errors.h (warning, [...]): Mark as cold.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, rtx, void *);
56 static bool covers_regno_p (rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (rtx);
60 static void parms_set (rtx, rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
66 rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
69 enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (rtx x)
110 {
111 RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_VECTOR:
124 case SYMBOL_REF:
125 case LABEL_REF:
126 return 0;
127
128 case REG:
129 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
130 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
131 /* The arg pointer varies if it is not a fixed register. */
132 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
133 return 0;
134 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
135 /* ??? When call-clobbered, the value is stable modulo the restore
136 that must happen after a call. This currently screws up local-alloc
137 into believing that the restore is not needed. */
138 if (x == pic_offset_table_rtx)
139 return 0;
140 #endif
141 return 1;
142
143 case ASM_OPERANDS:
144 if (MEM_VOLATILE_P (x))
145 return 1;
146
147 /* Fall through. */
148
149 default:
150 break;
151 }
152
153 fmt = GET_RTX_FORMAT (code);
154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
155 if (fmt[i] == 'e')
156 {
157 if (rtx_unstable_p (XEXP (x, i)))
158 return 1;
159 }
160 else if (fmt[i] == 'E')
161 {
162 int j;
163 for (j = 0; j < XVECLEN (x, i); j++)
164 if (rtx_unstable_p (XVECEXP (x, i, j)))
165 return 1;
166 }
167
168 return 0;
169 }
170
171 /* Return 1 if X has a value that can vary even between two
172 executions of the program. 0 means X can be compared reliably
173 against certain constants or near-constants.
174 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
175 zero, we are slightly more conservative.
176 The frame pointer and the arg pointer are considered constant. */
177
178 int
179 rtx_varies_p (rtx x, int for_alias)
180 {
181 RTX_CODE code;
182 int i;
183 const char *fmt;
184
185 if (!x)
186 return 0;
187
188 code = GET_CODE (x);
189 switch (code)
190 {
191 case MEM:
192 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
193
194 case CONST:
195 case CONST_INT:
196 case CONST_DOUBLE:
197 case CONST_VECTOR:
198 case SYMBOL_REF:
199 case LABEL_REF:
200 return 0;
201
202 case REG:
203 /* Note that we have to test for the actual rtx used for the frame
204 and arg pointers and not just the register number in case we have
205 eliminated the frame and/or arg pointer and are using it
206 for pseudos. */
207 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
208 /* The arg pointer varies if it is not a fixed register. */
209 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
210 return 0;
211 if (x == pic_offset_table_rtx
212 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
213 /* ??? When call-clobbered, the value is stable modulo the restore
214 that must happen after a call. This currently screws up
215 local-alloc into believing that the restore is not needed, so we
216 must return 0 only if we are called from alias analysis. */
217 && for_alias
218 #endif
219 )
220 return 0;
221 return 1;
222
223 case LO_SUM:
224 /* The operand 0 of a LO_SUM is considered constant
225 (in fact it is related specifically to operand 1)
226 during alias analysis. */
227 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
228 || rtx_varies_p (XEXP (x, 1), for_alias);
229
230 case ASM_OPERANDS:
231 if (MEM_VOLATILE_P (x))
232 return 1;
233
234 /* Fall through. */
235
236 default:
237 break;
238 }
239
240 fmt = GET_RTX_FORMAT (code);
241 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
242 if (fmt[i] == 'e')
243 {
244 if (rtx_varies_p (XEXP (x, i), for_alias))
245 return 1;
246 }
247 else if (fmt[i] == 'E')
248 {
249 int j;
250 for (j = 0; j < XVECLEN (x, i); j++)
251 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
252 return 1;
253 }
254
255 return 0;
256 }
257
258 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
259 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
260 whether nonzero is returned for unaligned memory accesses on strict
261 alignment machines. */
262
263 static int
264 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
265 {
266 enum rtx_code code = GET_CODE (x);
267
268 switch (code)
269 {
270 case SYMBOL_REF:
271 return SYMBOL_REF_WEAK (x);
272
273 case LABEL_REF:
274 return 0;
275
276 case REG:
277 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
278 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
279 || x == stack_pointer_rtx
280 /* The arg pointer varies if it is not a fixed register. */
281 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
282 return 0;
283 /* All of the virtual frame registers are stack references. */
284 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
285 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
286 return 0;
287 return 1;
288
289 case CONST:
290 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
291
292 case PLUS:
293 /* An address is assumed not to trap if:
294 - it is an address that can't trap plus a constant integer,
295 with the proper remainder modulo the mode size if we are
296 considering unaligned memory references. */
297 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
298 && GET_CODE (XEXP (x, 1)) == CONST_INT)
299 {
300 HOST_WIDE_INT offset;
301
302 if (!STRICT_ALIGNMENT
303 || !unaligned_mems
304 || GET_MODE_SIZE (mode) == 0)
305 return 0;
306
307 offset = INTVAL (XEXP (x, 1));
308
309 #ifdef SPARC_STACK_BOUNDARY_HACK
310 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
311 the real alignment of %sp. However, when it does this, the
312 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
313 if (SPARC_STACK_BOUNDARY_HACK
314 && (XEXP (x, 0) == stack_pointer_rtx
315 || XEXP (x, 0) == hard_frame_pointer_rtx))
316 offset -= STACK_POINTER_OFFSET;
317 #endif
318
319 return offset % GET_MODE_SIZE (mode) != 0;
320 }
321
322 /* - or it is the pic register plus a constant. */
323 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
324 return 0;
325
326 return 1;
327
328 case LO_SUM:
329 case PRE_MODIFY:
330 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
331
332 case PRE_DEC:
333 case PRE_INC:
334 case POST_DEC:
335 case POST_INC:
336 case POST_MODIFY:
337 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
338
339 default:
340 break;
341 }
342
343 /* If it isn't one of the case above, it can cause a trap. */
344 return 1;
345 }
346
347 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
348
349 int
350 rtx_addr_can_trap_p (rtx x)
351 {
352 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
353 }
354
355 /* Return true if X is an address that is known to not be zero. */
356
357 bool
358 nonzero_address_p (rtx x)
359 {
360 enum rtx_code code = GET_CODE (x);
361
362 switch (code)
363 {
364 case SYMBOL_REF:
365 return !SYMBOL_REF_WEAK (x);
366
367 case LABEL_REF:
368 return true;
369
370 case REG:
371 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
372 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
373 || x == stack_pointer_rtx
374 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
375 return true;
376 /* All of the virtual frame registers are stack references. */
377 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
378 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
379 return true;
380 return false;
381
382 case CONST:
383 return nonzero_address_p (XEXP (x, 0));
384
385 case PLUS:
386 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
387 return nonzero_address_p (XEXP (x, 0));
388 /* Handle PIC references. */
389 else if (XEXP (x, 0) == pic_offset_table_rtx
390 && CONSTANT_P (XEXP (x, 1)))
391 return true;
392 return false;
393
394 case PRE_MODIFY:
395 /* Similar to the above; allow positive offsets. Further, since
396 auto-inc is only allowed in memories, the register must be a
397 pointer. */
398 if (GET_CODE (XEXP (x, 1)) == CONST_INT
399 && INTVAL (XEXP (x, 1)) > 0)
400 return true;
401 return nonzero_address_p (XEXP (x, 0));
402
403 case PRE_INC:
404 /* Similarly. Further, the offset is always positive. */
405 return true;
406
407 case PRE_DEC:
408 case POST_DEC:
409 case POST_INC:
410 case POST_MODIFY:
411 return nonzero_address_p (XEXP (x, 0));
412
413 case LO_SUM:
414 return nonzero_address_p (XEXP (x, 1));
415
416 default:
417 break;
418 }
419
420 /* If it isn't one of the case above, might be zero. */
421 return false;
422 }
423
424 /* Return 1 if X refers to a memory location whose address
425 cannot be compared reliably with constant addresses,
426 or if X refers to a BLKmode memory object.
427 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
428 zero, we are slightly more conservative. */
429
430 int
431 rtx_addr_varies_p (rtx x, int for_alias)
432 {
433 enum rtx_code code;
434 int i;
435 const char *fmt;
436
437 if (x == 0)
438 return 0;
439
440 code = GET_CODE (x);
441 if (code == MEM)
442 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
443
444 fmt = GET_RTX_FORMAT (code);
445 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
446 if (fmt[i] == 'e')
447 {
448 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
449 return 1;
450 }
451 else if (fmt[i] == 'E')
452 {
453 int j;
454 for (j = 0; j < XVECLEN (x, i); j++)
455 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
456 return 1;
457 }
458 return 0;
459 }
460 \f
461 /* Return the value of the integer term in X, if one is apparent;
462 otherwise return 0.
463 Only obvious integer terms are detected.
464 This is used in cse.c with the `related_value' field. */
465
466 HOST_WIDE_INT
467 get_integer_term (rtx x)
468 {
469 if (GET_CODE (x) == CONST)
470 x = XEXP (x, 0);
471
472 if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return - INTVAL (XEXP (x, 1));
475 if (GET_CODE (x) == PLUS
476 && GET_CODE (XEXP (x, 1)) == CONST_INT)
477 return INTVAL (XEXP (x, 1));
478 return 0;
479 }
480
481 /* If X is a constant, return the value sans apparent integer term;
482 otherwise return 0.
483 Only obvious integer terms are detected. */
484
485 rtx
486 get_related_value (rtx x)
487 {
488 if (GET_CODE (x) != CONST)
489 return 0;
490 x = XEXP (x, 0);
491 if (GET_CODE (x) == PLUS
492 && GET_CODE (XEXP (x, 1)) == CONST_INT)
493 return XEXP (x, 0);
494 else if (GET_CODE (x) == MINUS
495 && GET_CODE (XEXP (x, 1)) == CONST_INT)
496 return XEXP (x, 0);
497 return 0;
498 }
499 \f
500 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
501 to somewhere in the same object or object_block as SYMBOL. */
502
503 bool
504 offset_within_block_p (rtx symbol, HOST_WIDE_INT offset)
505 {
506 tree decl;
507
508 if (GET_CODE (symbol) != SYMBOL_REF)
509 return false;
510
511 if (offset == 0)
512 return true;
513
514 if (offset > 0)
515 {
516 if (CONSTANT_POOL_ADDRESS_P (symbol)
517 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
518 return true;
519
520 decl = SYMBOL_REF_DECL (symbol);
521 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
522 return true;
523 }
524
525 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
526 && SYMBOL_REF_BLOCK (symbol)
527 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
528 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
529 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
530 return true;
531
532 return false;
533 }
534
535 /* Split X into a base and a constant offset, storing them in *BASE_OUT
536 and *OFFSET_OUT respectively. */
537
538 void
539 split_const (rtx x, rtx *base_out, rtx *offset_out)
540 {
541 if (GET_CODE (x) == CONST)
542 {
543 x = XEXP (x, 0);
544 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
545 {
546 *base_out = XEXP (x, 0);
547 *offset_out = XEXP (x, 1);
548 return;
549 }
550 }
551 *base_out = x;
552 *offset_out = const0_rtx;
553 }
554 \f
555 /* Return the number of places FIND appears within X. If COUNT_DEST is
556 zero, we do not count occurrences inside the destination of a SET. */
557
558 int
559 count_occurrences (rtx x, rtx find, int count_dest)
560 {
561 int i, j;
562 enum rtx_code code;
563 const char *format_ptr;
564 int count;
565
566 if (x == find)
567 return 1;
568
569 code = GET_CODE (x);
570
571 switch (code)
572 {
573 case REG:
574 case CONST_INT:
575 case CONST_DOUBLE:
576 case CONST_VECTOR:
577 case SYMBOL_REF:
578 case CODE_LABEL:
579 case PC:
580 case CC0:
581 return 0;
582
583 case EXPR_LIST:
584 count = count_occurrences (XEXP (x, 0), find, count_dest);
585 if (XEXP (x, 1))
586 count += count_occurrences (XEXP (x, 1), find, count_dest);
587 return count;
588
589 case MEM:
590 if (MEM_P (find) && rtx_equal_p (x, find))
591 return 1;
592 break;
593
594 case SET:
595 if (SET_DEST (x) == find && ! count_dest)
596 return count_occurrences (SET_SRC (x), find, count_dest);
597 break;
598
599 default:
600 break;
601 }
602
603 format_ptr = GET_RTX_FORMAT (code);
604 count = 0;
605
606 for (i = 0; i < GET_RTX_LENGTH (code); i++)
607 {
608 switch (*format_ptr++)
609 {
610 case 'e':
611 count += count_occurrences (XEXP (x, i), find, count_dest);
612 break;
613
614 case 'E':
615 for (j = 0; j < XVECLEN (x, i); j++)
616 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
617 break;
618 }
619 }
620 return count;
621 }
622 \f
623 /* Nonzero if register REG appears somewhere within IN.
624 Also works if REG is not a register; in this case it checks
625 for a subexpression of IN that is Lisp "equal" to REG. */
626
627 int
628 reg_mentioned_p (rtx reg, rtx in)
629 {
630 const char *fmt;
631 int i;
632 enum rtx_code code;
633
634 if (in == 0)
635 return 0;
636
637 if (reg == in)
638 return 1;
639
640 if (GET_CODE (in) == LABEL_REF)
641 return reg == XEXP (in, 0);
642
643 code = GET_CODE (in);
644
645 switch (code)
646 {
647 /* Compare registers by number. */
648 case REG:
649 return REG_P (reg) && REGNO (in) == REGNO (reg);
650
651 /* These codes have no constituent expressions
652 and are unique. */
653 case SCRATCH:
654 case CC0:
655 case PC:
656 return 0;
657
658 case CONST_INT:
659 case CONST_VECTOR:
660 case CONST_DOUBLE:
661 /* These are kept unique for a given value. */
662 return 0;
663
664 default:
665 break;
666 }
667
668 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
669 return 1;
670
671 fmt = GET_RTX_FORMAT (code);
672
673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
674 {
675 if (fmt[i] == 'E')
676 {
677 int j;
678 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
679 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
680 return 1;
681 }
682 else if (fmt[i] == 'e'
683 && reg_mentioned_p (reg, XEXP (in, i)))
684 return 1;
685 }
686 return 0;
687 }
688 \f
689 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
690 no CODE_LABEL insn. */
691
692 int
693 no_labels_between_p (rtx beg, rtx end)
694 {
695 rtx p;
696 if (beg == end)
697 return 0;
698 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
699 if (LABEL_P (p))
700 return 0;
701 return 1;
702 }
703
704 /* Nonzero if register REG is used in an insn between
705 FROM_INSN and TO_INSN (exclusive of those two). */
706
707 int
708 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
709 {
710 rtx insn;
711
712 if (from_insn == to_insn)
713 return 0;
714
715 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
716 if (INSN_P (insn)
717 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
718 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
719 return 1;
720 return 0;
721 }
722 \f
723 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
724 is entirely replaced by a new value and the only use is as a SET_DEST,
725 we do not consider it a reference. */
726
727 int
728 reg_referenced_p (rtx x, rtx body)
729 {
730 int i;
731
732 switch (GET_CODE (body))
733 {
734 case SET:
735 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
736 return 1;
737
738 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
739 of a REG that occupies all of the REG, the insn references X if
740 it is mentioned in the destination. */
741 if (GET_CODE (SET_DEST (body)) != CC0
742 && GET_CODE (SET_DEST (body)) != PC
743 && !REG_P (SET_DEST (body))
744 && ! (GET_CODE (SET_DEST (body)) == SUBREG
745 && REG_P (SUBREG_REG (SET_DEST (body)))
746 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
747 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
748 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
749 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
750 && reg_overlap_mentioned_p (x, SET_DEST (body)))
751 return 1;
752 return 0;
753
754 case ASM_OPERANDS:
755 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
756 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
757 return 1;
758 return 0;
759
760 case CALL:
761 case USE:
762 case IF_THEN_ELSE:
763 return reg_overlap_mentioned_p (x, body);
764
765 case TRAP_IF:
766 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
767
768 case PREFETCH:
769 return reg_overlap_mentioned_p (x, XEXP (body, 0));
770
771 case UNSPEC:
772 case UNSPEC_VOLATILE:
773 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
774 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
775 return 1;
776 return 0;
777
778 case PARALLEL:
779 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
780 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
781 return 1;
782 return 0;
783
784 case CLOBBER:
785 if (MEM_P (XEXP (body, 0)))
786 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
787 return 1;
788 return 0;
789
790 case COND_EXEC:
791 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
792 return 1;
793 return reg_referenced_p (x, COND_EXEC_CODE (body));
794
795 default:
796 return 0;
797 }
798 }
799 \f
800 /* Nonzero if register REG is set or clobbered in an insn between
801 FROM_INSN and TO_INSN (exclusive of those two). */
802
803 int
804 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
805 {
806 rtx insn;
807
808 if (from_insn == to_insn)
809 return 0;
810
811 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
812 if (INSN_P (insn) && reg_set_p (reg, insn))
813 return 1;
814 return 0;
815 }
816
817 /* Internals of reg_set_between_p. */
818 int
819 reg_set_p (rtx reg, rtx insn)
820 {
821 /* We can be passed an insn or part of one. If we are passed an insn,
822 check if a side-effect of the insn clobbers REG. */
823 if (INSN_P (insn)
824 && (FIND_REG_INC_NOTE (insn, reg)
825 || (CALL_P (insn)
826 && ((REG_P (reg)
827 && REGNO (reg) < FIRST_PSEUDO_REGISTER
828 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
829 REGNO (reg)))
830 || MEM_P (reg)
831 || find_reg_fusage (insn, CLOBBER, reg)))))
832 return 1;
833
834 return set_of (reg, insn) != NULL_RTX;
835 }
836
837 /* Similar to reg_set_between_p, but check all registers in X. Return 0
838 only if none of them are modified between START and END. Return 1 if
839 X contains a MEM; this routine does usememory aliasing. */
840
841 int
842 modified_between_p (rtx x, rtx start, rtx end)
843 {
844 enum rtx_code code = GET_CODE (x);
845 const char *fmt;
846 int i, j;
847 rtx insn;
848
849 if (start == end)
850 return 0;
851
852 switch (code)
853 {
854 case CONST_INT:
855 case CONST_DOUBLE:
856 case CONST_VECTOR:
857 case CONST:
858 case SYMBOL_REF:
859 case LABEL_REF:
860 return 0;
861
862 case PC:
863 case CC0:
864 return 1;
865
866 case MEM:
867 if (modified_between_p (XEXP (x, 0), start, end))
868 return 1;
869 if (MEM_READONLY_P (x))
870 return 0;
871 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
872 if (memory_modified_in_insn_p (x, insn))
873 return 1;
874 return 0;
875 break;
876
877 case REG:
878 return reg_set_between_p (x, start, end);
879
880 default:
881 break;
882 }
883
884 fmt = GET_RTX_FORMAT (code);
885 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
886 {
887 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
888 return 1;
889
890 else if (fmt[i] == 'E')
891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
892 if (modified_between_p (XVECEXP (x, i, j), start, end))
893 return 1;
894 }
895
896 return 0;
897 }
898
899 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
900 of them are modified in INSN. Return 1 if X contains a MEM; this routine
901 does use memory aliasing. */
902
903 int
904 modified_in_p (rtx x, rtx insn)
905 {
906 enum rtx_code code = GET_CODE (x);
907 const char *fmt;
908 int i, j;
909
910 switch (code)
911 {
912 case CONST_INT:
913 case CONST_DOUBLE:
914 case CONST_VECTOR:
915 case CONST:
916 case SYMBOL_REF:
917 case LABEL_REF:
918 return 0;
919
920 case PC:
921 case CC0:
922 return 1;
923
924 case MEM:
925 if (modified_in_p (XEXP (x, 0), insn))
926 return 1;
927 if (MEM_READONLY_P (x))
928 return 0;
929 if (memory_modified_in_insn_p (x, insn))
930 return 1;
931 return 0;
932 break;
933
934 case REG:
935 return reg_set_p (x, insn);
936
937 default:
938 break;
939 }
940
941 fmt = GET_RTX_FORMAT (code);
942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
943 {
944 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
945 return 1;
946
947 else if (fmt[i] == 'E')
948 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
949 if (modified_in_p (XVECEXP (x, i, j), insn))
950 return 1;
951 }
952
953 return 0;
954 }
955 \f
956 /* Helper function for set_of. */
957 struct set_of_data
958 {
959 rtx found;
960 rtx pat;
961 };
962
963 static void
964 set_of_1 (rtx x, rtx pat, void *data1)
965 {
966 struct set_of_data *data = (struct set_of_data *) (data1);
967 if (rtx_equal_p (x, data->pat)
968 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
969 data->found = pat;
970 }
971
972 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
973 (either directly or via STRICT_LOW_PART and similar modifiers). */
974 rtx
975 set_of (rtx pat, rtx insn)
976 {
977 struct set_of_data data;
978 data.found = NULL_RTX;
979 data.pat = pat;
980 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
981 return data.found;
982 }
983 \f
984 /* Given an INSN, return a SET expression if this insn has only a single SET.
985 It may also have CLOBBERs, USEs, or SET whose output
986 will not be used, which we ignore. */
987
988 rtx
989 single_set_2 (rtx insn, rtx pat)
990 {
991 rtx set = NULL;
992 int set_verified = 1;
993 int i;
994
995 if (GET_CODE (pat) == PARALLEL)
996 {
997 for (i = 0; i < XVECLEN (pat, 0); i++)
998 {
999 rtx sub = XVECEXP (pat, 0, i);
1000 switch (GET_CODE (sub))
1001 {
1002 case USE:
1003 case CLOBBER:
1004 break;
1005
1006 case SET:
1007 /* We can consider insns having multiple sets, where all
1008 but one are dead as single set insns. In common case
1009 only single set is present in the pattern so we want
1010 to avoid checking for REG_UNUSED notes unless necessary.
1011
1012 When we reach set first time, we just expect this is
1013 the single set we are looking for and only when more
1014 sets are found in the insn, we check them. */
1015 if (!set_verified)
1016 {
1017 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1018 && !side_effects_p (set))
1019 set = NULL;
1020 else
1021 set_verified = 1;
1022 }
1023 if (!set)
1024 set = sub, set_verified = 0;
1025 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1026 || side_effects_p (sub))
1027 return NULL_RTX;
1028 break;
1029
1030 default:
1031 return NULL_RTX;
1032 }
1033 }
1034 }
1035 return set;
1036 }
1037
1038 /* Given an INSN, return nonzero if it has more than one SET, else return
1039 zero. */
1040
1041 int
1042 multiple_sets (rtx insn)
1043 {
1044 int found;
1045 int i;
1046
1047 /* INSN must be an insn. */
1048 if (! INSN_P (insn))
1049 return 0;
1050
1051 /* Only a PARALLEL can have multiple SETs. */
1052 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1053 {
1054 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1055 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1056 {
1057 /* If we have already found a SET, then return now. */
1058 if (found)
1059 return 1;
1060 else
1061 found = 1;
1062 }
1063 }
1064
1065 /* Either zero or one SET. */
1066 return 0;
1067 }
1068 \f
1069 /* Return nonzero if the destination of SET equals the source
1070 and there are no side effects. */
1071
1072 int
1073 set_noop_p (rtx set)
1074 {
1075 rtx src = SET_SRC (set);
1076 rtx dst = SET_DEST (set);
1077
1078 if (dst == pc_rtx && src == pc_rtx)
1079 return 1;
1080
1081 if (MEM_P (dst) && MEM_P (src))
1082 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1083
1084 if (GET_CODE (dst) == ZERO_EXTRACT)
1085 return rtx_equal_p (XEXP (dst, 0), src)
1086 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1087 && !side_effects_p (src);
1088
1089 if (GET_CODE (dst) == STRICT_LOW_PART)
1090 dst = XEXP (dst, 0);
1091
1092 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1093 {
1094 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1095 return 0;
1096 src = SUBREG_REG (src);
1097 dst = SUBREG_REG (dst);
1098 }
1099
1100 return (REG_P (src) && REG_P (dst)
1101 && REGNO (src) == REGNO (dst));
1102 }
1103 \f
1104 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1105 value to itself. */
1106
1107 int
1108 noop_move_p (rtx insn)
1109 {
1110 rtx pat = PATTERN (insn);
1111
1112 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1113 return 1;
1114
1115 /* Insns carrying these notes are useful later on. */
1116 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1117 return 0;
1118
1119 /* For now treat an insn with a REG_RETVAL note as a
1120 a special insn which should not be considered a no-op. */
1121 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1122 return 0;
1123
1124 if (GET_CODE (pat) == SET && set_noop_p (pat))
1125 return 1;
1126
1127 if (GET_CODE (pat) == PARALLEL)
1128 {
1129 int i;
1130 /* If nothing but SETs of registers to themselves,
1131 this insn can also be deleted. */
1132 for (i = 0; i < XVECLEN (pat, 0); i++)
1133 {
1134 rtx tem = XVECEXP (pat, 0, i);
1135
1136 if (GET_CODE (tem) == USE
1137 || GET_CODE (tem) == CLOBBER)
1138 continue;
1139
1140 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1141 return 0;
1142 }
1143
1144 return 1;
1145 }
1146 return 0;
1147 }
1148 \f
1149
1150 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1151 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1152 If the object was modified, if we hit a partial assignment to X, or hit a
1153 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1154 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1155 be the src. */
1156
1157 rtx
1158 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1159 {
1160 rtx p;
1161
1162 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1163 p = PREV_INSN (p))
1164 if (INSN_P (p))
1165 {
1166 rtx set = single_set (p);
1167 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1168
1169 if (set && rtx_equal_p (x, SET_DEST (set)))
1170 {
1171 rtx src = SET_SRC (set);
1172
1173 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1174 src = XEXP (note, 0);
1175
1176 if ((valid_to == NULL_RTX
1177 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1178 /* Reject hard registers because we don't usually want
1179 to use them; we'd rather use a pseudo. */
1180 && (! (REG_P (src)
1181 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1182 {
1183 *pinsn = p;
1184 return src;
1185 }
1186 }
1187
1188 /* If set in non-simple way, we don't have a value. */
1189 if (reg_set_p (x, p))
1190 break;
1191 }
1192
1193 return x;
1194 }
1195 \f
1196 /* Return nonzero if register in range [REGNO, ENDREGNO)
1197 appears either explicitly or implicitly in X
1198 other than being stored into.
1199
1200 References contained within the substructure at LOC do not count.
1201 LOC may be zero, meaning don't ignore anything. */
1202
1203 int
1204 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1205 rtx *loc)
1206 {
1207 int i;
1208 unsigned int x_regno;
1209 RTX_CODE code;
1210 const char *fmt;
1211
1212 repeat:
1213 /* The contents of a REG_NONNEG note is always zero, so we must come here
1214 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1215 if (x == 0)
1216 return 0;
1217
1218 code = GET_CODE (x);
1219
1220 switch (code)
1221 {
1222 case REG:
1223 x_regno = REGNO (x);
1224
1225 /* If we modifying the stack, frame, or argument pointer, it will
1226 clobber a virtual register. In fact, we could be more precise,
1227 but it isn't worth it. */
1228 if ((x_regno == STACK_POINTER_REGNUM
1229 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1230 || x_regno == ARG_POINTER_REGNUM
1231 #endif
1232 || x_regno == FRAME_POINTER_REGNUM)
1233 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1234 return 1;
1235
1236 return (endregno > x_regno
1237 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1238 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1239 : 1));
1240
1241 case SUBREG:
1242 /* If this is a SUBREG of a hard reg, we can see exactly which
1243 registers are being modified. Otherwise, handle normally. */
1244 if (REG_P (SUBREG_REG (x))
1245 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1246 {
1247 unsigned int inner_regno = subreg_regno (x);
1248 unsigned int inner_endregno
1249 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1250 ? subreg_nregs (x) : 1);
1251
1252 return endregno > inner_regno && regno < inner_endregno;
1253 }
1254 break;
1255
1256 case CLOBBER:
1257 case SET:
1258 if (&SET_DEST (x) != loc
1259 /* Note setting a SUBREG counts as referring to the REG it is in for
1260 a pseudo but not for hard registers since we can
1261 treat each word individually. */
1262 && ((GET_CODE (SET_DEST (x)) == SUBREG
1263 && loc != &SUBREG_REG (SET_DEST (x))
1264 && REG_P (SUBREG_REG (SET_DEST (x)))
1265 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1266 && refers_to_regno_p (regno, endregno,
1267 SUBREG_REG (SET_DEST (x)), loc))
1268 || (!REG_P (SET_DEST (x))
1269 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1270 return 1;
1271
1272 if (code == CLOBBER || loc == &SET_SRC (x))
1273 return 0;
1274 x = SET_SRC (x);
1275 goto repeat;
1276
1277 default:
1278 break;
1279 }
1280
1281 /* X does not match, so try its subexpressions. */
1282
1283 fmt = GET_RTX_FORMAT (code);
1284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1285 {
1286 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1287 {
1288 if (i == 0)
1289 {
1290 x = XEXP (x, 0);
1291 goto repeat;
1292 }
1293 else
1294 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1295 return 1;
1296 }
1297 else if (fmt[i] == 'E')
1298 {
1299 int j;
1300 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1301 if (loc != &XVECEXP (x, i, j)
1302 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1303 return 1;
1304 }
1305 }
1306 return 0;
1307 }
1308
1309 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1310 we check if any register number in X conflicts with the relevant register
1311 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1312 contains a MEM (we don't bother checking for memory addresses that can't
1313 conflict because we expect this to be a rare case. */
1314
1315 int
1316 reg_overlap_mentioned_p (rtx x, rtx in)
1317 {
1318 unsigned int regno, endregno;
1319
1320 /* If either argument is a constant, then modifying X can not
1321 affect IN. Here we look at IN, we can profitably combine
1322 CONSTANT_P (x) with the switch statement below. */
1323 if (CONSTANT_P (in))
1324 return 0;
1325
1326 recurse:
1327 switch (GET_CODE (x))
1328 {
1329 case STRICT_LOW_PART:
1330 case ZERO_EXTRACT:
1331 case SIGN_EXTRACT:
1332 /* Overly conservative. */
1333 x = XEXP (x, 0);
1334 goto recurse;
1335
1336 case SUBREG:
1337 regno = REGNO (SUBREG_REG (x));
1338 if (regno < FIRST_PSEUDO_REGISTER)
1339 regno = subreg_regno (x);
1340 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1341 ? subreg_nregs (x) : 1);
1342 goto do_reg;
1343
1344 case REG:
1345 regno = REGNO (x);
1346 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1347 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1348 do_reg:
1349 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1350
1351 case MEM:
1352 {
1353 const char *fmt;
1354 int i;
1355
1356 if (MEM_P (in))
1357 return 1;
1358
1359 fmt = GET_RTX_FORMAT (GET_CODE (in));
1360 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1361 if (fmt[i] == 'e')
1362 {
1363 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1364 return 1;
1365 }
1366 else if (fmt[i] == 'E')
1367 {
1368 int j;
1369 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1370 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1371 return 1;
1372 }
1373
1374 return 0;
1375 }
1376
1377 case SCRATCH:
1378 case PC:
1379 case CC0:
1380 return reg_mentioned_p (x, in);
1381
1382 case PARALLEL:
1383 {
1384 int i;
1385
1386 /* If any register in here refers to it we return true. */
1387 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1388 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1389 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1390 return 1;
1391 return 0;
1392 }
1393
1394 default:
1395 gcc_assert (CONSTANT_P (x));
1396 return 0;
1397 }
1398 }
1399 \f
1400 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1401 (X would be the pattern of an insn).
1402 FUN receives two arguments:
1403 the REG, MEM, CC0 or PC being stored in or clobbered,
1404 the SET or CLOBBER rtx that does the store.
1405
1406 If the item being stored in or clobbered is a SUBREG of a hard register,
1407 the SUBREG will be passed. */
1408
1409 void
1410 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1411 {
1412 int i;
1413
1414 if (GET_CODE (x) == COND_EXEC)
1415 x = COND_EXEC_CODE (x);
1416
1417 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1418 {
1419 rtx dest = SET_DEST (x);
1420
1421 while ((GET_CODE (dest) == SUBREG
1422 && (!REG_P (SUBREG_REG (dest))
1423 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1424 || GET_CODE (dest) == ZERO_EXTRACT
1425 || GET_CODE (dest) == STRICT_LOW_PART)
1426 dest = XEXP (dest, 0);
1427
1428 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1429 each of whose first operand is a register. */
1430 if (GET_CODE (dest) == PARALLEL)
1431 {
1432 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1433 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1434 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1435 }
1436 else
1437 (*fun) (dest, x, data);
1438 }
1439
1440 else if (GET_CODE (x) == PARALLEL)
1441 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1442 note_stores (XVECEXP (x, 0, i), fun, data);
1443 }
1444 \f
1445 /* Like notes_stores, but call FUN for each expression that is being
1446 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1447 FUN for each expression, not any interior subexpressions. FUN receives a
1448 pointer to the expression and the DATA passed to this function.
1449
1450 Note that this is not quite the same test as that done in reg_referenced_p
1451 since that considers something as being referenced if it is being
1452 partially set, while we do not. */
1453
1454 void
1455 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1456 {
1457 rtx body = *pbody;
1458 int i;
1459
1460 switch (GET_CODE (body))
1461 {
1462 case COND_EXEC:
1463 (*fun) (&COND_EXEC_TEST (body), data);
1464 note_uses (&COND_EXEC_CODE (body), fun, data);
1465 return;
1466
1467 case PARALLEL:
1468 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1469 note_uses (&XVECEXP (body, 0, i), fun, data);
1470 return;
1471
1472 case SEQUENCE:
1473 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1474 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1475 return;
1476
1477 case USE:
1478 (*fun) (&XEXP (body, 0), data);
1479 return;
1480
1481 case ASM_OPERANDS:
1482 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1483 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1484 return;
1485
1486 case TRAP_IF:
1487 (*fun) (&TRAP_CONDITION (body), data);
1488 return;
1489
1490 case PREFETCH:
1491 (*fun) (&XEXP (body, 0), data);
1492 return;
1493
1494 case UNSPEC:
1495 case UNSPEC_VOLATILE:
1496 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1497 (*fun) (&XVECEXP (body, 0, i), data);
1498 return;
1499
1500 case CLOBBER:
1501 if (MEM_P (XEXP (body, 0)))
1502 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1503 return;
1504
1505 case SET:
1506 {
1507 rtx dest = SET_DEST (body);
1508
1509 /* For sets we replace everything in source plus registers in memory
1510 expression in store and operands of a ZERO_EXTRACT. */
1511 (*fun) (&SET_SRC (body), data);
1512
1513 if (GET_CODE (dest) == ZERO_EXTRACT)
1514 {
1515 (*fun) (&XEXP (dest, 1), data);
1516 (*fun) (&XEXP (dest, 2), data);
1517 }
1518
1519 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1520 dest = XEXP (dest, 0);
1521
1522 if (MEM_P (dest))
1523 (*fun) (&XEXP (dest, 0), data);
1524 }
1525 return;
1526
1527 default:
1528 /* All the other possibilities never store. */
1529 (*fun) (pbody, data);
1530 return;
1531 }
1532 }
1533 \f
1534 /* Return nonzero if X's old contents don't survive after INSN.
1535 This will be true if X is (cc0) or if X is a register and
1536 X dies in INSN or because INSN entirely sets X.
1537
1538 "Entirely set" means set directly and not through a SUBREG, or
1539 ZERO_EXTRACT, so no trace of the old contents remains.
1540 Likewise, REG_INC does not count.
1541
1542 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1543 but for this use that makes no difference, since regs don't overlap
1544 during their lifetimes. Therefore, this function may be used
1545 at any time after deaths have been computed (in flow.c).
1546
1547 If REG is a hard reg that occupies multiple machine registers, this
1548 function will only return 1 if each of those registers will be replaced
1549 by INSN. */
1550
1551 int
1552 dead_or_set_p (rtx insn, rtx x)
1553 {
1554 unsigned int regno, last_regno;
1555 unsigned int i;
1556
1557 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1558 if (GET_CODE (x) == CC0)
1559 return 1;
1560
1561 gcc_assert (REG_P (x));
1562
1563 regno = REGNO (x);
1564 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1565 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1566
1567 for (i = regno; i <= last_regno; i++)
1568 if (! dead_or_set_regno_p (insn, i))
1569 return 0;
1570
1571 return 1;
1572 }
1573
1574 /* Return TRUE iff DEST is a register or subreg of a register and
1575 doesn't change the number of words of the inner register, and any
1576 part of the register is TEST_REGNO. */
1577
1578 static bool
1579 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1580 {
1581 unsigned int regno, endregno;
1582
1583 if (GET_CODE (dest) == SUBREG
1584 && (((GET_MODE_SIZE (GET_MODE (dest))
1585 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1586 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1587 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1588 dest = SUBREG_REG (dest);
1589
1590 if (!REG_P (dest))
1591 return false;
1592
1593 regno = REGNO (dest);
1594 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1595 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1596 return (test_regno >= regno && test_regno < endregno);
1597 }
1598
1599 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1600 any member matches the covers_regno_no_parallel_p criteria. */
1601
1602 static bool
1603 covers_regno_p (rtx dest, unsigned int test_regno)
1604 {
1605 if (GET_CODE (dest) == PARALLEL)
1606 {
1607 /* Some targets place small structures in registers for return
1608 values of functions, and those registers are wrapped in
1609 PARALLELs that we may see as the destination of a SET. */
1610 int i;
1611
1612 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1613 {
1614 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1615 if (inner != NULL_RTX
1616 && covers_regno_no_parallel_p (inner, test_regno))
1617 return true;
1618 }
1619
1620 return false;
1621 }
1622 else
1623 return covers_regno_no_parallel_p (dest, test_regno);
1624 }
1625
1626 /* Utility function for dead_or_set_p to check an individual register. Also
1627 called from flow.c. */
1628
1629 int
1630 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1631 {
1632 rtx pattern;
1633
1634 /* See if there is a death note for something that includes TEST_REGNO. */
1635 if (find_regno_note (insn, REG_DEAD, test_regno))
1636 return 1;
1637
1638 if (CALL_P (insn)
1639 && find_regno_fusage (insn, CLOBBER, test_regno))
1640 return 1;
1641
1642 pattern = PATTERN (insn);
1643
1644 if (GET_CODE (pattern) == COND_EXEC)
1645 pattern = COND_EXEC_CODE (pattern);
1646
1647 if (GET_CODE (pattern) == SET)
1648 return covers_regno_p (SET_DEST (pattern), test_regno);
1649 else if (GET_CODE (pattern) == PARALLEL)
1650 {
1651 int i;
1652
1653 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1654 {
1655 rtx body = XVECEXP (pattern, 0, i);
1656
1657 if (GET_CODE (body) == COND_EXEC)
1658 body = COND_EXEC_CODE (body);
1659
1660 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1661 && covers_regno_p (SET_DEST (body), test_regno))
1662 return 1;
1663 }
1664 }
1665
1666 return 0;
1667 }
1668
1669 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1670 If DATUM is nonzero, look for one whose datum is DATUM. */
1671
1672 rtx
1673 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1674 {
1675 rtx link;
1676
1677 gcc_assert (insn);
1678
1679 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1680 if (! INSN_P (insn))
1681 return 0;
1682 if (datum == 0)
1683 {
1684 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1685 if (REG_NOTE_KIND (link) == kind)
1686 return link;
1687 return 0;
1688 }
1689
1690 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1691 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1692 return link;
1693 return 0;
1694 }
1695
1696 /* Return the reg-note of kind KIND in insn INSN which applies to register
1697 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1698 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1699 it might be the case that the note overlaps REGNO. */
1700
1701 rtx
1702 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1703 {
1704 rtx link;
1705
1706 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1707 if (! INSN_P (insn))
1708 return 0;
1709
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind
1712 /* Verify that it is a register, so that scratch and MEM won't cause a
1713 problem here. */
1714 && REG_P (XEXP (link, 0))
1715 && REGNO (XEXP (link, 0)) <= regno
1716 && ((REGNO (XEXP (link, 0))
1717 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1718 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1719 [GET_MODE (XEXP (link, 0))]))
1720 > regno))
1721 return link;
1722 return 0;
1723 }
1724
1725 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1726 has such a note. */
1727
1728 rtx
1729 find_reg_equal_equiv_note (rtx insn)
1730 {
1731 rtx link;
1732
1733 if (!INSN_P (insn))
1734 return 0;
1735
1736 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1737 if (REG_NOTE_KIND (link) == REG_EQUAL
1738 || REG_NOTE_KIND (link) == REG_EQUIV)
1739 {
1740 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1741 insns that have multiple sets. Checking single_set to
1742 make sure of this is not the proper check, as explained
1743 in the comment in set_unique_reg_note.
1744
1745 This should be changed into an assert. */
1746 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1747 return 0;
1748 return link;
1749 }
1750 return NULL;
1751 }
1752
1753 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1754 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1755
1756 int
1757 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1758 {
1759 /* If it's not a CALL_INSN, it can't possibly have a
1760 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1761 if (!CALL_P (insn))
1762 return 0;
1763
1764 gcc_assert (datum);
1765
1766 if (!REG_P (datum))
1767 {
1768 rtx link;
1769
1770 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1771 link;
1772 link = XEXP (link, 1))
1773 if (GET_CODE (XEXP (link, 0)) == code
1774 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1775 return 1;
1776 }
1777 else
1778 {
1779 unsigned int regno = REGNO (datum);
1780
1781 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1782 to pseudo registers, so don't bother checking. */
1783
1784 if (regno < FIRST_PSEUDO_REGISTER)
1785 {
1786 unsigned int end_regno
1787 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1788 unsigned int i;
1789
1790 for (i = regno; i < end_regno; i++)
1791 if (find_regno_fusage (insn, code, i))
1792 return 1;
1793 }
1794 }
1795
1796 return 0;
1797 }
1798
1799 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1800 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1801
1802 int
1803 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1804 {
1805 rtx link;
1806
1807 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1808 to pseudo registers, so don't bother checking. */
1809
1810 if (regno >= FIRST_PSEUDO_REGISTER
1811 || !CALL_P (insn) )
1812 return 0;
1813
1814 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1815 {
1816 unsigned int regnote;
1817 rtx op, reg;
1818
1819 if (GET_CODE (op = XEXP (link, 0)) == code
1820 && REG_P (reg = XEXP (op, 0))
1821 && (regnote = REGNO (reg)) <= regno
1822 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1823 return 1;
1824 }
1825
1826 return 0;
1827 }
1828
1829 /* Return true if INSN is a call to a pure function. */
1830
1831 int
1832 pure_call_p (rtx insn)
1833 {
1834 rtx link;
1835
1836 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1837 return 0;
1838
1839 /* Look for the note that differentiates const and pure functions. */
1840 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1841 {
1842 rtx u, m;
1843
1844 if (GET_CODE (u = XEXP (link, 0)) == USE
1845 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1846 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1847 return 1;
1848 }
1849
1850 return 0;
1851 }
1852 \f
1853 /* Remove register note NOTE from the REG_NOTES of INSN. */
1854
1855 void
1856 remove_note (rtx insn, rtx note)
1857 {
1858 rtx link;
1859
1860 if (note == NULL_RTX)
1861 return;
1862
1863 if (REG_NOTES (insn) == note)
1864 {
1865 REG_NOTES (insn) = XEXP (note, 1);
1866 return;
1867 }
1868
1869 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1870 if (XEXP (link, 1) == note)
1871 {
1872 XEXP (link, 1) = XEXP (note, 1);
1873 return;
1874 }
1875
1876 gcc_unreachable ();
1877 }
1878
1879 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1880
1881 void
1882 remove_reg_equal_equiv_notes (rtx insn)
1883 {
1884 rtx *loc;
1885
1886 loc = &REG_NOTES (insn);
1887 while (*loc)
1888 {
1889 enum reg_note kind = REG_NOTE_KIND (*loc);
1890 if (kind == REG_EQUAL || kind == REG_EQUIV)
1891 *loc = XEXP (*loc, 1);
1892 else
1893 loc = &XEXP (*loc, 1);
1894 }
1895 }
1896
1897 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1898 return 1 if it is found. A simple equality test is used to determine if
1899 NODE matches. */
1900
1901 int
1902 in_expr_list_p (rtx listp, rtx node)
1903 {
1904 rtx x;
1905
1906 for (x = listp; x; x = XEXP (x, 1))
1907 if (node == XEXP (x, 0))
1908 return 1;
1909
1910 return 0;
1911 }
1912
1913 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1914 remove that entry from the list if it is found.
1915
1916 A simple equality test is used to determine if NODE matches. */
1917
1918 void
1919 remove_node_from_expr_list (rtx node, rtx *listp)
1920 {
1921 rtx temp = *listp;
1922 rtx prev = NULL_RTX;
1923
1924 while (temp)
1925 {
1926 if (node == XEXP (temp, 0))
1927 {
1928 /* Splice the node out of the list. */
1929 if (prev)
1930 XEXP (prev, 1) = XEXP (temp, 1);
1931 else
1932 *listp = XEXP (temp, 1);
1933
1934 return;
1935 }
1936
1937 prev = temp;
1938 temp = XEXP (temp, 1);
1939 }
1940 }
1941 \f
1942 /* Nonzero if X contains any volatile instructions. These are instructions
1943 which may cause unpredictable machine state instructions, and thus no
1944 instructions should be moved or combined across them. This includes
1945 only volatile asms and UNSPEC_VOLATILE instructions. */
1946
1947 int
1948 volatile_insn_p (rtx x)
1949 {
1950 RTX_CODE code;
1951
1952 code = GET_CODE (x);
1953 switch (code)
1954 {
1955 case LABEL_REF:
1956 case SYMBOL_REF:
1957 case CONST_INT:
1958 case CONST:
1959 case CONST_DOUBLE:
1960 case CONST_VECTOR:
1961 case CC0:
1962 case PC:
1963 case REG:
1964 case SCRATCH:
1965 case CLOBBER:
1966 case ADDR_VEC:
1967 case ADDR_DIFF_VEC:
1968 case CALL:
1969 case MEM:
1970 return 0;
1971
1972 case UNSPEC_VOLATILE:
1973 /* case TRAP_IF: This isn't clear yet. */
1974 return 1;
1975
1976 case ASM_INPUT:
1977 case ASM_OPERANDS:
1978 if (MEM_VOLATILE_P (x))
1979 return 1;
1980
1981 default:
1982 break;
1983 }
1984
1985 /* Recursively scan the operands of this expression. */
1986
1987 {
1988 const char *fmt = GET_RTX_FORMAT (code);
1989 int i;
1990
1991 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1992 {
1993 if (fmt[i] == 'e')
1994 {
1995 if (volatile_insn_p (XEXP (x, i)))
1996 return 1;
1997 }
1998 else if (fmt[i] == 'E')
1999 {
2000 int j;
2001 for (j = 0; j < XVECLEN (x, i); j++)
2002 if (volatile_insn_p (XVECEXP (x, i, j)))
2003 return 1;
2004 }
2005 }
2006 }
2007 return 0;
2008 }
2009
2010 /* Nonzero if X contains any volatile memory references
2011 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2012
2013 int
2014 volatile_refs_p (rtx x)
2015 {
2016 RTX_CODE code;
2017
2018 code = GET_CODE (x);
2019 switch (code)
2020 {
2021 case LABEL_REF:
2022 case SYMBOL_REF:
2023 case CONST_INT:
2024 case CONST:
2025 case CONST_DOUBLE:
2026 case CONST_VECTOR:
2027 case CC0:
2028 case PC:
2029 case REG:
2030 case SCRATCH:
2031 case CLOBBER:
2032 case ADDR_VEC:
2033 case ADDR_DIFF_VEC:
2034 return 0;
2035
2036 case UNSPEC_VOLATILE:
2037 return 1;
2038
2039 case MEM:
2040 case ASM_INPUT:
2041 case ASM_OPERANDS:
2042 if (MEM_VOLATILE_P (x))
2043 return 1;
2044
2045 default:
2046 break;
2047 }
2048
2049 /* Recursively scan the operands of this expression. */
2050
2051 {
2052 const char *fmt = GET_RTX_FORMAT (code);
2053 int i;
2054
2055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2056 {
2057 if (fmt[i] == 'e')
2058 {
2059 if (volatile_refs_p (XEXP (x, i)))
2060 return 1;
2061 }
2062 else if (fmt[i] == 'E')
2063 {
2064 int j;
2065 for (j = 0; j < XVECLEN (x, i); j++)
2066 if (volatile_refs_p (XVECEXP (x, i, j)))
2067 return 1;
2068 }
2069 }
2070 }
2071 return 0;
2072 }
2073
2074 /* Similar to above, except that it also rejects register pre- and post-
2075 incrementing. */
2076
2077 int
2078 side_effects_p (rtx x)
2079 {
2080 RTX_CODE code;
2081
2082 code = GET_CODE (x);
2083 switch (code)
2084 {
2085 case LABEL_REF:
2086 case SYMBOL_REF:
2087 case CONST_INT:
2088 case CONST:
2089 case CONST_DOUBLE:
2090 case CONST_VECTOR:
2091 case CC0:
2092 case PC:
2093 case REG:
2094 case SCRATCH:
2095 case ADDR_VEC:
2096 case ADDR_DIFF_VEC:
2097 return 0;
2098
2099 case CLOBBER:
2100 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2101 when some combination can't be done. If we see one, don't think
2102 that we can simplify the expression. */
2103 return (GET_MODE (x) != VOIDmode);
2104
2105 case PRE_INC:
2106 case PRE_DEC:
2107 case POST_INC:
2108 case POST_DEC:
2109 case PRE_MODIFY:
2110 case POST_MODIFY:
2111 case CALL:
2112 case UNSPEC_VOLATILE:
2113 /* case TRAP_IF: This isn't clear yet. */
2114 return 1;
2115
2116 case MEM:
2117 case ASM_INPUT:
2118 case ASM_OPERANDS:
2119 if (MEM_VOLATILE_P (x))
2120 return 1;
2121
2122 default:
2123 break;
2124 }
2125
2126 /* Recursively scan the operands of this expression. */
2127
2128 {
2129 const char *fmt = GET_RTX_FORMAT (code);
2130 int i;
2131
2132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2133 {
2134 if (fmt[i] == 'e')
2135 {
2136 if (side_effects_p (XEXP (x, i)))
2137 return 1;
2138 }
2139 else if (fmt[i] == 'E')
2140 {
2141 int j;
2142 for (j = 0; j < XVECLEN (x, i); j++)
2143 if (side_effects_p (XVECEXP (x, i, j)))
2144 return 1;
2145 }
2146 }
2147 }
2148 return 0;
2149 }
2150 \f
2151 enum may_trap_p_flags
2152 {
2153 MTP_UNALIGNED_MEMS = 1,
2154 MTP_AFTER_MOVE = 2
2155 };
2156 /* Return nonzero if evaluating rtx X might cause a trap.
2157 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2158 unaligned memory accesses on strict alignment machines. If
2159 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2160 cannot trap at its current location, but it might become trapping if moved
2161 elsewhere. */
2162
2163 static int
2164 may_trap_p_1 (rtx x, unsigned flags)
2165 {
2166 int i;
2167 enum rtx_code code;
2168 const char *fmt;
2169 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2170
2171 if (x == 0)
2172 return 0;
2173 code = GET_CODE (x);
2174 switch (code)
2175 {
2176 /* Handle these cases quickly. */
2177 case CONST_INT:
2178 case CONST_DOUBLE:
2179 case CONST_VECTOR:
2180 case SYMBOL_REF:
2181 case LABEL_REF:
2182 case CONST:
2183 case PC:
2184 case CC0:
2185 case REG:
2186 case SCRATCH:
2187 return 0;
2188
2189 case ASM_INPUT:
2190 case UNSPEC_VOLATILE:
2191 case TRAP_IF:
2192 return 1;
2193
2194 case ASM_OPERANDS:
2195 return MEM_VOLATILE_P (x);
2196
2197 /* Memory ref can trap unless it's a static var or a stack slot. */
2198 case MEM:
2199 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2200 reference; moving it out of condition might cause its address
2201 become invalid. */
2202 !(flags & MTP_AFTER_MOVE)
2203 && MEM_NOTRAP_P (x)
2204 && (!STRICT_ALIGNMENT || !unaligned_mems))
2205 return 0;
2206 return
2207 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2208
2209 /* Division by a non-constant might trap. */
2210 case DIV:
2211 case MOD:
2212 case UDIV:
2213 case UMOD:
2214 if (HONOR_SNANS (GET_MODE (x)))
2215 return 1;
2216 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2217 return flag_trapping_math;
2218 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2219 return 1;
2220 break;
2221
2222 case EXPR_LIST:
2223 /* An EXPR_LIST is used to represent a function call. This
2224 certainly may trap. */
2225 return 1;
2226
2227 case GE:
2228 case GT:
2229 case LE:
2230 case LT:
2231 case LTGT:
2232 case COMPARE:
2233 /* Some floating point comparisons may trap. */
2234 if (!flag_trapping_math)
2235 break;
2236 /* ??? There is no machine independent way to check for tests that trap
2237 when COMPARE is used, though many targets do make this distinction.
2238 For instance, sparc uses CCFPE for compares which generate exceptions
2239 and CCFP for compares which do not generate exceptions. */
2240 if (HONOR_NANS (GET_MODE (x)))
2241 return 1;
2242 /* But often the compare has some CC mode, so check operand
2243 modes as well. */
2244 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2245 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2246 return 1;
2247 break;
2248
2249 case EQ:
2250 case NE:
2251 if (HONOR_SNANS (GET_MODE (x)))
2252 return 1;
2253 /* Often comparison is CC mode, so check operand modes. */
2254 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2255 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2256 return 1;
2257 break;
2258
2259 case FIX:
2260 /* Conversion of floating point might trap. */
2261 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2262 return 1;
2263 break;
2264
2265 case NEG:
2266 case ABS:
2267 case SUBREG:
2268 /* These operations don't trap even with floating point. */
2269 break;
2270
2271 default:
2272 /* Any floating arithmetic may trap. */
2273 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2274 && flag_trapping_math)
2275 return 1;
2276 }
2277
2278 fmt = GET_RTX_FORMAT (code);
2279 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2280 {
2281 if (fmt[i] == 'e')
2282 {
2283 if (may_trap_p_1 (XEXP (x, i), flags))
2284 return 1;
2285 }
2286 else if (fmt[i] == 'E')
2287 {
2288 int j;
2289 for (j = 0; j < XVECLEN (x, i); j++)
2290 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2291 return 1;
2292 }
2293 }
2294 return 0;
2295 }
2296
2297 /* Return nonzero if evaluating rtx X might cause a trap. */
2298
2299 int
2300 may_trap_p (rtx x)
2301 {
2302 return may_trap_p_1 (x, 0);
2303 }
2304
2305 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2306 is moved from its current location by some optimization. */
2307
2308 int
2309 may_trap_after_code_motion_p (rtx x)
2310 {
2311 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2312 }
2313
2314 /* Same as above, but additionally return nonzero if evaluating rtx X might
2315 cause a fault. We define a fault for the purpose of this function as a
2316 erroneous execution condition that cannot be encountered during the normal
2317 execution of a valid program; the typical example is an unaligned memory
2318 access on a strict alignment machine. The compiler guarantees that it
2319 doesn't generate code that will fault from a valid program, but this
2320 guarantee doesn't mean anything for individual instructions. Consider
2321 the following example:
2322
2323 struct S { int d; union { char *cp; int *ip; }; };
2324
2325 int foo(struct S *s)
2326 {
2327 if (s->d == 1)
2328 return *s->ip;
2329 else
2330 return *s->cp;
2331 }
2332
2333 on a strict alignment machine. In a valid program, foo will never be
2334 invoked on a structure for which d is equal to 1 and the underlying
2335 unique field of the union not aligned on a 4-byte boundary, but the
2336 expression *s->ip might cause a fault if considered individually.
2337
2338 At the RTL level, potentially problematic expressions will almost always
2339 verify may_trap_p; for example, the above dereference can be emitted as
2340 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2341 However, suppose that foo is inlined in a caller that causes s->cp to
2342 point to a local character variable and guarantees that s->d is not set
2343 to 1; foo may have been effectively translated into pseudo-RTL as:
2344
2345 if ((reg:SI) == 1)
2346 (set (reg:SI) (mem:SI (%fp - 7)))
2347 else
2348 (set (reg:QI) (mem:QI (%fp - 7)))
2349
2350 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2351 memory reference to a stack slot, but it will certainly cause a fault
2352 on a strict alignment machine. */
2353
2354 int
2355 may_trap_or_fault_p (rtx x)
2356 {
2357 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2358 }
2359 \f
2360 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2361 i.e., an inequality. */
2362
2363 int
2364 inequality_comparisons_p (rtx x)
2365 {
2366 const char *fmt;
2367 int len, i;
2368 enum rtx_code code = GET_CODE (x);
2369
2370 switch (code)
2371 {
2372 case REG:
2373 case SCRATCH:
2374 case PC:
2375 case CC0:
2376 case CONST_INT:
2377 case CONST_DOUBLE:
2378 case CONST_VECTOR:
2379 case CONST:
2380 case LABEL_REF:
2381 case SYMBOL_REF:
2382 return 0;
2383
2384 case LT:
2385 case LTU:
2386 case GT:
2387 case GTU:
2388 case LE:
2389 case LEU:
2390 case GE:
2391 case GEU:
2392 return 1;
2393
2394 default:
2395 break;
2396 }
2397
2398 len = GET_RTX_LENGTH (code);
2399 fmt = GET_RTX_FORMAT (code);
2400
2401 for (i = 0; i < len; i++)
2402 {
2403 if (fmt[i] == 'e')
2404 {
2405 if (inequality_comparisons_p (XEXP (x, i)))
2406 return 1;
2407 }
2408 else if (fmt[i] == 'E')
2409 {
2410 int j;
2411 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2412 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2413 return 1;
2414 }
2415 }
2416
2417 return 0;
2418 }
2419 \f
2420 /* Replace any occurrence of FROM in X with TO. The function does
2421 not enter into CONST_DOUBLE for the replace.
2422
2423 Note that copying is not done so X must not be shared unless all copies
2424 are to be modified. */
2425
2426 rtx
2427 replace_rtx (rtx x, rtx from, rtx to)
2428 {
2429 int i, j;
2430 const char *fmt;
2431
2432 /* The following prevents loops occurrence when we change MEM in
2433 CONST_DOUBLE onto the same CONST_DOUBLE. */
2434 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2435 return x;
2436
2437 if (x == from)
2438 return to;
2439
2440 /* Allow this function to make replacements in EXPR_LISTs. */
2441 if (x == 0)
2442 return 0;
2443
2444 if (GET_CODE (x) == SUBREG)
2445 {
2446 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2447
2448 if (GET_CODE (new) == CONST_INT)
2449 {
2450 x = simplify_subreg (GET_MODE (x), new,
2451 GET_MODE (SUBREG_REG (x)),
2452 SUBREG_BYTE (x));
2453 gcc_assert (x);
2454 }
2455 else
2456 SUBREG_REG (x) = new;
2457
2458 return x;
2459 }
2460 else if (GET_CODE (x) == ZERO_EXTEND)
2461 {
2462 rtx new = replace_rtx (XEXP (x, 0), from, to);
2463
2464 if (GET_CODE (new) == CONST_INT)
2465 {
2466 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2467 new, GET_MODE (XEXP (x, 0)));
2468 gcc_assert (x);
2469 }
2470 else
2471 XEXP (x, 0) = new;
2472
2473 return x;
2474 }
2475
2476 fmt = GET_RTX_FORMAT (GET_CODE (x));
2477 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2478 {
2479 if (fmt[i] == 'e')
2480 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2481 else if (fmt[i] == 'E')
2482 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2483 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2484 }
2485
2486 return x;
2487 }
2488 \f
2489 /* Replace occurrences of the old label in *X with the new one.
2490 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2491
2492 int
2493 replace_label (rtx *x, void *data)
2494 {
2495 rtx l = *x;
2496 rtx old_label = ((replace_label_data *) data)->r1;
2497 rtx new_label = ((replace_label_data *) data)->r2;
2498 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2499
2500 if (l == NULL_RTX)
2501 return 0;
2502
2503 if (GET_CODE (l) == SYMBOL_REF
2504 && CONSTANT_POOL_ADDRESS_P (l))
2505 {
2506 rtx c = get_pool_constant (l);
2507 if (rtx_referenced_p (old_label, c))
2508 {
2509 rtx new_c, new_l;
2510 replace_label_data *d = (replace_label_data *) data;
2511
2512 /* Create a copy of constant C; replace the label inside
2513 but do not update LABEL_NUSES because uses in constant pool
2514 are not counted. */
2515 new_c = copy_rtx (c);
2516 d->update_label_nuses = false;
2517 for_each_rtx (&new_c, replace_label, data);
2518 d->update_label_nuses = update_label_nuses;
2519
2520 /* Add the new constant NEW_C to constant pool and replace
2521 the old reference to constant by new reference. */
2522 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2523 *x = replace_rtx (l, l, new_l);
2524 }
2525 return 0;
2526 }
2527
2528 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2529 field. This is not handled by for_each_rtx because it doesn't
2530 handle unprinted ('0') fields. */
2531 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2532 JUMP_LABEL (l) = new_label;
2533
2534 if ((GET_CODE (l) == LABEL_REF
2535 || GET_CODE (l) == INSN_LIST)
2536 && XEXP (l, 0) == old_label)
2537 {
2538 XEXP (l, 0) = new_label;
2539 if (update_label_nuses)
2540 {
2541 ++LABEL_NUSES (new_label);
2542 --LABEL_NUSES (old_label);
2543 }
2544 return 0;
2545 }
2546
2547 return 0;
2548 }
2549
2550 /* When *BODY is equal to X or X is directly referenced by *BODY
2551 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2552 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2553
2554 static int
2555 rtx_referenced_p_1 (rtx *body, void *x)
2556 {
2557 rtx y = (rtx) x;
2558
2559 if (*body == NULL_RTX)
2560 return y == NULL_RTX;
2561
2562 /* Return true if a label_ref *BODY refers to label Y. */
2563 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2564 return XEXP (*body, 0) == y;
2565
2566 /* If *BODY is a reference to pool constant traverse the constant. */
2567 if (GET_CODE (*body) == SYMBOL_REF
2568 && CONSTANT_POOL_ADDRESS_P (*body))
2569 return rtx_referenced_p (y, get_pool_constant (*body));
2570
2571 /* By default, compare the RTL expressions. */
2572 return rtx_equal_p (*body, y);
2573 }
2574
2575 /* Return true if X is referenced in BODY. */
2576
2577 int
2578 rtx_referenced_p (rtx x, rtx body)
2579 {
2580 return for_each_rtx (&body, rtx_referenced_p_1, x);
2581 }
2582
2583 /* If INSN is a tablejump return true and store the label (before jump table) to
2584 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2585
2586 bool
2587 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2588 {
2589 rtx label, table;
2590
2591 if (JUMP_P (insn)
2592 && (label = JUMP_LABEL (insn)) != NULL_RTX
2593 && (table = next_active_insn (label)) != NULL_RTX
2594 && JUMP_P (table)
2595 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2596 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2597 {
2598 if (labelp)
2599 *labelp = label;
2600 if (tablep)
2601 *tablep = table;
2602 return true;
2603 }
2604 return false;
2605 }
2606
2607 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2608 constant that is not in the constant pool and not in the condition
2609 of an IF_THEN_ELSE. */
2610
2611 static int
2612 computed_jump_p_1 (rtx x)
2613 {
2614 enum rtx_code code = GET_CODE (x);
2615 int i, j;
2616 const char *fmt;
2617
2618 switch (code)
2619 {
2620 case LABEL_REF:
2621 case PC:
2622 return 0;
2623
2624 case CONST:
2625 case CONST_INT:
2626 case CONST_DOUBLE:
2627 case CONST_VECTOR:
2628 case SYMBOL_REF:
2629 case REG:
2630 return 1;
2631
2632 case MEM:
2633 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2634 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2635
2636 case IF_THEN_ELSE:
2637 return (computed_jump_p_1 (XEXP (x, 1))
2638 || computed_jump_p_1 (XEXP (x, 2)));
2639
2640 default:
2641 break;
2642 }
2643
2644 fmt = GET_RTX_FORMAT (code);
2645 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2646 {
2647 if (fmt[i] == 'e'
2648 && computed_jump_p_1 (XEXP (x, i)))
2649 return 1;
2650
2651 else if (fmt[i] == 'E')
2652 for (j = 0; j < XVECLEN (x, i); j++)
2653 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2654 return 1;
2655 }
2656
2657 return 0;
2658 }
2659
2660 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2661
2662 Tablejumps and casesi insns are not considered indirect jumps;
2663 we can recognize them by a (use (label_ref)). */
2664
2665 int
2666 computed_jump_p (rtx insn)
2667 {
2668 int i;
2669 if (JUMP_P (insn))
2670 {
2671 rtx pat = PATTERN (insn);
2672
2673 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2674 return 0;
2675 else if (GET_CODE (pat) == PARALLEL)
2676 {
2677 int len = XVECLEN (pat, 0);
2678 int has_use_labelref = 0;
2679
2680 for (i = len - 1; i >= 0; i--)
2681 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2682 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2683 == LABEL_REF))
2684 has_use_labelref = 1;
2685
2686 if (! has_use_labelref)
2687 for (i = len - 1; i >= 0; i--)
2688 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2689 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2690 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2691 return 1;
2692 }
2693 else if (GET_CODE (pat) == SET
2694 && SET_DEST (pat) == pc_rtx
2695 && computed_jump_p_1 (SET_SRC (pat)))
2696 return 1;
2697 }
2698 return 0;
2699 }
2700
2701 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2702 calls. Processes the subexpressions of EXP and passes them to F. */
2703 static int
2704 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2705 {
2706 int result, i, j;
2707 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2708 rtx *x;
2709
2710 for (; format[n] != '\0'; n++)
2711 {
2712 switch (format[n])
2713 {
2714 case 'e':
2715 /* Call F on X. */
2716 x = &XEXP (exp, n);
2717 result = (*f) (x, data);
2718 if (result == -1)
2719 /* Do not traverse sub-expressions. */
2720 continue;
2721 else if (result != 0)
2722 /* Stop the traversal. */
2723 return result;
2724
2725 if (*x == NULL_RTX)
2726 /* There are no sub-expressions. */
2727 continue;
2728
2729 i = non_rtx_starting_operands[GET_CODE (*x)];
2730 if (i >= 0)
2731 {
2732 result = for_each_rtx_1 (*x, i, f, data);
2733 if (result != 0)
2734 return result;
2735 }
2736 break;
2737
2738 case 'V':
2739 case 'E':
2740 if (XVEC (exp, n) == 0)
2741 continue;
2742 for (j = 0; j < XVECLEN (exp, n); ++j)
2743 {
2744 /* Call F on X. */
2745 x = &XVECEXP (exp, n, j);
2746 result = (*f) (x, data);
2747 if (result == -1)
2748 /* Do not traverse sub-expressions. */
2749 continue;
2750 else if (result != 0)
2751 /* Stop the traversal. */
2752 return result;
2753
2754 if (*x == NULL_RTX)
2755 /* There are no sub-expressions. */
2756 continue;
2757
2758 i = non_rtx_starting_operands[GET_CODE (*x)];
2759 if (i >= 0)
2760 {
2761 result = for_each_rtx_1 (*x, i, f, data);
2762 if (result != 0)
2763 return result;
2764 }
2765 }
2766 break;
2767
2768 default:
2769 /* Nothing to do. */
2770 break;
2771 }
2772 }
2773
2774 return 0;
2775 }
2776
2777 /* Traverse X via depth-first search, calling F for each
2778 sub-expression (including X itself). F is also passed the DATA.
2779 If F returns -1, do not traverse sub-expressions, but continue
2780 traversing the rest of the tree. If F ever returns any other
2781 nonzero value, stop the traversal, and return the value returned
2782 by F. Otherwise, return 0. This function does not traverse inside
2783 tree structure that contains RTX_EXPRs, or into sub-expressions
2784 whose format code is `0' since it is not known whether or not those
2785 codes are actually RTL.
2786
2787 This routine is very general, and could (should?) be used to
2788 implement many of the other routines in this file. */
2789
2790 int
2791 for_each_rtx (rtx *x, rtx_function f, void *data)
2792 {
2793 int result;
2794 int i;
2795
2796 /* Call F on X. */
2797 result = (*f) (x, data);
2798 if (result == -1)
2799 /* Do not traverse sub-expressions. */
2800 return 0;
2801 else if (result != 0)
2802 /* Stop the traversal. */
2803 return result;
2804
2805 if (*x == NULL_RTX)
2806 /* There are no sub-expressions. */
2807 return 0;
2808
2809 i = non_rtx_starting_operands[GET_CODE (*x)];
2810 if (i < 0)
2811 return 0;
2812
2813 return for_each_rtx_1 (*x, i, f, data);
2814 }
2815
2816
2817 /* Searches X for any reference to REGNO, returning the rtx of the
2818 reference found if any. Otherwise, returns NULL_RTX. */
2819
2820 rtx
2821 regno_use_in (unsigned int regno, rtx x)
2822 {
2823 const char *fmt;
2824 int i, j;
2825 rtx tem;
2826
2827 if (REG_P (x) && REGNO (x) == regno)
2828 return x;
2829
2830 fmt = GET_RTX_FORMAT (GET_CODE (x));
2831 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2832 {
2833 if (fmt[i] == 'e')
2834 {
2835 if ((tem = regno_use_in (regno, XEXP (x, i))))
2836 return tem;
2837 }
2838 else if (fmt[i] == 'E')
2839 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2840 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2841 return tem;
2842 }
2843
2844 return NULL_RTX;
2845 }
2846
2847 /* Return a value indicating whether OP, an operand of a commutative
2848 operation, is preferred as the first or second operand. The higher
2849 the value, the stronger the preference for being the first operand.
2850 We use negative values to indicate a preference for the first operand
2851 and positive values for the second operand. */
2852
2853 int
2854 commutative_operand_precedence (rtx op)
2855 {
2856 enum rtx_code code = GET_CODE (op);
2857
2858 /* Constants always come the second operand. Prefer "nice" constants. */
2859 if (code == CONST_INT)
2860 return -7;
2861 if (code == CONST_DOUBLE)
2862 return -6;
2863 op = avoid_constant_pool_reference (op);
2864 code = GET_CODE (op);
2865
2866 switch (GET_RTX_CLASS (code))
2867 {
2868 case RTX_CONST_OBJ:
2869 if (code == CONST_INT)
2870 return -5;
2871 if (code == CONST_DOUBLE)
2872 return -4;
2873 return -3;
2874
2875 case RTX_EXTRA:
2876 /* SUBREGs of objects should come second. */
2877 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2878 return -2;
2879
2880 if (!CONSTANT_P (op))
2881 return 0;
2882 else
2883 /* As for RTX_CONST_OBJ. */
2884 return -3;
2885
2886 case RTX_OBJ:
2887 /* Complex expressions should be the first, so decrease priority
2888 of objects. */
2889 return -1;
2890
2891 case RTX_COMM_ARITH:
2892 /* Prefer operands that are themselves commutative to be first.
2893 This helps to make things linear. In particular,
2894 (and (and (reg) (reg)) (not (reg))) is canonical. */
2895 return 4;
2896
2897 case RTX_BIN_ARITH:
2898 /* If only one operand is a binary expression, it will be the first
2899 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2900 is canonical, although it will usually be further simplified. */
2901 return 2;
2902
2903 case RTX_UNARY:
2904 /* Then prefer NEG and NOT. */
2905 if (code == NEG || code == NOT)
2906 return 1;
2907
2908 default:
2909 return 0;
2910 }
2911 }
2912
2913 /* Return 1 iff it is necessary to swap operands of commutative operation
2914 in order to canonicalize expression. */
2915
2916 int
2917 swap_commutative_operands_p (rtx x, rtx y)
2918 {
2919 return (commutative_operand_precedence (x)
2920 < commutative_operand_precedence (y));
2921 }
2922
2923 /* Return 1 if X is an autoincrement side effect and the register is
2924 not the stack pointer. */
2925 int
2926 auto_inc_p (rtx x)
2927 {
2928 switch (GET_CODE (x))
2929 {
2930 case PRE_INC:
2931 case POST_INC:
2932 case PRE_DEC:
2933 case POST_DEC:
2934 case PRE_MODIFY:
2935 case POST_MODIFY:
2936 /* There are no REG_INC notes for SP. */
2937 if (XEXP (x, 0) != stack_pointer_rtx)
2938 return 1;
2939 default:
2940 break;
2941 }
2942 return 0;
2943 }
2944
2945 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2946 int
2947 loc_mentioned_in_p (rtx *loc, rtx in)
2948 {
2949 enum rtx_code code;
2950 const char *fmt;
2951 int i, j;
2952
2953 if (!in)
2954 return 0;
2955
2956 code = GET_CODE (in);
2957 fmt = GET_RTX_FORMAT (code);
2958 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2959 {
2960 if (loc == &in->u.fld[i].rt_rtx)
2961 return 1;
2962 if (fmt[i] == 'e')
2963 {
2964 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2965 return 1;
2966 }
2967 else if (fmt[i] == 'E')
2968 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2969 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2970 return 1;
2971 }
2972 return 0;
2973 }
2974
2975 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2976 and SUBREG_BYTE, return the bit offset where the subreg begins
2977 (counting from the least significant bit of the operand). */
2978
2979 unsigned int
2980 subreg_lsb_1 (enum machine_mode outer_mode,
2981 enum machine_mode inner_mode,
2982 unsigned int subreg_byte)
2983 {
2984 unsigned int bitpos;
2985 unsigned int byte;
2986 unsigned int word;
2987
2988 /* A paradoxical subreg begins at bit position 0. */
2989 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2990 return 0;
2991
2992 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2993 /* If the subreg crosses a word boundary ensure that
2994 it also begins and ends on a word boundary. */
2995 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2996 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2997 && (subreg_byte % UNITS_PER_WORD
2998 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2999
3000 if (WORDS_BIG_ENDIAN)
3001 word = (GET_MODE_SIZE (inner_mode)
3002 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3003 else
3004 word = subreg_byte / UNITS_PER_WORD;
3005 bitpos = word * BITS_PER_WORD;
3006
3007 if (BYTES_BIG_ENDIAN)
3008 byte = (GET_MODE_SIZE (inner_mode)
3009 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3010 else
3011 byte = subreg_byte % UNITS_PER_WORD;
3012 bitpos += byte * BITS_PER_UNIT;
3013
3014 return bitpos;
3015 }
3016
3017 /* Given a subreg X, return the bit offset where the subreg begins
3018 (counting from the least significant bit of the reg). */
3019
3020 unsigned int
3021 subreg_lsb (rtx x)
3022 {
3023 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3024 SUBREG_BYTE (x));
3025 }
3026
3027 /* Fill in information about a subreg of a hard register.
3028 xregno - A regno of an inner hard subreg_reg (or what will become one).
3029 xmode - The mode of xregno.
3030 offset - The byte offset.
3031 ymode - The mode of a top level SUBREG (or what may become one).
3032 info - Pointer to structure to fill in. */
3033 static void
3034 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3035 unsigned int offset, enum machine_mode ymode,
3036 struct subreg_info *info)
3037 {
3038 int nregs_xmode, nregs_ymode;
3039 int mode_multiple, nregs_multiple;
3040 int offset_adj, y_offset, y_offset_adj;
3041 int regsize_xmode, regsize_ymode;
3042 bool rknown;
3043
3044 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3045
3046 rknown = false;
3047
3048 /* If there are holes in a non-scalar mode in registers, we expect
3049 that it is made up of its units concatenated together. */
3050 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3051 {
3052 enum machine_mode xmode_unit;
3053
3054 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3055 if (GET_MODE_INNER (xmode) == VOIDmode)
3056 xmode_unit = xmode;
3057 else
3058 xmode_unit = GET_MODE_INNER (xmode);
3059 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3060 gcc_assert (nregs_xmode
3061 == (GET_MODE_NUNITS (xmode)
3062 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3063 gcc_assert (hard_regno_nregs[xregno][xmode]
3064 == (hard_regno_nregs[xregno][xmode_unit]
3065 * GET_MODE_NUNITS (xmode)));
3066
3067 /* You can only ask for a SUBREG of a value with holes in the middle
3068 if you don't cross the holes. (Such a SUBREG should be done by
3069 picking a different register class, or doing it in memory if
3070 necessary.) An example of a value with holes is XCmode on 32-bit
3071 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3072 3 for each part, but in memory it's two 128-bit parts.
3073 Padding is assumed to be at the end (not necessarily the 'high part')
3074 of each unit. */
3075 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3076 < GET_MODE_NUNITS (xmode))
3077 && (offset / GET_MODE_SIZE (xmode_unit)
3078 != ((offset + GET_MODE_SIZE (ymode) - 1)
3079 / GET_MODE_SIZE (xmode_unit))))
3080 {
3081 info->representable_p = false;
3082 rknown = true;
3083 }
3084 }
3085 else
3086 nregs_xmode = hard_regno_nregs[xregno][xmode];
3087
3088 nregs_ymode = hard_regno_nregs[xregno][ymode];
3089
3090 /* Paradoxical subregs are otherwise valid. */
3091 if (!rknown
3092 && offset == 0
3093 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3094 {
3095 info->representable_p = true;
3096 /* If this is a big endian paradoxical subreg, which uses more
3097 actual hard registers than the original register, we must
3098 return a negative offset so that we find the proper highpart
3099 of the register. */
3100 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3101 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3102 info->offset = nregs_xmode - nregs_ymode;
3103 else
3104 info->offset = 0;
3105 info->nregs = nregs_ymode;
3106 return;
3107 }
3108
3109 /* If registers store different numbers of bits in the different
3110 modes, we cannot generally form this subreg. */
3111 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3112 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3113 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3114 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3115 {
3116 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3117 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3118 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3119 {
3120 info->representable_p = false;
3121 info->nregs
3122 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3123 info->offset = offset / regsize_xmode;
3124 return;
3125 }
3126 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3127 {
3128 info->representable_p = false;
3129 info->nregs
3130 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3131 info->offset = offset / regsize_xmode;
3132 return;
3133 }
3134 }
3135
3136 /* Lowpart subregs are otherwise valid. */
3137 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3138 {
3139 info->representable_p = true;
3140 rknown = true;
3141
3142 if (offset == 0 || nregs_xmode == nregs_ymode)
3143 {
3144 info->offset = 0;
3145 info->nregs = nregs_ymode;
3146 return;
3147 }
3148 }
3149
3150 /* This should always pass, otherwise we don't know how to verify
3151 the constraint. These conditions may be relaxed but
3152 subreg_regno_offset would need to be redesigned. */
3153 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3154 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3155
3156 /* The XMODE value can be seen as a vector of NREGS_XMODE
3157 values. The subreg must represent a lowpart of given field.
3158 Compute what field it is. */
3159 offset_adj = offset;
3160 offset_adj -= subreg_lowpart_offset (ymode,
3161 mode_for_size (GET_MODE_BITSIZE (xmode)
3162 / nregs_xmode,
3163 MODE_INT, 0));
3164
3165 /* Size of ymode must not be greater than the size of xmode. */
3166 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3167 gcc_assert (mode_multiple != 0);
3168
3169 y_offset = offset / GET_MODE_SIZE (ymode);
3170 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3171 nregs_multiple = nregs_xmode / nregs_ymode;
3172
3173 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3174 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3175
3176 if (!rknown)
3177 {
3178 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3179 rknown = true;
3180 }
3181 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3182 info->nregs = nregs_ymode;
3183 }
3184
3185 /* This function returns the regno offset of a subreg expression.
3186 xregno - A regno of an inner hard subreg_reg (or what will become one).
3187 xmode - The mode of xregno.
3188 offset - The byte offset.
3189 ymode - The mode of a top level SUBREG (or what may become one).
3190 RETURN - The regno offset which would be used. */
3191 unsigned int
3192 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3193 unsigned int offset, enum machine_mode ymode)
3194 {
3195 struct subreg_info info;
3196 subreg_get_info (xregno, xmode, offset, ymode, &info);
3197 return info.offset;
3198 }
3199
3200 /* This function returns true when the offset is representable via
3201 subreg_offset in the given regno.
3202 xregno - A regno of an inner hard subreg_reg (or what will become one).
3203 xmode - The mode of xregno.
3204 offset - The byte offset.
3205 ymode - The mode of a top level SUBREG (or what may become one).
3206 RETURN - Whether the offset is representable. */
3207 bool
3208 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3209 unsigned int offset, enum machine_mode ymode)
3210 {
3211 struct subreg_info info;
3212 subreg_get_info (xregno, xmode, offset, ymode, &info);
3213 return info.representable_p;
3214 }
3215
3216 /* Return the final regno that a subreg expression refers to. */
3217 unsigned int
3218 subreg_regno (rtx x)
3219 {
3220 unsigned int ret;
3221 rtx subreg = SUBREG_REG (x);
3222 int regno = REGNO (subreg);
3223
3224 ret = regno + subreg_regno_offset (regno,
3225 GET_MODE (subreg),
3226 SUBREG_BYTE (x),
3227 GET_MODE (x));
3228 return ret;
3229
3230 }
3231
3232 /* Return the number of registers that a subreg expression refers
3233 to. */
3234 unsigned int
3235 subreg_nregs (rtx x)
3236 {
3237 struct subreg_info info;
3238 rtx subreg = SUBREG_REG (x);
3239 int regno = REGNO (subreg);
3240
3241 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3242 &info);
3243 return info.nregs;
3244 }
3245
3246 struct parms_set_data
3247 {
3248 int nregs;
3249 HARD_REG_SET regs;
3250 };
3251
3252 /* Helper function for noticing stores to parameter registers. */
3253 static void
3254 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3255 {
3256 struct parms_set_data *d = data;
3257 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3258 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3259 {
3260 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3261 d->nregs--;
3262 }
3263 }
3264
3265 /* Look backward for first parameter to be loaded.
3266 Note that loads of all parameters will not necessarily be
3267 found if CSE has eliminated some of them (e.g., an argument
3268 to the outer function is passed down as a parameter).
3269 Do not skip BOUNDARY. */
3270 rtx
3271 find_first_parameter_load (rtx call_insn, rtx boundary)
3272 {
3273 struct parms_set_data parm;
3274 rtx p, before, first_set;
3275
3276 /* Since different machines initialize their parameter registers
3277 in different orders, assume nothing. Collect the set of all
3278 parameter registers. */
3279 CLEAR_HARD_REG_SET (parm.regs);
3280 parm.nregs = 0;
3281 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3282 if (GET_CODE (XEXP (p, 0)) == USE
3283 && REG_P (XEXP (XEXP (p, 0), 0)))
3284 {
3285 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3286
3287 /* We only care about registers which can hold function
3288 arguments. */
3289 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3290 continue;
3291
3292 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3293 parm.nregs++;
3294 }
3295 before = call_insn;
3296 first_set = call_insn;
3297
3298 /* Search backward for the first set of a register in this set. */
3299 while (parm.nregs && before != boundary)
3300 {
3301 before = PREV_INSN (before);
3302
3303 /* It is possible that some loads got CSEed from one call to
3304 another. Stop in that case. */
3305 if (CALL_P (before))
3306 break;
3307
3308 /* Our caller needs either ensure that we will find all sets
3309 (in case code has not been optimized yet), or take care
3310 for possible labels in a way by setting boundary to preceding
3311 CODE_LABEL. */
3312 if (LABEL_P (before))
3313 {
3314 gcc_assert (before == boundary);
3315 break;
3316 }
3317
3318 if (INSN_P (before))
3319 {
3320 int nregs_old = parm.nregs;
3321 note_stores (PATTERN (before), parms_set, &parm);
3322 /* If we found something that did not set a parameter reg,
3323 we're done. Do not keep going, as that might result
3324 in hoisting an insn before the setting of a pseudo
3325 that is used by the hoisted insn. */
3326 if (nregs_old != parm.nregs)
3327 first_set = before;
3328 else
3329 break;
3330 }
3331 }
3332 return first_set;
3333 }
3334
3335 /* Return true if we should avoid inserting code between INSN and preceding
3336 call instruction. */
3337
3338 bool
3339 keep_with_call_p (rtx insn)
3340 {
3341 rtx set;
3342
3343 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3344 {
3345 if (REG_P (SET_DEST (set))
3346 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3347 && fixed_regs[REGNO (SET_DEST (set))]
3348 && general_operand (SET_SRC (set), VOIDmode))
3349 return true;
3350 if (REG_P (SET_SRC (set))
3351 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3352 && REG_P (SET_DEST (set))
3353 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3354 return true;
3355 /* There may be a stack pop just after the call and before the store
3356 of the return register. Search for the actual store when deciding
3357 if we can break or not. */
3358 if (SET_DEST (set) == stack_pointer_rtx)
3359 {
3360 rtx i2 = next_nonnote_insn (insn);
3361 if (i2 && keep_with_call_p (i2))
3362 return true;
3363 }
3364 }
3365 return false;
3366 }
3367
3368 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3369 to non-complex jumps. That is, direct unconditional, conditional,
3370 and tablejumps, but not computed jumps or returns. It also does
3371 not apply to the fallthru case of a conditional jump. */
3372
3373 bool
3374 label_is_jump_target_p (rtx label, rtx jump_insn)
3375 {
3376 rtx tmp = JUMP_LABEL (jump_insn);
3377
3378 if (label == tmp)
3379 return true;
3380
3381 if (tablejump_p (jump_insn, NULL, &tmp))
3382 {
3383 rtvec vec = XVEC (PATTERN (tmp),
3384 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3385 int i, veclen = GET_NUM_ELEM (vec);
3386
3387 for (i = 0; i < veclen; ++i)
3388 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3389 return true;
3390 }
3391
3392 return false;
3393 }
3394
3395 \f
3396 /* Return an estimate of the cost of computing rtx X.
3397 One use is in cse, to decide which expression to keep in the hash table.
3398 Another is in rtl generation, to pick the cheapest way to multiply.
3399 Other uses like the latter are expected in the future. */
3400
3401 int
3402 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3403 {
3404 int i, j;
3405 enum rtx_code code;
3406 const char *fmt;
3407 int total;
3408
3409 if (x == 0)
3410 return 0;
3411
3412 /* Compute the default costs of certain things.
3413 Note that targetm.rtx_costs can override the defaults. */
3414
3415 code = GET_CODE (x);
3416 switch (code)
3417 {
3418 case MULT:
3419 total = COSTS_N_INSNS (5);
3420 break;
3421 case DIV:
3422 case UDIV:
3423 case MOD:
3424 case UMOD:
3425 total = COSTS_N_INSNS (7);
3426 break;
3427 case USE:
3428 /* Used in combine.c as a marker. */
3429 total = 0;
3430 break;
3431 default:
3432 total = COSTS_N_INSNS (1);
3433 }
3434
3435 switch (code)
3436 {
3437 case REG:
3438 return 0;
3439
3440 case SUBREG:
3441 total = 0;
3442 /* If we can't tie these modes, make this expensive. The larger
3443 the mode, the more expensive it is. */
3444 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3445 return COSTS_N_INSNS (2
3446 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3447 break;
3448
3449 default:
3450 if (targetm.rtx_costs (x, code, outer_code, &total))
3451 return total;
3452 break;
3453 }
3454
3455 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3456 which is already in total. */
3457
3458 fmt = GET_RTX_FORMAT (code);
3459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3460 if (fmt[i] == 'e')
3461 total += rtx_cost (XEXP (x, i), code);
3462 else if (fmt[i] == 'E')
3463 for (j = 0; j < XVECLEN (x, i); j++)
3464 total += rtx_cost (XVECEXP (x, i, j), code);
3465
3466 return total;
3467 }
3468 \f
3469 /* Return cost of address expression X.
3470 Expect that X is properly formed address reference. */
3471
3472 int
3473 address_cost (rtx x, enum machine_mode mode)
3474 {
3475 /* We may be asked for cost of various unusual addresses, such as operands
3476 of push instruction. It is not worthwhile to complicate writing
3477 of the target hook by such cases. */
3478
3479 if (!memory_address_p (mode, x))
3480 return 1000;
3481
3482 return targetm.address_cost (x);
3483 }
3484
3485 /* If the target doesn't override, compute the cost as with arithmetic. */
3486
3487 int
3488 default_address_cost (rtx x)
3489 {
3490 return rtx_cost (x, MEM);
3491 }
3492 \f
3493
3494 unsigned HOST_WIDE_INT
3495 nonzero_bits (rtx x, enum machine_mode mode)
3496 {
3497 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3498 }
3499
3500 unsigned int
3501 num_sign_bit_copies (rtx x, enum machine_mode mode)
3502 {
3503 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3504 }
3505
3506 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3507 It avoids exponential behavior in nonzero_bits1 when X has
3508 identical subexpressions on the first or the second level. */
3509
3510 static unsigned HOST_WIDE_INT
3511 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3512 enum machine_mode known_mode,
3513 unsigned HOST_WIDE_INT known_ret)
3514 {
3515 if (x == known_x && mode == known_mode)
3516 return known_ret;
3517
3518 /* Try to find identical subexpressions. If found call
3519 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3520 precomputed value for the subexpression as KNOWN_RET. */
3521
3522 if (ARITHMETIC_P (x))
3523 {
3524 rtx x0 = XEXP (x, 0);
3525 rtx x1 = XEXP (x, 1);
3526
3527 /* Check the first level. */
3528 if (x0 == x1)
3529 return nonzero_bits1 (x, mode, x0, mode,
3530 cached_nonzero_bits (x0, mode, known_x,
3531 known_mode, known_ret));
3532
3533 /* Check the second level. */
3534 if (ARITHMETIC_P (x0)
3535 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3536 return nonzero_bits1 (x, mode, x1, mode,
3537 cached_nonzero_bits (x1, mode, known_x,
3538 known_mode, known_ret));
3539
3540 if (ARITHMETIC_P (x1)
3541 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3542 return nonzero_bits1 (x, mode, x0, mode,
3543 cached_nonzero_bits (x0, mode, known_x,
3544 known_mode, known_ret));
3545 }
3546
3547 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3548 }
3549
3550 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3551 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3552 is less useful. We can't allow both, because that results in exponential
3553 run time recursion. There is a nullstone testcase that triggered
3554 this. This macro avoids accidental uses of num_sign_bit_copies. */
3555 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3556
3557 /* Given an expression, X, compute which bits in X can be nonzero.
3558 We don't care about bits outside of those defined in MODE.
3559
3560 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3561 an arithmetic operation, we can do better. */
3562
3563 static unsigned HOST_WIDE_INT
3564 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3565 enum machine_mode known_mode,
3566 unsigned HOST_WIDE_INT known_ret)
3567 {
3568 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3569 unsigned HOST_WIDE_INT inner_nz;
3570 enum rtx_code code;
3571 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3572
3573 /* For floating-point values, assume all bits are needed. */
3574 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3575 return nonzero;
3576
3577 /* If X is wider than MODE, use its mode instead. */
3578 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3579 {
3580 mode = GET_MODE (x);
3581 nonzero = GET_MODE_MASK (mode);
3582 mode_width = GET_MODE_BITSIZE (mode);
3583 }
3584
3585 if (mode_width > HOST_BITS_PER_WIDE_INT)
3586 /* Our only callers in this case look for single bit values. So
3587 just return the mode mask. Those tests will then be false. */
3588 return nonzero;
3589
3590 #ifndef WORD_REGISTER_OPERATIONS
3591 /* If MODE is wider than X, but both are a single word for both the host
3592 and target machines, we can compute this from which bits of the
3593 object might be nonzero in its own mode, taking into account the fact
3594 that on many CISC machines, accessing an object in a wider mode
3595 causes the high-order bits to become undefined. So they are
3596 not known to be zero. */
3597
3598 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3599 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3600 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3601 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3602 {
3603 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3604 known_x, known_mode, known_ret);
3605 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3606 return nonzero;
3607 }
3608 #endif
3609
3610 code = GET_CODE (x);
3611 switch (code)
3612 {
3613 case REG:
3614 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3615 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3616 all the bits above ptr_mode are known to be zero. */
3617 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3618 && REG_POINTER (x))
3619 nonzero &= GET_MODE_MASK (ptr_mode);
3620 #endif
3621
3622 /* Include declared information about alignment of pointers. */
3623 /* ??? We don't properly preserve REG_POINTER changes across
3624 pointer-to-integer casts, so we can't trust it except for
3625 things that we know must be pointers. See execute/960116-1.c. */
3626 if ((x == stack_pointer_rtx
3627 || x == frame_pointer_rtx
3628 || x == arg_pointer_rtx)
3629 && REGNO_POINTER_ALIGN (REGNO (x)))
3630 {
3631 unsigned HOST_WIDE_INT alignment
3632 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3633
3634 #ifdef PUSH_ROUNDING
3635 /* If PUSH_ROUNDING is defined, it is possible for the
3636 stack to be momentarily aligned only to that amount,
3637 so we pick the least alignment. */
3638 if (x == stack_pointer_rtx && PUSH_ARGS)
3639 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3640 alignment);
3641 #endif
3642
3643 nonzero &= ~(alignment - 1);
3644 }
3645
3646 {
3647 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3648 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3649 known_mode, known_ret,
3650 &nonzero_for_hook);
3651
3652 if (new)
3653 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3654 known_mode, known_ret);
3655
3656 return nonzero_for_hook;
3657 }
3658
3659 case CONST_INT:
3660 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3661 /* If X is negative in MODE, sign-extend the value. */
3662 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3663 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3664 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3665 #endif
3666
3667 return INTVAL (x);
3668
3669 case MEM:
3670 #ifdef LOAD_EXTEND_OP
3671 /* In many, if not most, RISC machines, reading a byte from memory
3672 zeros the rest of the register. Noticing that fact saves a lot
3673 of extra zero-extends. */
3674 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3675 nonzero &= GET_MODE_MASK (GET_MODE (x));
3676 #endif
3677 break;
3678
3679 case EQ: case NE:
3680 case UNEQ: case LTGT:
3681 case GT: case GTU: case UNGT:
3682 case LT: case LTU: case UNLT:
3683 case GE: case GEU: case UNGE:
3684 case LE: case LEU: case UNLE:
3685 case UNORDERED: case ORDERED:
3686 /* If this produces an integer result, we know which bits are set.
3687 Code here used to clear bits outside the mode of X, but that is
3688 now done above. */
3689 /* Mind that MODE is the mode the caller wants to look at this
3690 operation in, and not the actual operation mode. We can wind
3691 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3692 that describes the results of a vector compare. */
3693 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3694 && mode_width <= HOST_BITS_PER_WIDE_INT)
3695 nonzero = STORE_FLAG_VALUE;
3696 break;
3697
3698 case NEG:
3699 #if 0
3700 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3701 and num_sign_bit_copies. */
3702 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3703 == GET_MODE_BITSIZE (GET_MODE (x)))
3704 nonzero = 1;
3705 #endif
3706
3707 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3708 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3709 break;
3710
3711 case ABS:
3712 #if 0
3713 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3714 and num_sign_bit_copies. */
3715 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3716 == GET_MODE_BITSIZE (GET_MODE (x)))
3717 nonzero = 1;
3718 #endif
3719 break;
3720
3721 case TRUNCATE:
3722 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3723 known_x, known_mode, known_ret)
3724 & GET_MODE_MASK (mode));
3725 break;
3726
3727 case ZERO_EXTEND:
3728 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3729 known_x, known_mode, known_ret);
3730 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3731 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3732 break;
3733
3734 case SIGN_EXTEND:
3735 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3736 Otherwise, show all the bits in the outer mode but not the inner
3737 may be nonzero. */
3738 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3739 known_x, known_mode, known_ret);
3740 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3741 {
3742 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3743 if (inner_nz
3744 & (((HOST_WIDE_INT) 1
3745 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3746 inner_nz |= (GET_MODE_MASK (mode)
3747 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3748 }
3749
3750 nonzero &= inner_nz;
3751 break;
3752
3753 case AND:
3754 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3755 known_x, known_mode, known_ret)
3756 & cached_nonzero_bits (XEXP (x, 1), mode,
3757 known_x, known_mode, known_ret);
3758 break;
3759
3760 case XOR: case IOR:
3761 case UMIN: case UMAX: case SMIN: case SMAX:
3762 {
3763 unsigned HOST_WIDE_INT nonzero0 =
3764 cached_nonzero_bits (XEXP (x, 0), mode,
3765 known_x, known_mode, known_ret);
3766
3767 /* Don't call nonzero_bits for the second time if it cannot change
3768 anything. */
3769 if ((nonzero & nonzero0) != nonzero)
3770 nonzero &= nonzero0
3771 | cached_nonzero_bits (XEXP (x, 1), mode,
3772 known_x, known_mode, known_ret);
3773 }
3774 break;
3775
3776 case PLUS: case MINUS:
3777 case MULT:
3778 case DIV: case UDIV:
3779 case MOD: case UMOD:
3780 /* We can apply the rules of arithmetic to compute the number of
3781 high- and low-order zero bits of these operations. We start by
3782 computing the width (position of the highest-order nonzero bit)
3783 and the number of low-order zero bits for each value. */
3784 {
3785 unsigned HOST_WIDE_INT nz0 =
3786 cached_nonzero_bits (XEXP (x, 0), mode,
3787 known_x, known_mode, known_ret);
3788 unsigned HOST_WIDE_INT nz1 =
3789 cached_nonzero_bits (XEXP (x, 1), mode,
3790 known_x, known_mode, known_ret);
3791 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3792 int width0 = floor_log2 (nz0) + 1;
3793 int width1 = floor_log2 (nz1) + 1;
3794 int low0 = floor_log2 (nz0 & -nz0);
3795 int low1 = floor_log2 (nz1 & -nz1);
3796 HOST_WIDE_INT op0_maybe_minusp
3797 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3798 HOST_WIDE_INT op1_maybe_minusp
3799 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3800 unsigned int result_width = mode_width;
3801 int result_low = 0;
3802
3803 switch (code)
3804 {
3805 case PLUS:
3806 result_width = MAX (width0, width1) + 1;
3807 result_low = MIN (low0, low1);
3808 break;
3809 case MINUS:
3810 result_low = MIN (low0, low1);
3811 break;
3812 case MULT:
3813 result_width = width0 + width1;
3814 result_low = low0 + low1;
3815 break;
3816 case DIV:
3817 if (width1 == 0)
3818 break;
3819 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3820 result_width = width0;
3821 break;
3822 case UDIV:
3823 if (width1 == 0)
3824 break;
3825 result_width = width0;
3826 break;
3827 case MOD:
3828 if (width1 == 0)
3829 break;
3830 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3831 result_width = MIN (width0, width1);
3832 result_low = MIN (low0, low1);
3833 break;
3834 case UMOD:
3835 if (width1 == 0)
3836 break;
3837 result_width = MIN (width0, width1);
3838 result_low = MIN (low0, low1);
3839 break;
3840 default:
3841 gcc_unreachable ();
3842 }
3843
3844 if (result_width < mode_width)
3845 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3846
3847 if (result_low > 0)
3848 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3849
3850 #ifdef POINTERS_EXTEND_UNSIGNED
3851 /* If pointers extend unsigned and this is an addition or subtraction
3852 to a pointer in Pmode, all the bits above ptr_mode are known to be
3853 zero. */
3854 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3855 && (code == PLUS || code == MINUS)
3856 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3857 nonzero &= GET_MODE_MASK (ptr_mode);
3858 #endif
3859 }
3860 break;
3861
3862 case ZERO_EXTRACT:
3863 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3864 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3865 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3866 break;
3867
3868 case SUBREG:
3869 /* If this is a SUBREG formed for a promoted variable that has
3870 been zero-extended, we know that at least the high-order bits
3871 are zero, though others might be too. */
3872
3873 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3874 nonzero = GET_MODE_MASK (GET_MODE (x))
3875 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3876 known_x, known_mode, known_ret);
3877
3878 /* If the inner mode is a single word for both the host and target
3879 machines, we can compute this from which bits of the inner
3880 object might be nonzero. */
3881 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3882 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3883 <= HOST_BITS_PER_WIDE_INT))
3884 {
3885 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3886 known_x, known_mode, known_ret);
3887
3888 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3889 /* If this is a typical RISC machine, we only have to worry
3890 about the way loads are extended. */
3891 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3892 ? (((nonzero
3893 & (((unsigned HOST_WIDE_INT) 1
3894 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3895 != 0))
3896 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3897 || !MEM_P (SUBREG_REG (x)))
3898 #endif
3899 {
3900 /* On many CISC machines, accessing an object in a wider mode
3901 causes the high-order bits to become undefined. So they are
3902 not known to be zero. */
3903 if (GET_MODE_SIZE (GET_MODE (x))
3904 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3905 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3906 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3907 }
3908 }
3909 break;
3910
3911 case ASHIFTRT:
3912 case LSHIFTRT:
3913 case ASHIFT:
3914 case ROTATE:
3915 /* The nonzero bits are in two classes: any bits within MODE
3916 that aren't in GET_MODE (x) are always significant. The rest of the
3917 nonzero bits are those that are significant in the operand of
3918 the shift when shifted the appropriate number of bits. This
3919 shows that high-order bits are cleared by the right shift and
3920 low-order bits by left shifts. */
3921 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3922 && INTVAL (XEXP (x, 1)) >= 0
3923 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3924 {
3925 enum machine_mode inner_mode = GET_MODE (x);
3926 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3927 int count = INTVAL (XEXP (x, 1));
3928 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3929 unsigned HOST_WIDE_INT op_nonzero =
3930 cached_nonzero_bits (XEXP (x, 0), mode,
3931 known_x, known_mode, known_ret);
3932 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3933 unsigned HOST_WIDE_INT outer = 0;
3934
3935 if (mode_width > width)
3936 outer = (op_nonzero & nonzero & ~mode_mask);
3937
3938 if (code == LSHIFTRT)
3939 inner >>= count;
3940 else if (code == ASHIFTRT)
3941 {
3942 inner >>= count;
3943
3944 /* If the sign bit may have been nonzero before the shift, we
3945 need to mark all the places it could have been copied to
3946 by the shift as possibly nonzero. */
3947 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3948 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3949 }
3950 else if (code == ASHIFT)
3951 inner <<= count;
3952 else
3953 inner = ((inner << (count % width)
3954 | (inner >> (width - (count % width)))) & mode_mask);
3955
3956 nonzero &= (outer | inner);
3957 }
3958 break;
3959
3960 case FFS:
3961 case POPCOUNT:
3962 /* This is at most the number of bits in the mode. */
3963 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3964 break;
3965
3966 case CLZ:
3967 /* If CLZ has a known value at zero, then the nonzero bits are
3968 that value, plus the number of bits in the mode minus one. */
3969 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3970 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3971 else
3972 nonzero = -1;
3973 break;
3974
3975 case CTZ:
3976 /* If CTZ has a known value at zero, then the nonzero bits are
3977 that value, plus the number of bits in the mode minus one. */
3978 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3979 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3980 else
3981 nonzero = -1;
3982 break;
3983
3984 case PARITY:
3985 nonzero = 1;
3986 break;
3987
3988 case IF_THEN_ELSE:
3989 {
3990 unsigned HOST_WIDE_INT nonzero_true =
3991 cached_nonzero_bits (XEXP (x, 1), mode,
3992 known_x, known_mode, known_ret);
3993
3994 /* Don't call nonzero_bits for the second time if it cannot change
3995 anything. */
3996 if ((nonzero & nonzero_true) != nonzero)
3997 nonzero &= nonzero_true
3998 | cached_nonzero_bits (XEXP (x, 2), mode,
3999 known_x, known_mode, known_ret);
4000 }
4001 break;
4002
4003 default:
4004 break;
4005 }
4006
4007 return nonzero;
4008 }
4009
4010 /* See the macro definition above. */
4011 #undef cached_num_sign_bit_copies
4012
4013 \f
4014 /* The function cached_num_sign_bit_copies is a wrapper around
4015 num_sign_bit_copies1. It avoids exponential behavior in
4016 num_sign_bit_copies1 when X has identical subexpressions on the
4017 first or the second level. */
4018
4019 static unsigned int
4020 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
4021 enum machine_mode known_mode,
4022 unsigned int known_ret)
4023 {
4024 if (x == known_x && mode == known_mode)
4025 return known_ret;
4026
4027 /* Try to find identical subexpressions. If found call
4028 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4029 the precomputed value for the subexpression as KNOWN_RET. */
4030
4031 if (ARITHMETIC_P (x))
4032 {
4033 rtx x0 = XEXP (x, 0);
4034 rtx x1 = XEXP (x, 1);
4035
4036 /* Check the first level. */
4037 if (x0 == x1)
4038 return
4039 num_sign_bit_copies1 (x, mode, x0, mode,
4040 cached_num_sign_bit_copies (x0, mode, known_x,
4041 known_mode,
4042 known_ret));
4043
4044 /* Check the second level. */
4045 if (ARITHMETIC_P (x0)
4046 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4047 return
4048 num_sign_bit_copies1 (x, mode, x1, mode,
4049 cached_num_sign_bit_copies (x1, mode, known_x,
4050 known_mode,
4051 known_ret));
4052
4053 if (ARITHMETIC_P (x1)
4054 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4055 return
4056 num_sign_bit_copies1 (x, mode, x0, mode,
4057 cached_num_sign_bit_copies (x0, mode, known_x,
4058 known_mode,
4059 known_ret));
4060 }
4061
4062 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4063 }
4064
4065 /* Return the number of bits at the high-order end of X that are known to
4066 be equal to the sign bit. X will be used in mode MODE; if MODE is
4067 VOIDmode, X will be used in its own mode. The returned value will always
4068 be between 1 and the number of bits in MODE. */
4069
4070 static unsigned int
4071 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4072 enum machine_mode known_mode,
4073 unsigned int known_ret)
4074 {
4075 enum rtx_code code = GET_CODE (x);
4076 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4077 int num0, num1, result;
4078 unsigned HOST_WIDE_INT nonzero;
4079
4080 /* If we weren't given a mode, use the mode of X. If the mode is still
4081 VOIDmode, we don't know anything. Likewise if one of the modes is
4082 floating-point. */
4083
4084 if (mode == VOIDmode)
4085 mode = GET_MODE (x);
4086
4087 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4088 return 1;
4089
4090 /* For a smaller object, just ignore the high bits. */
4091 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4092 {
4093 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4094 known_x, known_mode, known_ret);
4095 return MAX (1,
4096 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4097 }
4098
4099 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4100 {
4101 #ifndef WORD_REGISTER_OPERATIONS
4102 /* If this machine does not do all register operations on the entire
4103 register and MODE is wider than the mode of X, we can say nothing
4104 at all about the high-order bits. */
4105 return 1;
4106 #else
4107 /* Likewise on machines that do, if the mode of the object is smaller
4108 than a word and loads of that size don't sign extend, we can say
4109 nothing about the high order bits. */
4110 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4111 #ifdef LOAD_EXTEND_OP
4112 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4113 #endif
4114 )
4115 return 1;
4116 #endif
4117 }
4118
4119 switch (code)
4120 {
4121 case REG:
4122
4123 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4124 /* If pointers extend signed and this is a pointer in Pmode, say that
4125 all the bits above ptr_mode are known to be sign bit copies. */
4126 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4127 && REG_POINTER (x))
4128 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4129 #endif
4130
4131 {
4132 unsigned int copies_for_hook = 1, copies = 1;
4133 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4134 known_mode, known_ret,
4135 &copies_for_hook);
4136
4137 if (new)
4138 copies = cached_num_sign_bit_copies (new, mode, known_x,
4139 known_mode, known_ret);
4140
4141 if (copies > 1 || copies_for_hook > 1)
4142 return MAX (copies, copies_for_hook);
4143
4144 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4145 }
4146 break;
4147
4148 case MEM:
4149 #ifdef LOAD_EXTEND_OP
4150 /* Some RISC machines sign-extend all loads of smaller than a word. */
4151 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4152 return MAX (1, ((int) bitwidth
4153 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4154 #endif
4155 break;
4156
4157 case CONST_INT:
4158 /* If the constant is negative, take its 1's complement and remask.
4159 Then see how many zero bits we have. */
4160 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4161 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4162 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4163 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4164
4165 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4166
4167 case SUBREG:
4168 /* If this is a SUBREG for a promoted object that is sign-extended
4169 and we are looking at it in a wider mode, we know that at least the
4170 high-order bits are known to be sign bit copies. */
4171
4172 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4173 {
4174 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4175 known_x, known_mode, known_ret);
4176 return MAX ((int) bitwidth
4177 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4178 num0);
4179 }
4180
4181 /* For a smaller object, just ignore the high bits. */
4182 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4183 {
4184 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4185 known_x, known_mode, known_ret);
4186 return MAX (1, (num0
4187 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4188 - bitwidth)));
4189 }
4190
4191 #ifdef WORD_REGISTER_OPERATIONS
4192 #ifdef LOAD_EXTEND_OP
4193 /* For paradoxical SUBREGs on machines where all register operations
4194 affect the entire register, just look inside. Note that we are
4195 passing MODE to the recursive call, so the number of sign bit copies
4196 will remain relative to that mode, not the inner mode. */
4197
4198 /* This works only if loads sign extend. Otherwise, if we get a
4199 reload for the inner part, it may be loaded from the stack, and
4200 then we lose all sign bit copies that existed before the store
4201 to the stack. */
4202
4203 if ((GET_MODE_SIZE (GET_MODE (x))
4204 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4205 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4206 && MEM_P (SUBREG_REG (x)))
4207 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4208 known_x, known_mode, known_ret);
4209 #endif
4210 #endif
4211 break;
4212
4213 case SIGN_EXTRACT:
4214 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4215 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4216 break;
4217
4218 case SIGN_EXTEND:
4219 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4220 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4221 known_x, known_mode, known_ret));
4222
4223 case TRUNCATE:
4224 /* For a smaller object, just ignore the high bits. */
4225 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4226 known_x, known_mode, known_ret);
4227 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4228 - bitwidth)));
4229
4230 case NOT:
4231 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4232 known_x, known_mode, known_ret);
4233
4234 case ROTATE: case ROTATERT:
4235 /* If we are rotating left by a number of bits less than the number
4236 of sign bit copies, we can just subtract that amount from the
4237 number. */
4238 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4239 && INTVAL (XEXP (x, 1)) >= 0
4240 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4241 {
4242 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4243 known_x, known_mode, known_ret);
4244 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4245 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4246 }
4247 break;
4248
4249 case NEG:
4250 /* In general, this subtracts one sign bit copy. But if the value
4251 is known to be positive, the number of sign bit copies is the
4252 same as that of the input. Finally, if the input has just one bit
4253 that might be nonzero, all the bits are copies of the sign bit. */
4254 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4255 known_x, known_mode, known_ret);
4256 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4257 return num0 > 1 ? num0 - 1 : 1;
4258
4259 nonzero = nonzero_bits (XEXP (x, 0), mode);
4260 if (nonzero == 1)
4261 return bitwidth;
4262
4263 if (num0 > 1
4264 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4265 num0--;
4266
4267 return num0;
4268
4269 case IOR: case AND: case XOR:
4270 case SMIN: case SMAX: case UMIN: case UMAX:
4271 /* Logical operations will preserve the number of sign-bit copies.
4272 MIN and MAX operations always return one of the operands. */
4273 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4274 known_x, known_mode, known_ret);
4275 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4276 known_x, known_mode, known_ret);
4277 return MIN (num0, num1);
4278
4279 case PLUS: case MINUS:
4280 /* For addition and subtraction, we can have a 1-bit carry. However,
4281 if we are subtracting 1 from a positive number, there will not
4282 be such a carry. Furthermore, if the positive number is known to
4283 be 0 or 1, we know the result is either -1 or 0. */
4284
4285 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4286 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4287 {
4288 nonzero = nonzero_bits (XEXP (x, 0), mode);
4289 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4290 return (nonzero == 1 || nonzero == 0 ? bitwidth
4291 : bitwidth - floor_log2 (nonzero) - 1);
4292 }
4293
4294 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4295 known_x, known_mode, known_ret);
4296 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4297 known_x, known_mode, known_ret);
4298 result = MAX (1, MIN (num0, num1) - 1);
4299
4300 #ifdef POINTERS_EXTEND_UNSIGNED
4301 /* If pointers extend signed and this is an addition or subtraction
4302 to a pointer in Pmode, all the bits above ptr_mode are known to be
4303 sign bit copies. */
4304 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4305 && (code == PLUS || code == MINUS)
4306 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4307 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4308 - GET_MODE_BITSIZE (ptr_mode) + 1),
4309 result);
4310 #endif
4311 return result;
4312
4313 case MULT:
4314 /* The number of bits of the product is the sum of the number of
4315 bits of both terms. However, unless one of the terms if known
4316 to be positive, we must allow for an additional bit since negating
4317 a negative number can remove one sign bit copy. */
4318
4319 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4320 known_x, known_mode, known_ret);
4321 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4322 known_x, known_mode, known_ret);
4323
4324 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4325 if (result > 0
4326 && (bitwidth > HOST_BITS_PER_WIDE_INT
4327 || (((nonzero_bits (XEXP (x, 0), mode)
4328 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4329 && ((nonzero_bits (XEXP (x, 1), mode)
4330 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4331 result--;
4332
4333 return MAX (1, result);
4334
4335 case UDIV:
4336 /* The result must be <= the first operand. If the first operand
4337 has the high bit set, we know nothing about the number of sign
4338 bit copies. */
4339 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4340 return 1;
4341 else if ((nonzero_bits (XEXP (x, 0), mode)
4342 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4343 return 1;
4344 else
4345 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4346 known_x, known_mode, known_ret);
4347
4348 case UMOD:
4349 /* The result must be <= the second operand. */
4350 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4351 known_x, known_mode, known_ret);
4352
4353 case DIV:
4354 /* Similar to unsigned division, except that we have to worry about
4355 the case where the divisor is negative, in which case we have
4356 to add 1. */
4357 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4358 known_x, known_mode, known_ret);
4359 if (result > 1
4360 && (bitwidth > HOST_BITS_PER_WIDE_INT
4361 || (nonzero_bits (XEXP (x, 1), mode)
4362 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4363 result--;
4364
4365 return result;
4366
4367 case MOD:
4368 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4369 known_x, known_mode, known_ret);
4370 if (result > 1
4371 && (bitwidth > HOST_BITS_PER_WIDE_INT
4372 || (nonzero_bits (XEXP (x, 1), mode)
4373 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4374 result--;
4375
4376 return result;
4377
4378 case ASHIFTRT:
4379 /* Shifts by a constant add to the number of bits equal to the
4380 sign bit. */
4381 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4382 known_x, known_mode, known_ret);
4383 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4384 && INTVAL (XEXP (x, 1)) > 0)
4385 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4386
4387 return num0;
4388
4389 case ASHIFT:
4390 /* Left shifts destroy copies. */
4391 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4392 || INTVAL (XEXP (x, 1)) < 0
4393 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4394 return 1;
4395
4396 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4397 known_x, known_mode, known_ret);
4398 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4399
4400 case IF_THEN_ELSE:
4401 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4402 known_x, known_mode, known_ret);
4403 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4404 known_x, known_mode, known_ret);
4405 return MIN (num0, num1);
4406
4407 case EQ: case NE: case GE: case GT: case LE: case LT:
4408 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4409 case GEU: case GTU: case LEU: case LTU:
4410 case UNORDERED: case ORDERED:
4411 /* If the constant is negative, take its 1's complement and remask.
4412 Then see how many zero bits we have. */
4413 nonzero = STORE_FLAG_VALUE;
4414 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4415 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4416 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4417
4418 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4419
4420 default:
4421 break;
4422 }
4423
4424 /* If we haven't been able to figure it out by one of the above rules,
4425 see if some of the high-order bits are known to be zero. If so,
4426 count those bits and return one less than that amount. If we can't
4427 safely compute the mask for this mode, always return BITWIDTH. */
4428
4429 bitwidth = GET_MODE_BITSIZE (mode);
4430 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4431 return 1;
4432
4433 nonzero = nonzero_bits (x, mode);
4434 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4435 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4436 }
4437
4438 /* Calculate the rtx_cost of a single instruction. A return value of
4439 zero indicates an instruction pattern without a known cost. */
4440
4441 int
4442 insn_rtx_cost (rtx pat)
4443 {
4444 int i, cost;
4445 rtx set;
4446
4447 /* Extract the single set rtx from the instruction pattern.
4448 We can't use single_set since we only have the pattern. */
4449 if (GET_CODE (pat) == SET)
4450 set = pat;
4451 else if (GET_CODE (pat) == PARALLEL)
4452 {
4453 set = NULL_RTX;
4454 for (i = 0; i < XVECLEN (pat, 0); i++)
4455 {
4456 rtx x = XVECEXP (pat, 0, i);
4457 if (GET_CODE (x) == SET)
4458 {
4459 if (set)
4460 return 0;
4461 set = x;
4462 }
4463 }
4464 if (!set)
4465 return 0;
4466 }
4467 else
4468 return 0;
4469
4470 cost = rtx_cost (SET_SRC (set), SET);
4471 return cost > 0 ? cost : COSTS_N_INSNS (1);
4472 }
4473
4474 /* Given an insn INSN and condition COND, return the condition in a
4475 canonical form to simplify testing by callers. Specifically:
4476
4477 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4478 (2) Both operands will be machine operands; (cc0) will have been replaced.
4479 (3) If an operand is a constant, it will be the second operand.
4480 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4481 for GE, GEU, and LEU.
4482
4483 If the condition cannot be understood, or is an inequality floating-point
4484 comparison which needs to be reversed, 0 will be returned.
4485
4486 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4487
4488 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4489 insn used in locating the condition was found. If a replacement test
4490 of the condition is desired, it should be placed in front of that
4491 insn and we will be sure that the inputs are still valid.
4492
4493 If WANT_REG is nonzero, we wish the condition to be relative to that
4494 register, if possible. Therefore, do not canonicalize the condition
4495 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4496 to be a compare to a CC mode register.
4497
4498 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4499 and at INSN. */
4500
4501 rtx
4502 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4503 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4504 {
4505 enum rtx_code code;
4506 rtx prev = insn;
4507 rtx set;
4508 rtx tem;
4509 rtx op0, op1;
4510 int reverse_code = 0;
4511 enum machine_mode mode;
4512 basic_block bb = BLOCK_FOR_INSN (insn);
4513
4514 code = GET_CODE (cond);
4515 mode = GET_MODE (cond);
4516 op0 = XEXP (cond, 0);
4517 op1 = XEXP (cond, 1);
4518
4519 if (reverse)
4520 code = reversed_comparison_code (cond, insn);
4521 if (code == UNKNOWN)
4522 return 0;
4523
4524 if (earliest)
4525 *earliest = insn;
4526
4527 /* If we are comparing a register with zero, see if the register is set
4528 in the previous insn to a COMPARE or a comparison operation. Perform
4529 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4530 in cse.c */
4531
4532 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4533 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4534 && op1 == CONST0_RTX (GET_MODE (op0))
4535 && op0 != want_reg)
4536 {
4537 /* Set nonzero when we find something of interest. */
4538 rtx x = 0;
4539
4540 #ifdef HAVE_cc0
4541 /* If comparison with cc0, import actual comparison from compare
4542 insn. */
4543 if (op0 == cc0_rtx)
4544 {
4545 if ((prev = prev_nonnote_insn (prev)) == 0
4546 || !NONJUMP_INSN_P (prev)
4547 || (set = single_set (prev)) == 0
4548 || SET_DEST (set) != cc0_rtx)
4549 return 0;
4550
4551 op0 = SET_SRC (set);
4552 op1 = CONST0_RTX (GET_MODE (op0));
4553 if (earliest)
4554 *earliest = prev;
4555 }
4556 #endif
4557
4558 /* If this is a COMPARE, pick up the two things being compared. */
4559 if (GET_CODE (op0) == COMPARE)
4560 {
4561 op1 = XEXP (op0, 1);
4562 op0 = XEXP (op0, 0);
4563 continue;
4564 }
4565 else if (!REG_P (op0))
4566 break;
4567
4568 /* Go back to the previous insn. Stop if it is not an INSN. We also
4569 stop if it isn't a single set or if it has a REG_INC note because
4570 we don't want to bother dealing with it. */
4571
4572 if ((prev = prev_nonnote_insn (prev)) == 0
4573 || !NONJUMP_INSN_P (prev)
4574 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4575 /* In cfglayout mode, there do not have to be labels at the
4576 beginning of a block, or jumps at the end, so the previous
4577 conditions would not stop us when we reach bb boundary. */
4578 || BLOCK_FOR_INSN (prev) != bb)
4579 break;
4580
4581 set = set_of (op0, prev);
4582
4583 if (set
4584 && (GET_CODE (set) != SET
4585 || !rtx_equal_p (SET_DEST (set), op0)))
4586 break;
4587
4588 /* If this is setting OP0, get what it sets it to if it looks
4589 relevant. */
4590 if (set)
4591 {
4592 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4593 #ifdef FLOAT_STORE_FLAG_VALUE
4594 REAL_VALUE_TYPE fsfv;
4595 #endif
4596
4597 /* ??? We may not combine comparisons done in a CCmode with
4598 comparisons not done in a CCmode. This is to aid targets
4599 like Alpha that have an IEEE compliant EQ instruction, and
4600 a non-IEEE compliant BEQ instruction. The use of CCmode is
4601 actually artificial, simply to prevent the combination, but
4602 should not affect other platforms.
4603
4604 However, we must allow VOIDmode comparisons to match either
4605 CCmode or non-CCmode comparison, because some ports have
4606 modeless comparisons inside branch patterns.
4607
4608 ??? This mode check should perhaps look more like the mode check
4609 in simplify_comparison in combine. */
4610
4611 if ((GET_CODE (SET_SRC (set)) == COMPARE
4612 || (((code == NE
4613 || (code == LT
4614 && GET_MODE_CLASS (inner_mode) == MODE_INT
4615 && (GET_MODE_BITSIZE (inner_mode)
4616 <= HOST_BITS_PER_WIDE_INT)
4617 && (STORE_FLAG_VALUE
4618 & ((HOST_WIDE_INT) 1
4619 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4620 #ifdef FLOAT_STORE_FLAG_VALUE
4621 || (code == LT
4622 && SCALAR_FLOAT_MODE_P (inner_mode)
4623 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4624 REAL_VALUE_NEGATIVE (fsfv)))
4625 #endif
4626 ))
4627 && COMPARISON_P (SET_SRC (set))))
4628 && (((GET_MODE_CLASS (mode) == MODE_CC)
4629 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4630 || mode == VOIDmode || inner_mode == VOIDmode))
4631 x = SET_SRC (set);
4632 else if (((code == EQ
4633 || (code == GE
4634 && (GET_MODE_BITSIZE (inner_mode)
4635 <= HOST_BITS_PER_WIDE_INT)
4636 && GET_MODE_CLASS (inner_mode) == MODE_INT
4637 && (STORE_FLAG_VALUE
4638 & ((HOST_WIDE_INT) 1
4639 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4640 #ifdef FLOAT_STORE_FLAG_VALUE
4641 || (code == GE
4642 && SCALAR_FLOAT_MODE_P (inner_mode)
4643 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4644 REAL_VALUE_NEGATIVE (fsfv)))
4645 #endif
4646 ))
4647 && COMPARISON_P (SET_SRC (set))
4648 && (((GET_MODE_CLASS (mode) == MODE_CC)
4649 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4650 || mode == VOIDmode || inner_mode == VOIDmode))
4651
4652 {
4653 reverse_code = 1;
4654 x = SET_SRC (set);
4655 }
4656 else
4657 break;
4658 }
4659
4660 else if (reg_set_p (op0, prev))
4661 /* If this sets OP0, but not directly, we have to give up. */
4662 break;
4663
4664 if (x)
4665 {
4666 /* If the caller is expecting the condition to be valid at INSN,
4667 make sure X doesn't change before INSN. */
4668 if (valid_at_insn_p)
4669 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4670 break;
4671 if (COMPARISON_P (x))
4672 code = GET_CODE (x);
4673 if (reverse_code)
4674 {
4675 code = reversed_comparison_code (x, prev);
4676 if (code == UNKNOWN)
4677 return 0;
4678 reverse_code = 0;
4679 }
4680
4681 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4682 if (earliest)
4683 *earliest = prev;
4684 }
4685 }
4686
4687 /* If constant is first, put it last. */
4688 if (CONSTANT_P (op0))
4689 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4690
4691 /* If OP0 is the result of a comparison, we weren't able to find what
4692 was really being compared, so fail. */
4693 if (!allow_cc_mode
4694 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4695 return 0;
4696
4697 /* Canonicalize any ordered comparison with integers involving equality
4698 if we can do computations in the relevant mode and we do not
4699 overflow. */
4700
4701 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4702 && GET_CODE (op1) == CONST_INT
4703 && GET_MODE (op0) != VOIDmode
4704 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4705 {
4706 HOST_WIDE_INT const_val = INTVAL (op1);
4707 unsigned HOST_WIDE_INT uconst_val = const_val;
4708 unsigned HOST_WIDE_INT max_val
4709 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4710
4711 switch (code)
4712 {
4713 case LE:
4714 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4715 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4716 break;
4717
4718 /* When cross-compiling, const_val might be sign-extended from
4719 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4720 case GE:
4721 if ((HOST_WIDE_INT) (const_val & max_val)
4722 != (((HOST_WIDE_INT) 1
4723 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4724 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4725 break;
4726
4727 case LEU:
4728 if (uconst_val < max_val)
4729 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4730 break;
4731
4732 case GEU:
4733 if (uconst_val != 0)
4734 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4735 break;
4736
4737 default:
4738 break;
4739 }
4740 }
4741
4742 /* Never return CC0; return zero instead. */
4743 if (CC0_P (op0))
4744 return 0;
4745
4746 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4747 }
4748
4749 /* Given a jump insn JUMP, return the condition that will cause it to branch
4750 to its JUMP_LABEL. If the condition cannot be understood, or is an
4751 inequality floating-point comparison which needs to be reversed, 0 will
4752 be returned.
4753
4754 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4755 insn used in locating the condition was found. If a replacement test
4756 of the condition is desired, it should be placed in front of that
4757 insn and we will be sure that the inputs are still valid. If EARLIEST
4758 is null, the returned condition will be valid at INSN.
4759
4760 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4761 compare CC mode register.
4762
4763 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4764
4765 rtx
4766 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4767 {
4768 rtx cond;
4769 int reverse;
4770 rtx set;
4771
4772 /* If this is not a standard conditional jump, we can't parse it. */
4773 if (!JUMP_P (jump)
4774 || ! any_condjump_p (jump))
4775 return 0;
4776 set = pc_set (jump);
4777
4778 cond = XEXP (SET_SRC (set), 0);
4779
4780 /* If this branches to JUMP_LABEL when the condition is false, reverse
4781 the condition. */
4782 reverse
4783 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4784 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4785
4786 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4787 allow_cc_mode, valid_at_insn_p);
4788 }
4789
4790 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4791 TARGET_MODE_REP_EXTENDED.
4792
4793 Note that we assume that the property of
4794 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4795 narrower than mode B. I.e., if A is a mode narrower than B then in
4796 order to be able to operate on it in mode B, mode A needs to
4797 satisfy the requirements set by the representation of mode B. */
4798
4799 static void
4800 init_num_sign_bit_copies_in_rep (void)
4801 {
4802 enum machine_mode mode, in_mode;
4803
4804 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4805 in_mode = GET_MODE_WIDER_MODE (mode))
4806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4807 mode = GET_MODE_WIDER_MODE (mode))
4808 {
4809 enum machine_mode i;
4810
4811 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4812 extends to the next widest mode. */
4813 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4814 || GET_MODE_WIDER_MODE (mode) == in_mode);
4815
4816 /* We are in in_mode. Count how many bits outside of mode
4817 have to be copies of the sign-bit. */
4818 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4819 {
4820 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4821
4822 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4823 /* We can only check sign-bit copies starting from the
4824 top-bit. In order to be able to check the bits we
4825 have already seen we pretend that subsequent bits
4826 have to be sign-bit copies too. */
4827 || num_sign_bit_copies_in_rep [in_mode][mode])
4828 num_sign_bit_copies_in_rep [in_mode][mode]
4829 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4830 }
4831 }
4832 }
4833
4834 /* Suppose that truncation from the machine mode of X to MODE is not a
4835 no-op. See if there is anything special about X so that we can
4836 assume it already contains a truncated value of MODE. */
4837
4838 bool
4839 truncated_to_mode (enum machine_mode mode, rtx x)
4840 {
4841 /* This register has already been used in MODE without explicit
4842 truncation. */
4843 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4844 return true;
4845
4846 /* See if we already satisfy the requirements of MODE. If yes we
4847 can just switch to MODE. */
4848 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4849 && (num_sign_bit_copies (x, GET_MODE (x))
4850 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4851 return true;
4852
4853 return false;
4854 }
4855 \f
4856 /* Initialize non_rtx_starting_operands, which is used to speed up
4857 for_each_rtx. */
4858 void
4859 init_rtlanal (void)
4860 {
4861 int i;
4862 for (i = 0; i < NUM_RTX_CODE; i++)
4863 {
4864 const char *format = GET_RTX_FORMAT (i);
4865 const char *first = strpbrk (format, "eEV");
4866 non_rtx_starting_operands[i] = first ? first - format : -1;
4867 }
4868
4869 init_num_sign_bit_copies_in_rep ();
4870 }
4871 \f
4872 /* Check whether this is a constant pool constant. */
4873 bool
4874 constant_pool_constant_p (rtx x)
4875 {
4876 x = avoid_constant_pool_reference (x);
4877 return GET_CODE (x) == CONST_DOUBLE;
4878 }
4879