configure.ac: Add mips*-*-rtems* support.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
70
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
78
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 \f
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
86
87 int
88 rtx_unstable_p (const_rtx x)
89 {
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
93
94 switch (code)
95 {
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
107
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
120
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
124
125 /* Fall through. */
126
127 default:
128 break;
129 }
130
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
134 {
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
137 }
138 else if (fmt[i] == 'E')
139 {
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
144 }
145
146 return 0;
147 }
148
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
155
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
158 {
159 RTX_CODE code;
160 int i;
161 const char *fmt;
162
163 if (!x)
164 return 0;
165
166 code = GET_CODE (x);
167 switch (code)
168 {
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
171
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
180
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
198
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
205
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
209
210 /* Fall through. */
211
212 default:
213 break;
214 }
215
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
219 {
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
222 }
223 else if (fmt[i] == 'E')
224 {
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
229 }
230
231 return 0;
232 }
233
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
238
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
242 {
243 enum rtx_code code = GET_CODE (x);
244
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
248 {
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
258
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
261 }
262
263 switch (code)
264 {
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
269 {
270 tree decl;
271 HOST_WIDE_INT decl_size;
272
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
279
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
283
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
298
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
300 }
301
302 return 0;
303
304 case LABEL_REF:
305 return 0;
306
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
319
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
323
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
329
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
337
338 return 1;
339
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
344
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
352
353 default:
354 break;
355 }
356
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
359 }
360
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
362
363 int
364 rtx_addr_can_trap_p (const_rtx x)
365 {
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
367 }
368
369 /* Return true if X is an address that is known to not be zero. */
370
371 bool
372 nonzero_address_p (const_rtx x)
373 {
374 const enum rtx_code code = GET_CODE (x);
375
376 switch (code)
377 {
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
380
381 case LABEL_REF:
382 return true;
383
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
395
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
398
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
407
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
416
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
420
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
426
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
429
430 default:
431 break;
432 }
433
434 /* If it isn't one of the case above, might be zero. */
435 return false;
436 }
437
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
443
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
446 {
447 enum rtx_code code;
448 int i;
449 const char *fmt;
450
451 if (x == 0)
452 return 0;
453
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
457
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
461 {
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
464 }
465 else if (fmt[i] == 'E')
466 {
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
471 }
472 return 0;
473 }
474 \f
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
479
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
482 {
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
485
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
493 }
494
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
498
499 rtx
500 get_related_value (const_rtx x)
501 {
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
512 }
513 \f
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
516
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
519 {
520 tree decl;
521
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
524
525 if (offset == 0)
526 return true;
527
528 if (offset > 0)
529 {
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
533
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
537 }
538
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
545
546 return false;
547 }
548
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
551
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
554 {
555 if (GET_CODE (x) == CONST)
556 {
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
559 {
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
563 }
564 }
565 *base_out = x;
566 *offset_out = const0_rtx;
567 }
568 \f
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
571
572 int
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
574 {
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
579
580 if (x == find)
581 return 1;
582
583 code = GET_CODE (x);
584
585 switch (code)
586 {
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
597
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
603
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
608
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
613
614 default:
615 break;
616 }
617
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
620
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
622 {
623 switch (*format_ptr++)
624 {
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
628
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
633 }
634 }
635 return count;
636 }
637
638 \f
639 /* Nonzero if register REG appears somewhere within IN.
640 Also works if REG is not a register; in this case it checks
641 for a subexpression of IN that is Lisp "equal" to REG. */
642
643 int
644 reg_mentioned_p (const_rtx reg, const_rtx in)
645 {
646 const char *fmt;
647 int i;
648 enum rtx_code code;
649
650 if (in == 0)
651 return 0;
652
653 if (reg == in)
654 return 1;
655
656 if (GET_CODE (in) == LABEL_REF)
657 return reg == XEXP (in, 0);
658
659 code = GET_CODE (in);
660
661 switch (code)
662 {
663 /* Compare registers by number. */
664 case REG:
665 return REG_P (reg) && REGNO (in) == REGNO (reg);
666
667 /* These codes have no constituent expressions
668 and are unique. */
669 case SCRATCH:
670 case CC0:
671 case PC:
672 return 0;
673
674 case CONST_INT:
675 case CONST_VECTOR:
676 case CONST_DOUBLE:
677 case CONST_FIXED:
678 /* These are kept unique for a given value. */
679 return 0;
680
681 default:
682 break;
683 }
684
685 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
686 return 1;
687
688 fmt = GET_RTX_FORMAT (code);
689
690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
691 {
692 if (fmt[i] == 'E')
693 {
694 int j;
695 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
696 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
697 return 1;
698 }
699 else if (fmt[i] == 'e'
700 && reg_mentioned_p (reg, XEXP (in, i)))
701 return 1;
702 }
703 return 0;
704 }
705 \f
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707 no CODE_LABEL insn. */
708
709 int
710 no_labels_between_p (const_rtx beg, const_rtx end)
711 {
712 rtx p;
713 if (beg == end)
714 return 0;
715 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
716 if (LABEL_P (p))
717 return 0;
718 return 1;
719 }
720
721 /* Nonzero if register REG is used in an insn between
722 FROM_INSN and TO_INSN (exclusive of those two). */
723
724 int
725 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
726 {
727 rtx insn;
728
729 if (from_insn == to_insn)
730 return 0;
731
732 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
733 if (NONDEBUG_INSN_P (insn)
734 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
735 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
736 return 1;
737 return 0;
738 }
739 \f
740 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
741 is entirely replaced by a new value and the only use is as a SET_DEST,
742 we do not consider it a reference. */
743
744 int
745 reg_referenced_p (const_rtx x, const_rtx body)
746 {
747 int i;
748
749 switch (GET_CODE (body))
750 {
751 case SET:
752 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
753 return 1;
754
755 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 of a REG that occupies all of the REG, the insn references X if
757 it is mentioned in the destination. */
758 if (GET_CODE (SET_DEST (body)) != CC0
759 && GET_CODE (SET_DEST (body)) != PC
760 && !REG_P (SET_DEST (body))
761 && ! (GET_CODE (SET_DEST (body)) == SUBREG
762 && REG_P (SUBREG_REG (SET_DEST (body)))
763 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
764 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
765 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
766 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
767 && reg_overlap_mentioned_p (x, SET_DEST (body)))
768 return 1;
769 return 0;
770
771 case ASM_OPERANDS:
772 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
773 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
774 return 1;
775 return 0;
776
777 case CALL:
778 case USE:
779 case IF_THEN_ELSE:
780 return reg_overlap_mentioned_p (x, body);
781
782 case TRAP_IF:
783 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
784
785 case PREFETCH:
786 return reg_overlap_mentioned_p (x, XEXP (body, 0));
787
788 case UNSPEC:
789 case UNSPEC_VOLATILE:
790 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
791 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
792 return 1;
793 return 0;
794
795 case PARALLEL:
796 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
797 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
798 return 1;
799 return 0;
800
801 case CLOBBER:
802 if (MEM_P (XEXP (body, 0)))
803 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
804 return 1;
805 return 0;
806
807 case COND_EXEC:
808 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
809 return 1;
810 return reg_referenced_p (x, COND_EXEC_CODE (body));
811
812 default:
813 return 0;
814 }
815 }
816 \f
817 /* Nonzero if register REG is set or clobbered in an insn between
818 FROM_INSN and TO_INSN (exclusive of those two). */
819
820 int
821 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
822 {
823 const_rtx insn;
824
825 if (from_insn == to_insn)
826 return 0;
827
828 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
829 if (INSN_P (insn) && reg_set_p (reg, insn))
830 return 1;
831 return 0;
832 }
833
834 /* Internals of reg_set_between_p. */
835 int
836 reg_set_p (const_rtx reg, const_rtx insn)
837 {
838 /* We can be passed an insn or part of one. If we are passed an insn,
839 check if a side-effect of the insn clobbers REG. */
840 if (INSN_P (insn)
841 && (FIND_REG_INC_NOTE (insn, reg)
842 || (CALL_P (insn)
843 && ((REG_P (reg)
844 && REGNO (reg) < FIRST_PSEUDO_REGISTER
845 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
846 GET_MODE (reg), REGNO (reg)))
847 || MEM_P (reg)
848 || find_reg_fusage (insn, CLOBBER, reg)))))
849 return 1;
850
851 return set_of (reg, insn) != NULL_RTX;
852 }
853
854 /* Similar to reg_set_between_p, but check all registers in X. Return 0
855 only if none of them are modified between START and END. Return 1 if
856 X contains a MEM; this routine does use memory aliasing. */
857
858 int
859 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
860 {
861 const enum rtx_code code = GET_CODE (x);
862 const char *fmt;
863 int i, j;
864 rtx insn;
865
866 if (start == end)
867 return 0;
868
869 switch (code)
870 {
871 case CONST_INT:
872 case CONST_DOUBLE:
873 case CONST_FIXED:
874 case CONST_VECTOR:
875 case CONST:
876 case SYMBOL_REF:
877 case LABEL_REF:
878 return 0;
879
880 case PC:
881 case CC0:
882 return 1;
883
884 case MEM:
885 if (modified_between_p (XEXP (x, 0), start, end))
886 return 1;
887 if (MEM_READONLY_P (x))
888 return 0;
889 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
890 if (memory_modified_in_insn_p (x, insn))
891 return 1;
892 return 0;
893 break;
894
895 case REG:
896 return reg_set_between_p (x, start, end);
897
898 default:
899 break;
900 }
901
902 fmt = GET_RTX_FORMAT (code);
903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
904 {
905 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
906 return 1;
907
908 else if (fmt[i] == 'E')
909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
910 if (modified_between_p (XVECEXP (x, i, j), start, end))
911 return 1;
912 }
913
914 return 0;
915 }
916
917 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
918 of them are modified in INSN. Return 1 if X contains a MEM; this routine
919 does use memory aliasing. */
920
921 int
922 modified_in_p (const_rtx x, const_rtx insn)
923 {
924 const enum rtx_code code = GET_CODE (x);
925 const char *fmt;
926 int i, j;
927
928 switch (code)
929 {
930 case CONST_INT:
931 case CONST_DOUBLE:
932 case CONST_FIXED:
933 case CONST_VECTOR:
934 case CONST:
935 case SYMBOL_REF:
936 case LABEL_REF:
937 return 0;
938
939 case PC:
940 case CC0:
941 return 1;
942
943 case MEM:
944 if (modified_in_p (XEXP (x, 0), insn))
945 return 1;
946 if (MEM_READONLY_P (x))
947 return 0;
948 if (memory_modified_in_insn_p (x, insn))
949 return 1;
950 return 0;
951 break;
952
953 case REG:
954 return reg_set_p (x, insn);
955
956 default:
957 break;
958 }
959
960 fmt = GET_RTX_FORMAT (code);
961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
962 {
963 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
964 return 1;
965
966 else if (fmt[i] == 'E')
967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
968 if (modified_in_p (XVECEXP (x, i, j), insn))
969 return 1;
970 }
971
972 return 0;
973 }
974 \f
975 /* Helper function for set_of. */
976 struct set_of_data
977 {
978 const_rtx found;
979 const_rtx pat;
980 };
981
982 static void
983 set_of_1 (rtx x, const_rtx pat, void *data1)
984 {
985 struct set_of_data *const data = (struct set_of_data *) (data1);
986 if (rtx_equal_p (x, data->pat)
987 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
988 data->found = pat;
989 }
990
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992 (either directly or via STRICT_LOW_PART and similar modifiers). */
993 const_rtx
994 set_of (const_rtx pat, const_rtx insn)
995 {
996 struct set_of_data data;
997 data.found = NULL_RTX;
998 data.pat = pat;
999 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1000 return data.found;
1001 }
1002 \f
1003 /* Given an INSN, return a SET expression if this insn has only a single SET.
1004 It may also have CLOBBERs, USEs, or SET whose output
1005 will not be used, which we ignore. */
1006
1007 rtx
1008 single_set_2 (const_rtx insn, const_rtx pat)
1009 {
1010 rtx set = NULL;
1011 int set_verified = 1;
1012 int i;
1013
1014 if (GET_CODE (pat) == PARALLEL)
1015 {
1016 for (i = 0; i < XVECLEN (pat, 0); i++)
1017 {
1018 rtx sub = XVECEXP (pat, 0, i);
1019 switch (GET_CODE (sub))
1020 {
1021 case USE:
1022 case CLOBBER:
1023 break;
1024
1025 case SET:
1026 /* We can consider insns having multiple sets, where all
1027 but one are dead as single set insns. In common case
1028 only single set is present in the pattern so we want
1029 to avoid checking for REG_UNUSED notes unless necessary.
1030
1031 When we reach set first time, we just expect this is
1032 the single set we are looking for and only when more
1033 sets are found in the insn, we check them. */
1034 if (!set_verified)
1035 {
1036 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1037 && !side_effects_p (set))
1038 set = NULL;
1039 else
1040 set_verified = 1;
1041 }
1042 if (!set)
1043 set = sub, set_verified = 0;
1044 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1045 || side_effects_p (sub))
1046 return NULL_RTX;
1047 break;
1048
1049 default:
1050 return NULL_RTX;
1051 }
1052 }
1053 }
1054 return set;
1055 }
1056
1057 /* Given an INSN, return nonzero if it has more than one SET, else return
1058 zero. */
1059
1060 int
1061 multiple_sets (const_rtx insn)
1062 {
1063 int found;
1064 int i;
1065
1066 /* INSN must be an insn. */
1067 if (! INSN_P (insn))
1068 return 0;
1069
1070 /* Only a PARALLEL can have multiple SETs. */
1071 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1072 {
1073 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1074 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1075 {
1076 /* If we have already found a SET, then return now. */
1077 if (found)
1078 return 1;
1079 else
1080 found = 1;
1081 }
1082 }
1083
1084 /* Either zero or one SET. */
1085 return 0;
1086 }
1087 \f
1088 /* Return nonzero if the destination of SET equals the source
1089 and there are no side effects. */
1090
1091 int
1092 set_noop_p (const_rtx set)
1093 {
1094 rtx src = SET_SRC (set);
1095 rtx dst = SET_DEST (set);
1096
1097 if (dst == pc_rtx && src == pc_rtx)
1098 return 1;
1099
1100 if (MEM_P (dst) && MEM_P (src))
1101 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1102
1103 if (GET_CODE (dst) == ZERO_EXTRACT)
1104 return rtx_equal_p (XEXP (dst, 0), src)
1105 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1106 && !side_effects_p (src);
1107
1108 if (GET_CODE (dst) == STRICT_LOW_PART)
1109 dst = XEXP (dst, 0);
1110
1111 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1112 {
1113 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1114 return 0;
1115 src = SUBREG_REG (src);
1116 dst = SUBREG_REG (dst);
1117 }
1118
1119 return (REG_P (src) && REG_P (dst)
1120 && REGNO (src) == REGNO (dst));
1121 }
1122 \f
1123 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1124 value to itself. */
1125
1126 int
1127 noop_move_p (const_rtx insn)
1128 {
1129 rtx pat = PATTERN (insn);
1130
1131 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1132 return 1;
1133
1134 /* Insns carrying these notes are useful later on. */
1135 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1136 return 0;
1137
1138 if (GET_CODE (pat) == SET && set_noop_p (pat))
1139 return 1;
1140
1141 if (GET_CODE (pat) == PARALLEL)
1142 {
1143 int i;
1144 /* If nothing but SETs of registers to themselves,
1145 this insn can also be deleted. */
1146 for (i = 0; i < XVECLEN (pat, 0); i++)
1147 {
1148 rtx tem = XVECEXP (pat, 0, i);
1149
1150 if (GET_CODE (tem) == USE
1151 || GET_CODE (tem) == CLOBBER)
1152 continue;
1153
1154 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1155 return 0;
1156 }
1157
1158 return 1;
1159 }
1160 return 0;
1161 }
1162 \f
1163
1164 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1165 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1166 If the object was modified, if we hit a partial assignment to X, or hit a
1167 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1168 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1169 be the src. */
1170
1171 rtx
1172 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1173 {
1174 rtx p;
1175
1176 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1177 p = PREV_INSN (p))
1178 if (INSN_P (p))
1179 {
1180 rtx set = single_set (p);
1181 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1182
1183 if (set && rtx_equal_p (x, SET_DEST (set)))
1184 {
1185 rtx src = SET_SRC (set);
1186
1187 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1188 src = XEXP (note, 0);
1189
1190 if ((valid_to == NULL_RTX
1191 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1192 /* Reject hard registers because we don't usually want
1193 to use them; we'd rather use a pseudo. */
1194 && (! (REG_P (src)
1195 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1196 {
1197 *pinsn = p;
1198 return src;
1199 }
1200 }
1201
1202 /* If set in non-simple way, we don't have a value. */
1203 if (reg_set_p (x, p))
1204 break;
1205 }
1206
1207 return x;
1208 }
1209 \f
1210 /* Return nonzero if register in range [REGNO, ENDREGNO)
1211 appears either explicitly or implicitly in X
1212 other than being stored into.
1213
1214 References contained within the substructure at LOC do not count.
1215 LOC may be zero, meaning don't ignore anything. */
1216
1217 int
1218 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1219 rtx *loc)
1220 {
1221 int i;
1222 unsigned int x_regno;
1223 RTX_CODE code;
1224 const char *fmt;
1225
1226 repeat:
1227 /* The contents of a REG_NONNEG note is always zero, so we must come here
1228 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1229 if (x == 0)
1230 return 0;
1231
1232 code = GET_CODE (x);
1233
1234 switch (code)
1235 {
1236 case REG:
1237 x_regno = REGNO (x);
1238
1239 /* If we modifying the stack, frame, or argument pointer, it will
1240 clobber a virtual register. In fact, we could be more precise,
1241 but it isn't worth it. */
1242 if ((x_regno == STACK_POINTER_REGNUM
1243 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1244 || x_regno == ARG_POINTER_REGNUM
1245 #endif
1246 || x_regno == FRAME_POINTER_REGNUM)
1247 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1248 return 1;
1249
1250 return endregno > x_regno && regno < END_REGNO (x);
1251
1252 case SUBREG:
1253 /* If this is a SUBREG of a hard reg, we can see exactly which
1254 registers are being modified. Otherwise, handle normally. */
1255 if (REG_P (SUBREG_REG (x))
1256 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1257 {
1258 unsigned int inner_regno = subreg_regno (x);
1259 unsigned int inner_endregno
1260 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1261 ? subreg_nregs (x) : 1);
1262
1263 return endregno > inner_regno && regno < inner_endregno;
1264 }
1265 break;
1266
1267 case CLOBBER:
1268 case SET:
1269 if (&SET_DEST (x) != loc
1270 /* Note setting a SUBREG counts as referring to the REG it is in for
1271 a pseudo but not for hard registers since we can
1272 treat each word individually. */
1273 && ((GET_CODE (SET_DEST (x)) == SUBREG
1274 && loc != &SUBREG_REG (SET_DEST (x))
1275 && REG_P (SUBREG_REG (SET_DEST (x)))
1276 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1277 && refers_to_regno_p (regno, endregno,
1278 SUBREG_REG (SET_DEST (x)), loc))
1279 || (!REG_P (SET_DEST (x))
1280 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1281 return 1;
1282
1283 if (code == CLOBBER || loc == &SET_SRC (x))
1284 return 0;
1285 x = SET_SRC (x);
1286 goto repeat;
1287
1288 default:
1289 break;
1290 }
1291
1292 /* X does not match, so try its subexpressions. */
1293
1294 fmt = GET_RTX_FORMAT (code);
1295 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1296 {
1297 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1298 {
1299 if (i == 0)
1300 {
1301 x = XEXP (x, 0);
1302 goto repeat;
1303 }
1304 else
1305 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1306 return 1;
1307 }
1308 else if (fmt[i] == 'E')
1309 {
1310 int j;
1311 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1312 if (loc != &XVECEXP (x, i, j)
1313 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1314 return 1;
1315 }
1316 }
1317 return 0;
1318 }
1319
1320 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1321 we check if any register number in X conflicts with the relevant register
1322 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1323 contains a MEM (we don't bother checking for memory addresses that can't
1324 conflict because we expect this to be a rare case. */
1325
1326 int
1327 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1328 {
1329 unsigned int regno, endregno;
1330
1331 /* If either argument is a constant, then modifying X can not
1332 affect IN. Here we look at IN, we can profitably combine
1333 CONSTANT_P (x) with the switch statement below. */
1334 if (CONSTANT_P (in))
1335 return 0;
1336
1337 recurse:
1338 switch (GET_CODE (x))
1339 {
1340 case STRICT_LOW_PART:
1341 case ZERO_EXTRACT:
1342 case SIGN_EXTRACT:
1343 /* Overly conservative. */
1344 x = XEXP (x, 0);
1345 goto recurse;
1346
1347 case SUBREG:
1348 regno = REGNO (SUBREG_REG (x));
1349 if (regno < FIRST_PSEUDO_REGISTER)
1350 regno = subreg_regno (x);
1351 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1352 ? subreg_nregs (x) : 1);
1353 goto do_reg;
1354
1355 case REG:
1356 regno = REGNO (x);
1357 endregno = END_REGNO (x);
1358 do_reg:
1359 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1360
1361 case MEM:
1362 {
1363 const char *fmt;
1364 int i;
1365
1366 if (MEM_P (in))
1367 return 1;
1368
1369 fmt = GET_RTX_FORMAT (GET_CODE (in));
1370 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1371 if (fmt[i] == 'e')
1372 {
1373 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1374 return 1;
1375 }
1376 else if (fmt[i] == 'E')
1377 {
1378 int j;
1379 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1380 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1381 return 1;
1382 }
1383
1384 return 0;
1385 }
1386
1387 case SCRATCH:
1388 case PC:
1389 case CC0:
1390 return reg_mentioned_p (x, in);
1391
1392 case PARALLEL:
1393 {
1394 int i;
1395
1396 /* If any register in here refers to it we return true. */
1397 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1398 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1399 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1400 return 1;
1401 return 0;
1402 }
1403
1404 default:
1405 gcc_assert (CONSTANT_P (x));
1406 return 0;
1407 }
1408 }
1409 \f
1410 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1411 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1412 ignored by note_stores, but passed to FUN.
1413
1414 FUN receives three arguments:
1415 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1416 2. the SET or CLOBBER rtx that does the store,
1417 3. the pointer DATA provided to note_stores.
1418
1419 If the item being stored in or clobbered is a SUBREG of a hard register,
1420 the SUBREG will be passed. */
1421
1422 void
1423 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1424 {
1425 int i;
1426
1427 if (GET_CODE (x) == COND_EXEC)
1428 x = COND_EXEC_CODE (x);
1429
1430 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1431 {
1432 rtx dest = SET_DEST (x);
1433
1434 while ((GET_CODE (dest) == SUBREG
1435 && (!REG_P (SUBREG_REG (dest))
1436 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1437 || GET_CODE (dest) == ZERO_EXTRACT
1438 || GET_CODE (dest) == STRICT_LOW_PART)
1439 dest = XEXP (dest, 0);
1440
1441 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1442 each of whose first operand is a register. */
1443 if (GET_CODE (dest) == PARALLEL)
1444 {
1445 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1446 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1447 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1448 }
1449 else
1450 (*fun) (dest, x, data);
1451 }
1452
1453 else if (GET_CODE (x) == PARALLEL)
1454 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1455 note_stores (XVECEXP (x, 0, i), fun, data);
1456 }
1457 \f
1458 /* Like notes_stores, but call FUN for each expression that is being
1459 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1460 FUN for each expression, not any interior subexpressions. FUN receives a
1461 pointer to the expression and the DATA passed to this function.
1462
1463 Note that this is not quite the same test as that done in reg_referenced_p
1464 since that considers something as being referenced if it is being
1465 partially set, while we do not. */
1466
1467 void
1468 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1469 {
1470 rtx body = *pbody;
1471 int i;
1472
1473 switch (GET_CODE (body))
1474 {
1475 case COND_EXEC:
1476 (*fun) (&COND_EXEC_TEST (body), data);
1477 note_uses (&COND_EXEC_CODE (body), fun, data);
1478 return;
1479
1480 case PARALLEL:
1481 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1482 note_uses (&XVECEXP (body, 0, i), fun, data);
1483 return;
1484
1485 case SEQUENCE:
1486 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1487 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1488 return;
1489
1490 case USE:
1491 (*fun) (&XEXP (body, 0), data);
1492 return;
1493
1494 case ASM_OPERANDS:
1495 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1496 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1497 return;
1498
1499 case TRAP_IF:
1500 (*fun) (&TRAP_CONDITION (body), data);
1501 return;
1502
1503 case PREFETCH:
1504 (*fun) (&XEXP (body, 0), data);
1505 return;
1506
1507 case UNSPEC:
1508 case UNSPEC_VOLATILE:
1509 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1510 (*fun) (&XVECEXP (body, 0, i), data);
1511 return;
1512
1513 case CLOBBER:
1514 if (MEM_P (XEXP (body, 0)))
1515 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1516 return;
1517
1518 case SET:
1519 {
1520 rtx dest = SET_DEST (body);
1521
1522 /* For sets we replace everything in source plus registers in memory
1523 expression in store and operands of a ZERO_EXTRACT. */
1524 (*fun) (&SET_SRC (body), data);
1525
1526 if (GET_CODE (dest) == ZERO_EXTRACT)
1527 {
1528 (*fun) (&XEXP (dest, 1), data);
1529 (*fun) (&XEXP (dest, 2), data);
1530 }
1531
1532 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1533 dest = XEXP (dest, 0);
1534
1535 if (MEM_P (dest))
1536 (*fun) (&XEXP (dest, 0), data);
1537 }
1538 return;
1539
1540 default:
1541 /* All the other possibilities never store. */
1542 (*fun) (pbody, data);
1543 return;
1544 }
1545 }
1546 \f
1547 /* Return nonzero if X's old contents don't survive after INSN.
1548 This will be true if X is (cc0) or if X is a register and
1549 X dies in INSN or because INSN entirely sets X.
1550
1551 "Entirely set" means set directly and not through a SUBREG, or
1552 ZERO_EXTRACT, so no trace of the old contents remains.
1553 Likewise, REG_INC does not count.
1554
1555 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1556 but for this use that makes no difference, since regs don't overlap
1557 during their lifetimes. Therefore, this function may be used
1558 at any time after deaths have been computed.
1559
1560 If REG is a hard reg that occupies multiple machine registers, this
1561 function will only return 1 if each of those registers will be replaced
1562 by INSN. */
1563
1564 int
1565 dead_or_set_p (const_rtx insn, const_rtx x)
1566 {
1567 unsigned int regno, end_regno;
1568 unsigned int i;
1569
1570 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1571 if (GET_CODE (x) == CC0)
1572 return 1;
1573
1574 gcc_assert (REG_P (x));
1575
1576 regno = REGNO (x);
1577 end_regno = END_REGNO (x);
1578 for (i = regno; i < end_regno; i++)
1579 if (! dead_or_set_regno_p (insn, i))
1580 return 0;
1581
1582 return 1;
1583 }
1584
1585 /* Return TRUE iff DEST is a register or subreg of a register and
1586 doesn't change the number of words of the inner register, and any
1587 part of the register is TEST_REGNO. */
1588
1589 static bool
1590 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1591 {
1592 unsigned int regno, endregno;
1593
1594 if (GET_CODE (dest) == SUBREG
1595 && (((GET_MODE_SIZE (GET_MODE (dest))
1596 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1597 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1598 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1599 dest = SUBREG_REG (dest);
1600
1601 if (!REG_P (dest))
1602 return false;
1603
1604 regno = REGNO (dest);
1605 endregno = END_REGNO (dest);
1606 return (test_regno >= regno && test_regno < endregno);
1607 }
1608
1609 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1610 any member matches the covers_regno_no_parallel_p criteria. */
1611
1612 static bool
1613 covers_regno_p (const_rtx dest, unsigned int test_regno)
1614 {
1615 if (GET_CODE (dest) == PARALLEL)
1616 {
1617 /* Some targets place small structures in registers for return
1618 values of functions, and those registers are wrapped in
1619 PARALLELs that we may see as the destination of a SET. */
1620 int i;
1621
1622 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1623 {
1624 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1625 if (inner != NULL_RTX
1626 && covers_regno_no_parallel_p (inner, test_regno))
1627 return true;
1628 }
1629
1630 return false;
1631 }
1632 else
1633 return covers_regno_no_parallel_p (dest, test_regno);
1634 }
1635
1636 /* Utility function for dead_or_set_p to check an individual register. */
1637
1638 int
1639 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1640 {
1641 const_rtx pattern;
1642
1643 /* See if there is a death note for something that includes TEST_REGNO. */
1644 if (find_regno_note (insn, REG_DEAD, test_regno))
1645 return 1;
1646
1647 if (CALL_P (insn)
1648 && find_regno_fusage (insn, CLOBBER, test_regno))
1649 return 1;
1650
1651 pattern = PATTERN (insn);
1652
1653 if (GET_CODE (pattern) == COND_EXEC)
1654 pattern = COND_EXEC_CODE (pattern);
1655
1656 if (GET_CODE (pattern) == SET)
1657 return covers_regno_p (SET_DEST (pattern), test_regno);
1658 else if (GET_CODE (pattern) == PARALLEL)
1659 {
1660 int i;
1661
1662 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1663 {
1664 rtx body = XVECEXP (pattern, 0, i);
1665
1666 if (GET_CODE (body) == COND_EXEC)
1667 body = COND_EXEC_CODE (body);
1668
1669 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1670 && covers_regno_p (SET_DEST (body), test_regno))
1671 return 1;
1672 }
1673 }
1674
1675 return 0;
1676 }
1677
1678 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1679 If DATUM is nonzero, look for one whose datum is DATUM. */
1680
1681 rtx
1682 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1683 {
1684 rtx link;
1685
1686 gcc_checking_assert (insn);
1687
1688 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1689 if (! INSN_P (insn))
1690 return 0;
1691 if (datum == 0)
1692 {
1693 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1694 if (REG_NOTE_KIND (link) == kind)
1695 return link;
1696 return 0;
1697 }
1698
1699 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1700 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1701 return link;
1702 return 0;
1703 }
1704
1705 /* Return the reg-note of kind KIND in insn INSN which applies to register
1706 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1707 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1708 it might be the case that the note overlaps REGNO. */
1709
1710 rtx
1711 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1712 {
1713 rtx link;
1714
1715 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1716 if (! INSN_P (insn))
1717 return 0;
1718
1719 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1720 if (REG_NOTE_KIND (link) == kind
1721 /* Verify that it is a register, so that scratch and MEM won't cause a
1722 problem here. */
1723 && REG_P (XEXP (link, 0))
1724 && REGNO (XEXP (link, 0)) <= regno
1725 && END_REGNO (XEXP (link, 0)) > regno)
1726 return link;
1727 return 0;
1728 }
1729
1730 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1731 has such a note. */
1732
1733 rtx
1734 find_reg_equal_equiv_note (const_rtx insn)
1735 {
1736 rtx link;
1737
1738 if (!INSN_P (insn))
1739 return 0;
1740
1741 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1742 if (REG_NOTE_KIND (link) == REG_EQUAL
1743 || REG_NOTE_KIND (link) == REG_EQUIV)
1744 {
1745 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1746 insns that have multiple sets. Checking single_set to
1747 make sure of this is not the proper check, as explained
1748 in the comment in set_unique_reg_note.
1749
1750 This should be changed into an assert. */
1751 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1752 return 0;
1753 return link;
1754 }
1755 return NULL;
1756 }
1757
1758 /* Check whether INSN is a single_set whose source is known to be
1759 equivalent to a constant. Return that constant if so, otherwise
1760 return null. */
1761
1762 rtx
1763 find_constant_src (const_rtx insn)
1764 {
1765 rtx note, set, x;
1766
1767 set = single_set (insn);
1768 if (set)
1769 {
1770 x = avoid_constant_pool_reference (SET_SRC (set));
1771 if (CONSTANT_P (x))
1772 return x;
1773 }
1774
1775 note = find_reg_equal_equiv_note (insn);
1776 if (note && CONSTANT_P (XEXP (note, 0)))
1777 return XEXP (note, 0);
1778
1779 return NULL_RTX;
1780 }
1781
1782 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1783 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1784
1785 int
1786 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1787 {
1788 /* If it's not a CALL_INSN, it can't possibly have a
1789 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1790 if (!CALL_P (insn))
1791 return 0;
1792
1793 gcc_assert (datum);
1794
1795 if (!REG_P (datum))
1796 {
1797 rtx link;
1798
1799 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1800 link;
1801 link = XEXP (link, 1))
1802 if (GET_CODE (XEXP (link, 0)) == code
1803 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1804 return 1;
1805 }
1806 else
1807 {
1808 unsigned int regno = REGNO (datum);
1809
1810 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1811 to pseudo registers, so don't bother checking. */
1812
1813 if (regno < FIRST_PSEUDO_REGISTER)
1814 {
1815 unsigned int end_regno = END_HARD_REGNO (datum);
1816 unsigned int i;
1817
1818 for (i = regno; i < end_regno; i++)
1819 if (find_regno_fusage (insn, code, i))
1820 return 1;
1821 }
1822 }
1823
1824 return 0;
1825 }
1826
1827 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1828 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1829
1830 int
1831 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1832 {
1833 rtx link;
1834
1835 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1836 to pseudo registers, so don't bother checking. */
1837
1838 if (regno >= FIRST_PSEUDO_REGISTER
1839 || !CALL_P (insn) )
1840 return 0;
1841
1842 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1843 {
1844 rtx op, reg;
1845
1846 if (GET_CODE (op = XEXP (link, 0)) == code
1847 && REG_P (reg = XEXP (op, 0))
1848 && REGNO (reg) <= regno
1849 && END_HARD_REGNO (reg) > regno)
1850 return 1;
1851 }
1852
1853 return 0;
1854 }
1855
1856 \f
1857 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1858 stored as the pointer to the next register note. */
1859
1860 rtx
1861 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1862 {
1863 rtx note;
1864
1865 switch (kind)
1866 {
1867 case REG_CC_SETTER:
1868 case REG_CC_USER:
1869 case REG_LABEL_TARGET:
1870 case REG_LABEL_OPERAND:
1871 /* These types of register notes use an INSN_LIST rather than an
1872 EXPR_LIST, so that copying is done right and dumps look
1873 better. */
1874 note = alloc_INSN_LIST (datum, list);
1875 PUT_REG_NOTE_KIND (note, kind);
1876 break;
1877
1878 default:
1879 note = alloc_EXPR_LIST (kind, datum, list);
1880 break;
1881 }
1882
1883 return note;
1884 }
1885
1886 /* Add register note with kind KIND and datum DATUM to INSN. */
1887
1888 void
1889 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1890 {
1891 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1892 }
1893
1894 /* Remove register note NOTE from the REG_NOTES of INSN. */
1895
1896 void
1897 remove_note (rtx insn, const_rtx note)
1898 {
1899 rtx link;
1900
1901 if (note == NULL_RTX)
1902 return;
1903
1904 if (REG_NOTES (insn) == note)
1905 REG_NOTES (insn) = XEXP (note, 1);
1906 else
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (XEXP (link, 1) == note)
1909 {
1910 XEXP (link, 1) = XEXP (note, 1);
1911 break;
1912 }
1913
1914 switch (REG_NOTE_KIND (note))
1915 {
1916 case REG_EQUAL:
1917 case REG_EQUIV:
1918 df_notes_rescan (insn);
1919 break;
1920 default:
1921 break;
1922 }
1923 }
1924
1925 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1926
1927 void
1928 remove_reg_equal_equiv_notes (rtx insn)
1929 {
1930 rtx *loc;
1931
1932 loc = &REG_NOTES (insn);
1933 while (*loc)
1934 {
1935 enum reg_note kind = REG_NOTE_KIND (*loc);
1936 if (kind == REG_EQUAL || kind == REG_EQUIV)
1937 *loc = XEXP (*loc, 1);
1938 else
1939 loc = &XEXP (*loc, 1);
1940 }
1941 }
1942
1943 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1944
1945 void
1946 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1947 {
1948 df_ref eq_use;
1949
1950 if (!df)
1951 return;
1952
1953 /* This loop is a little tricky. We cannot just go down the chain because
1954 it is being modified by some actions in the loop. So we just iterate
1955 over the head. We plan to drain the list anyway. */
1956 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
1957 {
1958 rtx insn = DF_REF_INSN (eq_use);
1959 rtx note = find_reg_equal_equiv_note (insn);
1960
1961 /* This assert is generally triggered when someone deletes a REG_EQUAL
1962 or REG_EQUIV note by hacking the list manually rather than calling
1963 remove_note. */
1964 gcc_assert (note);
1965
1966 remove_note (insn, note);
1967 }
1968 }
1969
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 return 1 if it is found. A simple equality test is used to determine if
1972 NODE matches. */
1973
1974 int
1975 in_expr_list_p (const_rtx listp, const_rtx node)
1976 {
1977 const_rtx x;
1978
1979 for (x = listp; x; x = XEXP (x, 1))
1980 if (node == XEXP (x, 0))
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1987 remove that entry from the list if it is found.
1988
1989 A simple equality test is used to determine if NODE matches. */
1990
1991 void
1992 remove_node_from_expr_list (const_rtx node, rtx *listp)
1993 {
1994 rtx temp = *listp;
1995 rtx prev = NULL_RTX;
1996
1997 while (temp)
1998 {
1999 if (node == XEXP (temp, 0))
2000 {
2001 /* Splice the node out of the list. */
2002 if (prev)
2003 XEXP (prev, 1) = XEXP (temp, 1);
2004 else
2005 *listp = XEXP (temp, 1);
2006
2007 return;
2008 }
2009
2010 prev = temp;
2011 temp = XEXP (temp, 1);
2012 }
2013 }
2014 \f
2015 /* Nonzero if X contains any volatile instructions. These are instructions
2016 which may cause unpredictable machine state instructions, and thus no
2017 instructions should be moved or combined across them. This includes
2018 only volatile asms and UNSPEC_VOLATILE instructions. */
2019
2020 int
2021 volatile_insn_p (const_rtx x)
2022 {
2023 const RTX_CODE code = GET_CODE (x);
2024 switch (code)
2025 {
2026 case LABEL_REF:
2027 case SYMBOL_REF:
2028 case CONST_INT:
2029 case CONST:
2030 case CONST_DOUBLE:
2031 case CONST_FIXED:
2032 case CONST_VECTOR:
2033 case CC0:
2034 case PC:
2035 case REG:
2036 case SCRATCH:
2037 case CLOBBER:
2038 case ADDR_VEC:
2039 case ADDR_DIFF_VEC:
2040 case CALL:
2041 case MEM:
2042 return 0;
2043
2044 case UNSPEC_VOLATILE:
2045 /* case TRAP_IF: This isn't clear yet. */
2046 return 1;
2047
2048 case ASM_INPUT:
2049 case ASM_OPERANDS:
2050 if (MEM_VOLATILE_P (x))
2051 return 1;
2052
2053 default:
2054 break;
2055 }
2056
2057 /* Recursively scan the operands of this expression. */
2058
2059 {
2060 const char *const fmt = GET_RTX_FORMAT (code);
2061 int i;
2062
2063 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2064 {
2065 if (fmt[i] == 'e')
2066 {
2067 if (volatile_insn_p (XEXP (x, i)))
2068 return 1;
2069 }
2070 else if (fmt[i] == 'E')
2071 {
2072 int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 if (volatile_insn_p (XVECEXP (x, i, j)))
2075 return 1;
2076 }
2077 }
2078 }
2079 return 0;
2080 }
2081
2082 /* Nonzero if X contains any volatile memory references
2083 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2084
2085 int
2086 volatile_refs_p (const_rtx x)
2087 {
2088 const RTX_CODE code = GET_CODE (x);
2089 switch (code)
2090 {
2091 case LABEL_REF:
2092 case SYMBOL_REF:
2093 case CONST_INT:
2094 case CONST:
2095 case CONST_DOUBLE:
2096 case CONST_FIXED:
2097 case CONST_VECTOR:
2098 case CC0:
2099 case PC:
2100 case REG:
2101 case SCRATCH:
2102 case CLOBBER:
2103 case ADDR_VEC:
2104 case ADDR_DIFF_VEC:
2105 return 0;
2106
2107 case UNSPEC_VOLATILE:
2108 return 1;
2109
2110 case MEM:
2111 case ASM_INPUT:
2112 case ASM_OPERANDS:
2113 if (MEM_VOLATILE_P (x))
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 /* Recursively scan the operands of this expression. */
2121
2122 {
2123 const char *const fmt = GET_RTX_FORMAT (code);
2124 int i;
2125
2126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2127 {
2128 if (fmt[i] == 'e')
2129 {
2130 if (volatile_refs_p (XEXP (x, i)))
2131 return 1;
2132 }
2133 else if (fmt[i] == 'E')
2134 {
2135 int j;
2136 for (j = 0; j < XVECLEN (x, i); j++)
2137 if (volatile_refs_p (XVECEXP (x, i, j)))
2138 return 1;
2139 }
2140 }
2141 }
2142 return 0;
2143 }
2144
2145 /* Similar to above, except that it also rejects register pre- and post-
2146 incrementing. */
2147
2148 int
2149 side_effects_p (const_rtx x)
2150 {
2151 const RTX_CODE code = GET_CODE (x);
2152 switch (code)
2153 {
2154 case LABEL_REF:
2155 case SYMBOL_REF:
2156 case CONST_INT:
2157 case CONST:
2158 case CONST_DOUBLE:
2159 case CONST_FIXED:
2160 case CONST_VECTOR:
2161 case CC0:
2162 case PC:
2163 case REG:
2164 case SCRATCH:
2165 case ADDR_VEC:
2166 case ADDR_DIFF_VEC:
2167 case VAR_LOCATION:
2168 return 0;
2169
2170 case CLOBBER:
2171 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2172 when some combination can't be done. If we see one, don't think
2173 that we can simplify the expression. */
2174 return (GET_MODE (x) != VOIDmode);
2175
2176 case PRE_INC:
2177 case PRE_DEC:
2178 case POST_INC:
2179 case POST_DEC:
2180 case PRE_MODIFY:
2181 case POST_MODIFY:
2182 case CALL:
2183 case UNSPEC_VOLATILE:
2184 /* case TRAP_IF: This isn't clear yet. */
2185 return 1;
2186
2187 case MEM:
2188 case ASM_INPUT:
2189 case ASM_OPERANDS:
2190 if (MEM_VOLATILE_P (x))
2191 return 1;
2192
2193 default:
2194 break;
2195 }
2196
2197 /* Recursively scan the operands of this expression. */
2198
2199 {
2200 const char *fmt = GET_RTX_FORMAT (code);
2201 int i;
2202
2203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2204 {
2205 if (fmt[i] == 'e')
2206 {
2207 if (side_effects_p (XEXP (x, i)))
2208 return 1;
2209 }
2210 else if (fmt[i] == 'E')
2211 {
2212 int j;
2213 for (j = 0; j < XVECLEN (x, i); j++)
2214 if (side_effects_p (XVECEXP (x, i, j)))
2215 return 1;
2216 }
2217 }
2218 }
2219 return 0;
2220 }
2221 \f
2222 /* Return nonzero if evaluating rtx X might cause a trap.
2223 FLAGS controls how to consider MEMs. A nonzero means the context
2224 of the access may have changed from the original, such that the
2225 address may have become invalid. */
2226
2227 int
2228 may_trap_p_1 (const_rtx x, unsigned flags)
2229 {
2230 int i;
2231 enum rtx_code code;
2232 const char *fmt;
2233
2234 /* We make no distinction currently, but this function is part of
2235 the internal target-hooks ABI so we keep the parameter as
2236 "unsigned flags". */
2237 bool code_changed = flags != 0;
2238
2239 if (x == 0)
2240 return 0;
2241 code = GET_CODE (x);
2242 switch (code)
2243 {
2244 /* Handle these cases quickly. */
2245 case CONST_INT:
2246 case CONST_DOUBLE:
2247 case CONST_FIXED:
2248 case CONST_VECTOR:
2249 case SYMBOL_REF:
2250 case LABEL_REF:
2251 case CONST:
2252 case PC:
2253 case CC0:
2254 case REG:
2255 case SCRATCH:
2256 return 0;
2257
2258 case UNSPEC:
2259 case UNSPEC_VOLATILE:
2260 return targetm.unspec_may_trap_p (x, flags);
2261
2262 case ASM_INPUT:
2263 case TRAP_IF:
2264 return 1;
2265
2266 case ASM_OPERANDS:
2267 return MEM_VOLATILE_P (x);
2268
2269 /* Memory ref can trap unless it's a static var or a stack slot. */
2270 case MEM:
2271 /* Recognize specific pattern of stack checking probes. */
2272 if (flag_stack_check
2273 && MEM_VOLATILE_P (x)
2274 && XEXP (x, 0) == stack_pointer_rtx)
2275 return 1;
2276 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2277 reference; moving it out of context such as when moving code
2278 when optimizing, might cause its address to become invalid. */
2279 code_changed
2280 || !MEM_NOTRAP_P (x))
2281 {
2282 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2283 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2284 GET_MODE (x), code_changed);
2285 }
2286
2287 return 0;
2288
2289 /* Division by a non-constant might trap. */
2290 case DIV:
2291 case MOD:
2292 case UDIV:
2293 case UMOD:
2294 if (HONOR_SNANS (GET_MODE (x)))
2295 return 1;
2296 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2297 return flag_trapping_math;
2298 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2299 return 1;
2300 break;
2301
2302 case EXPR_LIST:
2303 /* An EXPR_LIST is used to represent a function call. This
2304 certainly may trap. */
2305 return 1;
2306
2307 case GE:
2308 case GT:
2309 case LE:
2310 case LT:
2311 case LTGT:
2312 case COMPARE:
2313 /* Some floating point comparisons may trap. */
2314 if (!flag_trapping_math)
2315 break;
2316 /* ??? There is no machine independent way to check for tests that trap
2317 when COMPARE is used, though many targets do make this distinction.
2318 For instance, sparc uses CCFPE for compares which generate exceptions
2319 and CCFP for compares which do not generate exceptions. */
2320 if (HONOR_NANS (GET_MODE (x)))
2321 return 1;
2322 /* But often the compare has some CC mode, so check operand
2323 modes as well. */
2324 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2325 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2326 return 1;
2327 break;
2328
2329 case EQ:
2330 case NE:
2331 if (HONOR_SNANS (GET_MODE (x)))
2332 return 1;
2333 /* Often comparison is CC mode, so check operand modes. */
2334 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2335 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2336 return 1;
2337 break;
2338
2339 case FIX:
2340 /* Conversion of floating point might trap. */
2341 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2342 return 1;
2343 break;
2344
2345 case NEG:
2346 case ABS:
2347 case SUBREG:
2348 /* These operations don't trap even with floating point. */
2349 break;
2350
2351 default:
2352 /* Any floating arithmetic may trap. */
2353 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2354 && flag_trapping_math)
2355 return 1;
2356 }
2357
2358 fmt = GET_RTX_FORMAT (code);
2359 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2360 {
2361 if (fmt[i] == 'e')
2362 {
2363 if (may_trap_p_1 (XEXP (x, i), flags))
2364 return 1;
2365 }
2366 else if (fmt[i] == 'E')
2367 {
2368 int j;
2369 for (j = 0; j < XVECLEN (x, i); j++)
2370 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2371 return 1;
2372 }
2373 }
2374 return 0;
2375 }
2376
2377 /* Return nonzero if evaluating rtx X might cause a trap. */
2378
2379 int
2380 may_trap_p (const_rtx x)
2381 {
2382 return may_trap_p_1 (x, 0);
2383 }
2384
2385 /* Same as above, but additionally return nonzero if evaluating rtx X might
2386 cause a fault. We define a fault for the purpose of this function as a
2387 erroneous execution condition that cannot be encountered during the normal
2388 execution of a valid program; the typical example is an unaligned memory
2389 access on a strict alignment machine. The compiler guarantees that it
2390 doesn't generate code that will fault from a valid program, but this
2391 guarantee doesn't mean anything for individual instructions. Consider
2392 the following example:
2393
2394 struct S { int d; union { char *cp; int *ip; }; };
2395
2396 int foo(struct S *s)
2397 {
2398 if (s->d == 1)
2399 return *s->ip;
2400 else
2401 return *s->cp;
2402 }
2403
2404 on a strict alignment machine. In a valid program, foo will never be
2405 invoked on a structure for which d is equal to 1 and the underlying
2406 unique field of the union not aligned on a 4-byte boundary, but the
2407 expression *s->ip might cause a fault if considered individually.
2408
2409 At the RTL level, potentially problematic expressions will almost always
2410 verify may_trap_p; for example, the above dereference can be emitted as
2411 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2412 However, suppose that foo is inlined in a caller that causes s->cp to
2413 point to a local character variable and guarantees that s->d is not set
2414 to 1; foo may have been effectively translated into pseudo-RTL as:
2415
2416 if ((reg:SI) == 1)
2417 (set (reg:SI) (mem:SI (%fp - 7)))
2418 else
2419 (set (reg:QI) (mem:QI (%fp - 7)))
2420
2421 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2422 memory reference to a stack slot, but it will certainly cause a fault
2423 on a strict alignment machine. */
2424
2425 int
2426 may_trap_or_fault_p (const_rtx x)
2427 {
2428 return may_trap_p_1 (x, 1);
2429 }
2430 \f
2431 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2432 i.e., an inequality. */
2433
2434 int
2435 inequality_comparisons_p (const_rtx x)
2436 {
2437 const char *fmt;
2438 int len, i;
2439 const enum rtx_code code = GET_CODE (x);
2440
2441 switch (code)
2442 {
2443 case REG:
2444 case SCRATCH:
2445 case PC:
2446 case CC0:
2447 case CONST_INT:
2448 case CONST_DOUBLE:
2449 case CONST_FIXED:
2450 case CONST_VECTOR:
2451 case CONST:
2452 case LABEL_REF:
2453 case SYMBOL_REF:
2454 return 0;
2455
2456 case LT:
2457 case LTU:
2458 case GT:
2459 case GTU:
2460 case LE:
2461 case LEU:
2462 case GE:
2463 case GEU:
2464 return 1;
2465
2466 default:
2467 break;
2468 }
2469
2470 len = GET_RTX_LENGTH (code);
2471 fmt = GET_RTX_FORMAT (code);
2472
2473 for (i = 0; i < len; i++)
2474 {
2475 if (fmt[i] == 'e')
2476 {
2477 if (inequality_comparisons_p (XEXP (x, i)))
2478 return 1;
2479 }
2480 else if (fmt[i] == 'E')
2481 {
2482 int j;
2483 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2484 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2485 return 1;
2486 }
2487 }
2488
2489 return 0;
2490 }
2491 \f
2492 /* Replace any occurrence of FROM in X with TO. The function does
2493 not enter into CONST_DOUBLE for the replace.
2494
2495 Note that copying is not done so X must not be shared unless all copies
2496 are to be modified. */
2497
2498 rtx
2499 replace_rtx (rtx x, rtx from, rtx to)
2500 {
2501 int i, j;
2502 const char *fmt;
2503
2504 /* The following prevents loops occurrence when we change MEM in
2505 CONST_DOUBLE onto the same CONST_DOUBLE. */
2506 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2507 return x;
2508
2509 if (x == from)
2510 return to;
2511
2512 /* Allow this function to make replacements in EXPR_LISTs. */
2513 if (x == 0)
2514 return 0;
2515
2516 if (GET_CODE (x) == SUBREG)
2517 {
2518 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2519
2520 if (CONST_INT_P (new_rtx))
2521 {
2522 x = simplify_subreg (GET_MODE (x), new_rtx,
2523 GET_MODE (SUBREG_REG (x)),
2524 SUBREG_BYTE (x));
2525 gcc_assert (x);
2526 }
2527 else
2528 SUBREG_REG (x) = new_rtx;
2529
2530 return x;
2531 }
2532 else if (GET_CODE (x) == ZERO_EXTEND)
2533 {
2534 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2535
2536 if (CONST_INT_P (new_rtx))
2537 {
2538 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2539 new_rtx, GET_MODE (XEXP (x, 0)));
2540 gcc_assert (x);
2541 }
2542 else
2543 XEXP (x, 0) = new_rtx;
2544
2545 return x;
2546 }
2547
2548 fmt = GET_RTX_FORMAT (GET_CODE (x));
2549 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2550 {
2551 if (fmt[i] == 'e')
2552 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2553 else if (fmt[i] == 'E')
2554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2555 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2556 }
2557
2558 return x;
2559 }
2560 \f
2561 /* Replace occurrences of the old label in *X with the new one.
2562 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2563
2564 int
2565 replace_label (rtx *x, void *data)
2566 {
2567 rtx l = *x;
2568 rtx old_label = ((replace_label_data *) data)->r1;
2569 rtx new_label = ((replace_label_data *) data)->r2;
2570 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2571
2572 if (l == NULL_RTX)
2573 return 0;
2574
2575 if (GET_CODE (l) == SYMBOL_REF
2576 && CONSTANT_POOL_ADDRESS_P (l))
2577 {
2578 rtx c = get_pool_constant (l);
2579 if (rtx_referenced_p (old_label, c))
2580 {
2581 rtx new_c, new_l;
2582 replace_label_data *d = (replace_label_data *) data;
2583
2584 /* Create a copy of constant C; replace the label inside
2585 but do not update LABEL_NUSES because uses in constant pool
2586 are not counted. */
2587 new_c = copy_rtx (c);
2588 d->update_label_nuses = false;
2589 for_each_rtx (&new_c, replace_label, data);
2590 d->update_label_nuses = update_label_nuses;
2591
2592 /* Add the new constant NEW_C to constant pool and replace
2593 the old reference to constant by new reference. */
2594 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2595 *x = replace_rtx (l, l, new_l);
2596 }
2597 return 0;
2598 }
2599
2600 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2601 field. This is not handled by for_each_rtx because it doesn't
2602 handle unprinted ('0') fields. */
2603 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2604 JUMP_LABEL (l) = new_label;
2605
2606 if ((GET_CODE (l) == LABEL_REF
2607 || GET_CODE (l) == INSN_LIST)
2608 && XEXP (l, 0) == old_label)
2609 {
2610 XEXP (l, 0) = new_label;
2611 if (update_label_nuses)
2612 {
2613 ++LABEL_NUSES (new_label);
2614 --LABEL_NUSES (old_label);
2615 }
2616 return 0;
2617 }
2618
2619 return 0;
2620 }
2621
2622 /* When *BODY is equal to X or X is directly referenced by *BODY
2623 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2624 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2625
2626 static int
2627 rtx_referenced_p_1 (rtx *body, void *x)
2628 {
2629 rtx y = (rtx) x;
2630
2631 if (*body == NULL_RTX)
2632 return y == NULL_RTX;
2633
2634 /* Return true if a label_ref *BODY refers to label Y. */
2635 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2636 return XEXP (*body, 0) == y;
2637
2638 /* If *BODY is a reference to pool constant traverse the constant. */
2639 if (GET_CODE (*body) == SYMBOL_REF
2640 && CONSTANT_POOL_ADDRESS_P (*body))
2641 return rtx_referenced_p (y, get_pool_constant (*body));
2642
2643 /* By default, compare the RTL expressions. */
2644 return rtx_equal_p (*body, y);
2645 }
2646
2647 /* Return true if X is referenced in BODY. */
2648
2649 int
2650 rtx_referenced_p (rtx x, rtx body)
2651 {
2652 return for_each_rtx (&body, rtx_referenced_p_1, x);
2653 }
2654
2655 /* If INSN is a tablejump return true and store the label (before jump table) to
2656 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2657
2658 bool
2659 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2660 {
2661 rtx label, table;
2662
2663 if (JUMP_P (insn)
2664 && (label = JUMP_LABEL (insn)) != NULL_RTX
2665 && (table = next_active_insn (label)) != NULL_RTX
2666 && JUMP_TABLE_DATA_P (table))
2667 {
2668 if (labelp)
2669 *labelp = label;
2670 if (tablep)
2671 *tablep = table;
2672 return true;
2673 }
2674 return false;
2675 }
2676
2677 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2678 constant that is not in the constant pool and not in the condition
2679 of an IF_THEN_ELSE. */
2680
2681 static int
2682 computed_jump_p_1 (const_rtx x)
2683 {
2684 const enum rtx_code code = GET_CODE (x);
2685 int i, j;
2686 const char *fmt;
2687
2688 switch (code)
2689 {
2690 case LABEL_REF:
2691 case PC:
2692 return 0;
2693
2694 case CONST:
2695 case CONST_INT:
2696 case CONST_DOUBLE:
2697 case CONST_FIXED:
2698 case CONST_VECTOR:
2699 case SYMBOL_REF:
2700 case REG:
2701 return 1;
2702
2703 case MEM:
2704 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2705 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2706
2707 case IF_THEN_ELSE:
2708 return (computed_jump_p_1 (XEXP (x, 1))
2709 || computed_jump_p_1 (XEXP (x, 2)));
2710
2711 default:
2712 break;
2713 }
2714
2715 fmt = GET_RTX_FORMAT (code);
2716 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2717 {
2718 if (fmt[i] == 'e'
2719 && computed_jump_p_1 (XEXP (x, i)))
2720 return 1;
2721
2722 else if (fmt[i] == 'E')
2723 for (j = 0; j < XVECLEN (x, i); j++)
2724 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2725 return 1;
2726 }
2727
2728 return 0;
2729 }
2730
2731 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2732
2733 Tablejumps and casesi insns are not considered indirect jumps;
2734 we can recognize them by a (use (label_ref)). */
2735
2736 int
2737 computed_jump_p (const_rtx insn)
2738 {
2739 int i;
2740 if (JUMP_P (insn))
2741 {
2742 rtx pat = PATTERN (insn);
2743
2744 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2745 if (JUMP_LABEL (insn) != NULL)
2746 return 0;
2747
2748 if (GET_CODE (pat) == PARALLEL)
2749 {
2750 int len = XVECLEN (pat, 0);
2751 int has_use_labelref = 0;
2752
2753 for (i = len - 1; i >= 0; i--)
2754 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2755 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2756 == LABEL_REF))
2757 has_use_labelref = 1;
2758
2759 if (! has_use_labelref)
2760 for (i = len - 1; i >= 0; i--)
2761 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2762 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2763 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2764 return 1;
2765 }
2766 else if (GET_CODE (pat) == SET
2767 && SET_DEST (pat) == pc_rtx
2768 && computed_jump_p_1 (SET_SRC (pat)))
2769 return 1;
2770 }
2771 return 0;
2772 }
2773
2774 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2775 calls. Processes the subexpressions of EXP and passes them to F. */
2776 static int
2777 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2778 {
2779 int result, i, j;
2780 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2781 rtx *x;
2782
2783 for (; format[n] != '\0'; n++)
2784 {
2785 switch (format[n])
2786 {
2787 case 'e':
2788 /* Call F on X. */
2789 x = &XEXP (exp, n);
2790 result = (*f) (x, data);
2791 if (result == -1)
2792 /* Do not traverse sub-expressions. */
2793 continue;
2794 else if (result != 0)
2795 /* Stop the traversal. */
2796 return result;
2797
2798 if (*x == NULL_RTX)
2799 /* There are no sub-expressions. */
2800 continue;
2801
2802 i = non_rtx_starting_operands[GET_CODE (*x)];
2803 if (i >= 0)
2804 {
2805 result = for_each_rtx_1 (*x, i, f, data);
2806 if (result != 0)
2807 return result;
2808 }
2809 break;
2810
2811 case 'V':
2812 case 'E':
2813 if (XVEC (exp, n) == 0)
2814 continue;
2815 for (j = 0; j < XVECLEN (exp, n); ++j)
2816 {
2817 /* Call F on X. */
2818 x = &XVECEXP (exp, n, j);
2819 result = (*f) (x, data);
2820 if (result == -1)
2821 /* Do not traverse sub-expressions. */
2822 continue;
2823 else if (result != 0)
2824 /* Stop the traversal. */
2825 return result;
2826
2827 if (*x == NULL_RTX)
2828 /* There are no sub-expressions. */
2829 continue;
2830
2831 i = non_rtx_starting_operands[GET_CODE (*x)];
2832 if (i >= 0)
2833 {
2834 result = for_each_rtx_1 (*x, i, f, data);
2835 if (result != 0)
2836 return result;
2837 }
2838 }
2839 break;
2840
2841 default:
2842 /* Nothing to do. */
2843 break;
2844 }
2845 }
2846
2847 return 0;
2848 }
2849
2850 /* Traverse X via depth-first search, calling F for each
2851 sub-expression (including X itself). F is also passed the DATA.
2852 If F returns -1, do not traverse sub-expressions, but continue
2853 traversing the rest of the tree. If F ever returns any other
2854 nonzero value, stop the traversal, and return the value returned
2855 by F. Otherwise, return 0. This function does not traverse inside
2856 tree structure that contains RTX_EXPRs, or into sub-expressions
2857 whose format code is `0' since it is not known whether or not those
2858 codes are actually RTL.
2859
2860 This routine is very general, and could (should?) be used to
2861 implement many of the other routines in this file. */
2862
2863 int
2864 for_each_rtx (rtx *x, rtx_function f, void *data)
2865 {
2866 int result;
2867 int i;
2868
2869 /* Call F on X. */
2870 result = (*f) (x, data);
2871 if (result == -1)
2872 /* Do not traverse sub-expressions. */
2873 return 0;
2874 else if (result != 0)
2875 /* Stop the traversal. */
2876 return result;
2877
2878 if (*x == NULL_RTX)
2879 /* There are no sub-expressions. */
2880 return 0;
2881
2882 i = non_rtx_starting_operands[GET_CODE (*x)];
2883 if (i < 0)
2884 return 0;
2885
2886 return for_each_rtx_1 (*x, i, f, data);
2887 }
2888
2889 \f
2890
2891 /* Data structure that holds the internal state communicated between
2892 for_each_inc_dec, for_each_inc_dec_find_mem and
2893 for_each_inc_dec_find_inc_dec. */
2894
2895 struct for_each_inc_dec_ops {
2896 /* The function to be called for each autoinc operation found. */
2897 for_each_inc_dec_fn fn;
2898 /* The opaque argument to be passed to it. */
2899 void *arg;
2900 /* The MEM we're visiting, if any. */
2901 rtx mem;
2902 };
2903
2904 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2905
2906 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2907 operands of the equivalent add insn and pass the result to the
2908 operator specified by *D. */
2909
2910 static int
2911 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2912 {
2913 rtx x = *r;
2914 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2915
2916 switch (GET_CODE (x))
2917 {
2918 case PRE_INC:
2919 case POST_INC:
2920 {
2921 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2922 rtx r1 = XEXP (x, 0);
2923 rtx c = gen_int_mode (size, GET_MODE (r1));
2924 return data->fn (data->mem, x, r1, r1, c, data->arg);
2925 }
2926
2927 case PRE_DEC:
2928 case POST_DEC:
2929 {
2930 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2931 rtx r1 = XEXP (x, 0);
2932 rtx c = gen_int_mode (-size, GET_MODE (r1));
2933 return data->fn (data->mem, x, r1, r1, c, data->arg);
2934 }
2935
2936 case PRE_MODIFY:
2937 case POST_MODIFY:
2938 {
2939 rtx r1 = XEXP (x, 0);
2940 rtx add = XEXP (x, 1);
2941 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2942 }
2943
2944 case MEM:
2945 {
2946 rtx save = data->mem;
2947 int ret = for_each_inc_dec_find_mem (r, d);
2948 data->mem = save;
2949 return ret;
2950 }
2951
2952 default:
2953 return 0;
2954 }
2955 }
2956
2957 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
2958 address, extract the operands of the equivalent add insn and pass
2959 the result to the operator specified by *D. */
2960
2961 static int
2962 for_each_inc_dec_find_mem (rtx *r, void *d)
2963 {
2964 rtx x = *r;
2965 if (x != NULL_RTX && MEM_P (x))
2966 {
2967 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
2968 int result;
2969
2970 data->mem = x;
2971
2972 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
2973 data);
2974 if (result)
2975 return result;
2976
2977 return -1;
2978 }
2979 return 0;
2980 }
2981
2982 /* Traverse *X looking for MEMs, and for autoinc operations within
2983 them. For each such autoinc operation found, call FN, passing it
2984 the innermost enclosing MEM, the operation itself, the RTX modified
2985 by the operation, two RTXs (the second may be NULL) that, once
2986 added, represent the value to be held by the modified RTX
2987 afterwards, and ARG. FN is to return -1 to skip looking for other
2988 autoinc operations within the visited operation, 0 to continue the
2989 traversal, or any other value to have it returned to the caller of
2990 for_each_inc_dec. */
2991
2992 int
2993 for_each_inc_dec (rtx *x,
2994 for_each_inc_dec_fn fn,
2995 void *arg)
2996 {
2997 struct for_each_inc_dec_ops data;
2998
2999 data.fn = fn;
3000 data.arg = arg;
3001 data.mem = NULL;
3002
3003 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3004 }
3005
3006 \f
3007 /* Searches X for any reference to REGNO, returning the rtx of the
3008 reference found if any. Otherwise, returns NULL_RTX. */
3009
3010 rtx
3011 regno_use_in (unsigned int regno, rtx x)
3012 {
3013 const char *fmt;
3014 int i, j;
3015 rtx tem;
3016
3017 if (REG_P (x) && REGNO (x) == regno)
3018 return x;
3019
3020 fmt = GET_RTX_FORMAT (GET_CODE (x));
3021 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3022 {
3023 if (fmt[i] == 'e')
3024 {
3025 if ((tem = regno_use_in (regno, XEXP (x, i))))
3026 return tem;
3027 }
3028 else if (fmt[i] == 'E')
3029 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3030 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3031 return tem;
3032 }
3033
3034 return NULL_RTX;
3035 }
3036
3037 /* Return a value indicating whether OP, an operand of a commutative
3038 operation, is preferred as the first or second operand. The higher
3039 the value, the stronger the preference for being the first operand.
3040 We use negative values to indicate a preference for the first operand
3041 and positive values for the second operand. */
3042
3043 int
3044 commutative_operand_precedence (rtx op)
3045 {
3046 enum rtx_code code = GET_CODE (op);
3047
3048 /* Constants always come the second operand. Prefer "nice" constants. */
3049 if (code == CONST_INT)
3050 return -8;
3051 if (code == CONST_DOUBLE)
3052 return -7;
3053 if (code == CONST_FIXED)
3054 return -7;
3055 op = avoid_constant_pool_reference (op);
3056 code = GET_CODE (op);
3057
3058 switch (GET_RTX_CLASS (code))
3059 {
3060 case RTX_CONST_OBJ:
3061 if (code == CONST_INT)
3062 return -6;
3063 if (code == CONST_DOUBLE)
3064 return -5;
3065 if (code == CONST_FIXED)
3066 return -5;
3067 return -4;
3068
3069 case RTX_EXTRA:
3070 /* SUBREGs of objects should come second. */
3071 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3072 return -3;
3073 return 0;
3074
3075 case RTX_OBJ:
3076 /* Complex expressions should be the first, so decrease priority
3077 of objects. Prefer pointer objects over non pointer objects. */
3078 if ((REG_P (op) && REG_POINTER (op))
3079 || (MEM_P (op) && MEM_POINTER (op)))
3080 return -1;
3081 return -2;
3082
3083 case RTX_COMM_ARITH:
3084 /* Prefer operands that are themselves commutative to be first.
3085 This helps to make things linear. In particular,
3086 (and (and (reg) (reg)) (not (reg))) is canonical. */
3087 return 4;
3088
3089 case RTX_BIN_ARITH:
3090 /* If only one operand is a binary expression, it will be the first
3091 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3092 is canonical, although it will usually be further simplified. */
3093 return 2;
3094
3095 case RTX_UNARY:
3096 /* Then prefer NEG and NOT. */
3097 if (code == NEG || code == NOT)
3098 return 1;
3099
3100 default:
3101 return 0;
3102 }
3103 }
3104
3105 /* Return 1 iff it is necessary to swap operands of commutative operation
3106 in order to canonicalize expression. */
3107
3108 bool
3109 swap_commutative_operands_p (rtx x, rtx y)
3110 {
3111 return (commutative_operand_precedence (x)
3112 < commutative_operand_precedence (y));
3113 }
3114
3115 /* Return 1 if X is an autoincrement side effect and the register is
3116 not the stack pointer. */
3117 int
3118 auto_inc_p (const_rtx x)
3119 {
3120 switch (GET_CODE (x))
3121 {
3122 case PRE_INC:
3123 case POST_INC:
3124 case PRE_DEC:
3125 case POST_DEC:
3126 case PRE_MODIFY:
3127 case POST_MODIFY:
3128 /* There are no REG_INC notes for SP. */
3129 if (XEXP (x, 0) != stack_pointer_rtx)
3130 return 1;
3131 default:
3132 break;
3133 }
3134 return 0;
3135 }
3136
3137 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3138 int
3139 loc_mentioned_in_p (rtx *loc, const_rtx in)
3140 {
3141 enum rtx_code code;
3142 const char *fmt;
3143 int i, j;
3144
3145 if (!in)
3146 return 0;
3147
3148 code = GET_CODE (in);
3149 fmt = GET_RTX_FORMAT (code);
3150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3151 {
3152 if (fmt[i] == 'e')
3153 {
3154 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3155 return 1;
3156 }
3157 else if (fmt[i] == 'E')
3158 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3159 if (loc == &XVECEXP (in, i, j)
3160 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3161 return 1;
3162 }
3163 return 0;
3164 }
3165
3166 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3167 and SUBREG_BYTE, return the bit offset where the subreg begins
3168 (counting from the least significant bit of the operand). */
3169
3170 unsigned int
3171 subreg_lsb_1 (enum machine_mode outer_mode,
3172 enum machine_mode inner_mode,
3173 unsigned int subreg_byte)
3174 {
3175 unsigned int bitpos;
3176 unsigned int byte;
3177 unsigned int word;
3178
3179 /* A paradoxical subreg begins at bit position 0. */
3180 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3181 return 0;
3182
3183 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3184 /* If the subreg crosses a word boundary ensure that
3185 it also begins and ends on a word boundary. */
3186 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3187 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3188 && (subreg_byte % UNITS_PER_WORD
3189 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3190
3191 if (WORDS_BIG_ENDIAN)
3192 word = (GET_MODE_SIZE (inner_mode)
3193 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3194 else
3195 word = subreg_byte / UNITS_PER_WORD;
3196 bitpos = word * BITS_PER_WORD;
3197
3198 if (BYTES_BIG_ENDIAN)
3199 byte = (GET_MODE_SIZE (inner_mode)
3200 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3201 else
3202 byte = subreg_byte % UNITS_PER_WORD;
3203 bitpos += byte * BITS_PER_UNIT;
3204
3205 return bitpos;
3206 }
3207
3208 /* Given a subreg X, return the bit offset where the subreg begins
3209 (counting from the least significant bit of the reg). */
3210
3211 unsigned int
3212 subreg_lsb (const_rtx x)
3213 {
3214 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3215 SUBREG_BYTE (x));
3216 }
3217
3218 /* Fill in information about a subreg of a hard register.
3219 xregno - A regno of an inner hard subreg_reg (or what will become one).
3220 xmode - The mode of xregno.
3221 offset - The byte offset.
3222 ymode - The mode of a top level SUBREG (or what may become one).
3223 info - Pointer to structure to fill in. */
3224 void
3225 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3226 unsigned int offset, enum machine_mode ymode,
3227 struct subreg_info *info)
3228 {
3229 int nregs_xmode, nregs_ymode;
3230 int mode_multiple, nregs_multiple;
3231 int offset_adj, y_offset, y_offset_adj;
3232 int regsize_xmode, regsize_ymode;
3233 bool rknown;
3234
3235 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3236
3237 rknown = false;
3238
3239 /* If there are holes in a non-scalar mode in registers, we expect
3240 that it is made up of its units concatenated together. */
3241 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3242 {
3243 enum machine_mode xmode_unit;
3244
3245 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3246 if (GET_MODE_INNER (xmode) == VOIDmode)
3247 xmode_unit = xmode;
3248 else
3249 xmode_unit = GET_MODE_INNER (xmode);
3250 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3251 gcc_assert (nregs_xmode
3252 == (GET_MODE_NUNITS (xmode)
3253 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3254 gcc_assert (hard_regno_nregs[xregno][xmode]
3255 == (hard_regno_nregs[xregno][xmode_unit]
3256 * GET_MODE_NUNITS (xmode)));
3257
3258 /* You can only ask for a SUBREG of a value with holes in the middle
3259 if you don't cross the holes. (Such a SUBREG should be done by
3260 picking a different register class, or doing it in memory if
3261 necessary.) An example of a value with holes is XCmode on 32-bit
3262 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3263 3 for each part, but in memory it's two 128-bit parts.
3264 Padding is assumed to be at the end (not necessarily the 'high part')
3265 of each unit. */
3266 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3267 < GET_MODE_NUNITS (xmode))
3268 && (offset / GET_MODE_SIZE (xmode_unit)
3269 != ((offset + GET_MODE_SIZE (ymode) - 1)
3270 / GET_MODE_SIZE (xmode_unit))))
3271 {
3272 info->representable_p = false;
3273 rknown = true;
3274 }
3275 }
3276 else
3277 nregs_xmode = hard_regno_nregs[xregno][xmode];
3278
3279 nregs_ymode = hard_regno_nregs[xregno][ymode];
3280
3281 /* Paradoxical subregs are otherwise valid. */
3282 if (!rknown
3283 && offset == 0
3284 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3285 {
3286 info->representable_p = true;
3287 /* If this is a big endian paradoxical subreg, which uses more
3288 actual hard registers than the original register, we must
3289 return a negative offset so that we find the proper highpart
3290 of the register. */
3291 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3292 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3293 info->offset = nregs_xmode - nregs_ymode;
3294 else
3295 info->offset = 0;
3296 info->nregs = nregs_ymode;
3297 return;
3298 }
3299
3300 /* If registers store different numbers of bits in the different
3301 modes, we cannot generally form this subreg. */
3302 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3303 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3304 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3305 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3306 {
3307 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3308 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3309 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3310 {
3311 info->representable_p = false;
3312 info->nregs
3313 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3314 info->offset = offset / regsize_xmode;
3315 return;
3316 }
3317 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3318 {
3319 info->representable_p = false;
3320 info->nregs
3321 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3322 info->offset = offset / regsize_xmode;
3323 return;
3324 }
3325 }
3326
3327 /* Lowpart subregs are otherwise valid. */
3328 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3329 {
3330 info->representable_p = true;
3331 rknown = true;
3332
3333 if (offset == 0 || nregs_xmode == nregs_ymode)
3334 {
3335 info->offset = 0;
3336 info->nregs = nregs_ymode;
3337 return;
3338 }
3339 }
3340
3341 /* This should always pass, otherwise we don't know how to verify
3342 the constraint. These conditions may be relaxed but
3343 subreg_regno_offset would need to be redesigned. */
3344 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3345 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3346
3347 /* The XMODE value can be seen as a vector of NREGS_XMODE
3348 values. The subreg must represent a lowpart of given field.
3349 Compute what field it is. */
3350 offset_adj = offset;
3351 offset_adj -= subreg_lowpart_offset (ymode,
3352 mode_for_size (GET_MODE_BITSIZE (xmode)
3353 / nregs_xmode,
3354 MODE_INT, 0));
3355
3356 /* Size of ymode must not be greater than the size of xmode. */
3357 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3358 gcc_assert (mode_multiple != 0);
3359
3360 y_offset = offset / GET_MODE_SIZE (ymode);
3361 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3362 nregs_multiple = nregs_xmode / nregs_ymode;
3363
3364 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3365 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3366
3367 if (!rknown)
3368 {
3369 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3370 rknown = true;
3371 }
3372 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3373 info->nregs = nregs_ymode;
3374 }
3375
3376 /* This function returns the regno offset of a subreg expression.
3377 xregno - A regno of an inner hard subreg_reg (or what will become one).
3378 xmode - The mode of xregno.
3379 offset - The byte offset.
3380 ymode - The mode of a top level SUBREG (or what may become one).
3381 RETURN - The regno offset which would be used. */
3382 unsigned int
3383 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3384 unsigned int offset, enum machine_mode ymode)
3385 {
3386 struct subreg_info info;
3387 subreg_get_info (xregno, xmode, offset, ymode, &info);
3388 return info.offset;
3389 }
3390
3391 /* This function returns true when the offset is representable via
3392 subreg_offset in the given regno.
3393 xregno - A regno of an inner hard subreg_reg (or what will become one).
3394 xmode - The mode of xregno.
3395 offset - The byte offset.
3396 ymode - The mode of a top level SUBREG (or what may become one).
3397 RETURN - Whether the offset is representable. */
3398 bool
3399 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3400 unsigned int offset, enum machine_mode ymode)
3401 {
3402 struct subreg_info info;
3403 subreg_get_info (xregno, xmode, offset, ymode, &info);
3404 return info.representable_p;
3405 }
3406
3407 /* Return the number of a YMODE register to which
3408
3409 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3410
3411 can be simplified. Return -1 if the subreg can't be simplified.
3412
3413 XREGNO is a hard register number. */
3414
3415 int
3416 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3417 unsigned int offset, enum machine_mode ymode)
3418 {
3419 struct subreg_info info;
3420 unsigned int yregno;
3421
3422 #ifdef CANNOT_CHANGE_MODE_CLASS
3423 /* Give the backend a chance to disallow the mode change. */
3424 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3425 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3426 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3427 return -1;
3428 #endif
3429
3430 /* We shouldn't simplify stack-related registers. */
3431 if ((!reload_completed || frame_pointer_needed)
3432 && xregno == FRAME_POINTER_REGNUM)
3433 return -1;
3434
3435 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3436 && xregno == ARG_POINTER_REGNUM)
3437 return -1;
3438
3439 if (xregno == STACK_POINTER_REGNUM)
3440 return -1;
3441
3442 /* Try to get the register offset. */
3443 subreg_get_info (xregno, xmode, offset, ymode, &info);
3444 if (!info.representable_p)
3445 return -1;
3446
3447 /* Make sure that the offsetted register value is in range. */
3448 yregno = xregno + info.offset;
3449 if (!HARD_REGISTER_NUM_P (yregno))
3450 return -1;
3451
3452 /* See whether (reg:YMODE YREGNO) is valid.
3453
3454 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3455 This is a kludge to work around how float/complex arguments are passed
3456 on 32-bit SPARC and should be fixed. */
3457 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3458 && HARD_REGNO_MODE_OK (xregno, xmode))
3459 return -1;
3460
3461 return (int) yregno;
3462 }
3463
3464 /* Return the final regno that a subreg expression refers to. */
3465 unsigned int
3466 subreg_regno (const_rtx x)
3467 {
3468 unsigned int ret;
3469 rtx subreg = SUBREG_REG (x);
3470 int regno = REGNO (subreg);
3471
3472 ret = regno + subreg_regno_offset (regno,
3473 GET_MODE (subreg),
3474 SUBREG_BYTE (x),
3475 GET_MODE (x));
3476 return ret;
3477
3478 }
3479
3480 /* Return the number of registers that a subreg expression refers
3481 to. */
3482 unsigned int
3483 subreg_nregs (const_rtx x)
3484 {
3485 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3486 }
3487
3488 /* Return the number of registers that a subreg REG with REGNO
3489 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3490 changed so that the regno can be passed in. */
3491
3492 unsigned int
3493 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3494 {
3495 struct subreg_info info;
3496 rtx subreg = SUBREG_REG (x);
3497
3498 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3499 &info);
3500 return info.nregs;
3501 }
3502
3503
3504 struct parms_set_data
3505 {
3506 int nregs;
3507 HARD_REG_SET regs;
3508 };
3509
3510 /* Helper function for noticing stores to parameter registers. */
3511 static void
3512 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3513 {
3514 struct parms_set_data *const d = (struct parms_set_data *) data;
3515 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3516 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3517 {
3518 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3519 d->nregs--;
3520 }
3521 }
3522
3523 /* Look backward for first parameter to be loaded.
3524 Note that loads of all parameters will not necessarily be
3525 found if CSE has eliminated some of them (e.g., an argument
3526 to the outer function is passed down as a parameter).
3527 Do not skip BOUNDARY. */
3528 rtx
3529 find_first_parameter_load (rtx call_insn, rtx boundary)
3530 {
3531 struct parms_set_data parm;
3532 rtx p, before, first_set;
3533
3534 /* Since different machines initialize their parameter registers
3535 in different orders, assume nothing. Collect the set of all
3536 parameter registers. */
3537 CLEAR_HARD_REG_SET (parm.regs);
3538 parm.nregs = 0;
3539 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3540 if (GET_CODE (XEXP (p, 0)) == USE
3541 && REG_P (XEXP (XEXP (p, 0), 0)))
3542 {
3543 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3544
3545 /* We only care about registers which can hold function
3546 arguments. */
3547 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3548 continue;
3549
3550 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3551 parm.nregs++;
3552 }
3553 before = call_insn;
3554 first_set = call_insn;
3555
3556 /* Search backward for the first set of a register in this set. */
3557 while (parm.nregs && before != boundary)
3558 {
3559 before = PREV_INSN (before);
3560
3561 /* It is possible that some loads got CSEed from one call to
3562 another. Stop in that case. */
3563 if (CALL_P (before))
3564 break;
3565
3566 /* Our caller needs either ensure that we will find all sets
3567 (in case code has not been optimized yet), or take care
3568 for possible labels in a way by setting boundary to preceding
3569 CODE_LABEL. */
3570 if (LABEL_P (before))
3571 {
3572 gcc_assert (before == boundary);
3573 break;
3574 }
3575
3576 if (INSN_P (before))
3577 {
3578 int nregs_old = parm.nregs;
3579 note_stores (PATTERN (before), parms_set, &parm);
3580 /* If we found something that did not set a parameter reg,
3581 we're done. Do not keep going, as that might result
3582 in hoisting an insn before the setting of a pseudo
3583 that is used by the hoisted insn. */
3584 if (nregs_old != parm.nregs)
3585 first_set = before;
3586 else
3587 break;
3588 }
3589 }
3590 return first_set;
3591 }
3592
3593 /* Return true if we should avoid inserting code between INSN and preceding
3594 call instruction. */
3595
3596 bool
3597 keep_with_call_p (const_rtx insn)
3598 {
3599 rtx set;
3600
3601 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3602 {
3603 if (REG_P (SET_DEST (set))
3604 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3605 && fixed_regs[REGNO (SET_DEST (set))]
3606 && general_operand (SET_SRC (set), VOIDmode))
3607 return true;
3608 if (REG_P (SET_SRC (set))
3609 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3610 && REG_P (SET_DEST (set))
3611 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3612 return true;
3613 /* There may be a stack pop just after the call and before the store
3614 of the return register. Search for the actual store when deciding
3615 if we can break or not. */
3616 if (SET_DEST (set) == stack_pointer_rtx)
3617 {
3618 /* This CONST_CAST is okay because next_nonnote_insn just
3619 returns its argument and we assign it to a const_rtx
3620 variable. */
3621 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3622 if (i2 && keep_with_call_p (i2))
3623 return true;
3624 }
3625 }
3626 return false;
3627 }
3628
3629 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3630 to non-complex jumps. That is, direct unconditional, conditional,
3631 and tablejumps, but not computed jumps or returns. It also does
3632 not apply to the fallthru case of a conditional jump. */
3633
3634 bool
3635 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3636 {
3637 rtx tmp = JUMP_LABEL (jump_insn);
3638
3639 if (label == tmp)
3640 return true;
3641
3642 if (tablejump_p (jump_insn, NULL, &tmp))
3643 {
3644 rtvec vec = XVEC (PATTERN (tmp),
3645 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3646 int i, veclen = GET_NUM_ELEM (vec);
3647
3648 for (i = 0; i < veclen; ++i)
3649 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3650 return true;
3651 }
3652
3653 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3654 return true;
3655
3656 return false;
3657 }
3658
3659 \f
3660 /* Return an estimate of the cost of computing rtx X.
3661 One use is in cse, to decide which expression to keep in the hash table.
3662 Another is in rtl generation, to pick the cheapest way to multiply.
3663 Other uses like the latter are expected in the future.
3664
3665 SPEED parameter specify whether costs optimized for speed or size should
3666 be returned. */
3667
3668 int
3669 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3670 {
3671 int i, j;
3672 enum rtx_code code;
3673 const char *fmt;
3674 int total;
3675
3676 if (x == 0)
3677 return 0;
3678
3679 /* Compute the default costs of certain things.
3680 Note that targetm.rtx_costs can override the defaults. */
3681
3682 code = GET_CODE (x);
3683 switch (code)
3684 {
3685 case MULT:
3686 total = COSTS_N_INSNS (5);
3687 break;
3688 case DIV:
3689 case UDIV:
3690 case MOD:
3691 case UMOD:
3692 total = COSTS_N_INSNS (7);
3693 break;
3694 case USE:
3695 /* Used in combine.c as a marker. */
3696 total = 0;
3697 break;
3698 default:
3699 total = COSTS_N_INSNS (1);
3700 }
3701
3702 switch (code)
3703 {
3704 case REG:
3705 return 0;
3706
3707 case SUBREG:
3708 total = 0;
3709 /* If we can't tie these modes, make this expensive. The larger
3710 the mode, the more expensive it is. */
3711 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3712 return COSTS_N_INSNS (2
3713 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3714 break;
3715
3716 default:
3717 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3718 return total;
3719 break;
3720 }
3721
3722 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3723 which is already in total. */
3724
3725 fmt = GET_RTX_FORMAT (code);
3726 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3727 if (fmt[i] == 'e')
3728 total += rtx_cost (XEXP (x, i), code, speed);
3729 else if (fmt[i] == 'E')
3730 for (j = 0; j < XVECLEN (x, i); j++)
3731 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3732
3733 return total;
3734 }
3735
3736 /* Fill in the structure C with information about both speed and size rtx
3737 costs for X, with outer code OUTER. */
3738
3739 void
3740 get_full_rtx_cost (rtx x, enum rtx_code outer, struct full_rtx_costs *c)
3741 {
3742 c->speed = rtx_cost (x, outer, true);
3743 c->size = rtx_cost (x, outer, false);
3744 }
3745
3746 \f
3747 /* Return cost of address expression X.
3748 Expect that X is properly formed address reference.
3749
3750 SPEED parameter specify whether costs optimized for speed or size should
3751 be returned. */
3752
3753 int
3754 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3755 {
3756 /* We may be asked for cost of various unusual addresses, such as operands
3757 of push instruction. It is not worthwhile to complicate writing
3758 of the target hook by such cases. */
3759
3760 if (!memory_address_addr_space_p (mode, x, as))
3761 return 1000;
3762
3763 return targetm.address_cost (x, speed);
3764 }
3765
3766 /* If the target doesn't override, compute the cost as with arithmetic. */
3767
3768 int
3769 default_address_cost (rtx x, bool speed)
3770 {
3771 return rtx_cost (x, MEM, speed);
3772 }
3773 \f
3774
3775 unsigned HOST_WIDE_INT
3776 nonzero_bits (const_rtx x, enum machine_mode mode)
3777 {
3778 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3779 }
3780
3781 unsigned int
3782 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3783 {
3784 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3785 }
3786
3787 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3788 It avoids exponential behavior in nonzero_bits1 when X has
3789 identical subexpressions on the first or the second level. */
3790
3791 static unsigned HOST_WIDE_INT
3792 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3793 enum machine_mode known_mode,
3794 unsigned HOST_WIDE_INT known_ret)
3795 {
3796 if (x == known_x && mode == known_mode)
3797 return known_ret;
3798
3799 /* Try to find identical subexpressions. If found call
3800 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3801 precomputed value for the subexpression as KNOWN_RET. */
3802
3803 if (ARITHMETIC_P (x))
3804 {
3805 rtx x0 = XEXP (x, 0);
3806 rtx x1 = XEXP (x, 1);
3807
3808 /* Check the first level. */
3809 if (x0 == x1)
3810 return nonzero_bits1 (x, mode, x0, mode,
3811 cached_nonzero_bits (x0, mode, known_x,
3812 known_mode, known_ret));
3813
3814 /* Check the second level. */
3815 if (ARITHMETIC_P (x0)
3816 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3817 return nonzero_bits1 (x, mode, x1, mode,
3818 cached_nonzero_bits (x1, mode, known_x,
3819 known_mode, known_ret));
3820
3821 if (ARITHMETIC_P (x1)
3822 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3823 return nonzero_bits1 (x, mode, x0, mode,
3824 cached_nonzero_bits (x0, mode, known_x,
3825 known_mode, known_ret));
3826 }
3827
3828 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3829 }
3830
3831 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3832 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3833 is less useful. We can't allow both, because that results in exponential
3834 run time recursion. There is a nullstone testcase that triggered
3835 this. This macro avoids accidental uses of num_sign_bit_copies. */
3836 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3837
3838 /* Given an expression, X, compute which bits in X can be nonzero.
3839 We don't care about bits outside of those defined in MODE.
3840
3841 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3842 an arithmetic operation, we can do better. */
3843
3844 static unsigned HOST_WIDE_INT
3845 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3846 enum machine_mode known_mode,
3847 unsigned HOST_WIDE_INT known_ret)
3848 {
3849 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3850 unsigned HOST_WIDE_INT inner_nz;
3851 enum rtx_code code;
3852 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3853
3854 /* For floating-point and vector values, assume all bits are needed. */
3855 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3856 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3857 return nonzero;
3858
3859 /* If X is wider than MODE, use its mode instead. */
3860 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3861 {
3862 mode = GET_MODE (x);
3863 nonzero = GET_MODE_MASK (mode);
3864 mode_width = GET_MODE_BITSIZE (mode);
3865 }
3866
3867 if (mode_width > HOST_BITS_PER_WIDE_INT)
3868 /* Our only callers in this case look for single bit values. So
3869 just return the mode mask. Those tests will then be false. */
3870 return nonzero;
3871
3872 #ifndef WORD_REGISTER_OPERATIONS
3873 /* If MODE is wider than X, but both are a single word for both the host
3874 and target machines, we can compute this from which bits of the
3875 object might be nonzero in its own mode, taking into account the fact
3876 that on many CISC machines, accessing an object in a wider mode
3877 causes the high-order bits to become undefined. So they are
3878 not known to be zero. */
3879
3880 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3881 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3882 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3883 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3884 {
3885 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3886 known_x, known_mode, known_ret);
3887 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3888 return nonzero;
3889 }
3890 #endif
3891
3892 code = GET_CODE (x);
3893 switch (code)
3894 {
3895 case REG:
3896 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3897 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3898 all the bits above ptr_mode are known to be zero. */
3899 /* As we do not know which address space the pointer is refering to,
3900 we can do this only if the target does not support different pointer
3901 or address modes depending on the address space. */
3902 if (target_default_pointer_address_modes_p ()
3903 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3904 && REG_POINTER (x))
3905 nonzero &= GET_MODE_MASK (ptr_mode);
3906 #endif
3907
3908 /* Include declared information about alignment of pointers. */
3909 /* ??? We don't properly preserve REG_POINTER changes across
3910 pointer-to-integer casts, so we can't trust it except for
3911 things that we know must be pointers. See execute/960116-1.c. */
3912 if ((x == stack_pointer_rtx
3913 || x == frame_pointer_rtx
3914 || x == arg_pointer_rtx)
3915 && REGNO_POINTER_ALIGN (REGNO (x)))
3916 {
3917 unsigned HOST_WIDE_INT alignment
3918 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3919
3920 #ifdef PUSH_ROUNDING
3921 /* If PUSH_ROUNDING is defined, it is possible for the
3922 stack to be momentarily aligned only to that amount,
3923 so we pick the least alignment. */
3924 if (x == stack_pointer_rtx && PUSH_ARGS)
3925 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3926 alignment);
3927 #endif
3928
3929 nonzero &= ~(alignment - 1);
3930 }
3931
3932 {
3933 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3934 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3935 known_mode, known_ret,
3936 &nonzero_for_hook);
3937
3938 if (new_rtx)
3939 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3940 known_mode, known_ret);
3941
3942 return nonzero_for_hook;
3943 }
3944
3945 case CONST_INT:
3946 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3947 /* If X is negative in MODE, sign-extend the value. */
3948 if (INTVAL (x) > 0
3949 && mode_width < BITS_PER_WORD
3950 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
3951 != 0)
3952 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
3953 #endif
3954
3955 return UINTVAL (x);
3956
3957 case MEM:
3958 #ifdef LOAD_EXTEND_OP
3959 /* In many, if not most, RISC machines, reading a byte from memory
3960 zeros the rest of the register. Noticing that fact saves a lot
3961 of extra zero-extends. */
3962 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3963 nonzero &= GET_MODE_MASK (GET_MODE (x));
3964 #endif
3965 break;
3966
3967 case EQ: case NE:
3968 case UNEQ: case LTGT:
3969 case GT: case GTU: case UNGT:
3970 case LT: case LTU: case UNLT:
3971 case GE: case GEU: case UNGE:
3972 case LE: case LEU: case UNLE:
3973 case UNORDERED: case ORDERED:
3974 /* If this produces an integer result, we know which bits are set.
3975 Code here used to clear bits outside the mode of X, but that is
3976 now done above. */
3977 /* Mind that MODE is the mode the caller wants to look at this
3978 operation in, and not the actual operation mode. We can wind
3979 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3980 that describes the results of a vector compare. */
3981 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3982 && mode_width <= HOST_BITS_PER_WIDE_INT)
3983 nonzero = STORE_FLAG_VALUE;
3984 break;
3985
3986 case NEG:
3987 #if 0
3988 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3989 and num_sign_bit_copies. */
3990 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3991 == GET_MODE_BITSIZE (GET_MODE (x)))
3992 nonzero = 1;
3993 #endif
3994
3995 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3996 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3997 break;
3998
3999 case ABS:
4000 #if 0
4001 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4002 and num_sign_bit_copies. */
4003 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4004 == GET_MODE_BITSIZE (GET_MODE (x)))
4005 nonzero = 1;
4006 #endif
4007 break;
4008
4009 case TRUNCATE:
4010 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4011 known_x, known_mode, known_ret)
4012 & GET_MODE_MASK (mode));
4013 break;
4014
4015 case ZERO_EXTEND:
4016 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4017 known_x, known_mode, known_ret);
4018 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4019 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4020 break;
4021
4022 case SIGN_EXTEND:
4023 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4024 Otherwise, show all the bits in the outer mode but not the inner
4025 may be nonzero. */
4026 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4027 known_x, known_mode, known_ret);
4028 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4029 {
4030 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4031 if (inner_nz
4032 & (((unsigned HOST_WIDE_INT) 1
4033 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
4034 inner_nz |= (GET_MODE_MASK (mode)
4035 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4036 }
4037
4038 nonzero &= inner_nz;
4039 break;
4040
4041 case AND:
4042 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4043 known_x, known_mode, known_ret)
4044 & cached_nonzero_bits (XEXP (x, 1), mode,
4045 known_x, known_mode, known_ret);
4046 break;
4047
4048 case XOR: case IOR:
4049 case UMIN: case UMAX: case SMIN: case SMAX:
4050 {
4051 unsigned HOST_WIDE_INT nonzero0
4052 = cached_nonzero_bits (XEXP (x, 0), mode,
4053 known_x, known_mode, known_ret);
4054
4055 /* Don't call nonzero_bits for the second time if it cannot change
4056 anything. */
4057 if ((nonzero & nonzero0) != nonzero)
4058 nonzero &= nonzero0
4059 | cached_nonzero_bits (XEXP (x, 1), mode,
4060 known_x, known_mode, known_ret);
4061 }
4062 break;
4063
4064 case PLUS: case MINUS:
4065 case MULT:
4066 case DIV: case UDIV:
4067 case MOD: case UMOD:
4068 /* We can apply the rules of arithmetic to compute the number of
4069 high- and low-order zero bits of these operations. We start by
4070 computing the width (position of the highest-order nonzero bit)
4071 and the number of low-order zero bits for each value. */
4072 {
4073 unsigned HOST_WIDE_INT nz0
4074 = cached_nonzero_bits (XEXP (x, 0), mode,
4075 known_x, known_mode, known_ret);
4076 unsigned HOST_WIDE_INT nz1
4077 = cached_nonzero_bits (XEXP (x, 1), mode,
4078 known_x, known_mode, known_ret);
4079 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
4080 int width0 = floor_log2 (nz0) + 1;
4081 int width1 = floor_log2 (nz1) + 1;
4082 int low0 = floor_log2 (nz0 & -nz0);
4083 int low1 = floor_log2 (nz1 & -nz1);
4084 unsigned HOST_WIDE_INT op0_maybe_minusp
4085 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4086 unsigned HOST_WIDE_INT op1_maybe_minusp
4087 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4088 unsigned int result_width = mode_width;
4089 int result_low = 0;
4090
4091 switch (code)
4092 {
4093 case PLUS:
4094 result_width = MAX (width0, width1) + 1;
4095 result_low = MIN (low0, low1);
4096 break;
4097 case MINUS:
4098 result_low = MIN (low0, low1);
4099 break;
4100 case MULT:
4101 result_width = width0 + width1;
4102 result_low = low0 + low1;
4103 break;
4104 case DIV:
4105 if (width1 == 0)
4106 break;
4107 if (!op0_maybe_minusp && !op1_maybe_minusp)
4108 result_width = width0;
4109 break;
4110 case UDIV:
4111 if (width1 == 0)
4112 break;
4113 result_width = width0;
4114 break;
4115 case MOD:
4116 if (width1 == 0)
4117 break;
4118 if (!op0_maybe_minusp && !op1_maybe_minusp)
4119 result_width = MIN (width0, width1);
4120 result_low = MIN (low0, low1);
4121 break;
4122 case UMOD:
4123 if (width1 == 0)
4124 break;
4125 result_width = MIN (width0, width1);
4126 result_low = MIN (low0, low1);
4127 break;
4128 default:
4129 gcc_unreachable ();
4130 }
4131
4132 if (result_width < mode_width)
4133 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4134
4135 if (result_low > 0)
4136 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4137
4138 #ifdef POINTERS_EXTEND_UNSIGNED
4139 /* If pointers extend unsigned and this is an addition or subtraction
4140 to a pointer in Pmode, all the bits above ptr_mode are known to be
4141 zero. */
4142 /* As we do not know which address space the pointer is refering to,
4143 we can do this only if the target does not support different pointer
4144 or address modes depending on the address space. */
4145 if (target_default_pointer_address_modes_p ()
4146 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4147 && (code == PLUS || code == MINUS)
4148 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4149 nonzero &= GET_MODE_MASK (ptr_mode);
4150 #endif
4151 }
4152 break;
4153
4154 case ZERO_EXTRACT:
4155 if (CONST_INT_P (XEXP (x, 1))
4156 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4157 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4158 break;
4159
4160 case SUBREG:
4161 /* If this is a SUBREG formed for a promoted variable that has
4162 been zero-extended, we know that at least the high-order bits
4163 are zero, though others might be too. */
4164
4165 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4166 nonzero = GET_MODE_MASK (GET_MODE (x))
4167 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4168 known_x, known_mode, known_ret);
4169
4170 /* If the inner mode is a single word for both the host and target
4171 machines, we can compute this from which bits of the inner
4172 object might be nonzero. */
4173 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4174 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4175 <= HOST_BITS_PER_WIDE_INT))
4176 {
4177 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4178 known_x, known_mode, known_ret);
4179
4180 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4181 /* If this is a typical RISC machine, we only have to worry
4182 about the way loads are extended. */
4183 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4184 ? (((nonzero
4185 & (((unsigned HOST_WIDE_INT) 1
4186 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4187 != 0))
4188 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4189 || !MEM_P (SUBREG_REG (x)))
4190 #endif
4191 {
4192 /* On many CISC machines, accessing an object in a wider mode
4193 causes the high-order bits to become undefined. So they are
4194 not known to be zero. */
4195 if (GET_MODE_SIZE (GET_MODE (x))
4196 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4197 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4198 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4199 }
4200 }
4201 break;
4202
4203 case ASHIFTRT:
4204 case LSHIFTRT:
4205 case ASHIFT:
4206 case ROTATE:
4207 /* The nonzero bits are in two classes: any bits within MODE
4208 that aren't in GET_MODE (x) are always significant. The rest of the
4209 nonzero bits are those that are significant in the operand of
4210 the shift when shifted the appropriate number of bits. This
4211 shows that high-order bits are cleared by the right shift and
4212 low-order bits by left shifts. */
4213 if (CONST_INT_P (XEXP (x, 1))
4214 && INTVAL (XEXP (x, 1)) >= 0
4215 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4216 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4217 {
4218 enum machine_mode inner_mode = GET_MODE (x);
4219 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4220 int count = INTVAL (XEXP (x, 1));
4221 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4222 unsigned HOST_WIDE_INT op_nonzero
4223 = cached_nonzero_bits (XEXP (x, 0), mode,
4224 known_x, known_mode, known_ret);
4225 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4226 unsigned HOST_WIDE_INT outer = 0;
4227
4228 if (mode_width > width)
4229 outer = (op_nonzero & nonzero & ~mode_mask);
4230
4231 if (code == LSHIFTRT)
4232 inner >>= count;
4233 else if (code == ASHIFTRT)
4234 {
4235 inner >>= count;
4236
4237 /* If the sign bit may have been nonzero before the shift, we
4238 need to mark all the places it could have been copied to
4239 by the shift as possibly nonzero. */
4240 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4241 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4242 << (width - count);
4243 }
4244 else if (code == ASHIFT)
4245 inner <<= count;
4246 else
4247 inner = ((inner << (count % width)
4248 | (inner >> (width - (count % width)))) & mode_mask);
4249
4250 nonzero &= (outer | inner);
4251 }
4252 break;
4253
4254 case FFS:
4255 case POPCOUNT:
4256 /* This is at most the number of bits in the mode. */
4257 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4258 break;
4259
4260 case CLZ:
4261 /* If CLZ has a known value at zero, then the nonzero bits are
4262 that value, plus the number of bits in the mode minus one. */
4263 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4264 nonzero
4265 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4266 else
4267 nonzero = -1;
4268 break;
4269
4270 case CTZ:
4271 /* If CTZ has a known value at zero, then the nonzero bits are
4272 that value, plus the number of bits in the mode minus one. */
4273 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4274 nonzero
4275 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4276 else
4277 nonzero = -1;
4278 break;
4279
4280 case PARITY:
4281 nonzero = 1;
4282 break;
4283
4284 case IF_THEN_ELSE:
4285 {
4286 unsigned HOST_WIDE_INT nonzero_true
4287 = cached_nonzero_bits (XEXP (x, 1), mode,
4288 known_x, known_mode, known_ret);
4289
4290 /* Don't call nonzero_bits for the second time if it cannot change
4291 anything. */
4292 if ((nonzero & nonzero_true) != nonzero)
4293 nonzero &= nonzero_true
4294 | cached_nonzero_bits (XEXP (x, 2), mode,
4295 known_x, known_mode, known_ret);
4296 }
4297 break;
4298
4299 default:
4300 break;
4301 }
4302
4303 return nonzero;
4304 }
4305
4306 /* See the macro definition above. */
4307 #undef cached_num_sign_bit_copies
4308
4309 \f
4310 /* The function cached_num_sign_bit_copies is a wrapper around
4311 num_sign_bit_copies1. It avoids exponential behavior in
4312 num_sign_bit_copies1 when X has identical subexpressions on the
4313 first or the second level. */
4314
4315 static unsigned int
4316 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4317 enum machine_mode known_mode,
4318 unsigned int known_ret)
4319 {
4320 if (x == known_x && mode == known_mode)
4321 return known_ret;
4322
4323 /* Try to find identical subexpressions. If found call
4324 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4325 the precomputed value for the subexpression as KNOWN_RET. */
4326
4327 if (ARITHMETIC_P (x))
4328 {
4329 rtx x0 = XEXP (x, 0);
4330 rtx x1 = XEXP (x, 1);
4331
4332 /* Check the first level. */
4333 if (x0 == x1)
4334 return
4335 num_sign_bit_copies1 (x, mode, x0, mode,
4336 cached_num_sign_bit_copies (x0, mode, known_x,
4337 known_mode,
4338 known_ret));
4339
4340 /* Check the second level. */
4341 if (ARITHMETIC_P (x0)
4342 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4343 return
4344 num_sign_bit_copies1 (x, mode, x1, mode,
4345 cached_num_sign_bit_copies (x1, mode, known_x,
4346 known_mode,
4347 known_ret));
4348
4349 if (ARITHMETIC_P (x1)
4350 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4351 return
4352 num_sign_bit_copies1 (x, mode, x0, mode,
4353 cached_num_sign_bit_copies (x0, mode, known_x,
4354 known_mode,
4355 known_ret));
4356 }
4357
4358 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4359 }
4360
4361 /* Return the number of bits at the high-order end of X that are known to
4362 be equal to the sign bit. X will be used in mode MODE; if MODE is
4363 VOIDmode, X will be used in its own mode. The returned value will always
4364 be between 1 and the number of bits in MODE. */
4365
4366 static unsigned int
4367 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4368 enum machine_mode known_mode,
4369 unsigned int known_ret)
4370 {
4371 enum rtx_code code = GET_CODE (x);
4372 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4373 int num0, num1, result;
4374 unsigned HOST_WIDE_INT nonzero;
4375
4376 /* If we weren't given a mode, use the mode of X. If the mode is still
4377 VOIDmode, we don't know anything. Likewise if one of the modes is
4378 floating-point. */
4379
4380 if (mode == VOIDmode)
4381 mode = GET_MODE (x);
4382
4383 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4384 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4385 return 1;
4386
4387 /* For a smaller object, just ignore the high bits. */
4388 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4389 {
4390 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4391 known_x, known_mode, known_ret);
4392 return MAX (1,
4393 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4394 }
4395
4396 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4397 {
4398 #ifndef WORD_REGISTER_OPERATIONS
4399 /* If this machine does not do all register operations on the entire
4400 register and MODE is wider than the mode of X, we can say nothing
4401 at all about the high-order bits. */
4402 return 1;
4403 #else
4404 /* Likewise on machines that do, if the mode of the object is smaller
4405 than a word and loads of that size don't sign extend, we can say
4406 nothing about the high order bits. */
4407 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4408 #ifdef LOAD_EXTEND_OP
4409 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4410 #endif
4411 )
4412 return 1;
4413 #endif
4414 }
4415
4416 switch (code)
4417 {
4418 case REG:
4419
4420 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4421 /* If pointers extend signed and this is a pointer in Pmode, say that
4422 all the bits above ptr_mode are known to be sign bit copies. */
4423 /* As we do not know which address space the pointer is refering to,
4424 we can do this only if the target does not support different pointer
4425 or address modes depending on the address space. */
4426 if (target_default_pointer_address_modes_p ()
4427 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4428 && mode == Pmode && REG_POINTER (x))
4429 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4430 #endif
4431
4432 {
4433 unsigned int copies_for_hook = 1, copies = 1;
4434 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4435 known_mode, known_ret,
4436 &copies_for_hook);
4437
4438 if (new_rtx)
4439 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4440 known_mode, known_ret);
4441
4442 if (copies > 1 || copies_for_hook > 1)
4443 return MAX (copies, copies_for_hook);
4444
4445 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4446 }
4447 break;
4448
4449 case MEM:
4450 #ifdef LOAD_EXTEND_OP
4451 /* Some RISC machines sign-extend all loads of smaller than a word. */
4452 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4453 return MAX (1, ((int) bitwidth
4454 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4455 #endif
4456 break;
4457
4458 case CONST_INT:
4459 /* If the constant is negative, take its 1's complement and remask.
4460 Then see how many zero bits we have. */
4461 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4462 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4463 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4464 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4465
4466 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4467
4468 case SUBREG:
4469 /* If this is a SUBREG for a promoted object that is sign-extended
4470 and we are looking at it in a wider mode, we know that at least the
4471 high-order bits are known to be sign bit copies. */
4472
4473 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4474 {
4475 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4476 known_x, known_mode, known_ret);
4477 return MAX ((int) bitwidth
4478 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4479 num0);
4480 }
4481
4482 /* For a smaller object, just ignore the high bits. */
4483 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4484 {
4485 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4486 known_x, known_mode, known_ret);
4487 return MAX (1, (num0
4488 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4489 - bitwidth)));
4490 }
4491
4492 #ifdef WORD_REGISTER_OPERATIONS
4493 #ifdef LOAD_EXTEND_OP
4494 /* For paradoxical SUBREGs on machines where all register operations
4495 affect the entire register, just look inside. Note that we are
4496 passing MODE to the recursive call, so the number of sign bit copies
4497 will remain relative to that mode, not the inner mode. */
4498
4499 /* This works only if loads sign extend. Otherwise, if we get a
4500 reload for the inner part, it may be loaded from the stack, and
4501 then we lose all sign bit copies that existed before the store
4502 to the stack. */
4503
4504 if ((GET_MODE_SIZE (GET_MODE (x))
4505 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4506 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4507 && MEM_P (SUBREG_REG (x)))
4508 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4509 known_x, known_mode, known_ret);
4510 #endif
4511 #endif
4512 break;
4513
4514 case SIGN_EXTRACT:
4515 if (CONST_INT_P (XEXP (x, 1)))
4516 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4517 break;
4518
4519 case SIGN_EXTEND:
4520 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4521 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4522 known_x, known_mode, known_ret));
4523
4524 case TRUNCATE:
4525 /* For a smaller object, just ignore the high bits. */
4526 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4527 known_x, known_mode, known_ret);
4528 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4529 - bitwidth)));
4530
4531 case NOT:
4532 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4533 known_x, known_mode, known_ret);
4534
4535 case ROTATE: case ROTATERT:
4536 /* If we are rotating left by a number of bits less than the number
4537 of sign bit copies, we can just subtract that amount from the
4538 number. */
4539 if (CONST_INT_P (XEXP (x, 1))
4540 && INTVAL (XEXP (x, 1)) >= 0
4541 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4542 {
4543 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4544 known_x, known_mode, known_ret);
4545 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4546 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4547 }
4548 break;
4549
4550 case NEG:
4551 /* In general, this subtracts one sign bit copy. But if the value
4552 is known to be positive, the number of sign bit copies is the
4553 same as that of the input. Finally, if the input has just one bit
4554 that might be nonzero, all the bits are copies of the sign bit. */
4555 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4556 known_x, known_mode, known_ret);
4557 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4558 return num0 > 1 ? num0 - 1 : 1;
4559
4560 nonzero = nonzero_bits (XEXP (x, 0), mode);
4561 if (nonzero == 1)
4562 return bitwidth;
4563
4564 if (num0 > 1
4565 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4566 num0--;
4567
4568 return num0;
4569
4570 case IOR: case AND: case XOR:
4571 case SMIN: case SMAX: case UMIN: case UMAX:
4572 /* Logical operations will preserve the number of sign-bit copies.
4573 MIN and MAX operations always return one of the operands. */
4574 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4575 known_x, known_mode, known_ret);
4576 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4577 known_x, known_mode, known_ret);
4578
4579 /* If num1 is clearing some of the top bits then regardless of
4580 the other term, we are guaranteed to have at least that many
4581 high-order zero bits. */
4582 if (code == AND
4583 && num1 > 1
4584 && bitwidth <= HOST_BITS_PER_WIDE_INT
4585 && CONST_INT_P (XEXP (x, 1))
4586 && (UINTVAL (XEXP (x, 1))
4587 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4588 return num1;
4589
4590 /* Similarly for IOR when setting high-order bits. */
4591 if (code == IOR
4592 && num1 > 1
4593 && bitwidth <= HOST_BITS_PER_WIDE_INT
4594 && CONST_INT_P (XEXP (x, 1))
4595 && (UINTVAL (XEXP (x, 1))
4596 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4597 return num1;
4598
4599 return MIN (num0, num1);
4600
4601 case PLUS: case MINUS:
4602 /* For addition and subtraction, we can have a 1-bit carry. However,
4603 if we are subtracting 1 from a positive number, there will not
4604 be such a carry. Furthermore, if the positive number is known to
4605 be 0 or 1, we know the result is either -1 or 0. */
4606
4607 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4608 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4609 {
4610 nonzero = nonzero_bits (XEXP (x, 0), mode);
4611 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4612 return (nonzero == 1 || nonzero == 0 ? bitwidth
4613 : bitwidth - floor_log2 (nonzero) - 1);
4614 }
4615
4616 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4617 known_x, known_mode, known_ret);
4618 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4619 known_x, known_mode, known_ret);
4620 result = MAX (1, MIN (num0, num1) - 1);
4621
4622 #ifdef POINTERS_EXTEND_UNSIGNED
4623 /* If pointers extend signed and this is an addition or subtraction
4624 to a pointer in Pmode, all the bits above ptr_mode are known to be
4625 sign bit copies. */
4626 /* As we do not know which address space the pointer is refering to,
4627 we can do this only if the target does not support different pointer
4628 or address modes depending on the address space. */
4629 if (target_default_pointer_address_modes_p ()
4630 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4631 && (code == PLUS || code == MINUS)
4632 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4633 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4634 - GET_MODE_BITSIZE (ptr_mode) + 1),
4635 result);
4636 #endif
4637 return result;
4638
4639 case MULT:
4640 /* The number of bits of the product is the sum of the number of
4641 bits of both terms. However, unless one of the terms if known
4642 to be positive, we must allow for an additional bit since negating
4643 a negative number can remove one sign bit copy. */
4644
4645 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4646 known_x, known_mode, known_ret);
4647 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4648 known_x, known_mode, known_ret);
4649
4650 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4651 if (result > 0
4652 && (bitwidth > HOST_BITS_PER_WIDE_INT
4653 || (((nonzero_bits (XEXP (x, 0), mode)
4654 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4655 && ((nonzero_bits (XEXP (x, 1), mode)
4656 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4657 != 0))))
4658 result--;
4659
4660 return MAX (1, result);
4661
4662 case UDIV:
4663 /* The result must be <= the first operand. If the first operand
4664 has the high bit set, we know nothing about the number of sign
4665 bit copies. */
4666 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4667 return 1;
4668 else if ((nonzero_bits (XEXP (x, 0), mode)
4669 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4670 return 1;
4671 else
4672 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4673 known_x, known_mode, known_ret);
4674
4675 case UMOD:
4676 /* The result must be <= the second operand. If the second operand
4677 has (or just might have) the high bit set, we know nothing about
4678 the number of sign bit copies. */
4679 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4680 return 1;
4681 else if ((nonzero_bits (XEXP (x, 1), mode)
4682 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4683 return 1;
4684 else
4685 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4686 known_x, known_mode, known_ret);
4687
4688 case DIV:
4689 /* Similar to unsigned division, except that we have to worry about
4690 the case where the divisor is negative, in which case we have
4691 to add 1. */
4692 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4693 known_x, known_mode, known_ret);
4694 if (result > 1
4695 && (bitwidth > HOST_BITS_PER_WIDE_INT
4696 || (nonzero_bits (XEXP (x, 1), mode)
4697 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4698 result--;
4699
4700 return result;
4701
4702 case MOD:
4703 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4704 known_x, known_mode, known_ret);
4705 if (result > 1
4706 && (bitwidth > HOST_BITS_PER_WIDE_INT
4707 || (nonzero_bits (XEXP (x, 1), mode)
4708 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4709 result--;
4710
4711 return result;
4712
4713 case ASHIFTRT:
4714 /* Shifts by a constant add to the number of bits equal to the
4715 sign bit. */
4716 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4717 known_x, known_mode, known_ret);
4718 if (CONST_INT_P (XEXP (x, 1))
4719 && INTVAL (XEXP (x, 1)) > 0
4720 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4721 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4722
4723 return num0;
4724
4725 case ASHIFT:
4726 /* Left shifts destroy copies. */
4727 if (!CONST_INT_P (XEXP (x, 1))
4728 || INTVAL (XEXP (x, 1)) < 0
4729 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4730 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4731 return 1;
4732
4733 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4734 known_x, known_mode, known_ret);
4735 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4736
4737 case IF_THEN_ELSE:
4738 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4739 known_x, known_mode, known_ret);
4740 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4741 known_x, known_mode, known_ret);
4742 return MIN (num0, num1);
4743
4744 case EQ: case NE: case GE: case GT: case LE: case LT:
4745 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4746 case GEU: case GTU: case LEU: case LTU:
4747 case UNORDERED: case ORDERED:
4748 /* If the constant is negative, take its 1's complement and remask.
4749 Then see how many zero bits we have. */
4750 nonzero = STORE_FLAG_VALUE;
4751 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4752 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4753 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4754
4755 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4756
4757 default:
4758 break;
4759 }
4760
4761 /* If we haven't been able to figure it out by one of the above rules,
4762 see if some of the high-order bits are known to be zero. If so,
4763 count those bits and return one less than that amount. If we can't
4764 safely compute the mask for this mode, always return BITWIDTH. */
4765
4766 bitwidth = GET_MODE_BITSIZE (mode);
4767 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4768 return 1;
4769
4770 nonzero = nonzero_bits (x, mode);
4771 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4772 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4773 }
4774
4775 /* Calculate the rtx_cost of a single instruction. A return value of
4776 zero indicates an instruction pattern without a known cost. */
4777
4778 int
4779 insn_rtx_cost (rtx pat, bool speed)
4780 {
4781 int i, cost;
4782 rtx set;
4783
4784 /* Extract the single set rtx from the instruction pattern.
4785 We can't use single_set since we only have the pattern. */
4786 if (GET_CODE (pat) == SET)
4787 set = pat;
4788 else if (GET_CODE (pat) == PARALLEL)
4789 {
4790 set = NULL_RTX;
4791 for (i = 0; i < XVECLEN (pat, 0); i++)
4792 {
4793 rtx x = XVECEXP (pat, 0, i);
4794 if (GET_CODE (x) == SET)
4795 {
4796 if (set)
4797 return 0;
4798 set = x;
4799 }
4800 }
4801 if (!set)
4802 return 0;
4803 }
4804 else
4805 return 0;
4806
4807 cost = rtx_cost (SET_SRC (set), SET, speed);
4808 return cost > 0 ? cost : COSTS_N_INSNS (1);
4809 }
4810
4811 /* Given an insn INSN and condition COND, return the condition in a
4812 canonical form to simplify testing by callers. Specifically:
4813
4814 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4815 (2) Both operands will be machine operands; (cc0) will have been replaced.
4816 (3) If an operand is a constant, it will be the second operand.
4817 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4818 for GE, GEU, and LEU.
4819
4820 If the condition cannot be understood, or is an inequality floating-point
4821 comparison which needs to be reversed, 0 will be returned.
4822
4823 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4824
4825 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4826 insn used in locating the condition was found. If a replacement test
4827 of the condition is desired, it should be placed in front of that
4828 insn and we will be sure that the inputs are still valid.
4829
4830 If WANT_REG is nonzero, we wish the condition to be relative to that
4831 register, if possible. Therefore, do not canonicalize the condition
4832 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4833 to be a compare to a CC mode register.
4834
4835 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4836 and at INSN. */
4837
4838 rtx
4839 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4840 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4841 {
4842 enum rtx_code code;
4843 rtx prev = insn;
4844 const_rtx set;
4845 rtx tem;
4846 rtx op0, op1;
4847 int reverse_code = 0;
4848 enum machine_mode mode;
4849 basic_block bb = BLOCK_FOR_INSN (insn);
4850
4851 code = GET_CODE (cond);
4852 mode = GET_MODE (cond);
4853 op0 = XEXP (cond, 0);
4854 op1 = XEXP (cond, 1);
4855
4856 if (reverse)
4857 code = reversed_comparison_code (cond, insn);
4858 if (code == UNKNOWN)
4859 return 0;
4860
4861 if (earliest)
4862 *earliest = insn;
4863
4864 /* If we are comparing a register with zero, see if the register is set
4865 in the previous insn to a COMPARE or a comparison operation. Perform
4866 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4867 in cse.c */
4868
4869 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4870 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4871 && op1 == CONST0_RTX (GET_MODE (op0))
4872 && op0 != want_reg)
4873 {
4874 /* Set nonzero when we find something of interest. */
4875 rtx x = 0;
4876
4877 #ifdef HAVE_cc0
4878 /* If comparison with cc0, import actual comparison from compare
4879 insn. */
4880 if (op0 == cc0_rtx)
4881 {
4882 if ((prev = prev_nonnote_insn (prev)) == 0
4883 || !NONJUMP_INSN_P (prev)
4884 || (set = single_set (prev)) == 0
4885 || SET_DEST (set) != cc0_rtx)
4886 return 0;
4887
4888 op0 = SET_SRC (set);
4889 op1 = CONST0_RTX (GET_MODE (op0));
4890 if (earliest)
4891 *earliest = prev;
4892 }
4893 #endif
4894
4895 /* If this is a COMPARE, pick up the two things being compared. */
4896 if (GET_CODE (op0) == COMPARE)
4897 {
4898 op1 = XEXP (op0, 1);
4899 op0 = XEXP (op0, 0);
4900 continue;
4901 }
4902 else if (!REG_P (op0))
4903 break;
4904
4905 /* Go back to the previous insn. Stop if it is not an INSN. We also
4906 stop if it isn't a single set or if it has a REG_INC note because
4907 we don't want to bother dealing with it. */
4908
4909 prev = prev_nonnote_nondebug_insn (prev);
4910
4911 if (prev == 0
4912 || !NONJUMP_INSN_P (prev)
4913 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4914 /* In cfglayout mode, there do not have to be labels at the
4915 beginning of a block, or jumps at the end, so the previous
4916 conditions would not stop us when we reach bb boundary. */
4917 || BLOCK_FOR_INSN (prev) != bb)
4918 break;
4919
4920 set = set_of (op0, prev);
4921
4922 if (set
4923 && (GET_CODE (set) != SET
4924 || !rtx_equal_p (SET_DEST (set), op0)))
4925 break;
4926
4927 /* If this is setting OP0, get what it sets it to if it looks
4928 relevant. */
4929 if (set)
4930 {
4931 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4932 #ifdef FLOAT_STORE_FLAG_VALUE
4933 REAL_VALUE_TYPE fsfv;
4934 #endif
4935
4936 /* ??? We may not combine comparisons done in a CCmode with
4937 comparisons not done in a CCmode. This is to aid targets
4938 like Alpha that have an IEEE compliant EQ instruction, and
4939 a non-IEEE compliant BEQ instruction. The use of CCmode is
4940 actually artificial, simply to prevent the combination, but
4941 should not affect other platforms.
4942
4943 However, we must allow VOIDmode comparisons to match either
4944 CCmode or non-CCmode comparison, because some ports have
4945 modeless comparisons inside branch patterns.
4946
4947 ??? This mode check should perhaps look more like the mode check
4948 in simplify_comparison in combine. */
4949
4950 if ((GET_CODE (SET_SRC (set)) == COMPARE
4951 || (((code == NE
4952 || (code == LT
4953 && GET_MODE_CLASS (inner_mode) == MODE_INT
4954 && (GET_MODE_BITSIZE (inner_mode)
4955 <= HOST_BITS_PER_WIDE_INT)
4956 && (STORE_FLAG_VALUE
4957 & ((unsigned HOST_WIDE_INT) 1
4958 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4959 #ifdef FLOAT_STORE_FLAG_VALUE
4960 || (code == LT
4961 && SCALAR_FLOAT_MODE_P (inner_mode)
4962 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4963 REAL_VALUE_NEGATIVE (fsfv)))
4964 #endif
4965 ))
4966 && COMPARISON_P (SET_SRC (set))))
4967 && (((GET_MODE_CLASS (mode) == MODE_CC)
4968 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4969 || mode == VOIDmode || inner_mode == VOIDmode))
4970 x = SET_SRC (set);
4971 else if (((code == EQ
4972 || (code == GE
4973 && (GET_MODE_BITSIZE (inner_mode)
4974 <= HOST_BITS_PER_WIDE_INT)
4975 && GET_MODE_CLASS (inner_mode) == MODE_INT
4976 && (STORE_FLAG_VALUE
4977 & ((unsigned HOST_WIDE_INT) 1
4978 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4979 #ifdef FLOAT_STORE_FLAG_VALUE
4980 || (code == GE
4981 && SCALAR_FLOAT_MODE_P (inner_mode)
4982 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4983 REAL_VALUE_NEGATIVE (fsfv)))
4984 #endif
4985 ))
4986 && COMPARISON_P (SET_SRC (set))
4987 && (((GET_MODE_CLASS (mode) == MODE_CC)
4988 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4989 || mode == VOIDmode || inner_mode == VOIDmode))
4990
4991 {
4992 reverse_code = 1;
4993 x = SET_SRC (set);
4994 }
4995 else
4996 break;
4997 }
4998
4999 else if (reg_set_p (op0, prev))
5000 /* If this sets OP0, but not directly, we have to give up. */
5001 break;
5002
5003 if (x)
5004 {
5005 /* If the caller is expecting the condition to be valid at INSN,
5006 make sure X doesn't change before INSN. */
5007 if (valid_at_insn_p)
5008 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5009 break;
5010 if (COMPARISON_P (x))
5011 code = GET_CODE (x);
5012 if (reverse_code)
5013 {
5014 code = reversed_comparison_code (x, prev);
5015 if (code == UNKNOWN)
5016 return 0;
5017 reverse_code = 0;
5018 }
5019
5020 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5021 if (earliest)
5022 *earliest = prev;
5023 }
5024 }
5025
5026 /* If constant is first, put it last. */
5027 if (CONSTANT_P (op0))
5028 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5029
5030 /* If OP0 is the result of a comparison, we weren't able to find what
5031 was really being compared, so fail. */
5032 if (!allow_cc_mode
5033 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5034 return 0;
5035
5036 /* Canonicalize any ordered comparison with integers involving equality
5037 if we can do computations in the relevant mode and we do not
5038 overflow. */
5039
5040 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5041 && CONST_INT_P (op1)
5042 && GET_MODE (op0) != VOIDmode
5043 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5044 {
5045 HOST_WIDE_INT const_val = INTVAL (op1);
5046 unsigned HOST_WIDE_INT uconst_val = const_val;
5047 unsigned HOST_WIDE_INT max_val
5048 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5049
5050 switch (code)
5051 {
5052 case LE:
5053 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5054 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5055 break;
5056
5057 /* When cross-compiling, const_val might be sign-extended from
5058 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5059 case GE:
5060 if ((const_val & max_val)
5061 != ((unsigned HOST_WIDE_INT) 1
5062 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))
5063 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5064 break;
5065
5066 case LEU:
5067 if (uconst_val < max_val)
5068 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5069 break;
5070
5071 case GEU:
5072 if (uconst_val != 0)
5073 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5074 break;
5075
5076 default:
5077 break;
5078 }
5079 }
5080
5081 /* Never return CC0; return zero instead. */
5082 if (CC0_P (op0))
5083 return 0;
5084
5085 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5086 }
5087
5088 /* Given a jump insn JUMP, return the condition that will cause it to branch
5089 to its JUMP_LABEL. If the condition cannot be understood, or is an
5090 inequality floating-point comparison which needs to be reversed, 0 will
5091 be returned.
5092
5093 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5094 insn used in locating the condition was found. If a replacement test
5095 of the condition is desired, it should be placed in front of that
5096 insn and we will be sure that the inputs are still valid. If EARLIEST
5097 is null, the returned condition will be valid at INSN.
5098
5099 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5100 compare CC mode register.
5101
5102 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5103
5104 rtx
5105 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5106 {
5107 rtx cond;
5108 int reverse;
5109 rtx set;
5110
5111 /* If this is not a standard conditional jump, we can't parse it. */
5112 if (!JUMP_P (jump)
5113 || ! any_condjump_p (jump))
5114 return 0;
5115 set = pc_set (jump);
5116
5117 cond = XEXP (SET_SRC (set), 0);
5118
5119 /* If this branches to JUMP_LABEL when the condition is false, reverse
5120 the condition. */
5121 reverse
5122 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5123 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5124
5125 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5126 allow_cc_mode, valid_at_insn_p);
5127 }
5128
5129 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5130 TARGET_MODE_REP_EXTENDED.
5131
5132 Note that we assume that the property of
5133 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5134 narrower than mode B. I.e., if A is a mode narrower than B then in
5135 order to be able to operate on it in mode B, mode A needs to
5136 satisfy the requirements set by the representation of mode B. */
5137
5138 static void
5139 init_num_sign_bit_copies_in_rep (void)
5140 {
5141 enum machine_mode mode, in_mode;
5142
5143 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5144 in_mode = GET_MODE_WIDER_MODE (mode))
5145 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5146 mode = GET_MODE_WIDER_MODE (mode))
5147 {
5148 enum machine_mode i;
5149
5150 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5151 extends to the next widest mode. */
5152 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5153 || GET_MODE_WIDER_MODE (mode) == in_mode);
5154
5155 /* We are in in_mode. Count how many bits outside of mode
5156 have to be copies of the sign-bit. */
5157 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5158 {
5159 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5160
5161 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5162 /* We can only check sign-bit copies starting from the
5163 top-bit. In order to be able to check the bits we
5164 have already seen we pretend that subsequent bits
5165 have to be sign-bit copies too. */
5166 || num_sign_bit_copies_in_rep [in_mode][mode])
5167 num_sign_bit_copies_in_rep [in_mode][mode]
5168 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5169 }
5170 }
5171 }
5172
5173 /* Suppose that truncation from the machine mode of X to MODE is not a
5174 no-op. See if there is anything special about X so that we can
5175 assume it already contains a truncated value of MODE. */
5176
5177 bool
5178 truncated_to_mode (enum machine_mode mode, const_rtx x)
5179 {
5180 /* This register has already been used in MODE without explicit
5181 truncation. */
5182 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5183 return true;
5184
5185 /* See if we already satisfy the requirements of MODE. If yes we
5186 can just switch to MODE. */
5187 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5188 && (num_sign_bit_copies (x, GET_MODE (x))
5189 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5190 return true;
5191
5192 return false;
5193 }
5194 \f
5195 /* Initialize non_rtx_starting_operands, which is used to speed up
5196 for_each_rtx. */
5197 void
5198 init_rtlanal (void)
5199 {
5200 int i;
5201 for (i = 0; i < NUM_RTX_CODE; i++)
5202 {
5203 const char *format = GET_RTX_FORMAT (i);
5204 const char *first = strpbrk (format, "eEV");
5205 non_rtx_starting_operands[i] = first ? first - format : -1;
5206 }
5207
5208 init_num_sign_bit_copies_in_rep ();
5209 }
5210 \f
5211 /* Check whether this is a constant pool constant. */
5212 bool
5213 constant_pool_constant_p (rtx x)
5214 {
5215 x = avoid_constant_pool_reference (x);
5216 return GET_CODE (x) == CONST_DOUBLE;
5217 }
5218 \f
5219 /* If M is a bitmask that selects a field of low-order bits within an item but
5220 not the entire word, return the length of the field. Return -1 otherwise.
5221 M is used in machine mode MODE. */
5222
5223 int
5224 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5225 {
5226 if (mode != VOIDmode)
5227 {
5228 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5229 return -1;
5230 m &= GET_MODE_MASK (mode);
5231 }
5232
5233 return exact_log2 (m + 1);
5234 }