re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
69
70 int target_flags;
71
72 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
76
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
84
85 static unsigned int
86 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
87 \f
88 /* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
92
93 int
94 rtx_unstable_p (const_rtx x)
95 {
96 const RTX_CODE code = GET_CODE (x);
97 int i;
98 const char *fmt;
99
100 switch (code)
101 {
102 case MEM:
103 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
104
105 case CONST:
106 case CONST_INT:
107 case CONST_DOUBLE:
108 case CONST_FIXED:
109 case CONST_VECTOR:
110 case SYMBOL_REF:
111 case LABEL_REF:
112 return 0;
113
114 case REG:
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
116 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
117 /* The arg pointer varies if it is not a fixed register. */
118 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
119 return 0;
120 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x == pic_offset_table_rtx)
125 return 0;
126 #endif
127 return 1;
128
129 case ASM_OPERANDS:
130 if (MEM_VOLATILE_P (x))
131 return 1;
132
133 /* Fall through. */
134
135 default:
136 break;
137 }
138
139 fmt = GET_RTX_FORMAT (code);
140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
141 if (fmt[i] == 'e')
142 {
143 if (rtx_unstable_p (XEXP (x, i)))
144 return 1;
145 }
146 else if (fmt[i] == 'E')
147 {
148 int j;
149 for (j = 0; j < XVECLEN (x, i); j++)
150 if (rtx_unstable_p (XVECEXP (x, i, j)))
151 return 1;
152 }
153
154 return 0;
155 }
156
157 /* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
162 The frame pointer and the arg pointer are considered constant. */
163
164 bool
165 rtx_varies_p (const_rtx x, bool for_alias)
166 {
167 RTX_CODE code;
168 int i;
169 const char *fmt;
170
171 if (!x)
172 return 0;
173
174 code = GET_CODE (x);
175 switch (code)
176 {
177 case MEM:
178 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
179
180 case CONST:
181 case CONST_INT:
182 case CONST_DOUBLE:
183 case CONST_FIXED:
184 case CONST_VECTOR:
185 case SYMBOL_REF:
186 case LABEL_REF:
187 return 0;
188
189 case REG:
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
193 for pseudos. */
194 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
197 return 0;
198 if (x == pic_offset_table_rtx
199 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
204 && for_alias
205 #endif
206 )
207 return 0;
208 return 1;
209
210 case LO_SUM:
211 /* The operand 0 of a LO_SUM is considered constant
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
215 || rtx_varies_p (XEXP (x, 1), for_alias);
216
217 case ASM_OPERANDS:
218 if (MEM_VOLATILE_P (x))
219 return 1;
220
221 /* Fall through. */
222
223 default:
224 break;
225 }
226
227 fmt = GET_RTX_FORMAT (code);
228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
229 if (fmt[i] == 'e')
230 {
231 if (rtx_varies_p (XEXP (x, i), for_alias))
232 return 1;
233 }
234 else if (fmt[i] == 'E')
235 {
236 int j;
237 for (j = 0; j < XVECLEN (x, i); j++)
238 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
239 return 1;
240 }
241
242 return 0;
243 }
244
245 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
249
250 static int
251 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
252 enum machine_mode mode, bool unaligned_mems)
253 {
254 enum rtx_code code = GET_CODE (x);
255
256 if (STRICT_ALIGNMENT
257 && unaligned_mems
258 && GET_MODE_SIZE (mode) != 0)
259 {
260 HOST_WIDE_INT actual_offset = offset;
261 #ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
267 actual_offset -= STACK_POINTER_OFFSET;
268 #endif
269
270 if (actual_offset % GET_MODE_SIZE (mode) != 0)
271 return 1;
272 }
273
274 switch (code)
275 {
276 case SYMBOL_REF:
277 if (SYMBOL_REF_WEAK (x))
278 return 1;
279 if (!CONSTANT_POOL_ADDRESS_P (x))
280 {
281 tree decl;
282 HOST_WIDE_INT decl_size;
283
284 if (offset < 0)
285 return 1;
286 if (size == 0)
287 size = GET_MODE_SIZE (mode);
288 if (size == 0)
289 return offset != 0;
290
291 /* If the size of the access or of the symbol is unknown,
292 assume the worst. */
293 decl = SYMBOL_REF_DECL (x);
294
295 /* Else check that the access is in bounds. TODO: restructure
296 expr_size/lhd_expr_size/int_expr_size and just use the latter. */
297 if (!decl)
298 decl_size = -1;
299 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
300 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
302 : -1);
303 else if (TREE_CODE (decl) == STRING_CST)
304 decl_size = TREE_STRING_LENGTH (decl);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
306 decl_size = int_size_in_bytes (TREE_TYPE (decl));
307 else
308 decl_size = -1;
309
310 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
311 }
312
313 return 0;
314
315 case LABEL_REF:
316 return 0;
317
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
324 return 0;
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
328 return 0;
329 return 1;
330
331 case CONST:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
333 mode, unaligned_mems);
334
335 case PLUS:
336 /* An address is assumed not to trap if:
337 - it is the pic register plus a constant. */
338 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
339 return 0;
340
341 /* - or it is an address that can't trap plus a constant integer,
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
344 if (GET_CODE (XEXP (x, 1)) == CONST_INT
345 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 size, mode, unaligned_mems))
347 return 0;
348
349 return 1;
350
351 case LO_SUM:
352 case PRE_MODIFY:
353 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 mode, unaligned_mems);
355
356 case PRE_DEC:
357 case PRE_INC:
358 case POST_DEC:
359 case POST_INC:
360 case POST_MODIFY:
361 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 mode, unaligned_mems);
363
364 default:
365 break;
366 }
367
368 /* If it isn't one of the case above, it can cause a trap. */
369 return 1;
370 }
371
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
373
374 int
375 rtx_addr_can_trap_p (const_rtx x)
376 {
377 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
378 }
379
380 /* Return true if X is an address that is known to not be zero. */
381
382 bool
383 nonzero_address_p (const_rtx x)
384 {
385 const enum rtx_code code = GET_CODE (x);
386
387 switch (code)
388 {
389 case SYMBOL_REF:
390 return !SYMBOL_REF_WEAK (x);
391
392 case LABEL_REF:
393 return true;
394
395 case REG:
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 || x == stack_pointer_rtx
399 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 return true;
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 return true;
405 return false;
406
407 case CONST:
408 return nonzero_address_p (XEXP (x, 0));
409
410 case PLUS:
411 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
412 return nonzero_address_p (XEXP (x, 0));
413 /* Handle PIC references. */
414 else if (XEXP (x, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x, 1)))
416 return true;
417 return false;
418
419 case PRE_MODIFY:
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
422 pointer. */
423 if (GET_CODE (XEXP (x, 1)) == CONST_INT
424 && INTVAL (XEXP (x, 1)) > 0)
425 return true;
426 return nonzero_address_p (XEXP (x, 0));
427
428 case PRE_INC:
429 /* Similarly. Further, the offset is always positive. */
430 return true;
431
432 case PRE_DEC:
433 case POST_DEC:
434 case POST_INC:
435 case POST_MODIFY:
436 return nonzero_address_p (XEXP (x, 0));
437
438 case LO_SUM:
439 return nonzero_address_p (XEXP (x, 1));
440
441 default:
442 break;
443 }
444
445 /* If it isn't one of the case above, might be zero. */
446 return false;
447 }
448
449 /* Return 1 if X refers to a memory location whose address
450 cannot be compared reliably with constant addresses,
451 or if X refers to a BLKmode memory object.
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
454
455 bool
456 rtx_addr_varies_p (const_rtx x, bool for_alias)
457 {
458 enum rtx_code code;
459 int i;
460 const char *fmt;
461
462 if (x == 0)
463 return 0;
464
465 code = GET_CODE (x);
466 if (code == MEM)
467 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
468
469 fmt = GET_RTX_FORMAT (code);
470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
472 {
473 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
474 return 1;
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
481 return 1;
482 }
483 return 0;
484 }
485 \f
486 /* Return the value of the integer term in X, if one is apparent;
487 otherwise return 0.
488 Only obvious integer terms are detected.
489 This is used in cse.c with the `related_value' field. */
490
491 HOST_WIDE_INT
492 get_integer_term (const_rtx x)
493 {
494 if (GET_CODE (x) == CONST)
495 x = XEXP (x, 0);
496
497 if (GET_CODE (x) == MINUS
498 && GET_CODE (XEXP (x, 1)) == CONST_INT)
499 return - INTVAL (XEXP (x, 1));
500 if (GET_CODE (x) == PLUS
501 && GET_CODE (XEXP (x, 1)) == CONST_INT)
502 return INTVAL (XEXP (x, 1));
503 return 0;
504 }
505
506 /* If X is a constant, return the value sans apparent integer term;
507 otherwise return 0.
508 Only obvious integer terms are detected. */
509
510 rtx
511 get_related_value (const_rtx x)
512 {
513 if (GET_CODE (x) != CONST)
514 return 0;
515 x = XEXP (x, 0);
516 if (GET_CODE (x) == PLUS
517 && GET_CODE (XEXP (x, 1)) == CONST_INT)
518 return XEXP (x, 0);
519 else if (GET_CODE (x) == MINUS
520 && GET_CODE (XEXP (x, 1)) == CONST_INT)
521 return XEXP (x, 0);
522 return 0;
523 }
524 \f
525 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
527
528 bool
529 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
530 {
531 tree decl;
532
533 if (GET_CODE (symbol) != SYMBOL_REF)
534 return false;
535
536 if (offset == 0)
537 return true;
538
539 if (offset > 0)
540 {
541 if (CONSTANT_POOL_ADDRESS_P (symbol)
542 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
543 return true;
544
545 decl = SYMBOL_REF_DECL (symbol);
546 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
547 return true;
548 }
549
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
551 && SYMBOL_REF_BLOCK (symbol)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
553 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
554 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
555 return true;
556
557 return false;
558 }
559
560 /* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
562
563 void
564 split_const (rtx x, rtx *base_out, rtx *offset_out)
565 {
566 if (GET_CODE (x) == CONST)
567 {
568 x = XEXP (x, 0);
569 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
570 {
571 *base_out = XEXP (x, 0);
572 *offset_out = XEXP (x, 1);
573 return;
574 }
575 }
576 *base_out = x;
577 *offset_out = const0_rtx;
578 }
579 \f
580 /* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
582
583 int
584 count_occurrences (const_rtx x, const_rtx find, int count_dest)
585 {
586 int i, j;
587 enum rtx_code code;
588 const char *format_ptr;
589 int count;
590
591 if (x == find)
592 return 1;
593
594 code = GET_CODE (x);
595
596 switch (code)
597 {
598 case REG:
599 case CONST_INT:
600 case CONST_DOUBLE:
601 case CONST_FIXED:
602 case CONST_VECTOR:
603 case SYMBOL_REF:
604 case CODE_LABEL:
605 case PC:
606 case CC0:
607 return 0;
608
609 case EXPR_LIST:
610 count = count_occurrences (XEXP (x, 0), find, count_dest);
611 if (XEXP (x, 1))
612 count += count_occurrences (XEXP (x, 1), find, count_dest);
613 return count;
614
615 case MEM:
616 if (MEM_P (find) && rtx_equal_p (x, find))
617 return 1;
618 break;
619
620 case SET:
621 if (SET_DEST (x) == find && ! count_dest)
622 return count_occurrences (SET_SRC (x), find, count_dest);
623 break;
624
625 default:
626 break;
627 }
628
629 format_ptr = GET_RTX_FORMAT (code);
630 count = 0;
631
632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
633 {
634 switch (*format_ptr++)
635 {
636 case 'e':
637 count += count_occurrences (XEXP (x, i), find, count_dest);
638 break;
639
640 case 'E':
641 for (j = 0; j < XVECLEN (x, i); j++)
642 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
643 break;
644 }
645 }
646 return count;
647 }
648
649 \f
650 /* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
653
654 int
655 reg_mentioned_p (const_rtx reg, const_rtx in)
656 {
657 const char *fmt;
658 int i;
659 enum rtx_code code;
660
661 if (in == 0)
662 return 0;
663
664 if (reg == in)
665 return 1;
666
667 if (GET_CODE (in) == LABEL_REF)
668 return reg == XEXP (in, 0);
669
670 code = GET_CODE (in);
671
672 switch (code)
673 {
674 /* Compare registers by number. */
675 case REG:
676 return REG_P (reg) && REGNO (in) == REGNO (reg);
677
678 /* These codes have no constituent expressions
679 and are unique. */
680 case SCRATCH:
681 case CC0:
682 case PC:
683 return 0;
684
685 case CONST_INT:
686 case CONST_VECTOR:
687 case CONST_DOUBLE:
688 case CONST_FIXED:
689 /* These are kept unique for a given value. */
690 return 0;
691
692 default:
693 break;
694 }
695
696 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
697 return 1;
698
699 fmt = GET_RTX_FORMAT (code);
700
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
702 {
703 if (fmt[i] == 'E')
704 {
705 int j;
706 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
707 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
708 return 1;
709 }
710 else if (fmt[i] == 'e'
711 && reg_mentioned_p (reg, XEXP (in, i)))
712 return 1;
713 }
714 return 0;
715 }
716 \f
717 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
719
720 int
721 no_labels_between_p (const_rtx beg, const_rtx end)
722 {
723 rtx p;
724 if (beg == end)
725 return 0;
726 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
727 if (LABEL_P (p))
728 return 0;
729 return 1;
730 }
731
732 /* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
734
735 int
736 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
737 {
738 rtx insn;
739
740 if (from_insn == to_insn)
741 return 0;
742
743 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
744 if (INSN_P (insn)
745 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
746 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
747 return 1;
748 return 0;
749 }
750 \f
751 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
754
755 int
756 reg_referenced_p (const_rtx x, const_rtx body)
757 {
758 int i;
759
760 switch (GET_CODE (body))
761 {
762 case SET:
763 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
764 return 1;
765
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body)) != CC0
770 && GET_CODE (SET_DEST (body)) != PC
771 && !REG_P (SET_DEST (body))
772 && ! (GET_CODE (SET_DEST (body)) == SUBREG
773 && REG_P (SUBREG_REG (SET_DEST (body)))
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
775 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
777 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
778 && reg_overlap_mentioned_p (x, SET_DEST (body)))
779 return 1;
780 return 0;
781
782 case ASM_OPERANDS:
783 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
784 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
785 return 1;
786 return 0;
787
788 case CALL:
789 case USE:
790 case IF_THEN_ELSE:
791 return reg_overlap_mentioned_p (x, body);
792
793 case TRAP_IF:
794 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
795
796 case PREFETCH:
797 return reg_overlap_mentioned_p (x, XEXP (body, 0));
798
799 case UNSPEC:
800 case UNSPEC_VOLATILE:
801 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
802 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
803 return 1;
804 return 0;
805
806 case PARALLEL:
807 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
808 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
809 return 1;
810 return 0;
811
812 case CLOBBER:
813 if (MEM_P (XEXP (body, 0)))
814 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
815 return 1;
816 return 0;
817
818 case COND_EXEC:
819 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
820 return 1;
821 return reg_referenced_p (x, COND_EXEC_CODE (body));
822
823 default:
824 return 0;
825 }
826 }
827 \f
828 /* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
830
831 int
832 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
833 {
834 const_rtx insn;
835
836 if (from_insn == to_insn)
837 return 0;
838
839 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
840 if (INSN_P (insn) && reg_set_p (reg, insn))
841 return 1;
842 return 0;
843 }
844
845 /* Internals of reg_set_between_p. */
846 int
847 reg_set_p (const_rtx reg, const_rtx insn)
848 {
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
851 if (INSN_P (insn)
852 && (FIND_REG_INC_NOTE (insn, reg)
853 || (CALL_P (insn)
854 && ((REG_P (reg)
855 && REGNO (reg) < FIRST_PSEUDO_REGISTER
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
857 GET_MODE (reg), REGNO (reg)))
858 || MEM_P (reg)
859 || find_reg_fusage (insn, CLOBBER, reg)))))
860 return 1;
861
862 return set_of (reg, insn) != NULL_RTX;
863 }
864
865 /* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
867 X contains a MEM; this routine does use memory aliasing. */
868
869 int
870 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
871 {
872 const enum rtx_code code = GET_CODE (x);
873 const char *fmt;
874 int i, j;
875 rtx insn;
876
877 if (start == end)
878 return 0;
879
880 switch (code)
881 {
882 case CONST_INT:
883 case CONST_DOUBLE:
884 case CONST_FIXED:
885 case CONST_VECTOR:
886 case CONST:
887 case SYMBOL_REF:
888 case LABEL_REF:
889 return 0;
890
891 case PC:
892 case CC0:
893 return 1;
894
895 case MEM:
896 if (modified_between_p (XEXP (x, 0), start, end))
897 return 1;
898 if (MEM_READONLY_P (x))
899 return 0;
900 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
901 if (memory_modified_in_insn_p (x, insn))
902 return 1;
903 return 0;
904 break;
905
906 case REG:
907 return reg_set_between_p (x, start, end);
908
909 default:
910 break;
911 }
912
913 fmt = GET_RTX_FORMAT (code);
914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
915 {
916 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
917 return 1;
918
919 else if (fmt[i] == 'E')
920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
921 if (modified_between_p (XVECEXP (x, i, j), start, end))
922 return 1;
923 }
924
925 return 0;
926 }
927
928 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
930 does use memory aliasing. */
931
932 int
933 modified_in_p (const_rtx x, const_rtx insn)
934 {
935 const enum rtx_code code = GET_CODE (x);
936 const char *fmt;
937 int i, j;
938
939 switch (code)
940 {
941 case CONST_INT:
942 case CONST_DOUBLE:
943 case CONST_FIXED:
944 case CONST_VECTOR:
945 case CONST:
946 case SYMBOL_REF:
947 case LABEL_REF:
948 return 0;
949
950 case PC:
951 case CC0:
952 return 1;
953
954 case MEM:
955 if (modified_in_p (XEXP (x, 0), insn))
956 return 1;
957 if (MEM_READONLY_P (x))
958 return 0;
959 if (memory_modified_in_insn_p (x, insn))
960 return 1;
961 return 0;
962 break;
963
964 case REG:
965 return reg_set_p (x, insn);
966
967 default:
968 break;
969 }
970
971 fmt = GET_RTX_FORMAT (code);
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
973 {
974 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
975 return 1;
976
977 else if (fmt[i] == 'E')
978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
979 if (modified_in_p (XVECEXP (x, i, j), insn))
980 return 1;
981 }
982
983 return 0;
984 }
985 \f
986 /* Helper function for set_of. */
987 struct set_of_data
988 {
989 const_rtx found;
990 const_rtx pat;
991 };
992
993 static void
994 set_of_1 (rtx x, const_rtx pat, void *data1)
995 {
996 struct set_of_data *const data = (struct set_of_data *) (data1);
997 if (rtx_equal_p (x, data->pat)
998 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
999 data->found = pat;
1000 }
1001
1002 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
1004 const_rtx
1005 set_of (const_rtx pat, const_rtx insn)
1006 {
1007 struct set_of_data data;
1008 data.found = NULL_RTX;
1009 data.pat = pat;
1010 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1011 return data.found;
1012 }
1013 \f
1014 /* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1017
1018 rtx
1019 single_set_2 (const_rtx insn, const_rtx pat)
1020 {
1021 rtx set = NULL;
1022 int set_verified = 1;
1023 int i;
1024
1025 if (GET_CODE (pat) == PARALLEL)
1026 {
1027 for (i = 0; i < XVECLEN (pat, 0); i++)
1028 {
1029 rtx sub = XVECEXP (pat, 0, i);
1030 switch (GET_CODE (sub))
1031 {
1032 case USE:
1033 case CLOBBER:
1034 break;
1035
1036 case SET:
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
1040 to avoid checking for REG_UNUSED notes unless necessary.
1041
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1045 if (!set_verified)
1046 {
1047 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1048 && !side_effects_p (set))
1049 set = NULL;
1050 else
1051 set_verified = 1;
1052 }
1053 if (!set)
1054 set = sub, set_verified = 0;
1055 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1056 || side_effects_p (sub))
1057 return NULL_RTX;
1058 break;
1059
1060 default:
1061 return NULL_RTX;
1062 }
1063 }
1064 }
1065 return set;
1066 }
1067
1068 /* Given an INSN, return nonzero if it has more than one SET, else return
1069 zero. */
1070
1071 int
1072 multiple_sets (const_rtx insn)
1073 {
1074 int found;
1075 int i;
1076
1077 /* INSN must be an insn. */
1078 if (! INSN_P (insn))
1079 return 0;
1080
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1083 {
1084 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1086 {
1087 /* If we have already found a SET, then return now. */
1088 if (found)
1089 return 1;
1090 else
1091 found = 1;
1092 }
1093 }
1094
1095 /* Either zero or one SET. */
1096 return 0;
1097 }
1098 \f
1099 /* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1101
1102 int
1103 set_noop_p (const_rtx set)
1104 {
1105 rtx src = SET_SRC (set);
1106 rtx dst = SET_DEST (set);
1107
1108 if (dst == pc_rtx && src == pc_rtx)
1109 return 1;
1110
1111 if (MEM_P (dst) && MEM_P (src))
1112 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1113
1114 if (GET_CODE (dst) == ZERO_EXTRACT)
1115 return rtx_equal_p (XEXP (dst, 0), src)
1116 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1117 && !side_effects_p (src);
1118
1119 if (GET_CODE (dst) == STRICT_LOW_PART)
1120 dst = XEXP (dst, 0);
1121
1122 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1123 {
1124 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1125 return 0;
1126 src = SUBREG_REG (src);
1127 dst = SUBREG_REG (dst);
1128 }
1129
1130 return (REG_P (src) && REG_P (dst)
1131 && REGNO (src) == REGNO (dst));
1132 }
1133 \f
1134 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1135 value to itself. */
1136
1137 int
1138 noop_move_p (const_rtx insn)
1139 {
1140 rtx pat = PATTERN (insn);
1141
1142 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1143 return 1;
1144
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1147 return 0;
1148
1149 if (GET_CODE (pat) == SET && set_noop_p (pat))
1150 return 1;
1151
1152 if (GET_CODE (pat) == PARALLEL)
1153 {
1154 int i;
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i = 0; i < XVECLEN (pat, 0); i++)
1158 {
1159 rtx tem = XVECEXP (pat, 0, i);
1160
1161 if (GET_CODE (tem) == USE
1162 || GET_CODE (tem) == CLOBBER)
1163 continue;
1164
1165 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1166 return 0;
1167 }
1168
1169 return 1;
1170 }
1171 return 0;
1172 }
1173 \f
1174
1175 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1180 be the src. */
1181
1182 rtx
1183 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1184 {
1185 rtx p;
1186
1187 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1188 p = PREV_INSN (p))
1189 if (INSN_P (p))
1190 {
1191 rtx set = single_set (p);
1192 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1193
1194 if (set && rtx_equal_p (x, SET_DEST (set)))
1195 {
1196 rtx src = SET_SRC (set);
1197
1198 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1199 src = XEXP (note, 0);
1200
1201 if ((valid_to == NULL_RTX
1202 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
1205 && (! (REG_P (src)
1206 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1207 {
1208 *pinsn = p;
1209 return src;
1210 }
1211 }
1212
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x, p))
1215 break;
1216 }
1217
1218 return x;
1219 }
1220 \f
1221 /* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1224
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1227
1228 int
1229 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1230 rtx *loc)
1231 {
1232 int i;
1233 unsigned int x_regno;
1234 RTX_CODE code;
1235 const char *fmt;
1236
1237 repeat:
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1240 if (x == 0)
1241 return 0;
1242
1243 code = GET_CODE (x);
1244
1245 switch (code)
1246 {
1247 case REG:
1248 x_regno = REGNO (x);
1249
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
1253 if ((x_regno == STACK_POINTER_REGNUM
1254 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1255 || x_regno == ARG_POINTER_REGNUM
1256 #endif
1257 || x_regno == FRAME_POINTER_REGNUM)
1258 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1259 return 1;
1260
1261 return endregno > x_regno && regno < END_REGNO (x);
1262
1263 case SUBREG:
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
1266 if (REG_P (SUBREG_REG (x))
1267 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1268 {
1269 unsigned int inner_regno = subreg_regno (x);
1270 unsigned int inner_endregno
1271 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1272 ? subreg_nregs (x) : 1);
1273
1274 return endregno > inner_regno && regno < inner_endregno;
1275 }
1276 break;
1277
1278 case CLOBBER:
1279 case SET:
1280 if (&SET_DEST (x) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x)) == SUBREG
1285 && loc != &SUBREG_REG (SET_DEST (x))
1286 && REG_P (SUBREG_REG (SET_DEST (x)))
1287 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno, endregno,
1289 SUBREG_REG (SET_DEST (x)), loc))
1290 || (!REG_P (SET_DEST (x))
1291 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1292 return 1;
1293
1294 if (code == CLOBBER || loc == &SET_SRC (x))
1295 return 0;
1296 x = SET_SRC (x);
1297 goto repeat;
1298
1299 default:
1300 break;
1301 }
1302
1303 /* X does not match, so try its subexpressions. */
1304
1305 fmt = GET_RTX_FORMAT (code);
1306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1307 {
1308 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1309 {
1310 if (i == 0)
1311 {
1312 x = XEXP (x, 0);
1313 goto repeat;
1314 }
1315 else
1316 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1317 return 1;
1318 }
1319 else if (fmt[i] == 'E')
1320 {
1321 int j;
1322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1323 if (loc != &XVECEXP (x, i, j)
1324 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1325 return 1;
1326 }
1327 }
1328 return 0;
1329 }
1330
1331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1336
1337 int
1338 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1339 {
1340 unsigned int regno, endregno;
1341
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in))
1346 return 0;
1347
1348 recurse:
1349 switch (GET_CODE (x))
1350 {
1351 case STRICT_LOW_PART:
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 /* Overly conservative. */
1355 x = XEXP (x, 0);
1356 goto recurse;
1357
1358 case SUBREG:
1359 regno = REGNO (SUBREG_REG (x));
1360 if (regno < FIRST_PSEUDO_REGISTER)
1361 regno = subreg_regno (x);
1362 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x) : 1);
1364 goto do_reg;
1365
1366 case REG:
1367 regno = REGNO (x);
1368 endregno = END_REGNO (x);
1369 do_reg:
1370 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1371
1372 case MEM:
1373 {
1374 const char *fmt;
1375 int i;
1376
1377 if (MEM_P (in))
1378 return 1;
1379
1380 fmt = GET_RTX_FORMAT (GET_CODE (in));
1381 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1382 if (fmt[i] == 'e')
1383 {
1384 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1385 return 1;
1386 }
1387 else if (fmt[i] == 'E')
1388 {
1389 int j;
1390 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1391 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1392 return 1;
1393 }
1394
1395 return 0;
1396 }
1397
1398 case SCRATCH:
1399 case PC:
1400 case CC0:
1401 return reg_mentioned_p (x, in);
1402
1403 case PARALLEL:
1404 {
1405 int i;
1406
1407 /* If any register in here refers to it we return true. */
1408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1409 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1411 return 1;
1412 return 0;
1413 }
1414
1415 default:
1416 gcc_assert (CONSTANT_P (x));
1417 return 0;
1418 }
1419 }
1420 \f
1421 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1424
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
1429
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
1432
1433 void
1434 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1435 {
1436 int i;
1437
1438 if (GET_CODE (x) == COND_EXEC)
1439 x = COND_EXEC_CODE (x);
1440
1441 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1442 {
1443 rtx dest = SET_DEST (x);
1444
1445 while ((GET_CODE (dest) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest))
1447 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1448 || GET_CODE (dest) == ZERO_EXTRACT
1449 || GET_CODE (dest) == STRICT_LOW_PART)
1450 dest = XEXP (dest, 0);
1451
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest) == PARALLEL)
1455 {
1456 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1457 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1458 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1459 }
1460 else
1461 (*fun) (dest, x, data);
1462 }
1463
1464 else if (GET_CODE (x) == PARALLEL)
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 note_stores (XVECEXP (x, 0, i), fun, data);
1467 }
1468 \f
1469 /* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1473
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1477
1478 void
1479 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1480 {
1481 rtx body = *pbody;
1482 int i;
1483
1484 switch (GET_CODE (body))
1485 {
1486 case COND_EXEC:
1487 (*fun) (&COND_EXEC_TEST (body), data);
1488 note_uses (&COND_EXEC_CODE (body), fun, data);
1489 return;
1490
1491 case PARALLEL:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 note_uses (&XVECEXP (body, 0, i), fun, data);
1494 return;
1495
1496 case SEQUENCE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1499 return;
1500
1501 case USE:
1502 (*fun) (&XEXP (body, 0), data);
1503 return;
1504
1505 case ASM_OPERANDS:
1506 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1507 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1508 return;
1509
1510 case TRAP_IF:
1511 (*fun) (&TRAP_CONDITION (body), data);
1512 return;
1513
1514 case PREFETCH:
1515 (*fun) (&XEXP (body, 0), data);
1516 return;
1517
1518 case UNSPEC:
1519 case UNSPEC_VOLATILE:
1520 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1521 (*fun) (&XVECEXP (body, 0, i), data);
1522 return;
1523
1524 case CLOBBER:
1525 if (MEM_P (XEXP (body, 0)))
1526 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1527 return;
1528
1529 case SET:
1530 {
1531 rtx dest = SET_DEST (body);
1532
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun) (&SET_SRC (body), data);
1536
1537 if (GET_CODE (dest) == ZERO_EXTRACT)
1538 {
1539 (*fun) (&XEXP (dest, 1), data);
1540 (*fun) (&XEXP (dest, 2), data);
1541 }
1542
1543 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1544 dest = XEXP (dest, 0);
1545
1546 if (MEM_P (dest))
1547 (*fun) (&XEXP (dest, 0), data);
1548 }
1549 return;
1550
1551 default:
1552 /* All the other possibilities never store. */
1553 (*fun) (pbody, data);
1554 return;
1555 }
1556 }
1557 \f
1558 /* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1561
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
1564 Likewise, REG_INC does not count.
1565
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
1569 at any time after deaths have been computed.
1570
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1573 by INSN. */
1574
1575 int
1576 dead_or_set_p (const_rtx insn, const_rtx x)
1577 {
1578 unsigned int regno, end_regno;
1579 unsigned int i;
1580
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x) == CC0)
1583 return 1;
1584
1585 gcc_assert (REG_P (x));
1586
1587 regno = REGNO (x);
1588 end_regno = END_REGNO (x);
1589 for (i = regno; i < end_regno; i++)
1590 if (! dead_or_set_regno_p (insn, i))
1591 return 0;
1592
1593 return 1;
1594 }
1595
1596 /* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1599
1600 static bool
1601 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1602 {
1603 unsigned int regno, endregno;
1604
1605 if (GET_CODE (dest) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest))
1607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1610 dest = SUBREG_REG (dest);
1611
1612 if (!REG_P (dest))
1613 return false;
1614
1615 regno = REGNO (dest);
1616 endregno = END_REGNO (dest);
1617 return (test_regno >= regno && test_regno < endregno);
1618 }
1619
1620 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1622
1623 static bool
1624 covers_regno_p (const_rtx dest, unsigned int test_regno)
1625 {
1626 if (GET_CODE (dest) == PARALLEL)
1627 {
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1631 int i;
1632
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1634 {
1635 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1636 if (inner != NULL_RTX
1637 && covers_regno_no_parallel_p (inner, test_regno))
1638 return true;
1639 }
1640
1641 return false;
1642 }
1643 else
1644 return covers_regno_no_parallel_p (dest, test_regno);
1645 }
1646
1647 /* Utility function for dead_or_set_p to check an individual register. */
1648
1649 int
1650 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1651 {
1652 const_rtx pattern;
1653
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn, REG_DEAD, test_regno))
1656 return 1;
1657
1658 if (CALL_P (insn)
1659 && find_regno_fusage (insn, CLOBBER, test_regno))
1660 return 1;
1661
1662 pattern = PATTERN (insn);
1663
1664 if (GET_CODE (pattern) == COND_EXEC)
1665 pattern = COND_EXEC_CODE (pattern);
1666
1667 if (GET_CODE (pattern) == SET)
1668 return covers_regno_p (SET_DEST (pattern), test_regno);
1669 else if (GET_CODE (pattern) == PARALLEL)
1670 {
1671 int i;
1672
1673 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1674 {
1675 rtx body = XVECEXP (pattern, 0, i);
1676
1677 if (GET_CODE (body) == COND_EXEC)
1678 body = COND_EXEC_CODE (body);
1679
1680 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1681 && covers_regno_p (SET_DEST (body), test_regno))
1682 return 1;
1683 }
1684 }
1685
1686 return 0;
1687 }
1688
1689 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1691
1692 rtx
1693 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1694 {
1695 rtx link;
1696
1697 gcc_assert (insn);
1698
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn))
1701 return 0;
1702 if (datum == 0)
1703 {
1704 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1705 if (REG_NOTE_KIND (link) == kind)
1706 return link;
1707 return 0;
1708 }
1709
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1712 return link;
1713 return 0;
1714 }
1715
1716 /* Return the reg-note of kind KIND in insn INSN which applies to register
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
1720
1721 rtx
1722 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1723 {
1724 rtx link;
1725
1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1727 if (! INSN_P (insn))
1728 return 0;
1729
1730 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1731 if (REG_NOTE_KIND (link) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1733 problem here. */
1734 && REG_P (XEXP (link, 0))
1735 && REGNO (XEXP (link, 0)) <= regno
1736 && END_REGNO (XEXP (link, 0)) > regno)
1737 return link;
1738 return 0;
1739 }
1740
1741 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1742 has such a note. */
1743
1744 rtx
1745 find_reg_equal_equiv_note (const_rtx insn)
1746 {
1747 rtx link;
1748
1749 if (!INSN_P (insn))
1750 return 0;
1751
1752 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1753 if (REG_NOTE_KIND (link) == REG_EQUAL
1754 || REG_NOTE_KIND (link) == REG_EQUIV)
1755 {
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1760
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1763 return 0;
1764 return link;
1765 }
1766 return NULL;
1767 }
1768
1769 /* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1771 return null. */
1772
1773 rtx
1774 find_constant_src (const_rtx insn)
1775 {
1776 rtx note, set, x;
1777
1778 set = single_set (insn);
1779 if (set)
1780 {
1781 x = avoid_constant_pool_reference (SET_SRC (set));
1782 if (CONSTANT_P (x))
1783 return x;
1784 }
1785
1786 note = find_reg_equal_equiv_note (insn);
1787 if (note && CONSTANT_P (XEXP (note, 0)))
1788 return XEXP (note, 0);
1789
1790 return NULL_RTX;
1791 }
1792
1793 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1795
1796 int
1797 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1798 {
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1801 if (!CALL_P (insn))
1802 return 0;
1803
1804 gcc_assert (datum);
1805
1806 if (!REG_P (datum))
1807 {
1808 rtx link;
1809
1810 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1811 link;
1812 link = XEXP (link, 1))
1813 if (GET_CODE (XEXP (link, 0)) == code
1814 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1815 return 1;
1816 }
1817 else
1818 {
1819 unsigned int regno = REGNO (datum);
1820
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1823
1824 if (regno < FIRST_PSEUDO_REGISTER)
1825 {
1826 unsigned int end_regno = END_HARD_REGNO (datum);
1827 unsigned int i;
1828
1829 for (i = regno; i < end_regno; i++)
1830 if (find_regno_fusage (insn, code, i))
1831 return 1;
1832 }
1833 }
1834
1835 return 0;
1836 }
1837
1838 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1840
1841 int
1842 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1843 {
1844 rtx link;
1845
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1848
1849 if (regno >= FIRST_PSEUDO_REGISTER
1850 || !CALL_P (insn) )
1851 return 0;
1852
1853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1854 {
1855 rtx op, reg;
1856
1857 if (GET_CODE (op = XEXP (link, 0)) == code
1858 && REG_P (reg = XEXP (op, 0))
1859 && REGNO (reg) <= regno
1860 && END_HARD_REGNO (reg) > regno)
1861 return 1;
1862 }
1863
1864 return 0;
1865 }
1866
1867 \f
1868 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
1870
1871 rtx
1872 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1873 {
1874 rtx note;
1875
1876 switch (kind)
1877 {
1878 case REG_CC_SETTER:
1879 case REG_CC_USER:
1880 case REG_LABEL_TARGET:
1881 case REG_LABEL_OPERAND:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1884 better. */
1885 note = alloc_INSN_LIST (datum, list);
1886 PUT_REG_NOTE_KIND (note, kind);
1887 break;
1888
1889 default:
1890 note = alloc_EXPR_LIST (kind, datum, list);
1891 break;
1892 }
1893
1894 return note;
1895 }
1896
1897 /* Add register note with kind KIND and datum DATUM to INSN. */
1898
1899 void
1900 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1901 {
1902 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1903 }
1904
1905 /* Remove register note NOTE from the REG_NOTES of INSN. */
1906
1907 void
1908 remove_note (rtx insn, const_rtx note)
1909 {
1910 rtx link;
1911
1912 if (note == NULL_RTX)
1913 return;
1914
1915 if (REG_NOTES (insn) == note)
1916 REG_NOTES (insn) = XEXP (note, 1);
1917 else
1918 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1919 if (XEXP (link, 1) == note)
1920 {
1921 XEXP (link, 1) = XEXP (note, 1);
1922 break;
1923 }
1924
1925 switch (REG_NOTE_KIND (note))
1926 {
1927 case REG_EQUAL:
1928 case REG_EQUIV:
1929 df_notes_rescan (insn);
1930 break;
1931 default:
1932 break;
1933 }
1934 }
1935
1936 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1937
1938 void
1939 remove_reg_equal_equiv_notes (rtx insn)
1940 {
1941 rtx *loc;
1942
1943 loc = &REG_NOTES (insn);
1944 while (*loc)
1945 {
1946 enum reg_note kind = REG_NOTE_KIND (*loc);
1947 if (kind == REG_EQUAL || kind == REG_EQUIV)
1948 *loc = XEXP (*loc, 1);
1949 else
1950 loc = &XEXP (*loc, 1);
1951 }
1952 }
1953
1954 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1956 NODE matches. */
1957
1958 int
1959 in_expr_list_p (const_rtx listp, const_rtx node)
1960 {
1961 const_rtx x;
1962
1963 for (x = listp; x; x = XEXP (x, 1))
1964 if (node == XEXP (x, 0))
1965 return 1;
1966
1967 return 0;
1968 }
1969
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
1972
1973 A simple equality test is used to determine if NODE matches. */
1974
1975 void
1976 remove_node_from_expr_list (const_rtx node, rtx *listp)
1977 {
1978 rtx temp = *listp;
1979 rtx prev = NULL_RTX;
1980
1981 while (temp)
1982 {
1983 if (node == XEXP (temp, 0))
1984 {
1985 /* Splice the node out of the list. */
1986 if (prev)
1987 XEXP (prev, 1) = XEXP (temp, 1);
1988 else
1989 *listp = XEXP (temp, 1);
1990
1991 return;
1992 }
1993
1994 prev = temp;
1995 temp = XEXP (temp, 1);
1996 }
1997 }
1998 \f
1999 /* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2003
2004 int
2005 volatile_insn_p (const_rtx x)
2006 {
2007 const RTX_CODE code = GET_CODE (x);
2008 switch (code)
2009 {
2010 case LABEL_REF:
2011 case SYMBOL_REF:
2012 case CONST_INT:
2013 case CONST:
2014 case CONST_DOUBLE:
2015 case CONST_FIXED:
2016 case CONST_VECTOR:
2017 case CC0:
2018 case PC:
2019 case REG:
2020 case SCRATCH:
2021 case CLOBBER:
2022 case ADDR_VEC:
2023 case ADDR_DIFF_VEC:
2024 case CALL:
2025 case MEM:
2026 return 0;
2027
2028 case UNSPEC_VOLATILE:
2029 /* case TRAP_IF: This isn't clear yet. */
2030 return 1;
2031
2032 case ASM_INPUT:
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 1;
2036
2037 default:
2038 break;
2039 }
2040
2041 /* Recursively scan the operands of this expression. */
2042
2043 {
2044 const char *const fmt = GET_RTX_FORMAT (code);
2045 int i;
2046
2047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2048 {
2049 if (fmt[i] == 'e')
2050 {
2051 if (volatile_insn_p (XEXP (x, i)))
2052 return 1;
2053 }
2054 else if (fmt[i] == 'E')
2055 {
2056 int j;
2057 for (j = 0; j < XVECLEN (x, i); j++)
2058 if (volatile_insn_p (XVECEXP (x, i, j)))
2059 return 1;
2060 }
2061 }
2062 }
2063 return 0;
2064 }
2065
2066 /* Nonzero if X contains any volatile memory references
2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2068
2069 int
2070 volatile_refs_p (const_rtx x)
2071 {
2072 const RTX_CODE code = GET_CODE (x);
2073 switch (code)
2074 {
2075 case LABEL_REF:
2076 case SYMBOL_REF:
2077 case CONST_INT:
2078 case CONST:
2079 case CONST_DOUBLE:
2080 case CONST_FIXED:
2081 case CONST_VECTOR:
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 return 0;
2090
2091 case UNSPEC_VOLATILE:
2092 return 1;
2093
2094 case MEM:
2095 case ASM_INPUT:
2096 case ASM_OPERANDS:
2097 if (MEM_VOLATILE_P (x))
2098 return 1;
2099
2100 default:
2101 break;
2102 }
2103
2104 /* Recursively scan the operands of this expression. */
2105
2106 {
2107 const char *const fmt = GET_RTX_FORMAT (code);
2108 int i;
2109
2110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2111 {
2112 if (fmt[i] == 'e')
2113 {
2114 if (volatile_refs_p (XEXP (x, i)))
2115 return 1;
2116 }
2117 else if (fmt[i] == 'E')
2118 {
2119 int j;
2120 for (j = 0; j < XVECLEN (x, i); j++)
2121 if (volatile_refs_p (XVECEXP (x, i, j)))
2122 return 1;
2123 }
2124 }
2125 }
2126 return 0;
2127 }
2128
2129 /* Similar to above, except that it also rejects register pre- and post-
2130 incrementing. */
2131
2132 int
2133 side_effects_p (const_rtx x)
2134 {
2135 const RTX_CODE code = GET_CODE (x);
2136 switch (code)
2137 {
2138 case LABEL_REF:
2139 case SYMBOL_REF:
2140 case CONST_INT:
2141 case CONST:
2142 case CONST_DOUBLE:
2143 case CONST_FIXED:
2144 case CONST_VECTOR:
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
2151 return 0;
2152
2153 case CLOBBER:
2154 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2155 when some combination can't be done. If we see one, don't think
2156 that we can simplify the expression. */
2157 return (GET_MODE (x) != VOIDmode);
2158
2159 case PRE_INC:
2160 case PRE_DEC:
2161 case POST_INC:
2162 case POST_DEC:
2163 case PRE_MODIFY:
2164 case POST_MODIFY:
2165 case CALL:
2166 case UNSPEC_VOLATILE:
2167 /* case TRAP_IF: This isn't clear yet. */
2168 return 1;
2169
2170 case MEM:
2171 case ASM_INPUT:
2172 case ASM_OPERANDS:
2173 if (MEM_VOLATILE_P (x))
2174 return 1;
2175
2176 default:
2177 break;
2178 }
2179
2180 /* Recursively scan the operands of this expression. */
2181
2182 {
2183 const char *fmt = GET_RTX_FORMAT (code);
2184 int i;
2185
2186 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2187 {
2188 if (fmt[i] == 'e')
2189 {
2190 if (side_effects_p (XEXP (x, i)))
2191 return 1;
2192 }
2193 else if (fmt[i] == 'E')
2194 {
2195 int j;
2196 for (j = 0; j < XVECLEN (x, i); j++)
2197 if (side_effects_p (XVECEXP (x, i, j)))
2198 return 1;
2199 }
2200 }
2201 }
2202 return 0;
2203 }
2204 \f
2205 /* Return nonzero if evaluating rtx X might cause a trap.
2206 FLAGS controls how to consider MEMs. A nonzero means the context
2207 of the access may have changed from the original, such that the
2208 address may have become invalid. */
2209
2210 int
2211 may_trap_p_1 (const_rtx x, unsigned flags)
2212 {
2213 int i;
2214 enum rtx_code code;
2215 const char *fmt;
2216
2217 /* We make no distinction currently, but this function is part of
2218 the internal target-hooks ABI so we keep the parameter as
2219 "unsigned flags". */
2220 bool code_changed = flags != 0;
2221
2222 if (x == 0)
2223 return 0;
2224 code = GET_CODE (x);
2225 switch (code)
2226 {
2227 /* Handle these cases quickly. */
2228 case CONST_INT:
2229 case CONST_DOUBLE:
2230 case CONST_FIXED:
2231 case CONST_VECTOR:
2232 case SYMBOL_REF:
2233 case LABEL_REF:
2234 case CONST:
2235 case PC:
2236 case CC0:
2237 case REG:
2238 case SCRATCH:
2239 return 0;
2240
2241 case UNSPEC:
2242 case UNSPEC_VOLATILE:
2243 return targetm.unspec_may_trap_p (x, flags);
2244
2245 case ASM_INPUT:
2246 case TRAP_IF:
2247 return 1;
2248
2249 case ASM_OPERANDS:
2250 return MEM_VOLATILE_P (x);
2251
2252 /* Memory ref can trap unless it's a static var or a stack slot. */
2253 case MEM:
2254 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2255 reference; moving it out of context such as when moving code
2256 when optimizing, might cause its address to become invalid. */
2257 code_changed
2258 || !MEM_NOTRAP_P (x))
2259 {
2260 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2261 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2262 GET_MODE (x), code_changed);
2263 }
2264
2265 return 0;
2266
2267 /* Division by a non-constant might trap. */
2268 case DIV:
2269 case MOD:
2270 case UDIV:
2271 case UMOD:
2272 if (HONOR_SNANS (GET_MODE (x)))
2273 return 1;
2274 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2275 return flag_trapping_math;
2276 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2277 return 1;
2278 break;
2279
2280 case EXPR_LIST:
2281 /* An EXPR_LIST is used to represent a function call. This
2282 certainly may trap. */
2283 return 1;
2284
2285 case GE:
2286 case GT:
2287 case LE:
2288 case LT:
2289 case LTGT:
2290 case COMPARE:
2291 /* Some floating point comparisons may trap. */
2292 if (!flag_trapping_math)
2293 break;
2294 /* ??? There is no machine independent way to check for tests that trap
2295 when COMPARE is used, though many targets do make this distinction.
2296 For instance, sparc uses CCFPE for compares which generate exceptions
2297 and CCFP for compares which do not generate exceptions. */
2298 if (HONOR_NANS (GET_MODE (x)))
2299 return 1;
2300 /* But often the compare has some CC mode, so check operand
2301 modes as well. */
2302 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2303 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2304 return 1;
2305 break;
2306
2307 case EQ:
2308 case NE:
2309 if (HONOR_SNANS (GET_MODE (x)))
2310 return 1;
2311 /* Often comparison is CC mode, so check operand modes. */
2312 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2313 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2314 return 1;
2315 break;
2316
2317 case FIX:
2318 /* Conversion of floating point might trap. */
2319 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2320 return 1;
2321 break;
2322
2323 case NEG:
2324 case ABS:
2325 case SUBREG:
2326 /* These operations don't trap even with floating point. */
2327 break;
2328
2329 default:
2330 /* Any floating arithmetic may trap. */
2331 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2332 && flag_trapping_math)
2333 return 1;
2334 }
2335
2336 fmt = GET_RTX_FORMAT (code);
2337 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2338 {
2339 if (fmt[i] == 'e')
2340 {
2341 if (may_trap_p_1 (XEXP (x, i), flags))
2342 return 1;
2343 }
2344 else if (fmt[i] == 'E')
2345 {
2346 int j;
2347 for (j = 0; j < XVECLEN (x, i); j++)
2348 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2349 return 1;
2350 }
2351 }
2352 return 0;
2353 }
2354
2355 /* Return nonzero if evaluating rtx X might cause a trap. */
2356
2357 int
2358 may_trap_p (const_rtx x)
2359 {
2360 return may_trap_p_1 (x, 0);
2361 }
2362
2363 /* Same as above, but additionally return nonzero if evaluating rtx X might
2364 cause a fault. We define a fault for the purpose of this function as a
2365 erroneous execution condition that cannot be encountered during the normal
2366 execution of a valid program; the typical example is an unaligned memory
2367 access on a strict alignment machine. The compiler guarantees that it
2368 doesn't generate code that will fault from a valid program, but this
2369 guarantee doesn't mean anything for individual instructions. Consider
2370 the following example:
2371
2372 struct S { int d; union { char *cp; int *ip; }; };
2373
2374 int foo(struct S *s)
2375 {
2376 if (s->d == 1)
2377 return *s->ip;
2378 else
2379 return *s->cp;
2380 }
2381
2382 on a strict alignment machine. In a valid program, foo will never be
2383 invoked on a structure for which d is equal to 1 and the underlying
2384 unique field of the union not aligned on a 4-byte boundary, but the
2385 expression *s->ip might cause a fault if considered individually.
2386
2387 At the RTL level, potentially problematic expressions will almost always
2388 verify may_trap_p; for example, the above dereference can be emitted as
2389 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2390 However, suppose that foo is inlined in a caller that causes s->cp to
2391 point to a local character variable and guarantees that s->d is not set
2392 to 1; foo may have been effectively translated into pseudo-RTL as:
2393
2394 if ((reg:SI) == 1)
2395 (set (reg:SI) (mem:SI (%fp - 7)))
2396 else
2397 (set (reg:QI) (mem:QI (%fp - 7)))
2398
2399 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2400 memory reference to a stack slot, but it will certainly cause a fault
2401 on a strict alignment machine. */
2402
2403 int
2404 may_trap_or_fault_p (const_rtx x)
2405 {
2406 return may_trap_p_1 (x, 1);
2407 }
2408 \f
2409 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2410 i.e., an inequality. */
2411
2412 int
2413 inequality_comparisons_p (const_rtx x)
2414 {
2415 const char *fmt;
2416 int len, i;
2417 const enum rtx_code code = GET_CODE (x);
2418
2419 switch (code)
2420 {
2421 case REG:
2422 case SCRATCH:
2423 case PC:
2424 case CC0:
2425 case CONST_INT:
2426 case CONST_DOUBLE:
2427 case CONST_FIXED:
2428 case CONST_VECTOR:
2429 case CONST:
2430 case LABEL_REF:
2431 case SYMBOL_REF:
2432 return 0;
2433
2434 case LT:
2435 case LTU:
2436 case GT:
2437 case GTU:
2438 case LE:
2439 case LEU:
2440 case GE:
2441 case GEU:
2442 return 1;
2443
2444 default:
2445 break;
2446 }
2447
2448 len = GET_RTX_LENGTH (code);
2449 fmt = GET_RTX_FORMAT (code);
2450
2451 for (i = 0; i < len; i++)
2452 {
2453 if (fmt[i] == 'e')
2454 {
2455 if (inequality_comparisons_p (XEXP (x, i)))
2456 return 1;
2457 }
2458 else if (fmt[i] == 'E')
2459 {
2460 int j;
2461 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2462 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2463 return 1;
2464 }
2465 }
2466
2467 return 0;
2468 }
2469 \f
2470 /* Replace any occurrence of FROM in X with TO. The function does
2471 not enter into CONST_DOUBLE for the replace.
2472
2473 Note that copying is not done so X must not be shared unless all copies
2474 are to be modified. */
2475
2476 rtx
2477 replace_rtx (rtx x, rtx from, rtx to)
2478 {
2479 int i, j;
2480 const char *fmt;
2481
2482 /* The following prevents loops occurrence when we change MEM in
2483 CONST_DOUBLE onto the same CONST_DOUBLE. */
2484 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2485 return x;
2486
2487 if (x == from)
2488 return to;
2489
2490 /* Allow this function to make replacements in EXPR_LISTs. */
2491 if (x == 0)
2492 return 0;
2493
2494 if (GET_CODE (x) == SUBREG)
2495 {
2496 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2497
2498 if (GET_CODE (new_rtx) == CONST_INT)
2499 {
2500 x = simplify_subreg (GET_MODE (x), new_rtx,
2501 GET_MODE (SUBREG_REG (x)),
2502 SUBREG_BYTE (x));
2503 gcc_assert (x);
2504 }
2505 else
2506 SUBREG_REG (x) = new_rtx;
2507
2508 return x;
2509 }
2510 else if (GET_CODE (x) == ZERO_EXTEND)
2511 {
2512 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2513
2514 if (GET_CODE (new_rtx) == CONST_INT)
2515 {
2516 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2517 new_rtx, GET_MODE (XEXP (x, 0)));
2518 gcc_assert (x);
2519 }
2520 else
2521 XEXP (x, 0) = new_rtx;
2522
2523 return x;
2524 }
2525
2526 fmt = GET_RTX_FORMAT (GET_CODE (x));
2527 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2528 {
2529 if (fmt[i] == 'e')
2530 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2531 else if (fmt[i] == 'E')
2532 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2533 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2534 }
2535
2536 return x;
2537 }
2538 \f
2539 /* Replace occurrences of the old label in *X with the new one.
2540 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2541
2542 int
2543 replace_label (rtx *x, void *data)
2544 {
2545 rtx l = *x;
2546 rtx old_label = ((replace_label_data *) data)->r1;
2547 rtx new_label = ((replace_label_data *) data)->r2;
2548 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2549
2550 if (l == NULL_RTX)
2551 return 0;
2552
2553 if (GET_CODE (l) == SYMBOL_REF
2554 && CONSTANT_POOL_ADDRESS_P (l))
2555 {
2556 rtx c = get_pool_constant (l);
2557 if (rtx_referenced_p (old_label, c))
2558 {
2559 rtx new_c, new_l;
2560 replace_label_data *d = (replace_label_data *) data;
2561
2562 /* Create a copy of constant C; replace the label inside
2563 but do not update LABEL_NUSES because uses in constant pool
2564 are not counted. */
2565 new_c = copy_rtx (c);
2566 d->update_label_nuses = false;
2567 for_each_rtx (&new_c, replace_label, data);
2568 d->update_label_nuses = update_label_nuses;
2569
2570 /* Add the new constant NEW_C to constant pool and replace
2571 the old reference to constant by new reference. */
2572 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2573 *x = replace_rtx (l, l, new_l);
2574 }
2575 return 0;
2576 }
2577
2578 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2579 field. This is not handled by for_each_rtx because it doesn't
2580 handle unprinted ('0') fields. */
2581 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2582 JUMP_LABEL (l) = new_label;
2583
2584 if ((GET_CODE (l) == LABEL_REF
2585 || GET_CODE (l) == INSN_LIST)
2586 && XEXP (l, 0) == old_label)
2587 {
2588 XEXP (l, 0) = new_label;
2589 if (update_label_nuses)
2590 {
2591 ++LABEL_NUSES (new_label);
2592 --LABEL_NUSES (old_label);
2593 }
2594 return 0;
2595 }
2596
2597 return 0;
2598 }
2599
2600 /* When *BODY is equal to X or X is directly referenced by *BODY
2601 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2602 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2603
2604 static int
2605 rtx_referenced_p_1 (rtx *body, void *x)
2606 {
2607 rtx y = (rtx) x;
2608
2609 if (*body == NULL_RTX)
2610 return y == NULL_RTX;
2611
2612 /* Return true if a label_ref *BODY refers to label Y. */
2613 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2614 return XEXP (*body, 0) == y;
2615
2616 /* If *BODY is a reference to pool constant traverse the constant. */
2617 if (GET_CODE (*body) == SYMBOL_REF
2618 && CONSTANT_POOL_ADDRESS_P (*body))
2619 return rtx_referenced_p (y, get_pool_constant (*body));
2620
2621 /* By default, compare the RTL expressions. */
2622 return rtx_equal_p (*body, y);
2623 }
2624
2625 /* Return true if X is referenced in BODY. */
2626
2627 int
2628 rtx_referenced_p (rtx x, rtx body)
2629 {
2630 return for_each_rtx (&body, rtx_referenced_p_1, x);
2631 }
2632
2633 /* If INSN is a tablejump return true and store the label (before jump table) to
2634 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2635
2636 bool
2637 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2638 {
2639 rtx label, table;
2640
2641 if (JUMP_P (insn)
2642 && (label = JUMP_LABEL (insn)) != NULL_RTX
2643 && (table = next_active_insn (label)) != NULL_RTX
2644 && JUMP_P (table)
2645 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2646 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2647 {
2648 if (labelp)
2649 *labelp = label;
2650 if (tablep)
2651 *tablep = table;
2652 return true;
2653 }
2654 return false;
2655 }
2656
2657 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2658 constant that is not in the constant pool and not in the condition
2659 of an IF_THEN_ELSE. */
2660
2661 static int
2662 computed_jump_p_1 (const_rtx x)
2663 {
2664 const enum rtx_code code = GET_CODE (x);
2665 int i, j;
2666 const char *fmt;
2667
2668 switch (code)
2669 {
2670 case LABEL_REF:
2671 case PC:
2672 return 0;
2673
2674 case CONST:
2675 case CONST_INT:
2676 case CONST_DOUBLE:
2677 case CONST_FIXED:
2678 case CONST_VECTOR:
2679 case SYMBOL_REF:
2680 case REG:
2681 return 1;
2682
2683 case MEM:
2684 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2685 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2686
2687 case IF_THEN_ELSE:
2688 return (computed_jump_p_1 (XEXP (x, 1))
2689 || computed_jump_p_1 (XEXP (x, 2)));
2690
2691 default:
2692 break;
2693 }
2694
2695 fmt = GET_RTX_FORMAT (code);
2696 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2697 {
2698 if (fmt[i] == 'e'
2699 && computed_jump_p_1 (XEXP (x, i)))
2700 return 1;
2701
2702 else if (fmt[i] == 'E')
2703 for (j = 0; j < XVECLEN (x, i); j++)
2704 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2705 return 1;
2706 }
2707
2708 return 0;
2709 }
2710
2711 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2712
2713 Tablejumps and casesi insns are not considered indirect jumps;
2714 we can recognize them by a (use (label_ref)). */
2715
2716 int
2717 computed_jump_p (const_rtx insn)
2718 {
2719 int i;
2720 if (JUMP_P (insn))
2721 {
2722 rtx pat = PATTERN (insn);
2723
2724 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2725 if (JUMP_LABEL (insn) != NULL)
2726 return 0;
2727
2728 if (GET_CODE (pat) == PARALLEL)
2729 {
2730 int len = XVECLEN (pat, 0);
2731 int has_use_labelref = 0;
2732
2733 for (i = len - 1; i >= 0; i--)
2734 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2735 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2736 == LABEL_REF))
2737 has_use_labelref = 1;
2738
2739 if (! has_use_labelref)
2740 for (i = len - 1; i >= 0; i--)
2741 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2742 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2743 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2744 return 1;
2745 }
2746 else if (GET_CODE (pat) == SET
2747 && SET_DEST (pat) == pc_rtx
2748 && computed_jump_p_1 (SET_SRC (pat)))
2749 return 1;
2750 }
2751 return 0;
2752 }
2753
2754 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2755 calls. Processes the subexpressions of EXP and passes them to F. */
2756 static int
2757 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2758 {
2759 int result, i, j;
2760 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2761 rtx *x;
2762
2763 for (; format[n] != '\0'; n++)
2764 {
2765 switch (format[n])
2766 {
2767 case 'e':
2768 /* Call F on X. */
2769 x = &XEXP (exp, n);
2770 result = (*f) (x, data);
2771 if (result == -1)
2772 /* Do not traverse sub-expressions. */
2773 continue;
2774 else if (result != 0)
2775 /* Stop the traversal. */
2776 return result;
2777
2778 if (*x == NULL_RTX)
2779 /* There are no sub-expressions. */
2780 continue;
2781
2782 i = non_rtx_starting_operands[GET_CODE (*x)];
2783 if (i >= 0)
2784 {
2785 result = for_each_rtx_1 (*x, i, f, data);
2786 if (result != 0)
2787 return result;
2788 }
2789 break;
2790
2791 case 'V':
2792 case 'E':
2793 if (XVEC (exp, n) == 0)
2794 continue;
2795 for (j = 0; j < XVECLEN (exp, n); ++j)
2796 {
2797 /* Call F on X. */
2798 x = &XVECEXP (exp, n, j);
2799 result = (*f) (x, data);
2800 if (result == -1)
2801 /* Do not traverse sub-expressions. */
2802 continue;
2803 else if (result != 0)
2804 /* Stop the traversal. */
2805 return result;
2806
2807 if (*x == NULL_RTX)
2808 /* There are no sub-expressions. */
2809 continue;
2810
2811 i = non_rtx_starting_operands[GET_CODE (*x)];
2812 if (i >= 0)
2813 {
2814 result = for_each_rtx_1 (*x, i, f, data);
2815 if (result != 0)
2816 return result;
2817 }
2818 }
2819 break;
2820
2821 default:
2822 /* Nothing to do. */
2823 break;
2824 }
2825 }
2826
2827 return 0;
2828 }
2829
2830 /* Traverse X via depth-first search, calling F for each
2831 sub-expression (including X itself). F is also passed the DATA.
2832 If F returns -1, do not traverse sub-expressions, but continue
2833 traversing the rest of the tree. If F ever returns any other
2834 nonzero value, stop the traversal, and return the value returned
2835 by F. Otherwise, return 0. This function does not traverse inside
2836 tree structure that contains RTX_EXPRs, or into sub-expressions
2837 whose format code is `0' since it is not known whether or not those
2838 codes are actually RTL.
2839
2840 This routine is very general, and could (should?) be used to
2841 implement many of the other routines in this file. */
2842
2843 int
2844 for_each_rtx (rtx *x, rtx_function f, void *data)
2845 {
2846 int result;
2847 int i;
2848
2849 /* Call F on X. */
2850 result = (*f) (x, data);
2851 if (result == -1)
2852 /* Do not traverse sub-expressions. */
2853 return 0;
2854 else if (result != 0)
2855 /* Stop the traversal. */
2856 return result;
2857
2858 if (*x == NULL_RTX)
2859 /* There are no sub-expressions. */
2860 return 0;
2861
2862 i = non_rtx_starting_operands[GET_CODE (*x)];
2863 if (i < 0)
2864 return 0;
2865
2866 return for_each_rtx_1 (*x, i, f, data);
2867 }
2868
2869
2870 /* Searches X for any reference to REGNO, returning the rtx of the
2871 reference found if any. Otherwise, returns NULL_RTX. */
2872
2873 rtx
2874 regno_use_in (unsigned int regno, rtx x)
2875 {
2876 const char *fmt;
2877 int i, j;
2878 rtx tem;
2879
2880 if (REG_P (x) && REGNO (x) == regno)
2881 return x;
2882
2883 fmt = GET_RTX_FORMAT (GET_CODE (x));
2884 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2885 {
2886 if (fmt[i] == 'e')
2887 {
2888 if ((tem = regno_use_in (regno, XEXP (x, i))))
2889 return tem;
2890 }
2891 else if (fmt[i] == 'E')
2892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2893 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2894 return tem;
2895 }
2896
2897 return NULL_RTX;
2898 }
2899
2900 /* Return a value indicating whether OP, an operand of a commutative
2901 operation, is preferred as the first or second operand. The higher
2902 the value, the stronger the preference for being the first operand.
2903 We use negative values to indicate a preference for the first operand
2904 and positive values for the second operand. */
2905
2906 int
2907 commutative_operand_precedence (rtx op)
2908 {
2909 enum rtx_code code = GET_CODE (op);
2910
2911 /* Constants always come the second operand. Prefer "nice" constants. */
2912 if (code == CONST_INT)
2913 return -8;
2914 if (code == CONST_DOUBLE)
2915 return -7;
2916 if (code == CONST_FIXED)
2917 return -7;
2918 op = avoid_constant_pool_reference (op);
2919 code = GET_CODE (op);
2920
2921 switch (GET_RTX_CLASS (code))
2922 {
2923 case RTX_CONST_OBJ:
2924 if (code == CONST_INT)
2925 return -6;
2926 if (code == CONST_DOUBLE)
2927 return -5;
2928 if (code == CONST_FIXED)
2929 return -5;
2930 return -4;
2931
2932 case RTX_EXTRA:
2933 /* SUBREGs of objects should come second. */
2934 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2935 return -3;
2936 return 0;
2937
2938 case RTX_OBJ:
2939 /* Complex expressions should be the first, so decrease priority
2940 of objects. Prefer pointer objects over non pointer objects. */
2941 if ((REG_P (op) && REG_POINTER (op))
2942 || (MEM_P (op) && MEM_POINTER (op)))
2943 return -1;
2944 return -2;
2945
2946 case RTX_COMM_ARITH:
2947 /* Prefer operands that are themselves commutative to be first.
2948 This helps to make things linear. In particular,
2949 (and (and (reg) (reg)) (not (reg))) is canonical. */
2950 return 4;
2951
2952 case RTX_BIN_ARITH:
2953 /* If only one operand is a binary expression, it will be the first
2954 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2955 is canonical, although it will usually be further simplified. */
2956 return 2;
2957
2958 case RTX_UNARY:
2959 /* Then prefer NEG and NOT. */
2960 if (code == NEG || code == NOT)
2961 return 1;
2962
2963 default:
2964 return 0;
2965 }
2966 }
2967
2968 /* Return 1 iff it is necessary to swap operands of commutative operation
2969 in order to canonicalize expression. */
2970
2971 bool
2972 swap_commutative_operands_p (rtx x, rtx y)
2973 {
2974 return (commutative_operand_precedence (x)
2975 < commutative_operand_precedence (y));
2976 }
2977
2978 /* Return 1 if X is an autoincrement side effect and the register is
2979 not the stack pointer. */
2980 int
2981 auto_inc_p (const_rtx x)
2982 {
2983 switch (GET_CODE (x))
2984 {
2985 case PRE_INC:
2986 case POST_INC:
2987 case PRE_DEC:
2988 case POST_DEC:
2989 case PRE_MODIFY:
2990 case POST_MODIFY:
2991 /* There are no REG_INC notes for SP. */
2992 if (XEXP (x, 0) != stack_pointer_rtx)
2993 return 1;
2994 default:
2995 break;
2996 }
2997 return 0;
2998 }
2999
3000 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3001 int
3002 loc_mentioned_in_p (rtx *loc, const_rtx in)
3003 {
3004 enum rtx_code code;
3005 const char *fmt;
3006 int i, j;
3007
3008 if (!in)
3009 return 0;
3010
3011 code = GET_CODE (in);
3012 fmt = GET_RTX_FORMAT (code);
3013 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3014 {
3015 if (fmt[i] == 'e')
3016 {
3017 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3018 return 1;
3019 }
3020 else if (fmt[i] == 'E')
3021 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3022 if (loc == &XVECEXP (in, i, j)
3023 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3024 return 1;
3025 }
3026 return 0;
3027 }
3028
3029 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3030 and SUBREG_BYTE, return the bit offset where the subreg begins
3031 (counting from the least significant bit of the operand). */
3032
3033 unsigned int
3034 subreg_lsb_1 (enum machine_mode outer_mode,
3035 enum machine_mode inner_mode,
3036 unsigned int subreg_byte)
3037 {
3038 unsigned int bitpos;
3039 unsigned int byte;
3040 unsigned int word;
3041
3042 /* A paradoxical subreg begins at bit position 0. */
3043 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3044 return 0;
3045
3046 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3047 /* If the subreg crosses a word boundary ensure that
3048 it also begins and ends on a word boundary. */
3049 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3050 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3051 && (subreg_byte % UNITS_PER_WORD
3052 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3053
3054 if (WORDS_BIG_ENDIAN)
3055 word = (GET_MODE_SIZE (inner_mode)
3056 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3057 else
3058 word = subreg_byte / UNITS_PER_WORD;
3059 bitpos = word * BITS_PER_WORD;
3060
3061 if (BYTES_BIG_ENDIAN)
3062 byte = (GET_MODE_SIZE (inner_mode)
3063 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3064 else
3065 byte = subreg_byte % UNITS_PER_WORD;
3066 bitpos += byte * BITS_PER_UNIT;
3067
3068 return bitpos;
3069 }
3070
3071 /* Given a subreg X, return the bit offset where the subreg begins
3072 (counting from the least significant bit of the reg). */
3073
3074 unsigned int
3075 subreg_lsb (const_rtx x)
3076 {
3077 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3078 SUBREG_BYTE (x));
3079 }
3080
3081 /* Fill in information about a subreg of a hard register.
3082 xregno - A regno of an inner hard subreg_reg (or what will become one).
3083 xmode - The mode of xregno.
3084 offset - The byte offset.
3085 ymode - The mode of a top level SUBREG (or what may become one).
3086 info - Pointer to structure to fill in. */
3087 void
3088 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3089 unsigned int offset, enum machine_mode ymode,
3090 struct subreg_info *info)
3091 {
3092 int nregs_xmode, nregs_ymode;
3093 int mode_multiple, nregs_multiple;
3094 int offset_adj, y_offset, y_offset_adj;
3095 int regsize_xmode, regsize_ymode;
3096 bool rknown;
3097
3098 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3099
3100 rknown = false;
3101
3102 /* If there are holes in a non-scalar mode in registers, we expect
3103 that it is made up of its units concatenated together. */
3104 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3105 {
3106 enum machine_mode xmode_unit;
3107
3108 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3109 if (GET_MODE_INNER (xmode) == VOIDmode)
3110 xmode_unit = xmode;
3111 else
3112 xmode_unit = GET_MODE_INNER (xmode);
3113 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3114 gcc_assert (nregs_xmode
3115 == (GET_MODE_NUNITS (xmode)
3116 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3117 gcc_assert (hard_regno_nregs[xregno][xmode]
3118 == (hard_regno_nregs[xregno][xmode_unit]
3119 * GET_MODE_NUNITS (xmode)));
3120
3121 /* You can only ask for a SUBREG of a value with holes in the middle
3122 if you don't cross the holes. (Such a SUBREG should be done by
3123 picking a different register class, or doing it in memory if
3124 necessary.) An example of a value with holes is XCmode on 32-bit
3125 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3126 3 for each part, but in memory it's two 128-bit parts.
3127 Padding is assumed to be at the end (not necessarily the 'high part')
3128 of each unit. */
3129 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3130 < GET_MODE_NUNITS (xmode))
3131 && (offset / GET_MODE_SIZE (xmode_unit)
3132 != ((offset + GET_MODE_SIZE (ymode) - 1)
3133 / GET_MODE_SIZE (xmode_unit))))
3134 {
3135 info->representable_p = false;
3136 rknown = true;
3137 }
3138 }
3139 else
3140 nregs_xmode = hard_regno_nregs[xregno][xmode];
3141
3142 nregs_ymode = hard_regno_nregs[xregno][ymode];
3143
3144 /* Paradoxical subregs are otherwise valid. */
3145 if (!rknown
3146 && offset == 0
3147 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3148 {
3149 info->representable_p = true;
3150 /* If this is a big endian paradoxical subreg, which uses more
3151 actual hard registers than the original register, we must
3152 return a negative offset so that we find the proper highpart
3153 of the register. */
3154 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3155 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3156 info->offset = nregs_xmode - nregs_ymode;
3157 else
3158 info->offset = 0;
3159 info->nregs = nregs_ymode;
3160 return;
3161 }
3162
3163 /* If registers store different numbers of bits in the different
3164 modes, we cannot generally form this subreg. */
3165 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3166 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3167 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3168 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3169 {
3170 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3171 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3172 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3173 {
3174 info->representable_p = false;
3175 info->nregs
3176 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3177 info->offset = offset / regsize_xmode;
3178 return;
3179 }
3180 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3181 {
3182 info->representable_p = false;
3183 info->nregs
3184 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3185 info->offset = offset / regsize_xmode;
3186 return;
3187 }
3188 }
3189
3190 /* Lowpart subregs are otherwise valid. */
3191 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3192 {
3193 info->representable_p = true;
3194 rknown = true;
3195
3196 if (offset == 0 || nregs_xmode == nregs_ymode)
3197 {
3198 info->offset = 0;
3199 info->nregs = nregs_ymode;
3200 return;
3201 }
3202 }
3203
3204 /* This should always pass, otherwise we don't know how to verify
3205 the constraint. These conditions may be relaxed but
3206 subreg_regno_offset would need to be redesigned. */
3207 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3208 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3209
3210 /* The XMODE value can be seen as a vector of NREGS_XMODE
3211 values. The subreg must represent a lowpart of given field.
3212 Compute what field it is. */
3213 offset_adj = offset;
3214 offset_adj -= subreg_lowpart_offset (ymode,
3215 mode_for_size (GET_MODE_BITSIZE (xmode)
3216 / nregs_xmode,
3217 MODE_INT, 0));
3218
3219 /* Size of ymode must not be greater than the size of xmode. */
3220 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3221 gcc_assert (mode_multiple != 0);
3222
3223 y_offset = offset / GET_MODE_SIZE (ymode);
3224 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3225 nregs_multiple = nregs_xmode / nregs_ymode;
3226
3227 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3228 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3229
3230 if (!rknown)
3231 {
3232 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3233 rknown = true;
3234 }
3235 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3236 info->nregs = nregs_ymode;
3237 }
3238
3239 /* This function returns the regno offset of a subreg expression.
3240 xregno - A regno of an inner hard subreg_reg (or what will become one).
3241 xmode - The mode of xregno.
3242 offset - The byte offset.
3243 ymode - The mode of a top level SUBREG (or what may become one).
3244 RETURN - The regno offset which would be used. */
3245 unsigned int
3246 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3247 unsigned int offset, enum machine_mode ymode)
3248 {
3249 struct subreg_info info;
3250 subreg_get_info (xregno, xmode, offset, ymode, &info);
3251 return info.offset;
3252 }
3253
3254 /* This function returns true when the offset is representable via
3255 subreg_offset in the given regno.
3256 xregno - A regno of an inner hard subreg_reg (or what will become one).
3257 xmode - The mode of xregno.
3258 offset - The byte offset.
3259 ymode - The mode of a top level SUBREG (or what may become one).
3260 RETURN - Whether the offset is representable. */
3261 bool
3262 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3263 unsigned int offset, enum machine_mode ymode)
3264 {
3265 struct subreg_info info;
3266 subreg_get_info (xregno, xmode, offset, ymode, &info);
3267 return info.representable_p;
3268 }
3269
3270 /* Return the number of a YMODE register to which
3271
3272 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3273
3274 can be simplified. Return -1 if the subreg can't be simplified.
3275
3276 XREGNO is a hard register number. */
3277
3278 int
3279 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3280 unsigned int offset, enum machine_mode ymode)
3281 {
3282 struct subreg_info info;
3283 unsigned int yregno;
3284
3285 #ifdef CANNOT_CHANGE_MODE_CLASS
3286 /* Give the backend a chance to disallow the mode change. */
3287 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3288 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3289 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3290 return -1;
3291 #endif
3292
3293 /* We shouldn't simplify stack-related registers. */
3294 if ((!reload_completed || frame_pointer_needed)
3295 && (xregno == FRAME_POINTER_REGNUM
3296 || xregno == HARD_FRAME_POINTER_REGNUM))
3297 return -1;
3298
3299 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3300 && xregno == ARG_POINTER_REGNUM)
3301 return -1;
3302
3303 if (xregno == STACK_POINTER_REGNUM)
3304 return -1;
3305
3306 /* Try to get the register offset. */
3307 subreg_get_info (xregno, xmode, offset, ymode, &info);
3308 if (!info.representable_p)
3309 return -1;
3310
3311 /* Make sure that the offsetted register value is in range. */
3312 yregno = xregno + info.offset;
3313 if (!HARD_REGISTER_NUM_P (yregno))
3314 return -1;
3315
3316 /* See whether (reg:YMODE YREGNO) is valid.
3317
3318 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3319 This is a kludge to work around how float/complex arguments are passed
3320 on 32-bit SPARC and should be fixed. */
3321 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3322 && HARD_REGNO_MODE_OK (xregno, xmode))
3323 return -1;
3324
3325 return (int) yregno;
3326 }
3327
3328 /* Return the final regno that a subreg expression refers to. */
3329 unsigned int
3330 subreg_regno (const_rtx x)
3331 {
3332 unsigned int ret;
3333 rtx subreg = SUBREG_REG (x);
3334 int regno = REGNO (subreg);
3335
3336 ret = regno + subreg_regno_offset (regno,
3337 GET_MODE (subreg),
3338 SUBREG_BYTE (x),
3339 GET_MODE (x));
3340 return ret;
3341
3342 }
3343
3344 /* Return the number of registers that a subreg expression refers
3345 to. */
3346 unsigned int
3347 subreg_nregs (const_rtx x)
3348 {
3349 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3350 }
3351
3352 /* Return the number of registers that a subreg REG with REGNO
3353 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3354 changed so that the regno can be passed in. */
3355
3356 unsigned int
3357 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3358 {
3359 struct subreg_info info;
3360 rtx subreg = SUBREG_REG (x);
3361
3362 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3363 &info);
3364 return info.nregs;
3365 }
3366
3367
3368 struct parms_set_data
3369 {
3370 int nregs;
3371 HARD_REG_SET regs;
3372 };
3373
3374 /* Helper function for noticing stores to parameter registers. */
3375 static void
3376 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3377 {
3378 struct parms_set_data *const d = (struct parms_set_data *) data;
3379 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3380 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3381 {
3382 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3383 d->nregs--;
3384 }
3385 }
3386
3387 /* Look backward for first parameter to be loaded.
3388 Note that loads of all parameters will not necessarily be
3389 found if CSE has eliminated some of them (e.g., an argument
3390 to the outer function is passed down as a parameter).
3391 Do not skip BOUNDARY. */
3392 rtx
3393 find_first_parameter_load (rtx call_insn, rtx boundary)
3394 {
3395 struct parms_set_data parm;
3396 rtx p, before, first_set;
3397
3398 /* Since different machines initialize their parameter registers
3399 in different orders, assume nothing. Collect the set of all
3400 parameter registers. */
3401 CLEAR_HARD_REG_SET (parm.regs);
3402 parm.nregs = 0;
3403 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3404 if (GET_CODE (XEXP (p, 0)) == USE
3405 && REG_P (XEXP (XEXP (p, 0), 0)))
3406 {
3407 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3408
3409 /* We only care about registers which can hold function
3410 arguments. */
3411 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3412 continue;
3413
3414 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3415 parm.nregs++;
3416 }
3417 before = call_insn;
3418 first_set = call_insn;
3419
3420 /* Search backward for the first set of a register in this set. */
3421 while (parm.nregs && before != boundary)
3422 {
3423 before = PREV_INSN (before);
3424
3425 /* It is possible that some loads got CSEed from one call to
3426 another. Stop in that case. */
3427 if (CALL_P (before))
3428 break;
3429
3430 /* Our caller needs either ensure that we will find all sets
3431 (in case code has not been optimized yet), or take care
3432 for possible labels in a way by setting boundary to preceding
3433 CODE_LABEL. */
3434 if (LABEL_P (before))
3435 {
3436 gcc_assert (before == boundary);
3437 break;
3438 }
3439
3440 if (INSN_P (before))
3441 {
3442 int nregs_old = parm.nregs;
3443 note_stores (PATTERN (before), parms_set, &parm);
3444 /* If we found something that did not set a parameter reg,
3445 we're done. Do not keep going, as that might result
3446 in hoisting an insn before the setting of a pseudo
3447 that is used by the hoisted insn. */
3448 if (nregs_old != parm.nregs)
3449 first_set = before;
3450 else
3451 break;
3452 }
3453 }
3454 return first_set;
3455 }
3456
3457 /* Return true if we should avoid inserting code between INSN and preceding
3458 call instruction. */
3459
3460 bool
3461 keep_with_call_p (const_rtx insn)
3462 {
3463 rtx set;
3464
3465 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3466 {
3467 if (REG_P (SET_DEST (set))
3468 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3469 && fixed_regs[REGNO (SET_DEST (set))]
3470 && general_operand (SET_SRC (set), VOIDmode))
3471 return true;
3472 if (REG_P (SET_SRC (set))
3473 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3474 && REG_P (SET_DEST (set))
3475 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3476 return true;
3477 /* There may be a stack pop just after the call and before the store
3478 of the return register. Search for the actual store when deciding
3479 if we can break or not. */
3480 if (SET_DEST (set) == stack_pointer_rtx)
3481 {
3482 /* This CONST_CAST is okay because next_nonnote_insn just
3483 returns its argument and we assign it to a const_rtx
3484 variable. */
3485 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3486 if (i2 && keep_with_call_p (i2))
3487 return true;
3488 }
3489 }
3490 return false;
3491 }
3492
3493 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3494 to non-complex jumps. That is, direct unconditional, conditional,
3495 and tablejumps, but not computed jumps or returns. It also does
3496 not apply to the fallthru case of a conditional jump. */
3497
3498 bool
3499 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3500 {
3501 rtx tmp = JUMP_LABEL (jump_insn);
3502
3503 if (label == tmp)
3504 return true;
3505
3506 if (tablejump_p (jump_insn, NULL, &tmp))
3507 {
3508 rtvec vec = XVEC (PATTERN (tmp),
3509 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3510 int i, veclen = GET_NUM_ELEM (vec);
3511
3512 for (i = 0; i < veclen; ++i)
3513 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3514 return true;
3515 }
3516
3517 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3518 return true;
3519
3520 return false;
3521 }
3522
3523 \f
3524 /* Return an estimate of the cost of computing rtx X.
3525 One use is in cse, to decide which expression to keep in the hash table.
3526 Another is in rtl generation, to pick the cheapest way to multiply.
3527 Other uses like the latter are expected in the future.
3528
3529 SPEED parameter specify whether costs optimized for speed or size should
3530 be returned. */
3531
3532 int
3533 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3534 {
3535 int i, j;
3536 enum rtx_code code;
3537 const char *fmt;
3538 int total;
3539
3540 if (x == 0)
3541 return 0;
3542
3543 /* Compute the default costs of certain things.
3544 Note that targetm.rtx_costs can override the defaults. */
3545
3546 code = GET_CODE (x);
3547 switch (code)
3548 {
3549 case MULT:
3550 total = COSTS_N_INSNS (5);
3551 break;
3552 case DIV:
3553 case UDIV:
3554 case MOD:
3555 case UMOD:
3556 total = COSTS_N_INSNS (7);
3557 break;
3558 case USE:
3559 /* Used in combine.c as a marker. */
3560 total = 0;
3561 break;
3562 default:
3563 total = COSTS_N_INSNS (1);
3564 }
3565
3566 switch (code)
3567 {
3568 case REG:
3569 return 0;
3570
3571 case SUBREG:
3572 total = 0;
3573 /* If we can't tie these modes, make this expensive. The larger
3574 the mode, the more expensive it is. */
3575 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3576 return COSTS_N_INSNS (2
3577 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3578 break;
3579
3580 default:
3581 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3582 return total;
3583 break;
3584 }
3585
3586 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3587 which is already in total. */
3588
3589 fmt = GET_RTX_FORMAT (code);
3590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3591 if (fmt[i] == 'e')
3592 total += rtx_cost (XEXP (x, i), code, speed);
3593 else if (fmt[i] == 'E')
3594 for (j = 0; j < XVECLEN (x, i); j++)
3595 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3596
3597 return total;
3598 }
3599 \f
3600 /* Return cost of address expression X.
3601 Expect that X is properly formed address reference.
3602
3603 SPEED parameter specify whether costs optimized for speed or size should
3604 be returned. */
3605
3606 int
3607 address_cost (rtx x, enum machine_mode mode, bool speed)
3608 {
3609 /* We may be asked for cost of various unusual addresses, such as operands
3610 of push instruction. It is not worthwhile to complicate writing
3611 of the target hook by such cases. */
3612
3613 if (!memory_address_p (mode, x))
3614 return 1000;
3615
3616 return targetm.address_cost (x, speed);
3617 }
3618
3619 /* If the target doesn't override, compute the cost as with arithmetic. */
3620
3621 int
3622 default_address_cost (rtx x, bool speed)
3623 {
3624 return rtx_cost (x, MEM, speed);
3625 }
3626 \f
3627
3628 unsigned HOST_WIDE_INT
3629 nonzero_bits (const_rtx x, enum machine_mode mode)
3630 {
3631 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3632 }
3633
3634 unsigned int
3635 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3636 {
3637 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3638 }
3639
3640 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3641 It avoids exponential behavior in nonzero_bits1 when X has
3642 identical subexpressions on the first or the second level. */
3643
3644 static unsigned HOST_WIDE_INT
3645 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3646 enum machine_mode known_mode,
3647 unsigned HOST_WIDE_INT known_ret)
3648 {
3649 if (x == known_x && mode == known_mode)
3650 return known_ret;
3651
3652 /* Try to find identical subexpressions. If found call
3653 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3654 precomputed value for the subexpression as KNOWN_RET. */
3655
3656 if (ARITHMETIC_P (x))
3657 {
3658 rtx x0 = XEXP (x, 0);
3659 rtx x1 = XEXP (x, 1);
3660
3661 /* Check the first level. */
3662 if (x0 == x1)
3663 return nonzero_bits1 (x, mode, x0, mode,
3664 cached_nonzero_bits (x0, mode, known_x,
3665 known_mode, known_ret));
3666
3667 /* Check the second level. */
3668 if (ARITHMETIC_P (x0)
3669 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3670 return nonzero_bits1 (x, mode, x1, mode,
3671 cached_nonzero_bits (x1, mode, known_x,
3672 known_mode, known_ret));
3673
3674 if (ARITHMETIC_P (x1)
3675 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3676 return nonzero_bits1 (x, mode, x0, mode,
3677 cached_nonzero_bits (x0, mode, known_x,
3678 known_mode, known_ret));
3679 }
3680
3681 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3682 }
3683
3684 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3685 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3686 is less useful. We can't allow both, because that results in exponential
3687 run time recursion. There is a nullstone testcase that triggered
3688 this. This macro avoids accidental uses of num_sign_bit_copies. */
3689 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3690
3691 /* Given an expression, X, compute which bits in X can be nonzero.
3692 We don't care about bits outside of those defined in MODE.
3693
3694 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3695 an arithmetic operation, we can do better. */
3696
3697 static unsigned HOST_WIDE_INT
3698 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3699 enum machine_mode known_mode,
3700 unsigned HOST_WIDE_INT known_ret)
3701 {
3702 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3703 unsigned HOST_WIDE_INT inner_nz;
3704 enum rtx_code code;
3705 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3706
3707 /* For floating-point and vector values, assume all bits are needed. */
3708 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3709 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3710 return nonzero;
3711
3712 /* If X is wider than MODE, use its mode instead. */
3713 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3714 {
3715 mode = GET_MODE (x);
3716 nonzero = GET_MODE_MASK (mode);
3717 mode_width = GET_MODE_BITSIZE (mode);
3718 }
3719
3720 if (mode_width > HOST_BITS_PER_WIDE_INT)
3721 /* Our only callers in this case look for single bit values. So
3722 just return the mode mask. Those tests will then be false. */
3723 return nonzero;
3724
3725 #ifndef WORD_REGISTER_OPERATIONS
3726 /* If MODE is wider than X, but both are a single word for both the host
3727 and target machines, we can compute this from which bits of the
3728 object might be nonzero in its own mode, taking into account the fact
3729 that on many CISC machines, accessing an object in a wider mode
3730 causes the high-order bits to become undefined. So they are
3731 not known to be zero. */
3732
3733 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3734 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3735 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3736 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3737 {
3738 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3739 known_x, known_mode, known_ret);
3740 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3741 return nonzero;
3742 }
3743 #endif
3744
3745 code = GET_CODE (x);
3746 switch (code)
3747 {
3748 case REG:
3749 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3750 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3751 all the bits above ptr_mode are known to be zero. */
3752 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3753 && REG_POINTER (x))
3754 nonzero &= GET_MODE_MASK (ptr_mode);
3755 #endif
3756
3757 /* Include declared information about alignment of pointers. */
3758 /* ??? We don't properly preserve REG_POINTER changes across
3759 pointer-to-integer casts, so we can't trust it except for
3760 things that we know must be pointers. See execute/960116-1.c. */
3761 if ((x == stack_pointer_rtx
3762 || x == frame_pointer_rtx
3763 || x == arg_pointer_rtx)
3764 && REGNO_POINTER_ALIGN (REGNO (x)))
3765 {
3766 unsigned HOST_WIDE_INT alignment
3767 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3768
3769 #ifdef PUSH_ROUNDING
3770 /* If PUSH_ROUNDING is defined, it is possible for the
3771 stack to be momentarily aligned only to that amount,
3772 so we pick the least alignment. */
3773 if (x == stack_pointer_rtx && PUSH_ARGS)
3774 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3775 alignment);
3776 #endif
3777
3778 nonzero &= ~(alignment - 1);
3779 }
3780
3781 {
3782 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3783 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3784 known_mode, known_ret,
3785 &nonzero_for_hook);
3786
3787 if (new_rtx)
3788 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3789 known_mode, known_ret);
3790
3791 return nonzero_for_hook;
3792 }
3793
3794 case CONST_INT:
3795 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3796 /* If X is negative in MODE, sign-extend the value. */
3797 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3798 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3799 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3800 #endif
3801
3802 return INTVAL (x);
3803
3804 case MEM:
3805 #ifdef LOAD_EXTEND_OP
3806 /* In many, if not most, RISC machines, reading a byte from memory
3807 zeros the rest of the register. Noticing that fact saves a lot
3808 of extra zero-extends. */
3809 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3810 nonzero &= GET_MODE_MASK (GET_MODE (x));
3811 #endif
3812 break;
3813
3814 case EQ: case NE:
3815 case UNEQ: case LTGT:
3816 case GT: case GTU: case UNGT:
3817 case LT: case LTU: case UNLT:
3818 case GE: case GEU: case UNGE:
3819 case LE: case LEU: case UNLE:
3820 case UNORDERED: case ORDERED:
3821 /* If this produces an integer result, we know which bits are set.
3822 Code here used to clear bits outside the mode of X, but that is
3823 now done above. */
3824 /* Mind that MODE is the mode the caller wants to look at this
3825 operation in, and not the actual operation mode. We can wind
3826 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3827 that describes the results of a vector compare. */
3828 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3829 && mode_width <= HOST_BITS_PER_WIDE_INT)
3830 nonzero = STORE_FLAG_VALUE;
3831 break;
3832
3833 case NEG:
3834 #if 0
3835 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3836 and num_sign_bit_copies. */
3837 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3838 == GET_MODE_BITSIZE (GET_MODE (x)))
3839 nonzero = 1;
3840 #endif
3841
3842 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3843 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3844 break;
3845
3846 case ABS:
3847 #if 0
3848 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3849 and num_sign_bit_copies. */
3850 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3851 == GET_MODE_BITSIZE (GET_MODE (x)))
3852 nonzero = 1;
3853 #endif
3854 break;
3855
3856 case TRUNCATE:
3857 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3858 known_x, known_mode, known_ret)
3859 & GET_MODE_MASK (mode));
3860 break;
3861
3862 case ZERO_EXTEND:
3863 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3864 known_x, known_mode, known_ret);
3865 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3866 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3867 break;
3868
3869 case SIGN_EXTEND:
3870 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3871 Otherwise, show all the bits in the outer mode but not the inner
3872 may be nonzero. */
3873 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3874 known_x, known_mode, known_ret);
3875 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3876 {
3877 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3878 if (inner_nz
3879 & (((HOST_WIDE_INT) 1
3880 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3881 inner_nz |= (GET_MODE_MASK (mode)
3882 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3883 }
3884
3885 nonzero &= inner_nz;
3886 break;
3887
3888 case AND:
3889 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3890 known_x, known_mode, known_ret)
3891 & cached_nonzero_bits (XEXP (x, 1), mode,
3892 known_x, known_mode, known_ret);
3893 break;
3894
3895 case XOR: case IOR:
3896 case UMIN: case UMAX: case SMIN: case SMAX:
3897 {
3898 unsigned HOST_WIDE_INT nonzero0 =
3899 cached_nonzero_bits (XEXP (x, 0), mode,
3900 known_x, known_mode, known_ret);
3901
3902 /* Don't call nonzero_bits for the second time if it cannot change
3903 anything. */
3904 if ((nonzero & nonzero0) != nonzero)
3905 nonzero &= nonzero0
3906 | cached_nonzero_bits (XEXP (x, 1), mode,
3907 known_x, known_mode, known_ret);
3908 }
3909 break;
3910
3911 case PLUS: case MINUS:
3912 case MULT:
3913 case DIV: case UDIV:
3914 case MOD: case UMOD:
3915 /* We can apply the rules of arithmetic to compute the number of
3916 high- and low-order zero bits of these operations. We start by
3917 computing the width (position of the highest-order nonzero bit)
3918 and the number of low-order zero bits for each value. */
3919 {
3920 unsigned HOST_WIDE_INT nz0 =
3921 cached_nonzero_bits (XEXP (x, 0), mode,
3922 known_x, known_mode, known_ret);
3923 unsigned HOST_WIDE_INT nz1 =
3924 cached_nonzero_bits (XEXP (x, 1), mode,
3925 known_x, known_mode, known_ret);
3926 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3927 int width0 = floor_log2 (nz0) + 1;
3928 int width1 = floor_log2 (nz1) + 1;
3929 int low0 = floor_log2 (nz0 & -nz0);
3930 int low1 = floor_log2 (nz1 & -nz1);
3931 HOST_WIDE_INT op0_maybe_minusp
3932 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3933 HOST_WIDE_INT op1_maybe_minusp
3934 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3935 unsigned int result_width = mode_width;
3936 int result_low = 0;
3937
3938 switch (code)
3939 {
3940 case PLUS:
3941 result_width = MAX (width0, width1) + 1;
3942 result_low = MIN (low0, low1);
3943 break;
3944 case MINUS:
3945 result_low = MIN (low0, low1);
3946 break;
3947 case MULT:
3948 result_width = width0 + width1;
3949 result_low = low0 + low1;
3950 break;
3951 case DIV:
3952 if (width1 == 0)
3953 break;
3954 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3955 result_width = width0;
3956 break;
3957 case UDIV:
3958 if (width1 == 0)
3959 break;
3960 result_width = width0;
3961 break;
3962 case MOD:
3963 if (width1 == 0)
3964 break;
3965 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3966 result_width = MIN (width0, width1);
3967 result_low = MIN (low0, low1);
3968 break;
3969 case UMOD:
3970 if (width1 == 0)
3971 break;
3972 result_width = MIN (width0, width1);
3973 result_low = MIN (low0, low1);
3974 break;
3975 default:
3976 gcc_unreachable ();
3977 }
3978
3979 if (result_width < mode_width)
3980 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3981
3982 if (result_low > 0)
3983 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3984
3985 #ifdef POINTERS_EXTEND_UNSIGNED
3986 /* If pointers extend unsigned and this is an addition or subtraction
3987 to a pointer in Pmode, all the bits above ptr_mode are known to be
3988 zero. */
3989 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3990 && (code == PLUS || code == MINUS)
3991 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3992 nonzero &= GET_MODE_MASK (ptr_mode);
3993 #endif
3994 }
3995 break;
3996
3997 case ZERO_EXTRACT:
3998 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3999 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4000 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4001 break;
4002
4003 case SUBREG:
4004 /* If this is a SUBREG formed for a promoted variable that has
4005 been zero-extended, we know that at least the high-order bits
4006 are zero, though others might be too. */
4007
4008 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4009 nonzero = GET_MODE_MASK (GET_MODE (x))
4010 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4011 known_x, known_mode, known_ret);
4012
4013 /* If the inner mode is a single word for both the host and target
4014 machines, we can compute this from which bits of the inner
4015 object might be nonzero. */
4016 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4017 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4018 <= HOST_BITS_PER_WIDE_INT))
4019 {
4020 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4021 known_x, known_mode, known_ret);
4022
4023 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4024 /* If this is a typical RISC machine, we only have to worry
4025 about the way loads are extended. */
4026 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4027 ? (((nonzero
4028 & (((unsigned HOST_WIDE_INT) 1
4029 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4030 != 0))
4031 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4032 || !MEM_P (SUBREG_REG (x)))
4033 #endif
4034 {
4035 /* On many CISC machines, accessing an object in a wider mode
4036 causes the high-order bits to become undefined. So they are
4037 not known to be zero. */
4038 if (GET_MODE_SIZE (GET_MODE (x))
4039 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4040 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4041 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4042 }
4043 }
4044 break;
4045
4046 case ASHIFTRT:
4047 case LSHIFTRT:
4048 case ASHIFT:
4049 case ROTATE:
4050 /* The nonzero bits are in two classes: any bits within MODE
4051 that aren't in GET_MODE (x) are always significant. The rest of the
4052 nonzero bits are those that are significant in the operand of
4053 the shift when shifted the appropriate number of bits. This
4054 shows that high-order bits are cleared by the right shift and
4055 low-order bits by left shifts. */
4056 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4057 && INTVAL (XEXP (x, 1)) >= 0
4058 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4059 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4060 {
4061 enum machine_mode inner_mode = GET_MODE (x);
4062 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4063 int count = INTVAL (XEXP (x, 1));
4064 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4065 unsigned HOST_WIDE_INT op_nonzero =
4066 cached_nonzero_bits (XEXP (x, 0), mode,
4067 known_x, known_mode, known_ret);
4068 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4069 unsigned HOST_WIDE_INT outer = 0;
4070
4071 if (mode_width > width)
4072 outer = (op_nonzero & nonzero & ~mode_mask);
4073
4074 if (code == LSHIFTRT)
4075 inner >>= count;
4076 else if (code == ASHIFTRT)
4077 {
4078 inner >>= count;
4079
4080 /* If the sign bit may have been nonzero before the shift, we
4081 need to mark all the places it could have been copied to
4082 by the shift as possibly nonzero. */
4083 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4084 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4085 }
4086 else if (code == ASHIFT)
4087 inner <<= count;
4088 else
4089 inner = ((inner << (count % width)
4090 | (inner >> (width - (count % width)))) & mode_mask);
4091
4092 nonzero &= (outer | inner);
4093 }
4094 break;
4095
4096 case FFS:
4097 case POPCOUNT:
4098 /* This is at most the number of bits in the mode. */
4099 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4100 break;
4101
4102 case CLZ:
4103 /* If CLZ has a known value at zero, then the nonzero bits are
4104 that value, plus the number of bits in the mode minus one. */
4105 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4106 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4107 else
4108 nonzero = -1;
4109 break;
4110
4111 case CTZ:
4112 /* If CTZ has a known value at zero, then the nonzero bits are
4113 that value, plus the number of bits in the mode minus one. */
4114 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4115 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4116 else
4117 nonzero = -1;
4118 break;
4119
4120 case PARITY:
4121 nonzero = 1;
4122 break;
4123
4124 case IF_THEN_ELSE:
4125 {
4126 unsigned HOST_WIDE_INT nonzero_true =
4127 cached_nonzero_bits (XEXP (x, 1), mode,
4128 known_x, known_mode, known_ret);
4129
4130 /* Don't call nonzero_bits for the second time if it cannot change
4131 anything. */
4132 if ((nonzero & nonzero_true) != nonzero)
4133 nonzero &= nonzero_true
4134 | cached_nonzero_bits (XEXP (x, 2), mode,
4135 known_x, known_mode, known_ret);
4136 }
4137 break;
4138
4139 default:
4140 break;
4141 }
4142
4143 return nonzero;
4144 }
4145
4146 /* See the macro definition above. */
4147 #undef cached_num_sign_bit_copies
4148
4149 \f
4150 /* The function cached_num_sign_bit_copies is a wrapper around
4151 num_sign_bit_copies1. It avoids exponential behavior in
4152 num_sign_bit_copies1 when X has identical subexpressions on the
4153 first or the second level. */
4154
4155 static unsigned int
4156 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4157 enum machine_mode known_mode,
4158 unsigned int known_ret)
4159 {
4160 if (x == known_x && mode == known_mode)
4161 return known_ret;
4162
4163 /* Try to find identical subexpressions. If found call
4164 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4165 the precomputed value for the subexpression as KNOWN_RET. */
4166
4167 if (ARITHMETIC_P (x))
4168 {
4169 rtx x0 = XEXP (x, 0);
4170 rtx x1 = XEXP (x, 1);
4171
4172 /* Check the first level. */
4173 if (x0 == x1)
4174 return
4175 num_sign_bit_copies1 (x, mode, x0, mode,
4176 cached_num_sign_bit_copies (x0, mode, known_x,
4177 known_mode,
4178 known_ret));
4179
4180 /* Check the second level. */
4181 if (ARITHMETIC_P (x0)
4182 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4183 return
4184 num_sign_bit_copies1 (x, mode, x1, mode,
4185 cached_num_sign_bit_copies (x1, mode, known_x,
4186 known_mode,
4187 known_ret));
4188
4189 if (ARITHMETIC_P (x1)
4190 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4191 return
4192 num_sign_bit_copies1 (x, mode, x0, mode,
4193 cached_num_sign_bit_copies (x0, mode, known_x,
4194 known_mode,
4195 known_ret));
4196 }
4197
4198 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4199 }
4200
4201 /* Return the number of bits at the high-order end of X that are known to
4202 be equal to the sign bit. X will be used in mode MODE; if MODE is
4203 VOIDmode, X will be used in its own mode. The returned value will always
4204 be between 1 and the number of bits in MODE. */
4205
4206 static unsigned int
4207 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4208 enum machine_mode known_mode,
4209 unsigned int known_ret)
4210 {
4211 enum rtx_code code = GET_CODE (x);
4212 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4213 int num0, num1, result;
4214 unsigned HOST_WIDE_INT nonzero;
4215
4216 /* If we weren't given a mode, use the mode of X. If the mode is still
4217 VOIDmode, we don't know anything. Likewise if one of the modes is
4218 floating-point. */
4219
4220 if (mode == VOIDmode)
4221 mode = GET_MODE (x);
4222
4223 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4224 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4225 return 1;
4226
4227 /* For a smaller object, just ignore the high bits. */
4228 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4229 {
4230 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4231 known_x, known_mode, known_ret);
4232 return MAX (1,
4233 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4234 }
4235
4236 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4237 {
4238 #ifndef WORD_REGISTER_OPERATIONS
4239 /* If this machine does not do all register operations on the entire
4240 register and MODE is wider than the mode of X, we can say nothing
4241 at all about the high-order bits. */
4242 return 1;
4243 #else
4244 /* Likewise on machines that do, if the mode of the object is smaller
4245 than a word and loads of that size don't sign extend, we can say
4246 nothing about the high order bits. */
4247 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4248 #ifdef LOAD_EXTEND_OP
4249 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4250 #endif
4251 )
4252 return 1;
4253 #endif
4254 }
4255
4256 switch (code)
4257 {
4258 case REG:
4259
4260 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4261 /* If pointers extend signed and this is a pointer in Pmode, say that
4262 all the bits above ptr_mode are known to be sign bit copies. */
4263 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4264 && REG_POINTER (x))
4265 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4266 #endif
4267
4268 {
4269 unsigned int copies_for_hook = 1, copies = 1;
4270 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4271 known_mode, known_ret,
4272 &copies_for_hook);
4273
4274 if (new_rtx)
4275 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4276 known_mode, known_ret);
4277
4278 if (copies > 1 || copies_for_hook > 1)
4279 return MAX (copies, copies_for_hook);
4280
4281 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4282 }
4283 break;
4284
4285 case MEM:
4286 #ifdef LOAD_EXTEND_OP
4287 /* Some RISC machines sign-extend all loads of smaller than a word. */
4288 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4289 return MAX (1, ((int) bitwidth
4290 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4291 #endif
4292 break;
4293
4294 case CONST_INT:
4295 /* If the constant is negative, take its 1's complement and remask.
4296 Then see how many zero bits we have. */
4297 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4298 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4299 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4300 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4301
4302 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4303
4304 case SUBREG:
4305 /* If this is a SUBREG for a promoted object that is sign-extended
4306 and we are looking at it in a wider mode, we know that at least the
4307 high-order bits are known to be sign bit copies. */
4308
4309 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4310 {
4311 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4312 known_x, known_mode, known_ret);
4313 return MAX ((int) bitwidth
4314 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4315 num0);
4316 }
4317
4318 /* For a smaller object, just ignore the high bits. */
4319 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4320 {
4321 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4322 known_x, known_mode, known_ret);
4323 return MAX (1, (num0
4324 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4325 - bitwidth)));
4326 }
4327
4328 #ifdef WORD_REGISTER_OPERATIONS
4329 #ifdef LOAD_EXTEND_OP
4330 /* For paradoxical SUBREGs on machines where all register operations
4331 affect the entire register, just look inside. Note that we are
4332 passing MODE to the recursive call, so the number of sign bit copies
4333 will remain relative to that mode, not the inner mode. */
4334
4335 /* This works only if loads sign extend. Otherwise, if we get a
4336 reload for the inner part, it may be loaded from the stack, and
4337 then we lose all sign bit copies that existed before the store
4338 to the stack. */
4339
4340 if ((GET_MODE_SIZE (GET_MODE (x))
4341 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4342 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4343 && MEM_P (SUBREG_REG (x)))
4344 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4345 known_x, known_mode, known_ret);
4346 #endif
4347 #endif
4348 break;
4349
4350 case SIGN_EXTRACT:
4351 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4352 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4353 break;
4354
4355 case SIGN_EXTEND:
4356 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4357 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4358 known_x, known_mode, known_ret));
4359
4360 case TRUNCATE:
4361 /* For a smaller object, just ignore the high bits. */
4362 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4363 known_x, known_mode, known_ret);
4364 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4365 - bitwidth)));
4366
4367 case NOT:
4368 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4369 known_x, known_mode, known_ret);
4370
4371 case ROTATE: case ROTATERT:
4372 /* If we are rotating left by a number of bits less than the number
4373 of sign bit copies, we can just subtract that amount from the
4374 number. */
4375 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4376 && INTVAL (XEXP (x, 1)) >= 0
4377 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4378 {
4379 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4380 known_x, known_mode, known_ret);
4381 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4382 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4383 }
4384 break;
4385
4386 case NEG:
4387 /* In general, this subtracts one sign bit copy. But if the value
4388 is known to be positive, the number of sign bit copies is the
4389 same as that of the input. Finally, if the input has just one bit
4390 that might be nonzero, all the bits are copies of the sign bit. */
4391 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4392 known_x, known_mode, known_ret);
4393 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4394 return num0 > 1 ? num0 - 1 : 1;
4395
4396 nonzero = nonzero_bits (XEXP (x, 0), mode);
4397 if (nonzero == 1)
4398 return bitwidth;
4399
4400 if (num0 > 1
4401 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4402 num0--;
4403
4404 return num0;
4405
4406 case IOR: case AND: case XOR:
4407 case SMIN: case SMAX: case UMIN: case UMAX:
4408 /* Logical operations will preserve the number of sign-bit copies.
4409 MIN and MAX operations always return one of the operands. */
4410 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4411 known_x, known_mode, known_ret);
4412 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4413 known_x, known_mode, known_ret);
4414
4415 /* If num1 is clearing some of the top bits then regardless of
4416 the other term, we are guaranteed to have at least that many
4417 high-order zero bits. */
4418 if (code == AND
4419 && num1 > 1
4420 && bitwidth <= HOST_BITS_PER_WIDE_INT
4421 && GET_CODE (XEXP (x, 1)) == CONST_INT
4422 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4423 return num1;
4424
4425 /* Similarly for IOR when setting high-order bits. */
4426 if (code == IOR
4427 && num1 > 1
4428 && bitwidth <= HOST_BITS_PER_WIDE_INT
4429 && GET_CODE (XEXP (x, 1)) == CONST_INT
4430 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4431 return num1;
4432
4433 return MIN (num0, num1);
4434
4435 case PLUS: case MINUS:
4436 /* For addition and subtraction, we can have a 1-bit carry. However,
4437 if we are subtracting 1 from a positive number, there will not
4438 be such a carry. Furthermore, if the positive number is known to
4439 be 0 or 1, we know the result is either -1 or 0. */
4440
4441 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4442 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4443 {
4444 nonzero = nonzero_bits (XEXP (x, 0), mode);
4445 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4446 return (nonzero == 1 || nonzero == 0 ? bitwidth
4447 : bitwidth - floor_log2 (nonzero) - 1);
4448 }
4449
4450 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4451 known_x, known_mode, known_ret);
4452 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4453 known_x, known_mode, known_ret);
4454 result = MAX (1, MIN (num0, num1) - 1);
4455
4456 #ifdef POINTERS_EXTEND_UNSIGNED
4457 /* If pointers extend signed and this is an addition or subtraction
4458 to a pointer in Pmode, all the bits above ptr_mode are known to be
4459 sign bit copies. */
4460 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4461 && (code == PLUS || code == MINUS)
4462 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4463 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4464 - GET_MODE_BITSIZE (ptr_mode) + 1),
4465 result);
4466 #endif
4467 return result;
4468
4469 case MULT:
4470 /* The number of bits of the product is the sum of the number of
4471 bits of both terms. However, unless one of the terms if known
4472 to be positive, we must allow for an additional bit since negating
4473 a negative number can remove one sign bit copy. */
4474
4475 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4476 known_x, known_mode, known_ret);
4477 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4478 known_x, known_mode, known_ret);
4479
4480 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4481 if (result > 0
4482 && (bitwidth > HOST_BITS_PER_WIDE_INT
4483 || (((nonzero_bits (XEXP (x, 0), mode)
4484 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4485 && ((nonzero_bits (XEXP (x, 1), mode)
4486 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4487 result--;
4488
4489 return MAX (1, result);
4490
4491 case UDIV:
4492 /* The result must be <= the first operand. If the first operand
4493 has the high bit set, we know nothing about the number of sign
4494 bit copies. */
4495 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4496 return 1;
4497 else if ((nonzero_bits (XEXP (x, 0), mode)
4498 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4499 return 1;
4500 else
4501 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4502 known_x, known_mode, known_ret);
4503
4504 case UMOD:
4505 /* The result must be <= the second operand. */
4506 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4507 known_x, known_mode, known_ret);
4508
4509 case DIV:
4510 /* Similar to unsigned division, except that we have to worry about
4511 the case where the divisor is negative, in which case we have
4512 to add 1. */
4513 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4514 known_x, known_mode, known_ret);
4515 if (result > 1
4516 && (bitwidth > HOST_BITS_PER_WIDE_INT
4517 || (nonzero_bits (XEXP (x, 1), mode)
4518 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4519 result--;
4520
4521 return result;
4522
4523 case MOD:
4524 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4525 known_x, known_mode, known_ret);
4526 if (result > 1
4527 && (bitwidth > HOST_BITS_PER_WIDE_INT
4528 || (nonzero_bits (XEXP (x, 1), mode)
4529 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4530 result--;
4531
4532 return result;
4533
4534 case ASHIFTRT:
4535 /* Shifts by a constant add to the number of bits equal to the
4536 sign bit. */
4537 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4538 known_x, known_mode, known_ret);
4539 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4540 && INTVAL (XEXP (x, 1)) > 0
4541 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4542 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4543
4544 return num0;
4545
4546 case ASHIFT:
4547 /* Left shifts destroy copies. */
4548 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4549 || INTVAL (XEXP (x, 1)) < 0
4550 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4551 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4552 return 1;
4553
4554 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4555 known_x, known_mode, known_ret);
4556 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4557
4558 case IF_THEN_ELSE:
4559 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4560 known_x, known_mode, known_ret);
4561 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4562 known_x, known_mode, known_ret);
4563 return MIN (num0, num1);
4564
4565 case EQ: case NE: case GE: case GT: case LE: case LT:
4566 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4567 case GEU: case GTU: case LEU: case LTU:
4568 case UNORDERED: case ORDERED:
4569 /* If the constant is negative, take its 1's complement and remask.
4570 Then see how many zero bits we have. */
4571 nonzero = STORE_FLAG_VALUE;
4572 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4573 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4574 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4575
4576 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4577
4578 default:
4579 break;
4580 }
4581
4582 /* If we haven't been able to figure it out by one of the above rules,
4583 see if some of the high-order bits are known to be zero. If so,
4584 count those bits and return one less than that amount. If we can't
4585 safely compute the mask for this mode, always return BITWIDTH. */
4586
4587 bitwidth = GET_MODE_BITSIZE (mode);
4588 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4589 return 1;
4590
4591 nonzero = nonzero_bits (x, mode);
4592 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4593 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4594 }
4595
4596 /* Calculate the rtx_cost of a single instruction. A return value of
4597 zero indicates an instruction pattern without a known cost. */
4598
4599 int
4600 insn_rtx_cost (rtx pat, bool speed)
4601 {
4602 int i, cost;
4603 rtx set;
4604
4605 /* Extract the single set rtx from the instruction pattern.
4606 We can't use single_set since we only have the pattern. */
4607 if (GET_CODE (pat) == SET)
4608 set = pat;
4609 else if (GET_CODE (pat) == PARALLEL)
4610 {
4611 set = NULL_RTX;
4612 for (i = 0; i < XVECLEN (pat, 0); i++)
4613 {
4614 rtx x = XVECEXP (pat, 0, i);
4615 if (GET_CODE (x) == SET)
4616 {
4617 if (set)
4618 return 0;
4619 set = x;
4620 }
4621 }
4622 if (!set)
4623 return 0;
4624 }
4625 else
4626 return 0;
4627
4628 cost = rtx_cost (SET_SRC (set), SET, speed);
4629 return cost > 0 ? cost : COSTS_N_INSNS (1);
4630 }
4631
4632 /* Given an insn INSN and condition COND, return the condition in a
4633 canonical form to simplify testing by callers. Specifically:
4634
4635 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4636 (2) Both operands will be machine operands; (cc0) will have been replaced.
4637 (3) If an operand is a constant, it will be the second operand.
4638 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4639 for GE, GEU, and LEU.
4640
4641 If the condition cannot be understood, or is an inequality floating-point
4642 comparison which needs to be reversed, 0 will be returned.
4643
4644 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4645
4646 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4647 insn used in locating the condition was found. If a replacement test
4648 of the condition is desired, it should be placed in front of that
4649 insn and we will be sure that the inputs are still valid.
4650
4651 If WANT_REG is nonzero, we wish the condition to be relative to that
4652 register, if possible. Therefore, do not canonicalize the condition
4653 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4654 to be a compare to a CC mode register.
4655
4656 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4657 and at INSN. */
4658
4659 rtx
4660 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4661 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4662 {
4663 enum rtx_code code;
4664 rtx prev = insn;
4665 const_rtx set;
4666 rtx tem;
4667 rtx op0, op1;
4668 int reverse_code = 0;
4669 enum machine_mode mode;
4670 basic_block bb = BLOCK_FOR_INSN (insn);
4671
4672 code = GET_CODE (cond);
4673 mode = GET_MODE (cond);
4674 op0 = XEXP (cond, 0);
4675 op1 = XEXP (cond, 1);
4676
4677 if (reverse)
4678 code = reversed_comparison_code (cond, insn);
4679 if (code == UNKNOWN)
4680 return 0;
4681
4682 if (earliest)
4683 *earliest = insn;
4684
4685 /* If we are comparing a register with zero, see if the register is set
4686 in the previous insn to a COMPARE or a comparison operation. Perform
4687 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4688 in cse.c */
4689
4690 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4691 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4692 && op1 == CONST0_RTX (GET_MODE (op0))
4693 && op0 != want_reg)
4694 {
4695 /* Set nonzero when we find something of interest. */
4696 rtx x = 0;
4697
4698 #ifdef HAVE_cc0
4699 /* If comparison with cc0, import actual comparison from compare
4700 insn. */
4701 if (op0 == cc0_rtx)
4702 {
4703 if ((prev = prev_nonnote_insn (prev)) == 0
4704 || !NONJUMP_INSN_P (prev)
4705 || (set = single_set (prev)) == 0
4706 || SET_DEST (set) != cc0_rtx)
4707 return 0;
4708
4709 op0 = SET_SRC (set);
4710 op1 = CONST0_RTX (GET_MODE (op0));
4711 if (earliest)
4712 *earliest = prev;
4713 }
4714 #endif
4715
4716 /* If this is a COMPARE, pick up the two things being compared. */
4717 if (GET_CODE (op0) == COMPARE)
4718 {
4719 op1 = XEXP (op0, 1);
4720 op0 = XEXP (op0, 0);
4721 continue;
4722 }
4723 else if (!REG_P (op0))
4724 break;
4725
4726 /* Go back to the previous insn. Stop if it is not an INSN. We also
4727 stop if it isn't a single set or if it has a REG_INC note because
4728 we don't want to bother dealing with it. */
4729
4730 if ((prev = prev_nonnote_insn (prev)) == 0
4731 || !NONJUMP_INSN_P (prev)
4732 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4733 /* In cfglayout mode, there do not have to be labels at the
4734 beginning of a block, or jumps at the end, so the previous
4735 conditions would not stop us when we reach bb boundary. */
4736 || BLOCK_FOR_INSN (prev) != bb)
4737 break;
4738
4739 set = set_of (op0, prev);
4740
4741 if (set
4742 && (GET_CODE (set) != SET
4743 || !rtx_equal_p (SET_DEST (set), op0)))
4744 break;
4745
4746 /* If this is setting OP0, get what it sets it to if it looks
4747 relevant. */
4748 if (set)
4749 {
4750 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4751 #ifdef FLOAT_STORE_FLAG_VALUE
4752 REAL_VALUE_TYPE fsfv;
4753 #endif
4754
4755 /* ??? We may not combine comparisons done in a CCmode with
4756 comparisons not done in a CCmode. This is to aid targets
4757 like Alpha that have an IEEE compliant EQ instruction, and
4758 a non-IEEE compliant BEQ instruction. The use of CCmode is
4759 actually artificial, simply to prevent the combination, but
4760 should not affect other platforms.
4761
4762 However, we must allow VOIDmode comparisons to match either
4763 CCmode or non-CCmode comparison, because some ports have
4764 modeless comparisons inside branch patterns.
4765
4766 ??? This mode check should perhaps look more like the mode check
4767 in simplify_comparison in combine. */
4768
4769 if ((GET_CODE (SET_SRC (set)) == COMPARE
4770 || (((code == NE
4771 || (code == LT
4772 && GET_MODE_CLASS (inner_mode) == MODE_INT
4773 && (GET_MODE_BITSIZE (inner_mode)
4774 <= HOST_BITS_PER_WIDE_INT)
4775 && (STORE_FLAG_VALUE
4776 & ((HOST_WIDE_INT) 1
4777 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4778 #ifdef FLOAT_STORE_FLAG_VALUE
4779 || (code == LT
4780 && SCALAR_FLOAT_MODE_P (inner_mode)
4781 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4782 REAL_VALUE_NEGATIVE (fsfv)))
4783 #endif
4784 ))
4785 && COMPARISON_P (SET_SRC (set))))
4786 && (((GET_MODE_CLASS (mode) == MODE_CC)
4787 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4788 || mode == VOIDmode || inner_mode == VOIDmode))
4789 x = SET_SRC (set);
4790 else if (((code == EQ
4791 || (code == GE
4792 && (GET_MODE_BITSIZE (inner_mode)
4793 <= HOST_BITS_PER_WIDE_INT)
4794 && GET_MODE_CLASS (inner_mode) == MODE_INT
4795 && (STORE_FLAG_VALUE
4796 & ((HOST_WIDE_INT) 1
4797 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4798 #ifdef FLOAT_STORE_FLAG_VALUE
4799 || (code == GE
4800 && SCALAR_FLOAT_MODE_P (inner_mode)
4801 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4802 REAL_VALUE_NEGATIVE (fsfv)))
4803 #endif
4804 ))
4805 && COMPARISON_P (SET_SRC (set))
4806 && (((GET_MODE_CLASS (mode) == MODE_CC)
4807 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4808 || mode == VOIDmode || inner_mode == VOIDmode))
4809
4810 {
4811 reverse_code = 1;
4812 x = SET_SRC (set);
4813 }
4814 else
4815 break;
4816 }
4817
4818 else if (reg_set_p (op0, prev))
4819 /* If this sets OP0, but not directly, we have to give up. */
4820 break;
4821
4822 if (x)
4823 {
4824 /* If the caller is expecting the condition to be valid at INSN,
4825 make sure X doesn't change before INSN. */
4826 if (valid_at_insn_p)
4827 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4828 break;
4829 if (COMPARISON_P (x))
4830 code = GET_CODE (x);
4831 if (reverse_code)
4832 {
4833 code = reversed_comparison_code (x, prev);
4834 if (code == UNKNOWN)
4835 return 0;
4836 reverse_code = 0;
4837 }
4838
4839 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4840 if (earliest)
4841 *earliest = prev;
4842 }
4843 }
4844
4845 /* If constant is first, put it last. */
4846 if (CONSTANT_P (op0))
4847 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4848
4849 /* If OP0 is the result of a comparison, we weren't able to find what
4850 was really being compared, so fail. */
4851 if (!allow_cc_mode
4852 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4853 return 0;
4854
4855 /* Canonicalize any ordered comparison with integers involving equality
4856 if we can do computations in the relevant mode and we do not
4857 overflow. */
4858
4859 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4860 && GET_CODE (op1) == CONST_INT
4861 && GET_MODE (op0) != VOIDmode
4862 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4863 {
4864 HOST_WIDE_INT const_val = INTVAL (op1);
4865 unsigned HOST_WIDE_INT uconst_val = const_val;
4866 unsigned HOST_WIDE_INT max_val
4867 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4868
4869 switch (code)
4870 {
4871 case LE:
4872 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4873 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4874 break;
4875
4876 /* When cross-compiling, const_val might be sign-extended from
4877 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4878 case GE:
4879 if ((HOST_WIDE_INT) (const_val & max_val)
4880 != (((HOST_WIDE_INT) 1
4881 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4882 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4883 break;
4884
4885 case LEU:
4886 if (uconst_val < max_val)
4887 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4888 break;
4889
4890 case GEU:
4891 if (uconst_val != 0)
4892 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4893 break;
4894
4895 default:
4896 break;
4897 }
4898 }
4899
4900 /* Never return CC0; return zero instead. */
4901 if (CC0_P (op0))
4902 return 0;
4903
4904 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4905 }
4906
4907 /* Given a jump insn JUMP, return the condition that will cause it to branch
4908 to its JUMP_LABEL. If the condition cannot be understood, or is an
4909 inequality floating-point comparison which needs to be reversed, 0 will
4910 be returned.
4911
4912 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4913 insn used in locating the condition was found. If a replacement test
4914 of the condition is desired, it should be placed in front of that
4915 insn and we will be sure that the inputs are still valid. If EARLIEST
4916 is null, the returned condition will be valid at INSN.
4917
4918 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4919 compare CC mode register.
4920
4921 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4922
4923 rtx
4924 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4925 {
4926 rtx cond;
4927 int reverse;
4928 rtx set;
4929
4930 /* If this is not a standard conditional jump, we can't parse it. */
4931 if (!JUMP_P (jump)
4932 || ! any_condjump_p (jump))
4933 return 0;
4934 set = pc_set (jump);
4935
4936 cond = XEXP (SET_SRC (set), 0);
4937
4938 /* If this branches to JUMP_LABEL when the condition is false, reverse
4939 the condition. */
4940 reverse
4941 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4942 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4943
4944 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4945 allow_cc_mode, valid_at_insn_p);
4946 }
4947
4948 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4949 TARGET_MODE_REP_EXTENDED.
4950
4951 Note that we assume that the property of
4952 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4953 narrower than mode B. I.e., if A is a mode narrower than B then in
4954 order to be able to operate on it in mode B, mode A needs to
4955 satisfy the requirements set by the representation of mode B. */
4956
4957 static void
4958 init_num_sign_bit_copies_in_rep (void)
4959 {
4960 enum machine_mode mode, in_mode;
4961
4962 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4963 in_mode = GET_MODE_WIDER_MODE (mode))
4964 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4965 mode = GET_MODE_WIDER_MODE (mode))
4966 {
4967 enum machine_mode i;
4968
4969 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4970 extends to the next widest mode. */
4971 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4972 || GET_MODE_WIDER_MODE (mode) == in_mode);
4973
4974 /* We are in in_mode. Count how many bits outside of mode
4975 have to be copies of the sign-bit. */
4976 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4977 {
4978 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4979
4980 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4981 /* We can only check sign-bit copies starting from the
4982 top-bit. In order to be able to check the bits we
4983 have already seen we pretend that subsequent bits
4984 have to be sign-bit copies too. */
4985 || num_sign_bit_copies_in_rep [in_mode][mode])
4986 num_sign_bit_copies_in_rep [in_mode][mode]
4987 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4988 }
4989 }
4990 }
4991
4992 /* Suppose that truncation from the machine mode of X to MODE is not a
4993 no-op. See if there is anything special about X so that we can
4994 assume it already contains a truncated value of MODE. */
4995
4996 bool
4997 truncated_to_mode (enum machine_mode mode, const_rtx x)
4998 {
4999 /* This register has already been used in MODE without explicit
5000 truncation. */
5001 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5002 return true;
5003
5004 /* See if we already satisfy the requirements of MODE. If yes we
5005 can just switch to MODE. */
5006 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5007 && (num_sign_bit_copies (x, GET_MODE (x))
5008 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5009 return true;
5010
5011 return false;
5012 }
5013 \f
5014 /* Initialize non_rtx_starting_operands, which is used to speed up
5015 for_each_rtx. */
5016 void
5017 init_rtlanal (void)
5018 {
5019 int i;
5020 for (i = 0; i < NUM_RTX_CODE; i++)
5021 {
5022 const char *format = GET_RTX_FORMAT (i);
5023 const char *first = strpbrk (format, "eEV");
5024 non_rtx_starting_operands[i] = first ? first - format : -1;
5025 }
5026
5027 init_num_sign_bit_copies_in_rep ();
5028 }
5029 \f
5030 /* Check whether this is a constant pool constant. */
5031 bool
5032 constant_pool_constant_p (rtx x)
5033 {
5034 x = avoid_constant_pool_reference (x);
5035 return GET_CODE (x) == CONST_DOUBLE;
5036 }