i386.c (enum pta_flags): Move out of struct scope...
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, rtx, void *);
56 static bool covers_regno_p (rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (rtx);
60 static void parms_set (rtx, rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
66 rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
69 enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (rtx x)
110 {
111 RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_VECTOR:
124 case SYMBOL_REF:
125 case LABEL_REF:
126 return 0;
127
128 case REG:
129 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
130 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
131 /* The arg pointer varies if it is not a fixed register. */
132 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
133 return 0;
134 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
135 /* ??? When call-clobbered, the value is stable modulo the restore
136 that must happen after a call. This currently screws up local-alloc
137 into believing that the restore is not needed. */
138 if (x == pic_offset_table_rtx)
139 return 0;
140 #endif
141 return 1;
142
143 case ASM_OPERANDS:
144 if (MEM_VOLATILE_P (x))
145 return 1;
146
147 /* Fall through. */
148
149 default:
150 break;
151 }
152
153 fmt = GET_RTX_FORMAT (code);
154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
155 if (fmt[i] == 'e')
156 {
157 if (rtx_unstable_p (XEXP (x, i)))
158 return 1;
159 }
160 else if (fmt[i] == 'E')
161 {
162 int j;
163 for (j = 0; j < XVECLEN (x, i); j++)
164 if (rtx_unstable_p (XVECEXP (x, i, j)))
165 return 1;
166 }
167
168 return 0;
169 }
170
171 /* Return 1 if X has a value that can vary even between two
172 executions of the program. 0 means X can be compared reliably
173 against certain constants or near-constants.
174 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
175 zero, we are slightly more conservative.
176 The frame pointer and the arg pointer are considered constant. */
177
178 int
179 rtx_varies_p (rtx x, int for_alias)
180 {
181 RTX_CODE code;
182 int i;
183 const char *fmt;
184
185 if (!x)
186 return 0;
187
188 code = GET_CODE (x);
189 switch (code)
190 {
191 case MEM:
192 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
193
194 case CONST:
195 case CONST_INT:
196 case CONST_DOUBLE:
197 case CONST_VECTOR:
198 case SYMBOL_REF:
199 case LABEL_REF:
200 return 0;
201
202 case REG:
203 /* Note that we have to test for the actual rtx used for the frame
204 and arg pointers and not just the register number in case we have
205 eliminated the frame and/or arg pointer and are using it
206 for pseudos. */
207 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
208 /* The arg pointer varies if it is not a fixed register. */
209 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
210 return 0;
211 if (x == pic_offset_table_rtx
212 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
213 /* ??? When call-clobbered, the value is stable modulo the restore
214 that must happen after a call. This currently screws up
215 local-alloc into believing that the restore is not needed, so we
216 must return 0 only if we are called from alias analysis. */
217 && for_alias
218 #endif
219 )
220 return 0;
221 return 1;
222
223 case LO_SUM:
224 /* The operand 0 of a LO_SUM is considered constant
225 (in fact it is related specifically to operand 1)
226 during alias analysis. */
227 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
228 || rtx_varies_p (XEXP (x, 1), for_alias);
229
230 case ASM_OPERANDS:
231 if (MEM_VOLATILE_P (x))
232 return 1;
233
234 /* Fall through. */
235
236 default:
237 break;
238 }
239
240 fmt = GET_RTX_FORMAT (code);
241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
242 if (fmt[i] == 'e')
243 {
244 if (rtx_varies_p (XEXP (x, i), for_alias))
245 return 1;
246 }
247 else if (fmt[i] == 'E')
248 {
249 int j;
250 for (j = 0; j < XVECLEN (x, i); j++)
251 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
252 return 1;
253 }
254
255 return 0;
256 }
257
258 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
259 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
260 whether nonzero is returned for unaligned memory accesses on strict
261 alignment machines. */
262
263 static int
264 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
265 {
266 enum rtx_code code = GET_CODE (x);
267
268 switch (code)
269 {
270 case SYMBOL_REF:
271 return SYMBOL_REF_WEAK (x);
272
273 case LABEL_REF:
274 return 0;
275
276 case REG:
277 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
278 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
279 || x == stack_pointer_rtx
280 /* The arg pointer varies if it is not a fixed register. */
281 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
282 return 0;
283 /* All of the virtual frame registers are stack references. */
284 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
285 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
286 return 0;
287 return 1;
288
289 case CONST:
290 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
291
292 case PLUS:
293 /* An address is assumed not to trap if:
294 - it is an address that can't trap plus a constant integer,
295 with the proper remainder modulo the mode size if we are
296 considering unaligned memory references. */
297 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
298 && GET_CODE (XEXP (x, 1)) == CONST_INT)
299 {
300 HOST_WIDE_INT offset;
301
302 if (!STRICT_ALIGNMENT
303 || !unaligned_mems
304 || GET_MODE_SIZE (mode) == 0)
305 return 0;
306
307 offset = INTVAL (XEXP (x, 1));
308
309 #ifdef SPARC_STACK_BOUNDARY_HACK
310 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
311 the real alignment of %sp. However, when it does this, the
312 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
313 if (SPARC_STACK_BOUNDARY_HACK
314 && (XEXP (x, 0) == stack_pointer_rtx
315 || XEXP (x, 0) == hard_frame_pointer_rtx))
316 offset -= STACK_POINTER_OFFSET;
317 #endif
318
319 return offset % GET_MODE_SIZE (mode) != 0;
320 }
321
322 /* - or it is the pic register plus a constant. */
323 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
324 return 0;
325
326 return 1;
327
328 case LO_SUM:
329 case PRE_MODIFY:
330 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
331
332 case PRE_DEC:
333 case PRE_INC:
334 case POST_DEC:
335 case POST_INC:
336 case POST_MODIFY:
337 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
338
339 default:
340 break;
341 }
342
343 /* If it isn't one of the case above, it can cause a trap. */
344 return 1;
345 }
346
347 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
348
349 int
350 rtx_addr_can_trap_p (rtx x)
351 {
352 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
353 }
354
355 /* Return true if X is an address that is known to not be zero. */
356
357 bool
358 nonzero_address_p (rtx x)
359 {
360 enum rtx_code code = GET_CODE (x);
361
362 switch (code)
363 {
364 case SYMBOL_REF:
365 return !SYMBOL_REF_WEAK (x);
366
367 case LABEL_REF:
368 return true;
369
370 case REG:
371 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
372 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
373 || x == stack_pointer_rtx
374 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
375 return true;
376 /* All of the virtual frame registers are stack references. */
377 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
378 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
379 return true;
380 return false;
381
382 case CONST:
383 return nonzero_address_p (XEXP (x, 0));
384
385 case PLUS:
386 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
387 return nonzero_address_p (XEXP (x, 0));
388 /* Handle PIC references. */
389 else if (XEXP (x, 0) == pic_offset_table_rtx
390 && CONSTANT_P (XEXP (x, 1)))
391 return true;
392 return false;
393
394 case PRE_MODIFY:
395 /* Similar to the above; allow positive offsets. Further, since
396 auto-inc is only allowed in memories, the register must be a
397 pointer. */
398 if (GET_CODE (XEXP (x, 1)) == CONST_INT
399 && INTVAL (XEXP (x, 1)) > 0)
400 return true;
401 return nonzero_address_p (XEXP (x, 0));
402
403 case PRE_INC:
404 /* Similarly. Further, the offset is always positive. */
405 return true;
406
407 case PRE_DEC:
408 case POST_DEC:
409 case POST_INC:
410 case POST_MODIFY:
411 return nonzero_address_p (XEXP (x, 0));
412
413 case LO_SUM:
414 return nonzero_address_p (XEXP (x, 1));
415
416 default:
417 break;
418 }
419
420 /* If it isn't one of the case above, might be zero. */
421 return false;
422 }
423
424 /* Return 1 if X refers to a memory location whose address
425 cannot be compared reliably with constant addresses,
426 or if X refers to a BLKmode memory object.
427 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
428 zero, we are slightly more conservative. */
429
430 int
431 rtx_addr_varies_p (rtx x, int for_alias)
432 {
433 enum rtx_code code;
434 int i;
435 const char *fmt;
436
437 if (x == 0)
438 return 0;
439
440 code = GET_CODE (x);
441 if (code == MEM)
442 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
443
444 fmt = GET_RTX_FORMAT (code);
445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
446 if (fmt[i] == 'e')
447 {
448 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
449 return 1;
450 }
451 else if (fmt[i] == 'E')
452 {
453 int j;
454 for (j = 0; j < XVECLEN (x, i); j++)
455 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
456 return 1;
457 }
458 return 0;
459 }
460 \f
461 /* Return the value of the integer term in X, if one is apparent;
462 otherwise return 0.
463 Only obvious integer terms are detected.
464 This is used in cse.c with the `related_value' field. */
465
466 HOST_WIDE_INT
467 get_integer_term (rtx x)
468 {
469 if (GET_CODE (x) == CONST)
470 x = XEXP (x, 0);
471
472 if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return - INTVAL (XEXP (x, 1));
475 if (GET_CODE (x) == PLUS
476 && GET_CODE (XEXP (x, 1)) == CONST_INT)
477 return INTVAL (XEXP (x, 1));
478 return 0;
479 }
480
481 /* If X is a constant, return the value sans apparent integer term;
482 otherwise return 0.
483 Only obvious integer terms are detected. */
484
485 rtx
486 get_related_value (rtx x)
487 {
488 if (GET_CODE (x) != CONST)
489 return 0;
490 x = XEXP (x, 0);
491 if (GET_CODE (x) == PLUS
492 && GET_CODE (XEXP (x, 1)) == CONST_INT)
493 return XEXP (x, 0);
494 else if (GET_CODE (x) == MINUS
495 && GET_CODE (XEXP (x, 1)) == CONST_INT)
496 return XEXP (x, 0);
497 return 0;
498 }
499 \f
500 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
501 to somewhere in the same object or object_block as SYMBOL. */
502
503 bool
504 offset_within_block_p (rtx symbol, HOST_WIDE_INT offset)
505 {
506 tree decl;
507
508 if (GET_CODE (symbol) != SYMBOL_REF)
509 return false;
510
511 if (offset == 0)
512 return true;
513
514 if (offset > 0)
515 {
516 if (CONSTANT_POOL_ADDRESS_P (symbol)
517 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
518 return true;
519
520 decl = SYMBOL_REF_DECL (symbol);
521 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
522 return true;
523 }
524
525 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
526 && SYMBOL_REF_BLOCK (symbol)
527 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
528 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
529 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
530 return true;
531
532 return false;
533 }
534
535 /* Split X into a base and a constant offset, storing them in *BASE_OUT
536 and *OFFSET_OUT respectively. */
537
538 void
539 split_const (rtx x, rtx *base_out, rtx *offset_out)
540 {
541 if (GET_CODE (x) == CONST)
542 {
543 x = XEXP (x, 0);
544 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
545 {
546 *base_out = XEXP (x, 0);
547 *offset_out = XEXP (x, 1);
548 return;
549 }
550 }
551 *base_out = x;
552 *offset_out = const0_rtx;
553 }
554 \f
555 /* Return the number of places FIND appears within X. If COUNT_DEST is
556 zero, we do not count occurrences inside the destination of a SET. */
557
558 int
559 count_occurrences (rtx x, rtx find, int count_dest)
560 {
561 int i, j;
562 enum rtx_code code;
563 const char *format_ptr;
564 int count;
565
566 if (x == find)
567 return 1;
568
569 code = GET_CODE (x);
570
571 switch (code)
572 {
573 case REG:
574 case CONST_INT:
575 case CONST_DOUBLE:
576 case CONST_VECTOR:
577 case SYMBOL_REF:
578 case CODE_LABEL:
579 case PC:
580 case CC0:
581 return 0;
582
583 case EXPR_LIST:
584 count = count_occurrences (XEXP (x, 0), find, count_dest);
585 if (XEXP (x, 1))
586 count += count_occurrences (XEXP (x, 1), find, count_dest);
587 return count;
588
589 case MEM:
590 if (MEM_P (find) && rtx_equal_p (x, find))
591 return 1;
592 break;
593
594 case SET:
595 if (SET_DEST (x) == find && ! count_dest)
596 return count_occurrences (SET_SRC (x), find, count_dest);
597 break;
598
599 default:
600 break;
601 }
602
603 format_ptr = GET_RTX_FORMAT (code);
604 count = 0;
605
606 for (i = 0; i < GET_RTX_LENGTH (code); i++)
607 {
608 switch (*format_ptr++)
609 {
610 case 'e':
611 count += count_occurrences (XEXP (x, i), find, count_dest);
612 break;
613
614 case 'E':
615 for (j = 0; j < XVECLEN (x, i); j++)
616 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
617 break;
618 }
619 }
620 return count;
621 }
622 \f
623 /* Nonzero if register REG appears somewhere within IN.
624 Also works if REG is not a register; in this case it checks
625 for a subexpression of IN that is Lisp "equal" to REG. */
626
627 int
628 reg_mentioned_p (rtx reg, rtx in)
629 {
630 const char *fmt;
631 int i;
632 enum rtx_code code;
633
634 if (in == 0)
635 return 0;
636
637 if (reg == in)
638 return 1;
639
640 if (GET_CODE (in) == LABEL_REF)
641 return reg == XEXP (in, 0);
642
643 code = GET_CODE (in);
644
645 switch (code)
646 {
647 /* Compare registers by number. */
648 case REG:
649 return REG_P (reg) && REGNO (in) == REGNO (reg);
650
651 /* These codes have no constituent expressions
652 and are unique. */
653 case SCRATCH:
654 case CC0:
655 case PC:
656 return 0;
657
658 case CONST_INT:
659 case CONST_VECTOR:
660 case CONST_DOUBLE:
661 /* These are kept unique for a given value. */
662 return 0;
663
664 default:
665 break;
666 }
667
668 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
669 return 1;
670
671 fmt = GET_RTX_FORMAT (code);
672
673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
674 {
675 if (fmt[i] == 'E')
676 {
677 int j;
678 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
679 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
680 return 1;
681 }
682 else if (fmt[i] == 'e'
683 && reg_mentioned_p (reg, XEXP (in, i)))
684 return 1;
685 }
686 return 0;
687 }
688 \f
689 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
690 no CODE_LABEL insn. */
691
692 int
693 no_labels_between_p (rtx beg, rtx end)
694 {
695 rtx p;
696 if (beg == end)
697 return 0;
698 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
699 if (LABEL_P (p))
700 return 0;
701 return 1;
702 }
703
704 /* Nonzero if register REG is used in an insn between
705 FROM_INSN and TO_INSN (exclusive of those two). */
706
707 int
708 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
709 {
710 rtx insn;
711
712 if (from_insn == to_insn)
713 return 0;
714
715 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
716 if (INSN_P (insn)
717 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
718 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
719 return 1;
720 return 0;
721 }
722 \f
723 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
724 is entirely replaced by a new value and the only use is as a SET_DEST,
725 we do not consider it a reference. */
726
727 int
728 reg_referenced_p (rtx x, rtx body)
729 {
730 int i;
731
732 switch (GET_CODE (body))
733 {
734 case SET:
735 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
736 return 1;
737
738 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
739 of a REG that occupies all of the REG, the insn references X if
740 it is mentioned in the destination. */
741 if (GET_CODE (SET_DEST (body)) != CC0
742 && GET_CODE (SET_DEST (body)) != PC
743 && !REG_P (SET_DEST (body))
744 && ! (GET_CODE (SET_DEST (body)) == SUBREG
745 && REG_P (SUBREG_REG (SET_DEST (body)))
746 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
747 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
748 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
749 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
750 && reg_overlap_mentioned_p (x, SET_DEST (body)))
751 return 1;
752 return 0;
753
754 case ASM_OPERANDS:
755 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
756 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
757 return 1;
758 return 0;
759
760 case CALL:
761 case USE:
762 case IF_THEN_ELSE:
763 return reg_overlap_mentioned_p (x, body);
764
765 case TRAP_IF:
766 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
767
768 case PREFETCH:
769 return reg_overlap_mentioned_p (x, XEXP (body, 0));
770
771 case UNSPEC:
772 case UNSPEC_VOLATILE:
773 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
774 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
775 return 1;
776 return 0;
777
778 case PARALLEL:
779 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
780 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
781 return 1;
782 return 0;
783
784 case CLOBBER:
785 if (MEM_P (XEXP (body, 0)))
786 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
787 return 1;
788 return 0;
789
790 case COND_EXEC:
791 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
792 return 1;
793 return reg_referenced_p (x, COND_EXEC_CODE (body));
794
795 default:
796 return 0;
797 }
798 }
799 \f
800 /* Nonzero if register REG is set or clobbered in an insn between
801 FROM_INSN and TO_INSN (exclusive of those two). */
802
803 int
804 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
805 {
806 rtx insn;
807
808 if (from_insn == to_insn)
809 return 0;
810
811 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
812 if (INSN_P (insn) && reg_set_p (reg, insn))
813 return 1;
814 return 0;
815 }
816
817 /* Internals of reg_set_between_p. */
818 int
819 reg_set_p (rtx reg, rtx insn)
820 {
821 /* We can be passed an insn or part of one. If we are passed an insn,
822 check if a side-effect of the insn clobbers REG. */
823 if (INSN_P (insn)
824 && (FIND_REG_INC_NOTE (insn, reg)
825 || (CALL_P (insn)
826 && ((REG_P (reg)
827 && REGNO (reg) < FIRST_PSEUDO_REGISTER
828 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
829 GET_MODE (reg), REGNO (reg)))
830 || MEM_P (reg)
831 || find_reg_fusage (insn, CLOBBER, reg)))))
832 return 1;
833
834 return set_of (reg, insn) != NULL_RTX;
835 }
836
837 /* Similar to reg_set_between_p, but check all registers in X. Return 0
838 only if none of them are modified between START and END. Return 1 if
839 X contains a MEM; this routine does usememory aliasing. */
840
841 int
842 modified_between_p (rtx x, rtx start, rtx end)
843 {
844 enum rtx_code code = GET_CODE (x);
845 const char *fmt;
846 int i, j;
847 rtx insn;
848
849 if (start == end)
850 return 0;
851
852 switch (code)
853 {
854 case CONST_INT:
855 case CONST_DOUBLE:
856 case CONST_VECTOR:
857 case CONST:
858 case SYMBOL_REF:
859 case LABEL_REF:
860 return 0;
861
862 case PC:
863 case CC0:
864 return 1;
865
866 case MEM:
867 if (modified_between_p (XEXP (x, 0), start, end))
868 return 1;
869 if (MEM_READONLY_P (x))
870 return 0;
871 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
872 if (memory_modified_in_insn_p (x, insn))
873 return 1;
874 return 0;
875 break;
876
877 case REG:
878 return reg_set_between_p (x, start, end);
879
880 default:
881 break;
882 }
883
884 fmt = GET_RTX_FORMAT (code);
885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
886 {
887 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
888 return 1;
889
890 else if (fmt[i] == 'E')
891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
892 if (modified_between_p (XVECEXP (x, i, j), start, end))
893 return 1;
894 }
895
896 return 0;
897 }
898
899 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
900 of them are modified in INSN. Return 1 if X contains a MEM; this routine
901 does use memory aliasing. */
902
903 int
904 modified_in_p (rtx x, rtx insn)
905 {
906 enum rtx_code code = GET_CODE (x);
907 const char *fmt;
908 int i, j;
909
910 switch (code)
911 {
912 case CONST_INT:
913 case CONST_DOUBLE:
914 case CONST_VECTOR:
915 case CONST:
916 case SYMBOL_REF:
917 case LABEL_REF:
918 return 0;
919
920 case PC:
921 case CC0:
922 return 1;
923
924 case MEM:
925 if (modified_in_p (XEXP (x, 0), insn))
926 return 1;
927 if (MEM_READONLY_P (x))
928 return 0;
929 if (memory_modified_in_insn_p (x, insn))
930 return 1;
931 return 0;
932 break;
933
934 case REG:
935 return reg_set_p (x, insn);
936
937 default:
938 break;
939 }
940
941 fmt = GET_RTX_FORMAT (code);
942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
943 {
944 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
945 return 1;
946
947 else if (fmt[i] == 'E')
948 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
949 if (modified_in_p (XVECEXP (x, i, j), insn))
950 return 1;
951 }
952
953 return 0;
954 }
955 \f
956 /* Helper function for set_of. */
957 struct set_of_data
958 {
959 rtx found;
960 rtx pat;
961 };
962
963 static void
964 set_of_1 (rtx x, rtx pat, void *data1)
965 {
966 struct set_of_data *data = (struct set_of_data *) (data1);
967 if (rtx_equal_p (x, data->pat)
968 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
969 data->found = pat;
970 }
971
972 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
973 (either directly or via STRICT_LOW_PART and similar modifiers). */
974 rtx
975 set_of (rtx pat, rtx insn)
976 {
977 struct set_of_data data;
978 data.found = NULL_RTX;
979 data.pat = pat;
980 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
981 return data.found;
982 }
983 \f
984 /* Given an INSN, return a SET expression if this insn has only a single SET.
985 It may also have CLOBBERs, USEs, or SET whose output
986 will not be used, which we ignore. */
987
988 rtx
989 single_set_2 (rtx insn, rtx pat)
990 {
991 rtx set = NULL;
992 int set_verified = 1;
993 int i;
994
995 if (GET_CODE (pat) == PARALLEL)
996 {
997 for (i = 0; i < XVECLEN (pat, 0); i++)
998 {
999 rtx sub = XVECEXP (pat, 0, i);
1000 switch (GET_CODE (sub))
1001 {
1002 case USE:
1003 case CLOBBER:
1004 break;
1005
1006 case SET:
1007 /* We can consider insns having multiple sets, where all
1008 but one are dead as single set insns. In common case
1009 only single set is present in the pattern so we want
1010 to avoid checking for REG_UNUSED notes unless necessary.
1011
1012 When we reach set first time, we just expect this is
1013 the single set we are looking for and only when more
1014 sets are found in the insn, we check them. */
1015 if (!set_verified)
1016 {
1017 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1018 && !side_effects_p (set))
1019 set = NULL;
1020 else
1021 set_verified = 1;
1022 }
1023 if (!set)
1024 set = sub, set_verified = 0;
1025 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1026 || side_effects_p (sub))
1027 return NULL_RTX;
1028 break;
1029
1030 default:
1031 return NULL_RTX;
1032 }
1033 }
1034 }
1035 return set;
1036 }
1037
1038 /* Given an INSN, return nonzero if it has more than one SET, else return
1039 zero. */
1040
1041 int
1042 multiple_sets (rtx insn)
1043 {
1044 int found;
1045 int i;
1046
1047 /* INSN must be an insn. */
1048 if (! INSN_P (insn))
1049 return 0;
1050
1051 /* Only a PARALLEL can have multiple SETs. */
1052 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1053 {
1054 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1055 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1056 {
1057 /* If we have already found a SET, then return now. */
1058 if (found)
1059 return 1;
1060 else
1061 found = 1;
1062 }
1063 }
1064
1065 /* Either zero or one SET. */
1066 return 0;
1067 }
1068 \f
1069 /* Return nonzero if the destination of SET equals the source
1070 and there are no side effects. */
1071
1072 int
1073 set_noop_p (rtx set)
1074 {
1075 rtx src = SET_SRC (set);
1076 rtx dst = SET_DEST (set);
1077
1078 if (dst == pc_rtx && src == pc_rtx)
1079 return 1;
1080
1081 if (MEM_P (dst) && MEM_P (src))
1082 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1083
1084 if (GET_CODE (dst) == ZERO_EXTRACT)
1085 return rtx_equal_p (XEXP (dst, 0), src)
1086 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1087 && !side_effects_p (src);
1088
1089 if (GET_CODE (dst) == STRICT_LOW_PART)
1090 dst = XEXP (dst, 0);
1091
1092 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1093 {
1094 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1095 return 0;
1096 src = SUBREG_REG (src);
1097 dst = SUBREG_REG (dst);
1098 }
1099
1100 return (REG_P (src) && REG_P (dst)
1101 && REGNO (src) == REGNO (dst));
1102 }
1103 \f
1104 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1105 value to itself. */
1106
1107 int
1108 noop_move_p (rtx insn)
1109 {
1110 rtx pat = PATTERN (insn);
1111
1112 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1113 return 1;
1114
1115 /* Insns carrying these notes are useful later on. */
1116 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1117 return 0;
1118
1119 /* For now treat an insn with a REG_RETVAL note as a
1120 a special insn which should not be considered a no-op. */
1121 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1122 return 0;
1123
1124 if (GET_CODE (pat) == SET && set_noop_p (pat))
1125 return 1;
1126
1127 if (GET_CODE (pat) == PARALLEL)
1128 {
1129 int i;
1130 /* If nothing but SETs of registers to themselves,
1131 this insn can also be deleted. */
1132 for (i = 0; i < XVECLEN (pat, 0); i++)
1133 {
1134 rtx tem = XVECEXP (pat, 0, i);
1135
1136 if (GET_CODE (tem) == USE
1137 || GET_CODE (tem) == CLOBBER)
1138 continue;
1139
1140 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1141 return 0;
1142 }
1143
1144 return 1;
1145 }
1146 return 0;
1147 }
1148 \f
1149
1150 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1151 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1152 If the object was modified, if we hit a partial assignment to X, or hit a
1153 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1154 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1155 be the src. */
1156
1157 rtx
1158 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1159 {
1160 rtx p;
1161
1162 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1163 p = PREV_INSN (p))
1164 if (INSN_P (p))
1165 {
1166 rtx set = single_set (p);
1167 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1168
1169 if (set && rtx_equal_p (x, SET_DEST (set)))
1170 {
1171 rtx src = SET_SRC (set);
1172
1173 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1174 src = XEXP (note, 0);
1175
1176 if ((valid_to == NULL_RTX
1177 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1178 /* Reject hard registers because we don't usually want
1179 to use them; we'd rather use a pseudo. */
1180 && (! (REG_P (src)
1181 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1182 {
1183 *pinsn = p;
1184 return src;
1185 }
1186 }
1187
1188 /* If set in non-simple way, we don't have a value. */
1189 if (reg_set_p (x, p))
1190 break;
1191 }
1192
1193 return x;
1194 }
1195 \f
1196 /* Return nonzero if register in range [REGNO, ENDREGNO)
1197 appears either explicitly or implicitly in X
1198 other than being stored into.
1199
1200 References contained within the substructure at LOC do not count.
1201 LOC may be zero, meaning don't ignore anything. */
1202
1203 int
1204 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1205 rtx *loc)
1206 {
1207 int i;
1208 unsigned int x_regno;
1209 RTX_CODE code;
1210 const char *fmt;
1211
1212 repeat:
1213 /* The contents of a REG_NONNEG note is always zero, so we must come here
1214 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1215 if (x == 0)
1216 return 0;
1217
1218 code = GET_CODE (x);
1219
1220 switch (code)
1221 {
1222 case REG:
1223 x_regno = REGNO (x);
1224
1225 /* If we modifying the stack, frame, or argument pointer, it will
1226 clobber a virtual register. In fact, we could be more precise,
1227 but it isn't worth it. */
1228 if ((x_regno == STACK_POINTER_REGNUM
1229 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1230 || x_regno == ARG_POINTER_REGNUM
1231 #endif
1232 || x_regno == FRAME_POINTER_REGNUM)
1233 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1234 return 1;
1235
1236 return endregno > x_regno && regno < END_REGNO (x);
1237
1238 case SUBREG:
1239 /* If this is a SUBREG of a hard reg, we can see exactly which
1240 registers are being modified. Otherwise, handle normally. */
1241 if (REG_P (SUBREG_REG (x))
1242 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1243 {
1244 unsigned int inner_regno = subreg_regno (x);
1245 unsigned int inner_endregno
1246 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1247 ? subreg_nregs (x) : 1);
1248
1249 return endregno > inner_regno && regno < inner_endregno;
1250 }
1251 break;
1252
1253 case CLOBBER:
1254 case SET:
1255 if (&SET_DEST (x) != loc
1256 /* Note setting a SUBREG counts as referring to the REG it is in for
1257 a pseudo but not for hard registers since we can
1258 treat each word individually. */
1259 && ((GET_CODE (SET_DEST (x)) == SUBREG
1260 && loc != &SUBREG_REG (SET_DEST (x))
1261 && REG_P (SUBREG_REG (SET_DEST (x)))
1262 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1263 && refers_to_regno_p (regno, endregno,
1264 SUBREG_REG (SET_DEST (x)), loc))
1265 || (!REG_P (SET_DEST (x))
1266 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1267 return 1;
1268
1269 if (code == CLOBBER || loc == &SET_SRC (x))
1270 return 0;
1271 x = SET_SRC (x);
1272 goto repeat;
1273
1274 default:
1275 break;
1276 }
1277
1278 /* X does not match, so try its subexpressions. */
1279
1280 fmt = GET_RTX_FORMAT (code);
1281 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1282 {
1283 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1284 {
1285 if (i == 0)
1286 {
1287 x = XEXP (x, 0);
1288 goto repeat;
1289 }
1290 else
1291 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1292 return 1;
1293 }
1294 else if (fmt[i] == 'E')
1295 {
1296 int j;
1297 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1298 if (loc != &XVECEXP (x, i, j)
1299 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1300 return 1;
1301 }
1302 }
1303 return 0;
1304 }
1305
1306 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1307 we check if any register number in X conflicts with the relevant register
1308 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1309 contains a MEM (we don't bother checking for memory addresses that can't
1310 conflict because we expect this to be a rare case. */
1311
1312 int
1313 reg_overlap_mentioned_p (rtx x, rtx in)
1314 {
1315 unsigned int regno, endregno;
1316
1317 /* If either argument is a constant, then modifying X can not
1318 affect IN. Here we look at IN, we can profitably combine
1319 CONSTANT_P (x) with the switch statement below. */
1320 if (CONSTANT_P (in))
1321 return 0;
1322
1323 recurse:
1324 switch (GET_CODE (x))
1325 {
1326 case STRICT_LOW_PART:
1327 case ZERO_EXTRACT:
1328 case SIGN_EXTRACT:
1329 /* Overly conservative. */
1330 x = XEXP (x, 0);
1331 goto recurse;
1332
1333 case SUBREG:
1334 regno = REGNO (SUBREG_REG (x));
1335 if (regno < FIRST_PSEUDO_REGISTER)
1336 regno = subreg_regno (x);
1337 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1338 ? subreg_nregs (x) : 1);
1339 goto do_reg;
1340
1341 case REG:
1342 regno = REGNO (x);
1343 endregno = END_REGNO (x);
1344 do_reg:
1345 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1346
1347 case MEM:
1348 {
1349 const char *fmt;
1350 int i;
1351
1352 if (MEM_P (in))
1353 return 1;
1354
1355 fmt = GET_RTX_FORMAT (GET_CODE (in));
1356 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1357 if (fmt[i] == 'e')
1358 {
1359 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1360 return 1;
1361 }
1362 else if (fmt[i] == 'E')
1363 {
1364 int j;
1365 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1366 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1367 return 1;
1368 }
1369
1370 return 0;
1371 }
1372
1373 case SCRATCH:
1374 case PC:
1375 case CC0:
1376 return reg_mentioned_p (x, in);
1377
1378 case PARALLEL:
1379 {
1380 int i;
1381
1382 /* If any register in here refers to it we return true. */
1383 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1384 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1385 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1386 return 1;
1387 return 0;
1388 }
1389
1390 default:
1391 gcc_assert (CONSTANT_P (x));
1392 return 0;
1393 }
1394 }
1395 \f
1396 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1397 (X would be the pattern of an insn).
1398 FUN receives two arguments:
1399 the REG, MEM, CC0 or PC being stored in or clobbered,
1400 the SET or CLOBBER rtx that does the store.
1401
1402 If the item being stored in or clobbered is a SUBREG of a hard register,
1403 the SUBREG will be passed. */
1404
1405 void
1406 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1407 {
1408 int i;
1409
1410 if (GET_CODE (x) == COND_EXEC)
1411 x = COND_EXEC_CODE (x);
1412
1413 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1414 {
1415 rtx dest = SET_DEST (x);
1416
1417 while ((GET_CODE (dest) == SUBREG
1418 && (!REG_P (SUBREG_REG (dest))
1419 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1420 || GET_CODE (dest) == ZERO_EXTRACT
1421 || GET_CODE (dest) == STRICT_LOW_PART)
1422 dest = XEXP (dest, 0);
1423
1424 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1425 each of whose first operand is a register. */
1426 if (GET_CODE (dest) == PARALLEL)
1427 {
1428 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1429 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1430 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1431 }
1432 else
1433 (*fun) (dest, x, data);
1434 }
1435
1436 else if (GET_CODE (x) == PARALLEL)
1437 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1438 note_stores (XVECEXP (x, 0, i), fun, data);
1439 }
1440 \f
1441 /* Like notes_stores, but call FUN for each expression that is being
1442 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1443 FUN for each expression, not any interior subexpressions. FUN receives a
1444 pointer to the expression and the DATA passed to this function.
1445
1446 Note that this is not quite the same test as that done in reg_referenced_p
1447 since that considers something as being referenced if it is being
1448 partially set, while we do not. */
1449
1450 void
1451 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1452 {
1453 rtx body = *pbody;
1454 int i;
1455
1456 switch (GET_CODE (body))
1457 {
1458 case COND_EXEC:
1459 (*fun) (&COND_EXEC_TEST (body), data);
1460 note_uses (&COND_EXEC_CODE (body), fun, data);
1461 return;
1462
1463 case PARALLEL:
1464 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1465 note_uses (&XVECEXP (body, 0, i), fun, data);
1466 return;
1467
1468 case SEQUENCE:
1469 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1470 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1471 return;
1472
1473 case USE:
1474 (*fun) (&XEXP (body, 0), data);
1475 return;
1476
1477 case ASM_OPERANDS:
1478 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1479 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1480 return;
1481
1482 case TRAP_IF:
1483 (*fun) (&TRAP_CONDITION (body), data);
1484 return;
1485
1486 case PREFETCH:
1487 (*fun) (&XEXP (body, 0), data);
1488 return;
1489
1490 case UNSPEC:
1491 case UNSPEC_VOLATILE:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 (*fun) (&XVECEXP (body, 0, i), data);
1494 return;
1495
1496 case CLOBBER:
1497 if (MEM_P (XEXP (body, 0)))
1498 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1499 return;
1500
1501 case SET:
1502 {
1503 rtx dest = SET_DEST (body);
1504
1505 /* For sets we replace everything in source plus registers in memory
1506 expression in store and operands of a ZERO_EXTRACT. */
1507 (*fun) (&SET_SRC (body), data);
1508
1509 if (GET_CODE (dest) == ZERO_EXTRACT)
1510 {
1511 (*fun) (&XEXP (dest, 1), data);
1512 (*fun) (&XEXP (dest, 2), data);
1513 }
1514
1515 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1516 dest = XEXP (dest, 0);
1517
1518 if (MEM_P (dest))
1519 (*fun) (&XEXP (dest, 0), data);
1520 }
1521 return;
1522
1523 default:
1524 /* All the other possibilities never store. */
1525 (*fun) (pbody, data);
1526 return;
1527 }
1528 }
1529 \f
1530 /* Return nonzero if X's old contents don't survive after INSN.
1531 This will be true if X is (cc0) or if X is a register and
1532 X dies in INSN or because INSN entirely sets X.
1533
1534 "Entirely set" means set directly and not through a SUBREG, or
1535 ZERO_EXTRACT, so no trace of the old contents remains.
1536 Likewise, REG_INC does not count.
1537
1538 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1539 but for this use that makes no difference, since regs don't overlap
1540 during their lifetimes. Therefore, this function may be used
1541 at any time after deaths have been computed (in flow.c).
1542
1543 If REG is a hard reg that occupies multiple machine registers, this
1544 function will only return 1 if each of those registers will be replaced
1545 by INSN. */
1546
1547 int
1548 dead_or_set_p (rtx insn, rtx x)
1549 {
1550 unsigned int regno, end_regno;
1551 unsigned int i;
1552
1553 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1554 if (GET_CODE (x) == CC0)
1555 return 1;
1556
1557 gcc_assert (REG_P (x));
1558
1559 regno = REGNO (x);
1560 end_regno = END_REGNO (x);
1561 for (i = regno; i < end_regno; i++)
1562 if (! dead_or_set_regno_p (insn, i))
1563 return 0;
1564
1565 return 1;
1566 }
1567
1568 /* Return TRUE iff DEST is a register or subreg of a register and
1569 doesn't change the number of words of the inner register, and any
1570 part of the register is TEST_REGNO. */
1571
1572 static bool
1573 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1574 {
1575 unsigned int regno, endregno;
1576
1577 if (GET_CODE (dest) == SUBREG
1578 && (((GET_MODE_SIZE (GET_MODE (dest))
1579 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1580 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1581 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1582 dest = SUBREG_REG (dest);
1583
1584 if (!REG_P (dest))
1585 return false;
1586
1587 regno = REGNO (dest);
1588 endregno = END_REGNO (dest);
1589 return (test_regno >= regno && test_regno < endregno);
1590 }
1591
1592 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1593 any member matches the covers_regno_no_parallel_p criteria. */
1594
1595 static bool
1596 covers_regno_p (rtx dest, unsigned int test_regno)
1597 {
1598 if (GET_CODE (dest) == PARALLEL)
1599 {
1600 /* Some targets place small structures in registers for return
1601 values of functions, and those registers are wrapped in
1602 PARALLELs that we may see as the destination of a SET. */
1603 int i;
1604
1605 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1606 {
1607 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1608 if (inner != NULL_RTX
1609 && covers_regno_no_parallel_p (inner, test_regno))
1610 return true;
1611 }
1612
1613 return false;
1614 }
1615 else
1616 return covers_regno_no_parallel_p (dest, test_regno);
1617 }
1618
1619 /* Utility function for dead_or_set_p to check an individual register. Also
1620 called from flow.c. */
1621
1622 int
1623 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1624 {
1625 rtx pattern;
1626
1627 /* See if there is a death note for something that includes TEST_REGNO. */
1628 if (find_regno_note (insn, REG_DEAD, test_regno))
1629 return 1;
1630
1631 if (CALL_P (insn)
1632 && find_regno_fusage (insn, CLOBBER, test_regno))
1633 return 1;
1634
1635 pattern = PATTERN (insn);
1636
1637 if (GET_CODE (pattern) == COND_EXEC)
1638 pattern = COND_EXEC_CODE (pattern);
1639
1640 if (GET_CODE (pattern) == SET)
1641 return covers_regno_p (SET_DEST (pattern), test_regno);
1642 else if (GET_CODE (pattern) == PARALLEL)
1643 {
1644 int i;
1645
1646 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1647 {
1648 rtx body = XVECEXP (pattern, 0, i);
1649
1650 if (GET_CODE (body) == COND_EXEC)
1651 body = COND_EXEC_CODE (body);
1652
1653 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1654 && covers_regno_p (SET_DEST (body), test_regno))
1655 return 1;
1656 }
1657 }
1658
1659 return 0;
1660 }
1661
1662 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1663 If DATUM is nonzero, look for one whose datum is DATUM. */
1664
1665 rtx
1666 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1667 {
1668 rtx link;
1669
1670 gcc_assert (insn);
1671
1672 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1673 if (! INSN_P (insn))
1674 return 0;
1675 if (datum == 0)
1676 {
1677 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1678 if (REG_NOTE_KIND (link) == kind)
1679 return link;
1680 return 0;
1681 }
1682
1683 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1684 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1685 return link;
1686 return 0;
1687 }
1688
1689 /* Return the reg-note of kind KIND in insn INSN which applies to register
1690 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1691 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1692 it might be the case that the note overlaps REGNO. */
1693
1694 rtx
1695 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1696 {
1697 rtx link;
1698
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn))
1701 return 0;
1702
1703 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1704 if (REG_NOTE_KIND (link) == kind
1705 /* Verify that it is a register, so that scratch and MEM won't cause a
1706 problem here. */
1707 && REG_P (XEXP (link, 0))
1708 && REGNO (XEXP (link, 0)) <= regno
1709 && END_REGNO (XEXP (link, 0)) > regno)
1710 return link;
1711 return 0;
1712 }
1713
1714 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1715 has such a note. */
1716
1717 rtx
1718 find_reg_equal_equiv_note (rtx insn)
1719 {
1720 rtx link;
1721
1722 if (!INSN_P (insn))
1723 return 0;
1724
1725 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1726 if (REG_NOTE_KIND (link) == REG_EQUAL
1727 || REG_NOTE_KIND (link) == REG_EQUIV)
1728 {
1729 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1730 insns that have multiple sets. Checking single_set to
1731 make sure of this is not the proper check, as explained
1732 in the comment in set_unique_reg_note.
1733
1734 This should be changed into an assert. */
1735 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1736 return 0;
1737 return link;
1738 }
1739 return NULL;
1740 }
1741
1742 /* Check whether INSN is a single_set whose source is known to be
1743 equivalent to a constant. Return that constant if so, otherwise
1744 return null. */
1745
1746 rtx
1747 find_constant_src (rtx insn)
1748 {
1749 rtx note, set, x;
1750
1751 set = single_set (insn);
1752 if (set)
1753 {
1754 x = avoid_constant_pool_reference (SET_SRC (set));
1755 if (CONSTANT_P (x))
1756 return x;
1757 }
1758
1759 note = find_reg_equal_equiv_note (insn);
1760 if (note && CONSTANT_P (XEXP (note, 0)))
1761 return XEXP (note, 0);
1762
1763 return NULL_RTX;
1764 }
1765
1766 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1767 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1768
1769 int
1770 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1771 {
1772 /* If it's not a CALL_INSN, it can't possibly have a
1773 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1774 if (!CALL_P (insn))
1775 return 0;
1776
1777 gcc_assert (datum);
1778
1779 if (!REG_P (datum))
1780 {
1781 rtx link;
1782
1783 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1784 link;
1785 link = XEXP (link, 1))
1786 if (GET_CODE (XEXP (link, 0)) == code
1787 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1788 return 1;
1789 }
1790 else
1791 {
1792 unsigned int regno = REGNO (datum);
1793
1794 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1795 to pseudo registers, so don't bother checking. */
1796
1797 if (regno < FIRST_PSEUDO_REGISTER)
1798 {
1799 unsigned int end_regno = END_HARD_REGNO (datum);
1800 unsigned int i;
1801
1802 for (i = regno; i < end_regno; i++)
1803 if (find_regno_fusage (insn, code, i))
1804 return 1;
1805 }
1806 }
1807
1808 return 0;
1809 }
1810
1811 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1812 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1813
1814 int
1815 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1816 {
1817 rtx link;
1818
1819 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1820 to pseudo registers, so don't bother checking. */
1821
1822 if (regno >= FIRST_PSEUDO_REGISTER
1823 || !CALL_P (insn) )
1824 return 0;
1825
1826 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1827 {
1828 rtx op, reg;
1829
1830 if (GET_CODE (op = XEXP (link, 0)) == code
1831 && REG_P (reg = XEXP (op, 0))
1832 && REGNO (reg) <= regno
1833 && END_HARD_REGNO (reg) > regno)
1834 return 1;
1835 }
1836
1837 return 0;
1838 }
1839
1840 /* Return true if INSN is a call to a pure function. */
1841
1842 int
1843 pure_call_p (rtx insn)
1844 {
1845 rtx link;
1846
1847 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1848 return 0;
1849
1850 /* Look for the note that differentiates const and pure functions. */
1851 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1852 {
1853 rtx u, m;
1854
1855 if (GET_CODE (u = XEXP (link, 0)) == USE
1856 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1857 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1858 return 1;
1859 }
1860
1861 return 0;
1862 }
1863 \f
1864 /* Remove register note NOTE from the REG_NOTES of INSN. */
1865
1866 void
1867 remove_note (rtx insn, rtx note)
1868 {
1869 rtx link;
1870
1871 if (note == NULL_RTX)
1872 return;
1873
1874 if (REG_NOTES (insn) == note)
1875 {
1876 REG_NOTES (insn) = XEXP (note, 1);
1877 return;
1878 }
1879
1880 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1881 if (XEXP (link, 1) == note)
1882 {
1883 XEXP (link, 1) = XEXP (note, 1);
1884 return;
1885 }
1886
1887 gcc_unreachable ();
1888 }
1889
1890 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1891
1892 void
1893 remove_reg_equal_equiv_notes (rtx insn)
1894 {
1895 rtx *loc;
1896
1897 loc = &REG_NOTES (insn);
1898 while (*loc)
1899 {
1900 enum reg_note kind = REG_NOTE_KIND (*loc);
1901 if (kind == REG_EQUAL || kind == REG_EQUIV)
1902 *loc = XEXP (*loc, 1);
1903 else
1904 loc = &XEXP (*loc, 1);
1905 }
1906 }
1907
1908 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1909 return 1 if it is found. A simple equality test is used to determine if
1910 NODE matches. */
1911
1912 int
1913 in_expr_list_p (rtx listp, rtx node)
1914 {
1915 rtx x;
1916
1917 for (x = listp; x; x = XEXP (x, 1))
1918 if (node == XEXP (x, 0))
1919 return 1;
1920
1921 return 0;
1922 }
1923
1924 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1925 remove that entry from the list if it is found.
1926
1927 A simple equality test is used to determine if NODE matches. */
1928
1929 void
1930 remove_node_from_expr_list (rtx node, rtx *listp)
1931 {
1932 rtx temp = *listp;
1933 rtx prev = NULL_RTX;
1934
1935 while (temp)
1936 {
1937 if (node == XEXP (temp, 0))
1938 {
1939 /* Splice the node out of the list. */
1940 if (prev)
1941 XEXP (prev, 1) = XEXP (temp, 1);
1942 else
1943 *listp = XEXP (temp, 1);
1944
1945 return;
1946 }
1947
1948 prev = temp;
1949 temp = XEXP (temp, 1);
1950 }
1951 }
1952 \f
1953 /* Nonzero if X contains any volatile instructions. These are instructions
1954 which may cause unpredictable machine state instructions, and thus no
1955 instructions should be moved or combined across them. This includes
1956 only volatile asms and UNSPEC_VOLATILE instructions. */
1957
1958 int
1959 volatile_insn_p (rtx x)
1960 {
1961 RTX_CODE code;
1962
1963 code = GET_CODE (x);
1964 switch (code)
1965 {
1966 case LABEL_REF:
1967 case SYMBOL_REF:
1968 case CONST_INT:
1969 case CONST:
1970 case CONST_DOUBLE:
1971 case CONST_VECTOR:
1972 case CC0:
1973 case PC:
1974 case REG:
1975 case SCRATCH:
1976 case CLOBBER:
1977 case ADDR_VEC:
1978 case ADDR_DIFF_VEC:
1979 case CALL:
1980 case MEM:
1981 return 0;
1982
1983 case UNSPEC_VOLATILE:
1984 /* case TRAP_IF: This isn't clear yet. */
1985 return 1;
1986
1987 case ASM_INPUT:
1988 case ASM_OPERANDS:
1989 if (MEM_VOLATILE_P (x))
1990 return 1;
1991
1992 default:
1993 break;
1994 }
1995
1996 /* Recursively scan the operands of this expression. */
1997
1998 {
1999 const char *fmt = GET_RTX_FORMAT (code);
2000 int i;
2001
2002 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2003 {
2004 if (fmt[i] == 'e')
2005 {
2006 if (volatile_insn_p (XEXP (x, i)))
2007 return 1;
2008 }
2009 else if (fmt[i] == 'E')
2010 {
2011 int j;
2012 for (j = 0; j < XVECLEN (x, i); j++)
2013 if (volatile_insn_p (XVECEXP (x, i, j)))
2014 return 1;
2015 }
2016 }
2017 }
2018 return 0;
2019 }
2020
2021 /* Nonzero if X contains any volatile memory references
2022 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2023
2024 int
2025 volatile_refs_p (rtx x)
2026 {
2027 RTX_CODE code;
2028
2029 code = GET_CODE (x);
2030 switch (code)
2031 {
2032 case LABEL_REF:
2033 case SYMBOL_REF:
2034 case CONST_INT:
2035 case CONST:
2036 case CONST_DOUBLE:
2037 case CONST_VECTOR:
2038 case CC0:
2039 case PC:
2040 case REG:
2041 case SCRATCH:
2042 case CLOBBER:
2043 case ADDR_VEC:
2044 case ADDR_DIFF_VEC:
2045 return 0;
2046
2047 case UNSPEC_VOLATILE:
2048 return 1;
2049
2050 case MEM:
2051 case ASM_INPUT:
2052 case ASM_OPERANDS:
2053 if (MEM_VOLATILE_P (x))
2054 return 1;
2055
2056 default:
2057 break;
2058 }
2059
2060 /* Recursively scan the operands of this expression. */
2061
2062 {
2063 const char *fmt = GET_RTX_FORMAT (code);
2064 int i;
2065
2066 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2067 {
2068 if (fmt[i] == 'e')
2069 {
2070 if (volatile_refs_p (XEXP (x, i)))
2071 return 1;
2072 }
2073 else if (fmt[i] == 'E')
2074 {
2075 int j;
2076 for (j = 0; j < XVECLEN (x, i); j++)
2077 if (volatile_refs_p (XVECEXP (x, i, j)))
2078 return 1;
2079 }
2080 }
2081 }
2082 return 0;
2083 }
2084
2085 /* Similar to above, except that it also rejects register pre- and post-
2086 incrementing. */
2087
2088 int
2089 side_effects_p (rtx x)
2090 {
2091 RTX_CODE code;
2092
2093 code = GET_CODE (x);
2094 switch (code)
2095 {
2096 case LABEL_REF:
2097 case SYMBOL_REF:
2098 case CONST_INT:
2099 case CONST:
2100 case CONST_DOUBLE:
2101 case CONST_VECTOR:
2102 case CC0:
2103 case PC:
2104 case REG:
2105 case SCRATCH:
2106 case ADDR_VEC:
2107 case ADDR_DIFF_VEC:
2108 return 0;
2109
2110 case CLOBBER:
2111 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2112 when some combination can't be done. If we see one, don't think
2113 that we can simplify the expression. */
2114 return (GET_MODE (x) != VOIDmode);
2115
2116 case PRE_INC:
2117 case PRE_DEC:
2118 case POST_INC:
2119 case POST_DEC:
2120 case PRE_MODIFY:
2121 case POST_MODIFY:
2122 case CALL:
2123 case UNSPEC_VOLATILE:
2124 /* case TRAP_IF: This isn't clear yet. */
2125 return 1;
2126
2127 case MEM:
2128 case ASM_INPUT:
2129 case ASM_OPERANDS:
2130 if (MEM_VOLATILE_P (x))
2131 return 1;
2132
2133 default:
2134 break;
2135 }
2136
2137 /* Recursively scan the operands of this expression. */
2138
2139 {
2140 const char *fmt = GET_RTX_FORMAT (code);
2141 int i;
2142
2143 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2144 {
2145 if (fmt[i] == 'e')
2146 {
2147 if (side_effects_p (XEXP (x, i)))
2148 return 1;
2149 }
2150 else if (fmt[i] == 'E')
2151 {
2152 int j;
2153 for (j = 0; j < XVECLEN (x, i); j++)
2154 if (side_effects_p (XVECEXP (x, i, j)))
2155 return 1;
2156 }
2157 }
2158 }
2159 return 0;
2160 }
2161 \f
2162 enum may_trap_p_flags
2163 {
2164 MTP_UNALIGNED_MEMS = 1,
2165 MTP_AFTER_MOVE = 2
2166 };
2167 /* Return nonzero if evaluating rtx X might cause a trap.
2168 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2169 unaligned memory accesses on strict alignment machines. If
2170 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2171 cannot trap at its current location, but it might become trapping if moved
2172 elsewhere. */
2173
2174 static int
2175 may_trap_p_1 (rtx x, unsigned flags)
2176 {
2177 int i;
2178 enum rtx_code code;
2179 const char *fmt;
2180 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2181
2182 if (x == 0)
2183 return 0;
2184 code = GET_CODE (x);
2185 switch (code)
2186 {
2187 /* Handle these cases quickly. */
2188 case CONST_INT:
2189 case CONST_DOUBLE:
2190 case CONST_VECTOR:
2191 case SYMBOL_REF:
2192 case LABEL_REF:
2193 case CONST:
2194 case PC:
2195 case CC0:
2196 case REG:
2197 case SCRATCH:
2198 return 0;
2199
2200 case ASM_INPUT:
2201 case UNSPEC_VOLATILE:
2202 case TRAP_IF:
2203 return 1;
2204
2205 case ASM_OPERANDS:
2206 return MEM_VOLATILE_P (x);
2207
2208 /* Memory ref can trap unless it's a static var or a stack slot. */
2209 case MEM:
2210 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2211 reference; moving it out of condition might cause its address
2212 become invalid. */
2213 !(flags & MTP_AFTER_MOVE)
2214 && MEM_NOTRAP_P (x)
2215 && (!STRICT_ALIGNMENT || !unaligned_mems))
2216 return 0;
2217 return
2218 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2219
2220 /* Division by a non-constant might trap. */
2221 case DIV:
2222 case MOD:
2223 case UDIV:
2224 case UMOD:
2225 if (HONOR_SNANS (GET_MODE (x)))
2226 return 1;
2227 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2228 return flag_trapping_math;
2229 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2230 return 1;
2231 break;
2232
2233 case EXPR_LIST:
2234 /* An EXPR_LIST is used to represent a function call. This
2235 certainly may trap. */
2236 return 1;
2237
2238 case GE:
2239 case GT:
2240 case LE:
2241 case LT:
2242 case LTGT:
2243 case COMPARE:
2244 /* Some floating point comparisons may trap. */
2245 if (!flag_trapping_math)
2246 break;
2247 /* ??? There is no machine independent way to check for tests that trap
2248 when COMPARE is used, though many targets do make this distinction.
2249 For instance, sparc uses CCFPE for compares which generate exceptions
2250 and CCFP for compares which do not generate exceptions. */
2251 if (HONOR_NANS (GET_MODE (x)))
2252 return 1;
2253 /* But often the compare has some CC mode, so check operand
2254 modes as well. */
2255 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2256 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2257 return 1;
2258 break;
2259
2260 case EQ:
2261 case NE:
2262 if (HONOR_SNANS (GET_MODE (x)))
2263 return 1;
2264 /* Often comparison is CC mode, so check operand modes. */
2265 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2266 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2267 return 1;
2268 break;
2269
2270 case FIX:
2271 /* Conversion of floating point might trap. */
2272 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2273 return 1;
2274 break;
2275
2276 case NEG:
2277 case ABS:
2278 case SUBREG:
2279 /* These operations don't trap even with floating point. */
2280 break;
2281
2282 default:
2283 /* Any floating arithmetic may trap. */
2284 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2285 && flag_trapping_math)
2286 return 1;
2287 }
2288
2289 fmt = GET_RTX_FORMAT (code);
2290 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2291 {
2292 if (fmt[i] == 'e')
2293 {
2294 if (may_trap_p_1 (XEXP (x, i), flags))
2295 return 1;
2296 }
2297 else if (fmt[i] == 'E')
2298 {
2299 int j;
2300 for (j = 0; j < XVECLEN (x, i); j++)
2301 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2302 return 1;
2303 }
2304 }
2305 return 0;
2306 }
2307
2308 /* Return nonzero if evaluating rtx X might cause a trap. */
2309
2310 int
2311 may_trap_p (rtx x)
2312 {
2313 return may_trap_p_1 (x, 0);
2314 }
2315
2316 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2317 is moved from its current location by some optimization. */
2318
2319 int
2320 may_trap_after_code_motion_p (rtx x)
2321 {
2322 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2323 }
2324
2325 /* Same as above, but additionally return nonzero if evaluating rtx X might
2326 cause a fault. We define a fault for the purpose of this function as a
2327 erroneous execution condition that cannot be encountered during the normal
2328 execution of a valid program; the typical example is an unaligned memory
2329 access on a strict alignment machine. The compiler guarantees that it
2330 doesn't generate code that will fault from a valid program, but this
2331 guarantee doesn't mean anything for individual instructions. Consider
2332 the following example:
2333
2334 struct S { int d; union { char *cp; int *ip; }; };
2335
2336 int foo(struct S *s)
2337 {
2338 if (s->d == 1)
2339 return *s->ip;
2340 else
2341 return *s->cp;
2342 }
2343
2344 on a strict alignment machine. In a valid program, foo will never be
2345 invoked on a structure for which d is equal to 1 and the underlying
2346 unique field of the union not aligned on a 4-byte boundary, but the
2347 expression *s->ip might cause a fault if considered individually.
2348
2349 At the RTL level, potentially problematic expressions will almost always
2350 verify may_trap_p; for example, the above dereference can be emitted as
2351 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2352 However, suppose that foo is inlined in a caller that causes s->cp to
2353 point to a local character variable and guarantees that s->d is not set
2354 to 1; foo may have been effectively translated into pseudo-RTL as:
2355
2356 if ((reg:SI) == 1)
2357 (set (reg:SI) (mem:SI (%fp - 7)))
2358 else
2359 (set (reg:QI) (mem:QI (%fp - 7)))
2360
2361 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2362 memory reference to a stack slot, but it will certainly cause a fault
2363 on a strict alignment machine. */
2364
2365 int
2366 may_trap_or_fault_p (rtx x)
2367 {
2368 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2369 }
2370 \f
2371 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2372 i.e., an inequality. */
2373
2374 int
2375 inequality_comparisons_p (rtx x)
2376 {
2377 const char *fmt;
2378 int len, i;
2379 enum rtx_code code = GET_CODE (x);
2380
2381 switch (code)
2382 {
2383 case REG:
2384 case SCRATCH:
2385 case PC:
2386 case CC0:
2387 case CONST_INT:
2388 case CONST_DOUBLE:
2389 case CONST_VECTOR:
2390 case CONST:
2391 case LABEL_REF:
2392 case SYMBOL_REF:
2393 return 0;
2394
2395 case LT:
2396 case LTU:
2397 case GT:
2398 case GTU:
2399 case LE:
2400 case LEU:
2401 case GE:
2402 case GEU:
2403 return 1;
2404
2405 default:
2406 break;
2407 }
2408
2409 len = GET_RTX_LENGTH (code);
2410 fmt = GET_RTX_FORMAT (code);
2411
2412 for (i = 0; i < len; i++)
2413 {
2414 if (fmt[i] == 'e')
2415 {
2416 if (inequality_comparisons_p (XEXP (x, i)))
2417 return 1;
2418 }
2419 else if (fmt[i] == 'E')
2420 {
2421 int j;
2422 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2423 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2424 return 1;
2425 }
2426 }
2427
2428 return 0;
2429 }
2430 \f
2431 /* Replace any occurrence of FROM in X with TO. The function does
2432 not enter into CONST_DOUBLE for the replace.
2433
2434 Note that copying is not done so X must not be shared unless all copies
2435 are to be modified. */
2436
2437 rtx
2438 replace_rtx (rtx x, rtx from, rtx to)
2439 {
2440 int i, j;
2441 const char *fmt;
2442
2443 /* The following prevents loops occurrence when we change MEM in
2444 CONST_DOUBLE onto the same CONST_DOUBLE. */
2445 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2446 return x;
2447
2448 if (x == from)
2449 return to;
2450
2451 /* Allow this function to make replacements in EXPR_LISTs. */
2452 if (x == 0)
2453 return 0;
2454
2455 if (GET_CODE (x) == SUBREG)
2456 {
2457 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2458
2459 if (GET_CODE (new) == CONST_INT)
2460 {
2461 x = simplify_subreg (GET_MODE (x), new,
2462 GET_MODE (SUBREG_REG (x)),
2463 SUBREG_BYTE (x));
2464 gcc_assert (x);
2465 }
2466 else
2467 SUBREG_REG (x) = new;
2468
2469 return x;
2470 }
2471 else if (GET_CODE (x) == ZERO_EXTEND)
2472 {
2473 rtx new = replace_rtx (XEXP (x, 0), from, to);
2474
2475 if (GET_CODE (new) == CONST_INT)
2476 {
2477 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2478 new, GET_MODE (XEXP (x, 0)));
2479 gcc_assert (x);
2480 }
2481 else
2482 XEXP (x, 0) = new;
2483
2484 return x;
2485 }
2486
2487 fmt = GET_RTX_FORMAT (GET_CODE (x));
2488 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2489 {
2490 if (fmt[i] == 'e')
2491 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2492 else if (fmt[i] == 'E')
2493 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2494 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2495 }
2496
2497 return x;
2498 }
2499 \f
2500 /* Replace occurrences of the old label in *X with the new one.
2501 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2502
2503 int
2504 replace_label (rtx *x, void *data)
2505 {
2506 rtx l = *x;
2507 rtx old_label = ((replace_label_data *) data)->r1;
2508 rtx new_label = ((replace_label_data *) data)->r2;
2509 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2510
2511 if (l == NULL_RTX)
2512 return 0;
2513
2514 if (GET_CODE (l) == SYMBOL_REF
2515 && CONSTANT_POOL_ADDRESS_P (l))
2516 {
2517 rtx c = get_pool_constant (l);
2518 if (rtx_referenced_p (old_label, c))
2519 {
2520 rtx new_c, new_l;
2521 replace_label_data *d = (replace_label_data *) data;
2522
2523 /* Create a copy of constant C; replace the label inside
2524 but do not update LABEL_NUSES because uses in constant pool
2525 are not counted. */
2526 new_c = copy_rtx (c);
2527 d->update_label_nuses = false;
2528 for_each_rtx (&new_c, replace_label, data);
2529 d->update_label_nuses = update_label_nuses;
2530
2531 /* Add the new constant NEW_C to constant pool and replace
2532 the old reference to constant by new reference. */
2533 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2534 *x = replace_rtx (l, l, new_l);
2535 }
2536 return 0;
2537 }
2538
2539 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2540 field. This is not handled by for_each_rtx because it doesn't
2541 handle unprinted ('0') fields. */
2542 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2543 JUMP_LABEL (l) = new_label;
2544
2545 if ((GET_CODE (l) == LABEL_REF
2546 || GET_CODE (l) == INSN_LIST)
2547 && XEXP (l, 0) == old_label)
2548 {
2549 XEXP (l, 0) = new_label;
2550 if (update_label_nuses)
2551 {
2552 ++LABEL_NUSES (new_label);
2553 --LABEL_NUSES (old_label);
2554 }
2555 return 0;
2556 }
2557
2558 return 0;
2559 }
2560
2561 /* When *BODY is equal to X or X is directly referenced by *BODY
2562 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2563 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2564
2565 static int
2566 rtx_referenced_p_1 (rtx *body, void *x)
2567 {
2568 rtx y = (rtx) x;
2569
2570 if (*body == NULL_RTX)
2571 return y == NULL_RTX;
2572
2573 /* Return true if a label_ref *BODY refers to label Y. */
2574 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2575 return XEXP (*body, 0) == y;
2576
2577 /* If *BODY is a reference to pool constant traverse the constant. */
2578 if (GET_CODE (*body) == SYMBOL_REF
2579 && CONSTANT_POOL_ADDRESS_P (*body))
2580 return rtx_referenced_p (y, get_pool_constant (*body));
2581
2582 /* By default, compare the RTL expressions. */
2583 return rtx_equal_p (*body, y);
2584 }
2585
2586 /* Return true if X is referenced in BODY. */
2587
2588 int
2589 rtx_referenced_p (rtx x, rtx body)
2590 {
2591 return for_each_rtx (&body, rtx_referenced_p_1, x);
2592 }
2593
2594 /* If INSN is a tablejump return true and store the label (before jump table) to
2595 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2596
2597 bool
2598 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2599 {
2600 rtx label, table;
2601
2602 if (JUMP_P (insn)
2603 && (label = JUMP_LABEL (insn)) != NULL_RTX
2604 && (table = next_active_insn (label)) != NULL_RTX
2605 && JUMP_P (table)
2606 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2607 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2608 {
2609 if (labelp)
2610 *labelp = label;
2611 if (tablep)
2612 *tablep = table;
2613 return true;
2614 }
2615 return false;
2616 }
2617
2618 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2619 constant that is not in the constant pool and not in the condition
2620 of an IF_THEN_ELSE. */
2621
2622 static int
2623 computed_jump_p_1 (rtx x)
2624 {
2625 enum rtx_code code = GET_CODE (x);
2626 int i, j;
2627 const char *fmt;
2628
2629 switch (code)
2630 {
2631 case LABEL_REF:
2632 case PC:
2633 return 0;
2634
2635 case CONST:
2636 case CONST_INT:
2637 case CONST_DOUBLE:
2638 case CONST_VECTOR:
2639 case SYMBOL_REF:
2640 case REG:
2641 return 1;
2642
2643 case MEM:
2644 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2645 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2646
2647 case IF_THEN_ELSE:
2648 return (computed_jump_p_1 (XEXP (x, 1))
2649 || computed_jump_p_1 (XEXP (x, 2)));
2650
2651 default:
2652 break;
2653 }
2654
2655 fmt = GET_RTX_FORMAT (code);
2656 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2657 {
2658 if (fmt[i] == 'e'
2659 && computed_jump_p_1 (XEXP (x, i)))
2660 return 1;
2661
2662 else if (fmt[i] == 'E')
2663 for (j = 0; j < XVECLEN (x, i); j++)
2664 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2665 return 1;
2666 }
2667
2668 return 0;
2669 }
2670
2671 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2672
2673 Tablejumps and casesi insns are not considered indirect jumps;
2674 we can recognize them by a (use (label_ref)). */
2675
2676 int
2677 computed_jump_p (rtx insn)
2678 {
2679 int i;
2680 if (JUMP_P (insn))
2681 {
2682 rtx pat = PATTERN (insn);
2683
2684 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2685 return 0;
2686 else if (GET_CODE (pat) == PARALLEL)
2687 {
2688 int len = XVECLEN (pat, 0);
2689 int has_use_labelref = 0;
2690
2691 for (i = len - 1; i >= 0; i--)
2692 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2693 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2694 == LABEL_REF))
2695 has_use_labelref = 1;
2696
2697 if (! has_use_labelref)
2698 for (i = len - 1; i >= 0; i--)
2699 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2700 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2701 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2702 return 1;
2703 }
2704 else if (GET_CODE (pat) == SET
2705 && SET_DEST (pat) == pc_rtx
2706 && computed_jump_p_1 (SET_SRC (pat)))
2707 return 1;
2708 }
2709 return 0;
2710 }
2711
2712 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2713 calls. Processes the subexpressions of EXP and passes them to F. */
2714 static int
2715 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2716 {
2717 int result, i, j;
2718 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2719 rtx *x;
2720
2721 for (; format[n] != '\0'; n++)
2722 {
2723 switch (format[n])
2724 {
2725 case 'e':
2726 /* Call F on X. */
2727 x = &XEXP (exp, n);
2728 result = (*f) (x, data);
2729 if (result == -1)
2730 /* Do not traverse sub-expressions. */
2731 continue;
2732 else if (result != 0)
2733 /* Stop the traversal. */
2734 return result;
2735
2736 if (*x == NULL_RTX)
2737 /* There are no sub-expressions. */
2738 continue;
2739
2740 i = non_rtx_starting_operands[GET_CODE (*x)];
2741 if (i >= 0)
2742 {
2743 result = for_each_rtx_1 (*x, i, f, data);
2744 if (result != 0)
2745 return result;
2746 }
2747 break;
2748
2749 case 'V':
2750 case 'E':
2751 if (XVEC (exp, n) == 0)
2752 continue;
2753 for (j = 0; j < XVECLEN (exp, n); ++j)
2754 {
2755 /* Call F on X. */
2756 x = &XVECEXP (exp, n, j);
2757 result = (*f) (x, data);
2758 if (result == -1)
2759 /* Do not traverse sub-expressions. */
2760 continue;
2761 else if (result != 0)
2762 /* Stop the traversal. */
2763 return result;
2764
2765 if (*x == NULL_RTX)
2766 /* There are no sub-expressions. */
2767 continue;
2768
2769 i = non_rtx_starting_operands[GET_CODE (*x)];
2770 if (i >= 0)
2771 {
2772 result = for_each_rtx_1 (*x, i, f, data);
2773 if (result != 0)
2774 return result;
2775 }
2776 }
2777 break;
2778
2779 default:
2780 /* Nothing to do. */
2781 break;
2782 }
2783 }
2784
2785 return 0;
2786 }
2787
2788 /* Traverse X via depth-first search, calling F for each
2789 sub-expression (including X itself). F is also passed the DATA.
2790 If F returns -1, do not traverse sub-expressions, but continue
2791 traversing the rest of the tree. If F ever returns any other
2792 nonzero value, stop the traversal, and return the value returned
2793 by F. Otherwise, return 0. This function does not traverse inside
2794 tree structure that contains RTX_EXPRs, or into sub-expressions
2795 whose format code is `0' since it is not known whether or not those
2796 codes are actually RTL.
2797
2798 This routine is very general, and could (should?) be used to
2799 implement many of the other routines in this file. */
2800
2801 int
2802 for_each_rtx (rtx *x, rtx_function f, void *data)
2803 {
2804 int result;
2805 int i;
2806
2807 /* Call F on X. */
2808 result = (*f) (x, data);
2809 if (result == -1)
2810 /* Do not traverse sub-expressions. */
2811 return 0;
2812 else if (result != 0)
2813 /* Stop the traversal. */
2814 return result;
2815
2816 if (*x == NULL_RTX)
2817 /* There are no sub-expressions. */
2818 return 0;
2819
2820 i = non_rtx_starting_operands[GET_CODE (*x)];
2821 if (i < 0)
2822 return 0;
2823
2824 return for_each_rtx_1 (*x, i, f, data);
2825 }
2826
2827
2828 /* Searches X for any reference to REGNO, returning the rtx of the
2829 reference found if any. Otherwise, returns NULL_RTX. */
2830
2831 rtx
2832 regno_use_in (unsigned int regno, rtx x)
2833 {
2834 const char *fmt;
2835 int i, j;
2836 rtx tem;
2837
2838 if (REG_P (x) && REGNO (x) == regno)
2839 return x;
2840
2841 fmt = GET_RTX_FORMAT (GET_CODE (x));
2842 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2843 {
2844 if (fmt[i] == 'e')
2845 {
2846 if ((tem = regno_use_in (regno, XEXP (x, i))))
2847 return tem;
2848 }
2849 else if (fmt[i] == 'E')
2850 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2851 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2852 return tem;
2853 }
2854
2855 return NULL_RTX;
2856 }
2857
2858 /* Return a value indicating whether OP, an operand of a commutative
2859 operation, is preferred as the first or second operand. The higher
2860 the value, the stronger the preference for being the first operand.
2861 We use negative values to indicate a preference for the first operand
2862 and positive values for the second operand. */
2863
2864 int
2865 commutative_operand_precedence (rtx op)
2866 {
2867 enum rtx_code code = GET_CODE (op);
2868
2869 /* Constants always come the second operand. Prefer "nice" constants. */
2870 if (code == CONST_INT)
2871 return -7;
2872 if (code == CONST_DOUBLE)
2873 return -6;
2874 op = avoid_constant_pool_reference (op);
2875 code = GET_CODE (op);
2876
2877 switch (GET_RTX_CLASS (code))
2878 {
2879 case RTX_CONST_OBJ:
2880 if (code == CONST_INT)
2881 return -5;
2882 if (code == CONST_DOUBLE)
2883 return -4;
2884 return -3;
2885
2886 case RTX_EXTRA:
2887 /* SUBREGs of objects should come second. */
2888 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2889 return -2;
2890
2891 if (!CONSTANT_P (op))
2892 return 0;
2893 else
2894 /* As for RTX_CONST_OBJ. */
2895 return -3;
2896
2897 case RTX_OBJ:
2898 /* Complex expressions should be the first, so decrease priority
2899 of objects. */
2900 return -1;
2901
2902 case RTX_COMM_ARITH:
2903 /* Prefer operands that are themselves commutative to be first.
2904 This helps to make things linear. In particular,
2905 (and (and (reg) (reg)) (not (reg))) is canonical. */
2906 return 4;
2907
2908 case RTX_BIN_ARITH:
2909 /* If only one operand is a binary expression, it will be the first
2910 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2911 is canonical, although it will usually be further simplified. */
2912 return 2;
2913
2914 case RTX_UNARY:
2915 /* Then prefer NEG and NOT. */
2916 if (code == NEG || code == NOT)
2917 return 1;
2918
2919 default:
2920 return 0;
2921 }
2922 }
2923
2924 /* Return 1 iff it is necessary to swap operands of commutative operation
2925 in order to canonicalize expression. */
2926
2927 int
2928 swap_commutative_operands_p (rtx x, rtx y)
2929 {
2930 return (commutative_operand_precedence (x)
2931 < commutative_operand_precedence (y));
2932 }
2933
2934 /* Return 1 if X is an autoincrement side effect and the register is
2935 not the stack pointer. */
2936 int
2937 auto_inc_p (rtx x)
2938 {
2939 switch (GET_CODE (x))
2940 {
2941 case PRE_INC:
2942 case POST_INC:
2943 case PRE_DEC:
2944 case POST_DEC:
2945 case PRE_MODIFY:
2946 case POST_MODIFY:
2947 /* There are no REG_INC notes for SP. */
2948 if (XEXP (x, 0) != stack_pointer_rtx)
2949 return 1;
2950 default:
2951 break;
2952 }
2953 return 0;
2954 }
2955
2956 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2957 int
2958 loc_mentioned_in_p (rtx *loc, rtx in)
2959 {
2960 enum rtx_code code;
2961 const char *fmt;
2962 int i, j;
2963
2964 if (!in)
2965 return 0;
2966
2967 code = GET_CODE (in);
2968 fmt = GET_RTX_FORMAT (code);
2969 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2970 {
2971 if (loc == &in->u.fld[i].rt_rtx)
2972 return 1;
2973 if (fmt[i] == 'e')
2974 {
2975 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2976 return 1;
2977 }
2978 else if (fmt[i] == 'E')
2979 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2980 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2981 return 1;
2982 }
2983 return 0;
2984 }
2985
2986 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2987 and SUBREG_BYTE, return the bit offset where the subreg begins
2988 (counting from the least significant bit of the operand). */
2989
2990 unsigned int
2991 subreg_lsb_1 (enum machine_mode outer_mode,
2992 enum machine_mode inner_mode,
2993 unsigned int subreg_byte)
2994 {
2995 unsigned int bitpos;
2996 unsigned int byte;
2997 unsigned int word;
2998
2999 /* A paradoxical subreg begins at bit position 0. */
3000 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3001 return 0;
3002
3003 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3004 /* If the subreg crosses a word boundary ensure that
3005 it also begins and ends on a word boundary. */
3006 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3007 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3008 && (subreg_byte % UNITS_PER_WORD
3009 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3010
3011 if (WORDS_BIG_ENDIAN)
3012 word = (GET_MODE_SIZE (inner_mode)
3013 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3014 else
3015 word = subreg_byte / UNITS_PER_WORD;
3016 bitpos = word * BITS_PER_WORD;
3017
3018 if (BYTES_BIG_ENDIAN)
3019 byte = (GET_MODE_SIZE (inner_mode)
3020 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3021 else
3022 byte = subreg_byte % UNITS_PER_WORD;
3023 bitpos += byte * BITS_PER_UNIT;
3024
3025 return bitpos;
3026 }
3027
3028 /* Given a subreg X, return the bit offset where the subreg begins
3029 (counting from the least significant bit of the reg). */
3030
3031 unsigned int
3032 subreg_lsb (rtx x)
3033 {
3034 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3035 SUBREG_BYTE (x));
3036 }
3037
3038 /* Fill in information about a subreg of a hard register.
3039 xregno - A regno of an inner hard subreg_reg (or what will become one).
3040 xmode - The mode of xregno.
3041 offset - The byte offset.
3042 ymode - The mode of a top level SUBREG (or what may become one).
3043 info - Pointer to structure to fill in. */
3044 static void
3045 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3046 unsigned int offset, enum machine_mode ymode,
3047 struct subreg_info *info)
3048 {
3049 int nregs_xmode, nregs_ymode;
3050 int mode_multiple, nregs_multiple;
3051 int offset_adj, y_offset, y_offset_adj;
3052 int regsize_xmode, regsize_ymode;
3053 bool rknown;
3054
3055 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3056
3057 rknown = false;
3058
3059 /* If there are holes in a non-scalar mode in registers, we expect
3060 that it is made up of its units concatenated together. */
3061 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3062 {
3063 enum machine_mode xmode_unit;
3064
3065 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3066 if (GET_MODE_INNER (xmode) == VOIDmode)
3067 xmode_unit = xmode;
3068 else
3069 xmode_unit = GET_MODE_INNER (xmode);
3070 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3071 gcc_assert (nregs_xmode
3072 == (GET_MODE_NUNITS (xmode)
3073 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3074 gcc_assert (hard_regno_nregs[xregno][xmode]
3075 == (hard_regno_nregs[xregno][xmode_unit]
3076 * GET_MODE_NUNITS (xmode)));
3077
3078 /* You can only ask for a SUBREG of a value with holes in the middle
3079 if you don't cross the holes. (Such a SUBREG should be done by
3080 picking a different register class, or doing it in memory if
3081 necessary.) An example of a value with holes is XCmode on 32-bit
3082 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3083 3 for each part, but in memory it's two 128-bit parts.
3084 Padding is assumed to be at the end (not necessarily the 'high part')
3085 of each unit. */
3086 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3087 < GET_MODE_NUNITS (xmode))
3088 && (offset / GET_MODE_SIZE (xmode_unit)
3089 != ((offset + GET_MODE_SIZE (ymode) - 1)
3090 / GET_MODE_SIZE (xmode_unit))))
3091 {
3092 info->representable_p = false;
3093 rknown = true;
3094 }
3095 }
3096 else
3097 nregs_xmode = hard_regno_nregs[xregno][xmode];
3098
3099 nregs_ymode = hard_regno_nregs[xregno][ymode];
3100
3101 /* Paradoxical subregs are otherwise valid. */
3102 if (!rknown
3103 && offset == 0
3104 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3105 {
3106 info->representable_p = true;
3107 /* If this is a big endian paradoxical subreg, which uses more
3108 actual hard registers than the original register, we must
3109 return a negative offset so that we find the proper highpart
3110 of the register. */
3111 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3112 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3113 info->offset = nregs_xmode - nregs_ymode;
3114 else
3115 info->offset = 0;
3116 info->nregs = nregs_ymode;
3117 return;
3118 }
3119
3120 /* If registers store different numbers of bits in the different
3121 modes, we cannot generally form this subreg. */
3122 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3123 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3124 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3125 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3126 {
3127 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3128 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3129 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3130 {
3131 info->representable_p = false;
3132 info->nregs
3133 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3134 info->offset = offset / regsize_xmode;
3135 return;
3136 }
3137 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3138 {
3139 info->representable_p = false;
3140 info->nregs
3141 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3142 info->offset = offset / regsize_xmode;
3143 return;
3144 }
3145 }
3146
3147 /* Lowpart subregs are otherwise valid. */
3148 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3149 {
3150 info->representable_p = true;
3151 rknown = true;
3152
3153 if (offset == 0 || nregs_xmode == nregs_ymode)
3154 {
3155 info->offset = 0;
3156 info->nregs = nregs_ymode;
3157 return;
3158 }
3159 }
3160
3161 /* This should always pass, otherwise we don't know how to verify
3162 the constraint. These conditions may be relaxed but
3163 subreg_regno_offset would need to be redesigned. */
3164 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3165 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3166
3167 /* The XMODE value can be seen as a vector of NREGS_XMODE
3168 values. The subreg must represent a lowpart of given field.
3169 Compute what field it is. */
3170 offset_adj = offset;
3171 offset_adj -= subreg_lowpart_offset (ymode,
3172 mode_for_size (GET_MODE_BITSIZE (xmode)
3173 / nregs_xmode,
3174 MODE_INT, 0));
3175
3176 /* Size of ymode must not be greater than the size of xmode. */
3177 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3178 gcc_assert (mode_multiple != 0);
3179
3180 y_offset = offset / GET_MODE_SIZE (ymode);
3181 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3182 nregs_multiple = nregs_xmode / nregs_ymode;
3183
3184 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3185 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3186
3187 if (!rknown)
3188 {
3189 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3190 rknown = true;
3191 }
3192 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3193 info->nregs = nregs_ymode;
3194 }
3195
3196 /* This function returns the regno offset of a subreg expression.
3197 xregno - A regno of an inner hard subreg_reg (or what will become one).
3198 xmode - The mode of xregno.
3199 offset - The byte offset.
3200 ymode - The mode of a top level SUBREG (or what may become one).
3201 RETURN - The regno offset which would be used. */
3202 unsigned int
3203 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3204 unsigned int offset, enum machine_mode ymode)
3205 {
3206 struct subreg_info info;
3207 subreg_get_info (xregno, xmode, offset, ymode, &info);
3208 return info.offset;
3209 }
3210
3211 /* This function returns true when the offset is representable via
3212 subreg_offset in the given regno.
3213 xregno - A regno of an inner hard subreg_reg (or what will become one).
3214 xmode - The mode of xregno.
3215 offset - The byte offset.
3216 ymode - The mode of a top level SUBREG (or what may become one).
3217 RETURN - Whether the offset is representable. */
3218 bool
3219 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3220 unsigned int offset, enum machine_mode ymode)
3221 {
3222 struct subreg_info info;
3223 subreg_get_info (xregno, xmode, offset, ymode, &info);
3224 return info.representable_p;
3225 }
3226
3227 /* Return the final regno that a subreg expression refers to. */
3228 unsigned int
3229 subreg_regno (rtx x)
3230 {
3231 unsigned int ret;
3232 rtx subreg = SUBREG_REG (x);
3233 int regno = REGNO (subreg);
3234
3235 ret = regno + subreg_regno_offset (regno,
3236 GET_MODE (subreg),
3237 SUBREG_BYTE (x),
3238 GET_MODE (x));
3239 return ret;
3240
3241 }
3242
3243 /* Return the number of registers that a subreg expression refers
3244 to. */
3245 unsigned int
3246 subreg_nregs (rtx x)
3247 {
3248 struct subreg_info info;
3249 rtx subreg = SUBREG_REG (x);
3250 int regno = REGNO (subreg);
3251
3252 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3253 &info);
3254 return info.nregs;
3255 }
3256
3257 struct parms_set_data
3258 {
3259 int nregs;
3260 HARD_REG_SET regs;
3261 };
3262
3263 /* Helper function for noticing stores to parameter registers. */
3264 static void
3265 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3266 {
3267 struct parms_set_data *d = data;
3268 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3269 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3270 {
3271 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3272 d->nregs--;
3273 }
3274 }
3275
3276 /* Look backward for first parameter to be loaded.
3277 Note that loads of all parameters will not necessarily be
3278 found if CSE has eliminated some of them (e.g., an argument
3279 to the outer function is passed down as a parameter).
3280 Do not skip BOUNDARY. */
3281 rtx
3282 find_first_parameter_load (rtx call_insn, rtx boundary)
3283 {
3284 struct parms_set_data parm;
3285 rtx p, before, first_set;
3286
3287 /* Since different machines initialize their parameter registers
3288 in different orders, assume nothing. Collect the set of all
3289 parameter registers. */
3290 CLEAR_HARD_REG_SET (parm.regs);
3291 parm.nregs = 0;
3292 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3293 if (GET_CODE (XEXP (p, 0)) == USE
3294 && REG_P (XEXP (XEXP (p, 0), 0)))
3295 {
3296 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3297
3298 /* We only care about registers which can hold function
3299 arguments. */
3300 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3301 continue;
3302
3303 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3304 parm.nregs++;
3305 }
3306 before = call_insn;
3307 first_set = call_insn;
3308
3309 /* Search backward for the first set of a register in this set. */
3310 while (parm.nregs && before != boundary)
3311 {
3312 before = PREV_INSN (before);
3313
3314 /* It is possible that some loads got CSEed from one call to
3315 another. Stop in that case. */
3316 if (CALL_P (before))
3317 break;
3318
3319 /* Our caller needs either ensure that we will find all sets
3320 (in case code has not been optimized yet), or take care
3321 for possible labels in a way by setting boundary to preceding
3322 CODE_LABEL. */
3323 if (LABEL_P (before))
3324 {
3325 gcc_assert (before == boundary);
3326 break;
3327 }
3328
3329 if (INSN_P (before))
3330 {
3331 int nregs_old = parm.nregs;
3332 note_stores (PATTERN (before), parms_set, &parm);
3333 /* If we found something that did not set a parameter reg,
3334 we're done. Do not keep going, as that might result
3335 in hoisting an insn before the setting of a pseudo
3336 that is used by the hoisted insn. */
3337 if (nregs_old != parm.nregs)
3338 first_set = before;
3339 else
3340 break;
3341 }
3342 }
3343 return first_set;
3344 }
3345
3346 /* Return true if we should avoid inserting code between INSN and preceding
3347 call instruction. */
3348
3349 bool
3350 keep_with_call_p (rtx insn)
3351 {
3352 rtx set;
3353
3354 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3355 {
3356 if (REG_P (SET_DEST (set))
3357 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3358 && fixed_regs[REGNO (SET_DEST (set))]
3359 && general_operand (SET_SRC (set), VOIDmode))
3360 return true;
3361 if (REG_P (SET_SRC (set))
3362 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3363 && REG_P (SET_DEST (set))
3364 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3365 return true;
3366 /* There may be a stack pop just after the call and before the store
3367 of the return register. Search for the actual store when deciding
3368 if we can break or not. */
3369 if (SET_DEST (set) == stack_pointer_rtx)
3370 {
3371 rtx i2 = next_nonnote_insn (insn);
3372 if (i2 && keep_with_call_p (i2))
3373 return true;
3374 }
3375 }
3376 return false;
3377 }
3378
3379 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3380 to non-complex jumps. That is, direct unconditional, conditional,
3381 and tablejumps, but not computed jumps or returns. It also does
3382 not apply to the fallthru case of a conditional jump. */
3383
3384 bool
3385 label_is_jump_target_p (rtx label, rtx jump_insn)
3386 {
3387 rtx tmp = JUMP_LABEL (jump_insn);
3388
3389 if (label == tmp)
3390 return true;
3391
3392 if (tablejump_p (jump_insn, NULL, &tmp))
3393 {
3394 rtvec vec = XVEC (PATTERN (tmp),
3395 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3396 int i, veclen = GET_NUM_ELEM (vec);
3397
3398 for (i = 0; i < veclen; ++i)
3399 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3400 return true;
3401 }
3402
3403 return false;
3404 }
3405
3406 \f
3407 /* Return an estimate of the cost of computing rtx X.
3408 One use is in cse, to decide which expression to keep in the hash table.
3409 Another is in rtl generation, to pick the cheapest way to multiply.
3410 Other uses like the latter are expected in the future. */
3411
3412 int
3413 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3414 {
3415 int i, j;
3416 enum rtx_code code;
3417 const char *fmt;
3418 int total;
3419
3420 if (x == 0)
3421 return 0;
3422
3423 /* Compute the default costs of certain things.
3424 Note that targetm.rtx_costs can override the defaults. */
3425
3426 code = GET_CODE (x);
3427 switch (code)
3428 {
3429 case MULT:
3430 total = COSTS_N_INSNS (5);
3431 break;
3432 case DIV:
3433 case UDIV:
3434 case MOD:
3435 case UMOD:
3436 total = COSTS_N_INSNS (7);
3437 break;
3438 case USE:
3439 /* Used in combine.c as a marker. */
3440 total = 0;
3441 break;
3442 default:
3443 total = COSTS_N_INSNS (1);
3444 }
3445
3446 switch (code)
3447 {
3448 case REG:
3449 return 0;
3450
3451 case SUBREG:
3452 total = 0;
3453 /* If we can't tie these modes, make this expensive. The larger
3454 the mode, the more expensive it is. */
3455 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3456 return COSTS_N_INSNS (2
3457 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3458 break;
3459
3460 default:
3461 if (targetm.rtx_costs (x, code, outer_code, &total))
3462 return total;
3463 break;
3464 }
3465
3466 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3467 which is already in total. */
3468
3469 fmt = GET_RTX_FORMAT (code);
3470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3471 if (fmt[i] == 'e')
3472 total += rtx_cost (XEXP (x, i), code);
3473 else if (fmt[i] == 'E')
3474 for (j = 0; j < XVECLEN (x, i); j++)
3475 total += rtx_cost (XVECEXP (x, i, j), code);
3476
3477 return total;
3478 }
3479 \f
3480 /* Return cost of address expression X.
3481 Expect that X is properly formed address reference. */
3482
3483 int
3484 address_cost (rtx x, enum machine_mode mode)
3485 {
3486 /* We may be asked for cost of various unusual addresses, such as operands
3487 of push instruction. It is not worthwhile to complicate writing
3488 of the target hook by such cases. */
3489
3490 if (!memory_address_p (mode, x))
3491 return 1000;
3492
3493 return targetm.address_cost (x);
3494 }
3495
3496 /* If the target doesn't override, compute the cost as with arithmetic. */
3497
3498 int
3499 default_address_cost (rtx x)
3500 {
3501 return rtx_cost (x, MEM);
3502 }
3503 \f
3504
3505 unsigned HOST_WIDE_INT
3506 nonzero_bits (rtx x, enum machine_mode mode)
3507 {
3508 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3509 }
3510
3511 unsigned int
3512 num_sign_bit_copies (rtx x, enum machine_mode mode)
3513 {
3514 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3515 }
3516
3517 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3518 It avoids exponential behavior in nonzero_bits1 when X has
3519 identical subexpressions on the first or the second level. */
3520
3521 static unsigned HOST_WIDE_INT
3522 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3523 enum machine_mode known_mode,
3524 unsigned HOST_WIDE_INT known_ret)
3525 {
3526 if (x == known_x && mode == known_mode)
3527 return known_ret;
3528
3529 /* Try to find identical subexpressions. If found call
3530 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3531 precomputed value for the subexpression as KNOWN_RET. */
3532
3533 if (ARITHMETIC_P (x))
3534 {
3535 rtx x0 = XEXP (x, 0);
3536 rtx x1 = XEXP (x, 1);
3537
3538 /* Check the first level. */
3539 if (x0 == x1)
3540 return nonzero_bits1 (x, mode, x0, mode,
3541 cached_nonzero_bits (x0, mode, known_x,
3542 known_mode, known_ret));
3543
3544 /* Check the second level. */
3545 if (ARITHMETIC_P (x0)
3546 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3547 return nonzero_bits1 (x, mode, x1, mode,
3548 cached_nonzero_bits (x1, mode, known_x,
3549 known_mode, known_ret));
3550
3551 if (ARITHMETIC_P (x1)
3552 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3553 return nonzero_bits1 (x, mode, x0, mode,
3554 cached_nonzero_bits (x0, mode, known_x,
3555 known_mode, known_ret));
3556 }
3557
3558 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3559 }
3560
3561 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3562 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3563 is less useful. We can't allow both, because that results in exponential
3564 run time recursion. There is a nullstone testcase that triggered
3565 this. This macro avoids accidental uses of num_sign_bit_copies. */
3566 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3567
3568 /* Given an expression, X, compute which bits in X can be nonzero.
3569 We don't care about bits outside of those defined in MODE.
3570
3571 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3572 an arithmetic operation, we can do better. */
3573
3574 static unsigned HOST_WIDE_INT
3575 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3576 enum machine_mode known_mode,
3577 unsigned HOST_WIDE_INT known_ret)
3578 {
3579 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3580 unsigned HOST_WIDE_INT inner_nz;
3581 enum rtx_code code;
3582 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3583
3584 /* For floating-point values, assume all bits are needed. */
3585 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3586 return nonzero;
3587
3588 /* If X is wider than MODE, use its mode instead. */
3589 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3590 {
3591 mode = GET_MODE (x);
3592 nonzero = GET_MODE_MASK (mode);
3593 mode_width = GET_MODE_BITSIZE (mode);
3594 }
3595
3596 if (mode_width > HOST_BITS_PER_WIDE_INT)
3597 /* Our only callers in this case look for single bit values. So
3598 just return the mode mask. Those tests will then be false. */
3599 return nonzero;
3600
3601 #ifndef WORD_REGISTER_OPERATIONS
3602 /* If MODE is wider than X, but both are a single word for both the host
3603 and target machines, we can compute this from which bits of the
3604 object might be nonzero in its own mode, taking into account the fact
3605 that on many CISC machines, accessing an object in a wider mode
3606 causes the high-order bits to become undefined. So they are
3607 not known to be zero. */
3608
3609 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3610 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3611 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3612 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3613 {
3614 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3615 known_x, known_mode, known_ret);
3616 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3617 return nonzero;
3618 }
3619 #endif
3620
3621 code = GET_CODE (x);
3622 switch (code)
3623 {
3624 case REG:
3625 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3626 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3627 all the bits above ptr_mode are known to be zero. */
3628 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3629 && REG_POINTER (x))
3630 nonzero &= GET_MODE_MASK (ptr_mode);
3631 #endif
3632
3633 /* Include declared information about alignment of pointers. */
3634 /* ??? We don't properly preserve REG_POINTER changes across
3635 pointer-to-integer casts, so we can't trust it except for
3636 things that we know must be pointers. See execute/960116-1.c. */
3637 if ((x == stack_pointer_rtx
3638 || x == frame_pointer_rtx
3639 || x == arg_pointer_rtx)
3640 && REGNO_POINTER_ALIGN (REGNO (x)))
3641 {
3642 unsigned HOST_WIDE_INT alignment
3643 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3644
3645 #ifdef PUSH_ROUNDING
3646 /* If PUSH_ROUNDING is defined, it is possible for the
3647 stack to be momentarily aligned only to that amount,
3648 so we pick the least alignment. */
3649 if (x == stack_pointer_rtx && PUSH_ARGS)
3650 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3651 alignment);
3652 #endif
3653
3654 nonzero &= ~(alignment - 1);
3655 }
3656
3657 {
3658 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3659 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3660 known_mode, known_ret,
3661 &nonzero_for_hook);
3662
3663 if (new)
3664 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3665 known_mode, known_ret);
3666
3667 return nonzero_for_hook;
3668 }
3669
3670 case CONST_INT:
3671 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3672 /* If X is negative in MODE, sign-extend the value. */
3673 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3674 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3675 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3676 #endif
3677
3678 return INTVAL (x);
3679
3680 case MEM:
3681 #ifdef LOAD_EXTEND_OP
3682 /* In many, if not most, RISC machines, reading a byte from memory
3683 zeros the rest of the register. Noticing that fact saves a lot
3684 of extra zero-extends. */
3685 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3686 nonzero &= GET_MODE_MASK (GET_MODE (x));
3687 #endif
3688 break;
3689
3690 case EQ: case NE:
3691 case UNEQ: case LTGT:
3692 case GT: case GTU: case UNGT:
3693 case LT: case LTU: case UNLT:
3694 case GE: case GEU: case UNGE:
3695 case LE: case LEU: case UNLE:
3696 case UNORDERED: case ORDERED:
3697 /* If this produces an integer result, we know which bits are set.
3698 Code here used to clear bits outside the mode of X, but that is
3699 now done above. */
3700 /* Mind that MODE is the mode the caller wants to look at this
3701 operation in, and not the actual operation mode. We can wind
3702 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3703 that describes the results of a vector compare. */
3704 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3705 && mode_width <= HOST_BITS_PER_WIDE_INT)
3706 nonzero = STORE_FLAG_VALUE;
3707 break;
3708
3709 case NEG:
3710 #if 0
3711 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3712 and num_sign_bit_copies. */
3713 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3714 == GET_MODE_BITSIZE (GET_MODE (x)))
3715 nonzero = 1;
3716 #endif
3717
3718 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3719 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3720 break;
3721
3722 case ABS:
3723 #if 0
3724 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3725 and num_sign_bit_copies. */
3726 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3727 == GET_MODE_BITSIZE (GET_MODE (x)))
3728 nonzero = 1;
3729 #endif
3730 break;
3731
3732 case TRUNCATE:
3733 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3734 known_x, known_mode, known_ret)
3735 & GET_MODE_MASK (mode));
3736 break;
3737
3738 case ZERO_EXTEND:
3739 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3740 known_x, known_mode, known_ret);
3741 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3742 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3743 break;
3744
3745 case SIGN_EXTEND:
3746 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3747 Otherwise, show all the bits in the outer mode but not the inner
3748 may be nonzero. */
3749 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3750 known_x, known_mode, known_ret);
3751 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3752 {
3753 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3754 if (inner_nz
3755 & (((HOST_WIDE_INT) 1
3756 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3757 inner_nz |= (GET_MODE_MASK (mode)
3758 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3759 }
3760
3761 nonzero &= inner_nz;
3762 break;
3763
3764 case AND:
3765 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3766 known_x, known_mode, known_ret)
3767 & cached_nonzero_bits (XEXP (x, 1), mode,
3768 known_x, known_mode, known_ret);
3769 break;
3770
3771 case XOR: case IOR:
3772 case UMIN: case UMAX: case SMIN: case SMAX:
3773 {
3774 unsigned HOST_WIDE_INT nonzero0 =
3775 cached_nonzero_bits (XEXP (x, 0), mode,
3776 known_x, known_mode, known_ret);
3777
3778 /* Don't call nonzero_bits for the second time if it cannot change
3779 anything. */
3780 if ((nonzero & nonzero0) != nonzero)
3781 nonzero &= nonzero0
3782 | cached_nonzero_bits (XEXP (x, 1), mode,
3783 known_x, known_mode, known_ret);
3784 }
3785 break;
3786
3787 case PLUS: case MINUS:
3788 case MULT:
3789 case DIV: case UDIV:
3790 case MOD: case UMOD:
3791 /* We can apply the rules of arithmetic to compute the number of
3792 high- and low-order zero bits of these operations. We start by
3793 computing the width (position of the highest-order nonzero bit)
3794 and the number of low-order zero bits for each value. */
3795 {
3796 unsigned HOST_WIDE_INT nz0 =
3797 cached_nonzero_bits (XEXP (x, 0), mode,
3798 known_x, known_mode, known_ret);
3799 unsigned HOST_WIDE_INT nz1 =
3800 cached_nonzero_bits (XEXP (x, 1), mode,
3801 known_x, known_mode, known_ret);
3802 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3803 int width0 = floor_log2 (nz0) + 1;
3804 int width1 = floor_log2 (nz1) + 1;
3805 int low0 = floor_log2 (nz0 & -nz0);
3806 int low1 = floor_log2 (nz1 & -nz1);
3807 HOST_WIDE_INT op0_maybe_minusp
3808 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3809 HOST_WIDE_INT op1_maybe_minusp
3810 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3811 unsigned int result_width = mode_width;
3812 int result_low = 0;
3813
3814 switch (code)
3815 {
3816 case PLUS:
3817 result_width = MAX (width0, width1) + 1;
3818 result_low = MIN (low0, low1);
3819 break;
3820 case MINUS:
3821 result_low = MIN (low0, low1);
3822 break;
3823 case MULT:
3824 result_width = width0 + width1;
3825 result_low = low0 + low1;
3826 break;
3827 case DIV:
3828 if (width1 == 0)
3829 break;
3830 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3831 result_width = width0;
3832 break;
3833 case UDIV:
3834 if (width1 == 0)
3835 break;
3836 result_width = width0;
3837 break;
3838 case MOD:
3839 if (width1 == 0)
3840 break;
3841 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3842 result_width = MIN (width0, width1);
3843 result_low = MIN (low0, low1);
3844 break;
3845 case UMOD:
3846 if (width1 == 0)
3847 break;
3848 result_width = MIN (width0, width1);
3849 result_low = MIN (low0, low1);
3850 break;
3851 default:
3852 gcc_unreachable ();
3853 }
3854
3855 if (result_width < mode_width)
3856 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3857
3858 if (result_low > 0)
3859 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3860
3861 #ifdef POINTERS_EXTEND_UNSIGNED
3862 /* If pointers extend unsigned and this is an addition or subtraction
3863 to a pointer in Pmode, all the bits above ptr_mode are known to be
3864 zero. */
3865 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3866 && (code == PLUS || code == MINUS)
3867 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3868 nonzero &= GET_MODE_MASK (ptr_mode);
3869 #endif
3870 }
3871 break;
3872
3873 case ZERO_EXTRACT:
3874 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3875 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3876 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3877 break;
3878
3879 case SUBREG:
3880 /* If this is a SUBREG formed for a promoted variable that has
3881 been zero-extended, we know that at least the high-order bits
3882 are zero, though others might be too. */
3883
3884 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3885 nonzero = GET_MODE_MASK (GET_MODE (x))
3886 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3887 known_x, known_mode, known_ret);
3888
3889 /* If the inner mode is a single word for both the host and target
3890 machines, we can compute this from which bits of the inner
3891 object might be nonzero. */
3892 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3893 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3894 <= HOST_BITS_PER_WIDE_INT))
3895 {
3896 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3897 known_x, known_mode, known_ret);
3898
3899 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3900 /* If this is a typical RISC machine, we only have to worry
3901 about the way loads are extended. */
3902 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3903 ? (((nonzero
3904 & (((unsigned HOST_WIDE_INT) 1
3905 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3906 != 0))
3907 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3908 || !MEM_P (SUBREG_REG (x)))
3909 #endif
3910 {
3911 /* On many CISC machines, accessing an object in a wider mode
3912 causes the high-order bits to become undefined. So they are
3913 not known to be zero. */
3914 if (GET_MODE_SIZE (GET_MODE (x))
3915 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3916 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3917 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3918 }
3919 }
3920 break;
3921
3922 case ASHIFTRT:
3923 case LSHIFTRT:
3924 case ASHIFT:
3925 case ROTATE:
3926 /* The nonzero bits are in two classes: any bits within MODE
3927 that aren't in GET_MODE (x) are always significant. The rest of the
3928 nonzero bits are those that are significant in the operand of
3929 the shift when shifted the appropriate number of bits. This
3930 shows that high-order bits are cleared by the right shift and
3931 low-order bits by left shifts. */
3932 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3933 && INTVAL (XEXP (x, 1)) >= 0
3934 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3935 {
3936 enum machine_mode inner_mode = GET_MODE (x);
3937 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3938 int count = INTVAL (XEXP (x, 1));
3939 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3940 unsigned HOST_WIDE_INT op_nonzero =
3941 cached_nonzero_bits (XEXP (x, 0), mode,
3942 known_x, known_mode, known_ret);
3943 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3944 unsigned HOST_WIDE_INT outer = 0;
3945
3946 if (mode_width > width)
3947 outer = (op_nonzero & nonzero & ~mode_mask);
3948
3949 if (code == LSHIFTRT)
3950 inner >>= count;
3951 else if (code == ASHIFTRT)
3952 {
3953 inner >>= count;
3954
3955 /* If the sign bit may have been nonzero before the shift, we
3956 need to mark all the places it could have been copied to
3957 by the shift as possibly nonzero. */
3958 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3959 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3960 }
3961 else if (code == ASHIFT)
3962 inner <<= count;
3963 else
3964 inner = ((inner << (count % width)
3965 | (inner >> (width - (count % width)))) & mode_mask);
3966
3967 nonzero &= (outer | inner);
3968 }
3969 break;
3970
3971 case FFS:
3972 case POPCOUNT:
3973 /* This is at most the number of bits in the mode. */
3974 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3975 break;
3976
3977 case CLZ:
3978 /* If CLZ has a known value at zero, then the nonzero bits are
3979 that value, plus the number of bits in the mode minus one. */
3980 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3981 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3982 else
3983 nonzero = -1;
3984 break;
3985
3986 case CTZ:
3987 /* If CTZ has a known value at zero, then the nonzero bits are
3988 that value, plus the number of bits in the mode minus one. */
3989 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3990 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3991 else
3992 nonzero = -1;
3993 break;
3994
3995 case PARITY:
3996 nonzero = 1;
3997 break;
3998
3999 case IF_THEN_ELSE:
4000 {
4001 unsigned HOST_WIDE_INT nonzero_true =
4002 cached_nonzero_bits (XEXP (x, 1), mode,
4003 known_x, known_mode, known_ret);
4004
4005 /* Don't call nonzero_bits for the second time if it cannot change
4006 anything. */
4007 if ((nonzero & nonzero_true) != nonzero)
4008 nonzero &= nonzero_true
4009 | cached_nonzero_bits (XEXP (x, 2), mode,
4010 known_x, known_mode, known_ret);
4011 }
4012 break;
4013
4014 default:
4015 break;
4016 }
4017
4018 return nonzero;
4019 }
4020
4021 /* See the macro definition above. */
4022 #undef cached_num_sign_bit_copies
4023
4024 \f
4025 /* The function cached_num_sign_bit_copies is a wrapper around
4026 num_sign_bit_copies1. It avoids exponential behavior in
4027 num_sign_bit_copies1 when X has identical subexpressions on the
4028 first or the second level. */
4029
4030 static unsigned int
4031 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4032 enum machine_mode known_mode,
4033 unsigned int known_ret)
4034 {
4035 if (x == known_x && mode == known_mode)
4036 return known_ret;
4037
4038 /* Try to find identical subexpressions. If found call
4039 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4040 the precomputed value for the subexpression as KNOWN_RET. */
4041
4042 if (ARITHMETIC_P (x))
4043 {
4044 rtx x0 = XEXP (x, 0);
4045 rtx x1 = XEXP (x, 1);
4046
4047 /* Check the first level. */
4048 if (x0 == x1)
4049 return
4050 num_sign_bit_copies1 (x, mode, x0, mode,
4051 cached_num_sign_bit_copies (x0, mode, known_x,
4052 known_mode,
4053 known_ret));
4054
4055 /* Check the second level. */
4056 if (ARITHMETIC_P (x0)
4057 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4058 return
4059 num_sign_bit_copies1 (x, mode, x1, mode,
4060 cached_num_sign_bit_copies (x1, mode, known_x,
4061 known_mode,
4062 known_ret));
4063
4064 if (ARITHMETIC_P (x1)
4065 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4066 return
4067 num_sign_bit_copies1 (x, mode, x0, mode,
4068 cached_num_sign_bit_copies (x0, mode, known_x,
4069 known_mode,
4070 known_ret));
4071 }
4072
4073 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4074 }
4075
4076 /* Return the number of bits at the high-order end of X that are known to
4077 be equal to the sign bit. X will be used in mode MODE; if MODE is
4078 VOIDmode, X will be used in its own mode. The returned value will always
4079 be between 1 and the number of bits in MODE. */
4080
4081 static unsigned int
4082 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4083 enum machine_mode known_mode,
4084 unsigned int known_ret)
4085 {
4086 enum rtx_code code = GET_CODE (x);
4087 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4088 int num0, num1, result;
4089 unsigned HOST_WIDE_INT nonzero;
4090
4091 /* If we weren't given a mode, use the mode of X. If the mode is still
4092 VOIDmode, we don't know anything. Likewise if one of the modes is
4093 floating-point. */
4094
4095 if (mode == VOIDmode)
4096 mode = GET_MODE (x);
4097
4098 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4099 return 1;
4100
4101 /* For a smaller object, just ignore the high bits. */
4102 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4103 {
4104 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4105 known_x, known_mode, known_ret);
4106 return MAX (1,
4107 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4108 }
4109
4110 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4111 {
4112 #ifndef WORD_REGISTER_OPERATIONS
4113 /* If this machine does not do all register operations on the entire
4114 register and MODE is wider than the mode of X, we can say nothing
4115 at all about the high-order bits. */
4116 return 1;
4117 #else
4118 /* Likewise on machines that do, if the mode of the object is smaller
4119 than a word and loads of that size don't sign extend, we can say
4120 nothing about the high order bits. */
4121 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4122 #ifdef LOAD_EXTEND_OP
4123 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4124 #endif
4125 )
4126 return 1;
4127 #endif
4128 }
4129
4130 switch (code)
4131 {
4132 case REG:
4133
4134 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4135 /* If pointers extend signed and this is a pointer in Pmode, say that
4136 all the bits above ptr_mode are known to be sign bit copies. */
4137 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4138 && REG_POINTER (x))
4139 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4140 #endif
4141
4142 {
4143 unsigned int copies_for_hook = 1, copies = 1;
4144 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4145 known_mode, known_ret,
4146 &copies_for_hook);
4147
4148 if (new)
4149 copies = cached_num_sign_bit_copies (new, mode, known_x,
4150 known_mode, known_ret);
4151
4152 if (copies > 1 || copies_for_hook > 1)
4153 return MAX (copies, copies_for_hook);
4154
4155 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4156 }
4157 break;
4158
4159 case MEM:
4160 #ifdef LOAD_EXTEND_OP
4161 /* Some RISC machines sign-extend all loads of smaller than a word. */
4162 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4163 return MAX (1, ((int) bitwidth
4164 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4165 #endif
4166 break;
4167
4168 case CONST_INT:
4169 /* If the constant is negative, take its 1's complement and remask.
4170 Then see how many zero bits we have. */
4171 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4172 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4173 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4174 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4175
4176 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4177
4178 case SUBREG:
4179 /* If this is a SUBREG for a promoted object that is sign-extended
4180 and we are looking at it in a wider mode, we know that at least the
4181 high-order bits are known to be sign bit copies. */
4182
4183 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4184 {
4185 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4186 known_x, known_mode, known_ret);
4187 return MAX ((int) bitwidth
4188 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4189 num0);
4190 }
4191
4192 /* For a smaller object, just ignore the high bits. */
4193 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4194 {
4195 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4196 known_x, known_mode, known_ret);
4197 return MAX (1, (num0
4198 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4199 - bitwidth)));
4200 }
4201
4202 #ifdef WORD_REGISTER_OPERATIONS
4203 #ifdef LOAD_EXTEND_OP
4204 /* For paradoxical SUBREGs on machines where all register operations
4205 affect the entire register, just look inside. Note that we are
4206 passing MODE to the recursive call, so the number of sign bit copies
4207 will remain relative to that mode, not the inner mode. */
4208
4209 /* This works only if loads sign extend. Otherwise, if we get a
4210 reload for the inner part, it may be loaded from the stack, and
4211 then we lose all sign bit copies that existed before the store
4212 to the stack. */
4213
4214 if ((GET_MODE_SIZE (GET_MODE (x))
4215 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4216 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4217 && MEM_P (SUBREG_REG (x)))
4218 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4219 known_x, known_mode, known_ret);
4220 #endif
4221 #endif
4222 break;
4223
4224 case SIGN_EXTRACT:
4225 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4226 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4227 break;
4228
4229 case SIGN_EXTEND:
4230 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4231 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4232 known_x, known_mode, known_ret));
4233
4234 case TRUNCATE:
4235 /* For a smaller object, just ignore the high bits. */
4236 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4237 known_x, known_mode, known_ret);
4238 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4239 - bitwidth)));
4240
4241 case NOT:
4242 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4243 known_x, known_mode, known_ret);
4244
4245 case ROTATE: case ROTATERT:
4246 /* If we are rotating left by a number of bits less than the number
4247 of sign bit copies, we can just subtract that amount from the
4248 number. */
4249 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4250 && INTVAL (XEXP (x, 1)) >= 0
4251 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4252 {
4253 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4254 known_x, known_mode, known_ret);
4255 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4256 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4257 }
4258 break;
4259
4260 case NEG:
4261 /* In general, this subtracts one sign bit copy. But if the value
4262 is known to be positive, the number of sign bit copies is the
4263 same as that of the input. Finally, if the input has just one bit
4264 that might be nonzero, all the bits are copies of the sign bit. */
4265 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4266 known_x, known_mode, known_ret);
4267 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4268 return num0 > 1 ? num0 - 1 : 1;
4269
4270 nonzero = nonzero_bits (XEXP (x, 0), mode);
4271 if (nonzero == 1)
4272 return bitwidth;
4273
4274 if (num0 > 1
4275 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4276 num0--;
4277
4278 return num0;
4279
4280 case IOR: case AND: case XOR:
4281 case SMIN: case SMAX: case UMIN: case UMAX:
4282 /* Logical operations will preserve the number of sign-bit copies.
4283 MIN and MAX operations always return one of the operands. */
4284 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4285 known_x, known_mode, known_ret);
4286 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4287 known_x, known_mode, known_ret);
4288 return MIN (num0, num1);
4289
4290 case PLUS: case MINUS:
4291 /* For addition and subtraction, we can have a 1-bit carry. However,
4292 if we are subtracting 1 from a positive number, there will not
4293 be such a carry. Furthermore, if the positive number is known to
4294 be 0 or 1, we know the result is either -1 or 0. */
4295
4296 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4297 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4298 {
4299 nonzero = nonzero_bits (XEXP (x, 0), mode);
4300 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4301 return (nonzero == 1 || nonzero == 0 ? bitwidth
4302 : bitwidth - floor_log2 (nonzero) - 1);
4303 }
4304
4305 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4306 known_x, known_mode, known_ret);
4307 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4308 known_x, known_mode, known_ret);
4309 result = MAX (1, MIN (num0, num1) - 1);
4310
4311 #ifdef POINTERS_EXTEND_UNSIGNED
4312 /* If pointers extend signed and this is an addition or subtraction
4313 to a pointer in Pmode, all the bits above ptr_mode are known to be
4314 sign bit copies. */
4315 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4316 && (code == PLUS || code == MINUS)
4317 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4318 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4319 - GET_MODE_BITSIZE (ptr_mode) + 1),
4320 result);
4321 #endif
4322 return result;
4323
4324 case MULT:
4325 /* The number of bits of the product is the sum of the number of
4326 bits of both terms. However, unless one of the terms if known
4327 to be positive, we must allow for an additional bit since negating
4328 a negative number can remove one sign bit copy. */
4329
4330 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4331 known_x, known_mode, known_ret);
4332 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4333 known_x, known_mode, known_ret);
4334
4335 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4336 if (result > 0
4337 && (bitwidth > HOST_BITS_PER_WIDE_INT
4338 || (((nonzero_bits (XEXP (x, 0), mode)
4339 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4340 && ((nonzero_bits (XEXP (x, 1), mode)
4341 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4342 result--;
4343
4344 return MAX (1, result);
4345
4346 case UDIV:
4347 /* The result must be <= the first operand. If the first operand
4348 has the high bit set, we know nothing about the number of sign
4349 bit copies. */
4350 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4351 return 1;
4352 else if ((nonzero_bits (XEXP (x, 0), mode)
4353 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4354 return 1;
4355 else
4356 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4357 known_x, known_mode, known_ret);
4358
4359 case UMOD:
4360 /* The result must be <= the second operand. */
4361 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4362 known_x, known_mode, known_ret);
4363
4364 case DIV:
4365 /* Similar to unsigned division, except that we have to worry about
4366 the case where the divisor is negative, in which case we have
4367 to add 1. */
4368 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4369 known_x, known_mode, known_ret);
4370 if (result > 1
4371 && (bitwidth > HOST_BITS_PER_WIDE_INT
4372 || (nonzero_bits (XEXP (x, 1), mode)
4373 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4374 result--;
4375
4376 return result;
4377
4378 case MOD:
4379 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4380 known_x, known_mode, known_ret);
4381 if (result > 1
4382 && (bitwidth > HOST_BITS_PER_WIDE_INT
4383 || (nonzero_bits (XEXP (x, 1), mode)
4384 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4385 result--;
4386
4387 return result;
4388
4389 case ASHIFTRT:
4390 /* Shifts by a constant add to the number of bits equal to the
4391 sign bit. */
4392 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4393 known_x, known_mode, known_ret);
4394 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4395 && INTVAL (XEXP (x, 1)) > 0)
4396 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4397
4398 return num0;
4399
4400 case ASHIFT:
4401 /* Left shifts destroy copies. */
4402 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4403 || INTVAL (XEXP (x, 1)) < 0
4404 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4405 return 1;
4406
4407 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4408 known_x, known_mode, known_ret);
4409 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4410
4411 case IF_THEN_ELSE:
4412 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4413 known_x, known_mode, known_ret);
4414 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4415 known_x, known_mode, known_ret);
4416 return MIN (num0, num1);
4417
4418 case EQ: case NE: case GE: case GT: case LE: case LT:
4419 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4420 case GEU: case GTU: case LEU: case LTU:
4421 case UNORDERED: case ORDERED:
4422 /* If the constant is negative, take its 1's complement and remask.
4423 Then see how many zero bits we have. */
4424 nonzero = STORE_FLAG_VALUE;
4425 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4426 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4427 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4428
4429 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4430
4431 default:
4432 break;
4433 }
4434
4435 /* If we haven't been able to figure it out by one of the above rules,
4436 see if some of the high-order bits are known to be zero. If so,
4437 count those bits and return one less than that amount. If we can't
4438 safely compute the mask for this mode, always return BITWIDTH. */
4439
4440 bitwidth = GET_MODE_BITSIZE (mode);
4441 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4442 return 1;
4443
4444 nonzero = nonzero_bits (x, mode);
4445 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4446 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4447 }
4448
4449 /* Calculate the rtx_cost of a single instruction. A return value of
4450 zero indicates an instruction pattern without a known cost. */
4451
4452 int
4453 insn_rtx_cost (rtx pat)
4454 {
4455 int i, cost;
4456 rtx set;
4457
4458 /* Extract the single set rtx from the instruction pattern.
4459 We can't use single_set since we only have the pattern. */
4460 if (GET_CODE (pat) == SET)
4461 set = pat;
4462 else if (GET_CODE (pat) == PARALLEL)
4463 {
4464 set = NULL_RTX;
4465 for (i = 0; i < XVECLEN (pat, 0); i++)
4466 {
4467 rtx x = XVECEXP (pat, 0, i);
4468 if (GET_CODE (x) == SET)
4469 {
4470 if (set)
4471 return 0;
4472 set = x;
4473 }
4474 }
4475 if (!set)
4476 return 0;
4477 }
4478 else
4479 return 0;
4480
4481 cost = rtx_cost (SET_SRC (set), SET);
4482 return cost > 0 ? cost : COSTS_N_INSNS (1);
4483 }
4484
4485 /* Given an insn INSN and condition COND, return the condition in a
4486 canonical form to simplify testing by callers. Specifically:
4487
4488 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4489 (2) Both operands will be machine operands; (cc0) will have been replaced.
4490 (3) If an operand is a constant, it will be the second operand.
4491 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4492 for GE, GEU, and LEU.
4493
4494 If the condition cannot be understood, or is an inequality floating-point
4495 comparison which needs to be reversed, 0 will be returned.
4496
4497 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4498
4499 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4500 insn used in locating the condition was found. If a replacement test
4501 of the condition is desired, it should be placed in front of that
4502 insn and we will be sure that the inputs are still valid.
4503
4504 If WANT_REG is nonzero, we wish the condition to be relative to that
4505 register, if possible. Therefore, do not canonicalize the condition
4506 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4507 to be a compare to a CC mode register.
4508
4509 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4510 and at INSN. */
4511
4512 rtx
4513 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4514 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4515 {
4516 enum rtx_code code;
4517 rtx prev = insn;
4518 rtx set;
4519 rtx tem;
4520 rtx op0, op1;
4521 int reverse_code = 0;
4522 enum machine_mode mode;
4523 basic_block bb = BLOCK_FOR_INSN (insn);
4524
4525 code = GET_CODE (cond);
4526 mode = GET_MODE (cond);
4527 op0 = XEXP (cond, 0);
4528 op1 = XEXP (cond, 1);
4529
4530 if (reverse)
4531 code = reversed_comparison_code (cond, insn);
4532 if (code == UNKNOWN)
4533 return 0;
4534
4535 if (earliest)
4536 *earliest = insn;
4537
4538 /* If we are comparing a register with zero, see if the register is set
4539 in the previous insn to a COMPARE or a comparison operation. Perform
4540 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4541 in cse.c */
4542
4543 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4544 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4545 && op1 == CONST0_RTX (GET_MODE (op0))
4546 && op0 != want_reg)
4547 {
4548 /* Set nonzero when we find something of interest. */
4549 rtx x = 0;
4550
4551 #ifdef HAVE_cc0
4552 /* If comparison with cc0, import actual comparison from compare
4553 insn. */
4554 if (op0 == cc0_rtx)
4555 {
4556 if ((prev = prev_nonnote_insn (prev)) == 0
4557 || !NONJUMP_INSN_P (prev)
4558 || (set = single_set (prev)) == 0
4559 || SET_DEST (set) != cc0_rtx)
4560 return 0;
4561
4562 op0 = SET_SRC (set);
4563 op1 = CONST0_RTX (GET_MODE (op0));
4564 if (earliest)
4565 *earliest = prev;
4566 }
4567 #endif
4568
4569 /* If this is a COMPARE, pick up the two things being compared. */
4570 if (GET_CODE (op0) == COMPARE)
4571 {
4572 op1 = XEXP (op0, 1);
4573 op0 = XEXP (op0, 0);
4574 continue;
4575 }
4576 else if (!REG_P (op0))
4577 break;
4578
4579 /* Go back to the previous insn. Stop if it is not an INSN. We also
4580 stop if it isn't a single set or if it has a REG_INC note because
4581 we don't want to bother dealing with it. */
4582
4583 if ((prev = prev_nonnote_insn (prev)) == 0
4584 || !NONJUMP_INSN_P (prev)
4585 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4586 /* In cfglayout mode, there do not have to be labels at the
4587 beginning of a block, or jumps at the end, so the previous
4588 conditions would not stop us when we reach bb boundary. */
4589 || BLOCK_FOR_INSN (prev) != bb)
4590 break;
4591
4592 set = set_of (op0, prev);
4593
4594 if (set
4595 && (GET_CODE (set) != SET
4596 || !rtx_equal_p (SET_DEST (set), op0)))
4597 break;
4598
4599 /* If this is setting OP0, get what it sets it to if it looks
4600 relevant. */
4601 if (set)
4602 {
4603 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4604 #ifdef FLOAT_STORE_FLAG_VALUE
4605 REAL_VALUE_TYPE fsfv;
4606 #endif
4607
4608 /* ??? We may not combine comparisons done in a CCmode with
4609 comparisons not done in a CCmode. This is to aid targets
4610 like Alpha that have an IEEE compliant EQ instruction, and
4611 a non-IEEE compliant BEQ instruction. The use of CCmode is
4612 actually artificial, simply to prevent the combination, but
4613 should not affect other platforms.
4614
4615 However, we must allow VOIDmode comparisons to match either
4616 CCmode or non-CCmode comparison, because some ports have
4617 modeless comparisons inside branch patterns.
4618
4619 ??? This mode check should perhaps look more like the mode check
4620 in simplify_comparison in combine. */
4621
4622 if ((GET_CODE (SET_SRC (set)) == COMPARE
4623 || (((code == NE
4624 || (code == LT
4625 && GET_MODE_CLASS (inner_mode) == MODE_INT
4626 && (GET_MODE_BITSIZE (inner_mode)
4627 <= HOST_BITS_PER_WIDE_INT)
4628 && (STORE_FLAG_VALUE
4629 & ((HOST_WIDE_INT) 1
4630 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4631 #ifdef FLOAT_STORE_FLAG_VALUE
4632 || (code == LT
4633 && SCALAR_FLOAT_MODE_P (inner_mode)
4634 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4635 REAL_VALUE_NEGATIVE (fsfv)))
4636 #endif
4637 ))
4638 && COMPARISON_P (SET_SRC (set))))
4639 && (((GET_MODE_CLASS (mode) == MODE_CC)
4640 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4641 || mode == VOIDmode || inner_mode == VOIDmode))
4642 x = SET_SRC (set);
4643 else if (((code == EQ
4644 || (code == GE
4645 && (GET_MODE_BITSIZE (inner_mode)
4646 <= HOST_BITS_PER_WIDE_INT)
4647 && GET_MODE_CLASS (inner_mode) == MODE_INT
4648 && (STORE_FLAG_VALUE
4649 & ((HOST_WIDE_INT) 1
4650 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4651 #ifdef FLOAT_STORE_FLAG_VALUE
4652 || (code == GE
4653 && SCALAR_FLOAT_MODE_P (inner_mode)
4654 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4655 REAL_VALUE_NEGATIVE (fsfv)))
4656 #endif
4657 ))
4658 && COMPARISON_P (SET_SRC (set))
4659 && (((GET_MODE_CLASS (mode) == MODE_CC)
4660 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4661 || mode == VOIDmode || inner_mode == VOIDmode))
4662
4663 {
4664 reverse_code = 1;
4665 x = SET_SRC (set);
4666 }
4667 else
4668 break;
4669 }
4670
4671 else if (reg_set_p (op0, prev))
4672 /* If this sets OP0, but not directly, we have to give up. */
4673 break;
4674
4675 if (x)
4676 {
4677 /* If the caller is expecting the condition to be valid at INSN,
4678 make sure X doesn't change before INSN. */
4679 if (valid_at_insn_p)
4680 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4681 break;
4682 if (COMPARISON_P (x))
4683 code = GET_CODE (x);
4684 if (reverse_code)
4685 {
4686 code = reversed_comparison_code (x, prev);
4687 if (code == UNKNOWN)
4688 return 0;
4689 reverse_code = 0;
4690 }
4691
4692 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4693 if (earliest)
4694 *earliest = prev;
4695 }
4696 }
4697
4698 /* If constant is first, put it last. */
4699 if (CONSTANT_P (op0))
4700 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4701
4702 /* If OP0 is the result of a comparison, we weren't able to find what
4703 was really being compared, so fail. */
4704 if (!allow_cc_mode
4705 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4706 return 0;
4707
4708 /* Canonicalize any ordered comparison with integers involving equality
4709 if we can do computations in the relevant mode and we do not
4710 overflow. */
4711
4712 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4713 && GET_CODE (op1) == CONST_INT
4714 && GET_MODE (op0) != VOIDmode
4715 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4716 {
4717 HOST_WIDE_INT const_val = INTVAL (op1);
4718 unsigned HOST_WIDE_INT uconst_val = const_val;
4719 unsigned HOST_WIDE_INT max_val
4720 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4721
4722 switch (code)
4723 {
4724 case LE:
4725 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4726 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4727 break;
4728
4729 /* When cross-compiling, const_val might be sign-extended from
4730 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4731 case GE:
4732 if ((HOST_WIDE_INT) (const_val & max_val)
4733 != (((HOST_WIDE_INT) 1
4734 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4735 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4736 break;
4737
4738 case LEU:
4739 if (uconst_val < max_val)
4740 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4741 break;
4742
4743 case GEU:
4744 if (uconst_val != 0)
4745 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4746 break;
4747
4748 default:
4749 break;
4750 }
4751 }
4752
4753 /* Never return CC0; return zero instead. */
4754 if (CC0_P (op0))
4755 return 0;
4756
4757 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4758 }
4759
4760 /* Given a jump insn JUMP, return the condition that will cause it to branch
4761 to its JUMP_LABEL. If the condition cannot be understood, or is an
4762 inequality floating-point comparison which needs to be reversed, 0 will
4763 be returned.
4764
4765 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4766 insn used in locating the condition was found. If a replacement test
4767 of the condition is desired, it should be placed in front of that
4768 insn and we will be sure that the inputs are still valid. If EARLIEST
4769 is null, the returned condition will be valid at INSN.
4770
4771 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4772 compare CC mode register.
4773
4774 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4775
4776 rtx
4777 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4778 {
4779 rtx cond;
4780 int reverse;
4781 rtx set;
4782
4783 /* If this is not a standard conditional jump, we can't parse it. */
4784 if (!JUMP_P (jump)
4785 || ! any_condjump_p (jump))
4786 return 0;
4787 set = pc_set (jump);
4788
4789 cond = XEXP (SET_SRC (set), 0);
4790
4791 /* If this branches to JUMP_LABEL when the condition is false, reverse
4792 the condition. */
4793 reverse
4794 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4795 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4796
4797 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4798 allow_cc_mode, valid_at_insn_p);
4799 }
4800
4801 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4802 TARGET_MODE_REP_EXTENDED.
4803
4804 Note that we assume that the property of
4805 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4806 narrower than mode B. I.e., if A is a mode narrower than B then in
4807 order to be able to operate on it in mode B, mode A needs to
4808 satisfy the requirements set by the representation of mode B. */
4809
4810 static void
4811 init_num_sign_bit_copies_in_rep (void)
4812 {
4813 enum machine_mode mode, in_mode;
4814
4815 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4816 in_mode = GET_MODE_WIDER_MODE (mode))
4817 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4818 mode = GET_MODE_WIDER_MODE (mode))
4819 {
4820 enum machine_mode i;
4821
4822 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4823 extends to the next widest mode. */
4824 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4825 || GET_MODE_WIDER_MODE (mode) == in_mode);
4826
4827 /* We are in in_mode. Count how many bits outside of mode
4828 have to be copies of the sign-bit. */
4829 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4830 {
4831 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4832
4833 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4834 /* We can only check sign-bit copies starting from the
4835 top-bit. In order to be able to check the bits we
4836 have already seen we pretend that subsequent bits
4837 have to be sign-bit copies too. */
4838 || num_sign_bit_copies_in_rep [in_mode][mode])
4839 num_sign_bit_copies_in_rep [in_mode][mode]
4840 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4841 }
4842 }
4843 }
4844
4845 /* Suppose that truncation from the machine mode of X to MODE is not a
4846 no-op. See if there is anything special about X so that we can
4847 assume it already contains a truncated value of MODE. */
4848
4849 bool
4850 truncated_to_mode (enum machine_mode mode, rtx x)
4851 {
4852 /* This register has already been used in MODE without explicit
4853 truncation. */
4854 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4855 return true;
4856
4857 /* See if we already satisfy the requirements of MODE. If yes we
4858 can just switch to MODE. */
4859 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4860 && (num_sign_bit_copies (x, GET_MODE (x))
4861 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4862 return true;
4863
4864 return false;
4865 }
4866 \f
4867 /* Initialize non_rtx_starting_operands, which is used to speed up
4868 for_each_rtx. */
4869 void
4870 init_rtlanal (void)
4871 {
4872 int i;
4873 for (i = 0; i < NUM_RTX_CODE; i++)
4874 {
4875 const char *format = GET_RTX_FORMAT (i);
4876 const char *first = strpbrk (format, "eEV");
4877 non_rtx_starting_operands[i] = first ? first - format : -1;
4878 }
4879
4880 init_num_sign_bit_copies_in_rep ();
4881 }
4882 \f
4883 /* Check whether this is a constant pool constant. */
4884 bool
4885 constant_pool_constant_p (rtx x)
4886 {
4887 x = avoid_constant_pool_reference (x);
4888 return GET_CODE (x) == CONST_DOUBLE;
4889 }
4890