSTANT_P (x))
1607 abort ();
1608 #endif
1609
1610 return 0;
1611 }
1612 }
1613 \f
1614 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1615 (X would be the pattern of an insn).
1616 FUN receives two arguments:
1617 the REG, MEM, CC0 or PC being stored in or clobbered,
1618 the SET or CLOBBER rtx that does the store.
1619
1620 If the item being stored in or clobbered is a SUBREG of a hard register,
1621 the SUBREG will be passed. */
1622
1623 void
1624 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1625 {
1626 int i;
1627
1628 if (GET_CODE (x) == COND_EXEC)
1629 x = COND_EXEC_CODE (x);
1630
1631 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1632 {
1633 rtx dest = SET_DEST (x);
1634
1635 while ((GET_CODE (dest) == SUBREG
1636 && (!REG_P (SUBREG_REG (dest))
1637 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1638 || GET_CODE (dest) == ZERO_EXTRACT
1639 || GET_CODE (dest) == SIGN_EXTRACT
1640 || GET_CODE (dest) == STRICT_LOW_PART)
1641 dest = XEXP (dest, 0);
1642
1643 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1644 each of whose first operand is a register. */
1645 if (GET_CODE (dest) == PARALLEL)
1646 {
1647 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1648 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1649 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1650 }
1651 else
1652 (*fun) (dest, x, data);
1653 }
1654
1655 else if (GET_CODE (x) == PARALLEL)
1656 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1657 note_stores (XVECEXP (x, 0, i), fun, data);
1658 }
1659 \f
1660 /* Like notes_stores, but call FUN for each expression that is being
1661 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1662 FUN for each expression, not any interior subexpressions. FUN receives a
1663 pointer to the expression and the DATA passed to this function.
1664
1665 Note that this is not quite the same test as that done in reg_referenced_p
1666 since that considers something as being referenced if it is being
1667 partially set, while we do not. */
1668
1669 void
1670 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1671 {
1672 rtx body = *pbody;
1673 int i;
1674
1675 switch (GET_CODE (body))
1676 {
1677 case COND_EXEC:
1678 (*fun) (&COND_EXEC_TEST (body), data);
1679 note_uses (&COND_EXEC_CODE (body), fun, data);
1680 return;
1681
1682 case PARALLEL:
1683 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1684 note_uses (&XVECEXP (body, 0, i), fun, data);
1685 return;
1686
1687 case USE:
1688 (*fun) (&XEXP (body, 0), data);
1689 return;
1690
1691 case ASM_OPERANDS:
1692 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1693 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1694 return;
1695
1696 case TRAP_IF:
1697 (*fun) (&TRAP_CONDITION (body), data);
1698 return;
1699
1700 case PREFETCH:
1701 (*fun) (&XEXP (body, 0), data);
1702 return;
1703
1704 case UNSPEC:
1705 case UNSPEC_VOLATILE:
1706 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1707 (*fun) (&XVECEXP (body, 0, i), data);
1708 return;
1709
1710 case CLOBBER:
1711 if (GET_CODE (XEXP (body, 0)) == MEM)
1712 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1713 return;
1714
1715 case SET:
1716 {
1717 rtx dest = SET_DEST (body);
1718
1719 /* For sets we replace everything in source plus registers in memory
1720 expression in store and operands of a ZERO_EXTRACT. */
1721 (*fun) (&SET_SRC (body), data);
1722
1723 if (GET_CODE (dest) == ZERO_EXTRACT)
1724 {
1725 (*fun) (&XEXP (dest, 1), data);
1726 (*fun) (&XEXP (dest, 2), data);
1727 }
1728
1729 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1730 dest = XEXP (dest, 0);
1731
1732 if (GET_CODE (dest) == MEM)
1733 (*fun) (&XEXP (dest, 0), data);
1734 }
1735 return;
1736
1737 default:
1738 /* All the other possibilities never store. */
1739 (*fun) (pbody, data);
1740 return;
1741 }
1742 }
1743 \f
1744 /* Return nonzero if X's old contents don't survive after INSN.
1745 This will be true if X is (cc0) or if X is a register and
1746 X dies in INSN or because INSN entirely sets X.
1747
1748 "Entirely set" means set directly and not through a SUBREG,
1749 ZERO_EXTRACT or SIGN_EXTRACT, so no trace of the old contents remains.
1750 Likewise, REG_INC does not count.
1751
1752 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1753 but for this use that makes no difference, since regs don't overlap
1754 during their lifetimes. Therefore, this function may be used
1755 at any time after deaths have been computed (in flow.c).
1756
1757 If REG is a hard reg that occupies multiple machine registers, this
1758 function will only return 1 if each of those registers will be replaced
1759 by INSN. */
1760
1761 int
1762 dead_or_set_p (rtx insn, rtx x)
1763 {
1764 unsigned int regno, last_regno;
1765 unsigned int i;
1766
1767 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1768 if (GET_CODE (x) == CC0)
1769 return 1;
1770
1771 if (!REG_P (x))
1772 abort ();
1773
1774 regno = REGNO (x);
1775 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1776 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1777
1778 for (i = regno; i <= last_regno; i++)
1779 if (! dead_or_set_regno_p (insn, i))
1780 return 0;
1781
1782 return 1;
1783 }
1784
1785 /* Utility function for dead_or_set_p to check an individual register. Also
1786 called from flow.c. */
1787
1788 int
1789 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1790 {
1791 unsigned int regno, endregno;
1792 rtx pattern;
1793
1794 /* See if there is a death note for something that includes TEST_REGNO. */
1795 if (find_regno_note (insn, REG_DEAD, test_regno))
1796 return 1;
1797
1798 if (GET_CODE (insn) == CALL_INSN
1799 && find_regno_fusage (insn, CLOBBER, test_regno))
1800 return 1;
1801
1802 pattern = PATTERN (insn);
1803
1804 if (GET_CODE (pattern) == COND_EXEC)
1805 pattern = COND_EXEC_CODE (pattern);
1806
1807 if (GET_CODE (pattern) == SET)
1808 {
1809 rtx dest = SET_DEST (pattern);
1810
1811 /* A value is totally replaced if it is the destination or the
1812 destination is a SUBREG of REGNO that does not change the number of
1813 words in it. */
1814 if (GET_CODE (dest) == SUBREG
1815 && (((GET_MODE_SIZE (GET_MODE (dest))
1816 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1817 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1818 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1819 dest = SUBREG_REG (dest);
1820
1821 if (!REG_P (dest))
1822 return 0;
1823
1824 regno = REGNO (dest);
1825 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1826 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1827
1828 return (test_regno >= regno && test_regno < endregno);
1829 }
1830 else if (GET_CODE (pattern) == PARALLEL)
1831 {
1832 int i;
1833
1834 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1835 {
1836 rtx body = XVECEXP (pattern, 0, i);
1837
1838 if (GET_CODE (body) == COND_EXEC)
1839 body = COND_EXEC_CODE (body);
1840
1841 if (GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1842 {
1843 rtx dest = SET_DEST (body);
1844
1845 if (GET_CODE (dest) == SUBREG
1846 && (((GET_MODE_SIZE (GET_MODE (dest))
1847 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1848 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1849 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1850 dest = SUBREG_REG (dest);
1851
1852 if (!REG_P (dest))
1853 continue;
1854
1855 regno = REGNO (dest);
1856 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1857 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1858
1859 if (test_regno >= regno && test_regno < endregno)
1860 return 1;
1861 }
1862 }
1863 }
1864
1865 return 0;
1866 }
1867
1868 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1869 If DATUM is nonzero, look for one whose datum is DATUM. */
1870
1871 rtx
1872 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1873 {
1874 rtx link;
1875
1876 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1877 if (! INSN_P (insn))
1878 return 0;
1879 if (datum == 0)
1880 {
1881 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1882 if (REG_NOTE_KIND (link) == kind)
1883 return link;
1884 return 0;
1885 }
1886
1887 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1888 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1889 return link;
1890 return 0;
1891 }
1892
1893 /* Return the reg-note of kind KIND in insn INSN which applies to register
1894 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1895 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1896 it might be the case that the note overlaps REGNO. */
1897
1898 rtx
1899 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1900 {
1901 rtx link;
1902
1903 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1904 if (! INSN_P (insn))
1905 return 0;
1906
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (REG_NOTE_KIND (link) == kind
1909 /* Verify that it is a register, so that scratch and MEM won't cause a
1910 problem here. */
1911 && REG_P (XEXP (link, 0))
1912 && REGNO (XEXP (link, 0)) <= regno
1913 && ((REGNO (XEXP (link, 0))
1914 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1915 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1916 [GET_MODE (XEXP (link, 0))]))
1917 > regno))
1918 return link;
1919 return 0;
1920 }
1921
1922 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1923 has such a note. */
1924
1925 rtx
1926 find_reg_equal_equiv_note (rtx insn)
1927 {
1928 rtx link;
1929
1930 if (!INSN_P (insn))
1931 return 0;
1932 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1933 if (REG_NOTE_KIND (link) == REG_EQUAL
1934 || REG_NOTE_KIND (link) == REG_EQUIV)
1935 {
1936 if (single_set (insn) == 0)
1937 return 0;
1938 return link;
1939 }
1940 return NULL;
1941 }
1942
1943 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1944 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1945
1946 int
1947 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1948 {
1949 /* If it's not a CALL_INSN, it can't possibly have a
1950 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1951 if (GET_CODE (insn) != CALL_INSN)
1952 return 0;
1953
1954 if (! datum)
1955 abort ();
1956
1957 if (!REG_P (datum))
1958 {
1959 rtx link;
1960
1961 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1962 link;
1963 link = XEXP (link, 1))
1964 if (GET_CODE (XEXP (link, 0)) == code
1965 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1966 return 1;
1967 }
1968 else
1969 {
1970 unsigned int regno = REGNO (datum);
1971
1972 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1973 to pseudo registers, so don't bother checking. */
1974
1975 if (regno < FIRST_PSEUDO_REGISTER)
1976 {
1977 unsigned int end_regno
1978 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1979 unsigned int i;
1980
1981 for (i = regno; i < end_regno; i++)
1982 if (find_regno_fusage (insn, code, i))
1983 return 1;
1984 }
1985 }
1986
1987 return 0;
1988 }
1989
1990 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1991 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1992
1993 int
1994 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1995 {
1996 rtx link;
1997
1998 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1999 to pseudo registers, so don't bother checking. */
2000
2001 if (regno >= FIRST_PSEUDO_REGISTER
2002 || GET_CODE (insn) != CALL_INSN )
2003 return 0;
2004
2005 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2006 {
2007 unsigned int regnote;
2008 rtx op, reg;
2009
2010 if (GET_CODE (op = XEXP (link, 0)) == code
2011 && REG_P (reg = XEXP (op, 0))
2012 && (regnote = REGNO (reg)) <= regno
2013 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Return true if INSN is a call to a pure function. */
2021
2022 int
2023 pure_call_p (rtx insn)
2024 {
2025 rtx link;
2026
2027 if (GET_CODE (insn) != CALL_INSN || ! CONST_OR_PURE_CALL_P (insn))
2028 return 0;
2029
2030 /* Look for the note that differentiates const and pure functions. */
2031 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2032 {
2033 rtx u, m;
2034
2035 if (GET_CODE (u = XEXP (link, 0)) == USE
2036 && GET_CODE (m = XEXP (u, 0)) == MEM && GET_MODE (m) == BLKmode
2037 && GET_CODE (XEXP (m, 0)) == SCRATCH)
2038 return 1;
2039 }
2040
2041 return 0;
2042 }
2043 \f
2044 /* Remove register note NOTE from the REG_NOTES of INSN. */
2045
2046 void
2047 remove_note (rtx insn, rtx note)
2048 {
2049 rtx link;
2050
2051 if (note == NULL_RTX)
2052 return;
2053
2054 if (REG_NOTES (insn) == note)
2055 {
2056 REG_NOTES (insn) = XEXP (note, 1);
2057 return;
2058 }
2059
2060 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2061 if (XEXP (link, 1) == note)
2062 {
2063 XEXP (link, 1) = XEXP (note, 1);
2064 return;
2065 }
2066
2067 abort ();
2068 }
2069
2070 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2071 return 1 if it is found. A simple equality test is used to determine if
2072 NODE matches. */
2073
2074 int
2075 in_expr_list_p (rtx listp, rtx node)
2076 {
2077 rtx x;
2078
2079 for (x = listp; x; x = XEXP (x, 1))
2080 if (node == XEXP (x, 0))
2081 return 1;
2082
2083 return 0;
2084 }
2085
2086 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2087 remove that entry from the list if it is found.
2088
2089 A simple equality test is used to determine if NODE matches. */
2090
2091 void
2092 remove_node_from_expr_list (rtx node, rtx *listp)
2093 {
2094 rtx temp = *listp;
2095 rtx prev = NULL_RTX;
2096
2097 while (temp)
2098 {
2099 if (node == XEXP (temp, 0))
2100 {
2101 /* Splice the node out of the list. */
2102 if (prev)
2103 XEXP (prev, 1) = XEXP (temp, 1);
2104 else
2105 *listp = XEXP (temp, 1);
2106
2107 return;
2108 }
2109
2110 prev = temp;
2111 temp = XEXP (temp, 1);
2112 }
2113 }
2114 \f
2115 /* Nonzero if X contains any volatile instructions. These are instructions
2116 which may cause unpredictable machine state instructions, and thus no
2117 instructions should be moved or combined across them. This includes
2118 only volatile asms and UNSPEC_VOLATILE instructions. */
2119
2120 int
2121 volatile_insn_p (rtx x)
2122 {
2123 RTX_CODE code;
2124
2125 code = GET_CODE (x);
2126 switch (code)
2127 {
2128 case LABEL_REF:
2129 case SYMBOL_REF:
2130 case CONST_INT:
2131 case CONST:
2132 case CONST_DOUBLE:
2133 case CONST_VECTOR:
2134 case CC0:
2135 case PC:
2136 case REG:
2137 case SCRATCH:
2138 case CLOBBER:
2139 case ADDR_VEC:
2140 case ADDR_DIFF_VEC:
2141 case CALL:
2142 case MEM:
2143 return 0;
2144
2145 case UNSPEC_VOLATILE:
2146 /* case TRAP_IF: This isn't clear yet. */
2147 return 1;
2148
2149 case ASM_INPUT:
2150 case ASM_OPERANDS:
2151 if (MEM_VOLATILE_P (x))
2152 return 1;
2153
2154 default:
2155 break;
2156 }
2157
2158 /* Recursively scan the operands of this expression. */
2159
2160 {
2161 const char *fmt = GET_RTX_FORMAT (code);
2162 int i;
2163
2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2165 {
2166 if (fmt[i] == 'e')
2167 {
2168 if (volatile_insn_p (XEXP (x, i)))
2169 return 1;
2170 }
2171 else if (fmt[i] == 'E')
2172 {
2173 int j;
2174 for (j = 0; j < XVECLEN (x, i); j++)
2175 if (volatile_insn_p (XVECEXP (x, i, j)))
2176 return 1;
2177 }
2178 }
2179 }
2180 return 0;
2181 }
2182
2183 /* Nonzero if X contains any volatile memory references
2184 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2185
2186 int
2187 volatile_refs_p (rtx x)
2188 {
2189 RTX_CODE code;
2190
2191 code = GET_CODE (x);
2192 switch (code)
2193 {
2194 case LABEL_REF:
2195 case SYMBOL_REF:
2196 case CONST_INT:
2197 case CONST:
2198 case CONST_DOUBLE:
2199 case CONST_VECTOR:
2200 case CC0:
2201 case PC:
2202 case REG:
2203 case SCRATCH:
2204 case CLOBBER:
2205 case ADDR_VEC:
2206 case ADDR_DIFF_VEC:
2207 return 0;
2208
2209 case UNSPEC_VOLATILE:
2210 return 1;
2211
2212 case MEM:
2213 case ASM_INPUT:
2214 case ASM_OPERANDS:
2215 if (MEM_VOLATILE_P (x))
2216 return 1;
2217
2218 default:
2219 break;
2220 }
2221
2222 /* Recursively scan the operands of this expression. */
2223
2224 {
2225 const char *fmt = GET_RTX_FORMAT (code);
2226 int i;
2227
2228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2229 {
2230 if (fmt[i] == 'e')
2231 {
2232 if (volatile_refs_p (XEXP (x, i)))
2233 return 1;
2234 }
2235 else if (fmt[i] == 'E')
2236 {
2237 int j;
2238 for (j = 0; j < XVECLEN (x, i); j++)
2239 if (volatile_refs_p (XVECEXP (x, i, j)))
2240 return 1;
2241 }
2242 }
2243 }
2244 return 0;
2245 }
2246
2247 /* Similar to above, except that it also rejects register pre- and post-
2248 incrementing. */
2249
2250 int
2251 side_effects_p (rtx x)
2252 {
2253 RTX_CODE code;
2254
2255 code = GET_CODE (x);
2256 switch (code)
2257 {
2258 case LABEL_REF:
2259 case SYMBOL_REF:
2260 case CONST_INT:
2261 case CONST:
2262 case CONST_DOUBLE:
2263 case CONST_VECTOR:
2264 case CC0:
2265 case PC:
2266 case REG:
2267 case SCRATCH:
2268 case ADDR_VEC:
2269 case ADDR_DIFF_VEC:
2270 return 0;
2271
2272 case CLOBBER:
2273 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2274 when some combination can't be done. If we see one, don't think
2275 that we can simplify the expression. */
2276 return (GET_MODE (x) != VOIDmode);
2277
2278 case PRE_INC:
2279 case PRE_DEC:
2280 case POST_INC:
2281 case POST_DEC:
2282 case PRE_MODIFY:
2283 case POST_MODIFY:
2284 case CALL:
2285 case UNSPEC_VOLATILE:
2286 /* case TRAP_IF: This isn't clear yet. */
2287 return 1;
2288
2289 case MEM:
2290 case ASM_INPUT:
2291 case ASM_OPERANDS:
2292 if (MEM_VOLATILE_P (x))
2293 return 1;
2294
2295 default:
2296 break;
2297 }
2298
2299 /* Recursively scan the operands of this expression. */
2300
2301 {
2302 const char *fmt = GET_RTX_FORMAT (code);
2303 int i;
2304
2305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2306 {
2307 if (fmt[i] == 'e')
2308 {
2309 if (side_effects_p (XEXP (x, i)))
2310 return 1;
2311 }
2312 else if (fmt[i] == 'E')
2313 {
2314 int j;
2315 for (j = 0; j < XVECLEN (x, i); j++)
2316 if (side_effects_p (XVECEXP (x, i, j)))
2317 return 1;
2318 }
2319 }
2320 }
2321 return 0;
2322 }
2323 \f
2324 /* Return nonzero if evaluating rtx X might cause a trap. */
2325
2326 int
2327 may_trap_p (rtx x)
2328 {
2329 int i;
2330 enum rtx_code code;
2331 const char *fmt;
2332
2333 if (x == 0)
2334 return 0;
2335 code = GET_CODE (x);
2336 switch (code)
2337 {
2338 /* Handle these cases quickly. */
2339 case CONST_INT:
2340 case CONST_DOUBLE:
2341 case CONST_VECTOR:
2342 case SYMBOL_REF:
2343 case LABEL_REF:
2344 case CONST:
2345 case PC:
2346 case CC0:
2347 case REG:
2348 case SCRATCH:
2349 return 0;
2350
2351 case ASM_INPUT:
2352 case UNSPEC_VOLATILE:
2353 case TRAP_IF:
2354 return 1;
2355
2356 case ASM_OPERANDS:
2357 return MEM_VOLATILE_P (x);
2358
2359 /* Memory ref can trap unless it's a static var or a stack slot. */
2360 case MEM:
2361 if (MEM_NOTRAP_P (x))
2362 return 0;
2363 return rtx_addr_can_trap_p (XEXP (x, 0));
2364
2365 /* Division by a non-constant might trap. */
2366 case DIV:
2367 case MOD:
2368 case UDIV:
2369 case UMOD:
2370 if (HONOR_SNANS (GET_MODE (x)))
2371 return 1;
2372 if (! CONSTANT_P (XEXP (x, 1))
2373 || (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2374 && flag_trapping_math))
2375 return 1;
2376 if (XEXP (x, 1) == const0_rtx)
2377 return 1;
2378 break;
2379
2380 case EXPR_LIST:
2381 /* An EXPR_LIST is used to represent a function call. This
2382 certainly may trap. */
2383 return 1;
2384
2385 case GE:
2386 case GT:
2387 case LE:
2388 case LT:
2389 case COMPARE:
2390 /* Some floating point comparisons may trap. */
2391 if (!flag_trapping_math)
2392 break;
2393 /* ??? There is no machine independent way to check for tests that trap
2394 when COMPARE is used, though many targets do make this distinction.
2395 For instance, sparc uses CCFPE for compares which generate exceptions
2396 and CCFP for compares which do not generate exceptions. */
2397 if (HONOR_NANS (GET_MODE (x)))
2398 return 1;
2399 /* But often the compare has some CC mode, so check operand
2400 modes as well. */
2401 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2402 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2403 return 1;
2404 break;
2405
2406 case EQ:
2407 case NE:
2408 if (HONOR_SNANS (GET_MODE (x)))
2409 return 1;
2410 /* Often comparison is CC mode, so check operand modes. */
2411 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2412 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2413 return 1;
2414 break;
2415
2416 case FIX:
2417 /* Conversion of floating point might trap. */
2418 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2419 return 1;
2420 break;
2421
2422 case NEG:
2423 case ABS:
2424 /* These operations don't trap even with floating point. */
2425 break;
2426
2427 default:
2428 /* Any floating arithmetic may trap. */
2429 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
2430 && flag_trapping_math)
2431 return 1;
2432 }
2433
2434 fmt = GET_RTX_FORMAT (code);
2435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2436 {
2437 if (fmt[i] == 'e')
2438 {
2439 if (may_trap_p (XEXP (x, i)))
2440 return 1;
2441 }
2442 else if (fmt[i] == 'E')
2443 {
2444 int j;
2445 for (j = 0; j < XVECLEN (x, i); j++)
2446 if (may_trap_p (XVECEXP (x, i, j)))
2447 return 1;
2448 }
2449 }
2450 return 0;
2451 }
2452 \f
2453 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2454 i.e., an inequality. */
2455
2456 int
2457 inequality_comparisons_p (rtx x)
2458 {
2459 const char *fmt;
2460 int len, i;
2461 enum rtx_code code = GET_CODE (x);
2462
2463 switch (code)
2464 {
2465 case REG:
2466 case SCRATCH:
2467 case PC:
2468 case CC0:
2469 case CONST_INT:
2470 case CONST_DOUBLE:
2471 case CONST_VECTOR:
2472 case CONST:
2473 case LABEL_REF:
2474 case SYMBOL_REF:
2475 return 0;
2476
2477 case LT:
2478 case LTU:
2479 case GT:
2480 case GTU:
2481 case LE:
2482 case LEU:
2483 case GE:
2484 case GEU:
2485 return 1;
2486
2487 default:
2488 break;
2489 }
2490
2491 len = GET_RTX_LENGTH (code);
2492 fmt = GET_RTX_FORMAT (code);
2493
2494 for (i = 0; i < len; i++)
2495 {
2496 if (fmt[i] == 'e')
2497 {
2498 if (inequality_comparisons_p (XEXP (x, i)))
2499 return 1;
2500 }
2501 else if (fmt[i] == 'E')
2502 {
2503 int j;
2504 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2505 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2506 return 1;
2507 }
2508 }
2509
2510 return 0;
2511 }
2512 \f
2513 /* Replace any occurrence of FROM in X with TO. The function does
2514 not enter into CONST_DOUBLE for the replace.
2515
2516 Note that copying is not done so X must not be shared unless all copies
2517 are to be modified. */
2518
2519 rtx
2520 replace_rtx (rtx x, rtx from, rtx to)
2521 {
2522 int i, j;
2523 const char *fmt;
2524
2525 /* The following prevents loops occurrence when we change MEM in
2526 CONST_DOUBLE onto the same CONST_DOUBLE. */
2527 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2528 return x;
2529
2530 if (x == from)
2531 return to;
2532
2533 /* Allow this function to make replacements in EXPR_LISTs. */
2534 if (x == 0)
2535 return 0;
2536
2537 if (GET_CODE (x) == SUBREG)
2538 {
2539 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2540
2541 if (GET_CODE (new) == CONST_INT)
2542 {
2543 x = simplify_subreg (GET_MODE (x), new,
2544 GET_MODE (SUBREG_REG (x)),
2545 SUBREG_BYTE (x));
2546 if (! x)
2547 abort ();
2548 }
2549 else
2550 SUBREG_REG (x) = new;
2551
2552 return x;
2553 }
2554 else if (GET_CODE (x) == ZERO_EXTEND)
2555 {
2556 rtx new = replace_rtx (XEXP (x, 0), from, to);
2557
2558 if (GET_CODE (new) == CONST_INT)
2559 {
2560 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2561 new, GET_MODE (XEXP (x, 0)));
2562 if (! x)
2563 abort ();
2564 }
2565 else
2566 XEXP (x, 0) = new;
2567
2568 return x;
2569 }
2570
2571 fmt = GET_RTX_FORMAT (GET_CODE (x));
2572 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2573 {
2574 if (fmt[i] == 'e')
2575 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2576 else if (fmt[i] == 'E')
2577 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2578 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2579 }
2580
2581 return x;
2582 }
2583 \f
2584 /* Throughout the rtx X, replace many registers according to REG_MAP.
2585 Return the replacement for X (which may be X with altered contents).
2586 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2587 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2588
2589 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2590 should not be mapped to pseudos or vice versa since validate_change
2591 is not called.
2592
2593 If REPLACE_DEST is 1, replacements are also done in destinations;
2594 otherwise, only sources are replaced. */
2595
2596 rtx
2597 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2598 {
2599 enum rtx_code code;
2600 int i;
2601 const char *fmt;
2602
2603 if (x == 0)
2604 return x;
2605
2606 code = GET_CODE (x);
2607 switch (code)
2608 {
2609 case SCRATCH:
2610 case PC:
2611 case CC0:
2612 case CONST_INT:
2613 case CONST_DOUBLE:
2614 case CONST_VECTOR:
2615 case CONST:
2616 case SYMBOL_REF:
2617 case LABEL_REF:
2618 return x;
2619
2620 case REG:
2621 /* Verify that the register has an entry before trying to access it. */
2622 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2623 {
2624 /* SUBREGs can't be shared. Always return a copy to ensure that if
2625 this replacement occurs more than once then each instance will
2626 get distinct rtx. */
2627 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2628 return copy_rtx (reg_map[REGNO (x)]);
2629 return reg_map[REGNO (x)];
2630 }
2631 return x;
2632
2633 case SUBREG:
2634 /* Prevent making nested SUBREGs. */
2635 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2636 && reg_map[REGNO (SUBREG_REG (x))] != 0
2637 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2638 {
2639 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2640 return simplify_gen_subreg (GET_MODE (x), map_val,
2641 GET_MODE (SUBREG_REG (x)),
2642 SUBREG_BYTE (x));
2643 }
2644 break;
2645
2646 case SET:
2647 if (replace_dest)
2648 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2649
2650 else if (GET_CODE (SET_DEST (x)) == MEM
2651 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2652 /* Even if we are not to replace destinations, replace register if it
2653 is CONTAINED in destination (destination is memory or
2654 STRICT_LOW_PART). */
2655 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2656 reg_map, nregs, 0);
2657 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2658 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2659 break;
2660
2661 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2662 return x;
2663
2664 default:
2665 break;
2666 }
2667
2668 fmt = GET_RTX_FORMAT (code);
2669 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2670 {
2671 if (fmt[i] == 'e')
2672 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2673 else if (fmt[i] == 'E')
2674 {
2675 int j;
2676 for (j = 0; j < XVECLEN (x, i); j++)
2677 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2678 nregs, replace_dest);
2679 }
2680 }
2681 return x;
2682 }
2683
2684 /* Replace occurrences of the old label in *X with the new one.
2685 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2686
2687 int
2688 replace_label (rtx *x, void *data)
2689 {
2690 rtx l = *x;
2691 rtx old_label = ((replace_label_data *) data)->r1;
2692 rtx new_label = ((replace_label_data *) data)->r2;
2693 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2694
2695 if (l == NULL_RTX)
2696 return 0;
2697
2698 if (GET_CODE (l) == SYMBOL_REF
2699 && CONSTANT_POOL_ADDRESS_P (l))
2700 {
2701 rtx c = get_pool_constant (l);
2702 if (rtx_referenced_p (old_label, c))
2703 {
2704 rtx new_c, new_l;
2705 replace_label_data *d = (replace_label_data *) data;
2706
2707 /* Create a copy of constant C; replace the label inside
2708 but do not update LABEL_NUSES because uses in constant pool
2709 are not counted. */
2710 new_c = copy_rtx (c);
2711 d->update_label_nuses = false;
2712 for_each_rtx (&new_c, replace_label, data);
2713 d->update_label_nuses = update_label_nuses;
2714
2715 /* Add the new constant NEW_C to constant pool and replace
2716 the old reference to constant by new reference. */
2717 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2718 *x = replace_rtx (l, l, new_l);
2719 }
2720 return 0;
2721 }
2722
2723 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2724 field. This is not handled by for_each_rtx because it doesn't
2725 handle unprinted ('0') fields. */
2726 if (GET_CODE (l) == JUMP_INSN && JUMP_LABEL (l) == old_label)
2727 JUMP_LABEL (l) = new_label;
2728
2729 if ((GET_CODE (l) == LABEL_REF
2730 || GET_CODE (l) == INSN_LIST)
2731 && XEXP (l, 0) == old_label)
2732 {
2733 XEXP (l, 0) = new_label;
2734 if (update_label_nuses)
2735 {
2736 ++LABEL_NUSES (new_label);
2737 --LABEL_NUSES (old_label);
2738 }
2739 return 0;
2740 }
2741
2742 return 0;
2743 }
2744
2745 /* When *BODY is equal to X or X is directly referenced by *BODY
2746 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2747 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2748
2749 static int
2750 rtx_referenced_p_1 (rtx *body, void *x)
2751 {
2752 rtx y = (rtx) x;
2753
2754 if (*body == NULL_RTX)
2755 return y == NULL_RTX;
2756
2757 /* Return true if a label_ref *BODY refers to label Y. */
2758 if (GET_CODE (*body) == LABEL_REF && GET_CODE (y) == CODE_LABEL)
2759 return XEXP (*body, 0) == y;
2760
2761 /* If *BODY is a reference to pool constant traverse the constant. */
2762 if (GET_CODE (*body) == SYMBOL_REF
2763 && CONSTANT_POOL_ADDRESS_P (*body))
2764 return rtx_referenced_p (y, get_pool_constant (*body));
2765
2766 /* By default, compare the RTL expressions. */
2767 return rtx_equal_p (*body, y);
2768 }
2769
2770 /* Return true if X is referenced in BODY. */
2771
2772 int
2773 rtx_referenced_p (rtx x, rtx body)
2774 {
2775 return for_each_rtx (&body, rtx_referenced_p_1, x);
2776 }
2777
2778 /* If INSN is a tablejump return true and store the label (before jump table) to
2779 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2780
2781 bool
2782 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2783 {
2784 rtx label, table;
2785
2786 if (GET_CODE (insn) == JUMP_INSN
2787 && (label = JUMP_LABEL (insn)) != NULL_RTX
2788 && (table = next_active_insn (label)) != NULL_RTX
2789 && GET_CODE (table) == JUMP_INSN
2790 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2791 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2792 {
2793 if (labelp)
2794 *labelp = label;
2795 if (tablep)
2796 *tablep = table;
2797 return true;
2798 }
2799 return false;
2800 }
2801
2802 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2803 constant that is not in the constant pool and not in the condition
2804 of an IF_THEN_ELSE. */
2805
2806 static int
2807 computed_jump_p_1 (rtx x)
2808 {
2809 enum rtx_code code = GET_CODE (x);
2810 int i, j;
2811 const char *fmt;
2812
2813 switch (code)
2814 {
2815 case LABEL_REF:
2816 case PC:
2817 return 0;
2818
2819 case CONST:
2820 case CONST_INT:
2821 case CONST_DOUBLE:
2822 case CONST_VECTOR:
2823 case SYMBOL_REF:
2824 case REG:
2825 return 1;
2826
2827 case MEM:
2828 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2829 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2830
2831 case IF_THEN_ELSE:
2832 return (computed_jump_p_1 (XEXP (x, 1))
2833 || computed_jump_p_1 (XEXP (x, 2)));
2834
2835 default:
2836 break;
2837 }
2838
2839 fmt = GET_RTX_FORMAT (code);
2840 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2841 {
2842 if (fmt[i] == 'e'
2843 && computed_jump_p_1 (XEXP (x, i)))
2844 return 1;
2845
2846 else if (fmt[i] == 'E')
2847 for (j = 0; j < XVECLEN (x, i); j++)
2848 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2849 return 1;
2850 }
2851
2852 return 0;
2853 }
2854
2855 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2856
2857 Tablejumps and casesi insns are not considered indirect jumps;
2858 we can recognize them by a (use (label_ref)). */
2859
2860 int
2861 computed_jump_p (rtx insn)
2862 {
2863 int i;
2864 if (GET_CODE (insn) == JUMP_INSN)
2865 {
2866 rtx pat = PATTERN (insn);
2867
2868 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2869 return 0;
2870 else if (GET_CODE (pat) == PARALLEL)
2871 {
2872 int len = XVECLEN (pat, 0);
2873 int has_use_labelref = 0;
2874
2875 for (i = len - 1; i >= 0; i--)
2876 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2877 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2878 == LABEL_REF))
2879 has_use_labelref = 1;
2880
2881 if (! has_use_labelref)
2882 for (i = len - 1; i >= 0; i--)
2883 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2884 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2885 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2886 return 1;
2887 }
2888 else if (GET_CODE (pat) == SET
2889 && SET_DEST (pat) == pc_rtx
2890 && computed_jump_p_1 (SET_SRC (pat)))
2891 return 1;
2892 }
2893 return 0;
2894 }
2895
2896 /* Traverse X via depth-first search, calling F for each
2897 sub-expression (including X itself). F is also passed the DATA.
2898 If F returns -1, do not traverse sub-expressions, but continue
2899 traversing the rest of the tree. If F ever returns any other
2900 nonzero value, stop the traversal, and return the value returned
2901 by F. Otherwise, return 0. This function does not traverse inside
2902 tree structure that contains RTX_EXPRs, or into sub-expressions
2903 whose format code is `0' since it is not known whether or not those
2904 codes are actually RTL.
2905
2906 This routine is very general, and could (should?) be used to
2907 implement many of the other routines in this file. */
2908
2909 int
2910 for_each_rtx (rtx *x, rtx_function f, void *data)
2911 {
2912 int result;
2913 int length;
2914 const char *format;
2915 int i;
2916
2917 /* Call F on X. */
2918 result = (*f) (x, data);
2919 if (result == -1)
2920 /* Do not traverse sub-expressions. */
2921 return 0;
2922 else if (result != 0)
2923 /* Stop the traversal. */
2924 return result;
2925
2926 if (*x == NULL_RTX)
2927 /* There are no sub-expressions. */
2928 return 0;
2929
2930 length = GET_RTX_LENGTH (GET_CODE (*x));
2931 format = GET_RTX_FORMAT (GET_CODE (*x));
2932
2933 for (i = 0; i < length; ++i)
2934 {
2935 switch (format[i])
2936 {
2937 case 'e':
2938 result = for_each_rtx (&XEXP (*x, i), f, data);
2939 if (result != 0)
2940 return result;
2941 break;
2942
2943 case 'V':
2944 case 'E':
2945 if (XVEC (*x, i) != 0)
2946 {
2947 int j;
2948 for (j = 0; j < XVECLEN (*x, i); ++j)
2949 {
2950 result = for_each_rtx (&XVECEXP (*x, i, j), f, data);
2951 if (result != 0)
2952 return result;
2953 }
2954 }
2955 break;
2956
2957 default:
2958 /* Nothing to do. */
2959 break;
2960 }
2961
2962 }
2963
2964 return 0;
2965 }
2966
2967 /* Searches X for any reference to REGNO, returning the rtx of the
2968 reference found if any. Otherwise, returns NULL_RTX. */
2969
2970 rtx
2971 regno_use_in (unsigned int regno, rtx x)
2972 {
2973 const char *fmt;
2974 int i, j;
2975 rtx tem;
2976
2977 if (REG_P (x) && REGNO (x) == regno)
2978 return x;
2979
2980 fmt = GET_RTX_FORMAT (GET_CODE (x));
2981 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2982 {
2983 if (fmt[i] == 'e')
2984 {
2985 if ((tem = regno_use_in (regno, XEXP (x, i))))
2986 return tem;
2987 }
2988 else if (fmt[i] == 'E')
2989 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2990 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2991 return tem;
2992 }
2993
2994 return NULL_RTX;
2995 }
2996
2997 /* Return a value indicating whether OP, an operand of a commutative
2998 operation, is preferred as the first or second operand. The higher
2999 the value, the stronger the preference for being the first operand.
3000 We use negative values to indicate a preference for the first operand
3001 and positive values for the second operand. */
3002
3003 int
3004 commutative_operand_precedence (rtx op)
3005 {
3006 enum rtx_code code = GET_CODE (op);
3007
3008 /* Constants always come the second operand. Prefer "nice" constants. */
3009 if (code == CONST_INT)
3010 return -7;
3011 if (code == CONST_DOUBLE)
3012 return -6;
3013 op = avoid_constant_pool_reference (op);
3014
3015 switch (GET_RTX_CLASS (code))
3016 {
3017 case RTX_CONST_OBJ:
3018 if (code == CONST_INT)
3019 return -5;
3020 if (code == CONST_DOUBLE)
3021 return -4;
3022 return -3;
3023
3024 case RTX_EXTRA:
3025 /* SUBREGs of objects should come second. */
3026 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3027 return -2;
3028
3029 if (!CONSTANT_P (op))
3030 return 0;
3031 else
3032 /* As for RTX_CONST_OBJ. */
3033 return -3;
3034
3035 case RTX_OBJ:
3036 /* Complex expressions should be the first, so decrease priority
3037 of objects. */
3038 return -1;
3039
3040 case RTX_COMM_ARITH:
3041 /* Prefer operands that are themselves commutative to be first.
3042 This helps to make things linear. In particular,
3043 (and (and (reg) (reg)) (not (reg))) is canonical. */
3044 return 4;
3045
3046 case RTX_BIN_ARITH:
3047 /* If only one operand is a binary expression, it will be the first
3048 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3049 is canonical, although it will usually be further simplified. */
3050 return 2;
3051
3052 case RTX_UNARY:
3053 /* Then prefer NEG and NOT. */
3054 if (code == NEG || code == NOT)
3055 return 1;
3056
3057 default:
3058 return 0;
3059 }
3060 }
3061
3062 /* Return 1 iff it is necessary to swap operands of commutative operation
3063 in order to canonicalize expression. */
3064
3065 int
3066 swap_commutative_operands_p (rtx x, rtx y)
3067 {
3068 return (commutative_operand_precedence (x)
3069 < commutative_operand_precedence (y));
3070 }
3071
3072 /* Return 1 if X is an autoincrement side effect and the register is
3073 not the stack pointer. */
3074 int
3075 auto_inc_p (rtx x)
3076 {
3077 switch (GET_CODE (x))
3078 {
3079 case PRE_INC:
3080 case POST_INC:
3081 case PRE_DEC:
3082 case POST_DEC:
3083 case PRE_MODIFY:
3084 case POST_MODIFY:
3085 /* There are no REG_INC notes for SP. */
3086 if (XEXP (x, 0) != stack_pointer_rtx)
3087 return 1;
3088 default:
3089 break;
3090 }
3091 return 0;
3092 }
3093
3094 /* Return 1 if the sequence of instructions beginning with FROM and up
3095 to and including TO is safe to move. If NEW_TO is non-NULL, and
3096 the sequence is not already safe to move, but can be easily
3097 extended to a sequence which is safe, then NEW_TO will point to the
3098 end of the extended sequence.
3099
3100 For now, this function only checks that the region contains whole
3101 exception regions, but it could be extended to check additional
3102 conditions as well. */
3103
3104 int
3105 insns_safe_to_move_p (rtx from, rtx to, rtx *new_to)
3106 {
3107 int eh_region_count = 0;
3108 int past_to_p = 0;
3109 rtx r = from;
3110
3111 /* By default, assume the end of the region will be what was
3112 suggested. */
3113 if (new_to)
3114 *new_to = to;
3115
3116 while (r)
3117 {
3118 if (GET_CODE (r) == NOTE)
3119 {
3120 switch (NOTE_LINE_NUMBER (r))
3121 {
3122 case NOTE_INSN_EH_REGION_BEG:
3123 ++eh_region_count;
3124 break;
3125
3126 case NOTE_INSN_EH_REGION_END:
3127 if (eh_region_count == 0)
3128 /* This sequence of instructions contains the end of
3129 an exception region, but not he beginning. Moving
3130 it will cause chaos. */
3131 return 0;
3132
3133 --eh_region_count;
3134 break;
3135
3136 default:
3137 break;
3138 }
3139 }
3140 else if (past_to_p)
3141 /* If we've passed TO, and we see a non-note instruction, we
3142 can't extend the sequence to a movable sequence. */
3143 return 0;
3144
3145 if (r == to)
3146 {
3147 if (!new_to)
3148 /* It's OK to move the sequence if there were matched sets of
3149 exception region notes. */
3150 return eh_region_count == 0;
3151
3152 past_to_p = 1;
3153 }
3154
3155 /* It's OK to move the sequence if there were matched sets of
3156 exception region notes. */
3157 if (past_to_p && eh_region_count == 0)
3158 {
3159 *new_to = r;
3160 return 1;
3161 }
3162
3163 /* Go to the next instruction. */
3164 r = NEXT_INSN (r);
3165 }
3166
3167 return 0;
3168 }
3169
3170 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3171 int
3172 loc_mentioned_in_p (rtx *loc, rtx in)
3173 {
3174 enum rtx_code code = GET_CODE (in);
3175 const char *fmt = GET_RTX_FORMAT (code);
3176 int i, j;
3177
3178 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3179 {
3180 if (loc == &in->u.fld[i].rtx)
3181 return 1;
3182 if (fmt[i] == 'e')
3183 {
3184 if (loc_mentioned_in_p (loc, XEXP (in, i)))
3185 return 1;
3186 }
3187 else if (fmt[i] == 'E')
3188 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3189 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3190 return 1;
3191 }
3192 return 0;
3193 }
3194
3195 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3196 and SUBREG_BYTE, return the bit offset where the subreg begins
3197 (counting from the least significant bit of the operand). */
3198
3199 unsigned int
3200 subreg_lsb_1 (enum machine_mode outer_mode,
3201 enum machine_mode inner_mode,
3202 unsigned int subreg_byte)
3203 {
3204 unsigned int bitpos;
3205 unsigned int byte;
3206 unsigned int word;
3207
3208 /* A paradoxical subreg begins at bit position 0. */
3209 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3210 return 0;
3211
3212 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3213 /* If the subreg crosses a word boundary ensure that
3214 it also begins and ends on a word boundary. */
3215 if ((subreg_byte % UNITS_PER_WORD
3216 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3217 && (subreg_byte % UNITS_PER_WORD
3218 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD))
3219 abort ();
3220
3221 if (WORDS_BIG_ENDIAN)
3222 word = (GET_MODE_SIZE (inner_mode)
3223 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3224 else
3225 word = subreg_byte / UNITS_PER_WORD;
3226 bitpos = word * BITS_PER_WORD;
3227
3228 if (BYTES_BIG_ENDIAN)
3229 byte = (GET_MODE_SIZE (inner_mode)
3230 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3231 else
3232 byte = subreg_byte % UNITS_PER_WORD;
3233 bitpos += byte * BITS_PER_UNIT;
3234
3235 return bitpos;
3236 }
3237
3238 /* Given a subreg X, return the bit offset where the subreg begins
3239 (counting from the least significant bit of the reg). */
3240
3241 unsigned int
3242 subreg_lsb (rtx x)
3243 {
3244 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3245 SUBREG_BYTE (x));
3246 }
3247
3248 /* This function returns the regno offset of a subreg expression.
3249 xregno - A regno of an inner hard subreg_reg (or what will become one).
3250 xmode - The mode of xregno.
3251 offset - The byte offset.
3252 ymode - The mode of a top level SUBREG (or what may become one).
3253 RETURN - The regno offset which would be used. */
3254 unsigned int
3255 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3256 unsigned int offset, enum machine_mode ymode)
3257 {
3258 int nregs_xmode, nregs_ymode;
3259 int mode_multiple, nregs_multiple;
3260 int y_offset;
3261
3262 if (xregno >= FIRST_PSEUDO_REGISTER)
3263 abort ();
3264
3265 nregs_xmode = hard_regno_nregs[xregno][xmode];
3266 nregs_ymode = hard_regno_nregs[xregno][ymode];
3267
3268 /* If this is a big endian paradoxical subreg, which uses more actual
3269 hard registers than the original register, we must return a negative
3270 offset so that we find the proper highpart of the register. */
3271 if (offset == 0
3272 && nregs_ymode > nregs_xmode
3273 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3274 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3275 return nregs_xmode - nregs_ymode;
3276
3277 if (offset == 0 || nregs_xmode == nregs_ymode)
3278 return 0;
3279
3280 /* size of ymode must not be greater than the size of xmode. */
3281 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3282 if (mode_multiple == 0)
3283 abort ();
3284
3285 y_offset = offset / GET_MODE_SIZE (ymode);
3286 nregs_multiple = nregs_xmode / nregs_ymode;
3287 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3288 }
3289
3290 /* This function returns true when the offset is representable via
3291 subreg_offset in the given regno.
3292 xregno - A regno of an inner hard subreg_reg (or what will become one).
3293 xmode - The mode of xregno.
3294 offset - The byte offset.
3295 ymode - The mode of a top level SUBREG (or what may become one).
3296 RETURN - The regno offset which would be used. */
3297 bool
3298 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3299 unsigned int offset, enum machine_mode ymode)
3300 {
3301 int nregs_xmode, nregs_ymode;
3302 int mode_multiple, nregs_multiple;
3303 int y_offset;
3304
3305 if (xregno >= FIRST_PSEUDO_REGISTER)
3306 abort ();
3307
3308 nregs_xmode = hard_regno_nregs[xregno][xmode];
3309 nregs_ymode = hard_regno_nregs[xregno][ymode];
3310
3311 /* Paradoxical subregs are always valid. */
3312 if (offset == 0
3313 && nregs_ymode > nregs_xmode
3314 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3315 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3316 return true;
3317
3318 /* Lowpart subregs are always valid. */
3319 if (offset == subreg_lowpart_offset (ymode, xmode))
3320 return true;
3321
3322 #ifdef ENABLE_CHECKING
3323 /* This should always pass, otherwise we don't know how to verify the
3324 constraint. These conditions may be relaxed but subreg_offset would
3325 need to be redesigned. */
3326 if (GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)
3327 || GET_MODE_SIZE (ymode) % nregs_ymode
3328 || nregs_xmode % nregs_ymode)
3329 abort ();
3330 #endif
3331
3332 /* The XMODE value can be seen as a vector of NREGS_XMODE
3333 values. The subreg must represent a lowpart of given field.
3334 Compute what field it is. */
3335 offset -= subreg_lowpart_offset (ymode,
3336 mode_for_size (GET_MODE_BITSIZE (xmode)
3337 / nregs_xmode,
3338 MODE_INT, 0));
3339
3340 /* size of ymode must not be greater than the size of xmode. */
3341 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3342 if (mode_multiple == 0)
3343 abort ();
3344
3345 y_offset = offset / GET_MODE_SIZE (ymode);
3346 nregs_multiple = nregs_xmode / nregs_ymode;
3347 #ifdef ENABLE_CHECKING
3348 if (offset % GET_MODE_SIZE (ymode)
3349 || mode_multiple % nregs_multiple)
3350 abort ();
3351 #endif
3352 return (!(y_offset % (mode_multiple / nregs_multiple)));
3353 }
3354
3355 /* Return the final regno that a subreg expression refers to. */
3356 unsigned int
3357 subreg_regno (rtx x)
3358 {
3359 unsigned int ret;
3360 rtx subreg = SUBREG_REG (x);
3361 int regno = REGNO (subreg);
3362
3363 ret = regno + subreg_regno_offset (regno,
3364 GET_MODE (subreg),
3365 SUBREG_BYTE (x),
3366 GET_MODE (x));
3367 return ret;
3368
3369 }
3370 struct parms_set_data
3371 {
3372 int nregs;
3373 HARD_REG_SET regs;
3374 };
3375
3376 /* Helper function for noticing stores to parameter registers. */
3377 static void
3378 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3379 {
3380 struct parms_set_data *d = data;
3381 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3382 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3383 {
3384 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3385 d->nregs--;
3386 }
3387 }
3388
3389 /* Look backward for first parameter to be loaded.
3390 Do not skip BOUNDARY. */
3391 rtx
3392 find_first_parameter_load (rtx call_insn, rtx boundary)
3393 {
3394 struct parms_set_data parm;
3395 rtx p, before;
3396
3397 /* Since different machines initialize their parameter registers
3398 in different orders, assume nothing. Collect the set of all
3399 parameter registers. */
3400 CLEAR_HARD_REG_SET (parm.regs);
3401 parm.nregs = 0;
3402 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3403 if (GET_CODE (XEXP (p, 0)) == USE
3404 && REG_P (XEXP (XEXP (p, 0), 0)))
3405 {
3406 if (REGNO (XEXP (XEXP (p, 0), 0)) >= FIRST_PSEUDO_REGISTER)
3407 abort ();
3408
3409 /* We only care about registers which can hold function
3410 arguments. */
3411 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3412 continue;
3413
3414 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3415 parm.nregs++;
3416 }
3417 before = call_insn;
3418
3419 /* Search backward for the first set of a register in this set. */
3420 while (parm.nregs && before != boundary)
3421 {
3422 before = PREV_INSN (before);
3423
3424 /* It is possible that some loads got CSEed from one call to
3425 another. Stop in that case. */
3426 if (GET_CODE (before) == CALL_INSN)
3427 break;
3428
3429 /* Our caller needs either ensure that we will find all sets
3430 (in case code has not been optimized yet), or take care
3431 for possible labels in a way by setting boundary to preceding
3432 CODE_LABEL. */
3433 if (GET_CODE (before) == CODE_LABEL)
3434 {
3435 if (before != boundary)
3436 abort ();
3437 break;
3438 }
3439
3440 if (INSN_P (before))
3441 note_stores (PATTERN (before), parms_set, &parm);
3442 }
3443 return before;
3444 }
3445
3446 /* Return true if we should avoid inserting code between INSN and preceding
3447 call instruction. */
3448
3449 bool
3450 keep_with_call_p (rtx insn)
3451 {
3452 rtx set;
3453
3454 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3455 {
3456 if (REG_P (SET_DEST (set))
3457 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3458 && fixed_regs[REGNO (SET_DEST (set))]
3459 && general_operand (SET_SRC (set), VOIDmode))
3460 return true;
3461 if (REG_P (SET_SRC (set))
3462 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3463 && REG_P (SET_DEST (set))
3464 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3465 return true;
3466 /* There may be a stack pop just after the call and before the store
3467 of the return register. Search for the actual store when deciding
3468 if we can break or not. */
3469 if (SET_DEST (set) == stack_pointer_rtx)
3470 {
3471 rtx i2 = next_nonnote_insn (insn);
3472 if (i2 && keep_with_call_p (i2))
3473 return true;
3474 }
3475 }
3476 return false;
3477 }
3478
3479 /* Return true when store to register X can be hoisted to the place
3480 with LIVE registers (can be NULL). Value VAL contains destination
3481 whose value will be used. */
3482
3483 static bool
3484 hoist_test_store (rtx x, rtx val, regset live)
3485 {
3486 if (GET_CODE (x) == SCRATCH)
3487 return true;
3488
3489 if (rtx_equal_p (x, val))
3490 return true;
3491
3492 /* Allow subreg of X in case it is not writing just part of multireg pseudo.
3493 Then we would need to update all users to care hoisting the store too.
3494 Caller may represent that by specifying whole subreg as val. */
3495
3496 if (GET_CODE (x) == SUBREG && rtx_equal_p (SUBREG_REG (x), val))
3497 {
3498 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD
3499 && GET_MODE_BITSIZE (GET_MODE (x)) <
3500 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
3501 return false;
3502 return true;
3503 }
3504 if (GET_CODE (x) == SUBREG)
3505 x = SUBREG_REG (x);
3506
3507 /* Anything except register store is not hoistable. This includes the
3508 partial stores to registers. */
3509
3510 if (!REG_P (x))
3511 return false;
3512
3513 /* Pseudo registers can be always replaced by another pseudo to avoid
3514 the side effect, for hard register we must ensure that they are dead.
3515 Eventually we may want to add code to try turn pseudos to hards, but it
3516 is unlikely useful. */
3517
3518 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3519 {
3520 int regno = REGNO (x);
3521 int n = hard_regno_nregs[regno][GET_MODE (x)];
3522
3523 if (!live)
3524 return false;
3525 if (REGNO_REG_SET_P (live, regno))
3526 return false;
3527 while (--n > 0)
3528 if (REGNO_REG_SET_P (live, regno + n))
3529 return false;
3530 }
3531 return true;
3532 }
3533
3534
3535 /* Return true if INSN can be hoisted to place with LIVE hard registers
3536 (LIVE can be NULL when unknown). VAL is expected to be stored by the insn
3537 and used by the hoisting pass. */
3538
3539 bool
3540 can_hoist_insn_p (rtx insn, rtx val, regset live)
3541 {
3542 rtx pat = PATTERN (insn);
3543 int i;
3544
3545 /* It probably does not worth the complexity to handle multiple
3546 set stores. */
3547 if (!single_set (insn))
3548 return false;
3549 /* We can move CALL_INSN, but we need to check that all caller clobbered
3550 regs are dead. */
3551 if (GET_CODE (insn) == CALL_INSN)
3552 return false;
3553 /* In future we will handle hoisting of libcall sequences, but
3554 give up for now. */
3555 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
3556 return false;
3557 switch (GET_CODE (pat))
3558 {
3559 case SET:
3560 if (!hoist_test_store (SET_DEST (pat), val, live))
3561 return false;
3562 break;
3563 case USE:
3564 /* USES do have sick semantics, so do not move them. */
3565 return false;
3566 break;
3567 case CLOBBER:
3568 if (!hoist_test_store (XEXP (pat, 0), val, live))
3569 return false;
3570 break;
3571 case PARALLEL:
3572 for (i = 0; i < XVECLEN (pat, 0); i++)
3573 {
3574 rtx x = XVECEXP (pat, 0, i);
3575 switch (GET_CODE (x))
3576 {
3577 case SET:
3578 if (!hoist_test_store (SET_DEST (x), val, live))
3579 return false;
3580 break;
3581 case USE:
3582 /* We need to fix callers to really ensure availability
3583 of all values insn uses, but for now it is safe to prohibit
3584 hoisting of any insn having such a hidden uses. */
3585 return false;
3586 break;
3587 case CLOBBER:
3588 if (!hoist_test_store (SET_DEST (x), val, live))
3589 return false;
3590 break;
3591 default:
3592 break;
3593 }
3594 }
3595 break;
3596 default:
3597 abort ();
3598 }
3599 return true;
3600 }
3601
3602 /* Update store after hoisting - replace all stores to pseudo registers
3603 by new ones to avoid clobbering of values except for store to VAL that will
3604 be updated to NEW. */
3605
3606 static void
3607 hoist_update_store (rtx insn, rtx *xp, rtx val, rtx new)
3608 {
3609 rtx x = *xp;
3610
3611 if (GET_CODE (x) == SCRATCH)
3612 return;
3613
3614 if (GET_CODE (x) == SUBREG && SUBREG_REG (x) == val)
3615 validate_change (insn, xp,
3616 simplify_gen_subreg (GET_MODE (x), new, GET_MODE (new),
3617 SUBREG_BYTE (x)), 1);
3618 if (rtx_equal_p (x, val))
3619 {
3620 validate_change (insn, xp, new, 1);
3621 return;
3622 }
3623 if (GET_CODE (x) == SUBREG)
3624 {
3625 xp = &SUBREG_REG (x);
3626 x = *xp;
3627 }
3628
3629 if (!REG_P (x))
3630 abort ();
3631
3632 /* We've verified that hard registers are dead, so we may keep the side
3633 effect. Otherwise replace it by new pseudo. */
3634 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
3635 validate_change (insn, xp, gen_reg_rtx (GET_MODE (x)), 1);
3636 REG_NOTES (insn)
3637 = alloc_EXPR_LIST (REG_UNUSED, *xp, REG_NOTES (insn));
3638 }
3639
3640 /* Create a copy of INSN after AFTER replacing store of VAL to NEW
3641 and each other side effect to pseudo register by new pseudo register. */
3642
3643 rtx
3644 hoist_insn_after (rtx insn, rtx after, rtx val, rtx new)
3645 {
3646 rtx pat;
3647 int i;
3648 rtx note;
3649
3650 insn = emit_copy_of_insn_after (insn, after);
3651 pat = PATTERN (insn);
3652
3653 /* Remove REG_UNUSED notes as we will re-emit them. */
3654 while ((note = find_reg_note (insn, REG_UNUSED, NULL_RTX)))
3655 remove_note (insn, note);
3656
3657 /* To get this working callers must ensure to move everything referenced
3658 by REG_EQUAL/REG_EQUIV notes too. Lets remove them, it is probably
3659 easier. */
3660 while ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX)))
3661 remove_note (insn, note);
3662 while ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)))
3663 remove_note (insn, note);
3664
3665 /* Remove REG_DEAD notes as they might not be valid anymore in case
3666 we create redundancy. */
3667 while ((note = find_reg_note (insn, REG_DEAD, NULL_RTX)))
3668 remove_note (insn, note);
3669 switch (GET_CODE (pat))
3670 {
3671 case SET:
3672 hoist_update_store (insn, &SET_DEST (pat), val, new);
3673 break;
3674 case USE:
3675 break;
3676 case CLOBBER:
3677 hoist_update_store (insn, &XEXP (pat, 0), val, new);
3678 break;
3679 case PARALLEL:
3680 for (i = 0; i < XVECLEN (pat, 0); i++)
3681 {
3682 rtx x = XVECEXP (pat, 0, i);
3683 switch (GET_CODE (x))
3684 {
3685 case SET:
3686 hoist_update_store (insn, &SET_DEST (x), val, new);
3687 break;
3688 case USE:
3689 break;
3690 case CLOBBER:
3691 hoist_update_store (insn, &SET_DEST (x), val, new);
3692 break;
3693 default:
3694 break;
3695 }
3696 }
3697 break;
3698 default:
3699 abort ();
3700 }
3701 if (!apply_change_group ())
3702 abort ();
3703
3704 return insn;
3705 }
3706
3707 rtx
3708 hoist_insn_to_edge (rtx insn, edge e, rtx val, rtx new)
3709 {
3710 rtx new_insn;
3711
3712 /* We cannot insert instructions on an abnormal critical edge.
3713 It will be easier to find the culprit if we die now. */
3714 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
3715 abort ();
3716
3717 /* Do not use emit_insn_on_edge as we want to preserve notes and similar
3718 stuff. We also emit CALL_INSNS and firends. */
3719 if (e->insns.r == NULL_RTX)
3720 {
3721 start_sequence ();
3722 emit_note (NOTE_INSN_DELETED);
3723 }
3724 else
3725 push_to_sequence (e->insns.r);
3726
3727 new_insn = hoist_insn_after (insn, get_last_insn (), val, new);
3728
3729 e->insns.r = get_insns ();
3730 end_sequence ();
3731 return new_insn;
3732 }
3733
3734 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3735 to non-complex jumps. That is, direct unconditional, conditional,
3736 and tablejumps, but not computed jumps or returns. It also does
3737 not apply to the fallthru case of a conditional jump. */
3738
3739 bool
3740 label_is_jump_target_p (rtx label, rtx jump_insn)
3741 {
3742 rtx tmp = JUMP_LABEL (jump_insn);
3743
3744 if (label == tmp)
3745 return true;
3746
3747 if (tablejump_p (jump_insn, NULL, &tmp))
3748 {
3749 rtvec vec = XVEC (PATTERN (tmp),
3750 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3751 int i, veclen = GET_NUM_ELEM (vec);
3752
3753 for (i = 0; i < veclen; ++i)
3754 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3755 return true;
3756 }
3757
3758 return false;
3759 }
3760
3761 \f
3762 /* Return an estimate of the cost of computing rtx X.
3763 One use is in cse, to decide which expression to keep in the hash table.
3764 Another is in rtl generation, to pick the cheapest way to multiply.
3765 Other uses like the latter are expected in the future. */
3766
3767 int
3768 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3769 {
3770 int i, j;
3771 enum rtx_code code;
3772 const char *fmt;
3773 int total;
3774
3775 if (x == 0)
3776 return 0;
3777
3778 /* Compute the default costs of certain things.
3779 Note that targetm.rtx_costs can override the defaults. */
3780
3781 code = GET_CODE (x);
3782 switch (code)
3783 {
3784 case MULT:
3785 total = COSTS_N_INSNS (5);
3786 break;
3787 case DIV:
3788 case UDIV:
3789 case MOD:
3790 case UMOD:
3791 total = COSTS_N_INSNS (7);
3792 break;
3793 case USE:
3794 /* Used in loop.c and combine.c as a marker. */
3795 total = 0;
3796 break;
3797 default:
3798 total = COSTS_N_INSNS (1);
3799 }
3800
3801 switch (code)
3802 {
3803 case REG:
3804 return 0;
3805
3806 case SUBREG:
3807 /* If we can't tie these modes, make this expensive. The larger
3808 the mode, the more expensive it is. */
3809 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3810 return COSTS_N_INSNS (2
3811 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3812 break;
3813
3814 default:
3815 if (targetm.rtx_costs (x, code, outer_code, &total))
3816 return total;
3817 break;
3818 }
3819
3820 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3821 which is already in total. */
3822
3823 fmt = GET_RTX_FORMAT (code);
3824 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3825 if (fmt[i] == 'e')
3826 total += rtx_cost (XEXP (x, i), code);
3827 else if (fmt[i] == 'E')
3828 for (j = 0; j < XVECLEN (x, i); j++)
3829 total += rtx_cost (XVECEXP (x, i, j), code);
3830
3831 return total;
3832 }
3833 \f
3834 /* Return cost of address expression X.
3835 Expect that X is properly formed address reference. */
3836
3837 int
3838 address_cost (rtx x, enum machine_mode mode)
3839 {
3840 /* The address_cost target hook does not deal with ADDRESSOF nodes. But,
3841 during CSE, such nodes are present. Using an ADDRESSOF node which
3842 refers to the address of a REG is a good thing because we can then
3843 turn (MEM (ADDRESSOF (REG))) into just plain REG. */
3844
3845 if (GET_CODE (x) == ADDRESSOF && REG_P (XEXP ((x), 0)))
3846 return -1;
3847
3848 /* We may be asked for cost of various unusual addresses, such as operands
3849 of push instruction. It is not worthwhile to complicate writing
3850 of the target hook by such cases. */
3851
3852 if (!memory_address_p (mode, x))
3853 return 1000;
3854
3855 return targetm.address_cost (x);
3856 }
3857
3858 /* If the target doesn't override, compute the cost as with arithmetic. */
3859
3860 int
3861 default_address_cost (rtx x)
3862 {
3863 return rtx_cost (x, MEM);
3864 }
3865 \f
3866
3867 unsigned HOST_WIDE_INT
3868 nonzero_bits (rtx x, enum machine_mode mode)
3869 {
3870 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3871 }
3872
3873 unsigned int
3874 num_sign_bit_copies (rtx x, enum machine_mode mode)
3875 {
3876 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3877 }
3878
3879 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3880 It avoids exponential behavior in nonzero_bits1 when X has
3881 identical subexpressions on the first or the second level. */
3882
3883 static unsigned HOST_WIDE_INT
3884 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3885 enum machine_mode known_mode,
3886 unsigned HOST_WIDE_INT known_ret)
3887 {
3888 if (x == known_x && mode == known_mode)
3889 return known_ret;
3890
3891 /* Try to find identical subexpressions. If found call
3892 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3893 precomputed value for the subexpression as KNOWN_RET. */
3894
3895 if (ARITHMETIC_P (x))
3896 {
3897 rtx x0 = XEXP (x, 0);
3898 rtx x1 = XEXP (x, 1);
3899
3900 /* Check the first level. */
3901 if (x0 == x1)
3902 return nonzero_bits1 (x, mode, x0, mode,
3903 cached_nonzero_bits (x0, mode, known_x,
3904 known_mode, known_ret));
3905
3906 /* Check the second level. */
3907 if (ARITHMETIC_P (x0)
3908 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3909 return nonzero_bits1 (x, mode, x1, mode,
3910 cached_nonzero_bits (x1, mode, known_x,
3911 known_mode, known_ret));
3912
3913 if (ARITHMETIC_P (x1)
3914 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3915 return nonzero_bits1 (x, mode, x0, mode,
3916 cached_nonzero_bits (x0, mode, known_x,
3917 known_mode, known_ret));
3918 }
3919
3920 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3921 }
3922
3923 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3924 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3925 is less useful. We can't allow both, because that results in exponential
3926 run time recursion. There is a nullstone testcase that triggered
3927 this. This macro avoids accidental uses of num_sign_bit_copies. */
3928 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3929
3930 /* Given an expression, X, compute which bits in X can be nonzero.
3931 We don't care about bits outside of those defined in MODE.
3932
3933 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3934 an arithmetic operation, we can do better. */
3935
3936 static unsigned HOST_WIDE_INT
3937 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3938 enum machine_mode known_mode,
3939 unsigned HOST_WIDE_INT known_ret)
3940 {
3941 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3942 unsigned HOST_WIDE_INT inner_nz;
3943 enum rtx_code code;
3944 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3945
3946 /* For floating-point values, assume all bits are needed. */
3947 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3948 return nonzero;
3949
3950 /* If X is wider than MODE, use its mode instead. */
3951 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3952 {
3953 mode = GET_MODE (x);
3954 nonzero = GET_MODE_MASK (mode);
3955 mode_width = GET_MODE_BITSIZE (mode);
3956 }
3957
3958 if (mode_width > HOST_BITS_PER_WIDE_INT)
3959 /* Our only callers in this case look for single bit values. So
3960 just return the mode mask. Those tests will then be false. */
3961 return nonzero;
3962
3963 #ifndef WORD_REGISTER_OPERATIONS
3964 /* If MODE is wider than X, but both are a single word for both the host
3965 and target machines, we can compute this from which bits of the
3966 object might be nonzero in its own mode, taking into account the fact
3967 that on many CISC machines, accessing an object in a wider mode
3968 causes the high-order bits to become undefined. So they are
3969 not known to be zero. */
3970
3971 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3972 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3973 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3974 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3975 {
3976 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3977 known_x, known_mode, known_ret);
3978 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3979 return nonzero;
3980 }
3981 #endif
3982
3983 code = GET_CODE (x);
3984 switch (code)
3985 {
3986 case REG:
3987 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3988 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3989 all the bits above ptr_mode are known to be zero. */
3990 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3991 && REG_POINTER (x))
3992 nonzero &= GET_MODE_MASK (ptr_mode);
3993 #endif
3994
3995 /* Include declared information about alignment of pointers. */
3996 /* ??? We don't properly preserve REG_POINTER changes across
3997 pointer-to-integer casts, so we can't trust it except for
3998 things that we know must be pointers. See execute/960116-1.c. */
3999 if ((x == stack_pointer_rtx
4000 || x == frame_pointer_rtx
4001 || x == arg_pointer_rtx)
4002 && REGNO_POINTER_ALIGN (REGNO (x)))
4003 {
4004 unsigned HOST_WIDE_INT alignment
4005 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4006
4007 #ifdef PUSH_ROUNDING
4008 /* If PUSH_ROUNDING is defined, it is possible for the
4009 stack to be momentarily aligned only to that amount,
4010 so we pick the least alignment. */
4011 if (x == stack_pointer_rtx && PUSH_ARGS)
4012 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4013 alignment);
4014 #endif
4015
4016 nonzero &= ~(alignment - 1);
4017 }
4018
4019 {
4020 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4021 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4022 known_mode, known_ret,
4023 &nonzero_for_hook);
4024
4025 if (new)
4026 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
4027 known_mode, known_ret);
4028
4029 return nonzero_for_hook;
4030 }
4031
4032 case CONST_INT:
4033 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4034 /* If X is negative in MODE, sign-extend the value. */
4035 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
4036 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
4037 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
4038 #endif
4039
4040 return INTVAL (x);
4041
4042 case MEM:
4043 #ifdef LOAD_EXTEND_OP
4044 /* In many, if not most, RISC machines, reading a byte from memory
4045 zeros the rest of the register. Noticing that fact saves a lot
4046 of extra zero-extends. */
4047 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4048 nonzero &= GET_MODE_MASK (GET_MODE (x));
4049 #endif
4050 break;
4051
4052 case EQ: case NE:
4053 case UNEQ: case LTGT:
4054 case GT: case GTU: case UNGT:
4055 case LT: case LTU: case UNLT:
4056 case GE: case GEU: case UNGE:
4057 case LE: case LEU: case UNLE:
4058 case UNORDERED: case ORDERED:
4059
4060 /* If this produces an integer result, we know which bits are set.
4061 Code here used to clear bits outside the mode of X, but that is
4062 now done above. */
4063
4064 if (GET_MODE_CLASS (mode) == MODE_INT
4065 && mode_width <= HOST_BITS_PER_WIDE_INT)
4066 nonzero = STORE_FLAG_VALUE;
4067 break;
4068
4069 case NEG:
4070 #if 0
4071 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4072 and num_sign_bit_copies. */
4073 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4074 == GET_MODE_BITSIZE (GET_MODE (x)))
4075 nonzero = 1;
4076 #endif
4077
4078 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
4079 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4080 break;
4081
4082 case ABS:
4083 #if 0
4084 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4085 and num_sign_bit_copies. */
4086 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4087 == GET_MODE_BITSIZE (GET_MODE (x)))
4088 nonzero = 1;
4089 #endif
4090 break;
4091
4092 case TRUNCATE:
4093 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4094 known_x, known_mode, known_ret)
4095 & GET_MODE_MASK (mode));
4096 break;
4097
4098 case ZERO_EXTEND:
4099 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4100 known_x, known_mode, known_ret);
4101 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4102 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4103 break;
4104
4105 case SIGN_EXTEND:
4106 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4107 Otherwise, show all the bits in the outer mode but not the inner
4108 may be nonzero. */
4109 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4110 known_x, known_mode, known_ret);
4111 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4112 {
4113 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4114 if (inner_nz
4115 & (((HOST_WIDE_INT) 1
4116 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
4117 inner_nz |= (GET_MODE_MASK (mode)
4118 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4119 }
4120
4121 nonzero &= inner_nz;
4122 break;
4123
4124 case AND:
4125 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4126 known_x, known_mode, known_ret)
4127 & cached_nonzero_bits (XEXP (x, 1), mode,
4128 known_x, known_mode, known_ret);
4129 break;
4130
4131 case XOR: case IOR:
4132 case UMIN: case UMAX: case SMIN: case SMAX:
4133 {
4134 unsigned HOST_WIDE_INT nonzero0 =
4135 cached_nonzero_bits (XEXP (x, 0), mode,
4136 known_x, known_mode, known_ret);
4137
4138 /* Don't call nonzero_bits for the second time if it cannot change
4139 anything. */
4140 if ((nonzero & nonzero0) != nonzero)
4141 nonzero &= nonzero0
4142 | cached_nonzero_bits (XEXP (x, 1), mode,
4143 known_x, known_mode, known_ret);
4144 }
4145 break;
4146
4147 case PLUS: case MINUS:
4148 case MULT:
4149 case DIV: case UDIV:
4150 case MOD: case UMOD:
4151 /* We can apply the rules of arithmetic to compute the number of
4152 high- and low-order zero bits of these operations. We start by
4153 computing the width (position of the highest-order nonzero bit)
4154 and the number of low-order zero bits for each value. */
4155 {
4156 unsigned HOST_WIDE_INT nz0 =
4157 cached_nonzero_bits (XEXP (x, 0), mode,
4158 known_x, known_mode, known_ret);
4159 unsigned HOST_WIDE_INT nz1 =
4160 cached_nonzero_bits (XEXP (x, 1), mode,
4161 known_x, known_mode, known_ret);
4162 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
4163 int width0 = floor_log2 (nz0) + 1;
4164 int width1 = floor_log2 (nz1) + 1;
4165 int low0 = floor_log2 (nz0 & -nz0);
4166 int low1 = floor_log2 (nz1 & -nz1);
4167 HOST_WIDE_INT op0_maybe_minusp
4168 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
4169 HOST_WIDE_INT op1_maybe_minusp
4170 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
4171 unsigned int result_width = mode_width;
4172 int result_low = 0;
4173
4174 switch (code)
4175 {
4176 case PLUS:
4177 result_width = MAX (width0, width1) + 1;
4178 result_low = MIN (low0, low1);
4179 break;
4180 case MINUS:
4181 result_low = MIN (low0, low1);
4182 break;
4183 case MULT:
4184 result_width = width0 + width1;
4185 result_low = low0 + low1;
4186 break;
4187 case DIV:
4188 if (width1 == 0)
4189 break;
4190 if (! op0_maybe_minusp && ! op1_maybe_minusp)
4191 result_width = width0;
4192 break;
4193 case UDIV:
4194 if (width1 == 0)
4195 break;
4196 result_width = width0;
4197 break;
4198 case MOD:
4199 if (width1 == 0)
4200 break;
4201 if (! op0_maybe_minusp && ! op1_maybe_minusp)
4202 result_width = MIN (width0, width1);
4203 result_low = MIN (low0, low1);
4204 break;
4205 case UMOD:
4206 if (width1 == 0)
4207 break;
4208 result_width = MIN (width0, width1);
4209 result_low = MIN (low0, low1);
4210 break;
4211 default:
4212 abort ();
4213 }
4214
4215 if (result_width < mode_width)
4216 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
4217
4218 if (result_low > 0)
4219 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
4220
4221 #ifdef POINTERS_EXTEND_UNSIGNED
4222 /* If pointers extend unsigned and this is an addition or subtraction
4223 to a pointer in Pmode, all the bits above ptr_mode are known to be
4224 zero. */
4225 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4226 && (code == PLUS || code == MINUS)
4227 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4228 nonzero &= GET_MODE_MASK (ptr_mode);
4229 #endif
4230 }
4231 break;
4232
4233 case ZERO_EXTRACT:
4234 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4235 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4236 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4237 break;
4238
4239 case SUBREG:
4240 /* If this is a SUBREG formed for a promoted variable that has
4241 been zero-extended, we know that at least the high-order bits
4242 are zero, though others might be too. */
4243
4244 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4245 nonzero = GET_MODE_MASK (GET_MODE (x))
4246 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4247 known_x, known_mode, known_ret);
4248
4249 /* If the inner mode is a single word for both the host and target
4250 machines, we can compute this from which bits of the inner
4251 object might be nonzero. */
4252 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4253 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4254 <= HOST_BITS_PER_WIDE_INT))
4255 {
4256 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4257 known_x, known_mode, known_ret);
4258
4259 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4260 /* If this is a typical RISC machine, we only have to worry
4261 about the way loads are extended. */
4262 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4263 ? (((nonzero
4264 & (((unsigned HOST_WIDE_INT) 1
4265 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4266 != 0))
4267 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4268 || GET_CODE (SUBREG_REG (x)) != MEM)
4269 #endif
4270 {
4271 /* On many CISC machines, accessing an object in a wider mode
4272 causes the high-order bits to become undefined. So they are
4273 not known to be zero. */
4274 if (GET_MODE_SIZE (GET_MODE (x))
4275 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4276 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4277 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4278 }
4279 }
4280 break;
4281
4282 case ASHIFTRT:
4283 case LSHIFTRT:
4284 case ASHIFT:
4285 case ROTATE:
4286 /* The nonzero bits are in two classes: any bits within MODE
4287 that aren't in GET_MODE (x) are always significant. The rest of the
4288 nonzero bits are those that are significant in the operand of
4289 the shift when shifted the appropriate number of bits. This
4290 shows that high-order bits are cleared by the right shift and
4291 low-order bits by left shifts. */
4292 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4293 && INTVAL (XEXP (x, 1)) >= 0
4294 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4295 {
4296 enum machine_mode inner_mode = GET_MODE (x);
4297 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4298 int count = INTVAL (XEXP (x, 1));
4299 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4300 unsigned HOST_WIDE_INT op_nonzero =
4301 cached_nonzero_bits (XEXP (x, 0), mode,
4302 known_x, known_mode, known_ret);
4303 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4304 unsigned HOST_WIDE_INT outer = 0;
4305
4306 if (mode_width > width)
4307 outer = (op_nonzero & nonzero & ~mode_mask);
4308
4309 if (code == LSHIFTRT)
4310 inner >>= count;
4311 else if (code == ASHIFTRT)
4312 {
4313 inner >>= count;
4314
4315 /* If the sign bit may have been nonzero before the shift, we
4316 need to mark all the places it could have been copied to
4317 by the shift as possibly nonzero. */
4318 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4319 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4320 }
4321 else if (code == ASHIFT)
4322 inner <<= count;
4323 else
4324 inner = ((inner << (count % width)
4325 | (inner >> (width - (count % width)))) & mode_mask);
4326
4327 nonzero &= (outer | inner);
4328 }
4329 break;
4330
4331 case FFS:
4332 case POPCOUNT:
4333 /* This is at most the number of bits in the mode. */
4334 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4335 break;
4336
4337 case CLZ:
4338 /* If CLZ has a known value at zero, then the nonzero bits are
4339 that value, plus the number of bits in the mode minus one. */
4340 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4341 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4342 else
4343 nonzero = -1;
4344 break;
4345
4346 case CTZ:
4347 /* If CTZ has a known value at zero, then the nonzero bits are
4348 that value, plus the number of bits in the mode minus one. */
4349 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4350 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4351 else
4352 nonzero = -1;
4353 break;
4354
4355 case PARITY:
4356 nonzero = 1;
4357 break;
4358
4359 case IF_THEN_ELSE:
4360 {
4361 unsigned HOST_WIDE_INT nonzero_true =
4362 cached_nonzero_bits (XEXP (x, 1), mode,
4363 known_x, known_mode, known_ret);
4364
4365 /* Don't call nonzero_bits for the second time if it cannot change
4366 anything. */
4367 if ((nonzero & nonzero_true) != nonzero)
4368 nonzero &= nonzero_true
4369 | cached_nonzero_bits (XEXP (x, 2), mode,
4370 known_x, known_mode, known_ret);
4371 }
4372 break;
4373
4374 default:
4375 break;
4376 }
4377
4378 return nonzero;
4379 }
4380
4381 /* See the macro definition above. */
4382 #undef cached_num_sign_bit_copies
4383
4384 \f
4385 /* The function cached_num_sign_bit_copies is a wrapper around
4386 num_sign_bit_copies1. It avoids exponential behavior in
4387 num_sign_bit_copies1 when X has identical subexpressions on the
4388 first or the second level. */
4389
4390 static unsigned int
4391 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4392 enum machine_mode known_mode,
4393 unsigned int known_ret)
4394 {
4395 if (x == known_x && mode == known_mode)
4396 return known_ret;
4397
4398 /* Try to find identical subexpressions. If found call
4399 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4400 the precomputed value for the subexpression as KNOWN_RET. */
4401
4402 if (ARITHMETIC_P (x))
4403 {
4404 rtx x0 = XEXP (x, 0);
4405 rtx x1 = XEXP (x, 1);
4406
4407 /* Check the first level. */
4408 if (x0 == x1)
4409 return
4410 num_sign_bit_copies1 (x, mode, x0, mode,
4411 cached_num_sign_bit_copies (x0, mode, known_x,
4412 known_mode,
4413 known_ret));
4414
4415 /* Check the second level. */
4416 if (ARITHMETIC_P (x0)
4417 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4418 return
4419 num_sign_bit_copies1 (x, mode, x1, mode,
4420 cached_num_sign_bit_copies (x1, mode, known_x,
4421 known_mode,
4422 known_ret));
4423
4424 if (ARITHMETIC_P (x1)
4425 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4426 return
4427 num_sign_bit_copies1 (x, mode, x0, mode,
4428 cached_num_sign_bit_copies (x0, mode, known_x,
4429 known_mode,
4430 known_ret));
4431 }
4432
4433 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4434 }
4435
4436 /* Return the number of bits at the high-order end of X that are known to
4437 be equal to the sign bit. X will be used in mode MODE; if MODE is
4438 VOIDmode, X will be used in its own mode. The returned value will always
4439 be between 1 and the number of bits in MODE. */
4440
4441 static unsigned int
4442 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4443 enum machine_mode known_mode,
4444 unsigned int known_ret)
4445 {
4446 enum rtx_code code = GET_CODE (x);
4447 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4448 int num0, num1, result;
4449 unsigned HOST_WIDE_INT nonzero;
4450
4451 /* If we weren't given a mode, use the mode of X. If the mode is still
4452 VOIDmode, we don't know anything. Likewise if one of the modes is
4453 floating-point. */
4454
4455 if (mode == VOIDmode)
4456 mode = GET_MODE (x);
4457
4458 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4459 return 1;
4460
4461 /* For a smaller object, just ignore the high bits. */
4462 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4463 {
4464 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4465 known_x, known_mode, known_ret);
4466 return MAX (1,
4467 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4468 }
4469
4470 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4471 {
4472 #ifndef WORD_REGISTER_OPERATIONS
4473 /* If this machine does not do all register operations on the entire
4474 register and MODE is wider than the mode of X, we can say nothing
4475 at all about the high-order bits. */
4476 return 1;
4477 #else
4478 /* Likewise on machines that do, if the mode of the object is smaller
4479 than a word and loads of that size don't sign extend, we can say
4480 nothing about the high order bits. */
4481 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4482 #ifdef LOAD_EXTEND_OP
4483 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4484 #endif
4485 )
4486 return 1;
4487 #endif
4488 }
4489
4490 switch (code)
4491 {
4492 case REG:
4493
4494 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4495 /* If pointers extend signed and this is a pointer in Pmode, say that
4496 all the bits above ptr_mode are known to be sign bit copies. */
4497 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4498 && REG_POINTER (x))
4499 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4500 #endif
4501
4502 {
4503 unsigned int copies_for_hook = 1, copies = 1;
4504 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4505 known_mode, known_ret,
4506 &copies_for_hook);
4507
4508 if (new)
4509 copies = cached_num_sign_bit_copies (new, mode, known_x,
4510 known_mode, known_ret);
4511
4512 if (copies > 1 || copies_for_hook > 1)
4513 return MAX (copies, copies_for_hook);
4514
4515 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4516 }
4517 break;
4518
4519 case MEM:
4520 #ifdef LOAD_EXTEND_OP
4521 /* Some RISC machines sign-extend all loads of smaller than a word. */
4522 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4523 return MAX (1, ((int) bitwidth
4524 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4525 #endif
4526 break;
4527
4528 case CONST_INT:
4529 /* If the constant is negative, take its 1's complement and remask.
4530 Then see how many zero bits we have. */
4531 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4532 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4533 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4534 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4535
4536 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4537
4538 case SUBREG:
4539 /* If this is a SUBREG for a promoted object that is sign-extended
4540 and we are looking at it in a wider mode, we know that at least the
4541 high-order bits are known to be sign bit copies. */
4542
4543 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4544 {
4545 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4546 known_x, known_mode, known_ret);
4547 return MAX ((int) bitwidth
4548 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4549 num0);
4550 }
4551
4552 /* For a smaller object, just ignore the high bits. */
4553 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4554 {
4555 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4556 known_x, known_mode, known_ret);
4557 return MAX (1, (num0
4558 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4559 - bitwidth)));
4560 }
4561
4562 #ifdef WORD_REGISTER_OPERATIONS
4563 #ifdef LOAD_EXTEND_OP
4564 /* For paradoxical SUBREGs on machines where all register operations
4565 affect the entire register, just look inside. Note that we are
4566 passing MODE to the recursive call, so the number of sign bit copies
4567 will remain relative to that mode, not the inner mode. */
4568
4569 /* This works only if loads sign extend. Otherwise, if we get a
4570 reload for the inner part, it may be loaded from the stack, and
4571 then we lose all sign bit copies that existed before the store
4572 to the stack. */
4573
4574 if ((GET_MODE_SIZE (GET_MODE (x))
4575 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4576 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4577 && GET_CODE (SUBREG_REG (x)) == MEM)
4578 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4579 known_x, known_mode, known_ret);
4580 #endif
4581 #endif
4582 break;
4583
4584 case SIGN_EXTRACT:
4585 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4586 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4587 break;
4588
4589 case SIGN_EXTEND:
4590 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4591 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4592 known_x, known_mode, known_ret));
4593
4594 case TRUNCATE:
4595 /* For a smaller object, just ignore the high bits. */
4596 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4597 known_x, known_mode, known_ret);
4598 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4599 - bitwidth)));
4600
4601 case NOT:
4602 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4603 known_x, known_mode, known_ret);
4604
4605 case ROTATE: case ROTATERT:
4606 /* If we are rotating left by a number of bits less than the number
4607 of sign bit copies, we can just subtract that amount from the
4608 number. */
4609 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4610 && INTVAL (XEXP (x, 1)) >= 0
4611 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4612 {
4613 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4614 known_x, known_mode, known_ret);
4615 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4616 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4617 }
4618 break;
4619
4620 case NEG:
4621 /* In general, this subtracts one sign bit copy. But if the value
4622 is known to be positive, the number of sign bit copies is the
4623 same as that of the input. Finally, if the input has just one bit
4624 that might be nonzero, all the bits are copies of the sign bit. */
4625 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4626 known_x, known_mode, known_ret);
4627 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4628 return num0 > 1 ? num0 - 1 : 1;
4629
4630 nonzero = nonzero_bits (XEXP (x, 0), mode);
4631 if (nonzero == 1)
4632 return bitwidth;
4633
4634 if (num0 > 1
4635 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4636 num0--;
4637
4638 return num0;
4639
4640 case IOR: case AND: case XOR:
4641 case SMIN: case SMAX: case UMIN: case UMAX:
4642 /* Logical operations will preserve the number of sign-bit copies.
4643 MIN and MAX operations always return one of the operands. */
4644 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4645 known_x, known_mode, known_ret);
4646 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4647 known_x, known_mode, known_ret);
4648 return MIN (num0, num1);
4649
4650 case PLUS: case MINUS:
4651 /* For addition and subtraction, we can have a 1-bit carry. However,
4652 if we are subtracting 1 from a positive number, there will not
4653 be such a carry. Furthermore, if the positive number is known to
4654 be 0 or 1, we know the result is either -1 or 0. */
4655
4656 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4657 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4658 {
4659 nonzero = nonzero_bits (XEXP (x, 0), mode);
4660 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4661 return (nonzero == 1 || nonzero == 0 ? bitwidth
4662 : bitwidth - floor_log2 (nonzero) - 1);
4663 }
4664
4665 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4666 known_x, known_mode, known_ret);
4667 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4668 known_x, known_mode, known_ret);
4669 result = MAX (1, MIN (num0, num1) - 1);
4670
4671 #ifdef POINTERS_EXTEND_UNSIGNED
4672 /* If pointers extend signed and this is an addition or subtraction
4673 to a pointer in Pmode, all the bits above ptr_mode are known to be
4674 sign bit copies. */
4675 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4676 && (code == PLUS || code == MINUS)
4677 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4678 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4679 - GET_MODE_BITSIZE (ptr_mode) + 1),
4680 result);
4681 #endif
4682 return result;
4683
4684 case MULT:
4685 /* The number of bits of the product is the sum of the number of
4686 bits of both terms. However, unless one of the terms if known
4687 to be positive, we must allow for an additional bit since negating
4688 a negative number can remove one sign bit copy. */
4689
4690 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4691 known_x, known_mode, known_ret);
4692 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4693 known_x, known_mode, known_ret);
4694
4695 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4696 if (result > 0
4697 && (bitwidth > HOST_BITS_PER_WIDE_INT
4698 || (((nonzero_bits (XEXP (x, 0), mode)
4699 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4700 && ((nonzero_bits (XEXP (x, 1), mode)
4701 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4702 result--;
4703
4704 return MAX (1, result);
4705
4706 case UDIV:
4707 /* The result must be <= the first operand. If the first operand
4708 has the high bit set, we know nothing about the number of sign
4709 bit copies. */
4710 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4711 return 1;
4712 else if ((nonzero_bits (XEXP (x, 0), mode)
4713 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4714 return 1;
4715 else
4716 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4717 known_x, known_mode, known_ret);
4718
4719 case UMOD:
4720 /* The result must be <= the second operand. */
4721 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4722 known_x, known_mode, known_ret);
4723
4724 case DIV:
4725 /* Similar to unsigned division, except that we have to worry about
4726 the case where the divisor is negative, in which case we have
4727 to add 1. */
4728 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4729 known_x, known_mode, known_ret);
4730 if (result > 1
4731 && (bitwidth > HOST_BITS_PER_WIDE_INT
4732 || (nonzero_bits (XEXP (x, 1), mode)
4733 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4734 result--;
4735
4736 return result;
4737
4738 case MOD:
4739 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4740 known_x, known_mode, known_ret);
4741 if (result > 1
4742 && (bitwidth > HOST_BITS_PER_WIDE_INT
4743 || (nonzero_bits (XEXP (x, 1), mode)
4744 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4745 result--;
4746
4747 return result;
4748
4749 case ASHIFTRT:
4750 /* Shifts by a constant add to the number of bits equal to the
4751 sign bit. */
4752 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4753 known_x, known_mode, known_ret);
4754 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4755 && INTVAL (XEXP (x, 1)) > 0)
4756 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4757
4758 return num0;
4759
4760 case ASHIFT:
4761 /* Left shifts destroy copies. */
4762 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4763 || INTVAL (XEXP (x, 1)) < 0
4764 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4765 return 1;
4766
4767 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4768 known_x, known_mode, known_ret);
4769 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4770
4771 case IF_THEN_ELSE:
4772 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4773 known_x, known_mode, known_ret);
4774 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4775 known_x, known_mode, known_ret);
4776 return MIN (num0, num1);
4777
4778 case EQ: case NE: case GE: case GT: case LE: case LT:
4779 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4780 case GEU: case GTU: case LEU: case LTU:
4781 case UNORDERED: case ORDERED:
4782 /* If the constant is negative, take its 1's complement and remask.
4783 Then see how many zero bits we have. */
4784 nonzero = STORE_FLAG_VALUE;
4785 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4786 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4787 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4788
4789 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4790
4791 default:
4792 break;
4793 }
4794
4795 /* If we haven't been able to figure it out by one of the above rules,
4796 see if some of the high-order bits are known to be zero. If so,
4797 count those bits and return one less than that amount. If we can't
4798 safely compute the mask for this mode, always return BITWIDTH. */
4799
4800 bitwidth = GET_MODE_BITSIZE (mode);
4801 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4802 return 1;
4803
4804 nonzero = nonzero_bits (x, mode);
4805 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4806 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4807 }